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ZusammenfassungIn dieser Arbeit wird der Ein�uss der Ober�ä
henspannung auf die Kondensation in Strö-mungskanälen mit geringem Dur
hmesser untersu
ht. Sol
he Strömungskanäle kommenin der Prozessindustrie in kompakten Wärmetaus
hern vor. Um die Physik des Prozessesbesser zu verstehen und damit den Wärmeübergang zu verbessern war zunä
hst geplant,das Problem mit kommerzieller CFD-Software zu simulieren. Es stellte si
h jedo
h heraus,dass die Modellglei
hungen für das Problem in den verwendeten Programmen ni
ht ri
htigimplementiert waren.Stattdessen werden die vollständigen kontinuumsme
hanis
hen Modellglei
hungen für sol-
he �Moving Boundary� Probleme mit Phasenübergang und Ober�ä
henspannung hergelei-tet und analysiert. Die Ober�ä
henspannung ist eine physikalis
he Eigens
haft der Phasen-grenz�ä
he und erfordert daher eine eigene Bilanzglei
hung. Auÿerdem ist sie eine Funktionder mittleren Krümmung, und damit der Geometrie der Phasengrenz�ä
he. Diese beidenTatsa
hen erhöhen die Komplexität der Modellglei
hungen wesentli
h.Die Modellglei
hungen werden mit verallgemeinerter Dimensionsanalyse für ein vertikalesRohr vereinfa
ht und die wesentli
hen Phänomene des Problems bestimmt. Das Ergebniswird mit einer experimentellen Untersu
hung vergli
hen, es erklärt den besseren Wärme-übergang bei Fluiden hoher Ober�ä
henspannung in geneigten Rohren. VerallgemeinerteDimensionsanalyse ist eine (in Vergessenheit geratene) Weiterentwi
klung der klassis
henDimensionsanalyse, bei der zusätzli
h au
h die Modellglei
hungen ausgenutzt werden, umdie dimensionslosen Kennzahlen des Problems zu erhalten. Damit ist es mögli
h dieModellglei
hungen auf Basis der beiden unters
hiedli
hen Längen (Filmdi
ke und Rohr-länge) zu analysieren. Es werden Phasengrenz�ä
henbedingungen (�Jump 
onditions�)hergeleitet, die auf den glei
hen Annahmen beruhen wie die Prandtls
hen Grenzs
hi
ht-glei
hungen.Ans
hlieÿend wird auf Basis der vereinfa
hten Modellglei
hungen ein Ein-Glei
hungs-Mo-dell hergeleitet und numeris
h bere
hnet. Das entwi
kelte Modell ist eine Erweiterung derNuÿelt Theorie. Der Wärmeübergang wird im vertikalen Rohr für sehr kleine Rohrdur
h-messer unabhängig von der Ober�ä
henspannung s
hle
hter (der Film wird di
ker) und fürextrem hohe Ober�ä
henspannung besser (der Film wird dünner). Das entwi
kelte Modellwird mit parametris
hen Modellen vergli
hen, es ist besser als Nuÿelts Modell und etwass
hle
hter als Chens Modell.Die diskretisierten Modellglei
hungen bilden ein System von di�erentiellen und algebra-is
hen Glei
hungen (DAE). Der Di�erentiationsindex des Systems wird untersu
ht. Es wirdgezeigt, das der Index dur
h die Navier-Stokes Glei
hungen bestimmt ist und ni
ht dur
hdas (instationäre) Moving Boundary Problem verändert wird. Vers
hiedene Methoden derIndexreduktion werden vergli
hen. Das Hauptproblem von Moving Boundary Problemenist die Ni
htlinearität der Glei
hungen. Auf Basis der Arbeit werden die Vor-und Na
hteilevon vers
hiedenen numeris
hen Methoden für Moving-Boundary Probleme diskutiert.Die Transformation von dimensionsbehafteten Glei
hungen in dimensionslose Glei
hungenist eine Symmetrietransformation. Es wird ausgeführt wie man mit der Lie-GruppenTheorie analytis
he Lösungen für Di�erentialglei
hungen entwi
kelt. Die Lie Theorie wirdmit der verallgemeinerten Dimensionsanalyse vergli
hen und die Symmetrien der Modell-glei
hungen werden bestimmt.
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Chapter

1
Introduction

1.1 Motivation of the thesisCondensation is important in the refrigeration, automotive and pro
ess industries[Car92℄. Higher energy e�
ien
y requirements and the move to more environmen-tally friendly refrigerants in
reased the need for highly e�
ient heat transfer forin-tube 
ondensation (and evaporation) pro
esses [KSD99℄. Improved heat transferte
hnologies are nowadays not only used to save energy but rather to save spa
e.Over the last de
ades experimental studies show that the heat transfer is signi�-
antly higher in 
ompa
t heat ex
hangers than in 
lassi
al tube 
ondensers (i.e. 1.5to 2 times greater), whi
h made 
ompa
t heat ex
hangers popular [CT94℄. Thediameters of hydrodynami
 �ow 
hannels in su
h 
ondensers are in the millimeterrange. This implies that surfa
e tension plays a 
ru
ial role in the heat transfer.In
reasingly, numeri
al simulations are used to redu
e the 
osts of laborious exper-imental studies. E�
ient 
omputational �uid dynami
s (CFD) software pa
kageso�er a great deal in �exibility in geometry and material properties. However, two-phase �ow problems with moving boundaries still represents a major 
hallenge tothe 
urrent state of engineering in 
omputational �uid dynami
s [Li06℄.At the beginning of this thesis, the plan was to simulate the 
ondensation pro
ess nu-meri
ally using a 
omputational �uid dynami
s (CFD)-program. The 
ondensationpro
ess has to be modeled three-dimensional, or two-and-a-half-dimensional, if theproblem is assumed to have rotational symmetry. It turned out that the ne
essaryequations were not implemented 
orre
tly in this (and other) CFD-programs. Ex-pe
ting no further di�
ulties we looked for the 
orre
t equations. But what we werelooking for did not exist. Physi
s of �uids and heat transfer has been well establishedduring the last 
entury, see the referen
e work [TT60℄, and has been intensively in-



2 Chapter 1 Introductionvestigated for a wide range of hydrodynami
al problems [BSL60℄. However, theformulation of the governing equations for �ows involving moving surfa
es is moredi�
ult.Balan
e equations at moving boundaries are 
alled jump 
onditions. A moving sur-fa
e is des
ribed mathemati
ally either using tensor 
al
ulus or modern di�erentialgeometry.1 The equations of 
ontinuum physi
s are tensor equations, so that thejump 
onditions are naturally expressed in tensor notation. Anyway, jump 
ondi-tions for moving boundary problems with phase 
hange and surfa
e tension are not
overed by the existing literature. It is possible to �nd literature for one of them(phase 
hange) without the other (surfa
e tension) or vi
e versa, but not both to-gether [Gre03℄ [Hut03℄ [S
h70℄ [Spu93℄; with the ex
eption of three referen
es whi
hdeal with this problem, but not in a su�
ient manner [Ari89℄ [Sla90℄ [EBW91℄.2However, these referen
es are beyond 
omprehension for most engineers and math-emati
ians. To bridge this gap we derive in this thesis jump 
onditions mostly insymboli
 tensor notation, and give a straightforward des
ription of the geometry ofthe surfa
e. By this we make available the ne
essary equations for the solution ofmoving boundary problems with phase 
hange and surfa
e tension in a way thatthey are 
omprehensible by the mathemati
ian, the physi
ist and the engineer.The next step was to simplify the model equations with the aim to derive modelequations that 
an be solved either analyti
ally or numeri
ally (within feasible lim-its). In literature simpli�
ations of the 
omplete model equations exist for spe
ial
ases, but not for 
ondensation in a 
ylindri
al tube when surfa
e tension has tobe 
onsidered. Interestingly sometimes for the same pro
ess di�erent jump 
ondi-tions are used. Often the model equations are simpli�ed intuitively or the methodof simpli�
ation remains un
lear. What was needed was a reliable method to �ndthe physi
ally relevant terms in the model equations. Classi
al dimensional analy-sis [Bri31℄ 
an not be applied be
ause the problem depends on two di�erent lengths
ales (�lm thi
kness and tube length). Perturbation method [Hol95℄ over
omesthis problem by res
aling the variables. However, we �nally found a better method:generalized dimensional analysis [Lon63℄, a generalization of dimensional analysiswhi
h fell into oblivion over the last de
ades, a highly algorithmi
ally method whi
h1The notation in di�erential geometry varies from author to author (whi
h is makes it not easierfor someone not 
lose to this dis
ipline).2 [Ari89℄ added jump 
onditions at the end of his book, based on the paper of [S
r60℄, who�rst des
ribed interfa
ial dynami
s for Newtonian surfa
e �uids, but this last 
hapter is not anorgani
 part of the book. [Sla90℄ and [EBW91℄ also 
over both but la
k a 
onvin
ing des
riptionof 
urvature (for surfa
e tension).



1.1 Motivation of the thesis 3is based on the physi
al dimensions of the problem. By this it serves as a less error-prone method whi
h made apparent the major phenomena of the analyzed problem.Here we reintrodu
e generalized dimensional analysis in a more mathemati
al rigorand bring the method on a level with 
lassi
al dimensional analysis, so that it 
anbe applied by resear
hers of di�erent dis
iplines to other problems.In appendix A we make a digression to Lie groups [BK89℄ [Olv93℄ and extend ouranalysis further. A dimensionless equation is the result of a symmetry transforma-tion of the original equation (with dimensions). Symmetry transformations 
an beused in 
ertain 
ases to su

essively transform a di�erential equation to a simplerequation and to �nally solve it analyti
ally. We analyze the Lie groups of the sim-pli�ed model equations using a Mathemati
a program [Bau00℄ and demonstrate fora sub-problem how to 
onstru
t an analyti
al solution from the symmetry groups.The intention is to point out a way towards an analyti
al solution, whi
h 
an be usedin a next step to derive a parametri
al model by in
luding additional phenomena.Next, it was planned to solve the simpli�ed model equations numeri
ally. But theequations are still too 
ompli
ated so that the work to do this would have been be-yond the s
ope of this thesis. Instead, we simplify the equations further and derivean ordinary di�erential equation for 
ondensation in a verti
al tube under rotationalsymmetry where we take surfa
e tension into a

ount. We solve it numeri
ally and
ompare the results for two di�erent �uids with experimental results. Yet by thiswe also 
lose another gap. Two kinds of models are used by engineers: parametri-
al models (
orrelations) based on experimental data, and models from 
ontinuumphysi
s. However, in the various handbooks of heat transfer [Cro06℄ [RHC98℄ [Lie87℄there 
an be found analyti
al models only for the simple 
ase of 
ondensation alonga �at plate (as derived by [Nuÿ16℄). Our model is an extension of Nuÿelt's theoryfor 
ondensation in a tube of rotational symmetry by taking surfa
e tension intoa

ount.For a numeri
al simulation it is essential to know the 
hara
teristi
s of the modelequations. After spatial dis
retization the model equations form a system of dif-ferential algebrai
 equations (DAE). We analyze the 
omplexity of the dis
retizedmodel equations from a DAE point of view and analyze the �index� of the movingboundary problem. We show the main problems in the numeri
al solution of movingboundary problems and dis
uss appropriate solution methods.Our interest is to give an analyti
al foundation for resear
hers of both dis
iplines,mathemati
s and engineering, who are working with moving boundary problems andby this to 
ontribute to improved heat ex
hangers.
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1.2 Literature related to condensation in tubes with small di-

ameterIn pro
ess industries 
ompa
t plate heat
Figure 1.1: Compa
t plate heat ex
hanger

ex
hangers are in
reasingly used for re-�ux 
ondensation appli
ations [JC00℄.In re�ux 
ondensation a vapor enters averti
al or in
lined mounted 
ondenserat the bottom and �ows upward. The
ondensate stream �ows gravity 
ontrolleddownward 
ounter
urrently to the va-por �ow. Typi
al appli
ations of re�ux
ondensation are in overhead 
ondensers of distillation 
olumns and vent 
ondensersof rea
tors or stirred vessels. Other appli
ations are in the vent 
ooling se
tion ofair-
ooled steam 
ondensers and in two-phase 
losed thermosyphons. In su
h 
on-densers the hydrauli
 diameter of the �ow 
hannels formed between two plates is5-10 mm, and the �ow 
hannels are in
lined to the verti
al, as depi
ted in �gure 1.1.The fundamental me
hanisms of heat and mass transfer as well as of two phase �owin these small 
hannels are not well understood.
Experimental studies on compact heat exchangersThe vast majority of studies about 
on-

Figure 1.2: Experimental results [Fie03℄

densation in 
ompa
t heat ex
hangersare studies on 
ompa
t plate heat ex-
hangers (see e.g. the 5th InternationalConferen
e on Enhan
ed, Compa
t andUltra-Compa
t Heat Ex
hangers [Sha05℄and its prede
essors). In an experimen-tal study at the Institute for EnergyEngineering, Area of Momentum, Heatand Mass Transfer of the University ofTe
hnology of Berlin, the heat transferin a single representative sub-
hannel of a 
ompa
t 
ondenser was investigated [Fie03℄.The inner diameter of the tube is 7 mm and its length is 500 mm. As 
ondensatethe refrigerant R134a was used. In �gure 1.2 the Nuÿelt number (dimensionless heattransfer number) as a fun
tion of the Reynolds number with the in
lination angle as



1.2 Literature related to condensation in tubes with small diameter 5parameter is shown. The main result is that for an in
lination angle of 45◦ againstthe horizontal the heat transfer is twi
e times better 
ompared to the verti
al.
Analytical and numerical studies on condensation in tubes with small diametersLiterature on 
ondensation in tubes (or 
hannels) with small diameters is on in-
lined, verti
al or horizontal tubes (or 
hannels), and the e�e
t of surfa
e tensionis either taken into a

ount or not. Three authors studied 
ondensation in in
linedtubes. [FR93℄ derived an analyti
al solution for 
ondensation in/on ellipti
al 
ylin-ders but negle
ted variations of the �lm thi
kness with the tube radius. [Mos99℄ stud-ied interfa
ial shear stress but without 
onsidering surfa
e tension. [WD00℄ 
omparedheat transfer in a horizontal and an in
lined tube by energy 
onsiderations. He 
on-sidered surfa
e tension. However, he studied tubes with diameters of 1.94 mm and4.98 mm, whi
h are smaller than diameters of 
ompa
t heat ex
hangers. Conden-sation in verti
al tubes are investigated by the following authors, where the �rsttwo authors 
onsidered surfa
e tension but the last three authors do not. A

ordingto [WD03℄ small surfa
e waves enhan
e the heat transfer mainly due to �lm thinninge�e
t. [ZL02℄ investigated 
ondensation in verti
al triangular 
hannels with a diam-eter between 0.2 mm and 0.3 mm. [Pan01℄ showed that the e�e
t of interfa
ial shearstress on the heat transfer depend on the vapor velo
ity and on the mass transfer(operating Temperature). [Pan03℄ investigated a tube with a diameter of 24 mm,where he showed that turbulent �ow enhan
es the heat transfer. [FBMB01℄ stud-ied evaporative 
ooling. Further there are two studies on horizontal tubes. [SOS02℄studied 
ondensation in horizontal parallel plate 
hannels but he negle
ted surfa
etension. [WHN02℄ investigated horizontal mi
ro-�n tubes by dividing the �ow in two�ow regimes. However, these papers are based on simpli�ed model equations andshow a great variety espe
ially in the interfa
e equations.
Stability of thin filmsHeat ex
hanger often operate at moderate Reynolds numbers (Re / 100), with a�lm thi
kness in the millimeter range and small surfa
e waves with wave lengthin the 
entimeter range. Stability of thin �lms was �rst investigated of [Ben57℄and [Yih63℄ by a linear stability analysis with the result that thin �lms are instablefor all Reynolds numbers and that surfa
e tension has a stabilizing e�e
t on the�lm. [Ban70℄ [ML72℄ [ÜT78℄ and [Spi81℄ extended linear stability analysis on phase
hange problems and showed that 
ondensation in opposite to evaporation tends tostabilize the �lm. However, 
riti
al Reynolds numbers predi
ted with linear stability



6 Chapter 1 Introductionanalysis are too small for te
hni
al appli
ations (Re < 5). Later nonlinear stabilityanalysis as derived by [Ben66℄ (Benney equation), where small surfa
e waves aremodeled by partial di�erential equations whi
h are then perturbed, was applied onsmall �lms with phase 
hange. [BBD88℄, [JDB90℄ (evaporation) and [HW87℄ (
on-densation) demonstrated the dependen
y of stability on the frequen
y of the initialperturbation. However, only �ows along plates are studied in Cartesian 
oordinates,so that the e�e
t of surfa
e tension due to the small tube diameter is not modeled.With Benney's equation experimental observations of two and three-dimensionalwaves studied by [ANP94℄ and [YNN96℄ were simulated numeri
ally by [MNT02℄.
Studies on numerical methods for moving boundary problemsNumeri
al methods for moving boundary problems with 
ontinuous interfa
es are oftwo kinds: Tra
king methods, su
h as Marker and Cell methods (MAC), �rst devel-oped by [HW96℄ and later 
onsiderably improved by [Kot98℄ and [TBaWT98℄ and
apturing methods, su
h as Volume of Fluid methods (VOF) [HN75℄ [HN81℄ [KR98℄,or level set methods [Set99℄. [BKZ92℄ extended VOF methods by a 
ontinuous sur-fa
e tension for
e (CSF) model, [JT98℄ enhan
ed tra
king methods for phase 
hangeproblems, [WW00℄ proposed a VOF method with a CSF model together with thephase 
hange model of [JT98℄, [SD02℄ extended level set methods on phase 
hangeproblems. However, in these studies surfa
e tension and phase 
hange are not im-plemented exa
tly but are treated as sour
e terms. A 
omparison of both methodsby means of the underlying equations 
an not be found in literature.
1.3 Organization of the thesisIn part I we derive the model equations for the 
ondensation problem. The modelequations for the 
ondensation problem are the mass, momentum, and energy bal-an
e equations for the liquid �lm and the vapor phase and for the interfa
e betweenboth phases. All equations in the �rst part are valid for both 
ondensation andevaporation.The balan
e equations at the interfa
e (jump 
onditions) 
ontain geometri
al quan-tities, su
h as normal and tangential ve
tors on the interfa
e and mean 
urvatureof the interfa
e. For these quantities we need a geometri
al des
ription of the in-terfa
e. This is given in 
hapter 2. For the derivation of the balan
e equationsand the jump 
onditions we also need kinemati
al relations, su
h as the Reynolds



1.3 Organization of the thesis 7transport theorem for a material body, but also a Reynolds transport theorem fora material body with an internal interfa
e. They are given in 
hapter 3. Afterthis preliminaries we are able to derive generi
 balan
e equations. This is done in
hapter 4. Here we derive generi
 balan
e equations for the two phases and generi
jump 
onditions for the interfa
e, where we assume both phases to be in
ompressibleNewtonian �uids. In 
hapter 5, we apply the generi
 equations to mass momentumand energy and derive the desired model equations for the 
ondensation problem.Here also the boundary 
onditions are given. By this we 
on
lude the �rst part withthe model equations for the 
ondensation problem in symboli
 notation.Modeling the two-phase problem be
omes more laborious when the e�e
t of surfa
etension is taken into a

ount. In all 
hapters of part I surfa
e tension in
reases the
omplexity. The normal and tangential ve
tors on the interfa
e 
an be derived by asimple geometri
 demonstration, as des
ribed at the beginnings of se
tion 2.1 andin se
tion 2.3. However, for the des
ription of the mean 
urvature (to model thee�e
t surfa
e tension) we need tensor notation. Similarly the derivation of a jump
ondition in
luding the e�e
t of a 
urved surfa
e is not a trivial task. In se
tion 4.2in the �rst attempt we derived the generi
 jump 
ondition starting from the generi
balan
e equation. However, the resulting jump 
ondition does not 
ontain mean
urvature. We need additionally a generi
 balan
e equation for the interfa
e itself,as des
ribed in se
tion 4.3. This in turn involves the need of kinemati
al relations ofthe interfa
e and the Reynolds transport theorem for surfa
es, given in se
tion 3.3and 3.4.After the model equations are formulated the next step is to �nd out as mu
h aspossible about the problem. This is what we do in part II. We analyze the modelequations by means of a generalized dimensional analysis and simplify the modelequations a

ording to the main relevant physi
al phenomena of the 
ondensationproblem.Based on the experimental results, that the �ow regime of the 
ondensate in thein
lined tube is an almost 
ir
ular �lm along the inner tube wall [Fie03℄, we derivein 
hapter 6 the equations for 
ondensation in a tube with small diameter under theassumption of rotational symmetry. Then we redu
e the 
omplexity of this modelequations further by a generalized dimensional analysis in 
hapter 7.3 We deriveequations of boundary layer type for the bulk �ow equations and �nd 
omparable3Dimensional analysis should not be 
onfused with a nondimensionalization of the terms of anequation, whi
h is often useful for a numeri
al simulation.



8 Chapter 1 Introductionsimpli�
ations for the jump 
onditions. By this the main physi
al phenomena in the
ondensation pro
ess are determined.Generalized dimensional analysis allows us to analyze the equations in terms of the
hara
teristi
 length s
ales of the problem, that is the �lm thi
kness (≈ 1 mm) andthe tube length (0.5 m). In se
tion 7.1 we present the method and 
ompare it todimensional analysis. In the following se
tions, the method is applied to the modelequations for the verti
al tube. As a result of this analysis we get nondimensionalequations 
ontaining the main physi
al phenomena of 
ondensation in a tube withsmall diameter. We refer to se
tion 7.4 for the equations of the bulk �ow andse
tion 7.6 for the jump 
onditions. In se
tion 7.7 we evaluate the nondimensionalequations for two di�erent �uids and dis
uss the e�e
t of surfa
e tension for waterand R134a. Finally we 
onsider the e�e
t of an in
lination of the tube on the results.A general de�nition of symmetry due to [Wey52℄ is, that a thing is symmetri
alif there is something we 
an do to it so that after we have done it, it looks thesame as it did before. From this de�nition we understand that the transformationof a di�erential equation into a nondimensional di�erential equation by means of adimensional analysis is a symmetry transformation. The �rst who systemati
allyinvestigated symmetry transformations of di�erential equations was [Lie22℄. In thelast years there has been intense resear
h on solving di�erential equations using theirsymmetries. In appendix A we dis
uss the symmetries of the simpli�ed modelequations by a Lie group analysis. We present the method of �nding the Lie groupsof point transformations whi
h let a given system of di�erential equations invariantand dis
uss its relation to generalized dimensional analysis. We �nd the symmetrygroups of transformations admitted by the model equations of the 
ondensationproblem using a Mathemati
ar software pa
kage and dis
uss them.In part III we deal with the numeri
al simulation of the moving boundary problemfrom two di�erent angles. In 
hapter 8 we simplify the model equations whi
h wederived in part II further and derive a single nonlinear ordinary di�erential equation(ODE) for the �lm thi
kness and in 
hapter 9 we analyze the 
omplete modelequations from a DAE point of view.In se
tion 8.1 we demonstrate how the single model equation is derived and we
ompare it with Nuÿelt's 
ondensation theory. Then we extend this equation inse
tion 8.2 for the 
ase of surfa
e tension and solve it by a standard Runge-Kuttamethod. In se
tion 8.3 we 
ompare the e�e
t of surfa
e tension for two di�erent�uids with experimental results of [Fie03℄.



