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Introduction

Improving the efficiency of the use of critical metals is an objec-
tive of the European Union owing to their importance in industry, 
price fluctuations and supply risks. Recycling was recommended 
to the European Commission as a strategy to reduce and alleviate 
the supply risks facing critical raw materials (COM, 2010a). 
UNEP (2011) reported that the recycling rates for critical metals 
like gallium, indium, germanium and rare earth elements (REE) 
are presently < 1% owing to product designs that make material 
separation difficult, the high mobility of products, unclear mate-
rial flows, low awareness and the lack of an appropriate recycling 
infrastructure that can keep pace with complex products, such as 
electronics.

The electronics industry strongly depends on critical metals; 
for example, about 71% of the gallium consumed in the USA was 
used for integrated circuits (ICs); the other 29% was used in 
optoelectronic devices (USGS, 2013). Around 74% of the pro-
duced indium is used in liquid crystal displays (LCD) (COM, 
2010b). Waste electric and electronic equipment (WEEE) is a 
potential source of secondary materials. This publication focuses 

on obsolete information technology (IT), telecommunication and 
consumer equipment, which contain the most complex electronic 
systems and, therefore, most of the critical metals used in electric 
and electronic equipment (EEE) manufacturing. The seven met-
als, or metal families, antimony, cobalt, gallium, germanium, 
indium, REE and tantalum were selected for this research owing 
to their criticality, their relevance for technologies used in EEE 
and the very low recovery rates achieved by the current recycling 
infrastructure.

Analysis of the literature dealing with critical metals in 
WEEE shows that the scientific community has so far focused 
either on specific metals or on selected equipment types. Oguchi 

Data availability and the need for  
research to localize, quantify and  
recycle critical metals in information 
technology, telecommunication and  
consumer equipment

Perrine Chancerel1, Vera Susanne Rotter1, Maximilian Ueberschaar1, 
Max Marwede1, Nils F Nissen2 and Klaus-Dieter Lang1,2

Abstract
The supply of critical metals like gallium, germanium, indium and rare earths elements (REE) is of technological, economic and 
strategic relevance in the manufacturing of electrical and electronic equipment (EEE). Recycling is one of the key strategies to 
secure the long-term supply of these metals. The dissipation of the metals related to the low concentrations in the products and to 
the configuration of the life cycle (short use time, insufficient collection, treatment focusing on the recovery of other materials) 
creates challenges to achieve efficient recycling. This article assesses the available data and sets priorities for further research aimed 
at developing solutions to improve the recycling of seven critical metals or metal families (antimony, cobalt, gallium, germanium, 
indium, REE and tantalum). Twenty-six metal applications were identified for those six metals and the REE family. The criteria used 
for the assessment are (i) the metal criticality related to strategic and economic issues; (ii) the share of the worldwide mine or refinery 
production going to EEE manufacturing; (iii) rough estimates of the concentration and the content of the metals in the products; (iv) 
the accuracy of the data already available; and (v) the occurrence of the application in specific WEEE groups. Eight applications were 
classified as relevant for further research, including the use of antimony as a flame retardant, gallium and germanium in integrated 
circuits, rare earths in phosphors and permanent magnets, cobalt in batteries, tantalum capacitors and indium as an indium–tin-oxide 
transparent conductive layer in flat displays.

Keywords
Critical metals, recycling, resources, WEEE, electronic waste, E-waste

1Technische Universität Berlin, Berlin, Germany
2�Fraunhofer Institute for Reliability and Microintegration IZM, Berlin, 
Germany

Corresponding author:
Perrine Chancerel, Technische Universität Berlin, Sekr. TIB 4/2-1, 
Gustav-Meyer-Allee 25, Berlin 13355, Germany. 
Email: perrine.chancerel@tu-berlin.de

499814WMR0010.1177/0734242X13499814Waste Management & ResearchChancerel et al.
2013

Review Article

http://crossmark.crossref.org/dialog/?doi=10.1177%2F0734242X13499814&domain=pdf&date_stamp=2013-09-25


4	 Waste Management & Research 31(10) Supplement

et al. (2011) report the results of measurements of the concen-
tration of tin, silver, gold, palladium, cobalt, gallium, tantalum 
and other metals in printed circuit boards (PCBs) of 21 different 
equipment types, including televisions, computers, mobile 
phones and digital cameras. Sander et al. (2012) measured the 
concentrations of indium, tin, silver, gold, tantalum, gallium, 
yttrium, europium, lanthanum, neodymium and cerium in 30 
devices belonging to six different equipment types, for which 
the data availability is especially poor (tablet computers, video 
projectors, multi-function printers, navigation devices, smart-
phones and MP3 players). Buchert et al. (2012) combined lit-
erature data to estimate the content of cobalt, gallium, 
germanium, indium, platinum-group metals, REE and tantalum 
in flat displays, notebook computers, smartphone and light-
emitting diode (LED) lighting products. Other publications, 
focusing on specific equipment types, investigated the content 
of critical metals of mobile phones (Huisman, 2004), mobile 
phones and computers (Hagelüken and Buchert, 2008), per-
sonal computers (PCs) (MCC, 1996) and LED-containing 
equipment (Deubzer et al., 2012). Further research focuses on 
product parts, like electronic components (Wichmann et  al., 
2002) or indium in flat displays (Götze and Rotter, 2012).

So far, the literature does not provide us with sufficient infor-
mation on the holistic system for further research, for example to 
estimate the potential of WEEE as a source of raw materials. The 
data gaps concern all levels of detail, from the analysis of the 
metal content in relevant assemblies and components, to batch 
analyses of critical metals in complex equipment mixes received 
for treatment by the recycling industry.

Beyond the inventory of critical metals, Wang and Gaustad 
(2012) presented an approach for prioritizing material recovery 
for end-of-life PCBs. They applied a ‘weighted sum method’ to 
evaluate the economic relevance (price criterion), the potential 
energy savings through recycling (primary production energy – 
secondary production energy) and the toxic potential of 21 met-
als, among which were tantalum, gallium, antimony, various 
precious metals and hazardous substances like lead, cadmium 
and mercury. The authors concluded that further research needs 
to be done to obtain ‘secondary production’ data for uncommonly 
recycled metals. Their evaluation did not include aspects of 
multi-element recycling, as practised in modern smelters. 
Thermodynamic barriers to be considered for the recycling effec-
tiveness, when evaluating multi-element recycling, were intro-
duced, in particular, by the International Resource Panel/ Reuter 
et al. (in press).

