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ZusammenfassungIn dieser Arbeit wird der Ein�uss der Ober�ähenspannung auf die Kondensation in Strö-mungskanälen mit geringem Durhmesser untersuht. Solhe Strömungskanäle kommenin der Prozessindustrie in kompakten Wärmetaushern vor. Um die Physik des Prozessesbesser zu verstehen und damit den Wärmeübergang zu verbessern war zunähst geplant,das Problem mit kommerzieller CFD-Software zu simulieren. Es stellte sih jedoh heraus,dass die Modellgleihungen für das Problem in den verwendeten Programmen niht rihtigimplementiert waren.Stattdessen werden die vollständigen kontinuumsmehanishen Modellgleihungen für sol-he �Moving Boundary� Probleme mit Phasenübergang und Ober�ähenspannung hergelei-tet und analysiert. Die Ober�ähenspannung ist eine physikalishe Eigenshaft der Phasen-grenz�ähe und erfordert daher eine eigene Bilanzgleihung. Auÿerdem ist sie eine Funktionder mittleren Krümmung, und damit der Geometrie der Phasengrenz�ähe. Diese beidenTatsahen erhöhen die Komplexität der Modellgleihungen wesentlih.Die Modellgleihungen werden mit verallgemeinerter Dimensionsanalyse für ein vertikalesRohr vereinfaht und die wesentlihen Phänomene des Problems bestimmt. Das Ergebniswird mit einer experimentellen Untersuhung verglihen, es erklärt den besseren Wärme-übergang bei Fluiden hoher Ober�ähenspannung in geneigten Rohren. VerallgemeinerteDimensionsanalyse ist eine (in Vergessenheit geratene) Weiterentwiklung der klassishenDimensionsanalyse, bei der zusätzlih auh die Modellgleihungen ausgenutzt werden, umdie dimensionslosen Kennzahlen des Problems zu erhalten. Damit ist es möglih dieModellgleihungen auf Basis der beiden untershiedlihen Längen (Filmdike und Rohr-länge) zu analysieren. Es werden Phasengrenz�ähenbedingungen (�Jump onditions�)hergeleitet, die auf den gleihen Annahmen beruhen wie die Prandtlshen Grenzshiht-gleihungen.Anshlieÿend wird auf Basis der vereinfahten Modellgleihungen ein Ein-Gleihungs-Mo-dell hergeleitet und numerish berehnet. Das entwikelte Modell ist eine Erweiterung derNuÿelt Theorie. Der Wärmeübergang wird im vertikalen Rohr für sehr kleine Rohrdurh-messer unabhängig von der Ober�ähenspannung shlehter (der Film wird diker) und fürextrem hohe Ober�ähenspannung besser (der Film wird dünner). Das entwikelte Modellwird mit parametrishen Modellen verglihen, es ist besser als Nuÿelts Modell und etwasshlehter als Chens Modell.Die diskretisierten Modellgleihungen bilden ein System von di�erentiellen und algebra-ishen Gleihungen (DAE). Der Di�erentiationsindex des Systems wird untersuht. Es wirdgezeigt, das der Index durh die Navier-Stokes Gleihungen bestimmt ist und niht durhdas (instationäre) Moving Boundary Problem verändert wird. Vershiedene Methoden derIndexreduktion werden verglihen. Das Hauptproblem von Moving Boundary Problemenist die Nihtlinearität der Gleihungen. Auf Basis der Arbeit werden die Vor-und Nahteilevon vershiedenen numerishen Methoden für Moving-Boundary Probleme diskutiert.Die Transformation von dimensionsbehafteten Gleihungen in dimensionslose Gleihungenist eine Symmetrietransformation. Es wird ausgeführt wie man mit der Lie-GruppenTheorie analytishe Lösungen für Di�erentialgleihungen entwikelt. Die Lie Theorie wirdmit der verallgemeinerten Dimensionsanalyse verglihen und die Symmetrien der Modell-gleihungen werden bestimmt.
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A m2 area
C m urve
C kgm−3 mass matrix (energy equation)
D m �lm thikness
D s−1 disretized gradient operator
DT s−1 disretized divergene operator
GT Jaobian of algebrai onstraints
H m−1 mean urvature
I identity tensor
J Jaobian determinant
K m−2 Gauÿ urvature
K kg s−1 m−1 ondutivity matrix
L m tube length
L Weingarten map
M kgm−3 mass matrix
N kg s−1 m−3 onvetion matrix
P projetor matrix
R m tube radius
S N m−2 stress tensor (J = kgm s−2)
S Ns m−4 sti�ness matrix
T N m−2 visous stress tensor
T K temperature (◦C = K - 273,15)
U ms−1 veloity
V m3 volume
Z seletor matrix
aα m surfae base vetors
aαβ m ovariant metri tensor, �rst fundamental tensor
bαβ m−1 seond fundamental tensor
c J kg−1 K−1 spezi� heat apaity (J = Nm)
d m tube diameter
e J kg−1 spezi� internal energy
ei m orthogonal base vetors
g ms−2 gravity vetor (g = 9, 81 ms−2)
h m tube radius minus �lm thikness
α Wm−2 K−1 heat transfer oe�ient (W = J s−2)



Symbol SI-Unit De�nition
∆h J kg−1 latent heat of vaporization
j surfae Jaobian determinant
ṁ kg s−1 m3 volume spei� mass �ux
m m vetor normal to a boundary urve
n m normal vetor
p Nm−2 pressure
p vetor of the algebrai variables
q Jm−2 s−1 heat �ux vetor
t m tangential vetor
u ms−1 interfae veloity
x vetor of the di�erential variables
y vetor of the unknowns
uα m surfae oordinate
v ms−1 veloity vetor
w m−1 intrinsi surfae veloity v − u
xi m Cartesian oordinates
x m position vetor
δij Kroneker-delta
δ m �lm thikness
ε �lm thikness divided by tube length ε = D

L

ζ arbitrary ondutive �ux vetor
µ kgm−1 s−1 dynamial visosity
λ Wm−1 K−1 thermal ondutivity
ξ m position vetor of referene on�guration
π arbitrary volume spei� prodution density
ρ kgm−3 density
σ N m−1 surfae tension
ϕ arbitrary volume spei� balane property
ϑ rotation angle
ψ arbitrary mass spei� balane property ψ = ϕ

ρ

B arbitrary extensive balane property
S arbitrary extensive surfae balane property





Chapter

1
Introduction

1.1 Motivation of the thesisCondensation is important in the refrigeration, automotive and proess industries[Car92℄. Higher energy e�ieny requirements and the move to more environmen-tally friendly refrigerants inreased the need for highly e�ient heat transfer forin-tube ondensation (and evaporation) proesses [KSD99℄. Improved heat transfertehnologies are nowadays not only used to save energy but rather to save spae.Over the last deades experimental studies show that the heat transfer is signi�-antly higher in ompat heat exhangers than in lassial tube ondensers (i.e. 1.5to 2 times greater), whih made ompat heat exhangers popular [CT94℄. Thediameters of hydrodynami �ow hannels in suh ondensers are in the millimeterrange. This implies that surfae tension plays a ruial role in the heat transfer.Inreasingly, numerial simulations are used to redue the osts of laborious exper-imental studies. E�ient omputational �uid dynamis (CFD) software pakageso�er a great deal in �exibility in geometry and material properties. However, two-phase �ow problems with moving boundaries still represents a major hallenge tothe urrent state of engineering in omputational �uid dynamis [Li06℄.At the beginning of this thesis, the plan was to simulate the ondensation proess nu-merially using a omputational �uid dynamis (CFD)-program. The ondensationproess has to be modeled three-dimensional, or two-and-a-half-dimensional, if theproblem is assumed to have rotational symmetry. It turned out that the neessaryequations were not implemented orretly in this (and other) CFD-programs. Ex-peting no further di�ulties we looked for the orret equations. But what we werelooking for did not exist. Physis of �uids and heat transfer has been well establishedduring the last entury, see the referene work [TT60℄, and has been intensively in-



2 Chapter 1 Introductionvestigated for a wide range of hydrodynamial problems [BSL60℄. However, theformulation of the governing equations for �ows involving moving surfaes is moredi�ult.Balane equations at moving boundaries are alled jump onditions. A moving sur-fae is desribed mathematially either using tensor alulus or modern di�erentialgeometry.1 The equations of ontinuum physis are tensor equations, so that thejump onditions are naturally expressed in tensor notation. Anyway, jump ondi-tions for moving boundary problems with phase hange and surfae tension are notovered by the existing literature. It is possible to �nd literature for one of them(phase hange) without the other (surfae tension) or vie versa, but not both to-gether [Gre03℄ [Hut03℄ [Sh70℄ [Spu93℄; with the exeption of three referenes whihdeal with this problem, but not in a su�ient manner [Ari89℄ [Sla90℄ [EBW91℄.2However, these referenes are beyond omprehension for most engineers and math-ematiians. To bridge this gap we derive in this thesis jump onditions mostly insymboli tensor notation, and give a straightforward desription of the geometry ofthe surfae. By this we make available the neessary equations for the solution ofmoving boundary problems with phase hange and surfae tension in a way thatthey are omprehensible by the mathematiian, the physiist and the engineer.The next step was to simplify the model equations with the aim to derive modelequations that an be solved either analytially or numerially (within feasible lim-its). In literature simpli�ations of the omplete model equations exist for speialases, but not for ondensation in a ylindrial tube when surfae tension has tobe onsidered. Interestingly sometimes for the same proess di�erent jump ondi-tions are used. Often the model equations are simpli�ed intuitively or the methodof simpli�ation remains unlear. What was needed was a reliable method to �ndthe physially relevant terms in the model equations. Classial dimensional analy-sis [Bri31℄ an not be applied beause the problem depends on two di�erent lengthsales (�lm thikness and tube length). Perturbation method [Hol95℄ overomesthis problem by resaling the variables. However, we �nally found a better method:generalized dimensional analysis [Lon63℄, a generalization of dimensional analysiswhih fell into oblivion over the last deades, a highly algorithmially method whih1The notation in di�erential geometry varies from author to author (whih is makes it not easierfor someone not lose to this disipline).2 [Ari89℄ added jump onditions at the end of his book, based on the paper of [Sr60℄, who�rst desribed interfaial dynamis for Newtonian surfae �uids, but this last hapter is not anorgani part of the book. [Sla90℄ and [EBW91℄ also over both but lak a onvining desriptionof urvature (for surfae tension).



1.1 Motivation of the thesis 3is based on the physial dimensions of the problem. By this it serves as a less error-prone method whih made apparent the major phenomena of the analyzed problem.Here we reintrodue generalized dimensional analysis in a more mathematial rigorand bring the method on a level with lassial dimensional analysis, so that it anbe applied by researhers of di�erent disiplines to other problems.In appendix A we make a digression to Lie groups [BK89℄ [Olv93℄ and extend ouranalysis further. A dimensionless equation is the result of a symmetry transforma-tion of the original equation (with dimensions). Symmetry transformations an beused in ertain ases to suessively transform a di�erential equation to a simplerequation and to �nally solve it analytially. We analyze the Lie groups of the sim-pli�ed model equations using a Mathematia program [Bau00℄ and demonstrate fora sub-problem how to onstrut an analytial solution from the symmetry groups.The intention is to point out a way towards an analytial solution, whih an be usedin a next step to derive a parametrial model by inluding additional phenomena.Next, it was planned to solve the simpli�ed model equations numerially. But theequations are still too ompliated so that the work to do this would have been be-yond the sope of this thesis. Instead, we simplify the equations further and derivean ordinary di�erential equation for ondensation in a vertial tube under rotationalsymmetry where we take surfae tension into aount. We solve it numerially andompare the results for two di�erent �uids with experimental results. Yet by thiswe also lose another gap. Two kinds of models are used by engineers: parametri-al models (orrelations) based on experimental data, and models from ontinuumphysis. However, in the various handbooks of heat transfer [Cro06℄ [RHC98℄ [Lie87℄there an be found analytial models only for the simple ase of ondensation alonga �at plate (as derived by [Nuÿ16℄). Our model is an extension of Nuÿelt's theoryfor ondensation in a tube of rotational symmetry by taking surfae tension intoaount.For a numerial simulation it is essential to know the harateristis of the modelequations. After spatial disretization the model equations form a system of dif-ferential algebrai equations (DAE). We analyze the omplexity of the disretizedmodel equations from a DAE point of view and analyze the �index� of the movingboundary problem. We show the main problems in the numerial solution of movingboundary problems and disuss appropriate solution methods.Our interest is to give an analytial foundation for researhers of both disiplines,mathematis and engineering, who are working with moving boundary problems andby this to ontribute to improved heat exhangers.
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1.2 Literature related to condensation in tubes with small di-

ameterIn proess industries ompat plate heat
Figure 1.1: Compat plate heat exhanger

exhangers are inreasingly used for re-�ux ondensation appliations [JC00℄.In re�ux ondensation a vapor enters avertial or inlined mounted ondenserat the bottom and �ows upward. Theondensate stream �ows gravity ontrolleddownward ounterurrently to the va-por �ow. Typial appliations of re�uxondensation are in overhead ondensers of distillation olumns and vent ondensersof reators or stirred vessels. Other appliations are in the vent ooling setion ofair-ooled steam ondensers and in two-phase losed thermosyphons. In suh on-densers the hydrauli diameter of the �ow hannels formed between two plates is5-10 mm, and the �ow hannels are inlined to the vertial, as depited in �gure 1.1.The fundamental mehanisms of heat and mass transfer as well as of two phase �owin these small hannels are not well understood.
Experimental studies on compact heat exchangersThe vast majority of studies about on-

Figure 1.2: Experimental results [Fie03℄

densation in ompat heat exhangersare studies on ompat plate heat ex-hangers (see e.g. the 5th InternationalConferene on Enhaned, Compat andUltra-Compat Heat Exhangers [Sha05℄and its predeessors). In an experimen-tal study at the Institute for EnergyEngineering, Area of Momentum, Heatand Mass Transfer of the University ofTehnology of Berlin, the heat transferin a single representative sub-hannel of a ompat ondenser was investigated [Fie03℄.The inner diameter of the tube is 7 mm and its length is 500 mm. As ondensatethe refrigerant R134a was used. In �gure 1.2 the Nuÿelt number (dimensionless heattransfer number) as a funtion of the Reynolds number with the inlination angle as



1.2 Literature related to condensation in tubes with small diameter 5parameter is shown. The main result is that for an inlination angle of 45◦ againstthe horizontal the heat transfer is twie times better ompared to the vertial.
Analytical and numerical studies on condensation in tubes with small diametersLiterature on ondensation in tubes (or hannels) with small diameters is on in-lined, vertial or horizontal tubes (or hannels), and the e�et of surfae tensionis either taken into aount or not. Three authors studied ondensation in inlinedtubes. [FR93℄ derived an analytial solution for ondensation in/on elliptial ylin-ders but negleted variations of the �lm thikness with the tube radius. [Mos99℄ stud-ied interfaial shear stress but without onsidering surfae tension. [WD00℄ omparedheat transfer in a horizontal and an inlined tube by energy onsiderations. He on-sidered surfae tension. However, he studied tubes with diameters of 1.94 mm and4.98 mm, whih are smaller than diameters of ompat heat exhangers. Conden-sation in vertial tubes are investigated by the following authors, where the �rsttwo authors onsidered surfae tension but the last three authors do not. Aordingto [WD03℄ small surfae waves enhane the heat transfer mainly due to �lm thinninge�et. [ZL02℄ investigated ondensation in vertial triangular hannels with a diam-eter between 0.2 mm and 0.3 mm. [Pan01℄ showed that the e�et of interfaial shearstress on the heat transfer depend on the vapor veloity and on the mass transfer(operating Temperature). [Pan03℄ investigated a tube with a diameter of 24 mm,where he showed that turbulent �ow enhanes the heat transfer. [FBMB01℄ stud-ied evaporative ooling. Further there are two studies on horizontal tubes. [SOS02℄studied ondensation in horizontal parallel plate hannels but he negleted surfaetension. [WHN02℄ investigated horizontal miro-�n tubes by dividing the �ow in two�ow regimes. However, these papers are based on simpli�ed model equations andshow a great variety espeially in the interfae equations.
Stability of thin filmsHeat exhanger often operate at moderate Reynolds numbers (Re / 100), with a�lm thikness in the millimeter range and small surfae waves with wave lengthin the entimeter range. Stability of thin �lms was �rst investigated of [Ben57℄and [Yih63℄ by a linear stability analysis with the result that thin �lms are instablefor all Reynolds numbers and that surfae tension has a stabilizing e�et on the�lm. [Ban70℄ [ML72℄ [ÜT78℄ and [Spi81℄ extended linear stability analysis on phasehange problems and showed that ondensation in opposite to evaporation tends tostabilize the �lm. However, ritial Reynolds numbers predited with linear stability



6 Chapter 1 Introductionanalysis are too small for tehnial appliations (Re < 5). Later nonlinear stabilityanalysis as derived by [Ben66℄ (Benney equation), where small surfae waves aremodeled by partial di�erential equations whih are then perturbed, was applied onsmall �lms with phase hange. [BBD88℄, [JDB90℄ (evaporation) and [HW87℄ (on-densation) demonstrated the dependeny of stability on the frequeny of the initialperturbation. However, only �ows along plates are studied in Cartesian oordinates,so that the e�et of surfae tension due to the small tube diameter is not modeled.With Benney's equation experimental observations of two and three-dimensionalwaves studied by [ANP94℄ and [YNN96℄ were simulated numerially by [MNT02℄.
Studies on numerical methods for moving boundary problemsNumerial methods for moving boundary problems with ontinuous interfaes are oftwo kinds: Traking methods, suh as Marker and Cell methods (MAC), �rst devel-oped by [HW96℄ and later onsiderably improved by [Kot98℄ and [TBaWT98℄ andapturing methods, suh as Volume of Fluid methods (VOF) [HN75℄ [HN81℄ [KR98℄,or level set methods [Set99℄. [BKZ92℄ extended VOF methods by a ontinuous sur-fae tension fore (CSF) model, [JT98℄ enhaned traking methods for phase hangeproblems, [WW00℄ proposed a VOF method with a CSF model together with thephase hange model of [JT98℄, [SD02℄ extended level set methods on phase hangeproblems. However, in these studies surfae tension and phase hange are not im-plemented exatly but are treated as soure terms. A omparison of both methodsby means of the underlying equations an not be found in literature.
1.3 Organization of the thesisIn part I we derive the model equations for the ondensation problem. The modelequations for the ondensation problem are the mass, momentum, and energy bal-ane equations for the liquid �lm and the vapor phase and for the interfae betweenboth phases. All equations in the �rst part are valid for both ondensation andevaporation.The balane equations at the interfae (jump onditions) ontain geometrial quan-tities, suh as normal and tangential vetors on the interfae and mean urvatureof the interfae. For these quantities we need a geometrial desription of the in-terfae. This is given in hapter 2. For the derivation of the balane equationsand the jump onditions we also need kinematial relations, suh as the Reynolds



1.3 Organization of the thesis 7transport theorem for a material body, but also a Reynolds transport theorem fora material body with an internal interfae. They are given in hapter 3. Afterthis preliminaries we are able to derive generi balane equations. This is done inhapter 4. Here we derive generi balane equations for the two phases and generijump onditions for the interfae, where we assume both phases to be inompressibleNewtonian �uids. In hapter 5, we apply the generi equations to mass momentumand energy and derive the desired model equations for the ondensation problem.Here also the boundary onditions are given. By this we onlude the �rst part withthe model equations for the ondensation problem in symboli notation.Modeling the two-phase problem beomes more laborious when the e�et of surfaetension is taken into aount. In all hapters of part I surfae tension inreases theomplexity. The normal and tangential vetors on the interfae an be derived by asimple geometri demonstration, as desribed at the beginnings of setion 2.1 andin setion 2.3. However, for the desription of the mean urvature (to model thee�et surfae tension) we need tensor notation. Similarly the derivation of a jumpondition inluding the e�et of a urved surfae is not a trivial task. In setion 4.2in the �rst attempt we derived the generi jump ondition starting from the generibalane equation. However, the resulting jump ondition does not ontain meanurvature. We need additionally a generi balane equation for the interfae itself,as desribed in setion 4.3. This in turn involves the need of kinematial relations ofthe interfae and the Reynolds transport theorem for surfaes, given in setion 3.3and 3.4.After the model equations are formulated the next step is to �nd out as muh aspossible about the problem. This is what we do in part II. We analyze the modelequations by means of a generalized dimensional analysis and simplify the modelequations aording to the main relevant physial phenomena of the ondensationproblem.Based on the experimental results, that the �ow regime of the ondensate in theinlined tube is an almost irular �lm along the inner tube wall [Fie03℄, we derivein hapter 6 the equations for ondensation in a tube with small diameter under theassumption of rotational symmetry. Then we redue the omplexity of this modelequations further by a generalized dimensional analysis in hapter 7.3 We deriveequations of boundary layer type for the bulk �ow equations and �nd omparable3Dimensional analysis should not be onfused with a nondimensionalization of the terms of anequation, whih is often useful for a numerial simulation.



8 Chapter 1 Introductionsimpli�ations for the jump onditions. By this the main physial phenomena in theondensation proess are determined.Generalized dimensional analysis allows us to analyze the equations in terms of theharateristi length sales of the problem, that is the �lm thikness (≈ 1 mm) andthe tube length (0.5 m). In setion 7.1 we present the method and ompare it todimensional analysis. In the following setions, the method is applied to the modelequations for the vertial tube. As a result of this analysis we get nondimensionalequations ontaining the main physial phenomena of ondensation in a tube withsmall diameter. We refer to setion 7.4 for the equations of the bulk �ow andsetion 7.6 for the jump onditions. In setion 7.7 we evaluate the nondimensionalequations for two di�erent �uids and disuss the e�et of surfae tension for waterand R134a. Finally we onsider the e�et of an inlination of the tube on the results.A general de�nition of symmetry due to [Wey52℄ is, that a thing is symmetrialif there is something we an do to it so that after we have done it, it looks thesame as it did before. From this de�nition we understand that the transformationof a di�erential equation into a nondimensional di�erential equation by means of adimensional analysis is a symmetry transformation. The �rst who systematiallyinvestigated symmetry transformations of di�erential equations was [Lie22℄. In thelast years there has been intense researh on solving di�erential equations using theirsymmetries. In appendix A we disuss the symmetries of the simpli�ed modelequations by a Lie group analysis. We present the method of �nding the Lie groupsof point transformations whih let a given system of di�erential equations invariantand disuss its relation to generalized dimensional analysis. We �nd the symmetrygroups of transformations admitted by the model equations of the ondensationproblem using a Mathematiar software pakage and disuss them.In part III we deal with the numerial simulation of the moving boundary problemfrom two di�erent angles. In hapter 8 we simplify the model equations whih wederived in part II further and derive a single nonlinear ordinary di�erential equation(ODE) for the �lm thikness and in hapter 9 we analyze the omplete modelequations from a DAE point of view.In setion 8.1 we demonstrate how the single model equation is derived and weompare it with Nuÿelt's ondensation theory. Then we extend this equation insetion 8.2 for the ase of surfae tension and solve it by a standard Runge-Kuttamethod. In setion 8.3 we ompare the e�et of surfae tension for two di�erent�uids with experimental results of [Fie03℄.



1.3 Organization of the thesis 9The omplete model equations onsist of the transient Navier-Stokes equations, theenergy equation and the jump onditions, as derived in part I. The numerialsolution of Navier-Stokes problems is not a trivial task. The main problems are thenonlinearity due to the onvetive terms in the momentum equation and that thepressure annot be omputed diretly, but is determined by the ontinuity equation.With onventional methods in every time iteration step some further iterations needto be done to ompute the pressure. As a result only lower order time integrationmethods an be used. The DAE approah is to solve the pressure problem byreduing the index of the di�erential algebrai equations (whih are the result ofthe spatial disretization). This has the advantage that higher order methods anbe used for the solution of the transient problem and is espeially useful if theproblem is highly transient and/or nonlinear. However, it has also disadvantages:In setion 9.2 we ompare this approah with the onventional methods for thenumerial solution of Navier-Stokes problems, and in setion 9.4 we analyze how thejump onditions hange the index of the DAEs. Finally we disuss some aspets ofnumerial algorithms for the solution of moving boundary problems based on ouranalysis and on our work with two CFD-software pakages in setion 9.5.4

4We worked with SEPRAN, a semi-ommerial program distributed by G. Segal, Delft, and withFIDAP, a trademark of FLUENT, both of whih were not able to perform the task satisfatory.



Part I
Modelling



Chapter

2
Geometry of the moving interface

In this hapter we derive the geometrial properties of the moving interfae betweenondensate and vapor phase, suh as normal and tangential vetors and mean ur-vature. For the desription of three-dimensional �ows a Cartesian frame of referenereally su�e. However, a surfae is a two-dimensional non Eulidean spae and de-mands a tensorial treatment. First, the formulas for normal and tangential vetors,mean urvature and interfae veloity are given. Then, by an impliit surfae rep-resentation the geometrial properties for the interfae of the ondensation problemare omputed. Two formulas to ompute the normal vetor and two formulas toompute the mean urvature are disussed.The material in this hapter is mainly
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Figure 2.1: Tangent spae on a surfae

based on [EBW91℄ [Ari89℄ [TT60℄ and[Eri71℄. They present lassial ontin-uum physis intrinsially tied with ten-sor alulus. For an introdution in ten-sor alulus we refer to [Sh97℄. [Sla90℄[Sla99℄ and [Dee98℄ present transport phe-nomena inluding interphase transportphenomena using moderate tensor no-tation. [Küh99℄ is a di�erential geome-try book designed for the mathemati-ian [Opr00℄ has (for the engineer) afar easier notation but also lak somederivations.



12 Chapter 2 Geometry of the moving interface

2.1 Curvilinear coordinate systemsA two-dimensional surfae an be best analyzed by overing the surfae with agrid, see �gure 2.1. The grid is obtained by the urves de�ned by u1 and u2 heldonstant. The position of a point on the surfae an be given intrinsially in termsof the two urvilinear surfae oordinates (or parameters) u1 and u2, or extrinsiallyby a position vetor to that point This de�nes a urvilinear oordinate system whihis not orthogonal in general. In this thesis artesian oordinates are denoted by xiand indexed by a subsript. Curvilinear oordinates are denoted by uα and areindexed by a supersript. When the index takes only the values 1, 2 greek lettersare used and when the index takes the values 1, 2, 3 latin letters are used. Einsteinsummation onvention is used, whih states that if an index is repeated in a termthat implies a sum over all possible values for that index.
Tangential and normal vectorsIn our ase the interfae between ondensate and vapor is not stationary, so thatthe position vetor to a point on the interfae is given in artesian oordinates by

x(u1, u2, t) = x1(u
1, u2, t) e1 + x2(u

1, u2, t) e2 + x3(u
1, u2, t) e3 , (2.1)or in index notation by

x(uα, t) = xi(u
α, t) ei , where uα = u1, u2. (2.2)Hene, all geometrial properties are funtions of time.A Taylor series expansion of x in the surfae variables uα up to the linear term yieldsthe total derivativedx =

∂x

∂uα
duα .If u2 = onstant (du2 = 0), only the omponent along the u1 urve remains and ∂x

∂u1de�nes the tangent vetor along this urve; similarly ∂x
∂u2 de�nes the tangent vetoralong the u2 urve [Sh97℄. The derivatives with respet to the urvilinear oor-dinates uα are alled ovariant derivatives. The ovariant derivatives of a positionvetor

aα =
∂x

∂uα
= ei

∂xi

∂uα
(2.3)



2.1 Curvilinear coordinate systems 13form the base vetors of a loal surfae oordinate system. In terms of the ovariantbase vetors the surfae metri tensor is de�ned as
aαβ = aα · aβ , (2.4)[Ari89℄. The metri tensor is also alled �rst fundamental tensor. The loal unitnormal vetor at a point (u1, u2) normal to the surfae is de�ned by
n =

a1 × a2

|a1 × a2|
. (2.5)

Dual basisAnother set of base vetors aβ is de�ned by the surfae Kroneker delta δαβ

aα · aβ = δαβ ,they are alled dual base vetors or reiproal or ontravariant base vetors respe-tively [Sh97℄. This ondition is alled orthogonality relation. It de�nes a vetor a1that lies in the plane formed by the vetors a1,a2, is perpendiular to a2, forms anaute angle with a1 and its length is given by a1 · a1. This is also the de�nitionof the gradient ∇u1 of the surfae oordinate, whih is perpendiular to the levelsurfae de�ned by u1(x1, x2, x3, t) = onstant. Similarly the orthogonality relationde�nes the vetor a2. Then the dual or ontravariant base vetors are given by
aα = ∇uα = ei

∂uα

∂xi

. (2.6)With the ontravariant base vetors the ovariant surfae metri tensor is
aαβ = aα · aβ . (2.7)However, the dual basis is more onvenient alulated by means of the loal unitnormal vetor
a1 =

a2 × n
[a1,a2,n]

, a2 =
n× a1

[a1,a2,n]
. (2.8)

[a1,a2,n] = [a1 × a2] ·n is the salar triple produt [Dee98℄.
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Orthogonal curvilinear coordinate systemsIf the base vetors of a urvilinear oordinate system are orthogonal (a1 · a2 = 0),the ovariant and ontravariant metri tensor redue to
aαβ =

[
a11 0

0 a22

]
, aαβ =

[
a11 0

0 a22

]
.For suh orthogonal systems the normalized surfae vetors are alled self reiproal,in the sense that a1√

a11
= a1

√
a11

and a2√
a22

= a2
√

a22
. It is onvenient to introdue unitvetors

e1 =
a1√
a11

, e2 =
a2√
a22

,[EBW91℄.
Surface gradientThe identity tensor is de�ned by

I = a1 a1 + a2 a2 + nn ,and possesses the property I ·x = x for any x [EBW91℄. This relation is also alledorthogonality relation. By subtrating the part related to the normal vetor from Ithe surfae identity tensor is de�ned as
IS = I − nn = aα aα , (2.9)[EBW91℄. Similarly the surfae gradient is de�ned by the projetion in normaldiretion subtrated from the gradient
∇S = ∇ − nn∇ . (2.10)By this we get (with ei · ej = δij)

∇S = IS · ∇ = aα aα ·
(
ei

∂

∂xi

)
= aα

(
ej

∂xj

∂uα

)
·
(
ei

∂

∂xi

)
= aα ∂

∂uα
. (2.11)
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2.2 Mean curvatureThe mean urvature is de�ned as
H = −1

2
∇S · n = −1

2

(
aα ∂

∂uα

)
·n , (2.12)[Dee98℄. The mean urvature is proportional to the rate of hange with respet tothe surfae oordinates of the loal normal vetor.