1.3 Organization of the thesis 9The 
omplete model equations 
onsist of the transient Navier-Stokes equations, theenergy equation and the jump 
onditions, as derived in part I. The numeri
alsolution of Navier-Stokes problems is not a trivial task. The main problems are thenonlinearity due to the 
onve
tive terms in the momentum equation and that thepressure 
annot be 
omputed dire
tly, but is determined by the 
ontinuity equation.With 
onventional methods in every time iteration step some further iterations needto be done to 
ompute the pressure. As a result only lower order time integrationmethods 
an be used. The DAE approa
h is to solve the pressure problem byredu
ing the index of the di�erential algebrai
 equations (whi
h are the result ofthe spatial dis
retization). This has the advantage that higher order methods 
anbe used for the solution of the transient problem and is espe
ially useful if theproblem is highly transient and/or nonlinear. However, it has also disadvantages:In se
tion 9.2 we 
ompare this approa
h with the 
onventional methods for thenumeri
al solution of Navier-Stokes problems, and in se
tion 9.4 we analyze how thejump 
onditions 
hange the index of the DAEs. Finally we dis
uss some aspe
ts ofnumeri
al algorithms for the solution of moving boundary problems based on ouranalysis and on our work with two CFD-software pa
kages in se
tion 9.5.4

4We worked with SEPRAN, a semi-
ommer
ial program distributed by G. Segal, Delft, and withFIDAP, a trademark of FLUENT, both of whi
h were not able to perform the task satisfa
tory.
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Modelling



Chapter

2
Geometry of the moving interface

In this 
hapter we derive the geometri
al properties of the moving interfa
e between
ondensate and vapor phase, su
h as normal and tangential ve
tors and mean 
ur-vature. For the des
ription of three-dimensional �ows a Cartesian frame of referen
ereally su�
e. However, a surfa
e is a two-dimensional non Eu
lidean spa
e and de-mands a tensorial treatment. First, the formulas for normal and tangential ve
tors,mean 
urvature and interfa
e velo
ity are given. Then, by an impli
it surfa
e rep-resentation the geometri
al properties for the interfa
e of the 
ondensation problemare 
omputed. Two formulas to 
ompute the normal ve
tor and two formulas to
ompute the mean 
urvature are dis
ussed.The material in this 
hapter is mainly
PSfrag repla
ements u1 =
onst.

u2 =
onst.

x

y

z

a1

a2
n

Figure 2.1: Tangent spa
e on a surfa
e

based on [EBW91℄ [Ari89℄ [TT60℄ and[Eri71℄. They present 
lassi
al 
ontin-uum physi
s intrinsi
ally tied with ten-sor 
al
ulus. For an introdu
tion in ten-sor 
al
ulus we refer to [S
h97℄. [Sla90℄[Sla99℄ and [Dee98℄ present transport phe-nomena in
luding interphase transportphenomena using moderate tensor no-tation. [Küh99℄ is a di�erential geome-try book designed for the mathemati-
ian [Opr00℄ has (for the engineer) afar easier notation but also la
k somederivations.
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2.1 Curvilinear coordinate systemsA two-dimensional surfa
e 
an be best analyzed by 
overing the surfa
e with agrid, see �gure 2.1. The grid is obtained by the 
urves de�ned by u1 and u2 held
onstant. The position of a point on the surfa
e 
an be given intrinsi
ally in termsof the two 
urvilinear surfa
e 
oordinates (or parameters) u1 and u2, or extrinsi
allyby a position ve
tor to that point This de�nes a 
urvilinear 
oordinate system whi
his not orthogonal in general. In this thesis 
artesian 
oordinates are denoted by xiand indexed by a subs
ript. Curvilinear 
oordinates are denoted by uα and areindexed by a supers
ript. When the index takes only the values 1, 2 greek lettersare used and when the index takes the values 1, 2, 3 latin letters are used. Einsteinsummation 
onvention is used, whi
h states that if an index is repeated in a termthat implies a sum over all possible values for that index.
Tangential and normal vectorsIn our 
ase the interfa
e between 
ondensate and vapor is not stationary, so thatthe position ve
tor to a point on the interfa
e is given in 
artesian 
oordinates by

x(u1, u2, t) = x1(u
1, u2, t) e1 + x2(u

1, u2, t) e2 + x3(u
1, u2, t) e3 , (2.1)or in index notation by

x(uα, t) = xi(u
α, t) ei , where uα = u1, u2. (2.2)Hen
e, all geometri
al properties are fun
tions of time.A Taylor series expansion of x in the surfa
e variables uα up to the linear term yieldsthe total derivativedx =

∂x

∂uα
duα .If u2 = 
onstant (du2 = 0), only the 
omponent along the u1 
urve remains and ∂x

∂u1de�nes the tangent ve
tor along this 
urve; similarly ∂x
∂u2 de�nes the tangent ve
toralong the u2 
urve [S
h97℄. The derivatives with respe
t to the 
urvilinear 
oor-dinates uα are 
alled 
ovariant derivatives. The 
ovariant derivatives of a positionve
tor

aα =
∂x

∂uα
= ei

∂xi

∂uα
(2.3)



2.1 Curvilinear coordinate systems 13form the base ve
tors of a lo
al surfa
e 
oordinate system. In terms of the 
ovariantbase ve
tors the surfa
e metri
 tensor is de�ned as
aαβ = aα · aβ , (2.4)[Ari89℄. The metri
 tensor is also 
alled �rst fundamental tensor. The lo
al unitnormal ve
tor at a point (u1, u2) normal to the surfa
e is de�ned by
n =

a1 × a2

|a1 × a2|
. (2.5)

Dual basisAnother set of base ve
tors aβ is de�ned by the surfa
e Krone
ker delta δαβ

aα · aβ = δαβ ,they are 
alled dual base ve
tors or re
ipro
al or 
ontravariant base ve
tors respe
-tively [S
h97℄. This 
ondition is 
alled orthogonality relation. It de�nes a ve
tor a1that lies in the plane formed by the ve
tors a1,a2, is perpendi
ular to a2, forms ana
ute angle with a1 and its length is given by a1 · a1. This is also the de�nitionof the gradient ∇u1 of the surfa
e 
oordinate, whi
h is perpendi
ular to the levelsurfa
e de�ned by u1(x1, x2, x3, t) = 
onstant. Similarly the orthogonality relationde�nes the ve
tor a2. Then the dual or 
ontravariant base ve
tors are given by
aα = ∇uα = ei

∂uα

∂xi

. (2.6)With the 
ontravariant base ve
tors the 
ovariant surfa
e metri
 tensor is
aαβ = aα · aβ . (2.7)However, the dual basis is more 
onvenient 
al
ulated by means of the lo
al unitnormal ve
tor
a1 =

a2 × n
[a1,a2,n]

, a2 =
n× a1

[a1,a2,n]
. (2.8)

[a1,a2,n] = [a1 × a2] ·n is the s
alar triple produ
t [Dee98℄.
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Orthogonal curvilinear coordinate systemsIf the base ve
tors of a 
urvilinear 
oordinate system are orthogonal (a1 · a2 = 0),the 
ovariant and 
ontravariant metri
 tensor redu
e to
aαβ =

[
a11 0

0 a22

]
, aαβ =

[
a11 0

0 a22

]
.For su
h orthogonal systems the normalized surfa
e ve
tors are 
alled self re
ipro
al,in the sense that a1√

a11
= a1

√
a11

and a2√
a22

= a2
√

a22
. It is 
onvenient to introdu
e unitve
tors

e1 =
a1√
a11

, e2 =
a2√
a22

,[EBW91℄.
Surface gradientThe identity tensor is de�ned by

I = a1 a1 + a2 a2 + nn ,and possesses the property I ·x = x for any x [EBW91℄. This relation is also 
alledorthogonality relation. By subtra
ting the part related to the normal ve
tor from Ithe surfa
e identity tensor is de�ned as
IS = I − nn = aα aα , (2.9)[EBW91℄. Similarly the surfa
e gradient is de�ned by the proje
tion in normaldire
tion subtra
ted from the gradient
∇S = ∇ − nn∇ . (2.10)By this we get (with ei · ej = δij)

∇S = IS · ∇ = aα aα ·
(
ei

∂

∂xi

)
= aα

(
ej

∂xj

∂uα

)
·
(
ei

∂

∂xi

)
= aα ∂

∂uα
. (2.11)
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2.2 Mean curvatureThe mean 
urvature is de�ned as
H = −1

2
∇S · n = −1

2

(
aα ∂

∂uα

)
·n , (2.12)[Dee98℄. The mean 
urvature is proportional to the rate of 
hange with respe
t tothe surfa
e 
oordinates of the lo
al normal ve
tor.

2.3 Implicit parameterized surfaceTo 
ompute the normal and tangential ve
tors and the mean 
urvature of the movinginterfa
e it is ne
essary to 
hoose a parametrization of the interfa
e. For example, if averti
al tube is assumed and the 
ondensate �ows down along the inner walls withoutshowing waves, then the problem has rotational symmetry and the interfa
e betweenthe 
ondensate and the vapor 
an be parameterized with the surfa
e 
oordinates
u1 = z and u2 = ϑ, see se
tion 6. Here we derive the geometri
al surfa
e propertiesby a more general parametrization.
Normal and tangential vectors of an implicit parametrized surfaceEvery moving surfa
e 
an be lo
ally des
ribed by a real-valued fun
tion of twovariables and time

z = h(u, v, t) or impli
itly F (u, v, z, t) = z − h(u, v, t) = 0 ,[Ari89℄ [Opr00℄. For 
onvenien
e we write u1 = u, u2 = v. By this parametrizationthe position ve
tor be
omes
x(u, v, t) = u e1 + v e2 + h(u, v, t) e3 .The tangential ve
tors are given by the 
ovariant base ve
tors (2.3) as
a1 =

∂x

∂u
=




1

0
∂h
∂u


 , a2 =

∂x

∂v
=




0

1
∂h
∂v


 . (2.13)



16 Chapter 2 Geometry of the moving interfaceThe lo
al unit normal ve
tor is the 
ross produ
t of the tangent ve
tors, s
aled byits length. Alternatively, if the surfa
e is given by z = h(u, v, t), the unit normalve
tor 
an be obtained from the gradient of the impli
it fun
tion F (u, v, z, t) = 0.Expanding F (u, v, z, t) in a Taylor series up to the linear term for the variables u, v, zleads to the total derivativedF =
∂F

∂u
du+

∂F

∂v
dv +

∂F

∂z
dz ,whi
h is zero be
ause F = 0. Writing the total derivative as ∇F · du = 0 wheredu = [du, dv, dz] shows that the gradient ∇F is perpendi
ular to the level surfa
ede�ned by F (u, v, z, t) = 0. The lo
al unit normal ve
tor reads then

n =
∇F

|∇F | =




−∂h
∂u

−∂h
∂v

1




1√(
∂h
∂u

)2
+
(

∂h
∂v

)2
+ 1

. (2.14)
Mean curvature of an implicit parametrized surfaceThe mean 
urvature is given by (2.12) as being proportional to the rate of 
hangeof the surfa
e normal with respe
t to the surfa
e 
oordinates

H = −1

2

(
a1 ∂

∂u
+ a2 ∂

∂v

)
·n = −1

2

(
a1 · ∂n

∂u
+ a2 · ∂n

∂v

)
.Alternatively the mean 
urvature is often 
omputed more 
onveniently by means ofthe �rst and se
ond fundamental tensor as explained below [Ari89℄ [Küh99℄. For theimpli
it surfa
e parametrization the �rst fundamental tensor, or 
ovariant metri
tensor (2.4), reads in matrix form

aαβ =

[
a1 · a1 a1 · a2

a2 · a1 a2 · a2

]
=

[
1 + (∂h

∂u
)2 ∂h

∂u
∂h
∂v

∂h
∂v

∂h
∂u

1 + (∂h
∂v

)2

]
.Between the 
ovariant and the 
ontravariant metri
 tensor (2.7) the relation

aαγ aγβ = (aα · aγ) (aγ · aβ) = aα · (aγ aγ) · aβ = aα · IS · aβ = aα · aβ = δαβholds, so that the 
ontravariant metri
 tensor aαβ is the inverse of the 
ovariantmetri
 tensor aαβ [EBW91℄. The inverse of a matrix is given by the transpose of
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ofa
tor matrix (denoted by a tilde), divided by the determinant of the matrix.1This yields
aαβ = (aαβ)−1 =

ãαβ

det aαβ
=

1

a11 a22 − a12 a21

[
a22 −a12

−a21 a11

]
,and for the impli
it surfa
e parametrization

aαβ =
1

1 + (∂h
∂u

)2 + (∂h
∂v

)2

[
1 + (∂h

∂v
)2 −∂h

∂u
∂h
∂v

−∂h
∂u

∂h
∂v

1 + (∂h
∂u

)2

]
.Both metri
 tensors are evidently symmetri
. They are also positive de�nite.2Next, the se
ond fundamental tensor is de�ned as

bαβ =
∂aα

∂uβ
· n or alternatively bαβ = −aα · ∂n

∂uβ
. (2.15)[Ari89℄ [Küh99℄. The �rst equation of (2.15) yields for our parametrization

bαβ =
∂aα

∂β
· n = −

[
∂a1

∂u
· n ∂a1

∂v
· n

∂a2

∂u
· n ∂a2

∂v
· n

]
=

1

1 + (∂h
∂u

)2 + (∂h
∂v

)2

[
∂
2h

∂u2
∂
2h

∂u∂v
∂2h
∂v∂u

∂2h
∂v2

]
.The se
ond fundamental tensor is also symmetri
 but not ne
essarily positive de�-nite. From the �rst and se
ond fundamental tensor the shape operator or Weingartenmap is de�ned

L = bαγ a
γβ =

[
b11 b12

b21 b22

]
1

det aαβ

[
a22 −a12

−a21 a11

]
, (2.16)[Küh99℄. It be
omes for the impli
it surfa
e parametrization

L =
1√
o




∂2h
∂u2

(
1 + (∂h

∂v
)2
)
− ∂2h

∂u∂v
∂h
∂u

∂h
∂v

∂2h
∂v∂u

(
1 + (∂h

∂u
)2
)
− ∂2h

∂u2
∂h
∂u

∂h
∂v

∂
2h

∂u∂v

(
1 + (∂h

∂v
)2
)
− ∂

2h
∂v2

∂h
∂u

∂h
∂v

∂
2h

∂v2

(
1 + (∂h

∂u
)2
)
− ∂

2h
∂u∂v

∂h
∂u

∂h
∂v


 ,with √

o =
√

1 + (∂h
∂u

)2 + (∂h
∂v

)2. The eigenvalues of a produ
t of a symmetri
 matrixwith a symmetri
 positive de�nite matrix are all real, Zurmühl [Zur64℄.1For the 
omputation of the inverse of a matrix by its 
ofa
tor matrix [Apo69℄.2The 
ondition that a matrix is positive de�nite is that all upper left determinants are positive,Apostol [Apo69℄ a11 = 1 + (∂h
∂u

)2 > 0 and
a11a22 − (a12)2 = (1 + (∂h

∂u
)2)(1 + (∂h

∂v
)2) − ∂h

∂u
∂h
∂v

= 1 + (∂h
∂u

)2 + (∂h
∂u

)2 + ∂h
∂u

∂h
∂v

− ∂h
∂u

∂h
∂v

> 0.



18 Chapter 2 Geometry of the moving interfaceThe two eigenvalues κ1 and κ2 of L are 
alled prin
ipal 
urvatures. The mean
urvature and the Gauÿ 
urvature K are de�ned by
H =

1

2
tra
eL =

1

2
bαβ a

αβ = κ1 + κ2 and K = detL =
det bαβ

det aαβ

= κ1 κ2, (2.17)[Sla90℄. So that �nally the mean 
urvature be
omes for our parametrization
H =

1

2




∂2h
∂u2

(
1 + (∂h

∂v
)2
)
− 2 ∂2h

∂u∂v
∂h
∂u

∂h
∂v

+ ∂2h
∂v2

(
1 + (∂h

∂u
)2
)

(
∂h
∂u

)2 + (∂h
∂v

)2 + 1
) 3

2


 . (2.18)For the 
omputation of the mean 
urvature with (2.17) only the 
ovariant baseve
tors and the derivatives of the 
ovariant base ve
tors need to be 
omputed. If(2.12) is used to 
ompute the mean 
urvature also the 
ontravariant base ve
tors andtheir derivatives need to be 
omputed. That shows that using the shape operatorto 
ompute the mean 
urvature often simpli�es the 
omputations, espe
ially in the
ase of orthogonal 
oordinate systems. However, the de�nition of the mean 
urvaturewith (2.12) is more physi
ally intuitive. We will use this formulas again in 
hapter 6.



Chapter

3
Kinematics of bulk fluids and of the moving

interface

In this 
hapter we dis
uss the kinemati
al relations that are ne
essary to formulatethe balan
e equations of the 
ondensation problem.1 Experiments show that a �uidinterfa
e is in fa
t a three-dimensional region with a thi
kness on the mi
ro-s
alelevel [EBW91℄ [Sla99℄. Following [Gib28℄ su
h an interfa
e 
an be regarded as atwo-dimensional dividing surfa
e where the e�e
ts of the interfa
e on the adjoiningbulk phases are represented by surfa
e ex
ess mass, momentum and energy [Sla90℄.By this the e�e
t of surfa
e tension is in
luded in the balan
e equations of the
ondensation problem (see se
tion 4.3).First we give the kinemati
al relations for the bulk �uids, then a material volumewith an internal interfa
e is 
onsidered. Next we dis
uss the kinemati
al relations ofthe two-dimensional moving interfa
e and in the last se
tion we deal with kinemati
alrelations related to 
urvature of the interfa
e.The �rst part of this 
hapter is mainly based on [Ari89℄ [S
h99℄ [BB75℄ and [TT60℄.The interfa
e related se
tions are further based on [Sla90℄ [Sla99℄ and on [EBW91℄.
3.1 Kinematics of a material volumeTo 
larify terminology we �rst re
all some kinemati
s of bulk �uids and the Reynoldstransport theorem for a material volume.1�Kinemati
s is the des
ription of motion per se� [Ari89℄.
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Basic kinematicsFrom the basi
 assumption of 
ontinuum theory, a body 
onsist at every moment ofin�nitely many parti
les without dimension and no spa
e between them, it followsthat every parti
le 
orrespond to a position in spa
e. A parti
le is represented at agiven initial time, by a position ve
tor ξ, as shown in �gure 3.1. The 
oordinates of
ξ are 
alled material 
oordinates. At another time the same parti
le is representedby another position ve
tor as a fun
tion of the initial position of the parti
le andtime

x = x(ξ, t) (3.1)The 
oordinates of x are 
alled spatialPSfrag repla
ements
ξ x(ξ, t)

x
y

z

Figure 3.1: Moving parti
le


oordinates. The initial position of theparti
le is taken as a referen
e 
on�gu-ration. Equation (3.1) de�nes the mo-tion of a parti
le [TT60℄. Assuming 
on-tinuous motion and that a parti
le 
annot o

upy two pla
es at the same timethe relation is a one-to-one mapping andwe 
an also write 
onversely
ξ = ξ(x, t) .Physi
al quantities like density, velo
ityand temperature, whi
h are fun
tions of spa
e and time, are 
alled �eld variablesand they are here denoted by ϕ. A �eld variable 
an also be given as a fun
tion ofparti
le and time. The representation of a �eld variable as a fun
tion of spa
e andtime is 
alled spatial (or Euler) representation, that is
ϕ = ϕ(x, t) or ϕ = ϕ(ξ(x, t), t) .The representation of a �eld variable as a fun
tion of parti
le and time is 
alledmaterial (or Lagrange) representation, that is
ϕ = ϕ(ξ, t) or ϕ = ϕ(x(ξ, t), t) .Balan
e equations of mass, momentum and energy are appropriately represented inspatial variables [BB75℄.
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Material derivative and velocityField variables are fun
tions of several variables, so that their derivatives are par-tial derivatives. Partial derivatives where spatial 
oordinates are held 
onstant aredenoted by ∂. Partial derivatives where material 
oordinates are held 
onstant aredenoted with an upper
ase D [S
h99℄.2 The partial derivative with respe
t to timeDϕDt =
∂ϕ(ξ, t)

∂t
=

(
∂ϕ

∂t

)

ξ

.is 
alled material (or 
onve
ted) derivative and gives the rate of 
hange an observermoving with the parti
le would see. The material derivative of a position ve
tor isthe velo
ity of a given parti
le
v =

DxDt . (3.2)Balan
e equations are given in spatial 
oordinates. To obtain the material derivativeof a �eld variable ϕ(x(ξ, t), t) in spatial variables the 
hain rule has to be appliedDϕDt =
∂ϕ

∂t
+

∂ϕ

∂xi

DxiDt ,

=
∂ϕ

∂t
+ v · ∇ϕ , (3.3)where we used Einstein summation 
onvention. The material derivative is the lo
alrate of 
hange of a given parti
le at a given position and at a given time plus the
onve
tive rate of 
hange related to the moving volume [Sla99℄.

Reynolds transport theorem for a material volumeFor the derivation of the balan
e equations we need the Reynolds transport theoremfor a material volume. A mass 
onserving volume is 
alled material volume (ormaterial body) and here denoted by V0. It is moving with time and deforming ingeneral. A quantity B0 
ontinuously de�ned over a material volume V0 is given by
B0 =

∫
V0
ϕ dV . The rate of 
hange of B0 with respe
t to time is given bydB0(t)dt =

ddt ∫

V0(x,t)

ϕ(x, t) dV .2Another 
ommon notation for the material derivative is a dot on the variable ẋ.



22 Chapter 3 Kinematics of bulk fluids and of the moving interfaceIn a spatial representation V0(x, t) depends on time, so that integration and dif-ferentiation 
an not be inter
hanged. With the Ja
obian J = det
(

∂xi

∂ξj

) the vol-ume element 
an be transformed from spatial 
oordinates into material 
oordinatesdV = J dV0. The material volume element dV0 does not depend on time, so that thenintegration and di�erentiation 
an be inter
hanged. The time derivative be
omesthe material derivativeddt ∫

V0(x,t)

ϕ(x, t) dV =

∫

V0(ξ,t)

DDt(ϕ(ξ) J
)dV0 .Using the material derivative of the Ja
obian DJDt

= J ∇ · v we get
∫ DDt(ϕJ) dV0 =

∫ (DϕDt J + ϕ
DJDt ) dV0 =

∫ (DϕDt + ϕ∇ · v
)
J dV0 ,where we dropped the integration limits for simpli
ity [Ari89℄. After transformingthe volume element ba
k to the spatial volume element and by using the materialderivative (3.3) of a �eld variable we get for the rate of 
hange with time of B0ddt ∫

V0

ϕ dV =

∫ (DϕDt + ϕ∇ · v
) dV , (3.4)

=

∫ (
∂ϕ

∂t
+ ∇ · [ϕ v]

) dV .Note that when the derivative of the integral is taken the integration domain has tobe indi
ated. Using Gauÿ theorem3 the divergen
e term in the volume integral 
anbe 
hanged into a surfa
e integralddt ∫
V0

ϕ dV =

∫
∂ϕ

∂t
dV +

∮
ϕ v ·n dA , (3.5)where the normal ve
tor is dire
ted outwards on the surfa
e. The velo
ity v is thevelo
ity of mass while moving a
ross the surfa
e. Equations (3.4) � (3.5) are 
alledReynolds transport theorem. In the form of (3.5) the Reynolds transport theoremhas a physi
al meaning: The rate of a

umulation of a quantity in a material volume
an be interpreted as the rate of a

umulation of the quantity in a volume thatequals the material volume at a given time plus 
onve
tive �ux (
onne
ted to mass)leaving the volume through the surfa
e at that time [S
h99℄. In Dziubek [Dzi04℄ amore detailed dis
ussion of the Reynolds transport theorem 
an be found.3The Gauÿ theorem or divergen
e theorem for a ve
tor f is given as: ∫ ∇·f dV =

∮
f ·n dA.



3.2 Reynolds transport theorem for a material volume with an interface 23

3.2 Reynolds transport theorem for a material volume with an

interfaceIn this se
tion we 
onsider a material volume V0 = Vl + Vg, where the �eld variablehas the value ϕl (l for liquid phase) in the volume Vl and the value ϕg (g for gasphase) in the volume Vg, as shown in �gure 3.2. An interfa
e between two immis
ible�uids is 
alled a material interfa
e, if is formed by the same material elements orparti
les at all times. If phase 
hange o

urs at an interfa
e between two aggregatestates of a �uid, as is the 
ase in the 
ondensation problem, the surfa
e velo
ity uof the interfa
e di�ers from the velo
ity v of the mass, and the interfa
e is 
alledsingular interfa
e, Greve [Gre03℄.
JumpThe di�eren
e between the two valuesPSfrag repla
ements

n
ng

nl

Ã

Ag

Al
Vg

Vl

Figure 3.2: Material volume with interfa
e
at the surfa
e is denoted by

[[
ϕ
]]

:= ϕg − ϕland 
alled the jump of ϕ [TT60℄.The rate of 
hange of B0 with respe
t totime is the sum of the rate of 
hange of
Bl and Bg with respe
t to timedB0(t)dt =

dBl(t)dt +
dBg(t)dt ,that isddt ∫

V0

ϕ dV =
ddt ∫

Vl

ϕl dV +
ddt ∫

Vg

ϕg dV .The volumes Vl and Vg are not material, so that we need the Reynolds transporttheorem in a modi�ed version for an arbitrary volume.
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Reynolds transport theorem for two arbitrary volumesA quantity Bu whi
h is 
ontinuously de�ned over an arbitrary volume Vu is givenby Bu =
∫

Vu
ϕ dV . The volume Vu is assumed to 
onsist of �
tive mass and shall bematerial (
onserving the �
tive mass). Then the rate of 
hange with time of Bu isa

ording to the Reynolds transport theorem (3.5) given asddt ∫

Vu

ϕ dV =

∫
∂ϕ

∂t
dV +

∮
ϕu · n dA , (3.6)though here the velo
ity u is the velo
ity of the boundary of the 
onsidered volume.Now we apply the general formula to our 
ontrol volumes. With (3.6) the Reynoldstransport theorems for the two volumes Vl and Vg are given asddt ∫

Vl

ϕ dV =

∫

Vl

∂ϕ

∂t
dV +

∫

Al

ϕ v · dA+

∫

Ã

ϕl u · ndÃ , (3.7)and ddt ∫
Vg

ϕ dV =

∫

Vg

∂ϕ

∂t
dV +

∫

Ag

ϕ v · dA+

∫

Ã

ϕg u · (−n) dÃ , (3.8)where we 
hoose the normal ve
tor n at the interfa
e su
h that it shows from theliquid to the vapor. By adding (3.7) and (3.8) we get the Reynolds transport theoremfor the entire volume V0 = Vl + Vg asddt ∫
V0

ϕ dV =

∫
∂ϕ

∂t
dV +

∮
ϕ v · dA−

∫

Ã

[[
ϕ
]]
u · ndÃ , (3.9)[S
h99℄. Equation (3.9) is the Reynolds transport theorem for a material volumewith a singular interfa
e. It states that the rate of a

umulation of a quantity in amaterial volume, where ϕ undergoes a jump on an interfa
e 
an be interpreted asthe rate of a

umulation of the quantity in a volume that equals the material volumeat a given time plus 
onve
tive �ow of the quantities ϕl and ϕg leaving the volumethrough the outer surfa
e and the interfa
e at that time. Here again the integrationlimits are dropped where the integrals are evaluated at a given time. Only theintegration domain of the integral along the interfa
e Ã has to be indi
ated.



3.3 Kinematics of the moving interface and velocities 25Using Gauÿ theorem4 the Reynolds transport theorem (3.9) for a material volumewith a singular interfa
e 
an be rewritten asddt ∫
V0

ϕ dV =

∫ (
∂ϕ

∂t
+ ∇ · [ϕ v]

) dV +

∫

Ã

[[
ϕ (v − u)

]]
· ndÃ , (3.10)[Sla90℄.

3.3 Kinematics of the moving interface and velocitiesAs explained in the introdu
tion of this 
hapter, the interfa
e between the vaporand the 
ondensate is assumed to be a two-dimensional surfa
e. In this se
tion thekinemati
s of the moving interfa
e are dis
ussed and the material (or 
onve
ted)surfa
e derivative, the �uid velo
ity and the velo
ity of the interfa
e are given.
Kinematics of the moving interfaceThe interfa
e is not 
omposed of a �xed set of parti
les, there will be mass transferbetween the interfa
e and the two adjoining phases [EBW91℄. A

ording to thebasi
 assumption of 
ontinuum theory also a surfa
e 
onsist at every moment ofin�nitely many parti
les. In parti
ular, a parti
le joining the interfa
e 
oin
ideswith the parti
le that was at that position before. For a parti
le that is leaving theinterfa
e instantaneously another parti
le emerges. So although there is a many-to-one mapping between parti
les and the region in the surfa
e that is o

upiedby them, we 
an assign one representing parti
le for all possible parti
les at onepoint [TT60℄.The position ve
tor to a point on the surfa
e was given in 
hapter 2 as a fun
tionof surfa
e 
oordinates and time (2.1) and is here denoted by a lower index S

x
S

= x
S
(uα, t) with α = 1, 2 . (3.11)At a given time this parti
le on the surfa
e is represented by a position ve
tor, whi
his here also denoted by a lower index S

ξ
S

= ξ
S
(uα

0 ) . (3.12)4For a material volume with an internal interfa
e Gauÿ theorem be
omes (
ompare footnote 3)∫
∇·[ϕv] dV =

∮
ϕv ·dA−

∫
Ã
[[ ϕ ]]v ·ndÃ.