This article systematically assesses the available data to set 
priorities for further research aimed at developing solutions to 
enhance the recycling rates of seven critical metals. The specific 
objectives of the research are to:

1.	 Develop a methodology to define priorities for further 
research

2.	 List and localize the uses of the critical metals in IT,  
telecommunication and consumer equipment in an exhaus-
tive way, as well as to collect and analyze the available 

quantitative data on the content of critical metals in the 
considered EEE

3.	 Define the metals and applications for which the needs for 
further research on recycling of the selected metals are high, 
as well as a research frame for developing separation tech-
nologies beyond the-state-of-the-art recovery processes.

Materials and methods

The publication aims at defining ‘needs for research’. The term is 
related to other expressions like ‘setting priorities’, ‘development 
of an action plan’ and ‘review of challenges’, which have been 
used in other publications. The methods applied to define needs 
for research are based on an assessment of the status quo, for 
example by conducting surveys among stakeholders (Davis and 
Herat, 2010), by reporting the practical experience gathered in a 
domain and comparing it with expectations defined by the frame-
work (Friege, 2012), or by assessing the available data (Herat and 
Agamuthu, 2012).

The first step of this research was to conduct a review of 
applications using critical metals in IT, telecommunication and 
consumer equipment using technological understanding based on 
expert knowledge and literature data. According to the keys pub-
lished by Wang et al. (2012), 124 product groups belong to IT, 
telecommunication and consumer equipment. Generally, an 
‘application’ is, according to the Cambridge Dictionary (2013),  
“ … a way in which something can be used for a purpose …”. 
Here, we define a ‘metal application’ as a technological use of a 
metal fulfilling specific functions that enable the products to 
comply with the expectations of manufacturers and consumers. 
The classification according to ‘metal application’ was preferred 
to a classification according to product parts or assemblies (e.g. 
PCB, casing) because one application can be implemented in dif-
ferent kinds of assemblies. In addition, an ‘application’ usually 
shows a typical physical macro- and micro-structure relevant for 
metal separation technologies, while a ‘product part’ or ‘assem-
bly’ may vary in its physical structure. Only the applications 
established on the market were considered, not the applications 
under research and development.

For the definition of priorities for further research, five quan-
titative and qualitative criteria were selected and used as 
indicators:

1.	 Metal criticality related to strategic and economic issues
2.	 Worldwide mine or refinery production for the reference year 

2012 and share of the produced metal going to EEE 
manufacturing

3.	 Rough estimates of the concentration and content of the met-
als in the products

4.	 Accuracy of the data on concentration and content already 
available

5.	 Occurrence of the application in specific WEEE groups.

The results of the evaluation based on the aforementioned cri-
teria reflect the complexity of the considered issues. The 
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indicators deal with several dimensions of the problematic and 
were considered as not comparable because of their diverse infor-
mation content and units. For this reason, they were not aggre-
gated through weighting into a single score indicator or with 
clear thresholds. The assessment of the overall priority of an 
application regarding further research was based on an equal con-
sideration of the five indicators. Only if one of the five indicators 
for an application tends toward ‘zero’ or ‘not relevant’, it means 
that the need for further research is very low. The objective of 
further research is to gather sufficiently quantitative information 
for a prioritization of recovery strategies.

Criticality of the metal

Erdmann and Graedel (2011) provided a survey of the availa-
ble literature, reviewed the methodological approaches and 
analyzed the results of studies designated to the criticality of 
non-fuel minerals. They distinguished two dimensions of the 
concept of raw material criticality: the supply risks (potential 
physical interruptions in the supply chain, market imbalances 
and governmental interventions) and the vulnerability to a 
potential supply disruption (physical shortages, increasing 
prices). Erdmann and Graedel (2011) showed, for example, 
that rare earth elements are frequently singled out as critical, 
albeit by differing criteria. A meta-study focusing on the 
selected metals was conducted, considering six studies, which 
were mostly European studies except for one US study (COM, 
2010a; Erdmann et al., 2011; IW Consult GmbH, 2011; Morley 
and Eatherley, 2008; NRC, 2008; Rückschloss, 2010). The 
studies used different sets of indicators to assess the criticality 
of the metals. All studies considered the supply risk as an indi-
cator for criticality. Other indicators, such as environmental 
impacts, quantitative data on regional or global metal demand, 
and substitutability of the metals were used in some of the 
studies. In the meta-study, we summarized the results by clas-
sifying if the criticality of the metals was regarded as ‘high’, 
‘medium’ or ‘low’ in the six criticality assessments consid-
ered. The criticality indicates how high supply risks are and, 
therefore, how relevant recycling is as a potential strategy to 
reduce them.

Metal production in 2012 and share of 
produced metal going to sectors related 
to EEE

The production of a metal in terms of mine or refinery produc-
tion (refinery production for metals that are by-products of pri-
marily mined other metals) in 2012 serves as an indicator to 
estimate the relevance of the metal content in the electronic 
products. The share of produced metal going to sectors related to 
EEE shows how relevant the use of that metal in EEE is com-
pared to uses competing with EEE for the supply. The used data 
are mainly provided by the estimations conducted by the United 
States Geological Survey (USGS, 2013) and should be consid-
ered as indicative.

Rough estimate of metal concentration 
and content

Owing to the lack of quantitative information on the concentra-
tion and content of the metals in the products or product parts, the 
data from the literature were summarized by indicating orders of 
magnitude (ranges). Two indicators were considered:

1.	 The ‘concentration’ of a metal in a product part (unit, e.g., 
mg.kg-1) is a relevant indicator for the technical feasibility of 
metal recovery in terms of concentrating through pre- 
processing and metal refining, and correlates with the energy 
demand necessary for recycling

2.	 The ‘content’ (unit, e.g., mg) indicates the effort required to 
accumulate a sufficient amount of a metal for recycling 
through collection and selective treatment.

This evaluation was done per application. The link between con-
centration and content is the weight of the considered products or 
product parts (upper part of Figure 1). The content requires 
knowledge about the weight of the considered products or prod-
uct parts. Data on the average weight of product and product 
parts were published by Huisman et al. (2007) and Chancerel and 
Rotter (2009).

Accuracy of the available data

The literature was first checked to determine whether quantita-
tive data on metal use in EEE were available at all. In case data 
were available, the methods used to get the data were ques-
tioned to determine whether the data were gathered through 
theoretical estimation or through experimental measurement. 
Some authors published detailed information on the methods 
used to take samples, prepare them and conduct the chemical 
analysis (Jalalpoor et al., in press; Oguchi et al., 2011; Sander 
et al., 2012); others did not.

The information on data accuracy reveals if further research is 
needed to gather reliable knowledge on the location of the met-
als, the amount of metal used and the potential for recycling. 
Further research is needed in case no, or few, data are published, 
if methods were not sufficiently documented and if only theoreti-
cal data were available.