2.3 Implicit parameterized surfaceTo ompute the normal and tangential vetors and the mean urvature of the movinginterfae it is neessary to hoose a parametrization of the interfae. For example, if avertial tube is assumed and the ondensate �ows down along the inner walls withoutshowing waves, then the problem has rotational symmetry and the interfae betweenthe ondensate and the vapor an be parameterized with the surfae oordinates
u1 = z and u2 = ϑ, see setion 6. Here we derive the geometrial surfae propertiesby a more general parametrization.
Normal and tangential vectors of an implicit parametrized surfaceEvery moving surfae an be loally desribed by a real-valued funtion of twovariables and time

z = h(u, v, t) or impliitly F (u, v, z, t) = z − h(u, v, t) = 0 ,[Ari89℄ [Opr00℄. For onveniene we write u1 = u, u2 = v. By this parametrizationthe position vetor beomes
x(u, v, t) = u e1 + v e2 + h(u, v, t) e3 .The tangential vetors are given by the ovariant base vetors (2.3) as
a1 =

∂x

∂u
=




1

0
∂h
∂u


 , a2 =

∂x

∂v
=




0

1
∂h
∂v


 . (2.13)



16 Chapter 2 Geometry of the moving interfaceThe loal unit normal vetor is the ross produt of the tangent vetors, saled byits length. Alternatively, if the surfae is given by z = h(u, v, t), the unit normalvetor an be obtained from the gradient of the impliit funtion F (u, v, z, t) = 0.Expanding F (u, v, z, t) in a Taylor series up to the linear term for the variables u, v, zleads to the total derivativedF =
∂F

∂u
du+

∂F

∂v
dv +

∂F

∂z
dz ,whih is zero beause F = 0. Writing the total derivative as ∇F · du = 0 wheredu = [du, dv, dz] shows that the gradient ∇F is perpendiular to the level surfaede�ned by F (u, v, z, t) = 0. The loal unit normal vetor reads then

n =
∇F

|∇F | =




−∂h
∂u

−∂h
∂v

1




1√(
∂h
∂u

)2
+
(

∂h
∂v

)2
+ 1

. (2.14)
Mean curvature of an implicit parametrized surfaceThe mean urvature is given by (2.12) as being proportional to the rate of hangeof the surfae normal with respet to the surfae oordinates

H = −1

2

(
a1 ∂

∂u
+ a2 ∂

∂v

)
·n = −1

2

(
a1 · ∂n

∂u
+ a2 · ∂n

∂v

)
.Alternatively the mean urvature is often omputed more onveniently by means ofthe �rst and seond fundamental tensor as explained below [Ari89℄ [Küh99℄. For theimpliit surfae parametrization the �rst fundamental tensor, or ovariant metritensor (2.4), reads in matrix form

aαβ =

[
a1 · a1 a1 · a2

a2 · a1 a2 · a2

]
=

[
1 + (∂h

∂u
)2 ∂h

∂u
∂h
∂v

∂h
∂v

∂h
∂u

1 + (∂h
∂v

)2

]
.Between the ovariant and the ontravariant metri tensor (2.7) the relation

aαγ aγβ = (aα · aγ) (aγ · aβ) = aα · (aγ aγ) · aβ = aα · IS · aβ = aα · aβ = δαβholds, so that the ontravariant metri tensor aαβ is the inverse of the ovariantmetri tensor aαβ [EBW91℄. The inverse of a matrix is given by the transpose of



2.3 Implicit parameterized surface 17the ofator matrix (denoted by a tilde), divided by the determinant of the matrix.1This yields
aαβ = (aαβ)−1 =

ãαβ

det aαβ
=

1

a11 a22 − a12 a21

[
a22 −a12

−a21 a11

]
,and for the impliit surfae parametrization

aαβ =
1

1 + (∂h
∂u

)2 + (∂h
∂v

)2

[
1 + (∂h

∂v
)2 −∂h

∂u
∂h
∂v

−∂h
∂u

∂h
∂v

1 + (∂h
∂u

)2

]
.Both metri tensors are evidently symmetri. They are also positive de�nite.2Next, the seond fundamental tensor is de�ned as

bαβ =
∂aα

∂uβ
· n or alternatively bαβ = −aα · ∂n

∂uβ
. (2.15)[Ari89℄ [Küh99℄. The �rst equation of (2.15) yields for our parametrization

bαβ =
∂aα

∂β
· n = −

[
∂a1

∂u
· n ∂a1

∂v
· n

∂a2

∂u
· n ∂a2

∂v
· n

]
=

1

1 + (∂h
∂u

)2 + (∂h
∂v

)2

[
∂
2h

∂u2
∂
2h

∂u∂v
∂2h
∂v∂u

∂2h
∂v2

]
.The seond fundamental tensor is also symmetri but not neessarily positive de�-nite. From the �rst and seond fundamental tensor the shape operator or Weingartenmap is de�ned

L = bαγ a
γβ =

[
b11 b12

b21 b22

]
1

det aαβ

[
a22 −a12

−a21 a11

]
, (2.16)[Küh99℄. It beomes for the impliit surfae parametrization

L =
1√
o




∂2h
∂u2

(
1 + (∂h

∂v
)2
)
− ∂2h

∂u∂v
∂h
∂u

∂h
∂v

∂2h
∂v∂u

(
1 + (∂h

∂u
)2
)
− ∂2h

∂u2
∂h
∂u

∂h
∂v

∂
2h

∂u∂v

(
1 + (∂h

∂v
)2
)
− ∂

2h
∂v2

∂h
∂u

∂h
∂v

∂
2h

∂v2

(
1 + (∂h

∂u
)2
)
− ∂

2h
∂u∂v

∂h
∂u

∂h
∂v


 ,with √

o =
√

1 + (∂h
∂u

)2 + (∂h
∂v

)2. The eigenvalues of a produt of a symmetri matrixwith a symmetri positive de�nite matrix are all real, Zurmühl [Zur64℄.1For the omputation of the inverse of a matrix by its ofator matrix [Apo69℄.2The ondition that a matrix is positive de�nite is that all upper left determinants are positive,Apostol [Apo69℄ a11 = 1 + (∂h
∂u

)2 > 0 and
a11a22 − (a12)2 = (1 + (∂h

∂u
)2)(1 + (∂h

∂v
)2) − ∂h

∂u
∂h
∂v

= 1 + (∂h
∂u

)2 + (∂h
∂u

)2 + ∂h
∂u

∂h
∂v

− ∂h
∂u

∂h
∂v

> 0.



18 Chapter 2 Geometry of the moving interfaceThe two eigenvalues κ1 and κ2 of L are alled prinipal urvatures. The meanurvature and the Gauÿ urvature K are de�ned by
H =

1

2
traeL =

1

2
bαβ a

αβ = κ1 + κ2 and K = detL =
det bαβ

det aαβ

= κ1 κ2, (2.17)[Sla90℄. So that �nally the mean urvature beomes for our parametrization
H =

1

2




∂2h
∂u2

(
1 + (∂h

∂v
)2
)
− 2 ∂2h

∂u∂v
∂h
∂u

∂h
∂v

+ ∂2h
∂v2

(
1 + (∂h

∂u
)2
)

(
∂h
∂u

)2 + (∂h
∂v

)2 + 1
) 3

2


 . (2.18)For the omputation of the mean urvature with (2.17) only the ovariant basevetors and the derivatives of the ovariant base vetors need to be omputed. If(2.12) is used to ompute the mean urvature also the ontravariant base vetors andtheir derivatives need to be omputed. That shows that using the shape operatorto ompute the mean urvature often simpli�es the omputations, espeially in thease of orthogonal oordinate systems. However, the de�nition of the mean urvaturewith (2.12) is more physially intuitive. We will use this formulas again in hapter 6.



Chapter

3
Kinematics of bulk fluids and of the moving

interface

In this hapter we disuss the kinematial relations that are neessary to formulatethe balane equations of the ondensation problem.1 Experiments show that a �uidinterfae is in fat a three-dimensional region with a thikness on the miro-salelevel [EBW91℄ [Sla99℄. Following [Gib28℄ suh an interfae an be regarded as atwo-dimensional dividing surfae where the e�ets of the interfae on the adjoiningbulk phases are represented by surfae exess mass, momentum and energy [Sla90℄.By this the e�et of surfae tension is inluded in the balane equations of theondensation problem (see setion 4.3).First we give the kinematial relations for the bulk �uids, then a material volumewith an internal interfae is onsidered. Next we disuss the kinematial relations ofthe two-dimensional moving interfae and in the last setion we deal with kinematialrelations related to urvature of the interfae.The �rst part of this hapter is mainly based on [Ari89℄ [Sh99℄ [BB75℄ and [TT60℄.The interfae related setions are further based on [Sla90℄ [Sla99℄ and on [EBW91℄.
3.1 Kinematics of a material volumeTo larify terminology we �rst reall some kinematis of bulk �uids and the Reynoldstransport theorem for a material volume.1�Kinematis is the desription of motion per se� [Ari89℄.



20 Chapter 3 Kinematics of bulk fluids and of the moving interface

Basic kinematicsFrom the basi assumption of ontinuum theory, a body onsist at every moment ofin�nitely many partiles without dimension and no spae between them, it followsthat every partile orrespond to a position in spae. A partile is represented at agiven initial time, by a position vetor ξ, as shown in �gure 3.1. The oordinates of
ξ are alled material oordinates. At another time the same partile is representedby another position vetor as a funtion of the initial position of the partile andtime

x = x(ξ, t) (3.1)The oordinates of x are alled spatialPSfrag replaements
ξ x(ξ, t)

x
y

z

Figure 3.1: Moving partile

oordinates. The initial position of thepartile is taken as a referene on�gu-ration. Equation (3.1) de�nes the mo-tion of a partile [TT60℄. Assuming on-tinuous motion and that a partile annot oupy two plaes at the same timethe relation is a one-to-one mapping andwe an also write onversely
ξ = ξ(x, t) .Physial quantities like density, veloityand temperature, whih are funtions of spae and time, are alled �eld variablesand they are here denoted by ϕ. A �eld variable an also be given as a funtion ofpartile and time. The representation of a �eld variable as a funtion of spae andtime is alled spatial (or Euler) representation, that is
ϕ = ϕ(x, t) or ϕ = ϕ(ξ(x, t), t) .The representation of a �eld variable as a funtion of partile and time is alledmaterial (or Lagrange) representation, that is
ϕ = ϕ(ξ, t) or ϕ = ϕ(x(ξ, t), t) .Balane equations of mass, momentum and energy are appropriately represented inspatial variables [BB75℄.
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Material derivative and velocityField variables are funtions of several variables, so that their derivatives are par-tial derivatives. Partial derivatives where spatial oordinates are held onstant aredenoted by ∂. Partial derivatives where material oordinates are held onstant aredenoted with an upperase D [Sh99℄.2 The partial derivative with respet to timeDϕDt =
∂ϕ(ξ, t)

∂t
=

(
∂ϕ

∂t

)

ξ

.is alled material (or onveted) derivative and gives the rate of hange an observermoving with the partile would see. The material derivative of a position vetor isthe veloity of a given partile
v =

DxDt . (3.2)Balane equations are given in spatial oordinates. To obtain the material derivativeof a �eld variable ϕ(x(ξ, t), t) in spatial variables the hain rule has to be appliedDϕDt =
∂ϕ

∂t
+

∂ϕ

∂xi

DxiDt ,

=
∂ϕ

∂t
+ v · ∇ϕ , (3.3)where we used Einstein summation onvention. The material derivative is the loalrate of hange of a given partile at a given position and at a given time plus theonvetive rate of hange related to the moving volume [Sla99℄.

Reynolds transport theorem for a material volumeFor the derivation of the balane equations we need the Reynolds transport theoremfor a material volume. A mass onserving volume is alled material volume (ormaterial body) and here denoted by V0. It is moving with time and deforming ingeneral. A quantity B0 ontinuously de�ned over a material volume V0 is given by
B0 =

∫
V0
ϕ dV . The rate of hange of B0 with respet to time is given bydB0(t)dt =

ddt ∫

V0(x,t)

ϕ(x, t) dV .2Another ommon notation for the material derivative is a dot on the variable ẋ.



22 Chapter 3 Kinematics of bulk fluids and of the moving interfaceIn a spatial representation V0(x, t) depends on time, so that integration and dif-ferentiation an not be interhanged. With the Jaobian J = det
(

∂xi

∂ξj

) the vol-ume element an be transformed from spatial oordinates into material oordinatesdV = J dV0. The material volume element dV0 does not depend on time, so that thenintegration and di�erentiation an be interhanged. The time derivative beomesthe material derivativeddt ∫

V0(x,t)

ϕ(x, t) dV =

∫

V0(ξ,t)

DDt(ϕ(ξ) J
)dV0 .Using the material derivative of the Jaobian DJDt

= J ∇ · v we get
∫ DDt(ϕJ) dV0 =

∫ (DϕDt J + ϕ
DJDt ) dV0 =

∫ (DϕDt + ϕ∇ · v
)
J dV0 ,where we dropped the integration limits for simpliity [Ari89℄. After transformingthe volume element bak to the spatial volume element and by using the materialderivative (3.3) of a �eld variable we get for the rate of hange with time of B0ddt ∫

V0

ϕ dV =

∫ (DϕDt + ϕ∇ · v
) dV , (3.4)

=

∫ (
∂ϕ

∂t
+ ∇ · [ϕ v]

) dV .Note that when the derivative of the integral is taken the integration domain has tobe indiated. Using Gauÿ theorem3 the divergene term in the volume integral anbe hanged into a surfae integralddt ∫
V0

ϕ dV =

∫
∂ϕ

∂t
dV +

∮
ϕ v ·n dA , (3.5)where the normal vetor is direted outwards on the surfae. The veloity v is theveloity of mass while moving aross the surfae. Equations (3.4) � (3.5) are alledReynolds transport theorem. In the form of (3.5) the Reynolds transport theoremhas a physial meaning: The rate of aumulation of a quantity in a material volumean be interpreted as the rate of aumulation of the quantity in a volume thatequals the material volume at a given time plus onvetive �ux (onneted to mass)leaving the volume through the surfae at that time [Sh99℄. In Dziubek [Dzi04℄ amore detailed disussion of the Reynolds transport theorem an be found.3The Gauÿ theorem or divergene theorem for a vetor f is given as: ∫ ∇·f dV =

∮
f ·n dA.
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3.2 Reynolds transport theorem for a material volume with an

interfaceIn this setion we onsider a material volume V0 = Vl + Vg, where the �eld variablehas the value ϕl (l for liquid phase) in the volume Vl and the value ϕg (g for gasphase) in the volume Vg, as shown in �gure 3.2. An interfae between two immisible�uids is alled a material interfae, if is formed by the same material elements orpartiles at all times. If phase hange ours at an interfae between two aggregatestates of a �uid, as is the ase in the ondensation problem, the surfae veloity uof the interfae di�ers from the veloity v of the mass, and the interfae is alledsingular interfae, Greve [Gre03℄.
JumpThe di�erene between the two valuesPSfrag replaements
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Figure 3.2: Material volume with interfae
at the surfae is denoted by

[[
ϕ
]]

:= ϕg − ϕland alled the jump of ϕ [TT60℄.The rate of hange of B0 with respet totime is the sum of the rate of hange of
Bl and Bg with respet to timedB0(t)dt =

dBl(t)dt +
dBg(t)dt ,that isddt ∫

V0

ϕ dV =
ddt ∫

Vl

ϕl dV +
ddt ∫

Vg

ϕg dV .The volumes Vl and Vg are not material, so that we need the Reynolds transporttheorem in a modi�ed version for an arbitrary volume.
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Reynolds transport theorem for two arbitrary volumesA quantity Bu whih is ontinuously de�ned over an arbitrary volume Vu is givenby Bu =
∫

Vu
ϕ dV . The volume Vu is assumed to onsist of �tive mass and shall bematerial (onserving the �tive mass). Then the rate of hange with time of Bu isaording to the Reynolds transport theorem (3.5) given asddt ∫

Vu

ϕ dV =

∫
∂ϕ

∂t
dV +

∮
ϕu · n dA , (3.6)though here the veloity u is the veloity of the boundary of the onsidered volume.Now we apply the general formula to our ontrol volumes. With (3.6) the Reynoldstransport theorems for the two volumes Vl and Vg are given asddt ∫

Vl

ϕ dV =

∫

Vl

∂ϕ

∂t
dV +

∫

Al

ϕ v · dA+

∫

Ã

ϕl u · ndÃ , (3.7)and ddt ∫
Vg

ϕ dV =

∫

Vg

∂ϕ

∂t
dV +

∫

Ag

ϕ v · dA+

∫

Ã

ϕg u · (−n) dÃ , (3.8)where we hoose the normal vetor n at the interfae suh that it shows from theliquid to the vapor. By adding (3.7) and (3.8) we get the Reynolds transport theoremfor the entire volume V0 = Vl + Vg asddt ∫
V0

ϕ dV =

∫
∂ϕ

∂t
dV +

∮
ϕ v · dA−

∫

Ã

[[
ϕ
]]
u · ndÃ , (3.9)[Sh99℄. Equation (3.9) is the Reynolds transport theorem for a material volumewith a singular interfae. It states that the rate of aumulation of a quantity in amaterial volume, where ϕ undergoes a jump on an interfae an be interpreted asthe rate of aumulation of the quantity in a volume that equals the material volumeat a given time plus onvetive �ow of the quantities ϕl and ϕg leaving the volumethrough the outer surfae and the interfae at that time. Here again the integrationlimits are dropped where the integrals are evaluated at a given time. Only theintegration domain of the integral along the interfae Ã has to be indiated.



3.3 Kinematics of the moving interface and velocities 25Using Gauÿ theorem4 the Reynolds transport theorem (3.9) for a material volumewith a singular interfae an be rewritten asddt ∫
V0

ϕ dV =

∫ (
∂ϕ

∂t
+ ∇ · [ϕ v]

) dV +

∫

Ã

[[
ϕ (v − u)

]]
· ndÃ , (3.10)[Sla90℄.

3.3 Kinematics of the moving interface and velocitiesAs explained in the introdution of this hapter, the interfae between the vaporand the ondensate is assumed to be a two-dimensional surfae. In this setion thekinematis of the moving interfae are disussed and the material (or onveted)surfae derivative, the �uid veloity and the veloity of the interfae are given.
Kinematics of the moving interfaceThe interfae is not omposed of a �xed set of partiles, there will be mass transferbetween the interfae and the two adjoining phases [EBW91℄. Aording to thebasi assumption of ontinuum theory also a surfae onsist at every moment ofin�nitely many partiles. In partiular, a partile joining the interfae oinideswith the partile that was at that position before. For a partile that is leaving theinterfae instantaneously another partile emerges. So although there is a many-to-one mapping between partiles and the region in the surfae that is oupiedby them, we an assign one representing partile for all possible partiles at onepoint [TT60℄.The position vetor to a point on the surfae was given in hapter 2 as a funtionof surfae oordinates and time (2.1) and is here denoted by a lower index S

x
S

= x
S
(uα, t) with α = 1, 2 . (3.11)At a given time this partile on the surfae is represented by a position vetor, whihis here also denoted by a lower index S

ξ
S

= ξ
S
(uα

0 ) . (3.12)4For a material volume with an internal interfae Gauÿ theorem beomes (ompare footnote 3)∫
∇·[ϕv] dV =

∮
ϕv ·dA−

∫
Ã
[[ ϕ ]]v ·ndÃ.



26 Chapter 3 Kinematics of bulk fluids and of the moving interfaceWe take this as a initial position and all it intrinsi surfae referene on�guration.Conversely every position in the surfae orresponds to a partile
uα

0 = uα
0 (ξ

S
) . (3.13)Obviously the initial position of a partile loated at the surfae an be identi�edeither by (3.12) or by (3.13). At another time the partile is represented by anotherset of oordinates as a funtion of the referene on�guration of the surfae partileand time

uα = uα(uα
0 , t) . (3.14)With the assumption of a representing surfae partile we established a one-to-onemapping between the oordinates of a surfae partile and the surfae oordinates,so that we an write reversely

uα
0 = uα

0 (uα, t) . (3.15)Equations (3.14) and (3.15) desribe the intrinsi motion of a surfae partile withinthe surfae, without knowing how the surfae itself is moving.The motion of a surfae partile in spae we get from the motion of the surfae(3.11) and the intrinsi motion of the surfae partiles on the surfae (3.14), (3.15)as
x

S
= x

S
(uα

0 , t) or x
S

= x
S
(uα(uα

0 , t), t) . (3.16)Equation (3.16) is not reversible. A position in spae is orresponding to everysurfae partile, but the onverse is not true [Sla90℄.A surfae �eld variable is here denoted by ϕ
S
. It an be given as a funtion of spaeand time

ϕ
S

= ϕ
S
(x

S
, t) , that is with (3.11) ϕ

S
= ϕ

S
(uα, t) .Or it an be given as a funtion of partile and time

ϕ
S

= ϕ
S
(uα

0 , t) , ϕ
S

= ϕ
S
(uα(uα

0 , t), t) .
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Material surface derivativeThe partial derivative of a surfae �eld variable with respet to time where mate-rial surfae oordinates are held onstant is alled material (or onveted) surfaederivative and it is here denoted with D
SD

S
ϕ

SDt =
∂ϕ

S
(uα

0 , t)

∂t
=

(
∂ϕ

S

∂t

)

uα
0

.It is the rate of hange of a surfae �eld variable with respet to time an observermoving with a surfae partile would see. The material surfae derivative of aposition vetor is the veloity of a given surfae partile
v =

D
S
x

SDt . (3.17)Here we did not denote v with a lower index S to be onsistent with the balaneequations as they are given later. Surfae balane equations are given in spatialsurfae oordinates. To obtain the surfae material derivative of a surfae �eldvariable ϕ
S
(uα(uα

0 , t), t) in spatial surfae oordinates the hain rule has to be appliedD
S
ϕ

SDt =
∂ϕ

S

∂t
+

∂ϕ
S

∂uα

DuαDt ,With the surfae gradient (2.11)
∇

S
=

∂

∂uα
aαand the intrinsi surfae veloity

w =
DuαDt aα (3.18)the material surfae derivative beomesD

S
ϕ

SDt =
∂ϕ

S

∂t
+w · ∇

S
ϕ

S
, (3.19)where we used aα aα = I

S
, aording to (2.9). The material surfae derivative isthe loal rate of hange at a position of a given surfae partile at a given time plusthe onvetive rate of hange related to the moving surfae.
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Velocity of an interface particle relative to velocity of the moving interfaceThe material surfae derivative of the surfae position vetor x
S
(uα(uα

0 , t), t) is with(3.19) given asD
S
x

SDt =
∂x

S

∂t
+w · ∇

S
x

S
. (3.20)The partial derivative of the surfae position vetor with respet to time (where uαheld onstant) is the veloity of the moving interfae

u =
∂x

S

∂t
(3.21)The surfae gradient of the surfae position vetor is with (2.3) the surfae identitytensor

∇
S
x

S
=

∂x
S

∂uα
aα = aα a

α = I
S
. (3.22)Using (3.21), (3.22) and (3.17) the material derivative of the surfae position vetorbeomes an equation with three veloitiesD

S
x

SDt =
∂x

S

∂t
+w · ∇

S
x

S
, (3.23)

v = u+w .By this we see that the intrinsi surfae veloity is the veloity of a surfae partilerelative to the veloity of the surfae
w = v − u . (3.24)Note that in general u has a normal and a tangential part, so thatw is not neessarilythe tangential part of v

S
.

Surface velocity for an implicit surface parametrizationIn setion 2.3 we disussed the geometrial properties of a surfae de�ned by animpliit funtion F (x
S
(uα, t), t) = 0. Di�erentiating F = 0 with respet to timegives

∂F

∂t
+

∂F

∂x
Si

∂x
Si

∂t
= 0 and equivalently ∂F

∂t
+ u · ∇F = 0 . (3.25)



3.4 Reynolds transport theorem and divergence theorem for a surface 29With the normal vetor n = ∇F
|∇F | as derived in (2.14) we then an write either

u ·n = −
∂F
∂t

|∇F | or u · n = u · ∇F

|∇F | . (3.26)The �rst equation is independent of the parametrization, so that all possible surfaeveloities have the same normal omponent u·n, whih is alled speed of displae-ment [TT60℄ [Sla90℄. It is onvenient to hoose a parametrization suh that thesurfae veloity beomes the surfae normal veloity
u = u ·nn .The surfae de�ned by F (u, v, z, t) = z − h(u, v, t) has the surfae position vetor
x

S
(u, v, t) = u ex + v ey + h(u, v, t) ez .For an impliit surfae parametrization the surfae veloity is the surfae normalveloity and is given by

u =
∂x

S

∂t
=




0

0
∂h
∂t


 . (3.27)Multiplying (3.23) with n gives

vs ·n = u ·n +
DuαDt aα · n that is vs · n = u · n .

3.4 Reynolds transport theorem and divergence theorem for a

surfaceIn the balane equations we also need the Reynolds transport theorem for the inter-fae between ondensate and vapor. Beause of the mass transfer due to ondensa-tion the interfae is not material. However, we an always assume the interfae isomposed of a �xed set of partiles, as explained in setion 3.3. For a quantity S0ontinuously de�ned over suh an interfae Ã0 we write S0 =
∫

Ã0
ϕ

S
dÃ. The rate ofhange of S0 with respet to time is given bydS0(t)dt =

ddt ∫

Ã0(xS
,t)

ϕ
S
(x

S
, t) dÃ .



