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Abstract

In this paper we propose a novel approach which automatizes task
partitioning in heterogeneous systems. Our framework is based on
the Insieme Compiler and Runtime infrastructure [1]. The compiler
translates a single-device OpenCL program into a multi-device
OpenCL program. The runtime system then performs dynamic task
partitioning based on an offline-generated prediction model. In or-
der to derive the prediction model, we use a machine learning ap-
proach that incorporates static program features as well as dynamic,
input sensitive features.

Our approach has been evaluated over a suite of 23 programs and
achieves performance improvements compared to an execution of
the benchmarks on a single CPU and a single GPU only.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications; D .3.4 [ Programming Lan-
guages): Processors; C.1.3 [Processor Architectures]: Other Ar-
chitecture Styles

General Terms Languages, Algorithms, Performance

Keywords heterogeneous computing, compilers, GPU, task parti-
tioning, code analysis, machine learning, runtime system

1. Introduction

The transition from homogeneous to heterogeneous architectures is
challenging with respect to the efficient utilization of the hardware
resources and the reuse of the software stack. This problem has
drawn great interest from researchers and industry, leading to the
proposal of several programming models including HMPP, Ope-
nACC, CUDA and OpenCL [6]. OpenCL (Open Computing Lan-
guage) is the first open standard for cross-platform p arallel com-
puting that supports a wide range of hardware through a low-level
high performance abstraction layer.

As heterogeneous computing opens many new opportunities for
developing parallel algorithms, our work is motivated by the addi-
tional challenges and complexity that it also introduces. One of the
challenges is the distribution of tasks (i.e. task partitioning) among
the available OpenCL devices in order to maximize the system per-
formance. Task partitioning defines how the total workload is dis-
tributed among several computational resources. It is important to

understand that the best-performing task partitioning changes with
different applications, different (input) problem sizes, and different
hardware configurations.

Another important aspect of heterogeneous computing is the
difficulty of writing multi-device programs (i.e. a single program
which can be executed on multiple devices concurrently).

In this paper we present an automatic, problem size sensitive
method for task partitioning of OpenCL programs on heteroge-
neous systems. Our work is based on machine learning which effec-
tively combines compile time analysis with runtime feature evalu-
ation to predict the optimal task partitioning for every combination
of program, problem size and hardware configuration.

2. Framework Overview

The proposed approach, based on the Insieme Compiler and Run-
time infrastructure [1], is composed by two main phases: training
and deployment.

The goal of the training phase is to build a task partitioning pre-
diction model. To build the model, a set of OpenCL programs are
provided to the system and translated by the code analyzer into
the Insieme Parallel Intermediate Representation (INSPIRE). From
this representation, the features of the program (static program fea-
tures) are extracted and stored in a database. The intermediate rep-
resentation of the program is then passed to the backend which gen-
erates multi-device OpenCL code. Once generated, the new pro-
gram will be executed with various problem sizes and the avail-
able task partitionings. The obtained performance measurements,
together with the problem size dependent features of the program
(i.e. runtime features), are collected and added to the database. Af-
ter these steps have been accomplished for all programs, a machine
learning task partitioning model is generated using the features and
the performance measurements stored in the database.

In the deployment phase a new OpenCL program is provided to
the analyzer, the static features are extracted and the intermediate
representation is passed to the backend which generates a multi-
device OpenCL program. When the program is executed, the static
code features along with the runtime features are provided to the
previously trained model, which predicts the best task partitioning
for the current program with the selected problem size. Finally, the
runtime system executes the program on the given hardware using
the predicted task partitioning.

2.1 Predicting the Optimal Partitioning

Our overall approach requires building a model using machine
learning in order to predict a task partitioning p from a vector of
features that describes the essential characteristics of a program as
well as the current problem size. The predicted task partitioning p
should be as close as possible to the best task partitioning in terms
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Figure 1. Speedup of our machine leaning guided task partitioning approach over execution on CPU/GPU only for different programs on

two target architectures with different problem sizes.

of performance. p is selected from a discretized partitioning space
with a stepsize of 10%.

3. Evaluation

To evaluate the performance of our approach we used a selection of
23 programs drawn from OpenCL vendors’ example codes, appli-
cations from our department or partner universities, and benchmark
suites [2—4]. After processing the OpenCL input program with the
Insieme source-to-source compiler, the Gnu Compiler Collection
(GCC) version 4.6.3 was used to convert the resulting code to bi-
nary.

In order to examine the impact of problem sizes on task parti-
tioning we executed each benchmark with varying problem sizes
on two heterogeneous target platforms composed of three OpenCL
devices: two GPUs and two multi-core CPUs in a dual-socket in-
frastructure. While both GPUs represent a separate device, the two
CPUs are reported as a single OpenCL device. The first platform,
mecl, consists of two AMD Opteron CPUs and two Ati Radeon HD
5870 GPUs, while the second, mc2, holds two Intel Xeon CPUs
and two NVIDIA GeForce GTX 480 GPUs.

Each training pattern consists of the static features of a program,
its runtime features for a certain problem size as well as the best
task partitioning for the given program with the current input size.
To ensure a fair comparison between different task partitionings,
we measured the execution time of the kernels including the mem-
ory transfer overhead [5].

In Figure 1 we compare the performance of the task partition-
ings predicted by the Insieme framework based on a machine learn-
ing approach, with the performance delivered by the CPU/GPU-
only strategy for each code and each target architecture individu-
ally. Of these two default strategies, in almost all test cases, the
CPU-only strategy delivers a higher performance on mc/, while on
mc2 the GPU-only strategy usually performs better. This is a result
of the weaker performance of the GPU in mcI. The VLIW archi-
tecture with a very wide instruction width and high branch miss
penalty would require specific fine-tuning of each code to perform
well [7]. However, none of our test cases was tuned for a specific
device.

On average considering both target architectures, our approach
delivers a significantly better performance than the two default
strategies for most test cases. Our models are capable of represent-
ing the target architecture’s characteristics in order to find perfor-
mance efficient task partitionings and determine which device is to
be favored on a specific target architecture.

4. Conclusion

In this paper we proposed a novel approach which can automat-
ically distribute OpenCL programs on heterogeneous CPU-GPU
systems. It consists of a source-to-source compiler, which trans-
lates a single-device OpenCL program into a multi-device OpenCL
program and a runtime system which distributes the workload over
all heterogeneous resources using a machine learning based, off-
line generated prediction model.

Our measurements demonstrate that the optimal task partition-
ing does depend on the program, the target architecture, as well as
the problem size. To accommodate this observation, we use two
classes of features: static program features, whose values can be
extracted from the source code at compile time, and problem size
dependent runtime features, whose values are collected during pro-
gram execution.

To demonstrate the portability and the performance of the sys-
tem, all tests were performed on two different target architectures
showing that our approach outperforms the two default strategies
that use only the CPU or only the GPU, respectively.
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