Occurrence of the application in WEEE

The ‘occurrence’ is defined as the presence of a metal application 
across the different WEEE equipment types. The classification of 
equipment types according to the keys defined and published by 
Wang et al. (2012) were used.

The occurrence indicates if the metal application is only used 
in a limited amount of products, or if a broad set of products of 
IT, telecommunication and consumer equipment contains the 
application.

The ‘physical potential’ (unit: kg.a-1) can be calculated if the 
occurrence, i.e. the numbers of units in the waste stream, and the 
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content are known (Figure 1). The ‘physical potential’ indicates 
the macro-economic potential for recycling beyond a technical 
feasibility. Regarding the unconsolidated data basis about the 
quantitative occurrence of these metal applications in WEEE, it 
was not possible to quantify the ‘physical potential’.

Moreover, the spread of occurrences is an indicator for the 
diffusion of the metal across different products. A low spread of 
occurrence facilitates the selective collection of relevant EEE 
groups; a wide spread of occurrence requires the processing of 
large volumes of WEEE for recovering a metal used in a particu-
lar application.

Results and discussion
Applications in EEE

In this section we present an overview of the applications using 
the seven selected metals.

Antimony.  Antimony, in the form of antimony oxide, is primarily 
used as metal oxide synergist to enhance the efficiency of flame 
retardants in plastic casings, PCBs, cable coatings, electrical con-
nectors and other plastic parts. For instance, the polymers poly-
vinylchloride, acrylonitrile butadiene styrene and high impact 
polystyrene may be mixed with antimony oxide (European Flame 
Retardants Association, 2011). The use of antimony in flame retar-
dants has decreased since 2000 (Schlummer et al., 2007). How-
ever, it will take time until this will be reflected in the chemical 
composition of WEEE. Schlummer et al. (2007) showed that the 
antimony concentration in casings of televisions and PC monitors 
amounts to 0.2–1.8%, and Huisman et al. (2007) reports, based on 
a review of literature data, concentration levels of 0.04–0.35% in 
PCBs of information and communications technology equipment.

Also, packages of capacitors and various electronic compo-
nents may contain antimony oxide (Angerer et al., 2009; EPCOS, 
2012). Solders for microelectronic applications rarely contain 
antimony, as described in the Restriction of Hazardous Substances 
Directive-exemption No. 14, which concerns a solder consisting 
of 82% lead, 10% tin and 8% antimony (Gensch et  al., 2009). 
Moreover, antimony–tin–oxide (ATO) may be used as a transpar-
ent conducting electrode to substitute for the commonly used 
indium–tin–oxide (ITO), which is used as transparent conductive 
electrode in LCDs. Although the research on ATO began in the 
1970s (Peaker, 1971), in 2009 no alternative to ITO could be 
found in the products (Patel-Predd, 2009). In order to improve the 
properties of glass of color cathode ray tube (CRT) televisions and 
monitors, small amounts of antimony trioxide are added (BiPRO, 
2006). Méar et  al. (2006) report antimony concentrations of 
0.09% in color panel glass and 0.12% in color funnel glass.

Cobalt.  Cobalt is mainly used in cathodes of secondary batter-
ies for portable devices like mobile phones, smartphones and 
notebooks. Battery recyclers currently observe a trend towards 
lower cobalt content in batteries (S. Kross, personal communica-
tion). The cobalt concentration was estimated to reach 13–27 % 
of the battery weight in lithium-ion batteries (Angerer et  al., 
2009; EPBA, 2007; Hagelüken and Buchert, 2008). In handheld 
electronics, this battery type usually has a lithium cobalt dioxide 
(LiCoO2) cathode and a lithium graphite anode. The LiCoO2 
powders have a cobalt share of between 18% and 36% (Granata 
et  al., 2012; Mantuano et  al., 2006; Petrániková et  al., 2011). 
Cobalt is mainly found in the cathode but, after the use phase, it 
is also found in lower concentrations in the anode (Dorella and 
Mansur, 2007). Anode powders have cobalt concentrations of 
between 0.05% and 3.22%; cathode powders have cobalt 
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concentrations of between 43.3 and 47.96% (Dorella and Man-
sur, 2007; Ferreira et al., 2009).

Nickel–cadmium batteries contain small amounts of cobalt in 
the nickel hydroxide cathode to enhance the performance (Rydh 
and Svärd, 2003). The cobalt concentration in the battery was 
estimated to reach 1–2% (Angerer et al., 2009).

Nickel–metal hydride batteries consist of a cathode plate con-

taining nickel hydroxide as its primary active material and an anode 

plate. The active material in the anode of nickel metal hydride bat-

teries is hydrogen stored in a metal hydride structure. The most 

common type of metal hydride alloy (AB5) refers originally to an 

alloy made of lanthanum and nickel, which has been altered to an 

alloy of mixed metals (mainly cerium, lanthanum and neodymium) 

and a mixture of nickel, cobalt, manganese and aluminum (Kopera, 

2004). The cobalt concentration varies between 2% and 4% for the 

whole battery (Angerer et  al., 2009; EPBA, 2007; Nogueira and 

Margarido, 2012). The cobalt concentration in the anode and cath-

ode powders of an AB5 battery type range between 4.4% and 6.1% 

(Innocenzi and Vegliò, 2012; Mantuano et al., 2006).

Cobalt is also used in permanent magnets. The Magnetic 

Materials Producers Association (MMPA) (Standard No. 0100–

00, n.d.) classifies rare earth magnet materials into three families 

of materials: rare-earth cobalt 5 (l–5 alloys, with the approximate 

atomic ratio of one rare earth atom to five cobalt atoms), for 

example samarium cobalt magnets, the rare earth 2 transition 

metal 17 group (also called 2–17 alloys, which means two rare 

earth atoms to 13–17 atoms of transition metals) and rare earth 

iron alloys like Nd2Fe17B. In neodymium magnets cobalt is used 

as an alloying element to elevate the Curie point of the material 

(PatentDe, 2005). The MMPA (Standard No. 0100–00) reports 

cobalt concentrations in permanent magnets of 61–66% in l–5 

alloys and 3–15% in rare earth iron alloys. 2 to 17 alloys contain 

72–77% of an unspecified cobalt-rich combination of cobalt, iron 

and copper (Standard No. 0100–00, n.d.). Contacts in ICs can 

contain up to 15% cobalt (Achzet et al., 2011). Cobalt oxide is 

used in the active part of electronic components like protection 

devices (EPCOS, 2012). Oguchi et al. (2011) measured cobalt in 

PCBs and report concentrations between 8 mg kg-1 (radio cas-

sette recorder) and 280 mg kg-1 (mobile phone). Traces of cobalt 

are added to the glass of CRT televisions and monitors to improve 

the properties of the glass (BiPRO, 2006).