26 Chapter 3 Kinematics of bulk fluids and of the moving interfaceWe take this as a initial position and 
all it intrinsi
 surfa
e referen
e 
on�guration.Conversely every position in the surfa
e 
orresponds to a parti
le
uα

0 = uα
0 (ξ

S
) . (3.13)Obviously the initial position of a parti
le lo
ated at the surfa
e 
an be identi�edeither by (3.12) or by (3.13). At another time the parti
le is represented by anotherset of 
oordinates as a fun
tion of the referen
e 
on�guration of the surfa
e parti
leand time

uα = uα(uα
0 , t) . (3.14)With the assumption of a representing surfa
e parti
le we established a one-to-onemapping between the 
oordinates of a surfa
e parti
le and the surfa
e 
oordinates,so that we 
an write reversely

uα
0 = uα

0 (uα, t) . (3.15)Equations (3.14) and (3.15) des
ribe the intrinsi
 motion of a surfa
e parti
le withinthe surfa
e, without knowing how the surfa
e itself is moving.The motion of a surfa
e parti
le in spa
e we get from the motion of the surfa
e(3.11) and the intrinsi
 motion of the surfa
e parti
les on the surfa
e (3.14), (3.15)as
x

S
= x

S
(uα

0 , t) or x
S

= x
S
(uα(uα

0 , t), t) . (3.16)Equation (3.16) is not reversible. A position in spa
e is 
orresponding to everysurfa
e parti
le, but the 
onverse is not true [Sla90℄.A surfa
e �eld variable is here denoted by ϕ
S
. It 
an be given as a fun
tion of spa
eand time

ϕ
S

= ϕ
S
(x

S
, t) , that is with (3.11) ϕ

S
= ϕ

S
(uα, t) .Or it 
an be given as a fun
tion of parti
le and time

ϕ
S

= ϕ
S
(uα

0 , t) , ϕ
S

= ϕ
S
(uα(uα

0 , t), t) .
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Material surface derivativeThe partial derivative of a surfa
e �eld variable with respe
t to time where mate-rial surfa
e 
oordinates are held 
onstant is 
alled material (or 
onve
ted) surfa
ederivative and it is here denoted with D
SD

S
ϕ

SDt =
∂ϕ

S
(uα

0 , t)

∂t
=

(
∂ϕ

S

∂t

)

uα
0

.It is the rate of 
hange of a surfa
e �eld variable with respe
t to time an observermoving with a surfa
e parti
le would see. The material surfa
e derivative of aposition ve
tor is the velo
ity of a given surfa
e parti
le
v =

D
S
x

SDt . (3.17)Here we did not denote v with a lower index S to be 
onsistent with the balan
eequations as they are given later. Surfa
e balan
e equations are given in spatialsurfa
e 
oordinates. To obtain the surfa
e material derivative of a surfa
e �eldvariable ϕ
S
(uα(uα

0 , t), t) in spatial surfa
e 
oordinates the 
hain rule has to be appliedD
S
ϕ

SDt =
∂ϕ

S

∂t
+

∂ϕ
S

∂uα

DuαDt ,With the surfa
e gradient (2.11)
∇

S
=

∂

∂uα
aαand the intrinsi
 surfa
e velo
ity

w =
DuαDt aα (3.18)the material surfa
e derivative be
omesD

S
ϕ

SDt =
∂ϕ

S

∂t
+w · ∇

S
ϕ

S
, (3.19)where we used aα aα = I

S
, a

ording to (2.9). The material surfa
e derivative isthe lo
al rate of 
hange at a position of a given surfa
e parti
le at a given time plusthe 
onve
tive rate of 
hange related to the moving surfa
e.
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Velocity of an interface particle relative to velocity of the moving interfaceThe material surfa
e derivative of the surfa
e position ve
tor x
S
(uα(uα

0 , t), t) is with(3.19) given asD
S
x

SDt =
∂x

S

∂t
+w · ∇

S
x

S
. (3.20)The partial derivative of the surfa
e position ve
tor with respe
t to time (where uαheld 
onstant) is the velo
ity of the moving interfa
e

u =
∂x

S

∂t
(3.21)The surfa
e gradient of the surfa
e position ve
tor is with (2.3) the surfa
e identitytensor

∇
S
x

S
=

∂x
S

∂uα
aα = aα a

α = I
S
. (3.22)Using (3.21), (3.22) and (3.17) the material derivative of the surfa
e position ve
torbe
omes an equation with three velo
itiesD

S
x

SDt =
∂x

S

∂t
+w · ∇

S
x

S
, (3.23)

v = u+w .By this we see that the intrinsi
 surfa
e velo
ity is the velo
ity of a surfa
e parti
lerelative to the velo
ity of the surfa
e
w = v − u . (3.24)Note that in general u has a normal and a tangential part, so thatw is not ne
essarilythe tangential part of v

S
.

Surface velocity for an implicit surface parametrizationIn se
tion 2.3 we dis
ussed the geometri
al properties of a surfa
e de�ned by animpli
it fun
tion F (x
S
(uα, t), t) = 0. Di�erentiating F = 0 with respe
t to timegives

∂F

∂t
+

∂F

∂x
Si

∂x
Si

∂t
= 0 and equivalently ∂F

∂t
+ u · ∇F = 0 . (3.25)



3.4 Reynolds transport theorem and divergence theorem for a surface 29With the normal ve
tor n = ∇F
|∇F | as derived in (2.14) we then 
an write either

u ·n = −
∂F
∂t

|∇F | or u · n = u · ∇F

|∇F | . (3.26)The �rst equation is independent of the parametrization, so that all possible surfa
evelo
ities have the same normal 
omponent u·n, whi
h is 
alled speed of displa
e-ment [TT60℄ [Sla90℄. It is 
onvenient to 
hoose a parametrization su
h that thesurfa
e velo
ity be
omes the surfa
e normal velo
ity
u = u ·nn .The surfa
e de�ned by F (u, v, z, t) = z − h(u, v, t) has the surfa
e position ve
tor
x

S
(u, v, t) = u ex + v ey + h(u, v, t) ez .For an impli
it surfa
e parametrization the surfa
e velo
ity is the surfa
e normalvelo
ity and is given by

u =
∂x

S

∂t
=




0

0
∂h
∂t


 . (3.27)Multiplying (3.23) with n gives

vs ·n = u ·n +
DuαDt aα · n that is vs · n = u · n .

3.4 Reynolds transport theorem and divergence theorem for a

surfaceIn the balan
e equations we also need the Reynolds transport theorem for the inter-fa
e between 
ondensate and vapor. Be
ause of the mass transfer due to 
ondensa-tion the interfa
e is not material. However, we 
an always assume the interfa
e is
omposed of a �xed set of parti
les, as explained in se
tion 3.3. For a quantity S0
ontinuously de�ned over su
h an interfa
e Ã0 we write S0 =
∫

Ã0
ϕ

S
dÃ. The rate of
hange of S0 with respe
t to time is given bydS0(t)dt =

ddt ∫

Ã0(xS
,t)

ϕ
S
(x

S
, t) dÃ .



30 Chapter 3 Kinematics of bulk fluids and of the moving interfaceIn a spatial representation Ã0(xS
, t) depends on time. Analog to the Reynolds trans-port theorem for a material volume we transform the area element with the surfa
eJa
obian determinant j = det

(
∂x

Si

∂ξ
Sj

) from spatial 
oordinates into material 
oor-dinates dÃ = j dÃ0 [Sla90℄. Then Ã0(ξS
) does not depend on time and integrationand di�erentiation 
an be inter
hanged. The time derivative be
omes the materialsurfa
e derivative (3.19)ddt ∫

A0

ϕ
S
dÃ =

∫ D
SDt(ϕS

j
) dÃ0 .The material surfa
e derivative of the surfa
e Ja
obian determinant is D

S
jDt

= j∇
S
·v

S
,so that we get

∫ D
SDt(ϕS

j
) dÃ0 =

∫ (D
S
ϕ

SDt j + ϕ
S

D
S
jDt ) dÃ0 =

∫ (D
S
ϕ

SDt + ϕ
S
∇ · v

S

)
j dÃ0,where we 
an transform the area element ba
k into spatial 
oordinates [EBW91℄.Using the material surfa
e derivative (3.19) with the relative velo
ity (3.24) we getfor the rate of 
hange of S0 with respe
t to timeddt ∫

Ã0

ϕ
S
dÃ =

∫ (D
S
ϕ

SDt + ϕ
S
∇ · v

S

) dÃ ,

=

∫ (
∂ϕ

S

∂t
+ [v

S
− u] · ∇

S
ϕ

S
+ ϕ

S
∇ · v

S

) dÃ , (3.28)
=

∫ (
∂ϕ

S

∂t
+ ∇

S
· [ϕ

S
v

S
] − u · ∇

S
ϕ

S

) dÃ .This equations are 
alled Reynolds transport theorem for surfa
es. Comparing thelast equation with the Reynolds transport theorem for material volumes (3.4) herewe have an additional term related to the moving surfa
e.
Divergence theorem for surfacesFinally the surfa
e integral with the surfa
e divergen
e term in the last equationof (3.28) is transformed further using the so 
alled divergen
e theorem for surfa
es.The divergen
e theorem for surfa
es will be used here and again in se
tion 4.3.Therefore we derive it using the abbreviation f = ϕ

S
v

S
. Then, splitting f in



3.4 Reynolds transport theorem and divergence theorem for a surface 31normal and tangential part we get for the surfa
e integral of the surfa
e divergen
eof f
∫

∇
S
· f dÃ =

∫
∇

S
· [(f ·n)n] dÃ+

∫
∇

S
· [(f ·m)m] dÃ .Firstly, the �rst integral on the right hand side is 
onsidered. Applying produ
t ruleon the integrand result in

∇
S
· [(f · n)n] = n · ∇

S︸ ︷︷ ︸
=0

(f · n) + (f · n) ∇
S
· n = −2H f · n , (3.29)where we used mean 
urvature (2.12) as de�ned in se
tion 2.2, and that the surfa
egradient (2.9) is perpendi
ular to the normal ve
tor on the surfa
e.The se
ond integral is an intrinsi
 sur-

PSfrag repla
ements n

t

mFigure 3.3: Base ve
tors on a bounded surfa
e
fa
e integral. The ve
tor m is dire
tedoutwards normal on the boundary 
urve.It is perpendi
ular to the tangential ve
-tor t along the 
urve and to the surfa
enormal ve
tor m = t × n as shown in�gure 3.3.5 We use Stokes theorem6 totransform the surfa
e integral in a 
urve integral

∫
∇

S
· [(f ·m)m] dÃ =

∮
(f ·m) dC̃ . (3.30)With (3.29) and (3.30) the surfa
e integral of the surfa
e divergen
e of f be
omes

∫
∇

S
· f dÃ = −

∫
2H f · n dÃ+

∮
f ·mdC̃ . (3.31)This equation is 
alled the divergen
e theorem for surfa
es, (it should not be 
onfusedwith the divergen
e theorem in footnote 6).

Alternative version of the Reynolds transport theorem for surfacesIf we substitute in the last equation of (3.28) the surfa
e integral of the divergen
eterm with (3.31) an alternative version of the Reynolds transport theorem for sur-fa
es 
an be given asddt ∫
Ã0

ϕ
S
dÃ=

∫ (
∂ϕ

S

∂t
−u · ∇

S
ϕ

S
−2H ϕ

S
v

S
· n
) dÃ+

∮
ϕ

S
v

S
·m dC̃. (3.32)5See [Sla99℄ for the relation between m, t and the lo
al base ve
tors at the interfa
e as de�nedin 
hapter 2.6Stokes theorem entirely de�ned in surfa
e ve
tors is given as: ∫ ∇

S
· f dA =

∮
f ·m dC.



32 Chapter 3 Kinematics of bulk fluids and of the moving interfaceThe rate of a

umulation of a quantity in a surfa
e 
an be interpreted as the rateof a

umulation of the quantity in a material surfa
e that equals the surfa
e at agiven time plus �ux arising from the moving surfa
e, plus 
onve
tive �ux normal tothe surfa
e (
urvature term) and 
onve
tive �ux through the boundary 
urve of thearea.



Chapter

4
Generic model equations for two-phase

flows with surface tension

In this 
hapter we derive the generi
 model equations for the moving surfa
e problem.First we give the generi
 di�erential balan
e equation for in
ompressible �uids andthen we derive a generi
 di�erential balan
e equation at a moving interfa
e betweentwo �uids, the so 
alled jump 
ondition. This interfa
e balan
e equation in
ludesphase 
hange but does not yet in
lude surfa
e tension. To in
lude surfa
e tension abalan
e equation for the interfa
e itself has to be formulated, whi
h is then addedto the generi
 balan
e equation for the bulk phases. By this we derive the desiredgeneri
 jump 
ondition.The material about balan
e equations in general is mainly based on [BSL60℄ [S
h99℄and [Sla99℄. Further on [Dee98℄ [Gre03℄ and [Hut03℄. The material about interfa
ebalan
e equations is mainly based on [TT60℄ [S
h99℄ [Sla90℄ and [EBW91℄.
4.1 Balance equations for bulk fluidsBalan
e equations are formulated for physi
al quantities that are 
ontinuously de-�ned over a spatial region (for instan
es a volume), su
h as mass, momentum orenergy. We denote those quantities by B =

∫
V
ϕ dV .

Generic balance equation for a material volumeA material (mass 
onserving) volume V0 is in general moving with time. A generi
balan
e equation for a physi
al quantity B0 =
∫

V0
ϕ dV in a material volume states



34 Chapter 4 Generic model equations for two-phase flows with surface tensionthat the rate of a

umulation of quantity in the material volume is given by 
on-du
tive �ux of the quantity (not 
onne
ted to mass) that enters the volume a
rossthe surfa
e plus supply of the quantity to the material volume1ddt ∫
V0

ϕ dV = −
∮
ζ · dA+

∫
π dV , (4.1)where ζ is the �ux density and π is the supply density [S
h99℄. The surfa
e elementve
tor dA = n dA is dire
ted outwards normal on the surfa
e. As before we drop theintegration limits ex
ept in the 
ase the derivative of the integral is taken. With theReynolds transport theorem (3.4) the generi
 balan
e equation (4.1) for a materialvolume be
omes

∫ (
∂ϕ

∂t
+ ∇ · [ϕ v]

) dV = −
∮
ζ · dA+

∫
π dV . (4.2)

Generic balance equation for a stationary volumeTo derive a generi
 balan
e equation for a stationary volume the Reynolds transporttheorem in the form of (3.5) is substituted for the right hand side of (4.1)
∫

∂ϕ

∂t
dV +

∮
ϕ v · dA = −

∮
ζ · dA+

∫
π dV .Now the integration domain of the volume integral on the left hand side is 
onstantand derivation and integration 
an be inter
hanged. By doing so we get the generi
balan
e equation for a stationary volumeddt ∫ ϕ dV = −

∮
ϕ v · dA−

∮
ζ · dA+

∫
π dV . (4.3)This equation has again a physi
al meaning: The a

umulation of B =

∫
ϕ dV in astationary volume is given by 
onve
tive and 
ondu
tive �ux of quantity a
ross thesurfa
e to the volume plus supply of quantity to the volume [BSL60℄.1Some authors distinguish between supply of quantity to the volume and produ
tion of quantitywithin the volume. Then 
onservation equations 
an be de�ned as balan
e equations without aprodu
tion term. However, it is more intuitive to distinguish only between surfa
e terms andvolume terms.
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Generic differential balance equationNext, we need a di�erential version of the generi
 balan
e equation for the numeri
al
omputation. The starting point is (4.2)
∫ (

∂ϕ

∂t
+ ∇ · [ϕ v]

) dV = −
∮
ζ · dA+

∫
π dV .Using divergen
e theorem (see footnote 3 in se
tion 3.1) we transform the surfa
eintegral in a volume integral and get

∫ (
∂ϕ

∂t
+ ∇ ·

[
ϕ v + ζ

]
− π

) dV = 0 .This equation must hold for any arbitrary volume. By this we get the di�erentialbalan
e equation we were looking for
∂ϕ

∂t
+ ∇ · (ϕ v) = −∇ · ζ + π . (4.4)Although this equation represent the same physi
al phenomenon as before (a

u-mulation, �ux, supply) the various terms 
an not be interpreted in the same way asthe integral balan
e equations [S
h99℄.In se
tion 5.1 the generi
 di�erential balan
e equation will be applied on mass,momentum and energy of the 
ondensate and the vapor.

4.2 Jump conditions at an interface between two fluidsIn the 
ondensation pro
ess we have two homogeneous bulk phases, the vapor andthe 
ondensate, and we have the interfa
e between both phases. At the interfa
ethe phase 
hange from the gas phase to the liquid phase o

ur. Here the generi
balan
e equations of the interfa
e are derived, parti
ulary under the 
riterion ofphase 
hange.
Generic balance equation for a material volume with a singular interfaceThe generi
 balan
e equation (4.1) for a quantity B0 in a material volumeddt ∫

V0

ϕ dV = −
∮
ζ · dA+

∫
π dV



36 Chapter 4 Generic model equations for two-phase flows with surface tensionholds for a material volume whether or not there is a singular surfa
e within it [TT60℄.However, the rate of a

umulation in V0 is the sum of the rate of a

umulation inthe volumes Vl and Vgddt ∫
V0

ϕ dV =
ddt ∫

Vl

ϕ dV +
ddt ∫

Vg

ϕ dV .The volumes Vl and Vg are not material, so we need the Reynolds transport theoremfor an arbitrary volume with a singular interfa
e. Substituting (3.10) for the lefthand side of (4.1) gives us the generi
 balan
e equation for a material volume witha singular interfa
e
∫ (

∂ϕ

∂t
+ ∇ · [ϕ v]

) dV +

∫

Ã

[[
ϕ (v − u)

]]
· n dÃ = −

∮
ζ · dA+

∫
π dV .(4.5)The double bra
ket denotes the di�eren
e between the two values at the surfa
e asdis
ussed in se
tion 3.2.

Generic jump conditionTo derive a di�erential form of (4.5) a
PSfrag repla
ements n

Ah

Figure 4.1: Volume in form of a box
spe
ial volume in a form of a small boxis 
onsidered, whi
h is moving togetherwith the interfa
e as shown in �gure 4.1.Two fa
es of the box are parallel to theinterfa
e. By taking the limit of theshorter side fa
es Ah → 0 the volumeintegrals vanish and Al and Ag mergewith Ã. For the volume integrals to van-ish their integrands must be limited (but not ne
essary 
ontinuously) [TT60℄. Thenthe normal ve
tors of the two outer fa
es of the box transform into either n or −nand only the surfa
e integral over the interfa
e Ã remains

∫

Ã

([[
ϕ (v − u)

]]
· n+

[
ζ l · (−n) − ζg · n

]) dÃ = 0 .The integral must hold for any arbitrary surfa
e so that the integrand must be zero
[[
ϕ [v − u] · n

]]
+
[[
ζ ·n

]]
= 0 . (4.6)



4.3 Balance equation and jump condition including surface tension 37Equation (4.6) is 
alled generi
 jump 
ondition and des
ribes the phase 
hange atthe interfa
e and the 
ondu
tive �ux a
ross the interfa
e [Sla90℄.With this jump 
ondition we 
an des
ribe phase 
hange and 
ondu
tive �ux a
rossthe surfa
e, but it does not allow to model intrinsi
 surfa
e properties like surfa
etension, 
ompare 
hapter 3. In analogy to the external surfa
es an interfa
e ofin�nitesimal thi
kness was assumed (we took the limit of Ah → 0).
4.3 Balance equation and jump condition including surface

tensionBased on the assumption that a �uid interfa
e is a
tually a three-dimensional regionwith a thi
kness of maybe one or more mole
ule diameter, the e�e
t of the inter-fa
e on the adjoining bulk �uids is best represented by assuming a two-dimensionalinterfa
e 
onsisting of surfa
e ex
ess mass. Surfa
e mass is assumed to have simi-lar properties as three-dimensional mass, su
h as surfa
e density, surfa
e vis
osity,surfa
e tension and so on [EBW91℄. Then, analog to the generi
 balan
e equationof three dimensional 
ontinua, a generi
 balan
e equation for the interfa
e 
an begiven. By adding the so derived interfa
e balan
e equation to the generi
 balan
eequation for a material volume with a singular interfa
e we �nally get a generi
balan
e equation in
luding surfa
e tension.
Generic balance equation for a surfaceThe interfa
e between 
ondensate and vapor is not material, the �uid velo
ity di�ersfrom the velo
ity of the surfa
e. Nevertheless a balan
e equation similar to thegeneri
 balan
e equation (4.1) for a material volume 
an ge given, as explained inse
tion 3.3. For a quantity S0 
ontinuously de�ned over a surfa
e Ã we write S0 =
∫

Ã
ϕ

S
dÃ. Then a generi
 balan
e equation for S0 states that the rate of a

umulationof surfa
e quantity in the surfa
e Ã is given by 
ondu
tive �ux of surfa
e quantitya
ross the boundary 
urve of the surfa
e plus supply of surfa
e quantity at thesurfa
eddt ∫

Ã

ϕ
S
dÃ = −

∮
ζ

S
· dC̃ +

∫
π

S
dÃ , (4.7)where ζ

S
is the surfa
e �ux density and π

S
is the surfa
e supply density [Sla90℄.The 
urve element ve
tor dC̃ = m dC̃ is dire
ted outwards normal on the boundary
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urve, see �gure 3.3 in se
tion 3.4. With the Reynolds theorem for a surfa
e (3.28)equation (4.7) be
omes
∫ (

∂ϕ
S

∂t
+ ∇

S
· [ϕ

S
v

S
] − u · ∇

S
ϕ

S

) dÃ = −
∮
ζ

S
· dC̃ +

∫
π

S
dÃ . (4.8)

Generic differential balance equation for a surfaceTo get a di�erential version of the generi
 surfa
e balan
e equation (4.8) we trans-form the 
urve integral on the right hand side in an area integral using the surfa
edivergen
e theorem (3.31)
∫ (

∂ϕ
S

∂t
+ ∇

S
· [ϕ

S
v

S
] − u · ∇

S
ϕ

S
+
[
∇

S
· ζ

S
+ 2H ζ

S
· n
]
− π

S

) dÃ = 0 ,where H is the mean 
urvature. This equation must hold for any arbitrary area sothat we get the di�erential surfa
e balan
e equation
∂ϕ

S

∂t
+ ∇

S
· [ϕ

S
v

S
] − u · ∇

S
ϕ

S
= −

[
∇

S
· ζ

S
+ 2H ζ

S
· n
]
+ π

S
. (4.9)

Generic balance equation including phase change and surface tensionNow we are able to state a generi
 balan
e equation that in
ludes phase 
han
e andsurfa
e tension. For that we add the generi
 surfa
e balan
e equation (4.8) to thegeneri
 balan
e equation for a material volume with a singular interfa
e (4.5) andget
∫ (

∂ϕ

∂t
+ ∇ · [ϕ v]

) dV +

∫

Ã

[[
ϕ (v − u)

]]
· n dÃ

+

∫ (
∂ϕ

S

∂t
+ ∇

S
· [ϕ

S
v

S
] − u · ∇

S
ϕ

S

) dÃ
= −

∮
ζ · dA−

∮
ζ

S
· dC̃ +

∫
π dV +

∫
π

S
dÃ . (4.10)

Generic jump condition including phase change and surface tensionFrom (4.10) we derive a generi
 jump 
ondition in the same way as dis
ussed inthe last se
tion. For that we transform the 
urve integral in an area integral using



4.3 Balance equation and jump condition including surface tension 39the surfa
e divergen
e theorem (3.31) and 
onsider a small volume en
losing theinterfa
e that we let shrink into a surfa
e. By this we get
[[
ϕ [v − u]·n

]]
+
[[
ζ·n

]]
= −∂ϕ

S

∂t
−∇

S
·[ϕ

S
v

S
]+u·∇

S
ϕ

S
−
[
∇

S
· ζ

S
+ 2H ζ

S
·n
]
+π

S
.(4.11)If there is no material a

umulation in the surfa
e, the surfa
e density variables ϕ

Sand π
S
are zero and the surfa
e is 
alled a 
lean surfa
e and from the right handside only the (underlined) terms remain [EBW91℄. For the 
ondensation problemmaterial a

umulation in the surfa
e 
an be negle
ted. So we �nally get

[[
ϕ [v − u] · n

]]
+
[[
ζ ·n

]]
= −∇S · ζ

S
− 2H n · ζ

S
. (4.12)This jump 
ondition 
overs phase 
hange, 
ondu
tive �ux a
ross the interfa
e, andsurfa
e tension. In se
tion 5.2 we apply (4.12) on mass, momentum and energyand derive jump 
onditions at the moving interfa
e between 
ondensate and thevapor. For the jump 
ondition we made no additional assumption than to assume a
ontinuous surfa
e, in parti
ular we do not allow the interfa
e to break o�.



Chapter

5
Model equations for condensation in a tube

with small diameter

In this 
hapter we obtain the balan
e equations for mass, momentum and energyfor the bulk �ow of the both phases and for the interfa
e between them from thegeneri
 balan
e equations derived in the last 
hapter. Further we dis
uss appropriatesimpli�
ations for the 
ondensate problem. The last se
tion we summarize the upto then dedu
ed system of partial di�erential equations plus the jump 
onditionsand dis
uss the boundary 
onditions. The referen
es for the equations used in this
hapter are given in the last 
hapter unless otherwise noted.
5.1 Mass, momentum and energy equation

MassThe mass balan
e equation is given by (4.4) with ϕ = ρ and ζ = π = 0

∂ρ

∂t
+ ∇ · (ρ v) = 0 , (5.1)whi
h gives for the 
ondensate �lm with the assumption of 
onstant density

∇ · v = 0 . (5.2)Also the vapor 
an be treated as an in
ompressible �uid.11If the Ma
h number of a �uid is small 
ompared to unity the �uid 
an be 
onsidered as anin
ompressible �uid [BSL60℄.



5.1 Mass, momentum and energy equation 41For momentum and energy another balan
e equation whi
h makes use of (5.1) ismore preferable. For that we substitute ϕ in (4.4) by ϕ = ρψ, apply the produ
trule on both terms on the left side and re
ieve
∂(ρ ψ)

∂t
+ ∇ · [(ρ ψ) v] = ψ

[
∂ρ

∂t
+ ∇ · (ρ v)

]

︸ ︷︷ ︸
=0

+ρ

[
∂ψ

∂t
+ v · ∇ψ

]
.The �rst bra
ket is zero a

ording to (5.1). The se
ond bra
ket is the materialderivative of ψ as derived in se
tion 3.1.DψDt =

∂ψ

∂t
+ v · ∇ψ .Thus we get the generi
 balan
e equation (4.4) in an equivalent form [Dee98℄

ρ
DψDt = −∇ · ζ + π , (5.3)

MomentumThe momentum equation we get by substituting in (5.3) ψ = v, ζ = −S and
π = ρ g (note that here ψ and π are ve
tors and ζ is a se
ond rank tensor)

ρ

[
∂v

∂t
+ v · ∇v

]
= ∇ · S + ρ g . (5.4)The stress tensor S = −p I + T 
an be divided into a 
ontribution of the �uid atrest and the �uid in motion [BB75℄.2 g is the ve
tor of body for
e, in our 
ase thegravity ve
tor. The 
ondensate and the vapor are Newtonian �uids, so the vis
ousstress tensor for both phases is given by T = µ

[
∇v + (∇v)T

]
+ µ′

3
(∇ · v), with vis-
osity µ and modi�ed bulk vis
osity µ′ [BSL60℄. Together with the in
ompressibility
ondition the momentum equation

ρ

[
∂v

∂t
+ v · ∇v

]
= −∇p+ µ∇2v + ρ gforms then the well known Navier-Stokes equations.2If we had derived the momentum equation from (4.4), the divergen
e term in the 
onve
tiveterm would be nonlinear. The advantage of deriving the momentum equation from (5.3) is thatthe divergen
e term is then linear, that makes the numeri
al dis
retization easier.