30 Chapter 3 Kinematics of bulk fluids and of the moving interfaceIn a spatial representation Ã0(xS
, t) depends on time. Analog to the Reynolds trans-port theorem for a material volume we transform the area element with the surfaeJaobian determinant j = det

(
∂x

Si

∂ξ
Sj

) from spatial oordinates into material oor-dinates dÃ = j dÃ0 [Sla90℄. Then Ã0(ξS
) does not depend on time and integrationand di�erentiation an be interhanged. The time derivative beomes the materialsurfae derivative (3.19)ddt ∫

A0

ϕ
S
dÃ =

∫ D
SDt(ϕS

j
) dÃ0 .The material surfae derivative of the surfae Jaobian determinant is D

S
jDt

= j∇
S
·v

S
,so that we get

∫ D
SDt(ϕS

j
) dÃ0 =

∫ (D
S
ϕ

SDt j + ϕ
S

D
S
jDt ) dÃ0 =

∫ (D
S
ϕ

SDt + ϕ
S
∇ · v

S

)
j dÃ0,where we an transform the area element bak into spatial oordinates [EBW91℄.Using the material surfae derivative (3.19) with the relative veloity (3.24) we getfor the rate of hange of S0 with respet to timeddt ∫

Ã0

ϕ
S
dÃ =

∫ (D
S
ϕ

SDt + ϕ
S
∇ · v

S

) dÃ ,

=

∫ (
∂ϕ

S

∂t
+ [v

S
− u] · ∇

S
ϕ

S
+ ϕ

S
∇ · v

S

) dÃ , (3.28)
=

∫ (
∂ϕ

S

∂t
+ ∇

S
· [ϕ

S
v

S
] − u · ∇

S
ϕ

S

) dÃ .This equations are alled Reynolds transport theorem for surfaes. Comparing thelast equation with the Reynolds transport theorem for material volumes (3.4) herewe have an additional term related to the moving surfae.
Divergence theorem for surfacesFinally the surfae integral with the surfae divergene term in the last equationof (3.28) is transformed further using the so alled divergene theorem for surfaes.The divergene theorem for surfaes will be used here and again in setion 4.3.Therefore we derive it using the abbreviation f = ϕ

S
v

S
. Then, splitting f in



3.4 Reynolds transport theorem and divergence theorem for a surface 31normal and tangential part we get for the surfae integral of the surfae divergeneof f
∫

∇
S
· f dÃ =

∫
∇

S
· [(f ·n)n] dÃ+

∫
∇

S
· [(f ·m)m] dÃ .Firstly, the �rst integral on the right hand side is onsidered. Applying produt ruleon the integrand result in

∇
S
· [(f · n)n] = n · ∇

S︸ ︷︷ ︸
=0

(f · n) + (f · n) ∇
S
· n = −2H f · n , (3.29)where we used mean urvature (2.12) as de�ned in setion 2.2, and that the surfaegradient (2.9) is perpendiular to the normal vetor on the surfae.The seond integral is an intrinsi sur-
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mFigure 3.3: Base vetors on a bounded surfae
fae integral. The vetor m is diretedoutwards normal on the boundary urve.It is perpendiular to the tangential ve-tor t along the urve and to the surfaenormal vetor m = t × n as shown in�gure 3.3.5 We use Stokes theorem6 totransform the surfae integral in a urve integral

∫
∇

S
· [(f ·m)m] dÃ =

∮
(f ·m) dC̃ . (3.30)With (3.29) and (3.30) the surfae integral of the surfae divergene of f beomes

∫
∇

S
· f dÃ = −

∫
2H f · n dÃ+

∮
f ·mdC̃ . (3.31)This equation is alled the divergene theorem for surfaes, (it should not be onfusedwith the divergene theorem in footnote 6).

Alternative version of the Reynolds transport theorem for surfacesIf we substitute in the last equation of (3.28) the surfae integral of the divergeneterm with (3.31) an alternative version of the Reynolds transport theorem for sur-faes an be given asddt ∫
Ã0

ϕ
S
dÃ=

∫ (
∂ϕ

S

∂t
−u · ∇

S
ϕ

S
−2H ϕ

S
v

S
· n
) dÃ+

∮
ϕ

S
v

S
·m dC̃. (3.32)5See [Sla99℄ for the relation between m, t and the loal base vetors at the interfae as de�nedin hapter 2.6Stokes theorem entirely de�ned in surfae vetors is given as: ∫ ∇

S
· f dA =

∮
f ·m dC.



32 Chapter 3 Kinematics of bulk fluids and of the moving interfaceThe rate of aumulation of a quantity in a surfae an be interpreted as the rateof aumulation of the quantity in a material surfae that equals the surfae at agiven time plus �ux arising from the moving surfae, plus onvetive �ux normal tothe surfae (urvature term) and onvetive �ux through the boundary urve of thearea.



Chapter

4
Generic model equations for two-phase

flows with surface tension

In this hapter we derive the generi model equations for the moving surfae problem.First we give the generi di�erential balane equation for inompressible �uids andthen we derive a generi di�erential balane equation at a moving interfae betweentwo �uids, the so alled jump ondition. This interfae balane equation inludesphase hange but does not yet inlude surfae tension. To inlude surfae tension abalane equation for the interfae itself has to be formulated, whih is then addedto the generi balane equation for the bulk phases. By this we derive the desiredgeneri jump ondition.The material about balane equations in general is mainly based on [BSL60℄ [Sh99℄and [Sla99℄. Further on [Dee98℄ [Gre03℄ and [Hut03℄. The material about interfaebalane equations is mainly based on [TT60℄ [Sh99℄ [Sla90℄ and [EBW91℄.
4.1 Balance equations for bulk fluidsBalane equations are formulated for physial quantities that are ontinuously de-�ned over a spatial region (for instanes a volume), suh as mass, momentum orenergy. We denote those quantities by B =

∫
V
ϕ dV .

Generic balance equation for a material volumeA material (mass onserving) volume V0 is in general moving with time. A generibalane equation for a physial quantity B0 =
∫

V0
ϕ dV in a material volume states



34 Chapter 4 Generic model equations for two-phase flows with surface tensionthat the rate of aumulation of quantity in the material volume is given by on-dutive �ux of the quantity (not onneted to mass) that enters the volume arossthe surfae plus supply of the quantity to the material volume1ddt ∫
V0

ϕ dV = −
∮
ζ · dA+

∫
π dV , (4.1)where ζ is the �ux density and π is the supply density [Sh99℄. The surfae elementvetor dA = n dA is direted outwards normal on the surfae. As before we drop theintegration limits exept in the ase the derivative of the integral is taken. With theReynolds transport theorem (3.4) the generi balane equation (4.1) for a materialvolume beomes

∫ (
∂ϕ

∂t
+ ∇ · [ϕ v]

) dV = −
∮
ζ · dA+

∫
π dV . (4.2)

Generic balance equation for a stationary volumeTo derive a generi balane equation for a stationary volume the Reynolds transporttheorem in the form of (3.5) is substituted for the right hand side of (4.1)
∫

∂ϕ

∂t
dV +

∮
ϕ v · dA = −

∮
ζ · dA+

∫
π dV .Now the integration domain of the volume integral on the left hand side is onstantand derivation and integration an be interhanged. By doing so we get the generibalane equation for a stationary volumeddt ∫ ϕ dV = −

∮
ϕ v · dA−

∮
ζ · dA+

∫
π dV . (4.3)This equation has again a physial meaning: The aumulation of B =

∫
ϕ dV in astationary volume is given by onvetive and ondutive �ux of quantity aross thesurfae to the volume plus supply of quantity to the volume [BSL60℄.1Some authors distinguish between supply of quantity to the volume and prodution of quantitywithin the volume. Then onservation equations an be de�ned as balane equations without aprodution term. However, it is more intuitive to distinguish only between surfae terms andvolume terms.



4.2 Jump conditions at an interface between two fluids 35

Generic differential balance equationNext, we need a di�erential version of the generi balane equation for the numerialomputation. The starting point is (4.2)
∫ (

∂ϕ

∂t
+ ∇ · [ϕ v]

) dV = −
∮
ζ · dA+

∫
π dV .Using divergene theorem (see footnote 3 in setion 3.1) we transform the surfaeintegral in a volume integral and get

∫ (
∂ϕ

∂t
+ ∇ ·

[
ϕ v + ζ

]
− π

) dV = 0 .This equation must hold for any arbitrary volume. By this we get the di�erentialbalane equation we were looking for
∂ϕ

∂t
+ ∇ · (ϕ v) = −∇ · ζ + π . (4.4)Although this equation represent the same physial phenomenon as before (au-mulation, �ux, supply) the various terms an not be interpreted in the same way asthe integral balane equations [Sh99℄.In setion 5.1 the generi di�erential balane equation will be applied on mass,momentum and energy of the ondensate and the vapor.

4.2 Jump conditions at an interface between two fluidsIn the ondensation proess we have two homogeneous bulk phases, the vapor andthe ondensate, and we have the interfae between both phases. At the interfaethe phase hange from the gas phase to the liquid phase our. Here the generibalane equations of the interfae are derived, partiulary under the riterion ofphase hange.
Generic balance equation for a material volume with a singular interfaceThe generi balane equation (4.1) for a quantity B0 in a material volumeddt ∫

V0

ϕ dV = −
∮
ζ · dA+

∫
π dV



36 Chapter 4 Generic model equations for two-phase flows with surface tensionholds for a material volume whether or not there is a singular surfae within it [TT60℄.However, the rate of aumulation in V0 is the sum of the rate of aumulation inthe volumes Vl and Vgddt ∫
V0

ϕ dV =
ddt ∫

Vl

ϕ dV +
ddt ∫

Vg

ϕ dV .The volumes Vl and Vg are not material, so we need the Reynolds transport theoremfor an arbitrary volume with a singular interfae. Substituting (3.10) for the lefthand side of (4.1) gives us the generi balane equation for a material volume witha singular interfae
∫ (

∂ϕ

∂t
+ ∇ · [ϕ v]

) dV +

∫

Ã

[[
ϕ (v − u)

]]
· n dÃ = −

∮
ζ · dA+

∫
π dV .(4.5)The double braket denotes the di�erene between the two values at the surfae asdisussed in setion 3.2.

Generic jump conditionTo derive a di�erential form of (4.5) a
PSfrag replaements n
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Figure 4.1: Volume in form of a box
speial volume in a form of a small boxis onsidered, whih is moving togetherwith the interfae as shown in �gure 4.1.Two faes of the box are parallel to theinterfae. By taking the limit of theshorter side faes Ah → 0 the volumeintegrals vanish and Al and Ag mergewith Ã. For the volume integrals to van-ish their integrands must be limited (but not neessary ontinuously) [TT60℄. Thenthe normal vetors of the two outer faes of the box transform into either n or −nand only the surfae integral over the interfae Ã remains

∫

Ã

([[
ϕ (v − u)

]]
· n+

[
ζ l · (−n) − ζg · n

]) dÃ = 0 .The integral must hold for any arbitrary surfae so that the integrand must be zero
[[
ϕ [v − u] · n

]]
+
[[
ζ ·n

]]
= 0 . (4.6)



4.3 Balance equation and jump condition including surface tension 37Equation (4.6) is alled generi jump ondition and desribes the phase hange atthe interfae and the ondutive �ux aross the interfae [Sla90℄.With this jump ondition we an desribe phase hange and ondutive �ux arossthe surfae, but it does not allow to model intrinsi surfae properties like surfaetension, ompare hapter 3. In analogy to the external surfaes an interfae ofin�nitesimal thikness was assumed (we took the limit of Ah → 0).
4.3 Balance equation and jump condition including surface

tensionBased on the assumption that a �uid interfae is atually a three-dimensional regionwith a thikness of maybe one or more moleule diameter, the e�et of the inter-fae on the adjoining bulk �uids is best represented by assuming a two-dimensionalinterfae onsisting of surfae exess mass. Surfae mass is assumed to have simi-lar properties as three-dimensional mass, suh as surfae density, surfae visosity,surfae tension and so on [EBW91℄. Then, analog to the generi balane equationof three dimensional ontinua, a generi balane equation for the interfae an begiven. By adding the so derived interfae balane equation to the generi balaneequation for a material volume with a singular interfae we �nally get a generibalane equation inluding surfae tension.
Generic balance equation for a surfaceThe interfae between ondensate and vapor is not material, the �uid veloity di�ersfrom the veloity of the surfae. Nevertheless a balane equation similar to thegeneri balane equation (4.1) for a material volume an ge given, as explained insetion 3.3. For a quantity S0 ontinuously de�ned over a surfae Ã we write S0 =
∫

Ã
ϕ

S
dÃ. Then a generi balane equation for S0 states that the rate of aumulationof surfae quantity in the surfae Ã is given by ondutive �ux of surfae quantityaross the boundary urve of the surfae plus supply of surfae quantity at thesurfaeddt ∫

Ã

ϕ
S
dÃ = −

∮
ζ

S
· dC̃ +

∫
π

S
dÃ , (4.7)where ζ

S
is the surfae �ux density and π

S
is the surfae supply density [Sla90℄.The urve element vetor dC̃ = m dC̃ is direted outwards normal on the boundary



38 Chapter 4 Generic model equations for two-phase flows with surface tensionurve, see �gure 3.3 in setion 3.4. With the Reynolds theorem for a surfae (3.28)equation (4.7) beomes
∫ (

∂ϕ
S

∂t
+ ∇

S
· [ϕ

S
v

S
] − u · ∇

S
ϕ

S

) dÃ = −
∮
ζ

S
· dC̃ +

∫
π

S
dÃ . (4.8)

Generic differential balance equation for a surfaceTo get a di�erential version of the generi surfae balane equation (4.8) we trans-form the urve integral on the right hand side in an area integral using the surfaedivergene theorem (3.31)
∫ (

∂ϕ
S

∂t
+ ∇

S
· [ϕ

S
v

S
] − u · ∇

S
ϕ

S
+
[
∇

S
· ζ

S
+ 2H ζ

S
· n
]
− π

S

) dÃ = 0 ,where H is the mean urvature. This equation must hold for any arbitrary area sothat we get the di�erential surfae balane equation
∂ϕ

S

∂t
+ ∇

S
· [ϕ

S
v

S
] − u · ∇

S
ϕ

S
= −

[
∇

S
· ζ

S
+ 2H ζ

S
· n
]
+ π

S
. (4.9)

Generic balance equation including phase change and surface tensionNow we are able to state a generi balane equation that inludes phase hane andsurfae tension. For that we add the generi surfae balane equation (4.8) to thegeneri balane equation for a material volume with a singular interfae (4.5) andget
∫ (

∂ϕ

∂t
+ ∇ · [ϕ v]

) dV +

∫

Ã

[[
ϕ (v − u)

]]
· n dÃ

+

∫ (
∂ϕ

S

∂t
+ ∇

S
· [ϕ

S
v

S
] − u · ∇

S
ϕ

S

) dÃ
= −

∮
ζ · dA−

∮
ζ

S
· dC̃ +

∫
π dV +

∫
π

S
dÃ . (4.10)

Generic jump condition including phase change and surface tensionFrom (4.10) we derive a generi jump ondition in the same way as disussed inthe last setion. For that we transform the urve integral in an area integral using



4.3 Balance equation and jump condition including surface tension 39the surfae divergene theorem (3.31) and onsider a small volume enlosing theinterfae that we let shrink into a surfae. By this we get
[[
ϕ [v − u]·n

]]
+
[[
ζ·n

]]
= −∂ϕ

S

∂t
−∇

S
·[ϕ

S
v

S
]+u·∇

S
ϕ

S
−
[
∇

S
· ζ

S
+ 2H ζ

S
·n
]
+π

S
.(4.11)If there is no material aumulation in the surfae, the surfae density variables ϕ

Sand π
S
are zero and the surfae is alled a lean surfae and from the right handside only the (underlined) terms remain [EBW91℄. For the ondensation problemmaterial aumulation in the surfae an be negleted. So we �nally get

[[
ϕ [v − u] · n

]]
+
[[
ζ ·n

]]
= −∇S · ζ

S
− 2H n · ζ

S
. (4.12)This jump ondition overs phase hange, ondutive �ux aross the interfae, andsurfae tension. In setion 5.2 we apply (4.12) on mass, momentum and energyand derive jump onditions at the moving interfae between ondensate and thevapor. For the jump ondition we made no additional assumption than to assume aontinuous surfae, in partiular we do not allow the interfae to break o�.



Chapter

5
Model equations for condensation in a tube

with small diameter

In this hapter we obtain the balane equations for mass, momentum and energyfor the bulk �ow of the both phases and for the interfae between them from thegeneri balane equations derived in the last hapter. Further we disuss appropriatesimpli�ations for the ondensate problem. The last setion we summarize the upto then dedued system of partial di�erential equations plus the jump onditionsand disuss the boundary onditions. The referenes for the equations used in thishapter are given in the last hapter unless otherwise noted.
5.1 Mass, momentum and energy equation

MassThe mass balane equation is given by (4.4) with ϕ = ρ and ζ = π = 0

∂ρ

∂t
+ ∇ · (ρ v) = 0 , (5.1)whih gives for the ondensate �lm with the assumption of onstant density

∇ · v = 0 . (5.2)Also the vapor an be treated as an inompressible �uid.11If the Mah number of a �uid is small ompared to unity the �uid an be onsidered as aninompressible �uid [BSL60℄.



5.1 Mass, momentum and energy equation 41For momentum and energy another balane equation whih makes use of (5.1) ismore preferable. For that we substitute ϕ in (4.4) by ϕ = ρψ, apply the produtrule on both terms on the left side and reieve
∂(ρ ψ)

∂t
+ ∇ · [(ρ ψ) v] = ψ

[
∂ρ

∂t
+ ∇ · (ρ v)

]

︸ ︷︷ ︸
=0

+ρ

[
∂ψ

∂t
+ v · ∇ψ

]
.The �rst braket is zero aording to (5.1). The seond braket is the materialderivative of ψ as derived in setion 3.1.DψDt =

∂ψ

∂t
+ v · ∇ψ .Thus we get the generi balane equation (4.4) in an equivalent form [Dee98℄

ρ
DψDt = −∇ · ζ + π , (5.3)

MomentumThe momentum equation we get by substituting in (5.3) ψ = v, ζ = −S and
π = ρ g (note that here ψ and π are vetors and ζ is a seond rank tensor)

ρ

[
∂v

∂t
+ v · ∇v

]
= ∇ · S + ρ g . (5.4)The stress tensor S = −p I + T an be divided into a ontribution of the �uid atrest and the �uid in motion [BB75℄.2 g is the vetor of body fore, in our ase thegravity vetor. The ondensate and the vapor are Newtonian �uids, so the visousstress tensor for both phases is given by T = µ

[
∇v + (∇v)T

]
+ µ′

3
(∇ · v), with vis-osity µ and modi�ed bulk visosity µ′ [BSL60℄. Together with the inompressibilityondition the momentum equation

ρ

[
∂v

∂t
+ v · ∇v

]
= −∇p+ µ∇2v + ρ gforms then the well known Navier-Stokes equations.2If we had derived the momentum equation from (4.4), the divergene term in the onvetiveterm would be nonlinear. The advantage of deriving the momentum equation from (5.3) is thatthe divergene term is then linear, that makes the numerial disretization easier.



42 Chapter 5 Model equations for condensation in a tube with small diameter

EnergyLastly, we onsider the heat transfer. Aording to the �rst law of thermodynamisthe inrease of internal and kineti energy in a material ontrol volume is given byheat supply plus power due to work ating on the �uid. The di�erential energyequation is
ρ
DDt(e+

v2

2
) = (∇ · v · S + ρv · g) + (−∇ · q + ρ z) , (5.5)where e is the internal energy per unit mass, v ·S is the power due to surfae foresper unit area, ρv · g is the gravity power per unit volume, q the heat �ux per unitarea and z the heat prodution per unit volume, whih is zero in our ase [BSL60℄.Here ψ = e+ v2

2
, ζ = −v · S + q and π = ρ (v · g+ z). To get the energy in a moreommonly used form, we subtrat the mehanial energy equation from (5.5). Themehanial energy equation is formed by the salar produt of momentum equationand veloity [Dee98℄. By this we get3

ρ

[
∂e

∂t
+ v · ∇e

]
= −∇ · q + S : ∇v .The heating e�et of frition an be negleted for the ondensation problem, so thatthe dissipative term T : ∇v is zero. Moreover the whole term vanishes S : ∇v =

T : ∇v − p (I : ∇v) = −p (∇ · v) = 0.Constitutive equations for internal energy and heat �ux omplete our equations.For small temperature di�erenes internal energy an be desribed by a linear fun-tion e = c (T − T0) + e(T0), where c is the spei� heat apaity. The heat �ux isgiven by Fourier's law q = −λ∇T , where λ is the heat ondutivity, Hutter [Hut03℄.By this we �nally get the energy equation for the ondensate and the vapor
ρ c

[
∂T

∂t
+ v · ∇T

]
= λ∇2T .The material properties visosity, heat apaity and heat ondutivity are in generalfuntions of density, pressure and temperature, but for inompressible �uids onlytemperature dependeny need to be onsidered. The temperature interval betweenwall temperature and vapor temperature is small (Twall − Tvapor < 5K), so that wean assume the material properties to be onstant.3Note that we used hereby the identity ∇ · (v · S) = v · (∇ · S) + S : ∇v



5.2 Mass, momentum and energy jump conditions 43By this we derived three partial di�erential equations for the three unknowns velo-ity, pressure and temperature. For a solution of this system of partial di�erentialequations we need boundary and initial onditions4 and espeially we need to knowappropriate balane equations at the interfae between the ondensate and the vaporphase.
5.2 Mass, momentum and energy jump conditions

MassWe start with (4.12) and set the bulk variables ϕ = ρ, ζ = 0 and the surfae variable
ζ

S
= 0 to get the mass jump ondition at the surfae between ondensate and vapor
[[
ρ [v − u] · n

]]
= 0 . (5.6)Equation (5.6) states that the same amount of mass �ux that enters the surfae asvapor phase leaves the surfae as ondensate phase ṁl = ṁg (so we an omit theindex).

MomentumTo get the momentum jump ondition at the surfae between ondensate and vaporwe set in (4.12) ϕ = ρv, ζ = −S and ζ
S

= −SS. Analog to the stress tensor thesurfae stress tensor an be divided into two omponents SS = σIS + T S, where
IS is the surfae identity tensor (2.9). Assuming a lean surfae T S = 0 from thesurfae stress tensor simply the interfaial tension remains SS = σ Is, where σ is thesurfae tension oe�ient, see setion 4.3. The surfae tension an be understood asthe ounterpart of the pressure in the bulk �uid [EBW91℄. With this substitutionswe get for the momentum jump ondition

[[
ρv [v − u] · n

]]
−
[[
S · n

]]
= ∇S σ + 2H σn . (5.7)In the ondensation problem we neglet temperature dependeny of the liquid-vaporsurfae tension oe�ient (Marangony e�ets) but assume σ to be onstant withinthe surfae.4We need as many boundary onditions for eah oordinate of an unknown as the equation hasderivatives of that unknown.



44 Chapter 5 Model equations for condensation in a tube with small diameterWe split the vetor equation (5.7) into three salar equations by multiplying it �rstwith the normal vetor and then with the two tangential vetors. The tangentialequations are equal, so we skip the third equation and use the symbol t to denotethe tangential vetors. Further we make use of (5.6) and the assumption of no-slipat the surfae [[ v · t
]]

= 0 and get
[[
ṁv · n

]]
+
[[
p
]]
−
[[
n · T · n

]]
= 2H σ , (5.8)

[[
t · T · n

]]
= 0 .

EnergyThe energy jump ondition is with ϕ = ρ (e + v2

2
), ζ = −v · S + q and with

ζ
S

= −σ Is · u = −σ u (with the same assumptions as for the momentum jumpondition) given by
[[
ρ (e+

v2

2
) [v − u] ·n

]]
−
[[
v · S · n

]]
+
[[
q · n

]]
=∇S ·

(
σ u
)

+ 2H σn · u. (5.9)Instead of a balane equation for the internal energy we need a formulation with theenthalpy h = e+ p
ρ
, beause enthalpy is a measurable quantity, whereas the internalenergy is not easy to measure. To get this equation we �nd it onvenient to splitthe vetors on the left side of (5.9) into their normal and tangential omponentsaording to a · b = (a ·n)(b ·n) + (a · t)(b · t). Applying hain rule on the surfaegradient term gives ∇S ·

(
σ u
)

= σ∇S · u+ u · ∇S σ. By this we get
[[
ṁ

(
u+

(v · n)2

2
+

(v · t)2

2

) ]]
−
[[
(v ·n) (n · S · n)+ (v · t) (t · S · n)

]]
+
[[
q ·n

]]

= σ∇S · u+ u · ∇S σ + 2H σn · u , (5.10)We then subtrat the salar produt of momentum jump ondition (5.7) and surfaeveloity
[[
ṁ (u · n)(v · n)

]]
−
[[
(u ·n) (n · S · n)

]]
= u · [∇S σ + 2H σ u · n] ,from the energy jump ondition, of whih after splitting the vetors on the left sidein normal and tangential omponents only the ontribution in normal diretion re-mains, beause the surfae veloity has no tangential omponent [Sh70℄. Together



5.3 Governing equations 45with the no-slip ondition, the tangential momentum jump ondition and after re-arranging the pressure term we get
[[
ṁ

(
u+

p

ρ
+

(v · n)2

2
− (u ·n)(v ·n)

) ]]
−
[[
[v − u] · n (n · T · n)

]]
+
[[
q · n

]]

= σ∇S · u.We expand the kineti energy term
[[ (v · n)2

2

]]
=

[[ (v · n− u · n)2

2
+ (v · n)(u ·n) − (u · n)2

2

]]and use that the surfae veloity jump is zero. Then the energy jump ondition ata surfae between two �uids beomes
[[
ṁ h

]]
+
[[
ṁ

([v − u] · n)2

2

]]
−
[[
[v − u] · n (n · T · n)

]]
+
[[
q ·n

]]
=σ∇S · u . (5.11)Similar as for the energy equation we assume that kineti energy and visous energyan be negleted in the energy jump ondition. Certainly the surfae gradient of thesurfae veloity is small. by this the energy jump ondition �nally beomes

ṁ∆h +
[[
q · n

]]
= 0 , (5.12)where ∆h =

[[
h
]] is the latent heat of vaporization.

5.3 Governing equationsWe �nish this hapter with a summary of the derived system of equations for theondensation problem. The ondensate (index l) and the vapor (index g) bulk phaseare desribed by the ontinuity equation for an inompressible �uid, the momentumequation and the energy equation (For lari�ation the assumptions involved areshown again on the right):



46 Chapter 5 Model equations for condensation in a tube with small diameterBalane equations for ondensate and gas phase (i = l, g)Continuity equation onst. density
∇ · vi = 0Momentum equation Newtonian �uidonst. visosity
ρi

(
∂vi

∂t
+ vi · ∇vi

)inertia = − ∇pipressure + µi ∇2vifrition + ρi ggravityEnergy equation no dissipationonst. heat ondutivityonst. thermal apaity
ρi ci

(
∂Ti

∂t
+ vi · ∇Ti

)transient + onvetion = λi ∇2Tiheat ondutionAt the interfae between ondensate and vapor we have jump onditions for mass,momentum and energy (from now on we leave out the tilde over the normal andtangential vetors):5Jump onditions at the interfaeMass
[[
ρ [v − u] · n

]]
=

[[
ṁ
]]mass �uxMomentum onst. surfae tension oe�ientno slip between both phases

[[
ṁv · n

]]momentumdue toondensation +
[[
p
]]surfae pressure −

[[
n · T · n

]]
= 2H σsurfae tension

[[
t · T · n

]]shear stress = 0Energy no kineti energyno dissipation
ṁ∆hondensation =

[[
q · n

]]heat �uxwith T = µ
[
∇v + (∇v)T

] and q = −λ∇T .5with [[ϕ
]]
:= ϕg − ϕl.



5.3 Governing equations 47From the �ve jump onditions we need one equation to alulate the mass �ux, sothat four equations remain to alulate the boundary onditions for three veloityomponents, pressure and temperature. We need one more equation. As the missingequation we take the ondition of thermodynami equilibrium, aording to whihthe ondensate and vapor temperatures are equal at the moving surfae
Tondensate = Tvapor . (5.13)Theoretially we an use either the mass jump ondition or the energy jump ondi-tion to alulate the mass �ux.6 From the remaining equations we an use either themass or the normal momentum jump ondition to alulate one veloity boundaryondition, depending on whih equation we use to ompute the mass �ux. Whihone of both equations is more suitable we disuss in part III, where we presentthe numerial algorithms for the omputational solution of the ondensation prob-lem. The seond and third veloity boundary ondition we take from the tangentialmomentum jump onditions.

6In hapter 6 we derive some more simpli�ations, one of whih is that we an drop the termwith the mass �ux in the normal momentum jump ondition, so that this equation will not beavailable to alulate the mass �ux.