Gallium.  About 71% of the gallium consumed in the USA is 
used in ICs and the other 29% in optoelectronic devices, which 
include laser diodes, LEDs, photodetectors and solar cells 
(USGS, 2013).

For instance in high-frequency applications like mobile 
phones and wireless local area networks hardware, gallium arse-
nide is used as semiconductor material in ICs. The gallium con-
centration in the gallium–arsenide semiconductor material 
amounts to around 50% by weight, but no data are available on 
the quantity of gallium arsenide used to produce the ICs. Gallium 
concentrations in PCBs varying from 2 mg kg-1 in a tablet and 
140 mg kg-1 in mobile phones were measured (Oguchi et  al., 
2011; Sander et al., 2012), showing the presence of gallium in the 
components.

The semiconductors gallium nitride (GaN) and indium gal-
lium nitride (InGaN) are used to manufacture chips for white 
LEDs, which are placed in lighting products and backlighting 
systems for displays of televisions, monitors, mobile phones and 
other products. Sander et al. (2012) measured gallium concentra-
tions in LEDs between 248 and 690 mg kg-1. Also, laser diodes in 
DVD, CD and Blu-ray players employ GaN and gallium arsenide 
(GaAs) (Wochele et al., 2011).

Germanium.  Silicon germanium is, like GaAs, employed in 
ICs of wireless local area network hardware, mobile phones and 
navigation systems (Angerer et al., 2009). It is also used, com-
bined with magnesium, as phosphor in lamps (Mg28Ge10O48 and 
Mg56Ge15O66F20) (Villalba et al., 2012). Quantitative data on ger-
manium in EEE are not available in the literature.

Indium.  Most of the produced indium goes to the production of 
ITO to make transparent conductive thin films for displays, such 
as liquid crystal, flat panel and plasma. Figure 2 shows the glass 
sandwich with two ITO layers and the liquid crystal layer in 
between. The ITO films usually contain 90% In2O3 and 10% 
SnO2, which corresponds to a mass share of 78% indium (Böni 
and Widmer, 2011).

Extensive measurements of the indium concentration in displays 
were conducted by Jalalpoor et al. (in press), showing that the aver-
age indium concentration in notebook/PC displays is 175 mg kg-1 
(SD: 60 mg kg-1) and in mobile phones 320 mg kg-1 (with a high SD 
of 160 mg kg-1). Sander et al. (2012) measured concentrations of 
193 mg kg-1 in a tablet computer display and 460 mg kg-1 in a 

Glass substrate

Glass substrate

Liquid CrystalsITO layer

Polarizer films 

Polarizer films 

Figure 2.  Composition of a liquid crystal display panel (Götze and Rotter, 2012). ITO: indium–tin–oxide.
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smartphone display. These experimental results differ strongly from 
the theoretical estimations made by Angerer et  al. (2009), who 
reported an average concentration of 1000 mg kg-1. ITO may be 
used in digital cameras as gate electrodes in light sensors using 
charge-coupled device technologies (Roper Scientific Inc., 1999).

Indium is also contained in the semiconductor materials 
InGaN, aluminum gallium indium phosphide and aluminum gal-
lium indium nitride, which are used in LEDs. Measurements con-
ducted in white LEDs by Sander et  al. (2012) to quantify the 
indium concentration delivered results below the detection limits 
of 50 and 200 mg kg-1. Estimations of Deubzer et al. (2012) report 
an indium content of 0.11 μg per mm² LED die and a die area in 
products varying between 0.22 (mobile phone) and 77 mm² 
(direct-lit television). In some special applications, indium may be 
contained in solders (Gensch et al., 2009; Reitlinger, 2001).

REE.  The REEs yttrium, cerium, lanthanum, europium, ter-
bium, dysprosium, lutetium and gadolinium are used to produce 
phosphors for cold-cathode fluorescent lamps (CCFL), plasma 
displays, LEDs (lighting products and display backlighting) and 
organic light-emitting diode displays (Angerer et  al., 2009; 
Buchert et al., 2012; EPIC, 2010). Estimations of the REE content 
of CCFL and LEDs were published by Buchert et al. (2012) and 
Deubzer et al. (2012). The REE content in LED products depends 
on interconnection technology and the phosphor material [yttrium 
aluminium garnet (YAG) (Y3Al5O12:Ce) and terbium aluminium 
garnet (Tb3Al5O12:Ce) or europium-doped orthosilicate] (Deubzer 
et al., 2012). Sander et al. (2012) analyzed a CCFL from a tablet 
computer and white LEDs from various equipment types. Con-
centrations of 4386 mg kg-1 yttrium and 287 mg kg-1 europium 
were determined for the CCFL. The concentration of lanthanum 
was under the detection limit. Buchert et al. (2012) estimated that 
the CCFL of a notebook computer contains 1.8 mg yttrium, and 
between 0.01 and 0.13 mg of europium, lanthanum, cerium, ter-
bium and gadolinium. These numbers were rounded up to 110 mg 
yttrium, around 8 mg europium, 7 mg lanthanum, and < 1 mg 
cerium, terbium and gadolinium in televisions with 15 CCFL of 4 
g each in the backlighting. In LEDs, the concentrations were 
under the detection limits for yttrium in LEDs of smartphones and 
players. In LEDs of navigation devices, concentrations of 526 mg 
kg-1 yttrium, 68 mg kg-1 europium and 54 mg kg-1 cerium were 
measured (Sander et al., 2012). Buchert et al. (2012) assumed that 
the garnet phosphor YAG was used, and estimated that the LEDs 
of a television contain 4.9 mg yttrium, 2.3 mg gadolinium, and 
between 0 and 0.3 mg of europium, cerium and terbium.

Two magnet systems contain REE:

1.	 Neodymium iron boron magnets (Nd2Fe14B)—neodymium, 
with praseodymium, dysprosium and terbium as alloying ele-
ments, are key components of permanent magnets, which are 
required to produce loudspeakers, microphones, motors and 
some miniaturized components

2.	 Samarium cobalt magnets (SmCo5 or Sm2Co17) with smaller 
amounts of alloying elements, mainly used for applications at 
higher temperature and thus of less relevance for WEEE.

NdFeB magnets are coated with a nickel, nickel copper or 
nickel resin plating owing to the corrosiveness of the mate-
rial. Measurements of separated magnets from hard disk 
drives delivered a neodymium concentration in the magnets 
of 23–25 % and concentrations of praseodymium, dyspro-
sium and terbium between 0.01% and 4 % (Rotter et  al., 
2013a) (Figure 3). 

Neodymium concentrations of 8–9% were measured in the 
loudspeakers of a tablet computer and a smartphone (Sander 
et al., 2012). Standard No. 0100–00 (n.d.) reports REE concen-
trations in permanent magnets between 23% and 39%, depending 
on the family of rare earths magnet materials (l–5 alloys, 2–17 
alloys or rare earth iron alloys).