42 Chapter 5 Model equations for condensation in a tube with small diameter

EnergyLastly, we 
onsider the heat transfer. A

ording to the �rst law of thermodynami
sthe in
rease of internal and kineti
 energy in a material 
ontrol volume is given byheat supply plus power due to work a
ting on the �uid. The di�erential energyequation is
ρ
DDt(e+

v2

2
) = (∇ · v · S + ρv · g) + (−∇ · q + ρ z) , (5.5)where e is the internal energy per unit mass, v ·S is the power due to surfa
e for
esper unit area, ρv · g is the gravity power per unit volume, q the heat �ux per unitarea and z the heat produ
tion per unit volume, whi
h is zero in our 
ase [BSL60℄.Here ψ = e+ v2

2
, ζ = −v · S + q and π = ρ (v · g+ z). To get the energy in a more
ommonly used form, we subtra
t the me
hani
al energy equation from (5.5). Theme
hani
al energy equation is formed by the s
alar produ
t of momentum equationand velo
ity [Dee98℄. By this we get3

ρ

[
∂e

∂t
+ v · ∇e

]
= −∇ · q + S : ∇v .The heating e�e
t of fri
tion 
an be negle
ted for the 
ondensation problem, so thatthe dissipative term T : ∇v is zero. Moreover the whole term vanishes S : ∇v =

T : ∇v − p (I : ∇v) = −p (∇ · v) = 0.Constitutive equations for internal energy and heat �ux 
omplete our equations.For small temperature di�eren
es internal energy 
an be des
ribed by a linear fun
-tion e = c (T − T0) + e(T0), where c is the spe
i�
 heat 
apa
ity. The heat �ux isgiven by Fourier's law q = −λ∇T , where λ is the heat 
ondu
tivity, Hutter [Hut03℄.By this we �nally get the energy equation for the 
ondensate and the vapor
ρ c

[
∂T

∂t
+ v · ∇T

]
= λ∇2T .The material properties vis
osity, heat 
apa
ity and heat 
ondu
tivity are in generalfun
tions of density, pressure and temperature, but for in
ompressible �uids onlytemperature dependen
y need to be 
onsidered. The temperature interval betweenwall temperature and vapor temperature is small (Twall − Tvapor < 5K), so that we
an assume the material properties to be 
onstant.3Note that we used hereby the identity ∇ · (v · S) = v · (∇ · S) + S : ∇v



5.2 Mass, momentum and energy jump conditions 43By this we derived three partial di�erential equations for the three unknowns velo
-ity, pressure and temperature. For a solution of this system of partial di�erentialequations we need boundary and initial 
onditions4 and espe
ially we need to knowappropriate balan
e equations at the interfa
e between the 
ondensate and the vaporphase.
5.2 Mass, momentum and energy jump conditions

MassWe start with (4.12) and set the bulk variables ϕ = ρ, ζ = 0 and the surfa
e variable
ζ

S
= 0 to get the mass jump 
ondition at the surfa
e between 
ondensate and vapor
[[
ρ [v − u] · n

]]
= 0 . (5.6)Equation (5.6) states that the same amount of mass �ux that enters the surfa
e asvapor phase leaves the surfa
e as 
ondensate phase ṁl = ṁg (so we 
an omit theindex).

MomentumTo get the momentum jump 
ondition at the surfa
e between 
ondensate and vaporwe set in (4.12) ϕ = ρv, ζ = −S and ζ
S

= −SS. Analog to the stress tensor thesurfa
e stress tensor 
an be divided into two 
omponents SS = σIS + T S, where
IS is the surfa
e identity tensor (2.9). Assuming a 
lean surfa
e T S = 0 from thesurfa
e stress tensor simply the interfa
ial tension remains SS = σ Is, where σ is thesurfa
e tension 
oe�
ient, see se
tion 4.3. The surfa
e tension 
an be understood asthe 
ounterpart of the pressure in the bulk �uid [EBW91℄. With this substitutionswe get for the momentum jump 
ondition

[[
ρv [v − u] · n

]]
−
[[
S · n

]]
= ∇S σ + 2H σn . (5.7)In the 
ondensation problem we negle
t temperature dependen
y of the liquid-vaporsurfa
e tension 
oe�
ient (Marangony e�e
ts) but assume σ to be 
onstant withinthe surfa
e.4We need as many boundary 
onditions for ea
h 
oordinate of an unknown as the equation hasderivatives of that unknown.



44 Chapter 5 Model equations for condensation in a tube with small diameterWe split the ve
tor equation (5.7) into three s
alar equations by multiplying it �rstwith the normal ve
tor and then with the two tangential ve
tors. The tangentialequations are equal, so we skip the third equation and use the symbol t to denotethe tangential ve
tors. Further we make use of (5.6) and the assumption of no-slipat the surfa
e [[ v · t
]]

= 0 and get
[[
ṁv · n

]]
+
[[
p
]]
−
[[
n · T · n

]]
= 2H σ , (5.8)

[[
t · T · n

]]
= 0 .

EnergyThe energy jump 
ondition is with ϕ = ρ (e + v2

2
), ζ = −v · S + q and with

ζ
S

= −σ Is · u = −σ u (with the same assumptions as for the momentum jump
ondition) given by
[[
ρ (e+

v2

2
) [v − u] ·n

]]
−
[[
v · S · n

]]
+
[[
q · n

]]
=∇S ·

(
σ u
)

+ 2H σn · u. (5.9)Instead of a balan
e equation for the internal energy we need a formulation with theenthalpy h = e+ p
ρ
, be
ause enthalpy is a measurable quantity, whereas the internalenergy is not easy to measure. To get this equation we �nd it 
onvenient to splitthe ve
tors on the left side of (5.9) into their normal and tangential 
omponentsa

ording to a · b = (a ·n)(b ·n) + (a · t)(b · t). Applying 
hain rule on the surfa
egradient term gives ∇S ·

(
σ u
)

= σ∇S · u+ u · ∇S σ. By this we get
[[
ṁ

(
u+

(v · n)2

2
+

(v · t)2

2

) ]]
−
[[
(v ·n) (n · S · n)+ (v · t) (t · S · n)

]]
+
[[
q ·n

]]

= σ∇S · u+ u · ∇S σ + 2H σn · u , (5.10)We then subtra
t the s
alar produ
t of momentum jump 
ondition (5.7) and surfa
evelo
ity
[[
ṁ (u · n)(v · n)

]]
−
[[
(u ·n) (n · S · n)

]]
= u · [∇S σ + 2H σ u · n] ,from the energy jump 
ondition, of whi
h after splitting the ve
tors on the left sidein normal and tangential 
omponents only the 
ontribution in normal dire
tion re-mains, be
ause the surfa
e velo
ity has no tangential 
omponent [S
h70℄. Together



5.3 Governing equations 45with the no-slip 
ondition, the tangential momentum jump 
ondition and after re-arranging the pressure term we get
[[
ṁ

(
u+

p

ρ
+

(v · n)2

2
− (u ·n)(v ·n)

) ]]
−
[[
[v − u] · n (n · T · n)

]]
+
[[
q · n

]]

= σ∇S · u.We expand the kineti
 energy term
[[ (v · n)2

2

]]
=

[[ (v · n− u · n)2

2
+ (v · n)(u ·n) − (u · n)2

2

]]and use that the surfa
e velo
ity jump is zero. Then the energy jump 
ondition ata surfa
e between two �uids be
omes
[[
ṁ h

]]
+
[[
ṁ

([v − u] · n)2

2

]]
−
[[
[v − u] · n (n · T · n)

]]
+
[[
q ·n

]]
=σ∇S · u . (5.11)Similar as for the energy equation we assume that kineti
 energy and vis
ous energy
an be negle
ted in the energy jump 
ondition. Certainly the surfa
e gradient of thesurfa
e velo
ity is small. by this the energy jump 
ondition �nally be
omes

ṁ∆h +
[[
q · n

]]
= 0 , (5.12)where ∆h =

[[
h
]] is the latent heat of vaporization.

5.3 Governing equationsWe �nish this 
hapter with a summary of the derived system of equations for the
ondensation problem. The 
ondensate (index l) and the vapor (index g) bulk phaseare des
ribed by the 
ontinuity equation for an in
ompressible �uid, the momentumequation and the energy equation (For 
lari�
ation the assumptions involved areshown again on the right):



46 Chapter 5 Model equations for condensation in a tube with small diameterBalan
e equations for 
ondensate and gas phase (i = l, g)Continuity equation 
onst. density
∇ · vi = 0Momentum equation Newtonian �uid
onst. vis
osity
ρi

(
∂vi

∂t
+ vi · ∇vi

)inertia = − ∇pipressure + µi ∇2vifri
tion + ρi ggravityEnergy equation no dissipation
onst. heat 
ondu
tivity
onst. thermal 
apa
ity
ρi ci

(
∂Ti

∂t
+ vi · ∇Ti

)transient + 
onve
tion = λi ∇2Tiheat 
ondu
tionAt the interfa
e between 
ondensate and vapor we have jump 
onditions for mass,momentum and energy (from now on we leave out the tilde over the normal andtangential ve
tors):5Jump 
onditions at the interfa
eMass
[[
ρ [v − u] · n

]]
=

[[
ṁ
]]mass �uxMomentum 
onst. surfa
e tension 
oe�
ientno slip between both phases

[[
ṁv · n

]]momentumdue to
ondensation +
[[
p
]]surfa
e pressure −

[[
n · T · n

]]
= 2H σsurfa
e tension

[[
t · T · n

]]shear stress = 0Energy no kineti
 energyno dissipation
ṁ∆h
ondensation =

[[
q · n

]]heat �uxwith T = µ
[
∇v + (∇v)T

] and q = −λ∇T .5with [[ϕ
]]
:= ϕg − ϕl.



5.3 Governing equations 47From the �ve jump 
onditions we need one equation to 
al
ulate the mass �ux, sothat four equations remain to 
al
ulate the boundary 
onditions for three velo
ity
omponents, pressure and temperature. We need one more equation. As the missingequation we take the 
ondition of thermodynami
 equilibrium, a

ording to whi
hthe 
ondensate and vapor temperatures are equal at the moving surfa
e
T
ondensate = Tvapor . (5.13)Theoreti
ally we 
an use either the mass jump 
ondition or the energy jump 
ondi-tion to 
al
ulate the mass �ux.6 From the remaining equations we 
an use either themass or the normal momentum jump 
ondition to 
al
ulate one velo
ity boundary
ondition, depending on whi
h equation we use to 
ompute the mass �ux. Whi
hone of both equations is more suitable we dis
uss in part III, where we presentthe numeri
al algorithms for the 
omputational solution of the 
ondensation prob-lem. The se
ond and third velo
ity boundary 
ondition we take from the tangentialmomentum jump 
onditions.

6In 
hapter 6 we derive some more simpli�
ations, one of whi
h is that we 
an drop the termwith the mass �ux in the normal momentum jump 
ondition, so that this equation will not beavailable to 
al
ulate the mass �ux.



Part II
Analysis



Chapter

6
Model equations under the assumption of

rotational symmetry

Experimental results show that for 
ondensation in an in
lined tube the �ow regimesare almost 
ylindri
al [Fie03℄. Based on this we begin our analysis of the model equa-tions by assuming a rotational �lm as depi
ted in �gure 6.1. First the equations forthe bulk �uids of the 
ondensate problem and the jump 
onditions for the interfa
ebetween 
ondensate and vapor de�ned in part I are evaluated for this 
ase. Thereferen
es for this equations are given in part I unless otherwise noted.
6.1 Bulk flow equations and outer boundary conditionsIf the tube is in verti
al position as shown in �g-PSfrag repla
ements r

z

R

D

n

t

Figure 6.1: Verti
al tube

ure 6.1, then gravity is a
ting in the dire
tion ofthe tube axis. A laminar �ow 
an be assumed.As velo
ity in
reases surfa
e be
omes wavy withat �rst two-dimensional surfa
e waves [ANP94℄[YNN96℄. For small surfa
e waves the �ow is stilllaminar [BS98℄. Then the 
ondensation problemhas rotational symmetry, so that all derivativesof velo
ity, temperature and pressure with re-spe
t to the rotation angle are zero. The velo
-ity 
omponent in the plane of rotation is zero.Further vapor velo
ity is assumed to be small,so that shear stress exerted by the vapor on the 
ondensate �lm 
an be negle
ted.



50 Chapter 6 Model equations under the assumption of rotational symmetryThe vapor temperature is 
onstant, so that heat �ux in the vapor phase is zero. Thepressure in the vapor phase is determined mainly by the hydrostati
 pressure [Fie03℄.Under this 
onditions the problem redu
e to a one-�uid problem and only the bulk�ow equations for the 
ondensate phase have to be solved. The balan
e equationsfor the 
ondensate �ow, given in se
tion 5.3, are in 
ylindri
al 
oordinates r, ϑ, z andin the 
ase of rotational symmetry readsthe 
ontinuity equation:
1

r

∂

∂r
(r vr) +

∂vz

∂z
= 0 , (6.1)the momentum equations:

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z

)
= −∂p

∂r
+ µ

(
∂

∂r

[
1

r

∂

∂r
(r vr)

]
+

∂
2vr

∂z2

)
, (6.2)

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z

)
= −∂p

∂z
+ µ

(
1

r

∂

∂r

[
r
∂vz

∂r

]
+

∂
2vz

∂z2

)
+ ρ gthe energy equation:

ρ c

(
∂T

∂t
+ vr

∂T

∂r
+ vz

∂T

∂z

)
= λ

(
1

r

∂

∂r

[
r

∂T

∂r

]
+

∂
2T

∂z2

)
. (6.3)[BSL60℄. From the balan
e equations of the vapor phase only the hydrostati
pressure terms in the se
ond momentum equation remain

∂pg

∂z
= ρg g . (6.4)

Outer boundary conditionsFor the 
ondensation problem in a verti
al tube the outer boundary 
onditions ofthe momentum equations area given paraboli
 velo
ity pro�le at the tube inlet:
vz

∣∣
r,z=0

= U(r) , vr

∣∣
r,z=0

= 0 , (6.5)zero velo
ity at the tube wall:
vr

∣∣
r=R,z

= 0 , vz

∣∣
r=R,z

= 0 , (6.6)



6.1 Bulk flow equations and outer boundary conditions 51the out�ow 
ondition at the outlet:
∂vr

∂z

∣∣∣∣
r,z=L

= 0 , vz

∣∣
r,z=L

= 0 , (6.7)where R is the tube diameter and L is the tube length. The outer boundary 
onditionof the energy equation is thatthe temperature at the tube wall is known:
T
∣∣
r=R,z

= Tw , (6.8)Finally the temperature at the interfa
e is given by the vapor temperature:
T
∣∣
r=R−D,z

= Tv , (6.9)the temperature derivative is zero at the tube inlet and at the tube outlet:
∂T

∂z

∣∣∣∣
r,z=0

= 0 ,
∂T

∂z

∣∣∣∣
r,z=L

= 0 , (6.10)where D = R − h is the �lm thi
kness (
ompare �gure 6.1).The question of the 
orre
t pressure boundary 
onditions is dis
ussed later after theequations are simpli�ed, 
ompare se
tion 7.3.
Cylindrical basisThe equations (6.1) � (6.10) are given in 
ylindri
al 
oordinates and are relatedto a 
ylindri
al 
oordinate system. A 
ylindri
al 
oordinate system is orthogonaland the 
orresponding 
ovariant and 
ontravariant 
ylindri
al base ve
tors are selfre
ipro
al (they only di�er in s
ale fa
tors), so that 
onveniently unit ve
tors areused, see se
tion 2.1. The balan
e equations above are related to the unit baseve
tors

er =




cosϑ

sinϑ

0


 , eϑ =




− sin ϑ

cosϑ

0


 , ez =




0

0

1


 . (6.11)The velo
ity ve
tor is given in this unit ve
tors by v = vr er + vϑ eϑ + vz ez, withEinstein summation 
onvention we write shortly v = vi ei. Equations (6.1) � (6.3)for the 
ondensate �ow in a verti
al tube are found in [BSL60℄.



52 Chapter 6 Model equations under the assumption of rotational symmetryThe pro
edure of deriving them from the symboli
 equations given in the last se
tionof part I by 
omputing the derivatives of the base ve
tors (whi
h are not 
onstantbut fun
tions of r, ϑ, z) and the metri
 tensor and �nally relating the variables tothe unit base ve
tors (6.11) is here already done. However, for the interfa
e jump
onditions there exist no su
h referen
e.
6.2 Geometrical properties and velocity of the interfaceTo derive the interfa
e balan
e equations in 
ylindri
al 
oordinates we need a para-metrization of the surfa
e, so that the normal and tangential ve
tors, the surfa
evelo
ity and the mean 
urvature 
an be 
omputed (
ompare 
hapter 2).The position ve
tor of a surfa
e with rotational symmetry is given in a 
artesian
oordinate system as

x(ϑ, z, t) = h(z, t) cosϑex + h(z, t) sin ϑey + z ez ,where radius h is a fun
tion of time and tube length and the surfa
e variables are zand ϑ. Related to a 
ylindri
al 
oordinate system the position ve
tor be
omes
x(ϑ, z, t) = h(z, t) er + 0 eϑ + z ez , (6.12)[Dee98℄.

Tangential and normal vectorsThe tangential ve
tors are obtained by (2.3) as
tϑ =

∂x

∂ϑ
= h

∂er

∂ϑ
+ 0 eϑ + 0 ez =




0

h

0


 , tz =

∂x

∂z
=

∂h

∂z
er + 0 eϑ + 1 ez =




∂h
∂z

0

1


 ,and the normal ve
tor is obtained by (2.5) as

n− =
tϑ × tz
|tϑ × tz|

=




1

0

−∂h
∂z




1√
1 +

(
∂h
∂z

)2 .Note that this normal ve
tor points inwards on the 
ondensate �lm. The normalve
tor that points outwards on the 
ondensate �lm is given by
n = −n− .
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Mean curvatureThe mean 
urvature we de�ned in (2.12) as
H = −1

2
∇s · n = −1

2

(
tz

∂

∂z
+ tϑ

∂

∂ϑ

)
·nand alternatively by (2.17) using the �rst and se
ond fundamental form. Be
ausethe basis is orthogonal, here it is more 
onvenient to 
ompute H by means of (2.17).With the �rst fundamental form (2.4)

I =

[
tz · tz tz · tϑ
tϑ · tz tϑ · tϑ

]
=

[
1 +

(
∂h
∂z

)2
0

0 h2

]

and the se
ond fundamental form (2.15)
II =

[
tzz ·n tzϑ · n
tϑz · n tϑϑ · n

]
=



−

∂
2h

∂z2q
1+(∂h

∂z )
2 0

0 hq
1+(∂h

∂z )
2


the shape operator (2.16) for a rotational surfa
e be
omes

L=

[
tzz · n tzϑ ·n
tϑz · n tϑϑ ·n

]
1

det I

[
tϑ · tϑ −tz · tϑ
−tϑ · tz tz · tz

]
=



−

∂
2h

∂z2�
1+(∂h

∂z )
2
�3/2 0

0 + 1

h
q

1+(∂h
∂z )

2


 .The shape operator is already in diagonal form, so that the diagonal entries are theprin
ipal 
urvatures κ1, κ2. The mean 
urvature of the liquid-vapor surfa
e is thena

ording to (2.17) given by

H =
1

2
tra
eL =

1

2


−

∂2h
∂z2(

1 +
(

∂h
∂z

)2)3/2
+

1

h

√
1 +

(
∂h
∂z

)2


 =

1

2
(κ1 + κ2) .The �rst term is zero if the surfa
e is �at. It des
ribes the 
urvature due to surfa
ewaves in the r, z plane. The se
ond term des
ribes the 
urvature due to the tuberadius.
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Surface velocityThe surfa
e velo
ity is a

ording to (3.21) given by the derivative of the positionve
tor (6.12) with respe
t to time
u =

∂x

∂t

∣∣∣∣
ϑ,z

=




∂h
∂t

0

0


 .

6.3 Jump conditionsAfter we dis
ussed the geometri
al properties of the interfa
e between the 
ondensateand the vapor phase, now we 
an 
ompute the jump 
onditions.
Mass fluxThe mass �ux (5.6) a
ross the surfa
e of rotational symmetry is obtained in 
ylin-dri
al 
oordinates as

ṁ = ρ [v − u] · n (6.13)
= ρ [(vi − ui) ei] · (nj ej) = ρ (vi − ui) nj ei · ej︸ ︷︷ ︸

δij

= ρ (vi − ui) ni

=
ρ√

1 +
(

∂h
∂z

)2

(
−vr +

∂h

∂t
+ vz

∂h

∂z

)
,where δij is the Krone
ker delta.

Momentum jump conditionsIn the momentum jump 
onditions the stress tensor appear. In 
ylindri
al 
oordi-nates and under the assumption of rotational symmetry the stress tensor is
T = 2µ




1
2

∂vr

∂r
0
(

∂vr

∂z
+ ∂vz

∂r

)

0 0 0
(

∂vr

∂z
+ ∂vz

∂r

)
0 1

2
∂vz

∂z


 ,[BSL60℄. From the momentum jump 
ondition in normal dire
tion (5.8), with theassumption of small vapor velo
ity, only the velo
ity terms of the 
ondensate remain

ṁv · n+ (p− pg) − n · T ·n = −2H σ ,



6.3 Jump conditions 55We 
ompute the �rst and the third terms separately. With
ṁv · n = ṁ (vi ei) · (nj ej) = ṁ vi ni ei · ej︸ ︷︷ ︸

δij

= ṁ vi niand
n · T · n = (ni ei) · (Tkl ek el) · (nj ej) = ni Tkl nj ei · ek︸ ︷︷ ︸

δik

el · ej︸ ︷︷ ︸
δlj

= ni Tij njthe momentum jump 
ondition in normal dire
tion is given as
ρ

1 +
(

∂h
∂z

)2
(
−vr +

∂h

∂t
+ vz

∂h

∂z

)(
−vr + vz

∂h

∂z

)
+ p− pg

− µ

1 +
(

∂h
∂z

)2

(
∂vr

∂r
− 4

[
∂vr

∂z
+

∂vz

∂r

]
∂h

∂z
+

∂vz

∂z

[
∂h

∂z

]2
)

= −σ


−

∂2h
∂z2

(1 +
(

∂h
∂z

)2
)3/2

+
1

h

√
1 +

(
∂h
∂z

)2


 . (6.14)The momentum jump 
ondition in tangential dire
tion (5.8) be
omes

t · T · n = (ti ei) · (Tkl ek el) · (nj ej) = ti Tkl nj ei · ek︸ ︷︷ ︸
δik

el · ej︸ ︷︷ ︸
δlj

= ti Tij nj

=
µ√

1 +
(

∂h
∂z

)2

(
−∂vr

∂r

∂h

∂z
− 2

[
∂vr

∂z
+

∂vz

∂r

][
1 −

(
∂r

∂z

)2
]

+
∂vz

∂z

∂h

∂z

)
= 0 .(6.15)

Energy jump conditionFinally, we 
onsider the energy jump 
ondition (5.12) at the interfa
e between 
on-densate and vapor
ṁ∆h = −q · n .With q = −λ [∂T

∂r
, 0, ∂T

∂z
]T we get

ρ∆h√
1 +

(
∂h
∂z

)2

(
−vr +

∂h

∂t
+ vz

∂h

∂z

)
=− λ√

1 +
(

∂h
∂z

)2

(
−∂T

∂r
+

∂T

∂z

∂h

∂z

)
. (6.16)Equations (6.1) � (6.16) form the system of model equations for the 
ondensationproblem in the 
ase of a verti
al position of the tube where rotational symmetry isassumed. In the next 
hapter we simplify this model equations further by means ofa dimensional analysis.



Chapter

7
Dimensional analysis of the model

equations/rotational symmetry

In this 
hapter the 
ondensation equations for the verti
al position of the tubederived in 
hapter 6 are analyzed by a generalized dimensional analysis.For the verti
al tube position the average thi
kness D of the 
ondensate �lm is mu
hsmaller than the length L of the 
ondensate �lm, 
ompare �gure 6.1. With 
lassi
aldimensional analysis the variables of a problem are redu
ed to a fewer amount ofnondimensional variables, but all spatial variables are s
aled by the same lengths
ale [Bri31℄. Generalized dimensional analysis is based on di�erent length s
alesfor ea
h spatial variable and therefore allows an analysis in terms of the slenderness
ε = D

L
of the balan
e region. We get equations of boundary layer type for the
ondensate phase and 
omparably great simpli�
ations are a
hieved for the jump
onditions. In the last se
tion the derived equations are evaluated for water and forR134a.Generalized dimensional analysis is not very well do
umented in literature, so thatwe elaborate more on this method here.The bene�t of a generalized dimensional analysis is twofold. It gives the mainrelevant terms of the model equations, but also redu
es the number of variables by
ombining them to a fewer number of variables. This does not 
hange the equationsbesides a s
aling and su
h a transformation is 
alled symmetry transformation.The �rst se
tion of this 
hapter is mainly based on the le
ture notes of [NS01℄. Fur-ther on [Gör75℄ [Spu92℄ [BK89℄, and [Bar79℄ [Bar96℄. From this authors only [NS01℄des
ribe generalized dimensional analysis. [Gör75℄ and [Spu93℄ present mainly di-mensional analysis for hydrodynami
al problems. [Bar96℄ also starts with dimen-sional analysis but eventually di�ers by using symmetry transformations to solve



7.1 Dimensional analysis and generalized dimensional analysis 57problems whi
h 
ontain a small dimensionless parameter su
h as ε. [BK89℄ presentthe theory of solving di�erential equations using symmetry methods in a more math-emati
al rigor.
7.1 Dimensional analysis and generalized dimensional analysisIn this se
tion some terminology is given. Generalized dimensional analysis is 
om-pared to dimensional analysis.
Units and DimensionsLength, mass and time are 
alled dimensions. Meter, kilogram, se
ond (MKS) are
alled units and 
entimeter, gram, se
ond (
.g.s) are other units. Length, massand time (LTM) are fundamental dimensions of the MKS unit system and the 
.g.sunit system [Gör75℄. They have the same physi
al properties but di�er by s
alefa
tors. Another set of fundamental dimensions are length, for
e and time (LFT). Anequation in whi
h the units balan
e on both sides of the equal sign is 
alled 
oherent.An equation in whi
h the dimensions balan
e on both sides of the equal sign is 
alledhomogeneous. The equation 3m + 3 
m = 3m + 3 × 0.1m = 3.3m is homogeneousbut not 
oherent. It is nevertheless a meaningful physi
al equation. The usage of twodi�erent unit systems in one equation makes it ne
essary to 
onvert all units to thesame system of units by s
aling them appropriately before 
al
ulating the result, andis therefore laborious, but permissible. As afore mentioned balan
e equations aretensor equations and have to be invariant under a 
hange of a 
oordinate system.Similarly physi
ally meaningful equations have to be invariant under a 
hange ofsystem of units.1 Yet, a dimensionless equation is invariant under a 
hange of unitsystem, the values of the dimensionless quantities do not 
hange.
Buckingham Π-TheoremA

ording to the Bu
kingham Π-Theorem every physi
ally meaningful equation with
n variables

f(a1, a2, . . . , an) = 0 ,1It 
an be understood from the example that dimensional homogeneity is a ne
essary but notsu�
ient 
ondition for an equation being invariant under a 
hange of system of units.



58 Chapter 7 Dimensional analysis of the model equations/rotational symmetrywhere the n variables are expressed in terms of r fundamental dimensions, 
an berewritten as an equation of n− r = k dimensionless variables 
onstru
ted from theoriginal variables [Spu93℄.Here we denote the value of a variable by a hat and the dimension by a tilde:
ai = âi ãi.2 Ea
h tilded variable is a power monomial fun
tion of fundamentaldimensions. For instan
e the dimension of the streamwise velo
ity is in the LMTsystem ṽz = LT−1. We denote the fundamental dimensions by b̃i, that is b̃1 = L,
b̃2 = M , b̃3 = T . The dimensions of the variables ai are in terms of power monomialsof fundamental dimensions

ã1 = b̃b111 b̃b212 . . . b̃br1
r ,

ã2 = b̃b121 b̃b222 . . . b̃br2
r ,... (7.1)

ãn = b̃b1n
1 b̃b2n

2 . . . b̃brn
r .The ve
tor of the powers bi = [b1i, b2i, . . . , bri]

T is 
alled dimension ve
tor of ai [BK89℄.For instan
e the dimension ve
tor of the streamwise velo
ity we get from ṽz =

L1M0 T−1 as bvz = [1, 0,−1]T . The dimension ve
tors form the dimension matrixof the problem
B =




b11 b12 . . . b1n

b21 b22 . . . b2n... ... ...
br1 br2 . . . brn



.