Part II
Analysis



Chapter

6
Model equations under the assumption of

rotational symmetry

Experimental results show that for ondensation in an inlined tube the �ow regimesare almost ylindrial [Fie03℄. Based on this we begin our analysis of the model equa-tions by assuming a rotational �lm as depited in �gure 6.1. First the equations forthe bulk �uids of the ondensate problem and the jump onditions for the interfaebetween ondensate and vapor de�ned in part I are evaluated for this ase. Thereferenes for this equations are given in part I unless otherwise noted.
6.1 Bulk flow equations and outer boundary conditionsIf the tube is in vertial position as shown in �g-PSfrag replaements r

z

R

D

n

t

Figure 6.1: Vertial tube

ure 6.1, then gravity is ating in the diretion ofthe tube axis. A laminar �ow an be assumed.As veloity inreases surfae beomes wavy withat �rst two-dimensional surfae waves [ANP94℄[YNN96℄. For small surfae waves the �ow is stilllaminar [BS98℄. Then the ondensation problemhas rotational symmetry, so that all derivativesof veloity, temperature and pressure with re-spet to the rotation angle are zero. The velo-ity omponent in the plane of rotation is zero.Further vapor veloity is assumed to be small,so that shear stress exerted by the vapor on the ondensate �lm an be negleted.



50 Chapter 6 Model equations under the assumption of rotational symmetryThe vapor temperature is onstant, so that heat �ux in the vapor phase is zero. Thepressure in the vapor phase is determined mainly by the hydrostati pressure [Fie03℄.Under this onditions the problem redue to a one-�uid problem and only the bulk�ow equations for the ondensate phase have to be solved. The balane equationsfor the ondensate �ow, given in setion 5.3, are in ylindrial oordinates r, ϑ, z andin the ase of rotational symmetry readsthe ontinuity equation:
1

r

∂

∂r
(r vr) +

∂vz

∂z
= 0 , (6.1)the momentum equations:

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z

)
= −∂p

∂r
+ µ

(
∂

∂r

[
1

r

∂

∂r
(r vr)

]
+

∂
2vr

∂z2

)
, (6.2)

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z

)
= −∂p

∂z
+ µ

(
1

r

∂

∂r

[
r
∂vz

∂r

]
+

∂
2vz

∂z2

)
+ ρ gthe energy equation:

ρ c

(
∂T

∂t
+ vr

∂T

∂r
+ vz

∂T

∂z

)
= λ

(
1

r

∂

∂r

[
r

∂T

∂r

]
+

∂
2T

∂z2

)
. (6.3)[BSL60℄. From the balane equations of the vapor phase only the hydrostatipressure terms in the seond momentum equation remain

∂pg

∂z
= ρg g . (6.4)

Outer boundary conditionsFor the ondensation problem in a vertial tube the outer boundary onditions ofthe momentum equations area given paraboli veloity pro�le at the tube inlet:
vz

∣∣
r,z=0

= U(r) , vr

∣∣
r,z=0

= 0 , (6.5)zero veloity at the tube wall:
vr

∣∣
r=R,z

= 0 , vz

∣∣
r=R,z

= 0 , (6.6)



6.1 Bulk flow equations and outer boundary conditions 51the out�ow ondition at the outlet:
∂vr

∂z

∣∣∣∣
r,z=L

= 0 , vz

∣∣
r,z=L

= 0 , (6.7)where R is the tube diameter and L is the tube length. The outer boundary onditionof the energy equation is thatthe temperature at the tube wall is known:
T
∣∣
r=R,z

= Tw , (6.8)Finally the temperature at the interfae is given by the vapor temperature:
T
∣∣
r=R−D,z

= Tv , (6.9)the temperature derivative is zero at the tube inlet and at the tube outlet:
∂T

∂z

∣∣∣∣
r,z=0

= 0 ,
∂T

∂z

∣∣∣∣
r,z=L

= 0 , (6.10)where D = R − h is the �lm thikness (ompare �gure 6.1).The question of the orret pressure boundary onditions is disussed later after theequations are simpli�ed, ompare setion 7.3.
Cylindrical basisThe equations (6.1) � (6.10) are given in ylindrial oordinates and are relatedto a ylindrial oordinate system. A ylindrial oordinate system is orthogonaland the orresponding ovariant and ontravariant ylindrial base vetors are selfreiproal (they only di�er in sale fators), so that onveniently unit vetors areused, see setion 2.1. The balane equations above are related to the unit basevetors

er =




cosϑ

sinϑ

0


 , eϑ =




− sin ϑ

cosϑ

0


 , ez =




0

0

1


 . (6.11)The veloity vetor is given in this unit vetors by v = vr er + vϑ eϑ + vz ez, withEinstein summation onvention we write shortly v = vi ei. Equations (6.1) � (6.3)for the ondensate �ow in a vertial tube are found in [BSL60℄.



52 Chapter 6 Model equations under the assumption of rotational symmetryThe proedure of deriving them from the symboli equations given in the last setionof part I by omputing the derivatives of the base vetors (whih are not onstantbut funtions of r, ϑ, z) and the metri tensor and �nally relating the variables tothe unit base vetors (6.11) is here already done. However, for the interfae jumponditions there exist no suh referene.
6.2 Geometrical properties and velocity of the interfaceTo derive the interfae balane equations in ylindrial oordinates we need a para-metrization of the surfae, so that the normal and tangential vetors, the surfaeveloity and the mean urvature an be omputed (ompare hapter 2).The position vetor of a surfae with rotational symmetry is given in a artesianoordinate system as

x(ϑ, z, t) = h(z, t) cosϑex + h(z, t) sin ϑey + z ez ,where radius h is a funtion of time and tube length and the surfae variables are zand ϑ. Related to a ylindrial oordinate system the position vetor beomes
x(ϑ, z, t) = h(z, t) er + 0 eϑ + z ez , (6.12)[Dee98℄.

Tangential and normal vectorsThe tangential vetors are obtained by (2.3) as
tϑ =

∂x

∂ϑ
= h

∂er

∂ϑ
+ 0 eϑ + 0 ez =




0

h

0


 , tz =

∂x

∂z
=

∂h

∂z
er + 0 eϑ + 1 ez =




∂h
∂z

0

1


 ,and the normal vetor is obtained by (2.5) as

n− =
tϑ × tz
|tϑ × tz|

=




1

0

−∂h
∂z




1√
1 +

(
∂h
∂z

)2 .Note that this normal vetor points inwards on the ondensate �lm. The normalvetor that points outwards on the ondensate �lm is given by
n = −n− .
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Mean curvatureThe mean urvature we de�ned in (2.12) as
H = −1

2
∇s · n = −1

2

(
tz

∂

∂z
+ tϑ

∂

∂ϑ

)
·nand alternatively by (2.17) using the �rst and seond fundamental form. Beausethe basis is orthogonal, here it is more onvenient to ompute H by means of (2.17).With the �rst fundamental form (2.4)

I =

[
tz · tz tz · tϑ
tϑ · tz tϑ · tϑ

]
=

[
1 +

(
∂h
∂z

)2
0

0 h2

]

and the seond fundamental form (2.15)
II =

[
tzz ·n tzϑ · n
tϑz · n tϑϑ · n

]
=



−

∂
2h

∂z2q
1+(∂h

∂z )
2 0

0 hq
1+(∂h

∂z )
2


the shape operator (2.16) for a rotational surfae beomes

L=

[
tzz · n tzϑ ·n
tϑz · n tϑϑ ·n

]
1

det I

[
tϑ · tϑ −tz · tϑ
−tϑ · tz tz · tz

]
=



−

∂
2h

∂z2�
1+(∂h

∂z )
2
�3/2 0

0 + 1

h
q

1+(∂h
∂z )

2


 .The shape operator is already in diagonal form, so that the diagonal entries are theprinipal urvatures κ1, κ2. The mean urvature of the liquid-vapor surfae is thenaording to (2.17) given by

H =
1

2
traeL =

1

2


−

∂2h
∂z2(

1 +
(

∂h
∂z

)2)3/2
+

1

h

√
1 +

(
∂h
∂z

)2


 =

1

2
(κ1 + κ2) .The �rst term is zero if the surfae is �at. It desribes the urvature due to surfaewaves in the r, z plane. The seond term desribes the urvature due to the tuberadius.
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Surface velocityThe surfae veloity is aording to (3.21) given by the derivative of the positionvetor (6.12) with respet to time
u =

∂x

∂t

∣∣∣∣
ϑ,z

=




∂h
∂t

0

0


 .

6.3 Jump conditionsAfter we disussed the geometrial properties of the interfae between the ondensateand the vapor phase, now we an ompute the jump onditions.
Mass fluxThe mass �ux (5.6) aross the surfae of rotational symmetry is obtained in ylin-drial oordinates as

ṁ = ρ [v − u] · n (6.13)
= ρ [(vi − ui) ei] · (nj ej) = ρ (vi − ui) nj ei · ej︸ ︷︷ ︸

δij

= ρ (vi − ui) ni

=
ρ√

1 +
(

∂h
∂z

)2

(
−vr +

∂h

∂t
+ vz

∂h

∂z

)
,where δij is the Kroneker delta.

Momentum jump conditionsIn the momentum jump onditions the stress tensor appear. In ylindrial oordi-nates and under the assumption of rotational symmetry the stress tensor is
T = 2µ




1
2

∂vr

∂r
0
(

∂vr

∂z
+ ∂vz

∂r

)

0 0 0
(

∂vr

∂z
+ ∂vz

∂r

)
0 1

2
∂vz

∂z


 ,[BSL60℄. From the momentum jump ondition in normal diretion (5.8), with theassumption of small vapor veloity, only the veloity terms of the ondensate remain

ṁv · n+ (p− pg) − n · T ·n = −2H σ ,



6.3 Jump conditions 55We ompute the �rst and the third terms separately. With
ṁv · n = ṁ (vi ei) · (nj ej) = ṁ vi ni ei · ej︸ ︷︷ ︸

δij

= ṁ vi niand
n · T · n = (ni ei) · (Tkl ek el) · (nj ej) = ni Tkl nj ei · ek︸ ︷︷ ︸

δik

el · ej︸ ︷︷ ︸
δlj

= ni Tij njthe momentum jump ondition in normal diretion is given as
ρ

1 +
(

∂h
∂z

)2
(
−vr +

∂h

∂t
+ vz

∂h

∂z

)(
−vr + vz

∂h

∂z

)
+ p− pg

− µ

1 +
(

∂h
∂z

)2

(
∂vr

∂r
− 4

[
∂vr

∂z
+

∂vz

∂r

]
∂h

∂z
+

∂vz

∂z

[
∂h

∂z

]2
)

= −σ


−

∂2h
∂z2

(1 +
(

∂h
∂z

)2
)3/2

+
1

h

√
1 +

(
∂h
∂z

)2


 . (6.14)The momentum jump ondition in tangential diretion (5.8) beomes

t · T · n = (ti ei) · (Tkl ek el) · (nj ej) = ti Tkl nj ei · ek︸ ︷︷ ︸
δik

el · ej︸ ︷︷ ︸
δlj

= ti Tij nj

=
µ√

1 +
(

∂h
∂z

)2

(
−∂vr

∂r

∂h

∂z
− 2

[
∂vr

∂z
+

∂vz

∂r

][
1 −

(
∂r

∂z

)2
]

+
∂vz

∂z

∂h

∂z

)
= 0 .(6.15)

Energy jump conditionFinally, we onsider the energy jump ondition (5.12) at the interfae between on-densate and vapor
ṁ∆h = −q · n .With q = −λ [∂T

∂r
, 0, ∂T

∂z
]T we get

ρ∆h√
1 +

(
∂h
∂z

)2

(
−vr +

∂h

∂t
+ vz

∂h

∂z

)
=− λ√

1 +
(

∂h
∂z

)2

(
−∂T

∂r
+

∂T

∂z

∂h

∂z

)
. (6.16)Equations (6.1) � (6.16) form the system of model equations for the ondensationproblem in the ase of a vertial position of the tube where rotational symmetry isassumed. In the next hapter we simplify this model equations further by means ofa dimensional analysis.



Chapter

7
Dimensional analysis of the model

equations/rotational symmetry

In this hapter the ondensation equations for the vertial position of the tubederived in hapter 6 are analyzed by a generalized dimensional analysis.For the vertial tube position the average thikness D of the ondensate �lm is muhsmaller than the length L of the ondensate �lm, ompare �gure 6.1. With lassialdimensional analysis the variables of a problem are redued to a fewer amount ofnondimensional variables, but all spatial variables are saled by the same lengthsale [Bri31℄. Generalized dimensional analysis is based on di�erent length salesfor eah spatial variable and therefore allows an analysis in terms of the slenderness
ε = D

L
of the balane region. We get equations of boundary layer type for theondensate phase and omparably great simpli�ations are ahieved for the jumponditions. In the last setion the derived equations are evaluated for water and forR134a.Generalized dimensional analysis is not very well doumented in literature, so thatwe elaborate more on this method here.The bene�t of a generalized dimensional analysis is twofold. It gives the mainrelevant terms of the model equations, but also redues the number of variables byombining them to a fewer number of variables. This does not hange the equationsbesides a saling and suh a transformation is alled symmetry transformation.The �rst setion of this hapter is mainly based on the leture notes of [NS01℄. Fur-ther on [Gör75℄ [Spu92℄ [BK89℄, and [Bar79℄ [Bar96℄. From this authors only [NS01℄desribe generalized dimensional analysis. [Gör75℄ and [Spu93℄ present mainly di-mensional analysis for hydrodynamial problems. [Bar96℄ also starts with dimen-sional analysis but eventually di�ers by using symmetry transformations to solve



7.1 Dimensional analysis and generalized dimensional analysis 57problems whih ontain a small dimensionless parameter suh as ε. [BK89℄ presentthe theory of solving di�erential equations using symmetry methods in a more math-ematial rigor.
7.1 Dimensional analysis and generalized dimensional analysisIn this setion some terminology is given. Generalized dimensional analysis is om-pared to dimensional analysis.
Units and DimensionsLength, mass and time are alled dimensions. Meter, kilogram, seond (MKS) arealled units and entimeter, gram, seond (.g.s) are other units. Length, massand time (LTM) are fundamental dimensions of the MKS unit system and the .g.sunit system [Gör75℄. They have the same physial properties but di�er by salefators. Another set of fundamental dimensions are length, fore and time (LFT). Anequation in whih the units balane on both sides of the equal sign is alled oherent.An equation in whih the dimensions balane on both sides of the equal sign is alledhomogeneous. The equation 3m + 3 m = 3m + 3 × 0.1m = 3.3m is homogeneousbut not oherent. It is nevertheless a meaningful physial equation. The usage of twodi�erent unit systems in one equation makes it neessary to onvert all units to thesame system of units by saling them appropriately before alulating the result, andis therefore laborious, but permissible. As afore mentioned balane equations aretensor equations and have to be invariant under a hange of a oordinate system.Similarly physially meaningful equations have to be invariant under a hange ofsystem of units.1 Yet, a dimensionless equation is invariant under a hange of unitsystem, the values of the dimensionless quantities do not hange.
Buckingham Π-TheoremAording to the Bukingham Π-Theorem every physially meaningful equation with
n variables

f(a1, a2, . . . , an) = 0 ,1It an be understood from the example that dimensional homogeneity is a neessary but notsu�ient ondition for an equation being invariant under a hange of system of units.



58 Chapter 7 Dimensional analysis of the model equations/rotational symmetrywhere the n variables are expressed in terms of r fundamental dimensions, an berewritten as an equation of n− r = k dimensionless variables onstruted from theoriginal variables [Spu93℄.Here we denote the value of a variable by a hat and the dimension by a tilde:
ai = âi ãi.2 Eah tilded variable is a power monomial funtion of fundamentaldimensions. For instane the dimension of the streamwise veloity is in the LMTsystem ṽz = LT−1. We denote the fundamental dimensions by b̃i, that is b̃1 = L,
b̃2 = M , b̃3 = T . The dimensions of the variables ai are in terms of power monomialsof fundamental dimensions

ã1 = b̃b111 b̃b212 . . . b̃br1
r ,

ã2 = b̃b121 b̃b222 . . . b̃br2
r ,... (7.1)

ãn = b̃b1n
1 b̃b2n

2 . . . b̃brn
r .The vetor of the powers bi = [b1i, b2i, . . . , bri]

T is alled dimension vetor of ai [BK89℄.For instane the dimension vetor of the streamwise veloity we get from ṽz =

L1M0 T−1 as bvz = [1, 0,−1]T . The dimension vetors form the dimension matrixof the problem
B =




b11 b12 . . . b1n

b21 b22 . . . b2n... ... ...
br1 br2 . . . brn



.

The rank of the dimension matrix r = rankB is the number of the fundamentaldimensions. To onstrut the n−r = k nondimensional variables we make an ansatzin form of power monomials of the dimensions of the original variables
πj = ã

x1j

1 ã
x2j

2 . . . ãxnj
n , j = 1, . . . , k , (7.2)where the dimensions are substituted with (7.1) by their power monomials of fun-damental dimensions

πj =
(
b̃b111 b̃b212 . . . b̃br1

r

)x1i
(
b̃b121 b̃b222 . . . b̃br2

r

)x2i

. . .
(
b̃b1n
1 b̃b2n

2 . . . b̃brn
r

)xni

,2Aording to DIN 1313 the value of a variable is set in urly brakets and the dimensionin square brakets a = {a} [a]. However, for a dimensional analysis this notation seems a bitumbersome.



7.1 Dimensional analysis and generalized dimensional analysis 59[NS01℄. By sorting the right hand side in terms of fundamental dimensions
πj = b̃

b11 x1j+b12 x2j+···+b1n xnj

1 b̃
b21 x1j+b22 x2j+···+b2n xnj

2 . . . b̃br1 x1j+br2 x2j+···+brn xnj
r ,we see that the exponents of the fundamental dimensions have to be zero beause πjhas no dimension. The equations de�ned by this form a linear equation system

Bxj = 0 ,with n − r = k linearly independent solutions. The nondimensional variables arethus onstruted and f an be written in dimensionless form
F (π1, π2, . . . , πk) = 0 . (7.3)With dimensional analysis a given problem an be analyzed without knowing themodel equations of the problem expliitly. As a result the relation (7.3) of nondimen-sional ombinations of the original dependent and independent variables is obtained.However, the deision what are the relevant variables of the problem and whih unitsystem is appropriate is sometimes not trivial, see [Gör75℄ [Spu93℄ and also [Bar96℄.Note that in dimensional analysis the nondimensional variables are onstruted fromthe oherent dimension equations (7.1) of the problem variables. By this all dimen-sions have the same fundamental dimensions, for instane the spatial dimensionsare r̃ = z̃ = L.

Generalized dimensional analysisFrom the last setion we know that in dimensional analysis only one fundamentaldimension is assigned for all spatial dimensions. The generalized dimensional anal-ysis allows di�erent fundamental dimensions for eah dimension, so that di�erentlengths for eah spatial dimension are permissible (i.e. r̃ = Lx, z̃ = Ly). It an beapplied to the model equations, e.g. the ordinary or partial di�erential equations,inluding the neessary initial and boundary onditions [NS01℄.For a generalized dimensional analysis the variables in the di�erential equations aresubstituted by their produt of value and dimension. Beause every equation mustbe of dimensional homogeneity this result in equations for the dimensions only. Forexample, in the de�nition of the veloity v = ∂x
∂t

we substitute v = ṽ v̂, x = x̃ x̂ and
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t = t̃ t̂. The derivatives are not arried out over the dimensions. With the onditionof dimensional homogeneity we get
ṽ v̂ =

∂(x̃ x̂)

∂(t̃ t̂)
=
x̃

t̃

∂x̂

∂t̂
, whih gives ṽ =

x̃

t̃
.If the dimension equation is written as: x̃−1 t̃ ṽ = 1, it is alled normalized dimensionequation.Thus, using generalized dimensional analysis we derive the oherent equations forthe onstrution of the nondimensional variables from the di�erential equations andtheir boundary onditions. Depending on this equations eventually more than onlyone length sale appears in the dimensionless variables of the problem.A system of i physially meaningful ordinary or partial di�erential equations with nvariables, where the n variables are expressed in terms of r fundamental dimensions,result in l normalized dimension equations

ãb11
1 ãb12

2 . . . ãb1n
n = 1 ,

ãb21
1 ãb22

2 . . . ãb2n
n = 1 ,... (7.4)

ãbl1
1 ãbl2

2 . . . ãbln
n = 1 .Note that here the sequene of numbering is the other way round then in (7.1). Thepowers bij form the matrix

B =




b11 b12 . . . b1n

b21 b22 . . . b2n... ... ...
bl1 bl2 . . . bln



,with k = rankB. From the l oherent equations k are linear independent, suh that

k nondimensional variables an be onstruted.Surely the dimension of the variable aj is a funtion of power monomials of thedimensions of all variables, so that we make the following ansatz:
ã1 = ã

y11
1 ã

y12
2 . . . ãy1n

n ,

ã2 = ã
y21

1 ã
y22

2 . . . ãy2n
n ,... (7.5)

ãn = ã
yn1

1 ã
yn2

2 . . . ãynn
n ,



7.1 Dimensional analysis and generalized dimensional analysis 61where the oe�ients yij are unknown [NS01℄. Next, in the dimension equations(7.4) the dimensions ãj are substituted with (7.5), whih is here exemplarily donefor the i'th equation:
(ãy11

1 ã
y12

2 . . . ãy1n
n )

bi1 (ãy21

1 ã
y22

2 . . . ãy2n
n )

bi2 . . . (ãyn1

1 ã
yn2

2 . . . ãynn
n )

bin = 1 .By reordering the exponents in terms of dimensions
ã

bi1 y11+bi2 y21+···+bin yn1
1 ã

bi1 y12+bi2 y22+···+bin yn2
2 . . . ãbi1 y1n+bi2 y2n+···+bin ynn

n = 1 ,we see that the exponents have to be zero. Doing so for all l unit equations resultin the equation system
Byj = 0 .We said that from the k = rankB linear independent equations, k dimensionlessvariables an be onstruted. Then the number of dimensions whih we an hooseas fundamental dimensions is given by the Bukingham Π-Theorem as the numberof variables minus the number of nondimensional variables n− k = r.To onstrut the dimensionless variables the olumns of the matrix B are reorderedsuh that the r olumn vetors orresponding to the fundamental dimensions areolleted at the right hand side and those olumn vetors form the matrix R. Theremaining k olumn vetors form the matrix K. We write the matrix B as
B = [K

∣∣R] ,Note that the r base units are hosen under the ondition that rankK = rankB[NS01℄. The nondimensional variables are then given by
πj = ã

y1j

1 ã
y2j

2 . . . ãynj
n , j = 1, . . . , k .

Generalized dimensional analysis extends dimensional analysisGeneralized dimensional analysis removes the restrition of only one fundamentaldimension for every dimension. Therefore it is an extension of dimensional analysis.Generalized dimensional analysis is poorly doumented in the literature, most au-thors fous on dimensional analysis. Instead of using generalized dimensional anal-ysis [Spu93℄ and [Gör75℄ reeive some of the results that an be obtained with



62 Chapter 7 Dimensional analysis of the model equations/rotational symmetrya generalized dimensional analysis by �rst using a dimensional analysis and thenapplying some further treatment. [Bar79℄ arhives the result of a generalized dimen-sional analysis also by �rst using dimensional analysis but then transforming thegained nondimensional equations with a transformation group. We will ome bakto the group aspet in appendix A.In the next setions the generalized dimensional analysis is applied to the bulk �owequations and the jump onditions of the ondensate problem.
7.2 Bulk flow equations and outer boundariesIn this setion we use generalized dimensional analysis to redue the amount ofvariables to a fewer amount of nondimensional variables of the bulk equations (6.1)� (6.3) and the outer boundary onditions (6.5) � (6.10) of ondensation in a vertialtube as derived in hapter 6.
Variables in terms of value and dimensionWe start by writing all variables as a produt of two new variables, one that rep-resent the value (hatted variables) while the other represent the dimension (tildedvariables). The variables of the moving surfae problem are the independent vari-ables r, z, t and the dependent variables vr, vz, p, the material properties ρ, µ,gravity g, and the variables of the boundary onditions

r = r̂ r̃ , vr = v̂r ṽr , ρ = ρ̂ ρ̃ , U = Û Ũ ,

z = ẑ z̃ , vz = v̂z ṽz , µ = µ̂ µ̃ , R = R̂ R̃ ,

t = t̂ t̃ , p = p̂ p̃ , g = ĝ g̃ , D = D̂ D̃ ,

L = L̂ L̃ .For the ondensation problem we also have to onsider the variables of the energyequation
T = T̂ T̃ , c = ĉ c̃ , Tw = T̂w T̃w ,

λ = λ̂ λ̃ , Tv = T̂v T̃v ,and the variables of the momentum equation for the vapor phase
pg = p̂g p̃g , ρg = ρ̂g ρ̃g .



7.2 Bulk flow equations and outer boundaries 63Next, the variables in the equations of the ondensation problem in the vertial tubeare substituted by these expressions.
Dimension equations of the boundary conditionsWe begin with the boundary onditions. The �rst boundary ondition (6.5), whihstates a given veloity pro�le at the inlet, beomes in terms of value and dimension

v̂z ṽz

∣∣
r̂ r̃,ẑ z̃=0

= Û Ũ(r̂ r̃) , v̂r ṽr

∣∣
r̂ r̃,ẑ z̃=0

= 0 .Eah term of an equation must be of dimensional homogeneity, so the streamwiseveloity must have the same dimension as the veloity at the inlet
ṽz = Ũ . (7.6)The other dimension equations of (6.5) are homogeneous and provide no furtherinformation.The out�ow ondition (6.7) beomes in terms of value and dimension and by keepingin mind that derivatives are not arried over dimensions
ṽz

z̃

∂v̂z

∂ẑ

∣∣∣∣
r̂ r̃,ẑ z̃=L̂ L̃

= 0 , v̂r ṽr

∣∣∣
r̂ r̃,ẑ z̃=L̂ L̃

= 0 ,from whih we found the dimension equation
z̃ = L̃ . (7.7)From the �rst boundary ondition of the energy equation (6.8) and from the seondboundary ondition of the energy equation (6.9) we get the dimension equations
T̃ = T̃w, (7.8) r̃ = R̃, (7.9) R̃ = D̃, (7.10) T̃ = T̃S. (7.11)The last two boundary equations of the energy equation provide no new information.We ontinue with the bulk �ow equations.
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Dimension equation of the continuity equationSubstituting the variables of the ontinuity equation (6.1) by the produt of valueand dimension gives
r̃ ṽr

r̃2

1

r̂

∂

∂r̂
(r̂ v̂r) +

ṽz

z̃

∂v̂z

∂ẑ
= 0 ,from whih we get the dimension equation

ṽr

r̃
=
ṽz

z̃
whih is in normal form r̃−1 z̃ ṽr ṽ

−1
z = 1 . (7.12)The normal dimension equations of the remaining model equations we write withoutderivation.