For the cathode material of nickel–metal hydride batteries 
(metal hydride alloy), hydrogen-absorbing alloys containing 
REE like lanthanum, cerium and praseodymium in variable 
shares are used. Increasingly, the REE are substituted by 
Mischmetall (Mm), which is an unrefined REE mixture (mainly 
cerium, lanthanum, neodymium and praseodymium) with a com-
position depending on the ore quality (Berndt and Spahrbier 
2001). The overall share of REE in the battery weight varies 
between 6% and 10% (EPBA, 2007; Müller, 2004; Nogueira and 
Margarido, 2012). The powders from anode and cathode contain 
in average around 5.6% lanthanum and 2.6% cerium, as well as 
neodymium and praseodymium. All REE concentrations are 
higher in anodes than cathodes (Granata et al., 2012; Innocenzi 
and Vegliò, 2012).

REE, for example in the form of samarium titanate, can be 
used in electronic components (EPCOS, 2012). Results of meas-
urements in components or printed circuit boards are not 
published.

Tantalum.  The primary use of tantalum is for miniaturized 
capacitors, consisting of an anode with a sintered metallic tanta-
lum body covered with a tantalum oxide layer or a tantalum foil 
as dielectric, a cathode with solid or liquid electrolyte and an 
epoxy resin packaging (Figure 4).

A tantalum concentration in tantalum capacitors between 
24.4% and 42.6% (average: 36.7%) was reported in 2003 by the 

Figure 3.  Printed circuit board of a hard disk (left) and 
opened casing showing the linear and spindle motors (right), 
which are marked in red (Rotter et al. 2013a).
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producers association ZVEI (Buchert et al., 2012), who considers 
that these data are currently out of date. Updated data were 
planned to be published on the ZVEI web page in spring 2013. 
Mineta and Okabe (2005) estimated a share between 40% and 
50% of tantalum in tantalum capacitor scrap. Oguchi et al. (2011) 
experimentally determined tantalum concentrations in PCBs 
(including the capacitors) between 7 (desktop PC) and around 
8000 mg kg-1 (digital camera and camcorder). The concentrations 
measured by Sander et al. (2012) were below the detection limit 
of 100 mg kg-1 for a smartphone and MP3 player, and amounted 
to 135 mg kg-1 in a tablet PC and 470 mg kg-1 in a navigation 
device. Tantalum is used in other electronic components, for 
example as tantalum oxide in tantalum film resistors (Tu, 2013), 
optoelectronic semiconductors (PatentDe, 2009) and lithium tan-
talite in surface acoustic wave filters (EPCOS, 2012).

Quantification of indicators related to the 
relevance of the applications for further 
research

The results of the meta-study on the criticality of the selected 
metals, as well as the data on metal production and share of metal 
production used by sectors related to the electronic industry, are 
presented in Table 1.

Figure 5 shows the quantitative data related to the metal content 
and concentration in the applications presented in the previous sec-
tion. The numbers should be seen as orientation values and not as 
detailed data owing to the high uncertainties related to, for instance, 
the variety of manufacturing technologies (leading to strongly 
varying concentrations in the products and components), the quan-
tification methods (experimental measurement or theoretical esti-
mation) and the sampling uncertainties. The data presented in 
Figure 5 show the concentration and content ranges in the product 
part in which the application is embedded, for example the plastic 
casing for the application ‘Synergist for flame retardant in cas-
ings’, and the LCD panel for the applications ‘ATO transparent 
conductive layer’ and ‘ITO transparent conductive layer’ [see 
Figure 5 (notes)]. For most applications, the available data do not 
permit us to make statements on changes in the metal content and 
concentration that may be expected in the coming years.

Table 2 shows the occurrence of the applications in informa-
tion technology, telecommunication and consumer equipment, 

classified according to the 18 United Nations University (UNU) 
keys from Wang et al. (2012) related to categories 3 and 4 defined 
in the WEEE Directive.

Table 3 summarizes the data accuracy, showing (1) if data are 
available or not, and (2) if the available data can be considered as 
indicative values giving orders of magnitude or as accurate, i.e. 
based on measurements using adequate measurement methods 
that are described by the research team on a representative sam-
ple of products. Only the data available for the application ‘ITO 
in flat displays’ were considered as accurate.

Priorities for research

Regarding the highly critical metal antimony, future research 
should focus on the recycling of plastics containing antimony as 
a synergist for flame retardants. This application is by far the 
most relevant regarding the share of metal used to produce flame 
retardants, as well as the concentration, content and occurrence in 
WEEE.

Data on the quantities of gallium and germanium used in ICs 
are not available, even though the share of the gallium production 
used in this application is high, and both metals were classified as 
critical by most studies.

The phosphors of CCFLs require more research owing to the 
relatively high content of REE in flat displays with CCFL back-
lighting. LEDs are also a field of interest regarding REE in phos-
phors. Phosphors use heavy REEs (terbium, europium and 
dysprosium), which are the most critical REE in regard to supply 
risks (Elsner, 2011). The gallium and indium content in LED 
products is so low that it is improbable that more research would 
deliver findings showing a sufficient potential to open ways to 
recover the metals.

Although the share of the worldwide production of cobalt 
used in WEEE is limited, cobalt in cathodes of batteries, for 
instance lithium-ion batteries, represents a relatively large poten-
tial for recovery and should therefore be better investigated. The 
available data on the occurrence of batteries in WEEE, classified 
according to product and battery types, are insufficient. The other 
applications of cobalt have a lower potential owing to lower con-
centration, content and/or occurrence in WEEE.

REE used in permanent magnets are also a relevant field of 
research owing to the high share of REE used to produce magnets 
and the relatively high concentration, content and occurrence in 
WEEE. Also, REE in nickel-metal hydride batteries and in elec-
tronic components should be better investigated because the cur-
rently available data are highly insufficient.

Even though tantalum was not classified as highly critical by 
four out of five studies, the large share of the metal production 
going to this application, as well as the high concentration in the 
components, make tantalum capacitors relevant for further 
research.

ITO in flat displays is the only application for which the avail-
able data can be considered as reliable. Also, the other indicators 
(criticality, metal share going to this application, concentration, 
content and occurrence) show the relevance of this application. 

Figure 4.  Composition of tantalum capacitor [compact 
capacitor with manganese oxide (MnO2) electrolyte]; 
electrolyte varies depending on the capacitor type. TaO: 
tantalum oxide.
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Therefore, research needs to be taken to the next level, which is 
the development of technologies and infrastructure for metal 
recovery.