The rank of the dimension matrix r = rankB is the number of the fundamentaldimensions. To 
onstru
t the n−r = k nondimensional variables we make an ansatzin form of power monomials of the dimensions of the original variables
πj = ã

x1j

1 ã
x2j

2 . . . ãxnj
n , j = 1, . . . , k , (7.2)where the dimensions are substituted with (7.1) by their power monomials of fun-damental dimensions

πj =
(
b̃b111 b̃b212 . . . b̃br1

r

)x1i
(
b̃b121 b̃b222 . . . b̃br2

r

)x2i

. . .
(
b̃b1n
1 b̃b2n

2 . . . b̃brn
r

)xni

,2A

ording to DIN 1313 the value of a variable is set in 
urly bra
kets and the dimensionin square bra
kets a = {a} [a]. However, for a dimensional analysis this notation seems a bit
umbersome.



7.1 Dimensional analysis and generalized dimensional analysis 59[NS01℄. By sorting the right hand side in terms of fundamental dimensions
πj = b̃

b11 x1j+b12 x2j+···+b1n xnj

1 b̃
b21 x1j+b22 x2j+···+b2n xnj

2 . . . b̃br1 x1j+br2 x2j+···+brn xnj
r ,we see that the exponents of the fundamental dimensions have to be zero be
ause πjhas no dimension. The equations de�ned by this form a linear equation system

Bxj = 0 ,with n − r = k linearly independent solutions. The nondimensional variables arethus 
onstru
ted and f 
an be written in dimensionless form
F (π1, π2, . . . , πk) = 0 . (7.3)With dimensional analysis a given problem 
an be analyzed without knowing themodel equations of the problem expli
itly. As a result the relation (7.3) of nondimen-sional 
ombinations of the original dependent and independent variables is obtained.However, the de
ision what are the relevant variables of the problem and whi
h unitsystem is appropriate is sometimes not trivial, see [Gör75℄ [Spu93℄ and also [Bar96℄.Note that in dimensional analysis the nondimensional variables are 
onstru
ted fromthe 
oherent dimension equations (7.1) of the problem variables. By this all dimen-sions have the same fundamental dimensions, for instan
e the spatial dimensionsare r̃ = z̃ = L.

Generalized dimensional analysisFrom the last se
tion we know that in dimensional analysis only one fundamentaldimension is assigned for all spatial dimensions. The generalized dimensional anal-ysis allows di�erent fundamental dimensions for ea
h dimension, so that di�erentlengths for ea
h spatial dimension are permissible (i.e. r̃ = Lx, z̃ = Ly). It 
an beapplied to the model equations, e.g. the ordinary or partial di�erential equations,in
luding the ne
essary initial and boundary 
onditions [NS01℄.For a generalized dimensional analysis the variables in the di�erential equations aresubstituted by their produ
t of value and dimension. Be
ause every equation mustbe of dimensional homogeneity this result in equations for the dimensions only. Forexample, in the de�nition of the velo
ity v = ∂x
∂t

we substitute v = ṽ v̂, x = x̃ x̂ and
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t = t̃ t̂. The derivatives are not 
arried out over the dimensions. With the 
onditionof dimensional homogeneity we get
ṽ v̂ =

∂(x̃ x̂)

∂(t̃ t̂)
=
x̃

t̃

∂x̂

∂t̂
, whi
h gives ṽ =

x̃

t̃
.If the dimension equation is written as: x̃−1 t̃ ṽ = 1, it is 
alled normalized dimensionequation.Thus, using generalized dimensional analysis we derive the 
oherent equations forthe 
onstru
tion of the nondimensional variables from the di�erential equations andtheir boundary 
onditions. Depending on this equations eventually more than onlyone length s
ale appears in the dimensionless variables of the problem.A system of i physi
ally meaningful ordinary or partial di�erential equations with nvariables, where the n variables are expressed in terms of r fundamental dimensions,result in l normalized dimension equations

ãb11
1 ãb12

2 . . . ãb1n
n = 1 ,

ãb21
1 ãb22

2 . . . ãb2n
n = 1 ,... (7.4)

ãbl1
1 ãbl2

2 . . . ãbln
n = 1 .Note that here the sequen
e of numbering is the other way round then in (7.1). Thepowers bij form the matrix

B =




b11 b12 . . . b1n

b21 b22 . . . b2n... ... ...
bl1 bl2 . . . bln



,with k = rankB. From the l 
oherent equations k are linear independent, su
h that

k nondimensional variables 
an be 
onstru
ted.Surely the dimension of the variable aj is a fun
tion of power monomials of thedimensions of all variables, so that we make the following ansatz:
ã1 = ã

y11
1 ã

y12
2 . . . ãy1n

n ,

ã2 = ã
y21

1 ã
y22

2 . . . ãy2n
n ,... (7.5)

ãn = ã
yn1

1 ã
yn2

2 . . . ãynn
n ,
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oe�
ients yij are unknown [NS01℄. Next, in the dimension equations(7.4) the dimensions ãj are substituted with (7.5), whi
h is here exemplarily donefor the i'th equation:
(ãy11

1 ã
y12

2 . . . ãy1n
n )

bi1 (ãy21

1 ã
y22

2 . . . ãy2n
n )

bi2 . . . (ãyn1

1 ã
yn2

2 . . . ãynn
n )

bin = 1 .By reordering the exponents in terms of dimensions
ã

bi1 y11+bi2 y21+···+bin yn1
1 ã

bi1 y12+bi2 y22+···+bin yn2
2 . . . ãbi1 y1n+bi2 y2n+···+bin ynn

n = 1 ,we see that the exponents have to be zero. Doing so for all l unit equations resultin the equation system
Byj = 0 .We said that from the k = rankB linear independent equations, k dimensionlessvariables 
an be 
onstru
ted. Then the number of dimensions whi
h we 
an 
hooseas fundamental dimensions is given by the Bu
kingham Π-Theorem as the numberof variables minus the number of nondimensional variables n− k = r.To 
onstru
t the dimensionless variables the 
olumns of the matrix B are reorderedsu
h that the r 
olumn ve
tors 
orresponding to the fundamental dimensions are
olle
ted at the right hand side and those 
olumn ve
tors form the matrix R. Theremaining k 
olumn ve
tors form the matrix K. We write the matrix B as
B = [K

∣∣R] ,Note that the r base units are 
hosen under the 
ondition that rankK = rankB[NS01℄. The nondimensional variables are then given by
πj = ã

y1j

1 ã
y2j

2 . . . ãynj
n , j = 1, . . . , k .

Generalized dimensional analysis extends dimensional analysisGeneralized dimensional analysis removes the restri
tion of only one fundamentaldimension for every dimension. Therefore it is an extension of dimensional analysis.Generalized dimensional analysis is poorly do
umented in the literature, most au-thors fo
us on dimensional analysis. Instead of using generalized dimensional anal-ysis [Spu93℄ and [Gör75℄ re
eive some of the results that 
an be obtained with



62 Chapter 7 Dimensional analysis of the model equations/rotational symmetrya generalized dimensional analysis by �rst using a dimensional analysis and thenapplying some further treatment. [Bar79℄ ar
hives the result of a generalized dimen-sional analysis also by �rst using dimensional analysis but then transforming thegained nondimensional equations with a transformation group. We will 
ome ba
kto the group aspe
t in appendix A.In the next se
tions the generalized dimensional analysis is applied to the bulk �owequations and the jump 
onditions of the 
ondensate problem.
7.2 Bulk flow equations and outer boundariesIn this se
tion we use generalized dimensional analysis to redu
e the amount ofvariables to a fewer amount of nondimensional variables of the bulk equations (6.1)� (6.3) and the outer boundary 
onditions (6.5) � (6.10) of 
ondensation in a verti
altube as derived in 
hapter 6.
Variables in terms of value and dimensionWe start by writing all variables as a produ
t of two new variables, one that rep-resent the value (hatted variables) while the other represent the dimension (tildedvariables). The variables of the moving surfa
e problem are the independent vari-ables r, z, t and the dependent variables vr, vz, p, the material properties ρ, µ,gravity g, and the variables of the boundary 
onditions

r = r̂ r̃ , vr = v̂r ṽr , ρ = ρ̂ ρ̃ , U = Û Ũ ,

z = ẑ z̃ , vz = v̂z ṽz , µ = µ̂ µ̃ , R = R̂ R̃ ,

t = t̂ t̃ , p = p̂ p̃ , g = ĝ g̃ , D = D̂ D̃ ,

L = L̂ L̃ .For the 
ondensation problem we also have to 
onsider the variables of the energyequation
T = T̂ T̃ , c = ĉ c̃ , Tw = T̂w T̃w ,

λ = λ̂ λ̃ , Tv = T̂v T̃v ,and the variables of the momentum equation for the vapor phase
pg = p̂g p̃g , ρg = ρ̂g ρ̃g .



7.2 Bulk flow equations and outer boundaries 63Next, the variables in the equations of the 
ondensation problem in the verti
al tubeare substituted by these expressions.
Dimension equations of the boundary conditionsWe begin with the boundary 
onditions. The �rst boundary 
ondition (6.5), whi
hstates a given velo
ity pro�le at the inlet, be
omes in terms of value and dimension

v̂z ṽz

∣∣
r̂ r̃,ẑ z̃=0

= Û Ũ(r̂ r̃) , v̂r ṽr

∣∣
r̂ r̃,ẑ z̃=0

= 0 .Ea
h term of an equation must be of dimensional homogeneity, so the streamwisevelo
ity must have the same dimension as the velo
ity at the inlet
ṽz = Ũ . (7.6)The other dimension equations of (6.5) are homogeneous and provide no furtherinformation.The out�ow 
ondition (6.7) be
omes in terms of value and dimension and by keepingin mind that derivatives are not 
arried over dimensions
ṽz

z̃

∂v̂z

∂ẑ

∣∣∣∣
r̂ r̃,ẑ z̃=L̂ L̃

= 0 , v̂r ṽr

∣∣∣
r̂ r̃,ẑ z̃=L̂ L̃

= 0 ,from whi
h we found the dimension equation
z̃ = L̃ . (7.7)From the �rst boundary 
ondition of the energy equation (6.8) and from the se
ondboundary 
ondition of the energy equation (6.9) we get the dimension equations
T̃ = T̃w, (7.8) r̃ = R̃, (7.9) R̃ = D̃, (7.10) T̃ = T̃S. (7.11)The last two boundary equations of the energy equation provide no new information.We 
ontinue with the bulk �ow equations.



64 Chapter 7 Dimensional analysis of the model equations/rotational symmetry

Dimension equation of the continuity equationSubstituting the variables of the 
ontinuity equation (6.1) by the produ
t of valueand dimension gives
r̃ ṽr

r̃2

1

r̂

∂

∂r̂
(r̂ v̂r) +

ṽz

z̃

∂v̂z

∂ẑ
= 0 ,from whi
h we get the dimension equation

ṽr

r̃
=
ṽz

z̃
whi
h is in normal form r̃−1 z̃ ṽr ṽ

−1
z = 1 . (7.12)The normal dimension equations of the remaining model equations we write withoutderivation.

Remaining dimension equations in normal formThe normalized dimension equations of the momentum equations are
r̃ t̃−1 ṽ−1

r = 1 , (7.13)
r̃−1 z̃ ṽr ṽ

−1
z = 1 , (7.14)

r̃ z̃−1 ṽr ṽz p̃
−1 ρ̃ = 1 , (7.15)

r̃ ṽ−1
r p̃ µ̃−1 = 1 , (7.16)
r̃−2 z̃2 = 1 , (7.17)

r̃ t̃−1 ṽ−1
r = 1 , (7.18)

r̃−1 z̃ ṽr ṽ
−1
z = 1 , (7.19)

ṽ2
z p̃

−1 ρ̃ = 1 , (7.20)
r̃2 z̃−1 ṽ−1

z p̃ µ̃−1 = 1 , (7.21)
r̃−2 z̃2 = 1 , (7.22)

z̃−2 ṽz ρ̃
−1 µ̃ g̃−1 = 1 . (7.23)The normalized dimension equations of the energy equation are

r̃ t̃−1 ṽ−1
r = 1 , (7.24)

r̃−1 z̃ ṽr ṽ
−1
z = 1 , (7.25) r̃2 z̃−1 ṽz ρ̃ c̃ λ̃

−1 = 1 , (7.26)
r̃−2 z̃2 = 1 . (7.27)The momentum equation of the vapor phase 
ompletes the system of dimensionequations for the bulk �ows. From that we get the dimension equation in normalform

z̃−1 p̃g ρ̃
−1
g g̃−1 = 1 . (7.28)Before we 
ontinue deriving the nondimensional variables of the jump 
onditions thederived dimension equations are 
he
ked for linear dependen
e.
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Linear dependent dimension equationsThe equations (7.7) � (7.28) form a homogeneous system of 23 linear equationsfor n = 20 unknowns
Bx = 0 with k = rankB = 14 . (7.29)The linear equation system is solved by Gauÿian elimination. After applying Gauÿianelimination to B = [K

∣∣R] the matrix K be
omes essentially the identity matrix(plus some zero rows for the linear dependent equations) and the nondimensionalvariables 
an read from the row-redu
ed e
helon form of B. Clearly the rank de�-
ien
y is the result of the fa
t that some equations appear as linear 
ombinations ofothers.- The dimension equations of the 
onve
tive terms (7.14) and (7.19) are obvi-ously equal. Furthermore they are also equal to the dimension equation (7.12)of the 
ontinuity equation and to the dimension equation (7.25) of the energyequation.- The dimension equation (7.13) des
ribing the transient-
onve
tion relation inthe radial momentum equation, is equal to (7.18) of the streamwise momentumequation and to (7.24) of the energy equation.- The dimension equation (7.17) des
ribing the se
ond derivatives of the vis
ousterm is equal to (7.22) of the streamwise momentum equation and to (7.27) ofthe energy equation.- From the four pressure related equations (7.15), (7.16), (7.20), (7.21) two arelinearly dependent.If the above 23 − k = 9 linear dependent equations are eliminated, then B will bea 14×20 matrix with rank k = 14, so that B would have maximum rank. However,before we do this the equations we found are analyzed in terms of the two di�erentlength s
ales.
7.3 Simplifications in terms of the two different length scalesIf we apply Gauÿian elimination to our linear equation system this result in nondi-mensional variables where the dimensions of all length s
ales are equal: r̃ = z̃ =
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R̃ = L̃ = D̃. This is not the solution we are looking for. The problem arises fromthe fa
t that until now no values are assigned for any of these variables. By setting
L̃ = L and D̃ = D we get with (7.7) and (7.9)

z̃ = L , r̃ = D .But after the length s
ales are assigned as dimensions for the spatial variables,the linear equation system are in
onsistent. There are some equations that are
ontradi
tory to our assignment. To get ba
k a 
onsistent linear equation systemthe equations we have to investigate the equations further.
Viscous termsFrom the dimension equations of the 
ondu
tive terms of the momentum equations(7.17), (7.22) and the heat equation (7.27) we get

r̃−2 z̃2 = 1 .Then either r̃ and z̃ have to be equal, or, if they are di�erent as in our 
ase, one ofthe se
ond derivatives in the 
ondu
tive terms in ea
h equation must vanish. Wemultiply the 
ondu
tive terms in the momentum equations (6.2) and in the energyequation with r̃2. For the 
ondu
tive terms of the �rst momentum equation we getwith ε = D
L
(=0.2 e-3, see appendix B)

ṽr

r̃2

∂

∂r̂

[
1

r̂

∂

∂r̂
(r̂ v̂r)

]
+
ṽr

z̃2

∂
2vr

∂z2
we get ṽr

∂

∂r̂

[
1

r̂

∂

∂r̂
(r̂ v̂r)

]
+

r̃2

z̃2︸︷︷︸
ε

ṽr
∂

2vr

∂z2
.The se
ond derivatives in streamwise dire
tion are of order ε2 smaller than the se
ondderivatives in radial dire
tion

∂
2vr

∂z2
≪ ∂

∂r

[
1

r

∂

∂r
(r vr)

]
,

∂
2vz

∂z2
≪ ∂

∂r

[
1

r

∂

∂r
(r vz)

]
,

∂
2T

∂z2
≪ ∂

∂r

[
1

r

∂

∂r
(r T )

]
.So we drop also the remaining equation of (7.17), (7.22), and (7.27). Note thateliminating (7.22) 
hanges (7.23) to

r̃−2 ṽz ρ̃
−1 µ̃ g̃−1 = 1 . (7.30)The gravity term refers now to the se
ond derivative of vz with respe
t to r (in-stead of z).
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Radial pressure derivative and radial velocityWith two di�erent length s
ales also the pressure related dimension equations (7.15)and (7.20), or (7.16) and (7.21)
r̃ z̃−1 ṽr ṽz p̃

−1 ρ̃ = 1 ,

ṽ2
z p̃

−1 ρ̃ = 1 ,

r̃ ṽ−1
r p̃ µ̃−1 = 1 ,

r̃2 z̃−1 ṽ−1
z p̃ µ̃−1 = 1 ,are in
onsistent. They result in the dimension equation r̃ z̃−1 ṽr ṽ

−1
z = 1, whi
h is
ontradi
tive to the dimension equation of the 
ontinuity equation r̃−1 z̃ ṽr ṽ

−1
z = 1.A zero pressure derivative in either radial or streamwise dire
tion would solve theproblem. In streamwise dire
tion a
ts the hydrostati
 pressure. Hen
e, the pressurederivative in radial dire
tion must be zero and the 
ondensate pressure is a fun
tionof z and t

∂p

∂r
= 0 , so p = p(z, t) . (7.31)To negle
t the inertial terms and the vis
ous terms in the radial momentum equationwould also solve the problem, sin
e it would involve a zero radial pressure derivativein the 
ondensate phase. To investigate this further we evaluate the 
ontinuityequation (7.12) with D̃ = D and L̃ = L and get that the dimension of the radialvelo
ity is of order ε smaller 
ompared to the streamwise velo
ity

ṽr = ε ṽz = U . (7.32)Substituting this in (6.2) we see that the 
onve
tive and vis
ous terms of the radialmomentum dimension equation are of order ε smaller 
ompared to the inertial andvis
ous terms of the streamwise momentum dimension equation. With the assump-tion of no sudden 
hanges (so that transient and 
onve
tive terms are of the sameorder) this suggest to negle
t the radial pressure derivative be
ause the inertial andvis
ous terms are small. Hen
e we omit the dimension equations (7.13) � (7.16) ofthe momentum equation in radial dire
tion.With the assumption that the pressure is a fun
tion of z (and t), the pressurederivative in the 
ondensate equals the pressure derivative in the vapor �ow
∂p

∂z
=

∂pg

∂z
whi
h gives with (6.4) ∂p

∂z
= ρg g . (7.33)Note that the results of our analysis in terms of the two di�erent length s
ales(i.e. se
ond order derivatives in streamwise dire
tions are of order two smaller than
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ond order derivatives in radial dire
tion, zero pressure derivative in radial di-re
tion, radial velo
ity is of order one smaller 
ompare to sreamwise velo
ity) arethe assumptions that Prandtl made when he derived the boundary layer equations,see S
hli
hting [S
h79℄. Prandtl's boundary layer equations are based on 
lassi
aldimensional analysis, plus that he had a good intuition. With generalized dimen-sional analysis we prove that the boundary layer equations 
an also be obtained bya method of more mathemati
al rigor.
7.4 Dimensionless variables and dimensionless equations of the

bulk flowsNext we solve the system of the dimension equations to �nd the dimensionless vari-ables, as dis
ussed in the �rst se
tion of this 
hapter. Then the model equations ofthe 
ondensate are given in dimensionless form.The simpli�
ations dis
ussed above redu
es the system of linear equations fur-ther Bx = 0. After removing the linearly dependent equations from the system oflinear equations, we have a system of 13 homogeneous linear equations and n = 19unknowns with k = rankB = 13, su
h that the matrix B formed by the 
oe�
ientsof the normalized dimension equations be
omes



r̃ z̃ t̃ ṽr ṽz p̃ T̃ ρ̃ µ̃ g̃ c̃ λ̃ ρ̃g Ũ L̃ D̃ R̃ T̃w T̃v(7.6) 1 -1(7.7) 1 −1(7.8) 1 −1(7.9) 1 −1(7.10) −1 1(7.11) 1 −1(7.12) −1 1 1 −1(7.18) 1 −1 −1(7.20) 2 −1 1(7.21) 2 −1 −1 1 −1(7.23) −2 1 -1 1 −1(7.24) 2 −1 1 1 1 −1(7.28) −1 1 −1 −1




.
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ording to the Bu
kingham Π-Theorem from this equation system k = 13 nondi-mensional variables 
an be 
onstru
ted from n−k = 6 fundamental dimensions. We
hoose the 
hara
teristi
 quantities of the 
ondensation problem D̃, L̃, Ũ , T̃v and thematerial properties ρ̃, c̃ as fundamental dimensions, they ful�ll the 
ondition thatrankK = rankB. After applying Gauÿian elimination to the matrix B = [K
∣∣R],we obtain the row-redu
ed e
helon form of B as:

rrefB=




r̃ z̃ t̃ ṽr ṽz p̃ T̃ µ̃ g̃ λ̃ ρ̃g R̃ T̃w ρ̃ c̃ Ũ D̃ L̃ T̃v

1 −1

1 −1

1 1 −1

1 −1 −1 1

1 −1

1 −1 −2

1 −1

1 −1 −1 −2 1

1 −2 1

1 −1 −1 −1 −2 1

1 −1

1 −1

1 −1




.

By assigning the values D̃ = D, L̃ = L, Ũ = U , T̃v = Tv and ρ̃ = ρ, g̃ = g, c̃ = c weget the nondimensional variables:3
π1 =

r̃

D
, π2 =

z̃

L
, π3 =

t̃ U

L
, π4 =

ṽr L

U D
, π5 =

ṽz

U
, π6 =

p̃

ρ U2
,

π7 =
T̃

Tv

, π8 =
µ̃ L

ρU D2
, π9 =

g̃ L

Ũ2
, π10 =

λ̃ L

ρ c U D2
, π11 =

ρ̃g

ρ
,

π12 =
R̃

D
, π13 =

T̃w

Tv
.The variables π1 � π7 de�ne the dimensions of the dependent and the independentvariables, su
h as r̃ = D, z̃ = L, t̃ = L

U
, et
.3Note that for a numeri
al simulation the temperature dimension is set to T̃ = Tv − Tw = ∆T ,
ompare 
hapter 8.
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Simplified bulk flow equations in dimensionless formTo write the bulk �ow equations in dimensionless form we de�ne the Reynoldsnumber, Froude number, Prandtl number and Pe
let number of the 
ondensationproblem as followsRe =
ρU D

µ
, Fr =

U2

g D
, Pr =

µ c

λ
, Pe =

U D ρ c

λ
.Setting µ̃ = µ, g̃ = g and λ̃ = λ, we write the dimensionless numbers π8 � π10 as

π8 =
1

εRe , π9 =
1

εFr , π10 =
1

εRePr =
1

εPe .Then we substitute the dimensions of the independent and dependent variablesin (6.1) �(6.4) with π1 � π7. We do not use the dimensionless variables π8 � π11 butlet the material properties remain in the equations. By this we getthe 
ontinuity equation:
1

r̂

∂

∂r̂
(r̂ v̂r) +

∂v̂z

∂ẑ
= 0 , (7.34)the momentum equations:

[
∂v̂z

∂t̂
+ v̂r

∂v̂z

∂r̂
+ v̂z

∂v̂z

∂ẑ

]
= −∂p̂

∂ẑ
+

1

εRe 1

r̂

∂

∂r̂

(
r̂
∂v̂z

∂r̂

)
+

1

εFr , (7.35)
∂p̂

∂r̂
= 0 ,the energy equation:

[
∂T̂

∂t̂
+ v̂r

∂T̂

∂r̂
+ v̂z

∂T̂

∂ẑ

]
=

1

εPe (1

r̂

∂

∂r̂

[
r̂

∂T̂

∂r̂

])
, (7.36)and the momentum equation of the vapor �ow:

∂p̂g

∂ẑ
= ρg g . (7.37)The pressure derivative in the momentum equation (7.35) of the 
ondensate may besubstituted with the momentum equation (7.37) of the vapor �ow, 
ompare (7.33).
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First and zero order equationsWe 
on
lude this se
tion with a dis
ussion of the �rst and zero order equations. Inthe 
ontinuity equation all terms are of the same order. In the momentum equa-tions the inertial terms, and in the energy equation the transient and 
onve
tiveterms are of order ε. For zero order momentum equations only vis
ous and gravityterms remain and the radial pressure derivative vanishes [S
h79℄. The zero orderenergy equation (
ondu
tive terms) is the Lapla
e equation in 
ylindri
al 
oordi-nates. Nuÿelt used zero order equations for the 
ondensate �ow in his theory of
ondensation along a �at plate [Nuÿ16℄ [BS98℄.With a generalized dimensional analysis of the equations of the �ow problem (yetwithout 
onsidering the 
ondensation) we 
on�rmed the equations of Nuÿelt and theboundary layer equations of Prandtl [Spu93℄. The advantage of using generalizeddimensional analysis is that we now have a tool to investigate the jump 
onditions,where the result is not known.
7.5 Jump conditionsIn this se
tion we analyze the jump 
onditions (6.13) � (6.16) for 
ondensation ina verti
al tube by a generalized dimensional analysis in terms of ε = D

L
. From thenormalized dimension equations of the jump 
onditions we �nd two more nondimen-sional variables.