Remaining dimension equations in normal formThe normalized dimension equations of the momentum equations are
r̃ t̃−1 ṽ−1

r = 1 , (7.13)
r̃−1 z̃ ṽr ṽ

−1
z = 1 , (7.14)

r̃ z̃−1 ṽr ṽz p̃
−1 ρ̃ = 1 , (7.15)

r̃ ṽ−1
r p̃ µ̃−1 = 1 , (7.16)
r̃−2 z̃2 = 1 , (7.17)

r̃ t̃−1 ṽ−1
r = 1 , (7.18)

r̃−1 z̃ ṽr ṽ
−1
z = 1 , (7.19)

ṽ2
z p̃

−1 ρ̃ = 1 , (7.20)
r̃2 z̃−1 ṽ−1

z p̃ µ̃−1 = 1 , (7.21)
r̃−2 z̃2 = 1 , (7.22)

z̃−2 ṽz ρ̃
−1 µ̃ g̃−1 = 1 . (7.23)The normalized dimension equations of the energy equation are

r̃ t̃−1 ṽ−1
r = 1 , (7.24)

r̃−1 z̃ ṽr ṽ
−1
z = 1 , (7.25) r̃2 z̃−1 ṽz ρ̃ c̃ λ̃

−1 = 1 , (7.26)
r̃−2 z̃2 = 1 . (7.27)The momentum equation of the vapor phase ompletes the system of dimensionequations for the bulk �ows. From that we get the dimension equation in normalform

z̃−1 p̃g ρ̃
−1
g g̃−1 = 1 . (7.28)Before we ontinue deriving the nondimensional variables of the jump onditions thederived dimension equations are heked for linear dependene.
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Linear dependent dimension equationsThe equations (7.7) � (7.28) form a homogeneous system of 23 linear equationsfor n = 20 unknowns
Bx = 0 with k = rankB = 14 . (7.29)The linear equation system is solved by Gauÿian elimination. After applying Gauÿianelimination to B = [K

∣∣R] the matrix K beomes essentially the identity matrix(plus some zero rows for the linear dependent equations) and the nondimensionalvariables an read from the row-redued ehelon form of B. Clearly the rank de�-ieny is the result of the fat that some equations appear as linear ombinations ofothers.- The dimension equations of the onvetive terms (7.14) and (7.19) are obvi-ously equal. Furthermore they are also equal to the dimension equation (7.12)of the ontinuity equation and to the dimension equation (7.25) of the energyequation.- The dimension equation (7.13) desribing the transient-onvetion relation inthe radial momentum equation, is equal to (7.18) of the streamwise momentumequation and to (7.24) of the energy equation.- The dimension equation (7.17) desribing the seond derivatives of the visousterm is equal to (7.22) of the streamwise momentum equation and to (7.27) ofthe energy equation.- From the four pressure related equations (7.15), (7.16), (7.20), (7.21) two arelinearly dependent.If the above 23 − k = 9 linear dependent equations are eliminated, then B will bea 14×20 matrix with rank k = 14, so that B would have maximum rank. However,before we do this the equations we found are analyzed in terms of the two di�erentlength sales.
7.3 Simplifications in terms of the two different length scalesIf we apply Gauÿian elimination to our linear equation system this result in nondi-mensional variables where the dimensions of all length sales are equal: r̃ = z̃ =
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R̃ = L̃ = D̃. This is not the solution we are looking for. The problem arises fromthe fat that until now no values are assigned for any of these variables. By setting
L̃ = L and D̃ = D we get with (7.7) and (7.9)

z̃ = L , r̃ = D .But after the length sales are assigned as dimensions for the spatial variables,the linear equation system are inonsistent. There are some equations that areontraditory to our assignment. To get bak a onsistent linear equation systemthe equations we have to investigate the equations further.
Viscous termsFrom the dimension equations of the ondutive terms of the momentum equations(7.17), (7.22) and the heat equation (7.27) we get

r̃−2 z̃2 = 1 .Then either r̃ and z̃ have to be equal, or, if they are di�erent as in our ase, one ofthe seond derivatives in the ondutive terms in eah equation must vanish. Wemultiply the ondutive terms in the momentum equations (6.2) and in the energyequation with r̃2. For the ondutive terms of the �rst momentum equation we getwith ε = D
L
(=0.2 e-3, see appendix B)

ṽr

r̃2

∂

∂r̂

[
1

r̂

∂

∂r̂
(r̂ v̂r)

]
+
ṽr

z̃2

∂
2vr

∂z2
we get ṽr

∂

∂r̂

[
1

r̂

∂

∂r̂
(r̂ v̂r)

]
+

r̃2

z̃2︸︷︷︸
ε

ṽr
∂

2vr

∂z2
.The seond derivatives in streamwise diretion are of order ε2 smaller than the seondderivatives in radial diretion

∂
2vr

∂z2
≪ ∂

∂r

[
1

r

∂

∂r
(r vr)

]
,

∂
2vz

∂z2
≪ ∂

∂r

[
1

r

∂

∂r
(r vz)

]
,

∂
2T

∂z2
≪ ∂

∂r

[
1

r

∂

∂r
(r T )

]
.So we drop also the remaining equation of (7.17), (7.22), and (7.27). Note thateliminating (7.22) hanges (7.23) to

r̃−2 ṽz ρ̃
−1 µ̃ g̃−1 = 1 . (7.30)The gravity term refers now to the seond derivative of vz with respet to r (in-stead of z).
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Radial pressure derivative and radial velocityWith two di�erent length sales also the pressure related dimension equations (7.15)and (7.20), or (7.16) and (7.21)
r̃ z̃−1 ṽr ṽz p̃

−1 ρ̃ = 1 ,

ṽ2
z p̃

−1 ρ̃ = 1 ,

r̃ ṽ−1
r p̃ µ̃−1 = 1 ,

r̃2 z̃−1 ṽ−1
z p̃ µ̃−1 = 1 ,are inonsistent. They result in the dimension equation r̃ z̃−1 ṽr ṽ

−1
z = 1, whih isontraditive to the dimension equation of the ontinuity equation r̃−1 z̃ ṽr ṽ

−1
z = 1.A zero pressure derivative in either radial or streamwise diretion would solve theproblem. In streamwise diretion ats the hydrostati pressure. Hene, the pressurederivative in radial diretion must be zero and the ondensate pressure is a funtionof z and t

∂p

∂r
= 0 , so p = p(z, t) . (7.31)To neglet the inertial terms and the visous terms in the radial momentum equationwould also solve the problem, sine it would involve a zero radial pressure derivativein the ondensate phase. To investigate this further we evaluate the ontinuityequation (7.12) with D̃ = D and L̃ = L and get that the dimension of the radialveloity is of order ε smaller ompared to the streamwise veloity

ṽr = ε ṽz = U . (7.32)Substituting this in (6.2) we see that the onvetive and visous terms of the radialmomentum dimension equation are of order ε smaller ompared to the inertial andvisous terms of the streamwise momentum dimension equation. With the assump-tion of no sudden hanges (so that transient and onvetive terms are of the sameorder) this suggest to neglet the radial pressure derivative beause the inertial andvisous terms are small. Hene we omit the dimension equations (7.13) � (7.16) ofthe momentum equation in radial diretion.With the assumption that the pressure is a funtion of z (and t), the pressurederivative in the ondensate equals the pressure derivative in the vapor �ow
∂p

∂z
=

∂pg

∂z
whih gives with (6.4) ∂p

∂z
= ρg g . (7.33)Note that the results of our analysis in terms of the two di�erent length sales(i.e. seond order derivatives in streamwise diretions are of order two smaller than



68 Chapter 7 Dimensional analysis of the model equations/rotational symmetryseond order derivatives in radial diretion, zero pressure derivative in radial di-retion, radial veloity is of order one smaller ompare to sreamwise veloity) arethe assumptions that Prandtl made when he derived the boundary layer equations,see Shlihting [Sh79℄. Prandtl's boundary layer equations are based on lassialdimensional analysis, plus that he had a good intuition. With generalized dimen-sional analysis we prove that the boundary layer equations an also be obtained bya method of more mathematial rigor.
7.4 Dimensionless variables and dimensionless equations of the

bulk flowsNext we solve the system of the dimension equations to �nd the dimensionless vari-ables, as disussed in the �rst setion of this hapter. Then the model equations ofthe ondensate are given in dimensionless form.The simpli�ations disussed above redues the system of linear equations fur-ther Bx = 0. After removing the linearly dependent equations from the system oflinear equations, we have a system of 13 homogeneous linear equations and n = 19unknowns with k = rankB = 13, suh that the matrix B formed by the oe�ientsof the normalized dimension equations beomes



r̃ z̃ t̃ ṽr ṽz p̃ T̃ ρ̃ µ̃ g̃ c̃ λ̃ ρ̃g Ũ L̃ D̃ R̃ T̃w T̃v(7.6) 1 -1(7.7) 1 −1(7.8) 1 −1(7.9) 1 −1(7.10) −1 1(7.11) 1 −1(7.12) −1 1 1 −1(7.18) 1 −1 −1(7.20) 2 −1 1(7.21) 2 −1 −1 1 −1(7.23) −2 1 -1 1 −1(7.24) 2 −1 1 1 1 −1(7.28) −1 1 −1 −1




.



7.4 Dimensionless variables and dimensionless equations of the bulk flows 69Aording to the Bukingham Π-Theorem from this equation system k = 13 nondi-mensional variables an be onstruted from n−k = 6 fundamental dimensions. Wehoose the harateristi quantities of the ondensation problem D̃, L̃, Ũ , T̃v and thematerial properties ρ̃, c̃ as fundamental dimensions, they ful�ll the ondition thatrankK = rankB. After applying Gauÿian elimination to the matrix B = [K
∣∣R],we obtain the row-redued ehelon form of B as:

rrefB=




r̃ z̃ t̃ ṽr ṽz p̃ T̃ µ̃ g̃ λ̃ ρ̃g R̃ T̃w ρ̃ c̃ Ũ D̃ L̃ T̃v

1 −1

1 −1

1 1 −1

1 −1 −1 1

1 −1

1 −1 −2

1 −1

1 −1 −1 −2 1

1 −2 1

1 −1 −1 −1 −2 1

1 −1

1 −1

1 −1




.

By assigning the values D̃ = D, L̃ = L, Ũ = U , T̃v = Tv and ρ̃ = ρ, g̃ = g, c̃ = c weget the nondimensional variables:3
π1 =

r̃

D
, π2 =

z̃

L
, π3 =

t̃ U

L
, π4 =

ṽr L

U D
, π5 =

ṽz

U
, π6 =

p̃

ρ U2
,

π7 =
T̃

Tv

, π8 =
µ̃ L

ρU D2
, π9 =

g̃ L

Ũ2
, π10 =

λ̃ L

ρ c U D2
, π11 =

ρ̃g

ρ
,

π12 =
R̃

D
, π13 =

T̃w

Tv
.The variables π1 � π7 de�ne the dimensions of the dependent and the independentvariables, suh as r̃ = D, z̃ = L, t̃ = L

U
, et.3Note that for a numerial simulation the temperature dimension is set to T̃ = Tv − Tw = ∆T ,ompare hapter 8.
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Simplified bulk flow equations in dimensionless formTo write the bulk �ow equations in dimensionless form we de�ne the Reynoldsnumber, Froude number, Prandtl number and Pelet number of the ondensationproblem as followsRe =
ρU D

µ
, Fr =

U2

g D
, Pr =

µ c

λ
, Pe =

U D ρ c

λ
.Setting µ̃ = µ, g̃ = g and λ̃ = λ, we write the dimensionless numbers π8 � π10 as

π8 =
1

εRe , π9 =
1

εFr , π10 =
1

εRePr =
1

εPe .Then we substitute the dimensions of the independent and dependent variablesin (6.1) �(6.4) with π1 � π7. We do not use the dimensionless variables π8 � π11 butlet the material properties remain in the equations. By this we getthe ontinuity equation:
1

r̂

∂

∂r̂
(r̂ v̂r) +

∂v̂z

∂ẑ
= 0 , (7.34)the momentum equations:

[
∂v̂z
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∂ẑ

]
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∂ẑ
+

1

εRe 1
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∂r̂

(
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∂r̂

)
+

1

εFr , (7.35)
∂p̂

∂r̂
= 0 ,the energy equation:

[
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∂t̂
+ v̂r

∂T̂

∂r̂
+ v̂z

∂T̂

∂ẑ

]
=

1

εPe (1

r̂

∂

∂r̂

[
r̂

∂T̂

∂r̂

])
, (7.36)and the momentum equation of the vapor �ow:

∂p̂g

∂ẑ
= ρg g . (7.37)The pressure derivative in the momentum equation (7.35) of the ondensate may besubstituted with the momentum equation (7.37) of the vapor �ow, ompare (7.33).
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First and zero order equationsWe onlude this setion with a disussion of the �rst and zero order equations. Inthe ontinuity equation all terms are of the same order. In the momentum equa-tions the inertial terms, and in the energy equation the transient and onvetiveterms are of order ε. For zero order momentum equations only visous and gravityterms remain and the radial pressure derivative vanishes [Sh79℄. The zero orderenergy equation (ondutive terms) is the Laplae equation in ylindrial oordi-nates. Nuÿelt used zero order equations for the ondensate �ow in his theory ofondensation along a �at plate [Nuÿ16℄ [BS98℄.With a generalized dimensional analysis of the equations of the �ow problem (yetwithout onsidering the ondensation) we on�rmed the equations of Nuÿelt and theboundary layer equations of Prandtl [Spu93℄. The advantage of using generalizeddimensional analysis is that we now have a tool to investigate the jump onditions,where the result is not known.
7.5 Jump conditionsIn this setion we analyze the jump onditions (6.13) � (6.16) for ondensation ina vertial tube by a generalized dimensional analysis in terms of ε = D

L
. From thenormalized dimension equations of the jump onditions we �nd two more nondimen-sional variables.

Dimension equations from the mass jump conditionThe mass jump ondition (6.13) beomes in terms of value and dimension variables
ṁ =

ρ̃ρ̂√
1 + h̃2

z̃2

(
∂ĥ
∂ẑ

)2

(
−ṽr v̂r +

r̃

t̃

[
∂ĥ

∂t̂

]
+ ṽz

h̃

z̃

[
v̂z

∂ĥ

∂ẑ

])
.From the square root we get the dimension equation

1 =
h̃2

z̃2
, whih is equivalent to h̃2 z̃−2 = 1 .From R−D = h we know that h̃ = D. But then again either the length sales areequal or the square of the derivative term has to vanish. With h̃2

z̃2 = D2

L2 = ε2 the



72 Chapter 7 Dimensional analysis of the model equations/rotational symmetrysquare of the derivative of h with respet to the tube axis z is of order two smallerthan one and is negleted
(

∂h

∂z

)2

≪ 1 . (7.38)This re�ets the assumption of small surfae waves. The remaining dimension equa-tions of the mass jump ondition are linearly dependent on the dimension equationof the ontinuity equation (7.12). So the mass jump ondition provides no additionaldimension equation.
Dimension equations from the normal momentum jump conditionThe momentum jump ondition in normal diretion (6.14) beomes
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∂ĥ

∂z̃

]
+
ṽz
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∂ẑ

]
h̃2

z̃2

(
∂ĥ
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and is analyzed term by term:1. The �rst term desribes the momentum due to the phase transition (ṁv ·n).The square of h̃ with respet to z̃ in the denominator of the �rst term is oforder ε2. From the dimensions h̃

z̃
= ε, t̃ = L

U
, ṽr = ε U , ṽz = U , we see that allterms in the brakets are of order ε
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ε U

[
v̂z

∂ĥ

∂ẑ

]
 ,so that after the multipliation is arried out all terms are of order ε2. Thatis the momentum transport due to the ondensation an be negleted in thezero and �rst order normal momentum jump ondition. In the ase of evapo-ration this term desribes the reoil of vapor partiles from the interfae after



7.5 Jump conditions 73evaporation. In the ase of ondensation the vapor partiles slow down afterthe phase hange.2. The pressure terms remain.3. The third term desribes the visous normal stress exerted on the interfae(n · T · n). The orders of the terms in the brakets are
ṽr
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.

Terms of di�erent order in one term are not permissible, the dimension equa-tion of the terms in the inner brakets is r̃ z̃−1 ṽr ṽ
−1
z = 1 and hene a singularequation. After the multipliation is arried out the underlined terms are ofthe same order and the other two terms are of order two smaller than the un-derlined terms. In the �rst instane the underlined terms remain in the normalmomentum jump ondition.4. The surfae tension terms (after dropping seond order terms) are
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1
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,

where again the terms of di�erent order ause the singular dimension equation:
h̃2 z̃−2 = 1, so that one of both terms has to be dropped. The urvatureterm related to the surfae waves is of order ε smaller than the (underlined)urvature term related to the small diameter of the tube, so that the surfaetension is determined by the small diameter of the tube. In the ase of a�ow along a �at plate only the urvature term related to surfae waves wouldremain in the equation.For higher veloities (higher Reynolds numbers) surfae waves may beomemore wavy and ause instabilities, so that the laminar �ow breaks down [DR04℄.However, the dimension equation of the urvature terms suggest that for asmall tube diameter the in�uene of surfae waves is omparably small.



74 Chapter 7 Dimensional analysis of the model equations/rotational symmetryThe dimension equations of the normal momentum jump ondition are
p̃ p̃−1

g = 1 , (7.39)
r̃ ṽ−1

r p̃g µ̃
−1 = 1 , (7.40) h̃−1 z̃ ṽr ṽ

−1
z = 1 , (7.41)

r̃−1 h̃2 z̃−1 ṽz µ σ̃
−1 = 1 . (7.42)Equation (7.41) depends linearly on the ontinuity equation (7.12). Equation (7.40)depends linearly on the pressure dimension equation (7.16) of the radial momen-tum equation. However, this equation was ontraditive to the pressure dimensionequations of the streamwise momentum equation. So we have to eliminate eitherthe pressure term or the normal stress term. Beause the normal stresses are oforder εU

L
smaller than the pressure terms we drop the normal stress terms. Thisause a hange in (7.42)

h̃ p̃g σ̃
−1 = 1 . (7.43)The surfae tension term refers now to the pressure.By this, two dimension equations (7.39) and (7.43) are derived from the normalmomentum jump ondition for ondensation in a vertial tube.

Dimension equations from the tangential momentum jump conditionThe interfae momentum equation in tangential diretion beomes
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= 0 .After dropping seond order terms we get
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= 0 .The order of the terms in the inner round brakets are di�erent, so that the term oforder ε U
L
vanishes. By this the tangential momentum jump ondition redues to theondition of no shear stress at the interfae. This yields a homogeneous dimensionequation whih is useless.
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Dimension equations from the energy jump conditionFinally the interfae energy equation beomes in terms of value and dimension vari-ables̃
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∂ẑ

])

= − λ̃ λ̂√
1 + h̃2

z̃2

(
∂ĥ
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.After dropping the seond order terms we get
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.The mass �ux terms remain. On the right hand side the seond term is of order twosmaller than the �rst term, so it vanishes. By this the energy jump ondition of theondensation problem under rotational symmetry yields the dimension equation
h̃ r̃ z̃−1 ṽz T̃

−1 ρ̃ λ̃−1 ∆̃h = 1 (7.44)
7.6 Dimensionless variables and dimensionless equations of the

interfaceIntroduing (7.39), (7.43) and (7.44) into the equation system Bx = 0 results inthree additional nondimensional variables
π14 =

p̃

p̃g
π15 =

σ

ρU2D
, π16 =

∆h

c Tv



76 Chapter 7 Dimensional analysis of the model equations/rotational symmetryfor the ondensation problem. We de�ne Weber number and Stefan number asfollows:4We =
ρU2D

σ
, St =

c Tv

∆h
,Then the nondimensional numbers π15 and π16 beomes

π14 =
1We , π15 =

1St .
Simplified jump conditions in nondimensional formNow we write the analyzed and simpli�ed jump onditions at the interfae betweenthe ondensate and the vapor in nondimensional form. For that we use the dimen-sions of the independent and dependent variables de�ned by π1 � π7 in setion 7.4.Again we do not use the dimensions of the material properties de�ned by π8 � π11and π15 � π16 but the material properties remain in the equations. This givesthe mass jump ondition:

ṁ = ρ ε U
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)
, (7.45)the normal momentum jump ondition:

p̂− p̂g = − 1We 1

ĥ
, (7.46)the tangential momentum jump ondition:

∂v̂z

∂r̂
= 0 , (7.47)the energy jump ondition:

εSt (−v̂r +
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∂t̂
+ v̂z

∂ĥ

∂ẑ

)
=

1Pe ∂T̂

∂r̂
. (7.48)4Note that in hapter 8 the temperature dimension is set to T̃ = Tv − Tw = ∆T , so that therethe Stefan number is de�ned as St = c ∆T

∆h
.
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Main physical relevant terms of condensation in a vertical tubeAll mass �ux terms are of the same order. In the normal momentum jump onditionthe momentum transport due to phase hange and some of the normal visous stressterms were of order ε2 and were dropped. The remaining normal visous stressterms were of order ε but ontraditive to the pressure dimension equation. So thepressure di�erene at the interfae is mainly determined by surfae tension stress.The tangential momentum jump ondition is the ondition of no shear stress atthe interfae. The energy jump ondition states that the heat �ux of ondensationis proportional to the heat �ux at the interfae exerted by the vapor. The jumponditions (7.45) � (7.48) are based on the same assumptions as the boundary layeronditions. However, note that also dimension matrix has to be onsistent (omparenormal momentum jump ondition).
Zero order equationsAll mass �ux terms are of order ε, whih means that the ondensation proess annotbe modeled with zero order jump onditions. The zero order normal momentumjump ondition is the Young-Laplae equation [Dee98℄. The ondition of no shearstress is a zero order equation. A zero order energy jump ondition would state thatthe heat �ux at the interfae vanishes. This omes from the assumption that theheat �ux in the vapor vanishes, see setion 6.1.With a generalized dimensional analysis based on the slenderness of the ondensate�lm we determined the main relevant physial e�ets of ondensation in a vertialtube.
7.7 Water and R134aWe onlude this hapter by evaluating equations (7.34) � (7.37) and (7.45) � (7.48)derived in the last setions for water and for the refrigerant R134a. These �uidswere also used in [Fie03℄. The dimensionless numbers of water and R134a are givenin appendix B, where also material properties and proess properties (suh as �lmthikness and veloity) are be found. For both �uids the quotient of the two lengthsales is ε = 0.2 e-3.



78 Chapter 7 Dimensional analysis of the model equations/rotational symmetryIn the nondimensional ontinuity equation (7.34) all terms have the same magnitude.For the nondimensional momentum equation (7.35) and the nondimensional heatequation (7.36) we get
[
∂v̂z

∂t̂
+ v̂r

∂v̂z

∂r̂
+ v̂z

∂v̂z

∂ẑ

]
= −∂p̂

∂ẑ
+
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εRe=1263 Water=58 R134a1r̂ ∂
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(
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εFr=9034 Water=247 R134a, (7.49)
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∂ẑ

]
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εPe=321 Water=17 R134a(1

r̂

∂

∂r̂

[
r̂

∂T̂

∂r̂

])
. (7.50)

In both �uids visous fores and gravity fores dominate the inertial terms. Condu-tive heat transport dominates onvetive heat transport, but the di�erene is moredistint for water than for R134a.The terms of the nondimensional mass jump ondition (7.45) are again of sameorder. For the nondimensional normal momentum jump ondition (7.46) and thenondimensional energy jump ondition (7.48) we get
p̂− p̂g = − 1We=1261 Water=3.46 R134a1

ĥ
, (7.51)

1St=1.8 Water=0.4 R134a(v̂r +
∂ĥ

∂t̂
+ v̂z

∂ĥ

∂ẑ

)
=

1

εPe=321 Water=17 R134a∂T̂∂r̂ . (7.52)
Clearly for water surfae tension is the dominant fore. However, if the ondensate�uid is R134a, surfae tension has almost the same order of magnitude as the pressureterms. In the energy jump ondition the temperature deriative dominates. Thisshows that the �ow is the dominating proess, the position of the moving surfae ismainly determined by the solution of the free surfae problem. Again this is moretrue for water than for R134a.
The inclined tubeFrom what we found out about ondensation in a vertial tube we an also explainthe results given in [Fie03℄ about ondensation in a tube inlined to the vertial.



7.7 Water and R134a 79There it was shown that for R134a the heat transfer due to ondensation is ap-proximately two times better for an inlination angle of 45◦ degree ompared to thevertial tube, but this e�et ould not be observed with water (ompare setion 1.2).For a horizontal position of the tube the in-
Figure 7.1: Condensate �lm ross setions

terfae is most probably not any more rota-tional. We showed that the main fores inthe ondensation proess are gravity foreand surfae tension fore. In an inlinedtube gravity fore an be divided into twoomponents. One omponent ats in the plane of rotation and the other ats in thediretion of the tube axis. Beause of gravity the ondensate will �ow down alongthe tube walls and ontinue �owing in a gathered stream at the bottom of the tube.Surfae tension fore ats normal to the interfae. The e�et of surfae tension anbe desribed by the tendeny to minimize the surfae, and the minimal surfae isthe irular surfae. The balane of the two fores ating in the plane of rotationresult for both �uids in a ross setion between the two extremal positions of themoving surfae as shown in �gure 7.1.Atually the e�et of surfae tension is to minimize potential energy. Surfae tensionis aused by moleular fores. In the bulk of the ondensate the moleules aresurrounded by other moleules and are attrated equally in all diretions. At thesurfae of the ondensate the attration fores result in a fore that is diretedinwards the ondensate �lm suh that the ondensate �lm is pulled into irularshape [WIK℄.We showed that surfae tension fore is the dominant fore for water, but is om-parably small for R134a. By this, we onlude that for a given inlination angle ofthe tube the ross setion for water will be more like the �gure on the left and theross setion for R134a will be more like the �gure on the right.We showed that the heat transfer through the ondensate is mainly ondutive.Aording to Fourier's law the ondutive heat �ux through a �uid is for a given�lm thikness and a onstant temperature di�erene better if the �lm is thinner.That is the reason why the ross setion of the right �gure is the better one for abetter heat transfer. So a better heat transfer an be expeted for R134a, whih isin agreement with the experimental results.



Part III
Numerial simulations and relatedissues



Chapter

8
Single ordinary differential equation

(ODE)/rotational symmetry

In this hapter, we onsider again the model equations for ondensation in a vertialtube with small diameter, as derived in part II, hapter 7. In setion 7.7 we showedthat, if the ondensate is water, surfae tension is the most dominant fore besidegravity. For R134a the e�et of surfae tension was onsiderably small. Based on theresults of our evaluation of the model equations for water and R134a we simplify themodel equations further and derive a nonlinear ordinary di�erential equation for the�lm thikness. In a �rst attempt we neglet surfae tension, then we inlude surfaetension into the single model equation, �nally we ompute numerial solutions ofthese ODEs and disuss the e�et of surfae tension for water and R134a.For numerial methods for the solution of ODEs we refer to [SW95℄.
Dimensionless variablesIn a numerial simulation, dimensionless variables are used to redue the amountof variables to a fewer amount of nondimensional variables, whereas in a numerialanalysis the main purpose is to normalize the value of the variables suh that allvariables range between 0 and a positive number a, say 10, to avoid roundo� andanelation errors.For a better normalization of the temperature we revise the dimension of the tem-perature, whih we assigned in hapter 7.4 to T̃ = Tv. The energy equation is alinear di�erential equation and is therefore invariant under translation of the de-



82 Chapter 8 Single ordinary differential equation (ODE)/rotational symmetrypendent variable (ompare appendix A.2), for example a translation with the walltemperature
T = T̂ T̃ + Tw . (8.1)The dimension of the temperature we set to T̃ = Tv − Tw = ∆T . Then the dimen-sionless temperature is given as
T̂ =

T − Tw

∆T
, so that T̂w = 0 , T̂v = 1 .In setion 7.4 the Stefan number was de�ned as St = c T̃

∆h
. With the temperaturedimension T̃ = ∆T the Stefan number isSt =

c∆T

∆h
.This de�nition is more appropriate for the numerial simulations, ompare se-tion 8.3. The other nondimensional variables and numbers remain as disussedin hapter 7 and as given in appendix B.