An important finding of the assessment of the data is that 
reliable quantitative data are available for almost none of the 
applications using the selected critical metals in EEE. Even 
though some investigations report the results of their respective 
analyses, most research uses secondary data and theoretical 
metals based on assumptions to calculate the content of critical 
metals. Recent findings showed a significant discrepancy 
between the results of theoretical estimations and of a measure-
ment campaign focusing on indium used as ITO in flat displays 
(Rotter et al., 2013b). Although orientating values provided by 
estimates may have been enough for recommendations for pol-
icy makers, they are insufficient to estimate the potential for 
recycling, developing adequate technologies and optimizing 
infrastructure.

Besides the question ‘What should we investigate?’, the lack 
of documented data on analytical methods, as shown here, indi-
cates that there is also a research demand for the question ‘How 
should we investigate?’. Jalalpoor et al. (in press) showed how 

different digestion methods can decisively influence the amount 
of detected indium by more than 50%. So far, no standard meth-
ods exist for heterogeneous matrices like WEEE. Waste-related 
standard methods regarding sample size reduction, digestion and 
detection of metals are only applicable to a limited extent. 
Standards like IEC/PAS 62596 and IEC 62321 only consider 
‘restricted substances’ and are not validated for critical metals 
like those addressed in this article. In particular, acid digestion 
methods are very metal-specific. The use of inadequate digestion 
methods may lead to systematic under-detection of the correct 
concentration.

Under a recycling perspective, one should also discuss the 
significance of the parameter ‘concentration’ or ‘content’ as a 
stand-alone criterion. Van Schaik and Reuter (2010) showed that 
dynamic process models require, in particular, data on the libera-
tion behavior of material/metals. The data can be gathered 
through performing dismantling and destruction tests, shredding 
and recycling experiments, or through determining particle char-
acteristics after shredding. This type of data is work-intensive to 
collect, and often not available with the product designers or with 
the recyclers. For materials currently recovered, Reuter and Van 

Table 1.  Criticality, production and share used by sectors related to the electronic industry for the selected metals.

Metal Criticality of the metala Metal production 
in tonnes in 2012b

Share of metal production going to 
sectors related to electronics

Antimony High according to all studies that 
considered antimony

180,000c USA: 35% used for flame retardants, 
not just for electronic products (USGS, 
2013)

Cobalt High (COM, 2010a; IW Consult GmbH, 2011; 
Rückschloss, 2010)
Medium (Erdmann et al., 2011; Morley and 
Eatherley, 2008)

110,000c USA: 16% in metallic applications 
excepting superalloys (USGS, 2013)

Gallium High (COM 2010a; Erdmann et al., 2011)
Medium (IW Consult GmbH, 2011; Morley 
and Eatherley 2008; NRC, 2008)

354d 18% for LED and 66% for integrated 
circuits (FEM/IUTA, 2011)

Germanium High (COM, 2010a; Erdmann et al., 2011; IW 
Consult GmbH, 2011; Rückschloss, 2010)
Medium (Morley and Eatherley, 2008)

128d USA: 15% for electronics and solar 
electric applications (USGS, 2013)

Indium High (COM, 2010a; Erdmann et al., 2011; IW 
Consult GmbH, 2011; NRC, 2008)
Medium (Morley and Eatherley, 2008; 
Rückschloss, 2010)

670d 74% for flat display panels, 10% 
for low melting point alloys used 
as solders, 2% for semiconductors 
among others for LEDs (COM, 2010b)

Rare earths 
elements

High according to all studies that 
considered rare earths

110,000c 11% for hard disk drive and mobile 
phone magnets (Zepf, 2013), USA: 
3% for phosphors (USGS, 2013)—
detailed data differentiating 15 rare 
earth elements is provided by Du and 
Graedel (2011)

Tantalum High (COM, 2010a)
Medium (IW Consult GmbH, 2011; NRC, 
2008)
Low (Erdmann et al., 2011; Rückschloss, 
2010)

765c USA: 60% for capacitors (USGS, 2013)

LED: light-emitting diode.
aCOM (2010a), Erdmann et al. (2011), IW Consult GmbH (2011), Morley and Eatherley (2008), NRC (2008), Rückschloss (2010).
bUSGS (2013).
cMine production.
dRefinery production.



Chancerel et al.	 11

Schaik (2008) and Van Schaik and Reuter (2007) presented the 
collection of this type of data. For critical metals, there is neither 
consistent methodology nor a knowledge base published yet. 
This shows that knowledge of downstream processes is required 
to define a solid data basis on critical metals in relevant waste 
stream like WEEE.

Table 4 summarizes the information demand for recycling-
oriented product characterization in order to enhance critical 
metal recycling and allow multi-criteria optimization and deci-
sion making.

Conclusions

The research provides a methodological framework to deal with 
the question ‘What should be done to improve the recovery of 
critical metals from WEEE?’, as well as some answers through 
the listing of 26 applications using the selected metals, from 
which eight applications were identified as relevant for further 
research. These are the use of antimony as flame retardant; gal-
lium and germanium in ICs; REE in phosphors of CCFLs and 
LEDs, as well as in permanent magnets; and cobalt in batteries, 
tantalum capacitors and ITO in flat displays. The findings will be 
used for further research in the frame of the UPgrade project 
(project duration 2012–2015), which aims at enhancing the 
recovery of trace metals along the value chain by developing new 

liberation and separation steps (mechanical, thermal, chemical), 
sufficiently considering the technological requirements of final 
recovery processes.

Next steps towards enhancing metal recovery are:

•• developing a methodology of recycling-oriented characteri-
zation considering critical metals;

•• increasing the knowledge base of metals concentrations and 
content in WEEE and their specification;

•• holistic assessment of recycling processes regarding the over-
all recycling efficiency;

•• development and implementation of managerial and techno-
logical innovations to improve in a holistic manner the metal-
specific recovery rates.

Other research projects have started in parallel in European 
countries to investigate the potential of recycling to secure the 
supply of critical metals to the industry and develop technologi-
cal and managerial recycling solutions. The Swiss project 
E-RECMET, the project RePro, commissioned by the German 
Federal Environment Agency, the European project RECLAIM 
and the Dutch Materials Innovation network can be named. A 
fruitful cooperation between these projects would bring synergis-
tic effects and lead to innovative solutions for implementation 
into practice.
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Figure 5.  Rough estimate of metal concentration and content, based on the data presented.
Product parts considered to estimate concentration and content: 1—plastic casing; 2—printed circuit board; 3—electronic component; 4—
liquid crystal display panel; 5—glass of cathode ray tube; 6—battery; 7—magnet; 8—light-emitting diode (LED); 9—diode; 10—cold-cathode 
fluorescent lamp. ATO: antimony–tin–oxide; NiMH: nickel–metal hydride;  ITO: indium–tin–oxide.
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Table 2.  Occurrence in Waste Electric and Electronic Equipment of the identified applications.