Dimension equations from the mass jump conditionThe mass jump 
ondition (6.13) be
omes in terms of value and dimension variables
ṁ =

ρ̃ρ̂√
1 + h̃2

z̃2

(
∂ĥ
∂ẑ

)2

(
−ṽr v̂r +

r̃

t̃

[
∂ĥ

∂t̂

]
+ ṽz

h̃

z̃

[
v̂z

∂ĥ

∂ẑ

])
.From the square root we get the dimension equation

1 =
h̃2

z̃2
, whi
h is equivalent to h̃2 z̃−2 = 1 .From R−D = h we know that h̃ = D. But then again either the length s
ales areequal or the square of the derivative term has to vanish. With h̃2

z̃2 = D2

L2 = ε2 the



72 Chapter 7 Dimensional analysis of the model equations/rotational symmetrysquare of the derivative of h with respe
t to the tube axis z is of order two smallerthan one and is negle
ted
(

∂h

∂z

)2

≪ 1 . (7.38)This re�e
ts the assumption of small surfa
e waves. The remaining dimension equa-tions of the mass jump 
ondition are linearly dependent on the dimension equationof the 
ontinuity equation (7.12). So the mass jump 
ondition provides no additionaldimension equation.
Dimension equations from the normal momentum jump conditionThe momentum jump 
ondition in normal dire
tion (6.14) be
omes

ρ̃ρ̃

1+ h̃2

z̃2

(
∂ĥ
∂ẑ

)2

(
−̃vr v̂r+

h̃

t̃

[
∂ĥ

∂t̂

]
+ṽz

h̃

z̃

[
v̂z

∂ĥ

∂ẑ

])(
−̃vr v̂r+ṽz

h̃

z̃

[
v̂z

∂ĥ

∂ẑ

])
+p̃p̂−p̃gp̂g

− µ̃ µ̂

1 + h̃2

z̃2

(
∂ĥ
∂ẑ

)2


ṽr

r̃

[
∂v̂r

∂r̂

]
−4

(
ṽr

z̃

[
∂v̂r

∂ẑ

]
+
ṽz

r̃

[
∂v̂z

∂r̂

])
h̃

z̃

[
∂ĥ

∂z̃

]
+
ṽz

z̃

[
∂v̂z

∂ẑ

]
h̃2

z̃2

(
∂ĥ

∂ẑ

)2



= −σ̃ σ̂


−

h̃
z̃2

(
∂2ĥ
∂ẑ2

)

[
1 + h̃2

z̃2

(
∂ĥ
∂ẑ

)2
]3/2

+
1

h̃ ĥ

√
1 + h̃2

z̃2

(
∂ĥ
∂ẑ

)2


and is analyzed term by term:1. The �rst term des
ribes the momentum due to the phase transition (ṁv ·n).The square of h̃ with respe
t to z̃ in the denominator of the �rst term is oforder ε2. From the dimensions h̃

z̃
= ε, t̃ = L

U
, ṽr = ε U , ṽz = U , we see that allterms in the bra
kets are of order ε

ρ̃ ρ̂


− ṽr

︸︷︷︸
ε U

v̂r +
h̃

t̃︸︷︷︸
ε U

[
∂ĥ

∂t̂

]
+ ṽz

h̃

z̃︸︷︷︸
ε U

[
v̂z

∂ĥ

∂ẑ

]




− ṽr

︸︷︷︸
ε U

v̂r + ṽz
h̃

z̃︸︷︷︸
ε U

[
v̂z

∂ĥ

∂ẑ

]
 ,so that after the multipli
ation is 
arried out all terms are of order ε2. Thatis the momentum transport due to the 
ondensation 
an be negle
ted in thezero and �rst order normal momentum jump 
ondition. In the 
ase of evapo-ration this term des
ribes the re
oil of vapor parti
les from the interfa
e after



7.5 Jump conditions 73evaporation. In the 
ase of 
ondensation the vapor parti
les slow down afterthe phase 
hange.2. The pressure terms remain.3. The third term des
ribes the vis
ous normal stress exerted on the interfa
e(n · T · n). The orders of the terms in the bra
kets are
ṽr

r̃︸︷︷︸
U
L

[
∂v̂r

∂r̂

]
−4




ṽr

z̃︸︷︷︸
ε U

L

[
∂v̂r

∂ẑ

]
+

ṽz

r̃︸︷︷︸
U
D

[
∂v̂z

∂r̂

]



h̃

z̃︸︷︷︸
ε

[
∂ĥ

∂ẑ

]
+

ṽz

z̃︸︷︷︸
U
L

[
∂v̂z

∂ẑ

]
h̃2

z̃2︸︷︷︸
ε2

(
∂ĥ

∂ẑ

)2

.

Terms of di�erent order in one term are not permissible, the dimension equa-tion of the terms in the inner bra
kets is r̃ z̃−1 ṽr ṽ
−1
z = 1 and hen
e a singularequation. After the multipli
ation is 
arried out the underlined terms are ofthe same order and the other two terms are of order two smaller than the un-derlined terms. In the �rst instan
e the underlined terms remain in the normalmomentum jump 
ondition.4. The surfa
e tension terms (after dropping se
ond order terms) are

−σ̃ σ̂



− h̃

z̃2︸︷︷︸
ε 1

D

(
∂

2ĥ

∂ẑ2

)
+

1

h̃︸︷︷︸
1
D

1

ĥ




,

where again the terms of di�erent order 
ause the singular dimension equation:
h̃2 z̃−2 = 1, so that one of both terms has to be dropped. The 
urvatureterm related to the surfa
e waves is of order ε smaller than the (underlined)
urvature term related to the small diameter of the tube, so that the surfa
etension is determined by the small diameter of the tube. In the 
ase of a�ow along a �at plate only the 
urvature term related to surfa
e waves wouldremain in the equation.For higher velo
ities (higher Reynolds numbers) surfa
e waves may be
omemore wavy and 
ause instabilities, so that the laminar �ow breaks down [DR04℄.However, the dimension equation of the 
urvature terms suggest that for asmall tube diameter the in�uen
e of surfa
e waves is 
omparably small.



74 Chapter 7 Dimensional analysis of the model equations/rotational symmetryThe dimension equations of the normal momentum jump 
ondition are
p̃ p̃−1

g = 1 , (7.39)
r̃ ṽ−1

r p̃g µ̃
−1 = 1 , (7.40) h̃−1 z̃ ṽr ṽ

−1
z = 1 , (7.41)

r̃−1 h̃2 z̃−1 ṽz µ σ̃
−1 = 1 . (7.42)Equation (7.41) depends linearly on the 
ontinuity equation (7.12). Equation (7.40)depends linearly on the pressure dimension equation (7.16) of the radial momen-tum equation. However, this equation was 
ontradi
tive to the pressure dimensionequations of the streamwise momentum equation. So we have to eliminate eitherthe pressure term or the normal stress term. Be
ause the normal stresses are oforder εU

L
smaller than the pressure terms we drop the normal stress terms. This
ause a 
hange in (7.42)

h̃ p̃g σ̃
−1 = 1 . (7.43)The surfa
e tension term refers now to the pressure.By this, two dimension equations (7.39) and (7.43) are derived from the normalmomentum jump 
ondition for 
ondensation in a verti
al tube.

Dimension equations from the tangential momentum jump conditionThe interfa
e momentum equation in tangential dire
tion be
omes
µ̃ µ̂√

1 + h̃2

z̃2

(
∂ĥ
∂ẑ

)2

(
− ṽr h̃

r̃ z̃

[
∂vr

∂r

∂h

∂z

]

−2

(
ṽr

z̃

[
∂v̂r

∂ẑ

]
+
ṽz

r̃

[
∂v̂z

∂r̂

]) (
1 − h̃2

z̃2

[
∂h

∂z

]2
)

+
ṽz h̃

z̃2

[
∂v̂z

∂ẑ

∂ĥ

∂ẑ

])
= 0 .After dropping se
ond order terms we get

µ̃ µ̂



− ṽr h̃

r̃ z̃︸︷︷︸
ε U

L

[
∂vr

∂r

∂h

∂z

]
− 2




ṽr

z̃︸︷︷︸
ε U

L

[
∂v̂r

∂ẑ

]
+

ṽz

r̃︸︷︷︸
U
D

[
∂v̂z

∂r̂

]



+
ṽz h̃

z̃2︸︷︷︸
ε U

L

[
∂v̂z

∂ẑ

∂ĥ

∂ẑ

]



= 0 .The order of the terms in the inner round bra
kets are di�erent, so that the term oforder ε U
L
vanishes. By this the tangential momentum jump 
ondition redu
es to the
ondition of no shear stress at the interfa
e. This yields a homogeneous dimensionequation whi
h is useless.
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Dimension equations from the energy jump conditionFinally the interfa
e energy equation be
omes in terms of value and dimension vari-ables̃
ρ ρ̂ ∆̃h ∆̂h√
1 + h̃2

z̃2

[
∂h
∂z

]2

(
−ṽr v̂r +

h̃

t̃

[
∂ĥ

∂t̂

]
+ ṽz

h̃

z̃

[
v̂z

∂ĥ

∂ẑ

])

= − λ̃ λ̂√
1 + h̃2

z̃2

(
∂ĥ
∂ẑ

)2

(
− T̃
r̃

∂T̂

∂r̂
+
T̃ h̃

z̃2

[
∂T̂

∂ẑ

∂ĥ

∂ẑ

])
.After dropping the se
ond order terms we get

ρ̃ ρ̂ ∆̃h ∆̂h


− ṽr

︸︷︷︸
ε U

v̂r +
h̃

t̃︸︷︷︸
ε U

[
∂ĥ

∂t̂

]
+ ṽz

h̃

z̃︸︷︷︸
ε U

[
v̂z

∂ĥ

∂ẑ

]



= λ λ̂




T̃

r̃︸︷︷︸
Tv
D

∂T̂

∂r̂
− T̃ h̃

z̃2︸︷︷︸
ε Tv

L

[
∂T̂

∂ẑ

∂ĥ

∂ẑ

]



.The mass �ux terms remain. On the right hand side the se
ond term is of order twosmaller than the �rst term, so it vanishes. By this the energy jump 
ondition of the
ondensation problem under rotational symmetry yields the dimension equation
h̃ r̃ z̃−1 ṽz T̃

−1 ρ̃ λ̃−1 ∆̃h = 1 (7.44)
7.6 Dimensionless variables and dimensionless equations of the

interfaceIntrodu
ing (7.39), (7.43) and (7.44) into the equation system Bx = 0 results inthree additional nondimensional variables
π14 =

p̃

p̃g
π15 =

σ

ρU2D
, π16 =

∆h

c Tv



76 Chapter 7 Dimensional analysis of the model equations/rotational symmetryfor the 
ondensation problem. We de�ne Weber number and Stefan number asfollows:4We =
ρU2D

σ
, St =

c Tv

∆h
,Then the nondimensional numbers π15 and π16 be
omes

π14 =
1We , π15 =

1St .
Simplified jump conditions in nondimensional formNow we write the analyzed and simpli�ed jump 
onditions at the interfa
e betweenthe 
ondensate and the vapor in nondimensional form. For that we use the dimen-sions of the independent and dependent variables de�ned by π1 � π7 in se
tion 7.4.Again we do not use the dimensions of the material properties de�ned by π8 � π11and π15 � π16 but the material properties remain in the equations. This givesthe mass jump 
ondition:

ṁ = ρ ε U

(
−v̂r +

∂ĥ

∂t̂
+ v̂z

∂ĥ

∂ẑ

)
, (7.45)the normal momentum jump 
ondition:

p̂− p̂g = − 1We 1

ĥ
, (7.46)the tangential momentum jump 
ondition:

∂v̂z

∂r̂
= 0 , (7.47)the energy jump 
ondition:

εSt (−v̂r +
∂ĥ

∂t̂
+ v̂z

∂ĥ

∂ẑ

)
=

1Pe ∂T̂

∂r̂
. (7.48)4Note that in 
hapter 8 the temperature dimension is set to T̃ = Tv − Tw = ∆T , so that therethe Stefan number is de�ned as St = c ∆T

∆h
.
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Main physical relevant terms of condensation in a vertical tubeAll mass �ux terms are of the same order. In the normal momentum jump 
onditionthe momentum transport due to phase 
hange and some of the normal vis
ous stressterms were of order ε2 and were dropped. The remaining normal vis
ous stressterms were of order ε but 
ontradi
tive to the pressure dimension equation. So thepressure di�eren
e at the interfa
e is mainly determined by surfa
e tension stress.The tangential momentum jump 
ondition is the 
ondition of no shear stress atthe interfa
e. The energy jump 
ondition states that the heat �ux of 
ondensationis proportional to the heat �ux at the interfa
e exerted by the vapor. The jump
onditions (7.45) � (7.48) are based on the same assumptions as the boundary layer
onditions. However, note that also dimension matrix has to be 
onsistent (
omparenormal momentum jump 
ondition).
Zero order equationsAll mass �ux terms are of order ε, whi
h means that the 
ondensation pro
ess 
annotbe modeled with zero order jump 
onditions. The zero order normal momentumjump 
ondition is the Young-Lapla
e equation [Dee98℄. The 
ondition of no shearstress is a zero order equation. A zero order energy jump 
ondition would state thatthe heat �ux at the interfa
e vanishes. This 
omes from the assumption that theheat �ux in the vapor vanishes, see se
tion 6.1.With a generalized dimensional analysis based on the slenderness of the 
ondensate�lm we determined the main relevant physi
al e�e
ts of 
ondensation in a verti
altube.
7.7 Water and R134aWe 
on
lude this 
hapter by evaluating equations (7.34) � (7.37) and (7.45) � (7.48)derived in the last se
tions for water and for the refrigerant R134a. These �uidswere also used in [Fie03℄. The dimensionless numbers of water and R134a are givenin appendix B, where also material properties and pro
ess properties (su
h as �lmthi
kness and velo
ity) are be found. For both �uids the quotient of the two lengths
ales is ε = 0.2 e-3.



78 Chapter 7 Dimensional analysis of the model equations/rotational symmetryIn the nondimensional 
ontinuity equation (7.34) all terms have the same magnitude.For the nondimensional momentum equation (7.35) and the nondimensional heatequation (7.36) we get
[
∂v̂z

∂t̂
+ v̂r

∂v̂z

∂r̂
+ v̂z

∂v̂z

∂ẑ

]
= −∂p̂

∂ẑ
+

1

εRe=1263 Water=58 R134a1r̂ ∂

∂r̂

(
r̂
∂v̂z

∂r̂

)
+

1

εFr=9034 Water=247 R134a, (7.49)
[

∂T̂

∂t̂
+ v̂r

∂T̂

∂r̂
+ v̂z

∂T̂

∂ẑ

]
=

1

εPe=321 Water=17 R134a(1

r̂

∂

∂r̂

[
r̂

∂T̂

∂r̂

])
. (7.50)

In both �uids vis
ous for
es and gravity for
es dominate the inertial terms. Condu
-tive heat transport dominates 
onve
tive heat transport, but the di�eren
e is moredistin
t for water than for R134a.The terms of the nondimensional mass jump 
ondition (7.45) are again of sameorder. For the nondimensional normal momentum jump 
ondition (7.46) and thenondimensional energy jump 
ondition (7.48) we get
p̂− p̂g = − 1We=1261 Water=3.46 R134a1

ĥ
, (7.51)

1St=1.8 Water=0.4 R134a(v̂r +
∂ĥ

∂t̂
+ v̂z

∂ĥ

∂ẑ

)
=

1

εPe=321 Water=17 R134a∂T̂∂r̂ . (7.52)
Clearly for water surfa
e tension is the dominant for
e. However, if the 
ondensate�uid is R134a, surfa
e tension has almost the same order of magnitude as the pressureterms. In the energy jump 
ondition the temperature deriative dominates. Thisshows that the �ow is the dominating pro
ess, the position of the moving surfa
e ismainly determined by the solution of the free surfa
e problem. Again this is moretrue for water than for R134a.
The inclined tubeFrom what we found out about 
ondensation in a verti
al tube we 
an also explainthe results given in [Fie03℄ about 
ondensation in a tube in
lined to the verti
al.



7.7 Water and R134a 79There it was shown that for R134a the heat transfer due to 
ondensation is ap-proximately two times better for an in
lination angle of 45◦ degree 
ompared to theverti
al tube, but this e�e
t 
ould not be observed with water (
ompare se
tion 1.2).For a horizontal position of the tube the in-
Figure 7.1: Condensate �lm 
ross se
tions

terfa
e is most probably not any more rota-tional. We showed that the main for
es inthe 
ondensation pro
ess are gravity for
eand surfa
e tension for
e. In an in
linedtube gravity for
e 
an be divided into two
omponents. One 
omponent a
ts in the plane of rotation and the other a
ts in thedire
tion of the tube axis. Be
ause of gravity the 
ondensate will �ow down alongthe tube walls and 
ontinue �owing in a gathered stream at the bottom of the tube.Surfa
e tension for
e a
ts normal to the interfa
e. The e�e
t of surfa
e tension 
anbe des
ribed by the tenden
y to minimize the surfa
e, and the minimal surfa
e isthe 
ir
ular surfa
e. The balan
e of the two for
es a
ting in the plane of rotationresult for both �uids in a 
ross se
tion between the two extremal positions of themoving surfa
e as shown in �gure 7.1.A
tually the e�e
t of surfa
e tension is to minimize potential energy. Surfa
e tensionis 
aused by mole
ular for
es. In the bulk of the 
ondensate the mole
ules aresurrounded by other mole
ules and are attra
ted equally in all dire
tions. At thesurfa
e of the 
ondensate the attra
tion for
es result in a for
e that is dire
tedinwards the 
ondensate �lm su
h that the 
ondensate �lm is pulled into 
ir
ularshape [WIK℄.We showed that surfa
e tension for
e is the dominant for
e for water, but is 
om-parably small for R134a. By this, we 
on
lude that for a given in
lination angle ofthe tube the 
ross se
tion for water will be more like the �gure on the left and the
ross se
tion for R134a will be more like the �gure on the right.We showed that the heat transfer through the 
ondensate is mainly 
ondu
tive.A

ording to Fourier's law the 
ondu
tive heat �ux through a �uid is for a given�lm thi
kness and a 
onstant temperature di�eren
e better if the �lm is thinner.That is the reason why the 
ross se
tion of the right �gure is the better one for abetter heat transfer. So a better heat transfer 
an be expe
ted for R134a, whi
h isin agreement with the experimental results.



Part III
Numeri
al simulations and relatedissues



Chapter

8
Single ordinary differential equation

(ODE)/rotational symmetry

In this 
hapter, we 
onsider again the model equations for 
ondensation in a verti
altube with small diameter, as derived in part II, 
hapter 7. In se
tion 7.7 we showedthat, if the 
ondensate is water, surfa
e tension is the most dominant for
e besidegravity. For R134a the e�e
t of surfa
e tension was 
onsiderably small. Based on theresults of our evaluation of the model equations for water and R134a we simplify themodel equations further and derive a nonlinear ordinary di�erential equation for the�lm thi
kness. In a �rst attempt we negle
t surfa
e tension, then we in
lude surfa
etension into the single model equation, �nally we 
ompute numeri
al solutions ofthese ODEs and dis
uss the e�e
t of surfa
e tension for water and R134a.For numeri
al methods for the solution of ODEs we refer to [SW95℄.
Dimensionless variablesIn a numeri
al simulation, dimensionless variables are used to redu
e the amountof variables to a fewer amount of nondimensional variables, whereas in a numeri
alanalysis the main purpose is to normalize the value of the variables su
h that allvariables range between 0 and a positive number a, say 10, to avoid roundo� and
an
elation errors.For a better normalization of the temperature we revise the dimension of the tem-perature, whi
h we assigned in 
hapter 7.4 to T̃ = Tv. The energy equation is alinear di�erential equation and is therefore invariant under translation of the de-
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ompare appendix A.2), for example a translation with the walltemperature
T = T̂ T̃ + Tw . (8.1)The dimension of the temperature we set to T̃ = Tv − Tw = ∆T . Then the dimen-sionless temperature is given as
T̂ =

T − Tw

∆T
, so that T̂w = 0 , T̂v = 1 .In se
tion 7.4 the Stefan number was de�ned as St = c T̃

∆h
. With the temperaturedimension T̃ = ∆T the Stefan number isSt =

c∆T

∆h
.This de�nition is more appropriate for the numeri
al simulations, 
ompare se
-tion 8.3. The other nondimensional variables and numbers remain as dis
ussedin 
hapter 7 and as given in appendix B.

8.1 Derivation of a single ODE for the film thicknessWe derive a single ODE for the �lm thi
kness, in a �rst attempt without takingsurfa
e tension into a

ount. We will use this equation in se
tion 8.3 as a testequation for the numeri
al 
omputations. We show that our model equation is anextension of Nuÿelt's theory of 
ondensation along a �at plate.
Further reduction of the model equations to ODEsBased on the evaluation of the model equations for water and R134a in se
tion 7.7we negle
t transient and 
onve
tive terms in the 
ondensate equations (7.49), (7.50),(7.51), and we negle
t the pressure derivative in (7.49). For the moment we alsonegle
t the normal momentum jump 
ondition (7.51). Then we get

1

r̂

∂

∂r̂

(
r̂
∂v̂z

∂r̂

)
= −ReFr , (8.2)

∂

∂r̂

(
r̂

∂T̂

∂r̂

)
= 0 . (8.3)

v̂z
∂ĥ

∂ẑ
=

St
εPe ∂T̂

∂r̂
at r̂ = ĥ , (8.4)
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onditions
v̂z

∣∣
r̂=R̂

= 0 ,
∂v̂z

∂r̂

∣∣∣∣
r̂=ĥ

= 0 , and T̂
∣∣
r̂=R̂

= T̂w , T̂
∣∣
r̂=ĥ

= T̂v . (8.5)By this we redu
ed the partial di�erential model equations to ordinary di�erentialequations for the variables v̂z, T̂ , and ĥ, whi
h are mu
h easier to solve.The boundary 
ondition for the last ODE (8.4) is that the �lm thi
kness is given atthe inlet
ĥ
∣∣
ẑ=0

= ĥ0 . (8.6)
Velocity and temperature profileEquations (8.2) and (8.3) 
an be solved analyti
ally. Integrating (8.2) on
e gives

∂v̂z

∂r̂
= − Re

2Fr r̂ +
C1

r̂
,where the �rst integration 
onstant is determined by the 
ondition of no shear stressat the interfa
e, C1 = Re

2Fr ĥ2. Integrating again gives
v̂z = − Re

2Fr ( r̂2

2
− ĥ2 ln r̂

)
+ C2 ,where the se
ond integration 
onstant is determined by the 
ondition of no-slip atthe wall, C2 = Re

2Fr ( R̂2

2
− ĥ2 ln R̂

). Then the dimensionless velo
ity is a fun
tion ofthe radius depending on the �lm thi
kness
v̂z(r̂, ĥ) =

Re
2Fr (R̂2 − r̂2

2
+ ĥ2 ln

r̂

R̂

)
. (8.7)To get the temperature we integrate the energy equation (8.3) twi
e. This gives �rst

∂T̂

∂r̂
=
C3

r̂
, integrating again gives T̂ = C3 ln r̂ + C4 .The integration 
onstants are determined by the boundary 
onditions, C3 = T̂v−T̂w

ln ĥ−ln R̂
,

C4 = − T̂v ln R̂−T̂w ln ĥ

ln ĥ−ln R̂
. Then the dimensionless temperature is given by

T̂ (r̂, ĥ) =
T̂v − T̂w

ln ĥ− ln R̂
ln r̂ − T̂v ln R̂− T̂w ln ĥ

ln ĥ− ln R̂
. (8.8)
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Single ODE for the film thicknessNow we evaluate v̂ and ∂T̂

∂ˆ̂r
at r̂ = ĥ and substitute the results into the mass-energyjump 
ondition (8.4). This givesRe

2Fr (R̂2 − ĥ2

2
+ ĥ2 ln

ĥ

R̂

)
∂ĥ

∂ẑ
=

St
εPe T̂v − T̂w(

ln ĥ− ln R̂
)
ĥor equivalently

∂ĥ

∂ẑ
=

2FrSt (T̂v − T̂w)

εRePe 1(
R̂2−ĥ2

2
+ ĥ2 ln ĥ

R̂

)
ln ĥ

R̂
ĥ
. (8.9)This equation is a �rst order homogeneous nonlinear ordinary di�erential equationfor the �lm thi
kness in autonomous form1. Obviously the 
ondensation pro
ess
auses the nonlinearity, without 
ondensation we would have ∂ĥ

∂ẑ
= 0 and hen
e a �lmof 
onstant thi
kness. Equation (8.9) is quasilinear2, and 
an be solved numeri
allytogether with the boundary 
ondition (8.6). We 
ome ba
k to the numeri
al solutionof (8.9) later in this se
tion.

Comparison with Nußelt’s theory of condensation along a flat plateThe equation we derived in the last se
tion for 
ondensation in a verti
al tube isas an extension of Nuÿelt's theory of 
ondensation along a �at plate [Nuÿ16℄. InCartesian 
oordinates the momentum equation, energy equation and mass-energyjump 
ondition are given as follows
∂

2û

∂ŷ2
= −ReFr , ∂

2T̂

∂ŷ2
= 0 , û

∂δ̂

∂x̂
=

StPe ∂T̂

∂ŷ
.Here x̂ is the dimensionless streamwise 
oordinate, ŷ denotes the dimensionless 
o-ordinate perpendi
ular to x̂ in 
ounter 
lo
kwise dire
tion, û is the dimensionlessstreamwise velo
ity, and δ̂ is the dimensionless �lm thi
kness [BS98℄. The boundary
onditions are again the 
ondition of no-slip at the wall and of no shear-stress at theinterfa
e and the given temperature at the wall and at the interfa
e. By using the1impli
it in the independent variable y(x)′ = f(y(x))2linear in the highest derivative
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onditions the dimensionless velo
ity and the dimensionless temperaturederivative be
ome as follows
û =

ReFr (δ̂ ŷ − ŷ2

2

)
,

∂T̂

∂ŷ
=
T̂v − T̂w

δ̂
.Evaluating the velo
ity and the temperature derivative at ŷ = δ̂ we get the followingordinary di�erential equation for the dimensionless �lm thi
knessReFr δ̂2

2

∂δ̂

∂x̂
=

StPe T̂v − T̂w

δ̂
, or equivalently ∂δ̂

∂x̂
=

2Fr St (T̂v − T̂w)RePe 1

δ̂3
.This equation is a Bernoulli di�erential equation of type y′ = k y−3 and 
an be solvedanalyti
ally after linearization [WIK℄ [MW℄. With δ̂(x = 0) = 0 we obtain

δ̂ =
√

2

(
2FrSt (T̂v − T̂w)RePe x̂

)1
4

. (8.10)The �lm thi
kness is a fun
tion of the streamwise 
oordinate to the power of onefourth. This result is in exa
t agreement with Nuÿelt's well known equation for the�lm thi
kness of a 
ondensate �ow along a �at plate [BS98℄.
8.2 ODE for the film thickness including surface tensionNow we in
lude surfa
e tension in the single model equation (8.9) whi
h we derivedin the last se
tion.
System of ordinary differential equations including surface tensionTo in
lude the e�e
t of surfa
e tension we again negle
t transient and 
onve
tiveterms in (7.49), (7.50), (7.51), but let remain the pressure gradient in (7.49)

1

εRe 1

r̂

∂

∂r̂

(
r̂
∂v̂z

∂r̂

)
=

∂p̂

∂ẑ
− 1

εFr , ∂p̂

∂r̂
= 0 . (8.11)Then we use the normal momentum jump 
ondition (7.51)

p̂ = − 1We 1

ĥ
(8.12)
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t to ẑ
∂p̂

∂ẑ
=

1We 1

ĥ2

∂ĥ

∂ẑ
. (8.13)With the assumption of a steady 
ondensate �ow the pressure is only a fun
tionof ẑ (
ompare se
tion 7.3), and we 
an substitute the pressure gradient in (8.11)with (8.13). This gives the following system of ODEs

1

r̂

∂

∂r̂

(
r̂
∂v̂z

∂r̂

)
=

εReWe 1

ĥ2

∂ĥ

∂ẑ
− ReFr . (8.14)

∂

∂r̂

(
r̂

∂T̂

∂r̂

)
= 0 , (8.15)

v̂z
∂ĥ

∂ẑ
=

St
εPe ∂T̂

∂r̂
at r̂ = ĥ . (8.16)The boundary 
onditions are the same as before, see (8.5) and (8.6).