8.1 Derivation of a single ODE for the film thicknessWe derive a single ODE for the �lm thikness, in a �rst attempt without takingsurfae tension into aount. We will use this equation in setion 8.3 as a testequation for the numerial omputations. We show that our model equation is anextension of Nuÿelt's theory of ondensation along a �at plate.
Further reduction of the model equations to ODEsBased on the evaluation of the model equations for water and R134a in setion 7.7we neglet transient and onvetive terms in the ondensate equations (7.49), (7.50),(7.51), and we neglet the pressure derivative in (7.49). For the moment we alsoneglet the normal momentum jump ondition (7.51). Then we get

1

r̂

∂

∂r̂

(
r̂
∂v̂z

∂r̂

)
= −ReFr , (8.2)

∂

∂r̂

(
r̂

∂T̂

∂r̂

)
= 0 . (8.3)

v̂z
∂ĥ

∂ẑ
=

St
εPe ∂T̂

∂r̂
at r̂ = ĥ , (8.4)



8.1 Derivation of a single ODE for the film thickness 83together with the boundary onditions
v̂z

∣∣
r̂=R̂

= 0 ,
∂v̂z

∂r̂

∣∣∣∣
r̂=ĥ

= 0 , and T̂
∣∣
r̂=R̂

= T̂w , T̂
∣∣
r̂=ĥ

= T̂v . (8.5)By this we redued the partial di�erential model equations to ordinary di�erentialequations for the variables v̂z, T̂ , and ĥ, whih are muh easier to solve.The boundary ondition for the last ODE (8.4) is that the �lm thikness is given atthe inlet
ĥ
∣∣
ẑ=0

= ĥ0 . (8.6)
Velocity and temperature profileEquations (8.2) and (8.3) an be solved analytially. Integrating (8.2) one gives

∂v̂z

∂r̂
= − Re

2Fr r̂ +
C1

r̂
,where the �rst integration onstant is determined by the ondition of no shear stressat the interfae, C1 = Re

2Fr ĥ2. Integrating again gives
v̂z = − Re

2Fr ( r̂2

2
− ĥ2 ln r̂

)
+ C2 ,where the seond integration onstant is determined by the ondition of no-slip atthe wall, C2 = Re

2Fr ( R̂2

2
− ĥ2 ln R̂

). Then the dimensionless veloity is a funtion ofthe radius depending on the �lm thikness
v̂z(r̂, ĥ) =

Re
2Fr (R̂2 − r̂2

2
+ ĥ2 ln

r̂

R̂

)
. (8.7)To get the temperature we integrate the energy equation (8.3) twie. This gives �rst

∂T̂

∂r̂
=
C3

r̂
, integrating again gives T̂ = C3 ln r̂ + C4 .The integration onstants are determined by the boundary onditions, C3 = T̂v−T̂w

ln ĥ−ln R̂
,

C4 = − T̂v ln R̂−T̂w ln ĥ

ln ĥ−ln R̂
. Then the dimensionless temperature is given by

T̂ (r̂, ĥ) =
T̂v − T̂w

ln ĥ− ln R̂
ln r̂ − T̂v ln R̂− T̂w ln ĥ

ln ĥ− ln R̂
. (8.8)
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Single ODE for the film thicknessNow we evaluate v̂ and ∂T̂

∂ˆ̂r
at r̂ = ĥ and substitute the results into the mass-energyjump ondition (8.4). This givesRe

2Fr (R̂2 − ĥ2

2
+ ĥ2 ln

ĥ

R̂

)
∂ĥ

∂ẑ
=

St
εPe T̂v − T̂w(

ln ĥ− ln R̂
)
ĥor equivalently

∂ĥ

∂ẑ
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2FrSt (T̂v − T̂w)

εRePe 1(
R̂2−ĥ2

2
+ ĥ2 ln ĥ

R̂

)
ln ĥ

R̂
ĥ
. (8.9)This equation is a �rst order homogeneous nonlinear ordinary di�erential equationfor the �lm thikness in autonomous form1. Obviously the ondensation proessauses the nonlinearity, without ondensation we would have ∂ĥ

∂ẑ
= 0 and hene a �lmof onstant thikness. Equation (8.9) is quasilinear2, and an be solved numeriallytogether with the boundary ondition (8.6). We ome bak to the numerial solutionof (8.9) later in this setion.

Comparison with Nußelt’s theory of condensation along a flat plateThe equation we derived in the last setion for ondensation in a vertial tube isas an extension of Nuÿelt's theory of ondensation along a �at plate [Nuÿ16℄. InCartesian oordinates the momentum equation, energy equation and mass-energyjump ondition are given as follows
∂

2û

∂ŷ2
= −ReFr , ∂

2T̂

∂ŷ2
= 0 , û

∂δ̂

∂x̂
=

StPe ∂T̂

∂ŷ
.Here x̂ is the dimensionless streamwise oordinate, ŷ denotes the dimensionless o-ordinate perpendiular to x̂ in ounter lokwise diretion, û is the dimensionlessstreamwise veloity, and δ̂ is the dimensionless �lm thikness [BS98℄. The boundaryonditions are again the ondition of no-slip at the wall and of no shear-stress at theinterfae and the given temperature at the wall and at the interfae. By using the1impliit in the independent variable y(x)′ = f(y(x))2linear in the highest derivative



8.2 ODE for the film thickness including surface tension 85boundary onditions the dimensionless veloity and the dimensionless temperaturederivative beome as follows
û =

ReFr (δ̂ ŷ − ŷ2

2

)
,

∂T̂

∂ŷ
=
T̂v − T̂w

δ̂
.Evaluating the veloity and the temperature derivative at ŷ = δ̂ we get the followingordinary di�erential equation for the dimensionless �lm thiknessReFr δ̂2

2

∂δ̂

∂x̂
=

StPe T̂v − T̂w

δ̂
, or equivalently ∂δ̂

∂x̂
=

2Fr St (T̂v − T̂w)RePe 1

δ̂3
.This equation is a Bernoulli di�erential equation of type y′ = k y−3 and an be solvedanalytially after linearization [WIK℄ [MW℄. With δ̂(x = 0) = 0 we obtain

δ̂ =
√

2

(
2FrSt (T̂v − T̂w)RePe x̂

)1
4

. (8.10)The �lm thikness is a funtion of the streamwise oordinate to the power of onefourth. This result is in exat agreement with Nuÿelt's well known equation for the�lm thikness of a ondensate �ow along a �at plate [BS98℄.
8.2 ODE for the film thickness including surface tensionNow we inlude surfae tension in the single model equation (8.9) whih we derivedin the last setion.
System of ordinary differential equations including surface tensionTo inlude the e�et of surfae tension we again neglet transient and onvetiveterms in (7.49), (7.50), (7.51), but let remain the pressure gradient in (7.49)
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∂ẑ
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= 0 . (8.11)Then we use the normal momentum jump ondition (7.51)

p̂ = − 1We 1
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(8.12)



86 Chapter 8 Single ordinary differential equation (ODE)/rotational symmetryto get the pressure gradient by di�erentiating p̂ with respet to ẑ
∂p̂

∂ẑ
=

1We 1

ĥ2

∂ĥ

∂ẑ
. (8.13)With the assumption of a steady ondensate �ow the pressure is only a funtionof ẑ (ompare setion 7.3), and we an substitute the pressure gradient in (8.11)with (8.13). This gives the following system of ODEs
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∂ẑ
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εPe ∂T̂

∂r̂
at r̂ = ĥ . (8.16)The boundary onditions are the same as before, see (8.5) and (8.6).

Velocity (including surface tension) and temperature gradientIntegrating (8.14) and (8.15) and evaluating the boundary onditions gives the di-mensionless veloity and the dimensionless temperature gradient with respet to r̂as follows
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, (8.17)
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. (8.18)

Single ordinary differential equation for the film thickness including surface tensionEvaluating (8.17) and (8.18) at r̂ = ĥ and substituting the results into the mass-energy jump ondition (8.16) gives
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∂ẑ
=

St
εPe T̂v − T̂w

ln ĥ
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∂ẑ

)2

− We
εFr ĥ2 ∂ĥ
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8.3 Numerical simulations of condensation including surface tension 87This equation is a fully nonlinear �rst order di�erential equation for the �lm thik-ness. However, we an transform (8.19) into a quasilinear ODE. For that we writemore onveniently
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εFr and b = 2WeSt (T̂v−T̂w)
ε2 RePe . The left hand side an be transformed in anquadrati expression
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− b f(ĥ) .Substituting bak the parameters a and b we �nally reeive the following quasilinearODE for ondensation in a vertial tube with small diameter
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. (8.20)We are seeking for the solution of the ODE with the negative signed root.
8.3 Numerical simulations of condensation including surface

tensionTo investigate the e�et of surfae for ondensation in a vertial tube for Water andR134a we solve equation (8.20) numerially.
WaterFirst we ompare the model equations without surfae tension (8.9) and with sur-fae tension (8.20) with Nuÿelt's solution (8.10). We assume a tube diameter of7 mm and a tube length of 500 mm and take water as ondensate. The initial �lmthikness is 0.1 mm. All alulations are dimensionless. Further details, suh as
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Figure 8.1: Water: (8.10) Nuÿelt, (8.9) without and (8.20) with surfae tensionwall temperature and dimensionaless numbers of water, are given in appendix B.The results of our omputations using Euler impliit and Runge-Kutta(4) are donewithMathematia and are shown in �gure 8.1. The numerial solutions of the modelequations without surfae tension and with surfae tension are not distinguishable.If the ondensing �uid is water an e�et of surfae tension annot be observed. The�lm thikness predited by (8.9) and (8.20) is slightly above the �lm thikness pre-dited by Nuÿelt. The reason is that beause of the irular tube the ondensingmass result in a thiker ondensate �lm.For a larger diameter of about 60 mm Nuÿelt's solution is almost idential withthe numerial solution. Figure 8.2 shows the �lm thikness for two di�erent tubediameter.3 The numerial solution of nonlinear ODEs often requires a higher order
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Figure 8.2: Water: (8.10) Nuÿelt, (8.9) and (8.20) for d = 60 mm, d = 8 mm3Note that the harateristi veloity and length are based on measured values with a �xeddiameter.



8.3 Numerical simulations of condensation including surface tension 89auray method or a more stable impliit method, or a ombination of both, an im-pliit method of higher order [SW95℄. However, the nonlinearity of (8.9) and (8.20)is smooth, so that the results of Euler impliit and Runge-Kutta are not distinguish-able and a standard Runge-Kutta(4) is su�ient.
R134aFor R134a we assume the same tube geometry, the same initial �lm thikness, andthe same temperature interval as before. The data and the dimensionless numbersof R134 are given in appendix B. The numerial solutions of (8.9) and (8.20) forR134a using Runge-Kutta are shown in �gure 8.3. The R134a �lm is thinner than the

0.2 0.4 0.6 0.8 1

1.5

2

2.5

3PSfrag replaements
R134aR̂ − ĥ

ẑ

(8.9),(8.20)Nuÿelt
Figure 8.3: R134a: (8.10) Nuÿelt, (8.9) without and (8.20) with surfae tensionwater �lm, whih is in agreement with [Fie03℄. Beside this the results are similar asbefore. The di�erene between Nuÿelt's solution and the numerial solutions of (8.9)and (8.20) is smaller, beause of the thinner �lm thikness of the R134a �lm.

Higher surface tension coefficientFor the vertial tube we ould not observe an e�et of surfae tension on the �lmthikness for water and R134a. Now we inrease the surfae tension oe�ient(i.e., redue the Weber number) by two powers of ten. This is an unrealisti valuebut serves for an estimation. The result is shown in �gure 8.4. In a vertial tubeross setions of the �lm are always irular, but espeially at the tube inlet the�lm thikness varies substantial over the tube length (ompare setion 7.7). In thevertial tube the e�et of surfae tension to minimize the surfae results in a moreevenly distributed �lm thikness along the tube length.
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ẑ

(8.9)(8.20)
Figure 8.4: R134a: (8.9) without surfae tension, (8.20) with surfae tension

Nußelt number – dimensionless heat transferThe heat transfer in the ondensate �lm is mostly ondutive so that the temperaturepro�le in the �lm is almost linear and we an write
q
′′

= α∆T .Equating q′′ with the energy jump ondition at the interfae (where the heat transferproess ours) gives
α∆T = λ∇T · n = ṁ∆h ,whih beomes in terms of dimensionless variables,4
α∆T =

λ∆T
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∂r̂
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∆h ρU D

L
û

∂ĥ

∂ẑ
.Multiplying this equation with D

λ ∆T
gives the loal Nuÿelt number, whih is de�nedas the dimensionless temperature gradient at the interfaeNuDGL =

αD

λ
=

∂T̂

∂r̂
=

∆h ρU D2

λ∆T L︸ ︷︷ ︸
εPeSt û

∂ĥ

∂ẑ
.Figure 8.5 shows the loal Nuÿelt number of Water and R134a as a funtion of tubelength. Note that the loal Nuÿelt number is almost inversely proportional to the�lm thikness.4With the dimensions r̃ = h̃ = D, ũ = U , z̃ = L, and T̃ = ∆T , ompare hapter 7 and (8.1).
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Figure 8.5: Nuÿelt number of Water and R134aWe ompare our results with the mean Nuÿelt number NuNu=(3Re)1/3 for onden-sation along a �at plate aording to Nusselt's theory [BS98℄, and with the meanNuÿelt number given by Chen for ondensation in tubes [Bej04℄NuChen=
(Re−0.44+5.82 10−6Re0.8Pr1/3+3.27 10−4Pr1.3
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.(8.21)The mean Nuÿelt numbers for water and R134a are given in table 8.1. It showsWater R134aNuNu 0.44 0.15NuDGL 0.52 0.23NuChen 0.74 0.37Table 8.1: Comparison of mean Nuÿelt numbersthat our model is better then Nuÿelt's model, but Chen's model is better then ourmodel. Chen reviewed available experimental information for o-urrent ondensa-tion inside vertial tubes. His model is more aurate for Reynolds numbers greaterthan Re=30. It takes into aount that at higher Reynolds numbers the �lm isthinner due to the o-urrent vapor �ow. This explains the di�erene between ourmodel and Chen's model. However, we derived an ordinary di�erential equationthat is easy to solve by standard numerial methods, and an be extended in a nextstep to inlude the e�et of an inlination angle.



Chapter

9
Model equations as differential algebraic

equations (DAEs)

In this hapter we analyze the model equations for ondensation inluding surfaetension from a DAE point of view and disuss the requirements for a numerialsolution of this moving boundary problem.For a three-dimensional numerial simulation of the ondensation problem wheresurfae tension ours at the interfae, the Navier-Stokes equations and the energyequation have to be solved, together with the jump onditions at the interfae (om-pare setion 5.3). We disretize the spatial terms of the bulk �ow equations, whihlead to a system of di�erential and algebrai equations (DAEs). We disuss thebasi ideas of DAEs with Navier-Stokes equations for whih the results are known.Then we analyze the omplete system of DAEs inluding the jump onditions, andwe relate the DAE approah with onventional methods. Finally we disuss someaspets of numerial solution shemes for the moving boundary problem based onour analysis.For the spatial disretization of the model equations with �nite element method(FEM) and and �nite di�erene method (FDM) for Navier-Stokes equations we referto [KA00℄ [Bra97℄. For the numerial solution of di�erential algebrai equations werefer to [BCP96℄ [HW02a℄ [AP98℄. For the numerial solution of the linear equationsystems (LES) whih result from the disretization we refer to [Mei05℄ [Saa00℄ [GL96℄[QSS00℄.
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9.1 Spatial discretization of Navier-Stokes equations and en-

ergy equationIn �gure 9.1 the numerial methods for the solution of the bulk equations of theondensation problem are depited.model equations
f (y, ẏ,∇y) = 0nonlinear PDEsspatialdisretizationFDM/FEM
f (y, ẏ) = 0Quasilin. DAE

Indexredution
ẏ = f (y)

0 = g(y)Index 1 DAE
linearizationwithNewton method
E∆ẏ = A∆y + blinear DAE

timedisretizationEuler impliit
B∆yi+1 = rLES

solveLesdiret +iterativesolverFigure 9.1: Numerial methods for the solution of the bulk equationsBoth programs we worked with1, use �nite
PSfrag replaements
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y, j

Figure 9.2: Retangular grid

element method (FEM) for the spatial dis-retization of the unknowns. The main ad-vantage of FEM for the solution of mov-ing boundary problems over �nite di�erenemethod (FDM) and �nite volume method(FVM) is that FEM allows greater �exibilityto model omplex geometries. The matriesresulting from all three methods have simi-lar harateristis. However, in this haperwe use �nite di�erene method for the dis-retization of the spatial terms, beause this is more instrutive and allows us toperform some neessary alulations using Matlab.
Discretization of the spatial terms – FDMFor the three-dimensional simulation we an write the equations in artesian oor-dinates, there is no need to use ylindrial oordinates as long as we not assumerotational symmetry. We �rst onsider a two-dimensional ondensate slie as shownin �gure 9.2. The omplexity of a three-dimensional simulation arises on the level of1SEPRAN and FIDAP



94 Chapter 9 Model equations as differential algebraic equations (DAEs)implementation due to the geometrial information that has to be handled and dueto the immense inrease of the number of unknowns and therefore the dimension ofthe equation systems.The equations for the bulk �ow equations as given at the end of part I in setion 5.3form a system of nonlinear partial di�erential equations, where the nonlinearityomes from the onvetive terms in the momentum equations. Assume a �uid slieas shown in �gure 9.2 overed by a quadrilateral grid, with i = 1, . . . , n points in zdiretion and j = 1, . . . , m points in y diretion. Using entral di�erene formulasfor the seond order spatial derivatives and bakward di�erene formulas for the �rstorder spatial derivatives, see e.g. [QSS00℄, we get for the �uid unknowns at an innergrid point i, jthe equation of ontinuity
vzi,j

− vzi−1,j

∆z
+
vyi,j

− vyi,j−1

∆y
= 0 , (9.1)the momentum equation

ρ

(
v̇zi,j

+ vzi,j

vzi,j
− vzi−1,j

∆z
+ vyi,j

vzi,j
− vzi,j−1

∆y

)
= −pi,j

− p
i−1,j

∆z

+ µ

(
vzi+1,j

− 2 vzi,j
+ vzi−1,j

∆z2
+
vzi,j+1

− 2 vzi,j
+ vzi,j−1

∆y2

)
+ ρ g cos ϑ , (9.2)

ρ

(
v̇yi,j

+ vzi,j

vyi,j
− vyi−1,j

∆z
+ vyi,j

vyi,j
− vyi,j−1

∆y

)
= −pi,j

− p
i,j−1

∆y

+ µ

(
vyi+1,j

− 2 vyi,j
+ vyi−1,j

∆z2
+
vyi,j+1

− 2 vyi,j
+ vyi,j−1

∆y2

)
+ ρ g sinϑ ,the energy equation
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9.1 Spatial discretization of Navier-Stokes equations and energy equation 95If we let run the indies over the entire domain, equations (9.1) � (9.3) de�ne thematrix equations
DT

z vz +DT
y vy = 0 ,

M z v̇z +
[
N z(vz) +N y(vy)

]
vz = −Dz p+

[
Sz + Sy

]
vz + gz , (9.4)

M y v̇y +
[
N z(vz) +N y(vy)

]
vy = −Dy p+

[
Sz + Sy

]
vy + gy ,

C Ṫ +
[
N z(vz) +N y(vy)

]
T =

[
Kz +Ky

]
T ,where the vetors are of length nm and the matries are of dimension (nm)×(nm).

Quasi-linear system of differential algebraic equations (DAE)With v = [vz,vy]
T , D = [Dz,Dy]

T , g = [gz, gy]
T , and

M =

[
M z

M y

]
, N =

[
N z

N y

]
, S =

[
Sz

Sy

]
, K =

[
Kz

Ky

]
,the four matrix equations (9.4) an be written more onveniently as

M v̇ = [S −N(v)] v −Dp+ g ,

C Ṫ = [K −N(v)] T , (9.5)
0 = DT v .

M , C, S,K,N are quadrati matries with dimension (2nm)×(2nm), andD is aretangular matrix with dimension (2nm)× (nm). The matriesM , C, S, and Kare symmetri. They are also stritly diagonally dominant and therefore positivede�nite [Saa00℄. N is not symmetri. Beause the onvetive terms are disretizedwith bakward di�erene formulas (upwind disretization) the sums S − N and
K −N respetively are diagonal dominant.2 D has full rank. Equation (9.5) is aquasi-linear system of di�erential algebrai equations.2Disretization with seond order di�erene formulas would result in a non-diagonally dominantmatrix. A disretization that makes the matrix diagonal dominant is alled upwind disretizationand is preferred, although it dereases the order of the disretization [Saa00℄.
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9.2 Basic definitons of DAEsIn this setion we analyze the quasi-linear DAE (9.5) whih we derived by spatialdisretization of the model equations. The di�erential equations and the algebraionstraints in (9.5) are separated. The di�erential variables are veloity and tem-perature and the algebrai variable is the pressure. The DAE (9.5) is a semi-expliitDAE in autonomous form and an be written as
ẋ = f (x,p) , (9.6)
0 = g1(x) .

Index of a DAEThe omplexity of a DAE is haraterized by the smallest number of times thatthe algebrai equations must be di�erentiated with respet to time in order to de-termine an expliit ODE. This number is alled the (di�erential) �index� of theDAE [BCP96℄.3 Thus ODEs have index zero. If the algebrai equations depend onthe algebrai variables g = g(x,p), then one derivative with respet to time4dg1dt =
∂g1

∂x
ẋ+

∂g1

∂p
ṗ .gives ṗ in priniple. For a DAE of index one the matrix of the derivatives ∂g1
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mustbe non-singular. However, in our ase g

1
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1
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= 0 singular.Di�erentiating g
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(x) twie with respet to time using hain rule gives with (9.6)dg1dt =
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.By this ṗ is determined in priniple. For a semi-expliit DAE of index two ∂g1

∂x

∂f

∂pmust be non-singular [AP98℄. So obviously (9.6) is an index two DAE.3In literature di�erent index de�nitions exist, from whih the di�erential index is most ommonlyused [SW95℄.4Here we follow the notation ommonly used in DAE literature, where ∂f
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(fj ej), whih is the transposed of ∂f
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.



9.2 Basic definitons of DAEs 97A DAE of index one an be solved by an impliit ODE method or a higher ordermethod (e.g. Runge-Kutta method) [HW02a℄. However, from (9.6) we see that anexpliit time disretization of ẋ does not work for the onstraint, so that at least ansemi-expliit method must be used, with an expliit disretization of the ODE andan impliit disretization of the onstraints.
Consistent initial conditionsThe onstraints of a DAE must be satis�ed at any time. An index two DAE mustsatisfy the onstraint of the DAE

g1(x) = 0 and g2(x,p) =
∂g1

∂x
ẋ = 0 (9.8)at any time. The seond onstraint is alled hidden onstraint [AP98℄. Initialonditions of a DAE that satisfy the onstraints of the DAE are alled onsistent.

Index reduction and driftThe �rst idea to redue the index of (9.6) is to perturb the algebrai onstraint withthe algebrai variable multiplied by a small penalty parameter
0 = g1(x) + εp .Then the algebrai onstraint is a funtion of di�erential and algebrai variablesand the DAE has index one.5 The algebrai variable an be eliminated from themomentum equation by substituting p = ε−1g1. However, the penalty method maylead to inaurate results.The next idea is to redue the index by di�erentiating the onstraints. If we substi-tute the onstraint g1(x) = 0 in (9.6) by its derivative (9.7) with respet to time weget the DAE
ẋ = f (x,p) , (9.9)
0 = g2(x,p) ,This DAE has index one. However, with the di�erentiation we lost the integrationonstant.6 Even if the initial onditions satis�es g1 = 0, the numerial solution5The penalty method is easy to implement and a standard method in CFD-software pakages.6The integration onstant is in our ase zero, integrating g2 gives ∫ g2 dt = g1 + c, with c = 0.



98 Chapter 9 Model equations as differential algebraic equations (DAEs)not any longer satisfy the onstraint exatly due to roundo� errors in every iterationstep, and the solution may drift away from the onstraints. This is why DAEs requiremore stable methods, so that impliit methods are preferred over expliit methods.But for an DAE of index two or higher an impliit method is not su�ient [HW02a℄.
Overdetermined system and constraint stabilizationThe DAE (9.6) together with the seond onstraint

ẋ = f (x,p) , (9.10)
0 = g1(x) ,

0 = g2(x,p) ,is a DAE with index one. However, (9.10) is an overdetermined system, whih isontraditive after time disretization [BCP96℄. The ODE has dimension nv = 2nmand the onstraints have dimension np = nm, so that we have nv + 2np equationsfor nv + np unknowns. The hidden onstraints are still present in the ODE. Theidea is to eliminate the np super�uous equations by multiplying the ODE with amatrix Z whose olumn vetors are perpendiular to the row vetors of
GT =

∂g1

∂x
,so that

GTZ = 0 , or equivalent ZTG = 0 (9.11)[BCP96℄. GT has np rows and nv olumns and has full rank. Z has nv rows and
nv−np olumns and must have full rank. Then any vetor v whih satis�esGTv = 0an be written as a linear ombination of the nv−np base vetors ofZ. The matrixZis omputed by means of an orthogonal projetor.7 Multiplying the ODE in (9.10)7The projetor P̃ = G

(
GTG

)
−1

GT projet an arbitrary vetor onto the vetor spae spannedby all vetors whih are the result of y = Gx for any x; that is, the span (or range) of G.From ZT (Gx) = 0 and GT (Z x) = 0 (for any x) we know that the span of G is the orthogonalomplement of the span of Z. P = I − P̃ projet an arbitrary vetor onto the span of Z (oronto the null spae of GT ). Multiplying P with nv − np arbitrary linearly independent vetors
A = [a1, ...,anv−np

] (suh that Z has full rank) gives Z = P A [Saa00℄ [WIK℄. Then (9.11) issatis�ed, GTZ = GTP A = GTA−GT

(
G
(
GTG

)
−1

GT

)
A = 0.



9.3 Index of Navier-Stokes equations and energy equation 99with ZT eliminates the redundant nv − np equations, so that the redued index oneDAE
ZT ẋ = ZTf (x,p) ,

0 = g1(x) ,

0 = g2(x,p) ,an then be solved numerially with an impliit method or an semi-impliit methodof higher order [HW02a℄. See [Ste06℄ for a onise index-redution proedure for anyarbitrary semi-expliit DAE.
Transformation of an index two DAE of special structure into an ODE with invariantIf the index two DAE (9.6) an be written as

ẋ = f̃ (x) +Gp , (9.12)
0 = GTx ,then by multipliation the ODE with ZT the DAE is transformed to an ODE withinvariant
ẋ = f̃ (x) ,

0 = g1(x) ,[AP98℄.
9.3 Index of Navier-Stokes equations and energy equationNow we analyze the index of the disretized bulk equations (9.5) of the ondensationproblem

M v̇ = [S −N(v)] v −Dp+ g ,

C Ṫ = [K −N(v)] T , (9.13)
0 = DT v .The Navier-Stokes equations have index two [BCP96℄. Equation (9.13) is a semi-expliit DAE of form (9.6). Consequently we obtain the following result: The Navier-Stokes equations together with the energy equations have index two. The energyequation does not hange the index.
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Index reductionThe hidden onstraint of the Navier-Stokes equations we get by di�erentiating thedisretized equation of ontinuity with respet to timed (DTv
)dt = DT v̇ = 0 . (9.14)Multiplying the ODE in (9.5) from left with M−1

v̇ = M−1 [S −N(v)] v −M−1Dp+M−1gand substituting this in (9.14) gives the hidden onstraint as follows
0 = DTM−1 [S −N(v)] v −DTM−1Dp+DTM−1g . (9.15)

DTM−1D must be non-singular. DT is the disretized divergene operator, D isthe disretized gradient operator, and M = ρ I. Then DTMD is the disretizedLaplae operator ∇2 = ∇ ·∇ times density, so that (9.15) de�nes a Poisson equationfor the pressure, where the right hand side is a funtion of veloity
∇2 p = f(v) . (9.16)The Navier-Stokes equations have the same struture as (9.12). So the index anbe redued by transforming the Navier-Stokes equations in an ODE plus invariant.Multiplying the momentum equation in (9.13) with a matrix ZT (onstruted asdesribed in setion 9.2) suh that
DTZ = 0 or equivalent ZTD = 0 , (9.17)gives an ODE for the veloity only, with the disretized equation of ontinuity asinvariant
ZTM v̇ = ZT [S −N(v)] v −ZTD︸ ︷︷ ︸

=0

p+ZTg , (9.18)
0 = DTv .By this the Navier-Stokes equations are deoupled in an ordinary di�erential equa-tion for veloity and a Poisson equation (9.15) for pressure. See [Sh07℄ for a moregeneral version of this deoupling for the Navier-Stokes equation88If e.g. �nite element method is used, then M is not anymore the identity matrix times aonstant. To apply the above transformation, thenM must be deomposed by means of a CholeskyfatorizationM = UTU and the veloity v must be transformed by u = U v.



9.3 Index of Navier-Stokes equations and energy equation 101However, multipliation with ZT destroys the sparse struture of the matries result-ing from spatial disretization, so that this method is only pratiable for systemswith small matrix dimensions. To avoid this, the projetion step in index redutionof Navier-Stokes equations is usually implemented as follows.
Pressure projection schemesCFD-software pakages usually solve the Navier-Stokes equations not in DAE form,but solve in every iteration the momentum equation and projet the veloity (inevery iteration or one a while) bak to the subspae of divergene free veloi-ties [Wes00℄. A di�erent Poisson equation is used, based on that any veloity w anbe deomposed into w = v+∇p, where v has zero divergene and is parallel to theboundary v · n = 0 [CM92℄. Then

∇ ·w = ∇2 p . (9.19)Pressure projetion shemes (as e.g. used by [FTM℄ [STM℄) are summarized by thefollowing sheme:- solve momentum equation (9.13) with a pressure guess, get an intermediateveloity w,- solve the Poisson equation (9.19) with the intermediate veloity, get an inter-mediate pressure,- projet the intermediate veloity on its divergene free part.9
Linearization with Newton methodFor the sake of ompleteness we outline the remaining steps in the numerial solutionof the bulk equations as depited in �gure 9.1. The momentum equation has to belinearized. This is done using Newton method. If we summarize the DAE (9.13)by f (y, ẏ) = 0, then a Taylor series expansion for

f(y0 + ∆y, ẏ0 + ∆ẏ) = 0gives
0 = f(y0, ẏ0) +

∂f

∂y

∣∣∣
y0

∆y +
∂f

∂ẏ

∣∣∣
ẏ0

∆ẏ + higher order terms .9By means of an orthogonal projetor P suh that P u = u and P ∇p = 0 the intermediateveloity an be projeted on its divergene free part P w = P (u+ ∇p) = u.