Metal UNU key 301 302 303 304 305 306 307 308 309 401 Metal UNU key 402 403 404 405 406 407 408 409

Application Small IT and 
accessoires

Desktop 
PCs

Laptop PC’s Printing 
and 
imaging

Telecom Mobile 
phones

Professional 
IT

CRT 
monitors

Flat panel 
monit ors

Small 
CE and 
accessoires

Application Portable audio 
and video

Radio and 
hi-fi

Video Speakers Cameras CRT TVs Flat display 
panel TVs

Professional CE 
equipment

Antimony Synergist for 
flame retardants

Plastic casings, printed circuit boards (PCBs) and other plastic partsa Antimony Synergist for 
flame retardants

  Packaging 
of electronic 
components

PCBs Packaging 
of electronic 
components

  ATO transparent 
conductive layer

LCD panel LCD panel LCD panel ATO transparent 
conductive layer

LCD panel  

  Glass of CRT Glass Glass of CRT Glass  
Cobalt Cathode of 

lithium-ion 
batteries

Batteries Batteries Batteries Cobalt Cathode of 
lithium-ion 
batteries

Batteries Batteries  

  Metal hydride 
alloy of NiMH 
batteries

Batteries Batteries Metal hydride 
alloy of NiMH 
batteries

Batteries Batteries  

  Cathode of 
nickel-cadmium 
batteries

Batteries Cathode of 
nickel-cadmium 
batteries

Batteries  

  Magnetic material Loud 
speakers

HDD Loud 
speakers, 
HDD

Loud 
speakers

Loud 
speakers

Loud 
speakers

Loud 
speakers

Magnetic material Loud speakers Loud 
speakers

Loud 
speakers

Loud 
speakers

Loud speakers Loud 
speakers

Loud speakers  

  Electrical 
contacts and 
active part 
of electronic 
components

PCBs Electrical contacts 
and active part 
of electronic 
components

  Glass of CRT Glass Glass of CRT Glass  
Gallium Semiconductor 

material in 
integrated circuits

ICs ICs ICs ICs Cobalt Semiconductor 
material in 
integrated circuits

 

  Semiconductor 
material in chips 
for white LEDs

Display 
backlighting

Scanner 
lamp

Display 
backlighting

Display 
backlighting

Semiconductor 
material in chips 
for white LEDs

Display 
backlighting

Display 
backlighting

Display 
backlighting

 

  Semiconductor 
material in laser 
diodes

DVD, 
CD,Blu-
ray-
player

DVD, 
CD,Blu-ray-
player

Semiconductor 
material in laser 
diodes

 

Germanium Semiconductor 
material in 
integrated circuits

ICs ICs ICs ICs Germanium Semiconductor 
material in 
integrated circuits

 

  Phosphor Lamps?   Phosphor  
Indium ITO transparent 

conductive layer
LCD panel LCD panel LCD panel Indium ITO transparent 

conductive layer
LCD panel  

  Semiconductor 
material in chips 
for white LEDs

Display 
backlighting

Scanner 
lamp

Display 
backlighting

Display 
backlighting

Semiconductor 
material in chips 
for white LEDs

Display 
backlighting

Display 
backlighting

Display 
backlighting

 

  Solder material Rarely used 
in PCBs

Solder material

Rare earth 
elements

Phosphor in 
fluorescent 
lampsc

Display 
backlighting

Display 
backlighting

Rare earth 
elements

Phosphor in 
fluorescent 
lampsc

Display 
backlighting

 

  Phosphor in LEDs Display 
backlighting

Scanner 
lamp

Display 
backlighting

Display 
backlighting

  Phosphor in LEDs Display 
backlighting

Display 
backlighting

Display 
backlighting

 

  Magnetic material Loud 
speakers

HDD Loud 
speakers, 
HDD

Loud 
speakers

Loud 
speakers

Loud 
speakers

Loud 
speakers

Magnetic material Loud speakers Loud 
speakers

Loud 
speakers

Loud 
speakers

Loud speakers Loud 
speakers

Loud speakers  

  Anode and 
cathode of NiMH 
batteries

Batteries Batteries Anode and 
cathode of NiMH 
batteries

Batteries Batteries  

  Material in 
electronic 
components

PCBs? Material in 
electronic 
components

Tantalum Capacitor anode Capacitors Capacitors Tantalum Capacitor anode Capacitors Capacitors  
  Material in 

electronic 
components

PCBs? Material in 
electronic 
components

IT: information technology; PC: personal computer; CRT: cathode ray tube; CE: consumer electronics; ATO: antimony–tin–oxide; LCD: liquid crystal display; NiMH: 
nickel–metal hydride;   
HDD: hard disk drives; IC: integrated circuits; LED: light-emitting diode; ITO: indium–tin–oxide.
a�22% of the casings of televisions and PC monitors contained at least 1% antimony (Schlummer et al., 2007), in general 4–5% of the high impact polystyrene  
and acrylonitrile butadiene styrene plastic contain antimony oxide (European Flame Retardants Association, 2011).

b�In 2009 no alternative to ITO could be found in flat displays (Patel-Predd, 2009). 
c�The share of flat displays in WEEE is currently increasing (Chancerel et al., 2012), but the market share of devices with cold-cathode fluorescent lamp  
(CCFL)-backlighting decreased rapidly, so that the arising of displays with CCFL backlighting is expected to be temporary.
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Table 2.  Occurrence in Waste Electric and Electronic Equipment of the identified applications.

Metal UNU key 301 302 303 304 305 306 307 308 309 401 Metal UNU key 402 403 404 405 406 407 408 409

Application Small IT and 
accessoires

Desktop 
PCs

Laptop PC’s Printing 
and 
imaging

Telecom Mobile 
phones

Professional 
IT

CRT 
monitors

Flat panel 
monit ors

Small 
CE and 
accessoires

Application Portable audio 
and video

Radio and 
hi-fi

Video Speakers Cameras CRT TVs Flat display 
panel TVs

Professional CE 
equipment

Antimony Synergist for 
flame retardants

Plastic casings, printed circuit boards (PCBs) and other plastic partsa Antimony Synergist for 
flame retardants