Velocity (including surface tension) and temperature gradientIntegrating (8.14) and (8.15) and evaluating the boundary 
onditions gives the di-mensionless velo
ity and the dimensionless temperature gradient with respe
t to r̂as follows
v̂z =

(
− εRe

2We 1

ĥ2

∂ĥ

∂ẑ
+

Re
2Fr)(R̂2 − r̂2

2
+ ĥ2 ln

r̂

R̂

)
, (8.17)

∂T̂

∂r̂
=

T̂v − T̂w

ln ĥ
R̂

1

r̂
. (8.18)

Single ordinary differential equation for the film thickness including surface tensionEvaluating (8.17) and (8.18) at r̂ = ĥ and substituting the results into the mass-energy jump 
ondition (8.16) gives
(
− εRe

2We 1

ĥ2

∂ĥ

∂ẑ
+

Re
2Fr)(R̂2 − ĥ2

2
+ ĥ2 ln

ĥ

R̂

)
∂ĥ

∂ẑ
=

St
εPe T̂v − T̂w

ln ĥ
R̂
h

,or equivalently
(

∂ĥ

∂ẑ

)2

− We
εFr ĥ2 ∂ĥ

∂ẑ
= −2WeSt (T̂v − T̂w)

ε2 RePe ĥ(
R̂2−ĥ2

2
+ ĥ2 ln ĥ

R̂

)
ln ĥ

R̂

. (8.19)



8.3 Numerical simulations of condensation including surface tension 87This equation is a fully nonlinear �rst order di�erential equation for the �lm thi
k-ness. However, we 
an transform (8.19) into a quasilinear ODE. For that we writemore 
onveniently
(

∂ĥ

∂ẑ

)2

− a ĥ2 ∂ĥ

∂ẑ
= −b f(ĥ) .with a = We

εFr and b = 2WeSt (T̂v−T̂w)
ε2 RePe . The left hand side 
an be transformed in anquadrati
 expression

(
∂ĥ

∂ẑ
− a

ĥ2

2

)2

− a2 ĥ
4

4
= b f(ĥ) ,so that

∂ĥ

∂ẑ
= a

ĥ2

2
±

√

a2
ĥ4

4
− b f(ĥ) .Substituting ba
k the parameters a and b we �nally re
eive the following quasilinearODE for 
ondensation in a verti
al tube with small diameter

∂ĥ

∂ẑ
=

We
εFr ĥ2

2

+
−
√√√√
(We
εFr)2

ĥ4

4
− 2WeSt (T̂v − T̂w)

ε2 RePe ĥ(
R̂2−ĥ2

2
+ ĥ2 ln ĥ

R̂

)
ln ĥ

R̂

. (8.20)We are seeking for the solution of the ODE with the negative signed root.
8.3 Numerical simulations of condensation including surface

tensionTo investigate the e�e
t of surfa
e for 
ondensation in a verti
al tube for Water andR134a we solve equation (8.20) numeri
ally.
WaterFirst we 
ompare the model equations without surfa
e tension (8.9) and with sur-fa
e tension (8.20) with Nuÿelt's solution (8.10). We assume a tube diameter of7 mm and a tube length of 500 mm and take water as 
ondensate. The initial �lmthi
kness is 0.1 mm. All 
al
ulations are dimensionless. Further details, su
h as
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Figure 8.1: Water: (8.10) Nuÿelt, (8.9) without and (8.20) with surfa
e tensionwall temperature and dimensionaless numbers of water, are given in appendix B.The results of our 
omputations using Euler impli
it and Runge-Kutta(4) are donewithMathemati
a and are shown in �gure 8.1. The numeri
al solutions of the modelequations without surfa
e tension and with surfa
e tension are not distinguishable.If the 
ondensing �uid is water an e�e
t of surfa
e tension 
annot be observed. The�lm thi
kness predi
ted by (8.9) and (8.20) is slightly above the �lm thi
kness pre-di
ted by Nuÿelt. The reason is that be
ause of the 
ir
ular tube the 
ondensingmass result in a thi
ker 
ondensate �lm.For a larger diameter of about 60 mm Nuÿelt's solution is almost identi
al withthe numeri
al solution. Figure 8.2 shows the �lm thi
kness for two di�erent tubediameter.3 The numeri
al solution of nonlinear ODEs often requires a higher order
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Figure 8.2: Water: (8.10) Nuÿelt, (8.9) and (8.20) for d = 60 mm, d = 8 mm3Note that the 
hara
teristi
 velo
ity and length are based on measured values with a �xeddiameter.
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ura
y method or a more stable impli
it method, or a 
ombination of both, an im-pli
it method of higher order [SW95℄. However, the nonlinearity of (8.9) and (8.20)is smooth, so that the results of Euler impli
it and Runge-Kutta are not distinguish-able and a standard Runge-Kutta(4) is su�
ient.
R134aFor R134a we assume the same tube geometry, the same initial �lm thi
kness, andthe same temperature interval as before. The data and the dimensionless numbersof R134 are given in appendix B. The numeri
al solutions of (8.9) and (8.20) forR134a using Runge-Kutta are shown in �gure 8.3. The R134a �lm is thinner than the
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3PSfrag repla
ements
R134aR̂ − ĥ

ẑ

(8.9),(8.20)Nuÿelt
Figure 8.3: R134a: (8.10) Nuÿelt, (8.9) without and (8.20) with surfa
e tensionwater �lm, whi
h is in agreement with [Fie03℄. Beside this the results are similar asbefore. The di�eren
e between Nuÿelt's solution and the numeri
al solutions of (8.9)and (8.20) is smaller, be
ause of the thinner �lm thi
kness of the R134a �lm.

Higher surface tension coefficientFor the verti
al tube we 
ould not observe an e�e
t of surfa
e tension on the �lmthi
kness for water and R134a. Now we in
rease the surfa
e tension 
oe�
ient(i.e., redu
e the Weber number) by two powers of ten. This is an unrealisti
 valuebut serves for an estimation. The result is shown in �gure 8.4. In a verti
al tube
ross se
tions of the �lm are always 
ir
ular, but espe
ially at the tube inlet the�lm thi
kness varies substantial over the tube length (
ompare se
tion 7.7). In theverti
al tube the e�e
t of surfa
e tension to minimize the surfa
e results in a moreevenly distributed �lm thi
kness along the tube length.
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Figure 8.4: R134a: (8.9) without surfa
e tension, (8.20) with surfa
e tension

Nußelt number – dimensionless heat transferThe heat transfer in the 
ondensate �lm is mostly 
ondu
tive so that the temperaturepro�le in the �lm is almost linear and we 
an write
q
′′

= α∆T .Equating q′′ with the energy jump 
ondition at the interfa
e (where the heat transferpro
ess o

urs) gives
α∆T = λ∇T · n = ṁ∆h ,whi
h be
omes in terms of dimensionless variables,4
α∆T =

λ∆T

D

∂T̂

∂r̂
=

∆h ρU D

L
û

∂ĥ

∂ẑ
.Multiplying this equation with D

λ ∆T
gives the lo
al Nuÿelt number, whi
h is de�nedas the dimensionless temperature gradient at the interfa
eNuDGL =

αD

λ
=

∂T̂

∂r̂
=

∆h ρU D2

λ∆T L︸ ︷︷ ︸
εPeSt û

∂ĥ

∂ẑ
.Figure 8.5 shows the lo
al Nuÿelt number of Water and R134a as a fun
tion of tubelength. Note that the lo
al Nuÿelt number is almost inversely proportional to the�lm thi
kness.4With the dimensions r̃ = h̃ = D, ũ = U , z̃ = L, and T̃ = ∆T , 
ompare 
hapter 7 and (8.1).
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Figure 8.5: Nuÿelt number of Water and R134aWe 
ompare our results with the mean Nuÿelt number NuNu=(3Re)1/3 for 
onden-sation along a �at plate a

ording to Nusselt's theory [BS98℄, and with the meanNuÿelt number given by Chen for 
ondensation in tubes [Bej04℄NuChen=
(Re−0.44+5.82 10−6Re0.8Pr1/3+3.27 10−4Pr1.3

2R2

(
ν2

w

g

)2/3(
ηwg

ηw

)0.156(
ρ2

w

ρw

)0.788 Re1.8

4.121

)1/2

.(8.21)The mean Nuÿelt numbers for water and R134a are given in table 8.1. It showsWater R134aNuNu 0.44 0.15NuDGL 0.52 0.23NuChen 0.74 0.37Table 8.1: Comparison of mean Nuÿelt numbersthat our model is better then Nuÿelt's model, but Chen's model is better then ourmodel. Chen reviewed available experimental information for 
o-
urrent 
ondensa-tion inside verti
al tubes. His model is more a

urate for Reynolds numbers greaterthan Re=30. It takes into a

ount that at higher Reynolds numbers the �lm isthinner due to the 
o-
urrent vapor �ow. This explains the di�eren
e between ourmodel and Chen's model. However, we derived an ordinary di�erential equationthat is easy to solve by standard numeri
al methods, and 
an be extended in a nextstep to in
lude the e�e
t of an in
lination angle.



Chapter

9
Model equations as differential algebraic

equations (DAEs)

In this 
hapter we analyze the model equations for 
ondensation in
luding surfa
etension from a DAE point of view and dis
uss the requirements for a numeri
alsolution of this moving boundary problem.For a three-dimensional numeri
al simulation of the 
ondensation problem wheresurfa
e tension o

urs at the interfa
e, the Navier-Stokes equations and the energyequation have to be solved, together with the jump 
onditions at the interfa
e (
om-pare se
tion 5.3). We dis
retize the spatial terms of the bulk �ow equations, whi
hlead to a system of di�erential and algebrai
 equations (DAEs). We dis
uss thebasi
 ideas of DAEs with Navier-Stokes equations for whi
h the results are known.Then we analyze the 
omplete system of DAEs in
luding the jump 
onditions, andwe relate the DAE approa
h with 
onventional methods. Finally we dis
uss someaspe
ts of numeri
al solution s
hemes for the moving boundary problem based onour analysis.For the spatial dis
retization of the model equations with �nite element method(FEM) and and �nite di�eren
e method (FDM) for Navier-Stokes equations we referto [KA00℄ [Bra97℄. For the numeri
al solution of di�erential algebrai
 equations werefer to [BCP96℄ [HW02a℄ [AP98℄. For the numeri
al solution of the linear equationsystems (LES) whi
h result from the dis
retization we refer to [Mei05℄ [Saa00℄ [GL96℄[QSS00℄.
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9.1 Spatial discretization of Navier-Stokes equations and en-

ergy equationIn �gure 9.1 the numeri
al methods for the solution of the bulk equations of the
ondensation problem are depi
ted.model equations
f (y, ẏ,∇y) = 0nonlinear PDEsspatialdis
retizationFDM/FEM
f (y, ẏ) = 0Quasilin. DAE

Indexredu
tion
ẏ = f (y)

0 = g(y)Index 1 DAE
linearizationwithNewton method
E∆ẏ = A∆y + blinear DAE

timedis
retizationEuler impli
it
B∆yi+1 = rLES

solveLesdire
t +iterativesolverFigure 9.1: Numeri
al methods for the solution of the bulk equationsBoth programs we worked with1, use �nite
PSfrag repla
ements

z, i

y, j

Figure 9.2: Re
tangular grid

element method (FEM) for the spatial dis-
retization of the unknowns. The main ad-vantage of FEM for the solution of mov-ing boundary problems over �nite di�eren
emethod (FDM) and �nite volume method(FVM) is that FEM allows greater �exibilityto model 
omplex geometries. The matri
esresulting from all three methods have simi-lar 
hara
teristi
s. However, in this 
haperwe use �nite di�eren
e method for the dis-
retization of the spatial terms, be
ause this is more instru
tive and allows us toperform some ne
essary 
al
ulations using Matlab.
Discretization of the spatial terms – FDMFor the three-dimensional simulation we 
an write the equations in 
artesian 
oor-dinates, there is no need to use 
ylindri
al 
oordinates as long as we not assumerotational symmetry. We �rst 
onsider a two-dimensional 
ondensate sli
e as shownin �gure 9.2. The 
omplexity of a three-dimensional simulation arises on the level of1SEPRAN and FIDAP



94 Chapter 9 Model equations as differential algebraic equations (DAEs)implementation due to the geometri
al information that has to be handled and dueto the immense in
rease of the number of unknowns and therefore the dimension ofthe equation systems.The equations for the bulk �ow equations as given at the end of part I in se
tion 5.3form a system of nonlinear partial di�erential equations, where the nonlinearity
omes from the 
onve
tive terms in the momentum equations. Assume a �uid sli
eas shown in �gure 9.2 
overed by a quadrilateral grid, with i = 1, . . . , n points in zdire
tion and j = 1, . . . , m points in y dire
tion. Using 
entral di�eren
e formulasfor the se
ond order spatial derivatives and ba
kward di�eren
e formulas for the �rstorder spatial derivatives, see e.g. [QSS00℄, we get for the �uid unknowns at an innergrid point i, jthe equation of 
ontinuity
vzi,j

− vzi−1,j

∆z
+
vyi,j

− vyi,j−1

∆y
= 0 , (9.1)the momentum equation

ρ

(
v̇zi,j

+ vzi,j

vzi,j
− vzi−1,j

∆z
+ vyi,j

vzi,j
− vzi,j−1

∆y

)
= −pi,j

− p
i−1,j

∆z

+ µ

(
vzi+1,j

− 2 vzi,j
+ vzi−1,j

∆z2
+
vzi,j+1

− 2 vzi,j
+ vzi,j−1

∆y2

)
+ ρ g cos ϑ , (9.2)

ρ

(
v̇yi,j

+ vzi,j

vyi,j
− vyi−1,j

∆z
+ vyi,j

vyi,j
− vyi,j−1

∆y

)
= −pi,j

− p
i,j−1

∆y

+ µ

(
vyi+1,j

− 2 vyi,j
+ vyi−1,j

∆z2
+
vyi,j+1

− 2 vyi,j
+ vyi,j−1

∆y2

)
+ ρ g sinϑ ,the energy equation

ρ

(
Ṫ

i,j
+ vzi,j

T
i,j

− T
i−1,j

∆z
+ vyi,j

T
i,j

− T
i,j−1

∆y

)

=
λ

c

(
T

i+1,j
− 2 T

i,j
+ T

i−1,j

∆z2
+
T

i,j+1
− 2 T

i,j
+ T

i,j−1

∆y2

)
, (9.3)where ∆z = z

i,j
− z

i−1,j
and ∆y = y

i,j
− y

i,j−1
.



9.1 Spatial discretization of Navier-Stokes equations and energy equation 95If we let run the indi
es over the entire domain, equations (9.1) � (9.3) de�ne thematrix equations
DT

z vz +DT
y vy = 0 ,

M z v̇z +
[
N z(vz) +N y(vy)

]
vz = −Dz p+

[
Sz + Sy

]
vz + gz , (9.4)

M y v̇y +
[
N z(vz) +N y(vy)

]
vy = −Dy p+

[
Sz + Sy

]
vy + gy ,

C Ṫ +
[
N z(vz) +N y(vy)

]
T =

[
Kz +Ky

]
T ,where the ve
tors are of length nm and the matri
es are of dimension (nm)×(nm).

Quasi-linear system of differential algebraic equations (DAE)With v = [vz,vy]
T , D = [Dz,Dy]

T , g = [gz, gy]
T , and

M =

[
M z

M y

]
, N =

[
N z

N y

]
, S =

[
Sz

Sy

]
, K =

[
Kz

Ky

]
,the four matrix equations (9.4) 
an be written more 
onveniently as

M v̇ = [S −N(v)] v −Dp+ g ,

C Ṫ = [K −N(v)] T , (9.5)
0 = DT v .

M , C, S,K,N are quadrati
 matri
es with dimension (2nm)×(2nm), andD is are
tangular matrix with dimension (2nm)× (nm). The matri
esM , C, S, and Kare symmetri
. They are also stri
tly diagonally dominant and therefore positivede�nite [Saa00℄. N is not symmetri
. Be
ause the 
onve
tive terms are dis
retizedwith ba
kward di�eren
e formulas (upwind dis
retization) the sums S − N and
K −N respe
tively are diagonal dominant.2 D has full rank. Equation (9.5) is aquasi-linear system of di�erential algebrai
 equations.2Dis
retization with se
ond order di�eren
e formulas would result in a non-diagonally dominantmatrix. A dis
retization that makes the matrix diagonal dominant is 
alled upwind dis
retizationand is preferred, although it de
reases the order of the dis
retization [Saa00℄.
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9.2 Basic definitons of DAEsIn this se
tion we analyze the quasi-linear DAE (9.5) whi
h we derived by spatialdis
retization of the model equations. The di�erential equations and the algebrai

onstraints in (9.5) are separated. The di�erential variables are velo
ity and tem-perature and the algebrai
 variable is the pressure. The DAE (9.5) is a semi-expli
itDAE in autonomous form and 
an be written as
ẋ = f (x,p) , (9.6)
0 = g1(x) .

Index of a DAEThe 
omplexity of a DAE is 
hara
terized by the smallest number of times thatthe algebrai
 equations must be di�erentiated with respe
t to time in order to de-termine an expli
it ODE. This number is 
alled the (di�erential) �index� of theDAE [BCP96℄.3 Thus ODEs have index zero. If the algebrai
 equations depend onthe algebrai
 variables g = g(x,p), then one derivative with respe
t to time4dg1dt =
∂g1

∂x
ẋ+

∂g1

∂p
ṗ .gives ṗ in prin
iple. For a DAE of index one the matrix of the derivatives ∂g1

∂p
mustbe non-singular. However, in our 
ase g

1
= g

1
(x) and hen
e ∂g1

∂p
= 0 singular.Di�erentiating g

1
(x) twi
e with respe
t to time using 
hain rule gives with (9.6)dg1dt =

∂g1

∂x
ẋ =

∂g1

∂x
f , (9.7)d2g1dt2 =

∂
2g1

∂x2
ẋ f +

∂g1

∂x

(
∂f

∂x
ẋ+

∂f

∂p
ṗ

)
.By this ṗ is determined in prin
iple. For a semi-expli
it DAE of index two ∂g1

∂x

∂f

∂pmust be non-singular [AP98℄. So obviously (9.6) is an index two DAE.3In literature di�erent index de�nitions exist, from whi
h the di�erential index is most 
ommonlyused [SW95℄.4Here we follow the notation 
ommonly used in DAE literature, where ∂f
∂y

=




∂f1

∂y1

. . . ∂f1

∂yn... ...
∂fn

∂y1

. . . ∂fn

∂yn


.Note that this notation 
onfuses with tensor notation when the gradientis de�ned as ∇ = ei

∂

∂yi
. Then ∇f = ei

∂

∂yi
(fj ej), whi
h is the transposed of ∂f

∂y
.



9.2 Basic definitons of DAEs 97A DAE of index one 
an be solved by an impli
it ODE method or a higher ordermethod (e.g. Runge-Kutta method) [HW02a℄. However, from (9.6) we see that anexpli
it time dis
retization of ẋ does not work for the 
onstraint, so that at least ansemi-expli
it method must be used, with an expli
it dis
retization of the ODE andan impli
it dis
retization of the 
onstraints.
Consistent initial conditionsThe 
onstraints of a DAE must be satis�ed at any time. An index two DAE mustsatisfy the 
onstraint of the DAE

g1(x) = 0 and g2(x,p) =
∂g1

∂x
ẋ = 0 (9.8)at any time. The se
ond 
onstraint is 
alled hidden 
onstraint [AP98℄. Initial
onditions of a DAE that satisfy the 
onstraints of the DAE are 
alled 
onsistent.

Index reduction and driftThe �rst idea to redu
e the index of (9.6) is to perturb the algebrai
 
onstraint withthe algebrai
 variable multiplied by a small penalty parameter
0 = g1(x) + εp .Then the algebrai
 
onstraint is a fun
tion of di�erential and algebrai
 variablesand the DAE has index one.5 The algebrai
 variable 
an be eliminated from themomentum equation by substituting p = ε−1g1. However, the penalty method maylead to ina

urate results.The next idea is to redu
e the index by di�erentiating the 
onstraints. If we substi-tute the 
onstraint g1(x) = 0 in (9.6) by its derivative (9.7) with respe
t to time weget the DAE
ẋ = f (x,p) , (9.9)
0 = g2(x,p) ,This DAE has index one. However, with the di�erentiation we lost the integration
onstant.6 Even if the initial 
onditions satis�es g1 = 0, the numeri
al solution5The penalty method is easy to implement and a standard method in CFD-software pa
kages.6The integration 
onstant is in our 
ase zero, integrating g2 gives ∫ g2 dt = g1 + c, with c = 0.



98 Chapter 9 Model equations as differential algebraic equations (DAEs)not any longer satisfy the 
onstraint exa
tly due to roundo� errors in every iterationstep, and the solution may drift away from the 
onstraints. This is why DAEs requiremore stable methods, so that impli
it methods are preferred over expli
it methods.But for an DAE of index two or higher an impli
it method is not su�
ient [HW02a℄.
Overdetermined system and constraint stabilizationThe DAE (9.6) together with the se
ond 
onstraint

ẋ = f (x,p) , (9.10)
0 = g1(x) ,

0 = g2(x,p) ,is a DAE with index one. However, (9.10) is an overdetermined system, whi
h is
ontradi
tive after time dis
retization [BCP96℄. The ODE has dimension nv = 2nmand the 
onstraints have dimension np = nm, so that we have nv + 2np equationsfor nv + np unknowns. The hidden 
onstraints are still present in the ODE. Theidea is to eliminate the np super�uous equations by multiplying the ODE with amatrix Z whose 
olumn ve
tors are perpendi
ular to the row ve
tors of
GT =

∂g1

∂x
,so that

GTZ = 0 , or equivalent ZTG = 0 (9.11)[BCP96℄. GT has np rows and nv 
olumns and has full rank. Z has nv rows and
nv−np 
olumns and must have full rank. Then any ve
tor v whi
h satis�esGTv = 0
an be written as a linear 
ombination of the nv−np base ve
tors ofZ. The matrixZis 
omputed by means of an orthogonal proje
tor.7 Multiplying the ODE in (9.10)7The proje
tor P̃ = G

(
GTG

)
−1

GT proje
t an arbitrary ve
tor onto the ve
tor spa
e spannedby all ve
tors whi
h are the result of y = Gx for any x; that is, the span (or range) of G.From ZT (Gx) = 0 and GT (Z x) = 0 (for any x) we know that the span of G is the orthogonal
omplement of the span of Z. P = I − P̃ proje
t an arbitrary ve
tor onto the span of Z (oronto the null spa
e of GT ). Multiplying P with nv − np arbitrary linearly independent ve
tors
A = [a1, ...,anv−np

] (su
h that Z has full rank) gives Z = P A [Saa00℄ [WIK℄. Then (9.11) issatis�ed, GTZ = GTP A = GTA−GT

(
G
(
GTG

)
−1

GT

)
A = 0.



9.3 Index of Navier-Stokes equations and energy equation 99with ZT eliminates the redundant nv − np equations, so that the redu
ed index oneDAE
ZT ẋ = ZTf (x,p) ,

0 = g1(x) ,

0 = g2(x,p) ,
an then be solved numeri
ally with an impli
it method or an semi-impli
it methodof higher order [HW02a℄. See [Ste06℄ for a 
on
ise index-redu
tion pro
edure for anyarbitrary semi-expli
it DAE.
Transformation of an index two DAE of special structure into an ODE with invariantIf the index two DAE (9.6) 
an be written as

ẋ = f̃ (x) +Gp , (9.12)
0 = GTx ,then by multipli
ation the ODE with ZT the DAE is transformed to an ODE withinvariant
ẋ = f̃ (x) ,

0 = g1(x) ,[AP98℄.
9.3 Index of Navier-Stokes equations and energy equationNow we analyze the index of the dis
retized bulk equations (9.5) of the 
ondensationproblem

M v̇ = [S −N(v)] v −Dp+ g ,

C Ṫ = [K −N(v)] T , (9.13)
0 = DT v .The Navier-Stokes equations have index two [BCP96℄. Equation (9.13) is a semi-expli
it DAE of form (9.6). Consequently we obtain the following result: The Navier-Stokes equations together with the energy equations have index two. The energyequation does not 
hange the index.
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Index reductionThe hidden 
onstraint of the Navier-Stokes equations we get by di�erentiating thedis
retized equation of 
ontinuity with respe
t to timed (DTv
)dt = DT v̇ = 0 . (9.14)Multiplying the ODE in (9.5) from left with M−1

v̇ = M−1 [S −N(v)] v −M−1Dp+M−1gand substituting this in (9.14) gives the hidden 
onstraint as follows
0 = DTM−1 [S −N(v)] v −DTM−1Dp+DTM−1g . (9.15)

DTM−1D must be non-singular. DT is the dis
retized divergen
e operator, D isthe dis
retized gradient operator, and M = ρ I. Then DTMD is the dis
retizedLapla
e operator ∇2 = ∇ ·∇ times density, so that (9.15) de�nes a Poisson equationfor the pressure, where the right hand side is a fun
tion of velo
ity
∇2 p = f(v) . (9.16)The Navier-Stokes equations have the same stru
ture as (9.12). So the index 
anbe redu
ed by transforming the Navier-Stokes equations in an ODE plus invariant.Multiplying the momentum equation in (9.13) with a matrix ZT (
onstru
ted asdes
ribed in se
tion 9.2) su
h that
DTZ = 0 or equivalent ZTD = 0 , (9.17)gives an ODE for the velo
ity only, with the dis
retized equation of 
ontinuity asinvariant
ZTM v̇ = ZT [S −N(v)] v −ZTD︸ ︷︷ ︸

=0

p+ZTg , (9.18)
0 = DTv .By this the Navier-Stokes equations are de
oupled in an ordinary di�erential equa-tion for velo
ity and a Poisson equation (9.15) for pressure. See [S
h07℄ for a moregeneral version of this de
oupling for the Navier-Stokes equation88If e.g. �nite element method is used, then M is not anymore the identity matrix times a
onstant. To apply the above transformation, thenM must be de
omposed by means of a Choleskyfa
torizationM = UTU and the velo
ity v must be transformed by u = U v.



9.3 Index of Navier-Stokes equations and energy equation 101However, multipli
ation with ZT destroys the sparse stru
ture of the matri
es result-ing from spatial dis
retization, so that this method is only pra
ti
able for systemswith small matrix dimensions. To avoid this, the proje
tion step in index redu
tionof Navier-Stokes equations is usually implemented as follows.
Pressure projection schemesCFD-software pa
kages usually solve the Navier-Stokes equations not in DAE form,but solve in every iteration the momentum equation and proje
t the velo
ity (inevery iteration or on
e a while) ba
k to the subspa
e of divergen
e free velo
i-ties [Wes00℄. A di�erent Poisson equation is used, based on that any velo
ity w 
anbe de
omposed into w = v+∇p, where v has zero divergen
e and is parallel to theboundary v · n = 0 [CM92℄. Then

∇ ·w = ∇2 p . (9.19)Pressure proje
tion s
hemes (as e.g. used by [FTM℄ [STM℄) are summarized by thefollowing s
heme:- solve momentum equation (9.13) with a pressure guess, get an intermediatevelo
ity w,- solve the Poisson equation (9.19) with the intermediate velo
ity, get an inter-mediate pressure,- proje
t the intermediate velo
ity on its divergen
e free part.9
Linearization with Newton methodFor the sake of 
ompleteness we outline the remaining steps in the numeri
al solutionof the bulk equations as depi
ted in �gure 9.1. The momentum equation has to belinearized. This is done using Newton method. If we summarize the DAE (9.13)by f (y, ẏ) = 0, then a Taylor series expansion for

f(y0 + ∆y, ẏ0 + ∆ẏ) = 0gives
0 = f(y0, ẏ0) +

∂f

∂y

∣∣∣
y0

∆y +
∂f

∂ẏ

∣∣∣
ẏ0

∆ẏ + higher order terms .9By means of an orthogonal proje
tor P su
h that P u = u and P ∇p = 0 the intermediatevelo
ity 
an be proje
ted on its divergen
e free part P w = P (u+ ∇p) = u.