102 Chapter 9 Model equations as differential algebraic equations (DAEs)This a quasi-linear DAE, whih we an write as
E∆ẏ = A(y0) ∆y + f (y0, ẏ0) , (9.20)where E is a onstant singular matrix and A is a non-onstant singular matrix.Linearization did not hange the index, (9.20) has still index two. The linearizedDAE (9.20) has again struture (9.12), so that it an be transformed into an indexone DAE onsisting of an ODE with onstraint as before. The so derived linearindex one DAE we denote by
Ẽ∆ẏ = Ã(y0) ∆y + f̃ (y0, ẏ0) . (9.21)The Jaobi matrix Ã(y0) = ∂f

∂y

∣∣∣
y0

is not updated in every iteration (modi�ed New-ton) [QSS00℄. Note that Newton method has a small onvergene radius and there-fore needs a good starting guess, so that it is important to provide a good initialmesh on�guration and initial veloity �eld.
Time discretizationThe linearized index one DAE (9.21) is then solved by an impliit ODE method, forexample Euler impliit (or any other higher order impliit time integration method).Using Euler impliit we get

Ẽ
1

∆t

(
∆yi+1 − ∆yi

)
= Ã(yi) ∆yi+1 + f̃(yi) ,where ∆yi+1 = yi+1 − yi and ∆yi = yi − yi−1. Rearranging the terms suh thatthe unknowns are on the left gives

(
Ẽ − ∆t Ã

)
∆yi+1 = E∆yi + ∆t f̃ . (9.22)This linear equation system (LES) is solved for ∆yi+1 in every time iteration bymeans of diret (Gauÿ) or iterative (CGS � Conjugate gradient square, GMRES �Generalized minimal residual) methods [Saa00℄ [Mei05℄, so that the solution at thenext iteration is given by

yi+1 = yi + ∆yi+1 .By this we summarized the steps in the numerial solution of the index two DAEwhih was the result of the spatial disretization of the bulk equations. We disussedthe Navier-Stokes equations from a DAE point of view. The next step is to investi-gate the system of DAEs de�ned by the omplete system of equations inluding thejump onditions.
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9.4 Index of the condensation problemTo analyze the system of di�erential algebrai equations formed by the disretizedbulk equations (9.5) and (9.13) respetively, together with the disretized jumponditions we �rst disretize the spatial terms of the jump onditions. For that wesimplify the jump onditions suh that they are more easy to analyze but still havethe main features of the moving boundary problem with phase hange.
Two-dimensional jump conditions for the one-fluid condensation problemWe neglet shear stress exerted by the vapor, assume zero heat �ux in the vaporphase and onstant vapor pressure; so that the problem redues to to a one-�uid-problem. Further we neglet momentum due to phase transition. Then the jumponditions (from setion 5.3) are given as

ṁ = ρ [v − u] · n ,
pg − p+ n · T · n = 2H σ , (9.23)

t · T · n = 0 ,

ṁ∆h = q ·n .We disretize this equations again for a two-dimensional �uid-slie as depited in�gure 9.3. With normal and tangent vetors (2.14), (2.13), mean urvature (2.18),
q = −λ∇T and T = µ [∇v + (∇v)T ], the jump onditions beome (omparehapter 5 and 6)
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(9.24)
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− ∂T
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)
.Note that here surfae tension is related to surfae waves (and not to the tuberadius). Further we assume small surfae waves so that the square of rate of hangeof �lm thikness with respet to the length oordinate (∂h

∂z

)2 an be negleted.
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Spatial disctretization of the jump conditionsIf we assume that the mesh nodes on
iPSfrag replaements j

∆yi,1∆yi,2 ∆yi,3 ∆yi,4 ∆yi,5Figure 9.3: Grid size variable in y-diretion
lines of onstant i are free to move alongthis lines (the last node, some nodes,or all nodes), then the grid size ∆yi,jin y-diretion hanges with time, butthe grid size ∆z in z-diretion is �xed(method of spines [FTM℄), see �gure 9.3.Film thikness and grid size in y dire-tion are oupled by

hi =
m∑

j=1

∆yi,j . (9.25)The jump onditions are de�ned at the moving boundary, so that we disretize theequations at j = m. Doing so we get
pgi,m

− pi,m + µ

(
vyi,m

− vyi,m−1

∆yi,m
− 4

[
vyi,m

− vyi−1,m

∆z
+
vzi,m

− vzi,m−1

∆yi,m

]
hi − hi−1

∆z

)

= σ
hi+1 − 2 hi + hi−1

∆z2
,

hi − hi−1

∆z

vyi,m
− vyi,m−1

∆yi,m
+2

[
vyi,m

− vyi−1,m

∆z
+
vzi,m

− vzi,m−1

∆yi,m

]
−hi − hi−1

∆z

vzi,m
− vzi−1,m

∆z

=0,

vyi,m
− ∂hi

∂t
− vzi,m

hi − hi−1

∆z
=

λ

ρ∆h

(
Ti,m − Ti,m−1

∆yi,m
− Ti,m − Ti−1,m

∆z

hi − hi−1

∆z

)
.

Discretized jump conditions are differential algebraic equationsWith the assumption of equidistant step size in y-diretion, so that all nodes moveequally, we get hi = m∆yi. Then these equations de�ne for i = 1, . . . , n the followingmatrix equations
pm − pgm

+ a1(vm,vm−1,h) +B1(vm,vm−1,h)h = B2 h ,

B3(vm,vm−1,h)h+ a2(vm,vm−1,h) +B4(vm)h = 0 , (9.26)
B5 vm − ḣ+B6(vm)h = a3(Tm,Tm−1,h) +B7(Tm,Tm−1)h ,



9.4 Index of the condensation problem 105where the veloities vm, vm−1 and the temperatures Tm, Tm−1 are the veloitiesand the temperatures at the grid points on the moving boundary and next to themoving boundary. All equations are nonlinear in veloity and �lm thikness, andthe last equation is also nonlinear in temperature.The disretized momentum jump onditions are algebrai equations. The disretizedombined mass-energy jump ondition is a quasi-linear ordinary di�erential equa-tion for the �lm thikness. We an summarize (9.26) by the following nonlineardi�erential algebrai equations
0 = gn−m(p,v,h) ,

0 = gt−m(v,h) ,

ḣ = fm−e(v,T ,h) .

Index of the condensation problemIn the moving boundary problem the �lm thikness is an additional variable to thevariables of the bulk equations, so that now the vetor of di�erential variables is givenby x = [v,T ,h]T ; and the pressure is still an algebrai variable. The disretizedbulk equations (9.13), together with the disretized jump onditions (9.26), form aDAE whih we write as
ẋ = f (x,p) ,

0 = g1(x) , (9.27)
0 = g2(x,p) ,Here f represents the right hand sides of the momentum equation, the energy equa-tion, and the ombined mass-energy jump ondition. g1 represents the ontinuityequation and the tangential momentum jump ondition, and g2 represents the nor-mal momentum jump ondition. Di�erentiating g2 with respet to time gives p inpriniple, so that g2 is an index one onstraint (ompare setion 9.2).By this we obtained the following result: The disretized jump onditions have indexone. The disretized ondensation problem is an index two DAE, where the indexis the index of the Navier-Stokes equations. The jump onditions do not hange theindex.



106 Chapter 9 Model equations as differential algebraic equations (DAEs)

9.5 Algorithms for the moving boundary problemWe �nish this hapter with a short summery of the main di�ulties in solving mov-ing boundary problems and disuss the two di�erent approahes used by numerialmethods for suh problems.
Moving boundary problems are highly nonlinearFrom (9.26) we see that the disretized jump onditions are highly nonlinear DAEs,depending on how many nodes are free to move. If only the step size of the lastinterval near the boundary is variable (and the other intervals are �xed), then onlythe disretized jump onditions are a�eted. If all nodes are free to move, then thedisretized momentum equation and energy equation are also nonlinear in the �lmthikness (∆y 6= onst.) [CS90℄.
Tracking methods and capturing methodsNumerial algorithms for the solution of moving boundary problems fall basiallyin two ategories, depending on the oordinate system whih is used to desribethe interfae. In part I we derived the jump onditions in the loal oordinatesystem of the moving surfae (Lagrangian representation). Later we related thejump onditions to a �xed oordinate system (Eulerian representation) by meansof a parametrizion of the surfae.10 For example, for a moving boundary problemwithout phase hange ṁ = 0 the mass jump ondition in Lagrangian representationis given as

ρ [v − u] ·n = 0 ,(ompare (9.23)). For a two-dimensional moving boundary problem without phasehange the mass jump ondition is given in Eulerian representation as11
vy −

∂h

∂t
− vz

∂h

∂z
= 0 ,or, using F (y, z, t) = y − h(z, t), equivalently

∂F

∂t
− v · ∇F = 0 , (9.28)10In part II we used a ylindrial parametrization, here we used an implit parametrization.11Note that the negative sign in (9.28) omes from the de�nition of the normal vetor.



9.5 Algorithms for the moving boundary problem 107(ompare (9.24)). The last equation is also alled level-set equation.Methods based on a Lagrangian representation of the interfae are alled trakingmethods, and methods based on an Eulerian representation of the interfae are alledapturing methods (e.g. Marker and Cell (MAC), Volume of Fluid (VOF), [Kot98℄.
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Figure 9.4: Traking methods and apturing methodsIn traking methods the surfae normal and tangential vetors and the mean urva-ture are omputed from the geometry of the surfae [FP96℄. In every iteration theposition of the interfae is omputed. After some iterations during the simulationthe mesh has to be adopted to avoid a distorted mesh topology. In apturing meth-ods usually the mesh is �xed and the interfae is reonstruted by means of equa-tion (9.28), but sometimes with a slightly di�erent meaning. Then F desribes thevolume fration of one phase, e.g. F = 1 for a ell �lled with ondensate and F = 0for a ell �lled with vapor [Kot98℄, as shown in the right side of �gure 9.4.Although for the later methods the mesh is inherently robust, the reonstrutionof the interfae remains inaurately. This quali�es traking methods for movingboundary problems with interfae phenomena, suh as phase hange and surfaetension. However, the robustness of apturing methods an not be overestimated.
Implicit versus explicit method for the update of the moving boundaryIf the �lm thikness is treated as a new unknown, additionally to veloity, pressureand temperature, so that all variables are equally part of the solution vetor (as insetion 9.4), then the moving boundary is treated impliitly. Impliit methods aremore stable and therefore preferred [HW02b℄.Often the numerial solution of a moving boundary problem is done as follows: Firstthe Navier-Stokes equations and the energy equation are solved using some of thejump onditions as boundary onditions, and then the remaining jump ondition isused to update the position of the moving boundary, so that the moving boundaryis treated expliitly.



Chapter

10
Summary and Outlook

In this thesis we investigated ondensation in a tube with small diameter wheresurfae tension is important. Suh hydrodynamial hannels are found in ompatheat exhangers. The goal was to establish a better understanding of the physialproess and to enhane the heat transfer. First, the plan was to simulate the problemnumerially using a CFD-program. But it turned out that the equations were notimplemented orretly, so that we deided to analyze the equations of ontinuummehanis of suh moving boundary problems and to derive a suitable model. Forthis we worked out the omplete model equations for moving boundary problemswith phase hange and surfae tension. Surfae tension is both a harateristiof geometry, and physis of the interfae between vapor and liquid. This inreasethe omplexity of the interfae model equations signi�antly. To the best of ourknowledge suh a omplete derivation an not be found in literature.Then we analyzed these equations using generalized dimensional analysis and deriveda simpli�ed model for the vertial tube. By this we reintrodued and reformulatedgeneralized dimensional analysis, a very algorithmially method whih fell oa-sionally into oblivion. Generalized dimensional analysis is an extension of lassialdimensional analysis, where additionally the model equations are evaluated to �ndthe dimensionless numbers of the proess. It allows an analysis based on the twolength sales of the proess (�lm thikness and tube length). The results are om-pared with experimental results and explain the better heat transfer in an inlinedtube in the ase of low surfae tension. The derived interfae model equations (jumponditions) are equivalent to boundary layer equations in the sense that they arebased on the same onditions.Next we derived an ordinary di�erential equation for ondensation in a vertial tubeand by this we extended Nuÿelt's theory to ondensation in a tube under rotational



109symmetry where surfae tension is taken into aount. The heat transfer derease forvery small tube diameters independent of surfae tension (thiker ondensate �lm)and inrease for extreme high surfae tension. The derived model is ompared toparametrial models from literature. It is better then Nuÿelt's model. With Chen'smodel higher heat transfer rates are predited. Chen's model is based on availableexperimental information for o-urrent ondensation inside vertial tubes and takesshear stress exerted by o-urrent vapor �ow into aount (whih result in a thinnerondensate �lm).After spatial disretization the model equations form a system of ordinary di�er-ential equations and algebrai equations (DAE). We analyzed the omplexity (theindex) of this DAE system and showed that the index of moving boundary problemsis determined by the Navier-Stokes equations and not by the (transient) movingboundary problem. We ompared di�erent index redution methods. Based on thisthesis we disussed some aspets of numerial methods for moving boundary prob-lems. Deisive for a moving boundary problem is not the index but the nonlinearityintrodued by the �lm thikness as a new unknown.The transformation of an equation with dimension into a dimensionless equationis a symmetry transformation. We extended the idea of symmetry analysis to Liegroup analysis and determined the symmetry groups of the model equations, andwe showed how to onstrut analytial solutions for di�erential equations using thesymmetries of an equation.The omputational development provides us with powerful simulation possibilities.To use them e�iently we need to know the equations whih we want to omputeand the harateristis of the numerial methods whih we use to solve them. Thedevelopment in omputer-aided simulation fores towards more and more interdis-iplinary work. Mathematiians are more and more requested to show results thatan be used in applied tehnologies. The demand on engineers is more and moreto use and implement simulation software. In every interdisiplinary work at �rst aommon language has to be de�ned. This thesis also intends to make a ontributionto this.The next projets would be: to extend the derived model equations for the ase ofan inlined tube; to implement the equations derived for the vertial tube whihwe analyzed further in part III; to work out the potentialities of Lie group analysisfurther and to derive an analytial model equation based on the symmetries of theondensation problem.



Appendix

A
Symmetry groups of the model

equations/rotational symmetry

In this hapter we analyze the symmetry groups (Lie groups) of transformationsunder whih the model equations of the ondensation problem from part II areinvariant. In setion A.1 we brie�y outline the method of �nding symmetry groupsof a given di�erential equation by a Lie group analysis. In setion A.2 we disussgeneralized dimensional analysis in the wider framework of a Lie group analysis,and in setion A.3 we investigate the Lie groups admitted by the equations of thebulk �ow of the ondensation problem and take the outer boundary onditions intoaount. In setion A.4 we also onsider the jump onditions and analyze the Liegroups of the ondensation problem. This hapter is also intended to be useful forfuture researh. For example, based on a Lie group analysis one may onstrut(using anonial variables) an equivalent system of equations for the ondensationproblem, representing the same physial phenomena as the original model equations,but easier to solve (it still may need to be solved numerially).The �rst setion of this hapter is mainly based on [BK89℄, [Olv93℄ and [Ste94℄.Further on [Bau00℄ [Can02℄ and [Ibr99℄. From an engineering point of view theapproah of [Can02℄ and [Bau00℄ is very appropriate.
A.1 Lie groups of transformations of a given differential equa-

tionThe main idea of a Lie analysis is to onstrut a linear operator, based on the loalation of the group of transformations in the neighborhood of the original variables,



A.1 Lie groups of transformations of a given differential equation 111apply it to a given di�erential equation and demand whether this operation let thedi�erential equation invariant. The result is an over-determined system of linearpartial di�erential equations, whose solution gives the symmetry transformations.We �rst introdue the method and then we demonstrate how to �nd the Lie groupsof a given ordinary di�erential equation exemplarily.
Lie groups of transformationsA hange of variables of a physial problem depending on (at least) one parameter

x̂ = x̂(x, a) , (A.1)where x = [x1, x2, ...xn]T denotes the vetor of the dependent and independent vari-ables, is alled a point transformation if the transformation mapping the variablesinto variables is invertible, if repeated transformations yield again a transformationof this kind (assoiative law), and if a transformation exist that maps a point toitself, e.g. for a = 0,
x̂ = x̂(x, 0) = x , (identity element)[Ste94℄. Then the transformation satis�es the four axioms of a group and we say(A.1) de�nes a one-parameter group of transformations.1If we further assume that a is a ontinuous parameter, that x̂ is in�nitely dif-ferentiable with respet to x and an analyti funtion (representable in a powerseries of a), and that â is also an analyti funtion, then (A.1) de�nes a one-parameter Lie group of point transformations [BK89℄. For the rest of this setionwe write x = [x, y]T .Two examples for a one-parameter Lie group are a group of translation transforma-tions parallel to the x-axis
x̂ = x+ a , ŷ = y , (A.2)and a nonlinear group of saling (dilatation) transformations
x̂ = (1 + b) x , ŷ = (1 + b)2 y . (A.3)1The four group axioms are losure (the result of the transformation of a variable in R

n is againa variable in R
n), assoiative law, identity element, and inverse element.



112 Chapter A Symmetry groups of the model equations/rotational symmetryThe e�et of the group of transformations x̂(x, a) on a point is shown in �gure A.1.Consider the point x̂(x, 0) = x. Varying the group parameter a will move the pointalong the urve x̂(a) in the xy�plane [Ste94℄. Di�erent initial points are transformedinto di�erent points on the urve.
Local coordinates and tangent vectorThe Lie group of transformations x̂(x, a)

PSfrag replaements
x = x̂(x, 0)

x̂ = x̂(x, a)

Figure A.1: Integral urve of a vetor �eld
is a funtion of x and a, so that x =

[x, y]T an be onsidered as loal oordi-nates. Then the two base vetors of theloal oordinate system are the deriva-tives of x̂ with respet to the loal oor-dinates ∂x̂
∂x

and ∂x̂
∂y

(ompare setion 2.1and 2.3), and the tangent vetor X at-tahed at the point x̂ reads in the loaloordinate system
X(x̂) = ξ(x̂)

∂x̂

∂x
+ η(x̂)

∂x̂

∂y
, (A.4)where ξ and η are the loal oordinates of X [Olv93℄.

Tangent vector field and integral curveOn the other hand x̂(x, a) represent a vetor �eld depending on a, and suh a vetor�eld an be assoiated with a system of �rst order di�erential equations (one maythink of a as a time variable). For a �xed initial point x at a = 0 the integralurve x̂(a) that oinides at any point with the tangent vetor X along the urveat that point is then given bydx̂da = X(x̂) with x̂(x, 0) = xand in loal oordinatesdx̂da = ξ(x̂) with x̂(x, 0) = x , (A.5)where ξ = [ξ, η]T is alled vetor of in�nitesimals [Olv93℄. Equations (A.5) arealled Lie equations. That is, one we found the in�nitesimals for a given di�erentialequation, the Lie group of transformations an be reonstruted by integrating theLie equations [BK89℄.
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Infinitesimal transformationsA loal group of transformations we get by expanding x̂(x, a) in a Taylor seriesabout a = 0

x̂(x, a) = x+ a
∂x̂

∂a

∣∣∣∣
a=0

+O(a2) , (A.6)where
ξ(x) =

∂x̂(x, a)

∂a

∣∣∣∣
a=0

(A.7)is the vetor ξ of the in�nitesimals at a = 0. By this we get the Lie group oftransformations in terms of in�nitesimal transformations
x̂(x, a) = x+ a ξ(x) +O(a2) (A.8)[Can02℄. The in�nitesimals for the group of saling transformations (A.3) are
ξ =

∂x̂

∂a

∣∣∣∣
a=0

= x , η =
∂ŷ

∂a

∣∣∣∣
a=0

= 2 y .

Infinitesimal generatorNow we onstrut a linear generator X based on the tangent vetor in loal oordi-nates, suh that X x = ξ. We de�ne the in�nitesimal generator X with the gradientvetor as
X(x) = ξ(x) · ∇ = ξ(x)

∂

∂x
+ η(x)

∂

∂y
, (A.9)so that we get for the Lie group of transformations x̂(x, a)

x̂ = x+ aX x+
a

2!
X (X x) +

a2

3!
X (X (X x)) + . . . , (A.10)This series is alled a Lie series [BK89℄.The in�nitesimal generator for the group of saling transformations (A.3) is

X = x
∂

∂x
+ 2 y

∂

∂y
.



114 Chapter A Symmetry groups of the model equations/rotational symmetryA Lie series of x with this generator gives
x̂ = x+ aX x+

a

2!
X (X x) + . . . = x+ a x+

a

2!
x+ . . . = x

(
1 + a+

a2

2!
+ . . .

)
,whih is the exponential funtion. By this we �nd a parametrization of the group (A.3)of saling transformations suh that the identity element is x̂(x, 0) = x

x̂ = ea x , (A.11)
ŷ = e2a y .

Invariant functionsWith the in�nitesimal generator we are now in the position to analyze if a funtionis invariant under a Lie group of transformations. F (x) is said to be invariant undera group of transformations x̂(x, a) if
F (x̂) = F (x)holds true for every value of a. Expanding F (x̂) in a Lie series gives
F (x̂) = F (x) + aX F (x) +O(a2) .[Ste94℄. This gives us the invariane ondition we are seeking:
X F = 0 or with (A.9) ξ

∂F

∂x
+ η

∂F

∂y
= 0 , (A.12)A funtion is invariant under a group of transformations if the in�nitesimal gen-erator X applied to the funtion equals zero. It is the key point of Lie's theorythat the in�nitesimal generator is a linear operator, although the groups of trans-formations admitted by a given funtion may be nonlinear (e.g. the saling trans-formation) [BK89℄. To derive an invariane ondition for di�erential equations, theinvariane onditions (A.12) has to be extended further.
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Extended transformationsWe want to apply the point transformation (A.1) to a di�erential equation, so weneed to know how to transform the derivatives. We onsider a single ordinarydi�erential equation, with one independent variable x and one dependent variable y.It turns out that the transformations of derivatives are funtions not only of thedependent and the independent variables, but also of the derivatives of the dependentvariables [BK89℄. So we write
x̂ = x̂(x, y, a) , (A.13)
ŷ = ŷ(x, y, a) ,

ŷx̂ = ŷx̂(x, y, yx, a) ,

ŷx̂x̂ = ŷx̂x̂(x, y, yx, yxx, a) , . . . .The transformations of the derivatives are the derivatives of the transformed vari-ables with respet to the transformed variables
ŷx̂ =

dŷdx̂ , ŷx̂x̂ =
dŷx̂dx̂ , . . . .Using total derivativesdx̂ =

∂x̂

∂x
dx+

∂x̂

∂y
dy ,dŷ =

∂ŷ

∂x
dx+

∂ŷ

∂y
dy ,dŷx̂ =

∂ŷx̂

∂x
dx+

∂ŷx̂

∂y
dy ,+∂ŷx̂

∂yx
dyx ,we get for the �rst and seond extension of the group of transformations

ŷx̂ =

∂ŷ
∂x
dx+ ∂ŷ

∂y
dy

∂x̂
∂x
dx+ ∂x̂

∂y
dy =

∂ŷ
∂x

+ ∂ŷ
∂y
yx

∂x̂
∂x

+ ∂x̂
∂y
yx

= ŷx̂(x, y, yx, a) , (A.14)
ŷx̂x̂ =

∂ŷx̂

∂x
+ ∂ŷx̂

∂y
yx + ∂ŷx̂

∂yx
yxx

∂x̂
∂x

+ ∂x̂
∂y
yx

= ŷx̂x̂(x, y, yx, yxx, a) , (A.15)[Ste94℄.
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Extended infinitesimal transformationsFor the invariane ondition we need the extended group of transformations (A.13)in terms of in�nitesimal transformations, whih means we need the transformationsof the derivatives in terms of in�nitesimals. So we are seeking extended in�nitesi-mals η
[x]
, η

[xx]
, . . ., that we an write

x̂ = x+ a ξ(x̂) +O(a2) , (A.16)
ŷ = y + a η(ŷ) +O(a2) ,

ŷx̂ = yx + a η
[x]

(ŷx̂) +O(a2) ,

ŷx̂x̂ = yxx + a η
[xx]

(ŷx̂x̂) +O(a2) , . . . .The one extended in�nitesimal η[x] we get by substituting the in�nitesimal trans-formations (A.8) into the �rst extension of the group of transformations (A.14)
ŷx̂ =

dŷdx̂=
d(y + a η +O(a2))d(x+ aξ +O(a2))

=
yx + a dηdx

+ O(a2)

1 + a dξdx
+O(a2)

=yx+a

[dηdx − yx
dξdx]+O(a2),[Ste94℄. By this we get the one extended in�nitesimal as

η
[x]

=

[dηdx − yx
dξdx] . (A.17)The twie extended in�nitesimal η[xx] we get by substituting the in�nitesimal trans-formations (A.8) and the �rst extended in�nitesimal (A.17) into the seond extensionof the group of transformations (A.15)

ŷx̂x̂ =
dŷx̂dx̂ =

yxx + a
dη[x]dx

+O(a2)

1 + a dξdx
+O(a2)

= yxx + a

[dη
[x]dx − yxx

dξdx]+O(a2) ,[Ste94℄. This gives the twie extended in�nitesimal as
η

[xx]
=

[dη
[x]dx − yxx

dξdx] . (A.18)Higher order extended in�nitesimals are found similar, we refer to [BK89℄, or one ofthe other referenes ited at the beginning of this hapter. From (A.17) and (A.18)we get the expliit formulas
η

[x]
= ηx + (ηy + ξx) yx − ξy y

2
x ,

η
[xx]

= ηxx + (2 ηxy − ξxx) yx + (ηyy − 2 ξxy) y
2
x − ξyy y

3
x (A.19)

+ (ηy − 2 ξx) yxx − 3 ξy yx yxx .



A.1 Lie groups of transformations of a given differential equation 117The extended in�nitesimals are linear in the highest derivative of the dependentvariable (yxx) and polynomial in the other derivatives of the dependent variable,where the oe�ients are linear in the non-extended in�nitesimals.Sine the derivatives have to be taken with respet to all variables, expliit formulasfor higher order extended in�nitesimals ontain more and more terms. However, thislaborious work is generally left to omputers.
Extended infinitesimal generatorThe twie extended in�nitesimal generator is then given by

X
[xx]

= ξ
∂

∂x
+ η

∂

∂y
+ η

[x]

∂

∂yx
+ η

[xx]

∂

∂yxx
, (A.20)[Can02℄. With the extended in�nitesimal generator we are able to �nd the Lie groupsof transformations whih leave a given ordinary di�erential equation invariant. Theinvariane ondition for partial di�erential equations is derived similar and we referto the referenes given at the beginning of this hapter for it. In the last setion ofthis hapter we analyze exemplarily a seond order ordinary di�erential equation.