  Packaging 
of electronic 
components

PCBs Packaging 
of electronic 
components

  ATO transparent 
conductive layer

LCD panel LCD panel LCD panel ATO transparent 
conductive layer

LCD panel  

  Glass of CRT Glass Glass of CRT Glass  
Cobalt Cathode of 

lithium-ion 
batteries

Batteries Batteries Batteries Cobalt Cathode of 
lithium-ion 
batteries

Batteries Batteries  

  Metal hydride 
alloy of NiMH 
batteries

Batteries Batteries Metal hydride 
alloy of NiMH 
batteries

Batteries Batteries  

  Cathode of 
nickel-cadmium 
batteries

Batteries Cathode of 
nickel-cadmium 
batteries

Batteries  

  Magnetic material Loud 
speakers

HDD Loud 
speakers, 
HDD

Loud 
speakers

Loud 
speakers

Loud 
speakers

Loud 
speakers

Magnetic material Loud speakers Loud 
speakers

Loud 
speakers

Loud 
speakers

Loud speakers Loud 
speakers

Loud speakers  

  Electrical 
contacts and 
active part 
of electronic 
components

PCBs Electrical contacts 
and active part 
of electronic 
components

  Glass of CRT Glass Glass of CRT Glass  
Gallium Semiconductor 

material in 
integrated circuits

ICs ICs ICs ICs Cobalt Semiconductor 
material in 
integrated circuits

 

  Semiconductor 
material in chips 
for white LEDs

Display 
backlighting

Scanner 
lamp

Display 
backlighting

Display 
backlighting

Semiconductor 
material in chips 
for white LEDs

Display 
backlighting

Display 
backlighting

Display 
backlighting

 

  Semiconductor 
material in laser 
diodes

DVD, 
CD,Blu-
ray-
player

DVD, 
CD,Blu-ray-
player

Semiconductor 
material in laser 
diodes

 

Germanium Semiconductor 
material in 
integrated circuits

ICs ICs ICs ICs Germanium Semiconductor 
material in 
integrated circuits

 

  Phosphor Lamps?   Phosphor  
Indium ITO transparent 

conductive layer
LCD panel LCD panel LCD panel Indium ITO transparent 

conductive layer
LCD panel  

  Semiconductor 
material in chips 
for white LEDs

Display 
backlighting

Scanner 
lamp

Display 
backlighting

Display 
backlighting

Semiconductor 
material in chips 
for white LEDs

Display 
backlighting

Display 
backlighting

Display 
backlighting

 

  Solder material Rarely used 
in PCBs

Solder material

Rare earth 
elements

Phosphor in 
fluorescent 
lampsc

Display 
backlighting

Display 
backlighting

Rare earth 
elements

Phosphor in 
fluorescent 
lampsc

Display 
backlighting

 

  Phosphor in LEDs Display 
backlighting

Scanner 
lamp

Display 
backlighting

Display 
backlighting

  Phosphor in LEDs Display 
backlighting

Display 
backlighting

Display 
backlighting

 

  Magnetic material Loud 
speakers

HDD Loud 
speakers, 
HDD

Loud 
speakers

Loud 
speakers

Loud 
speakers

Loud 
speakers

Magnetic material Loud speakers Loud 
speakers

Loud 
speakers

Loud 
speakers

Loud speakers Loud 
speakers

Loud speakers  

  Anode and 
cathode of NiMH 
batteries

Batteries Batteries Anode and 
cathode of NiMH 
batteries

Batteries Batteries  

  Material in 
electronic 
components

PCBs? Material in 
electronic 
components

Tantalum Capacitor anode Capacitors Capacitors Tantalum Capacitor anode Capacitors Capacitors  
  Material in 

electronic 
components

PCBs? Material in 
electronic 
components

IT: information technology; PC: personal computer; CRT: cathode ray tube; CE: consumer electronics; ATO: antimony–tin–oxide; LCD: liquid crystal display; NiMH: 
nickel–metal hydride;   
HDD: hard disk drives; IC: integrated circuits; LED: light-emitting diode; ITO: indium–tin–oxide.
a�22% of the casings of televisions and PC monitors contained at least 1% antimony (Schlummer et al., 2007), in general 4–5% of the high impact polystyrene  
and acrylonitrile butadiene styrene plastic contain antimony oxide (European Flame Retardants Association, 2011).

b�In 2009 no alternative to ITO could be found in flat displays (Patel-Predd, 2009). 
c�The share of flat displays in WEEE is currently increasing (Chancerel et al., 2012), but the market share of devices with cold-cathode fluorescent lamp  
(CCFL)-backlighting decreased rapidly, so that the arising of displays with CCFL backlighting is expected to be temporary.
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Table 4.  Theoretical framework of recycling-oriented product characterization for critical metals based on International 
Resource Panel/M. Reuter et al. (in press), Rotter et al. (2013, 2013b) and Van Schaik and Reuter (2010).

Aspect of information demand Criteria

Liberation behavior Perfect liberation, remains closely connected 
to other materials after mechanical liberation

Metal specification Metallic, alloyed metal, intermetallic phases, 
metal oxide, other metal salt….

Material specification Casted, sintered, powdery, coated, laminated …
Metal association ‘Sister’ metals impurities

Table 3.  Accuracy of the available data.

Metal Application Accuracy of the data already available

Antimony Synergist for flame retardants Indicative values based on measurements available 
for casings and PCBs

  Package of electronic components Indicative values based on estimations and standards
  ATO transparent conductive layer No data
  Glass of CRT Indicative values based on measurements
Cobalt Cathode of lithium-ion batteries Indicative values based on estimations, 

measurements and producer information
  Metal hydride alloy of NiMH batteries Indicative values based on estimations and 

measurements
  Cathode of nickel–cadmium batteries Indicative values based on estimations
  Magnetic material Indicative values based on industry standards 

specifications
  Electrical contact Indicative values based on estimations and 

measurements of PCBs
  Active part of electronic components Indicative values based on standards and 

measurements of PCBs
  Glass of CRT Indicative values based on measurements
Gallium Semiconductor material in integrated circuits No data on chips, indicative values based on 

measurements of PCBs
  Semiconductor material in chips for white 

LEDs
Indicative values based on measurements and 
estimations

  Semiconductor material in laser diodes No data
Germanium Semiconductor material in integrated circuits No data
  Phosphor No data
Indium ITO transparent conductive layer Detailed data based on measurement for different 

equipment types
  Semiconductor material in chips for white 

LEDs
Indicative values based on measurements and 
estimations

  Solder material No data
Rare earth 
elements

Phosphor in fluorescent lamps Indicative values predominantly based on 
estimations

  Phosphor in LEDs Indicative values predominantly based on 
estimations

  Magnetic material Values based on measurements and standards
  Anode and cathode of NiMH batteries Indicative values based on rough estimations
  Material in electronic components No data
Tantalum Capacitor anode Indicative values based on measurements and out-

dated standards
  Material in electronic components No data

ATO: antimony–tin–oxide; CRT: cathode ray tube; PCBs: printed circuit boards; NiMH: nickel–metal hydride; LED: light-emitting diode; ITO: 
indium–tin–oxide.
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