Multi-parameter Lie groups and Lie algebrasIn general a Lie group of transformations admitted by a di�erential equation dependson more than one parameter
x̂ = x̂(x,a) where x = [x1, x2, ..., xn]T , a = [a1, a2, ..., ak]

T . (A.21)If the parameters are independent of eah other and if (A.21) satis�es the four groupaxioms, then (A.21) de�nes a k-parameter Lie group of transformations [BK89℄.Here we restrit ourselves to one dependent and one independent variable x = [x, y]T .To eah parameter ar a non-extended in�nitesimal generator Xr an be assoiated
Xr = ξr

∂

∂x
+ ηr

∂

∂y
with ξr =

∂x̂

∂ar

∣∣∣∣
a=0

, ηr =
∂ŷ

∂ar

∣∣∣∣
a=0

. (A.22)The vetor spae spanned by the k in�nitesimal generators is alled a Lie algebra,if the in�nitesimal generators have an additional struture whih is alled ommu-tator [BK89℄. The ommutator of two in�nitesimal generators is de�ned as
[X1, X2] = X1 (X2) −X2 (X1) . (A.23)



118 Chapter A Symmetry groups of the model equations/rotational symmetryIts result is again an in�nitesimal generator and an be written as a linear ombi-nation of the k basi in�nitesimal generators
[X1, X2] = cr Xr , (A.24)where the oe�ients cr are alled strutural onstants [Olv93℄. Commutators areonveniently displayed in a ommutator table, suh as the ommutator table in�gure A.2, and for that it is more onvenient to write (A.24) as [X1, X2] = Cr

1 2 Xr,so that the strutural onstants an be diretly read o� the ommutator table.As an example we onsider the three dimensional Lie algebra where the in�nitesimalgenerators
X1 =

∂

∂x
, X2 = x

∂

∂x
, X3 = x2 ∂

∂xspan the basis of a vetor spae [Can02℄. We ompute with (A.23) the ommuta-tor [X1, X2] and get
[X1, X2] =

∂

∂x

(
x

∂

∂x

)
−x ∂

∂x

(
∂

∂x

)
=

(
∂

∂x
+ x

∂
2

∂x2

)
−x ∂

2

∂x2
=

∂

∂x
= X1, (A.25)where the struture onstants are C1

1 2 = 1 and C2
1 2 = C3

1 2 = 0. The other om-mutators are alulated similarly. By this we get the ommutator table shown in�gure A.2. Note that seond order derivatives are aneled out, so that the result isagain an in�nitesimal operator.A subspae of in�nitesimal generators is
X1 X2 X3

X1 0 X1 2X2

X2 −X1 0 X3

X3 −2X2 −X3 0Figure A.2: Commutator table of (A.25)
alled a subalgebra if the ommutators ofthe subspae are the in�nitesimal gener-ators of the subspae [BK89℄. That is
[X1, X2] = X1 and [X2, X3] = X3 are sub-algebras, but [X1, X3] = 2X2 is not. ALie algebra is alled solvable if there existan inlusive hain of subalgebras [Can02℄. The hain of subalgebras [[X1, X2], X3] =

[X1, X3] = 2X2 is not solvable, so the Lie algebra of our example is non-solvable.Any two-dimensional Lie algebra is solvable. A zero subalgebra is always solvable.
Canonical variablesLie group analysis is a method to solve di�erential equations analytially. Here wedisuss the method of so alled anonial variables [Ibr99℄. By a suitable hange of



A.1 Lie groups of transformations of a given differential equation 119variables u(x, y), v(x, y) any one-parameter Lie group of transformations admittedby a given equation an be simpli�ed to a group of translation transformation
û = u+ a ,

v̂ = v ,[BK89℄. The new variables u and v follow from the solution of the system of linearpartial di�erential equations de�ned by
X u = 1 ,

X v = 0 .One the anonial variables are found they an be used to simplify the original equa-tion. The proedure is as follows: Find the in�nitesimals, alulate the anonialvariables, and then transform the original equations to a simpler form by hangingthe variables [Bau00℄.In ase of an ordinary di�erential equation of order two or higher this proedure willredue the order of the ordinary di�erential equation. In ase of a partial di�erentialequation with more then two independent variables the result will still be a system ofnonlinear partial di�erential equations but in less independent variables. Repeatedappliation (if possible) then leads to an ordinary di�erential equation. The suessof the method depends on the symmetry groups (i.e. the in�nitesimals) admited bythe di�erential equations. For further reading we refer to [BK89℄ [Can02℄ [Bau00℄.
How to find the symmetry groups of transformations of a differential equationNow we show exemplarily how to �nd the symmetry groups (Lie groups) of trans-formations under whih a given ordinary di�erential equation is invariant. Usingthis example we demonstrate the main steps of a Lie group analysis in the way it isimplemented in the software pakage of [Bau00℄, whih we use in the next setionto investigate the symmetry groups of the ondensation problem. The example istaken from [Can02℄.For the ordinary di�erential equation

F (x, y, yx, yxx) = yxx = 0



120 Chapter A Symmetry groups of the model equations/rotational symmetryto be invariant, the invariane ondition (A.12) with the twie extended in�nitesimalgenerator (A.20) has to be satis�ed
X

[xx]
yxx = η

[xx]
= 0 .This gives with (A.19)

ηxx + (2 ηxy − ξxx) yx + (ηyy − 2 ξxy) y
2
x − ξyy y

3
x + (ηy − 2 ξx) yxx − 3 ξy yx yxx = 0.The last two terms are zero with yxx = 0. The remaining terms have to be zeroindependently, beause yx is an arbitrary funtion. This result in the followingover-determined system of linear partial di�erential equations

ηxx = 0 , (A.26)
2 ηxy − ξxx = 0 ,

ηyy − 2 ξxy = 0 ,

ξyy = 0 ,whih has to be solved for the in�nitesimals to �nd the groups of in�nitesimal trans-formations under whih the di�erential equation is invariant. One possibility is totry an ansatz in the form of a third-order series
ξ = a1 + a2 x+ a3 y + a4 x

2 + a5 x y + a6 y
2 + a7 x

3 + a8 x
2 y + a9 x y

2 + a10 y
3,

η = b1 + b2 x+ b3 y + b4 y
2 + b5 x y + b6 y

2 + b7 x
3 + b8 x

2 y + b9 x y
2 + b10 y

3.Substituting this ansatz into the determining equations (A.26) and solving them for
ξ and η by omparing the oe�ients of x and y gives the in�nitesimals as

ξ = a1 + a2 x+ a3 y + a4 x
2 + a5 x y ,

η = b1 + b2 x+ b3 y + a4 x y + a5 y
2 .The symmetry group of transformations de�ned by this in�nitesimals is a projetivegroup and its Lie algebra is spanned by the one-parameter in�nitesimal generators

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = y

∂

∂x
, X4 = x2 ∂

∂x
+ x y

∂

∂y
,

X5 = x y
∂

∂x
+ y2 ∂

∂y
, X6 =

∂

∂y
, X7 = x

∂

∂y
, X8 = y

∂

∂y
.Amongst others this Lie algebra has the solvable subalgebra [X2, X6] = 0, whihde�nes the Lie group of translation transformations (A.2)

ξ = x , η = 1 .
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A.2 Scaling transformations and Lie groups of bulk equationsIn this setion �rst we disuss the similarities and di�erenes between the generalizeddimensional analysis and the Lie group analysis. Then we make a Lie group analysisof the bulk �ow equations for ondensation in a vertial tube, using a softwarepakage implemented in Mathematiar [Bau00℄.
Scaling transformations of the dependent and the independent variablesDimensional analysis is based on the invariane of an equation under a hange ofsystem of units. Therefore any physial equation is invariant under a group ofsaling (dilatation) transformation applied to the dimensions of the variables. Inhapter 7 we denoted the value of a variable by a hat x̂ and its dimension by atilde x̃, x = x̂ x̃. Here we the notation ommonly used in Lie group analysis anddenote a saling transformation by an exponential term x̂ = ex̄ x (with the identityelement x̂ = e0 x = x).Then saling transformations of the dependent and the independent variables of thebulk equations for ondensation in a vertial tube are given by

r̂ = er̄ r , v̂r = ev̄r vr ,

ẑ = ez̄ z , v̂z = ev̄z vz ,

t̂ = et̄ t , p̂ = ep̄ p , T̂ = eT̄ T .This saling transformations we substitute in the simpli�ed model equations of theondensation problem for the vertial position of the tube in dimensional form,ompare (6.1) � (6.3) and (7.34) � (7.36). This gives us the following equations.The ontinuity equation:
e(v̄r−r̄) 1

r

∂

∂r
(r vr) + e(v̄z−z̄) ∂vz

∂z
= 0 , (A.27)the momentum equations:

e(v̄z−t̄)∂vz

∂t
+e(v̄r+v̄z−r̄)vr

∂vz

∂r
+e(2v̄z−z̄)vz

∂vz

∂z
=−e(p̄−z̄) 1

ρ

∂p

∂z
+e(v̄z−2r̄)η

ρ

1

r

∂

∂r

(
r
∂vz

∂r

)
+g,

e(p̄−r̄) ∂p

∂r
= 0 , (A.28)and the energy equation:

e(T̄−t̄) ∂T

∂t
+ e(v̄r+T̄−r̄) vr

∂T

∂r
+ e(v̄z+T̄−z̄) vz

∂T

∂z
= e(T̄−2r̄) λ

ρ c

1

r

∂

∂r

(
r

∂T

∂r

)
. (A.29)



122 Chapter A Symmetry groups of the model equations/rotational symmetryIf the terms with an exponential fator in eah equation are equal we an groupthem together. For example, for the ontinuity to be invariant under a salingtransformation (v̄r − r̄) = (v̄z − z̄) has to hold. Then we an write
e(v̄r−r̄)−(v̄z−z̄)
︸ ︷︷ ︸

=1

(
1

r

∂

∂r
[r vr] +

∂vz

∂z

)
= 0 .Obviously the saling transformations of the variables let the equation invariant ifthe exponential term vanishes.In a �rst attempt we assume zero gravity, that makes it easier to ompare general-ized dimensional analysis with Lie group analysis. Then in (A.28) the sum of theexponents in eah term has to be zero to let the equation invariant. The system oflinear equations we get from (A.27) � (A.29) is then given by




(A.27) −1 1 1 −1(A.28) 1 −1 −1(A.28) 2 −1(A.28) 2 −1 −1 1(A.29) 2 −1 1







r̄

z̄

t̄

v̄r

v̄z

p̄




= 0 .

The matrix is the same matrix as the lower right sub-matrix of B in setion 7.4exept that the saling variable for the temperature and the two gravity relatedrows do not appear here. To solve this system of linear equations we proeed in thesame way as for a generalized dimensional analysis (as desribed in hapter 7). Wehoose some of the saling variables as base variables and ollet the orrespondingolumns at the right side of the matrix B̄ = [K̄|R̄] suh that rank K̄ = rank B̄. Wehoose v̄z = a as base saling variable. After applying Gauÿian elimination to B̄ weget the row-redued ehelon form of B̄ as
rrefB =




r̄ z̄ t̄ v̄r p̄ v̄z

1 −a
2

1 −2a

1 −a
1 a

2

1 −2a




.

By this we found that the bulk equations of the ondensation problem are invariantunder a two-parameter group of saling transformations given by:
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(A.30)r̂ = e
a
2 r , v̂r = e−

a
2 vr ,

ẑ = e2a z , v̂z = ea vz ,

t̂ = ea t , p̂ = e2a p , T̂ = eb T .Note that the saling transformations (A.30) are valid also if we onsider gravity inthe momentum equations. Then eah exponent has to be zero itself, beause thegravity remains unsaled in the equations, g = e0 g.
Lie groups of transformations of bulk equations without gravityWe again onsider equations (A.27) � (A.29) with the assumption of vanishing grav-ity, but now we analyze these equations by the method of Lie as desribed in se-tion A.1. For that we use the software pakage MathLie [Bau00℄. By this we disusssome of the relevant groups of the ondensation problem. The result of our Liegroup analysis gives the following in�nitesimals (A.31)ξr = a

2
r , ηvr = −a

2
vr ,

ξz = 2 (a+ b) z + F1(t) , ηvz = (a+ b) vz + ∂F1

∂t
,

ξt = d+ a t , ηp = 2 (a+ b) p+ F2(t) − ρ z ∂2F1

∂t2
,

ηT = e+ c T .This in�nitesimals orrespond to seven in�nitesimal generators
Xa =

r

2

∂

∂r
+ 2 z

∂

∂z
+ t

∂

∂t
− vr

2

∂

∂vr
+ vz

∂

∂vz
+ 2 p

∂

∂p
,

Xb = z
∂

∂z
+ vz

∂

∂vz
+ 2 p

∂

∂p
,

Xc = T
∂

∂T
,

Xd =
∂

∂t
,

Xe =
∂

∂T
,

XF1 = F1(t)
∂

∂z
+

∂F1

∂t

∂

∂vz
− ρ z

∂
2F1

∂t2
∂

∂p
,

XF2 = F2(t)
∂

∂p
.The in�nitesimal generators Xa, Xb, Xc de�ne a three-parameter group of salingtransformations, whih is solvable, beause [[Xa, Xb], Xc] = 0. Xd and Xe de�ne



124 Chapter A Symmetry groups of the model equations/rotational symmetrya translation transformation in time and in temperature. The translation groupof the dependent variable temperature represents the superposition priniple whihholds for the energy equation [Can02℄. The superposition priniple states that fora linear (di�erential) equation a linear ombination of solutions is again a solutionof the equation. XF1 de�nes an arbitrary time dependent translation in streamwisediretion, showing that the model equations are invariant for an observer at rest oran observer translating or aelerating in streamwise diretion [Can02℄. XF2 de�nesan arbitrary time dependent translation of pressure.The three-parameter group of saling transformations de�ned by Xa, Xb, Xc are
r̂ = e

a
2 r , v̂r = e−

a
2 vr ,

ẑ = e(2a+b) z , v̂z = e(a+b) vz ,

t̂ = ea t , p̂ = e2(a+b) p , T̂ = ec T .For b = 0 (and with c = b) this gives the saling transformations (A.30) we derivedby generalized dimensional analysis, whih shows the lose onnetion between gen-eralized dimensional analysis and Lie group analysis.
A.3 Lie groups of bulk equations together with outer boundary

conditionsIn this setion analyze the Lie groups of the bulk equations together with the outerboundary onditions. First we �nd a similar three-parameter group of saling trans-formations that leaves the bulk equations invariant, and then we �x one parametersuh that also the boundary onditions admit this group of transformations.
GravityThe in�nitesimals whih we get from a Lie group analysis for the model equa-tions (A.27) � (A.29) of the ondensate problem, di�er from (A.31) (where we ne-gleted gravity) in the in�nitesimals (A.32)The orresponding group of saling transformations is alled a speial saling group.We ome bak to speial saling groups later.
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ξz =
(

a
2

+ b
g

)
z + F1(t) ,

ηvz =
(

b
g
− a

2

)
vz + ∂F1

∂t
,

ηp =
(

2b
g
− a
)
p+

(
3
2
a g − b− ∂

2F1

∂t2

)
ρ z + F2(t) .

Boundary value problemUntil now we did not mention how to treat boundary onditions in a Lie groupanalysis. For a given boundary value problem to be invariant under a group oftransformations, not only the system of partial di�erential equations has to be in-variant under the group of transformations, but also the boundary onditions haveto admit the group of transformations [BK89℄.For the in�ow boundary ondition (6.5)
vz

∣∣
r,z=0

= U(r) (A.33)to be invariant under the group of saling transformations v̂z = ev̄z vz, r̂ = er̄ r,and ẑ = ez̄ z,
v̂z

∣∣
r̂,ẑ=0

= U(r̂)must hold. The boundary itself has to be invariant under the group of transfor-mations (i.e. ẑ = z must hold at the boundary), and the boundary ondition hasto be invariant under the group of transformations (i.e. v̂z = vz must hold at theboundary) [BK89℄. For a homogeneous boundary ondition, suh as the no-slipondition (6.6) at the wall and the out�ow ondition (6.7)
vr

∣∣
r=R,z

= 0 , vz

∣∣
r=R,z

= 0 , and ∂vz

∂z

∣∣∣∣
r,z=L

= 0 , (A.34)to be invariant under the same group of saling transformations the orrespondingdimensionless equations has to hold. In a homogeneous boundary ondition theexponential fators of the saling group of transformations anel out by division,so that it is su�ient if the boundary is invariant.The remaining non-homogeneous boundary onditions of the model equations of theondensation problem are the temperature boundary onditions (6.8) and (6.9) atthe wall and at the interfae
T
∣∣
r=R,z

= Tw , T
∣∣
r=h,z

= Tv . (A.35)
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Invariance of the outer boundariesThe outer boundaries are invariant under the group of saling transformations de-�ned by (A.31) and modi�ed by (A.32) if the invariane ondition (A.12) applied tothe boundary is zero loally at the boundary. The invariane ondition applied to avariable gives the orresponding in�nitesimal, e.g. Xr = ξr, or Xz = ξz, so that thein�nitesimal at the boundary must be zero at this boundary.We have for the inlet, the outlet, the wall, and the interfae
ξz(z = 0) = F1(t) ,

ξz(z = L) =

(
a

2
+
b

g

)
L+ F1(t) .

ξr(r = R) =
a

2
R ,

ξr(r = h) =
a

2
h .The inlet is invariant under (A.32) if F1(t) = 0. The outlet is invariant under (A.32)if F1 = −

(
a
2

+ b
g

)
L. If we loate the oordinate system at the outlet boundary,suh that the outlet boundary is at x = 0 and the inlet boundary is at x = −L theresult is vie versa. That is, by taking the inlet and outlet boundary onditions intoaount we restrit the invariane of the model equations under a hange of frameof referene to a simple translation, so that F1 is determined by a onstant F1 = j.If we loate the oordinate system at the interfae, then the interfae is invariantunder (A.32). If we loate the oordinate system at the wall, then the wall isinvariant under this group of transformations. Beause the model equations are givenin ylindrial oordinates the bulk equations are not invariant under a translationin radial diretion, only one boundary is invariant under (A.32) and we deide thatit is the wall boundary. We ome bak to the interfae in setion A.4.

Invariance of the outer boundary conditionsThe in�ow boundary ondition (A.33) is invariant under the group of transformationsif the invariane ondition applied to the boundary ondition is zero at z = 0, andif the inlet boundary is invariant under the group of transformation. That is thein�nitesimal ηvz must vanish at z = 0 under the onditions imposed by ξz(z = 0) = 0.Then the in�nitesimal ηvz given by (A.32)
ηvz(z = 0) =

(
b

g
− a

2

)
vz ,
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2
.The temperature boundary ondition (A.35) at the wall is invariant under the groupof transformations if

ηT (r = R) = e+ c Tvanishes. This gives e = c = 0.By this the group of transformations de�ned by the in�nitesimals (A.31) and mod-i�ed by the in�nitesimals (A.32) of the ondensation problem given by the bulkequations (A.27) � (A.29) and the boundary onditions (A.33) � (A.35) beomeswith F1 = j, e = c = 0, and b = a g
2 (A.36)ξr = a

2
r , ηvr = −a

2
vr ,

ξz = a z + j , ηvz = 0 ,

ξt = d+ a t , ηp = aρ g z + F2(t) , ηT = 0 .We see that the three-parameter group of saling transformations redued to a one-parameter group. The in�nitesimal generator of the saling group is given by
Xa =

r

2

∂

∂r
+ z

∂

∂z
+ t

∂

∂t
− vr

2

∂

∂vr

+ ρ g z
∂

∂p
. (A.37)

Special scaling transformationsTo get the group of saling transformations de�ned by (A.37) we ompute p̂ by aLie series (A.10)
p̂ = p + aXa p+

a2

2!
Xa (Xa p) + ... = p+ ρ g z

(
a +

a2

2!
+ ...

)
= p+ (ea − 1) ρ g z .This gives the group of saling transformations as (A.38)r̂ = e

a
2 r , v̂r = e−

a
2 vr ,

ẑ = ea z , v̂z = vz ,

t̂ = ea t , p̂ = p+ (ea − 1) ρ g z T̂ = T .The saling transformations de�ned by p̂ are alled speial saling transformations.The additional term in p̂ anels out the gravity term in the momentum equation.22For the sum of pressure and gravity terms in (A.28) we get
− 1

ρ
∂p̂
∂ẑ

+ g = − 1
ρ

∂(p+(ea
−1) ρ g z)

ea ∂z
+ g = − 1

ρ ea

∂p
∂z

+ g
ea .
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A.4 Lie groups of the condensation problem including surface

tensionFinally we analyze the ondensation problem de�ned by the model equations (A.27) �(A.29) together with the jump onditions at the interfae. Reall the jump onditions(ompare (6.1) � (6.16) and (7.45) � (7.48)). That is,the mass jump ondition:
ṁ = ρ

(
−vr +

∂h

∂t
+ vz

∂h

∂z

)
, (A.39)the normal momentum jump ondition:

p− pg = −σ
h
, (A.40)the ondition of free shear-stress:

∂vz

∂r
= 0 , (A.41)and the energy jump ondition:

ṁ∆h = λ
∂T

∂r
. (A.42)Here we onsider only the model equations of the ondensate, so that we an as-sume pg = 0.

Lie groups of transformations of the condensation problem (without surface tension)At �rst we investigate the problem de�ned by the bulk equations (A.27) � (A.29)plus the mass jump ondition (A.39) and the energy jump ondition (A.42), butignore the momentum jump ondition. A Lie group analysis with MathLie gives thein�nitesimals (A.43)
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ξr = a
2
r , ηvr = −a

2
vr ,

ξz = b z + F1(t) , ηvz = (b− a) vz + ∂F1

∂t
,

ξt = d+ a t , ηp = 2 (b− a) p+ (2 a− b) ρ g z + F2(t) − ρ z ∂
2F1

∂t2
,

ηT = e ,

ηh = a
2
h+ F3(r) .

Invariance of the interfaceThe interfae is de�ned by F = r−h(z, t) = 0 (ompare setion 2.3 and setion 6.2).That is, the interfae is invariant under the group (A.43) of transformations, if r̂ = ĥat r = h. From this we get
ξr(r = h) = ηh(r = h) ,

a

2
h =

a

2
h+ F3(h) ,whih gives F3 = 0.

Surface tensionNext we onsider the normal momentum jump ondition (A.40). For the normalmomentum jump ondition to be invariant under the group (A.43) of transformationsthe invariane ondition (A.12) applied to (A.40)
X (p+

σ

h
) = ηp + ηh

σ

h2has to be zero at the interfae. This gives
ηp + ηh

σ

h2
=

(
a g − ∂

2F1

∂t2

)
ρ z + F2(t) +

a σ

2 h
= 0 ,whih is zero if F2 = 0 and

∂
2F1

∂t2
= a g +

a σ

2 h ρ z
. (A.44)The seond quotient on the right hand side is small (< 1e−4 for R134a and < 1e−3for water, see appendix B) and an be negleted. Then we get F1 by integrat-ing (A.44) twie as

F1(t) =
a g t2

2
+ f t+ j , (A.45)whih de�nes a non-uniform motion in streamwise diretion and is alled a speialGalilean boost [Ibr99℄.
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Not bothRemember that the boundary onditions were invariant under the group of trans-formations for onstant F1. This means that we an �nd a group of transformationsunder whih the ondensation problem is invariant where either the momentum jumpondition or the inlet and outlet boundary onditions are invariant under the samegroup of transformations, but not both. However, we an assume a homogeneousin�ow ondition (i.e. ∂vz

∂z
= 0 at z = 0) to proeed. A Lie group analysis for themodel equations (A.27) � (A.29) plus the jump onditions (A.39) � (A.42) inludingthe momentum jump onditions gives the in�nitesimals

ξr = 4a
5g
r , ηvr = −4a

5g
vr ,

ξz = 6a
5g
a z + a t2 + (f t+ j) , ηvz = −2a

5g
vz + 2 a t+ f ,

ξt = d+ 8a
5g
t , ηp = −4a

5g
p ,

ηT = e ,

ηh = 4a
5g
h .Obviously here the oe�ient b suppress the gravity terms in p̂. The orrespondingLie groups of saling transformations are with s = 5 a g given as follows (A.46)

r̂ = e4 s r , v̂r = e−4 s vr ,

ẑ = e6 s z + g t2

2
(e16 s − e6 s) , v̂z = e−2 s vz + e−2 s (e2 s − 1) g t ,

t̂ = e8 s t , p̂ = e−4 s p ,

T̂ = T ,

ĥ = e4 s h .By this we onlude our hapter about Lie group analysis. We related Lie groupanalysis to generalized dimensional analysis and analyzed the groups of transforma-tions admitted by the model equations of the ondensation problem. We disussedthe groups of saling transformations admitted by our model equations, whih arespeial saling transformations. We demonstrated how to deal with the boundaryonditions and the interfae onditions in terms of a Lie group analysis. The nextstep is to onstrut an analytial solution of the ondensation problem using thesymmetry groups of the ondensation problem by �rst transforming the PDEs intoODEs and than into algebrai equations, as outlined in setion A.1. This is beyondthe sope of this thesis. However, by this appendix we aomplish the neessarybasis for this.



Appendix

B
Material properties and dimensionless

numbers

In this hapter the material properties, measured values, and dimensionless numbersof water and of R134a are given. We use the SI unit system.
B.1 Water[Fie03℄ measured the following quantities (vapor has saturation temperature):vapor temperature Tv = 318.98 K (=45.83 ◦C)temperature di�erene Ts − Tw ≈ 5 K Tw not measuredpressure p = 10 k Nm−2 (= 0.10 bar)mass �ux Ṁl = 0.05 m kg s−1 (= 3.0 gmin−1)

Ṁg = 0.67 m kg s−1 (= 4.0 gmin−1)�lm thikness δl ≤ 0.1 m mThe material properties of water are at Tv and p:density ρl = 989.9 kgm−3

ρg = 0.068 kgm−3dynamial visosity µl = 0.60 m Nsm−2 (N=kgm s−2)
µ = ν ρ µg = 162.9 m N sm−2kinematial visosity νl = 0.606 µ m2 s−1

νg = 164.6 µ m2 s−1thermal ondutivity λl = 0.637 WK−1 m−1 (W=J s−1=kgm2 s−3)
λg = 19.98 m WK−1 m−1



132 Chapter B Material properties and dimensionless numbersspei� heat apaity cl = 4.179 k J kg−1 K−1latent heat of evaporation ∆h = 2.393 k J kg−1surfae tension σ = 68.78 m Nm−1With di = d − 2 δl = (7 − 0.2)mm the harateristi length and the harateristiveloity are:length D = Al
π di

= 0.1 m mveloity U = Ṁl
ρAl

= 0.023 m s−1
PSfrag replaements d

di

AlThe dimensionless numbers used in hap-ter 7 are then:Reynolds Re = ρU D
µ = 3.90 (= Ṁl

µ π di
)Froude Fr = U2

g D
= 0.545Prandtl Pr = µ cP

λ
= 3.94Pelet Pe = RePr = 15.4Stefan St(Tv) = cP Tv

∆h
= 55.6 St(∆T ) = cP ∆T

∆h
= 8.373Weber We = ρDU2

σ = 0.793 e-3Nuÿelt Nu = αD
λThe quotient of �lm thikness and tube length is

ε =
D

L
=

0.1 e-3m
0.5m = 0.2 e-3 .

B.2 R134a (1,1,1,2-Tetrafluorethan)[Fie03℄ measured the following quantities (vapor has saturation temperature):vapor temperature Tv = 297.15 K (=273.15 + 24 ◦C)wall temperature Tw = 294.15 K (Tv − Tw = 5K)pressure p = 0.65 M kgm−2 (=6.5 bar)ondensate mass �ux Ṁl = 0.367 m kg s−1 (=22 gmin−1)�lm thikness (vertial tube) δl = 0.1 .. 0.2 m m



B.2 R134a (1,1,1,2-Tetrafluorethan) 133Aording to Tillner-Roth the material properties are at Tv and p:density ρl = 1210 kgm−3

ρg = 31.39 kgm−3dynamial visosity µl = 198.70 µ kg sm−2

µg = 12.10 µ kg sm−2kinematial visosity νl = 0.164 µ m2 s−1

νg = 0.385 µ m2 s−1thermal ondutivity λl = 82.98 m WK−1 m−1

λg = 14.35 m WK−1 m−1spei� heat apaity cl = 1.421 k J kg−1 K−1

cg = 1.025 k J kg−1 K−1thermal di�usity al = 48.26 n m2 s−1

ag = 445.9 n m2 s−1latent heat of evaporation hl = 233.1 k J kg−1

hg = 411.8 k J kg−1

∆h = 178.72 k J kg−1surfae tension σ = 8.21 m Nm−1With di = d − 2 δl = (7 − 0.2)mm the harateristi length and the harateristiveloity are:length D = Al
Dπ di

= 0.1 m mveloity U = Ṁl
ρAl

= 0.170 m s−1The dimensionless numbers are then:Reynolds Re = ρU D
µ = 85.25 (= Ṁl

µ π di
)Froude Fr = U2

g D
= 19.9Prandtl Pr = µCp

λ
= 3.40Pelet Pe = RePr = 290.1Stefan St(Tv) = cP Tv

∆h
= 2.36 St(∆T ) = cP ∆T

∆h
= 0.024Weber We = ρDU2

2 σ = 0.289The quotient of �lm thikness and tube length is again
ε =

D

L
=

0.1 e-3m
0.5m = 0.2 e-3 .
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