102 Chapter 9 Model equations as differential algebraic equations (DAEs)This a quasi-linear DAE, whi
h we 
an write as
E∆ẏ = A(y0) ∆y + f (y0, ẏ0) , (9.20)where E is a 
onstant singular matrix and A is a non-
onstant singular matrix.Linearization did not 
hange the index, (9.20) has still index two. The linearizedDAE (9.20) has again stru
ture (9.12), so that it 
an be transformed into an indexone DAE 
onsisting of an ODE with 
onstraint as before. The so derived linearindex one DAE we denote by
Ẽ∆ẏ = Ã(y0) ∆y + f̃ (y0, ẏ0) . (9.21)The Ja
obi matrix Ã(y0) = ∂f

∂y

∣∣∣
y0

is not updated in every iteration (modi�ed New-ton) [QSS00℄. Note that Newton method has a small 
onvergen
e radius and there-fore needs a good starting guess, so that it is important to provide a good initialmesh 
on�guration and initial velo
ity �eld.
Time discretizationThe linearized index one DAE (9.21) is then solved by an impli
it ODE method, forexample Euler impli
it (or any other higher order impli
it time integration method).Using Euler impli
it we get

Ẽ
1

∆t

(
∆yi+1 − ∆yi

)
= Ã(yi) ∆yi+1 + f̃(yi) ,where ∆yi+1 = yi+1 − yi and ∆yi = yi − yi−1. Rearranging the terms su
h thatthe unknowns are on the left gives

(
Ẽ − ∆t Ã

)
∆yi+1 = E∆yi + ∆t f̃ . (9.22)This linear equation system (LES) is solved for ∆yi+1 in every time iteration bymeans of dire
t (Gauÿ) or iterative (CGS � Conjugate gradient square, GMRES �Generalized minimal residual) methods [Saa00℄ [Mei05℄, so that the solution at thenext iteration is given by

yi+1 = yi + ∆yi+1 .By this we summarized the steps in the numeri
al solution of the index two DAEwhi
h was the result of the spatial dis
retization of the bulk equations. We dis
ussedthe Navier-Stokes equations from a DAE point of view. The next step is to investi-gate the system of DAEs de�ned by the 
omplete system of equations in
luding thejump 
onditions.
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9.4 Index of the condensation problemTo analyze the system of di�erential algebrai
 equations formed by the dis
retizedbulk equations (9.5) and (9.13) respe
tively, together with the dis
retized jump
onditions we �rst dis
retize the spatial terms of the jump 
onditions. For that wesimplify the jump 
onditions su
h that they are more easy to analyze but still havethe main features of the moving boundary problem with phase 
hange.
Two-dimensional jump conditions for the one-fluid condensation problemWe negle
t shear stress exerted by the vapor, assume zero heat �ux in the vaporphase and 
onstant vapor pressure; so that the problem redu
es to to a one-�uid-problem. Further we negle
t momentum due to phase transition. Then the jump
onditions (from se
tion 5.3) are given as

ṁ = ρ [v − u] · n ,
pg − p+ n · T · n = 2H σ , (9.23)

t · T · n = 0 ,

ṁ∆h = q ·n .We dis
retize this equations again for a two-dimensional �uid-sli
e as depi
ted in�gure 9.3. With normal and tangent ve
tors (2.14), (2.13), mean 
urvature (2.18),
q = −λ∇T and T = µ [∇v + (∇v)T ], the jump 
onditions be
ome (
ompare
hapter 5 and 6)

ρ√
1 +

(
∂h
∂z

)2

(
vy −

∂h

∂t
− vz

∂h

∂z

)
= ṁ,

p−pg−
µ√

1 +
(

∂h
∂z

)2

(
∂vy

∂y
− 4

[
∂vy

∂z
+

∂vz

∂y

]
∂h

∂z
+

∂vz

∂z

[
∂h

∂z

]2
)

=σ
∂2h
∂z2(

1 +
[

∂h
∂z

]2)3/2
,

(9.24)
µ√

1 +
(

∂h
∂z

)2

(
∂h

∂z

∂vy

∂y
+ 2

[
∂vy

∂z
+

∂vz

∂y

][
1 −

(
∂h

∂z

)2
]
− ∂h

∂z

∂vz

∂z

)
= 0,

ṁ∆h =
λ√

1 +
(

∂h
∂z

)2

(
∂T

∂y
− ∂T

∂z

∂h

∂z

)
.Note that here surfa
e tension is related to surfa
e waves (and not to the tuberadius). Further we assume small surfa
e waves so that the square of rate of 
hangeof �lm thi
kness with respe
t to the length 
oordinate (∂h

∂z

)2 
an be negle
ted.
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Spatial disctretization of the jump conditionsIf we assume that the mesh nodes on
iPSfrag repla
ements j

∆yi,1∆yi,2 ∆yi,3 ∆yi,4 ∆yi,5Figure 9.3: Grid size variable in y-dire
tion
lines of 
onstant i are free to move alongthis lines (the last node, some nodes,or all nodes), then the grid size ∆yi,jin y-dire
tion 
hanges with time, butthe grid size ∆z in z-dire
tion is �xed(method of spines [FTM℄), see �gure 9.3.Film thi
kness and grid size in y dire
-tion are 
oupled by

hi =
m∑

j=1

∆yi,j . (9.25)The jump 
onditions are de�ned at the moving boundary, so that we dis
retize theequations at j = m. Doing so we get
pgi,m

− pi,m + µ

(
vyi,m

− vyi,m−1

∆yi,m
− 4

[
vyi,m

− vyi−1,m

∆z
+
vzi,m

− vzi,m−1

∆yi,m

]
hi − hi−1

∆z

)

= σ
hi+1 − 2 hi + hi−1

∆z2
,

hi − hi−1

∆z

vyi,m
− vyi,m−1

∆yi,m
+2

[
vyi,m

− vyi−1,m

∆z
+
vzi,m

− vzi,m−1

∆yi,m

]
−hi − hi−1

∆z

vzi,m
− vzi−1,m

∆z

=0,

vyi,m
− ∂hi

∂t
− vzi,m

hi − hi−1

∆z
=

λ

ρ∆h

(
Ti,m − Ti,m−1

∆yi,m
− Ti,m − Ti−1,m

∆z

hi − hi−1

∆z

)
.

Discretized jump conditions are differential algebraic equationsWith the assumption of equidistant step size in y-dire
tion, so that all nodes moveequally, we get hi = m∆yi. Then these equations de�ne for i = 1, . . . , n the followingmatrix equations
pm − pgm

+ a1(vm,vm−1,h) +B1(vm,vm−1,h)h = B2 h ,

B3(vm,vm−1,h)h+ a2(vm,vm−1,h) +B4(vm)h = 0 , (9.26)
B5 vm − ḣ+B6(vm)h = a3(Tm,Tm−1,h) +B7(Tm,Tm−1)h ,



9.4 Index of the condensation problem 105where the velo
ities vm, vm−1 and the temperatures Tm, Tm−1 are the velo
itiesand the temperatures at the grid points on the moving boundary and next to themoving boundary. All equations are nonlinear in velo
ity and �lm thi
kness, andthe last equation is also nonlinear in temperature.The dis
retized momentum jump 
onditions are algebrai
 equations. The dis
retized
ombined mass-energy jump 
ondition is a quasi-linear ordinary di�erential equa-tion for the �lm thi
kness. We 
an summarize (9.26) by the following nonlineardi�erential algebrai
 equations
0 = gn−m(p,v,h) ,

0 = gt−m(v,h) ,

ḣ = fm−e(v,T ,h) .

Index of the condensation problemIn the moving boundary problem the �lm thi
kness is an additional variable to thevariables of the bulk equations, so that now the ve
tor of di�erential variables is givenby x = [v,T ,h]T ; and the pressure is still an algebrai
 variable. The dis
retizedbulk equations (9.13), together with the dis
retized jump 
onditions (9.26), form aDAE whi
h we write as
ẋ = f (x,p) ,

0 = g1(x) , (9.27)
0 = g2(x,p) ,Here f represents the right hand sides of the momentum equation, the energy equa-tion, and the 
ombined mass-energy jump 
ondition. g1 represents the 
ontinuityequation and the tangential momentum jump 
ondition, and g2 represents the nor-mal momentum jump 
ondition. Di�erentiating g2 with respe
t to time gives p inprin
iple, so that g2 is an index one 
onstraint (
ompare se
tion 9.2).By this we obtained the following result: The dis
retized jump 
onditions have indexone. The dis
retized 
ondensation problem is an index two DAE, where the indexis the index of the Navier-Stokes equations. The jump 
onditions do not 
hange theindex.
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9.5 Algorithms for the moving boundary problemWe �nish this 
hapter with a short summery of the main di�
ulties in solving mov-ing boundary problems and dis
uss the two di�erent approa
hes used by numeri
almethods for su
h problems.
Moving boundary problems are highly nonlinearFrom (9.26) we see that the dis
retized jump 
onditions are highly nonlinear DAEs,depending on how many nodes are free to move. If only the step size of the lastinterval near the boundary is variable (and the other intervals are �xed), then onlythe dis
retized jump 
onditions are a�e
ted. If all nodes are free to move, then thedis
retized momentum equation and energy equation are also nonlinear in the �lmthi
kness (∆y 6= 
onst.) [CS90℄.
Tracking methods and capturing methodsNumeri
al algorithms for the solution of moving boundary problems fall basi
allyin two 
ategories, depending on the 
oordinate system whi
h is used to des
ribethe interfa
e. In part I we derived the jump 
onditions in the lo
al 
oordinatesystem of the moving surfa
e (Lagrangian representation). Later we related thejump 
onditions to a �xed 
oordinate system (Eulerian representation) by meansof a parametrizion of the surfa
e.10 For example, for a moving boundary problemwithout phase 
hange ṁ = 0 the mass jump 
ondition in Lagrangian representationis given as

ρ [v − u] ·n = 0 ,(
ompare (9.23)). For a two-dimensional moving boundary problem without phase
hange the mass jump 
ondition is given in Eulerian representation as11
vy −

∂h

∂t
− vz

∂h

∂z
= 0 ,or, using F (y, z, t) = y − h(z, t), equivalently

∂F

∂t
− v · ∇F = 0 , (9.28)10In part II we used a 
ylindri
al parametrization, here we used an impli
t parametrization.11Note that the negative sign in (9.28) 
omes from the de�nition of the normal ve
tor.



9.5 Algorithms for the moving boundary problem 107(
ompare (9.24)). The last equation is also 
alled level-set equation.Methods based on a Lagrangian representation of the interfa
e are 
alled tra
kingmethods, and methods based on an Eulerian representation of the interfa
e are 
alled
apturing methods (e.g. Marker and Cell (MAC), Volume of Fluid (VOF), [Kot98℄.
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Figure 9.4: Tra
king methods and 
apturing methodsIn tra
king methods the surfa
e normal and tangential ve
tors and the mean 
urva-ture are 
omputed from the geometry of the surfa
e [FP96℄. In every iteration theposition of the interfa
e is 
omputed. After some iterations during the simulationthe mesh has to be adopted to avoid a distorted mesh topology. In 
apturing meth-ods usually the mesh is �xed and the interfa
e is re
onstru
ted by means of equa-tion (9.28), but sometimes with a slightly di�erent meaning. Then F des
ribes thevolume fra
tion of one phase, e.g. F = 1 for a 
ell �lled with 
ondensate and F = 0for a 
ell �lled with vapor [Kot98℄, as shown in the right side of �gure 9.4.Although for the later methods the mesh is inherently robust, the re
onstru
tionof the interfa
e remains ina

urately. This quali�es tra
king methods for movingboundary problems with interfa
e phenomena, su
h as phase 
hange and surfa
etension. However, the robustness of 
apturing methods 
an not be overestimated.
Implicit versus explicit method for the update of the moving boundaryIf the �lm thi
kness is treated as a new unknown, additionally to velo
ity, pressureand temperature, so that all variables are equally part of the solution ve
tor (as inse
tion 9.4), then the moving boundary is treated impli
itly. Impli
it methods aremore stable and therefore preferred [HW02b℄.Often the numeri
al solution of a moving boundary problem is done as follows: Firstthe Navier-Stokes equations and the energy equation are solved using some of thejump 
onditions as boundary 
onditions, and then the remaining jump 
ondition isused to update the position of the moving boundary, so that the moving boundaryis treated expli
itly.



Chapter

10
Summary and Outlook

In this thesis we investigated 
ondensation in a tube with small diameter wheresurfa
e tension is important. Su
h hydrodynami
al 
hannels are found in 
ompa
theat ex
hangers. The goal was to establish a better understanding of the physi
alpro
ess and to enhan
e the heat transfer. First, the plan was to simulate the problemnumeri
ally using a CFD-program. But it turned out that the equations were notimplemented 
orre
tly, so that we de
ided to analyze the equations of 
ontinuumme
hani
s of su
h moving boundary problems and to derive a suitable model. Forthis we worked out the 
omplete model equations for moving boundary problemswith phase 
hange and surfa
e tension. Surfa
e tension is both a 
hara
teristi
of geometry, and physi
s of the interfa
e between vapor and liquid. This in
reasethe 
omplexity of the interfa
e model equations signi�
antly. To the best of ourknowledge su
h a 
omplete derivation 
an not be found in literature.Then we analyzed these equations using generalized dimensional analysis and deriveda simpli�ed model for the verti
al tube. By this we reintrodu
ed and reformulatedgeneralized dimensional analysis, a very algorithmi
ally method whi
h fell o

a-sionally into oblivion. Generalized dimensional analysis is an extension of 
lassi
aldimensional analysis, where additionally the model equations are evaluated to �ndthe dimensionless numbers of the pro
ess. It allows an analysis based on the twolength sales of the pro
ess (�lm thi
kness and tube length). The results are 
om-pared with experimental results and explain the better heat transfer in an in
linedtube in the 
ase of low surfa
e tension. The derived interfa
e model equations (jump
onditions) are equivalent to boundary layer equations in the sense that they arebased on the same 
onditions.Next we derived an ordinary di�erential equation for 
ondensation in a verti
al tubeand by this we extended Nuÿelt's theory to 
ondensation in a tube under rotational



109symmetry where surfa
e tension is taken into a

ount. The heat transfer de
rease forvery small tube diameters independent of surfa
e tension (thi
ker 
ondensate �lm)and in
rease for extreme high surfa
e tension. The derived model is 
ompared toparametri
al models from literature. It is better then Nuÿelt's model. With Chen'smodel higher heat transfer rates are predi
ted. Chen's model is based on availableexperimental information for 
o-
urrent 
ondensation inside verti
al tubes and takesshear stress exerted by 
o-
urrent vapor �ow into a

ount (whi
h result in a thinner
ondensate �lm).After spatial dis
retization the model equations form a system of ordinary di�er-ential equations and algebrai
 equations (DAE). We analyzed the 
omplexity (theindex) of this DAE system and showed that the index of moving boundary problemsis determined by the Navier-Stokes equations and not by the (transient) movingboundary problem. We 
ompared di�erent index redu
tion methods. Based on thisthesis we dis
ussed some aspe
ts of numeri
al methods for moving boundary prob-lems. De
isive for a moving boundary problem is not the index but the nonlinearityintrodu
ed by the �lm thi
kness as a new unknown.The transformation of an equation with dimension into a dimensionless equationis a symmetry transformation. We extended the idea of symmetry analysis to Liegroup analysis and determined the symmetry groups of the model equations, andwe showed how to 
onstru
t analyti
al solutions for di�erential equations using thesymmetries of an equation.The 
omputational development provides us with powerful simulation possibilities.To use them e�
iently we need to know the equations whi
h we want to 
omputeand the 
hara
teristi
s of the numeri
al methods whi
h we use to solve them. Thedevelopment in 
omputer-aided simulation for
es towards more and more interdis-
iplinary work. Mathemati
ians are more and more requested to show results that
an be used in applied te
hnologies. The demand on engineers is more and moreto use and implement simulation software. In every interdis
iplinary work at �rst a
ommon language has to be de�ned. This thesis also intends to make a 
ontributionto this.The next proje
ts would be: to extend the derived model equations for the 
ase ofan in
lined tube; to implement the equations derived for the verti
al tube whi
hwe analyzed further in part III; to work out the potentialities of Lie group analysisfurther and to derive an analyti
al model equation based on the symmetries of the
ondensation problem.



Appendix

A
Symmetry groups of the model

equations/rotational symmetry

In this 
hapter we analyze the symmetry groups (Lie groups) of transformationsunder whi
h the model equations of the 
ondensation problem from part II areinvariant. In se
tion A.1 we brie�y outline the method of �nding symmetry groupsof a given di�erential equation by a Lie group analysis. In se
tion A.2 we dis
ussgeneralized dimensional analysis in the wider framework of a Lie group analysis,and in se
tion A.3 we investigate the Lie groups admitted by the equations of thebulk �ow of the 
ondensation problem and take the outer boundary 
onditions intoa

ount. In se
tion A.4 we also 
onsider the jump 
onditions and analyze the Liegroups of the 
ondensation problem. This 
hapter is also intended to be useful forfuture resear
h. For example, based on a Lie group analysis one may 
onstru
t(using 
anoni
al variables) an equivalent system of equations for the 
ondensationproblem, representing the same physi
al phenomena as the original model equations,but easier to solve (it still may need to be solved numeri
ally).The �rst se
tion of this 
hapter is mainly based on [BK89℄, [Olv93℄ and [Ste94℄.Further on [Bau00℄ [Can02℄ and [Ibr99℄. From an engineering point of view theapproa
h of [Can02℄ and [Bau00℄ is very appropriate.
A.1 Lie groups of transformations of a given differential equa-

tionThe main idea of a Lie analysis is to 
onstru
t a linear operator, based on the lo
ala
tion of the group of transformations in the neighborhood of the original variables,



A.1 Lie groups of transformations of a given differential equation 111apply it to a given di�erential equation and demand whether this operation let thedi�erential equation invariant. The result is an over-determined system of linearpartial di�erential equations, whose solution gives the symmetry transformations.We �rst introdu
e the method and then we demonstrate how to �nd the Lie groupsof a given ordinary di�erential equation exemplarily.
Lie groups of transformationsA 
hange of variables of a physi
al problem depending on (at least) one parameter

x̂ = x̂(x, a) , (A.1)where x = [x1, x2, ...xn]T denotes the ve
tor of the dependent and independent vari-ables, is 
alled a point transformation if the transformation mapping the variablesinto variables is invertible, if repeated transformations yield again a transformationof this kind (asso
iative law), and if a transformation exist that maps a point toitself, e.g. for a = 0,
x̂ = x̂(x, 0) = x , (identity element)[Ste94℄. Then the transformation satis�es the four axioms of a group and we say(A.1) de�nes a one-parameter group of transformations.1If we further assume that a is a 
ontinuous parameter, that x̂ is in�nitely dif-ferentiable with respe
t to x and an analyti
 fun
tion (representable in a powerseries of a), and that â is also an analyti
 fun
tion, then (A.1) de�nes a one-parameter Lie group of point transformations [BK89℄. For the rest of this se
tionwe write x = [x, y]T .Two examples for a one-parameter Lie group are a group of translation transforma-tions parallel to the x-axis
x̂ = x+ a , ŷ = y , (A.2)and a nonlinear group of s
aling (dilatation) transformations
x̂ = (1 + b) x , ŷ = (1 + b)2 y . (A.3)1The four group axioms are 
losure (the result of the transformation of a variable in R

n is againa variable in R
n), asso
iative law, identity element, and inverse element.



112 Chapter A Symmetry groups of the model equations/rotational symmetryThe e�e
t of the group of transformations x̂(x, a) on a point is shown in �gure A.1.Consider the point x̂(x, 0) = x. Varying the group parameter a will move the pointalong the 
urve x̂(a) in the xy�plane [Ste94℄. Di�erent initial points are transformedinto di�erent points on the 
urve.
Local coordinates and tangent vectorThe Lie group of transformations x̂(x, a)

PSfrag repla
ements
x = x̂(x, 0)

x̂ = x̂(x, a)

Figure A.1: Integral 
urve of a ve
tor �eld
is a fun
tion of x and a, so that x =

[x, y]T 
an be 
onsidered as lo
al 
oordi-nates. Then the two base ve
tors of thelo
al 
oordinate system are the deriva-tives of x̂ with respe
t to the lo
al 
oor-dinates ∂x̂
∂x

and ∂x̂
∂y

(
ompare se
tion 2.1and 2.3), and the tangent ve
tor X at-ta
hed at the point x̂ reads in the lo
al
oordinate system
X(x̂) = ξ(x̂)

∂x̂

∂x
+ η(x̂)

∂x̂

∂y
, (A.4)where ξ and η are the lo
al 
oordinates of X [Olv93℄.

Tangent vector field and integral curveOn the other hand x̂(x, a) represent a ve
tor �eld depending on a, and su
h a ve
tor�eld 
an be asso
iated with a system of �rst order di�erential equations (one maythink of a as a time variable). For a �xed initial point x at a = 0 the integral
urve x̂(a) that 
oin
ides at any point with the tangent ve
tor X along the 
urveat that point is then given bydx̂da = X(x̂) with x̂(x, 0) = xand in lo
al 
oordinatesdx̂da = ξ(x̂) with x̂(x, 0) = x , (A.5)where ξ = [ξ, η]T is 
alled ve
tor of in�nitesimals [Olv93℄. Equations (A.5) are
alled Lie equations. That is, on
e we found the in�nitesimals for a given di�erentialequation, the Lie group of transformations 
an be re
onstru
ted by integrating theLie equations [BK89℄.
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Infinitesimal transformationsA lo
al group of transformations we get by expanding x̂(x, a) in a Taylor seriesabout a = 0

x̂(x, a) = x+ a
∂x̂

∂a

∣∣∣∣
a=0

+O(a2) , (A.6)where
ξ(x) =

∂x̂(x, a)

∂a

∣∣∣∣
a=0

(A.7)is the ve
tor ξ of the in�nitesimals at a = 0. By this we get the Lie group oftransformations in terms of in�nitesimal transformations
x̂(x, a) = x+ a ξ(x) +O(a2) (A.8)[Can02℄. The in�nitesimals for the group of s
aling transformations (A.3) are
ξ =

∂x̂

∂a

∣∣∣∣
a=0

= x , η =
∂ŷ

∂a

∣∣∣∣
a=0

= 2 y .

Infinitesimal generatorNow we 
onstru
t a linear generator X based on the tangent ve
tor in lo
al 
oordi-nates, su
h that X x = ξ. We de�ne the in�nitesimal generator X with the gradientve
tor as
X(x) = ξ(x) · ∇ = ξ(x)

∂

∂x
+ η(x)

∂

∂y
, (A.9)so that we get for the Lie group of transformations x̂(x, a)

x̂ = x+ aX x+
a

2!
X (X x) +

a2

3!
X (X (X x)) + . . . , (A.10)This series is 
alled a Lie series [BK89℄.The in�nitesimal generator for the group of s
aling transformations (A.3) is

X = x
∂

∂x
+ 2 y

∂

∂y
.



114 Chapter A Symmetry groups of the model equations/rotational symmetryA Lie series of x with this generator gives
x̂ = x+ aX x+

a

2!
X (X x) + . . . = x+ a x+

a

2!
x+ . . . = x

(
1 + a+

a2

2!
+ . . .

)
,whi
h is the exponential fun
tion. By this we �nd a parametrization of the group (A.3)of s
aling transformations su
h that the identity element is x̂(x, 0) = x

x̂ = ea x , (A.11)
ŷ = e2a y .

Invariant functionsWith the in�nitesimal generator we are now in the position to analyze if a fun
tionis invariant under a Lie group of transformations. F (x) is said to be invariant undera group of transformations x̂(x, a) if
F (x̂) = F (x)holds true for every value of a. Expanding F (x̂) in a Lie series gives
F (x̂) = F (x) + aX F (x) +O(a2) .[Ste94℄. This gives us the invarian
e 
ondition we are seeking:
X F = 0 or with (A.9) ξ

∂F

∂x
+ η

∂F

∂y
= 0 , (A.12)A fun
tion is invariant under a group of transformations if the in�nitesimal gen-erator X applied to the fun
tion equals zero. It is the key point of Lie's theorythat the in�nitesimal generator is a linear operator, although the groups of trans-formations admitted by a given fun
tion may be nonlinear (e.g. the s
aling trans-formation) [BK89℄. To derive an invarian
e 
ondition for di�erential equations, theinvarian
e 
onditions (A.12) has to be extended further.



A.1 Lie groups of transformations of a given differential equation 115

Extended transformationsWe want to apply the point transformation (A.1) to a di�erential equation, so weneed to know how to transform the derivatives. We 
onsider a single ordinarydi�erential equation, with one independent variable x and one dependent variable y.It turns out that the transformations of derivatives are fun
tions not only of thedependent and the independent variables, but also of the derivatives of the dependentvariables [BK89℄. So we write
x̂ = x̂(x, y, a) , (A.13)
ŷ = ŷ(x, y, a) ,

ŷx̂ = ŷx̂(x, y, yx, a) ,

ŷx̂x̂ = ŷx̂x̂(x, y, yx, yxx, a) , . . . .The transformations of the derivatives are the derivatives of the transformed vari-ables with respe
t to the transformed variables
ŷx̂ =

dŷdx̂ , ŷx̂x̂ =
dŷx̂dx̂ , . . . .Using total derivativesdx̂ =

∂x̂

∂x
dx+

∂x̂

∂y
dy ,dŷ =

∂ŷ

∂x
dx+

∂ŷ

∂y
dy ,dŷx̂ =

∂ŷx̂

∂x
dx+

∂ŷx̂

∂y
dy ,+∂ŷx̂

∂yx
dyx ,we get for the �rst and se
ond extension of the group of transformations

ŷx̂ =

∂ŷ
∂x
dx+ ∂ŷ

∂y
dy

∂x̂
∂x
dx+ ∂x̂

∂y
dy =

∂ŷ
∂x

+ ∂ŷ
∂y
yx

∂x̂
∂x

+ ∂x̂
∂y
yx

= ŷx̂(x, y, yx, a) , (A.14)
ŷx̂x̂ =

∂ŷx̂

∂x
+ ∂ŷx̂

∂y
yx + ∂ŷx̂

∂yx
yxx

∂x̂
∂x

+ ∂x̂
∂y
yx

= ŷx̂x̂(x, y, yx, yxx, a) , (A.15)[Ste94℄.
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Extended infinitesimal transformationsFor the invarian
e 
ondition we need the extended group of transformations (A.13)in terms of in�nitesimal transformations, whi
h means we need the transformationsof the derivatives in terms of in�nitesimals. So we are seeking extended in�nitesi-mals η
[x]
, η

[xx]
, . . ., that we 
an write

x̂ = x+ a ξ(x̂) +O(a2) , (A.16)
ŷ = y + a η(ŷ) +O(a2) ,

ŷx̂ = yx + a η
[x]

(ŷx̂) +O(a2) ,

ŷx̂x̂ = yxx + a η
[xx]

(ŷx̂x̂) +O(a2) , . . . .The on
e extended in�nitesimal η[x] we get by substituting the in�nitesimal trans-formations (A.8) into the �rst extension of the group of transformations (A.14)
ŷx̂ =

dŷdx̂=
d(y + a η +O(a2))d(x+ aξ +O(a2))

=
yx + a dηdx

+ O(a2)

1 + a dξdx
+O(a2)

=yx+a

[dηdx − yx
dξdx]+O(a2),[Ste94℄. By this we get the on
e extended in�nitesimal as

η
[x]

=

[dηdx − yx
dξdx] . (A.17)The twi
e extended in�nitesimal η[xx] we get by substituting the in�nitesimal trans-formations (A.8) and the �rst extended in�nitesimal (A.17) into the se
ond extensionof the group of transformations (A.15)

ŷx̂x̂ =
dŷx̂dx̂ =

yxx + a
dη[x]dx

+O(a2)

1 + a dξdx
+O(a2)

= yxx + a

[dη
[x]dx − yxx

dξdx]+O(a2) ,[Ste94℄. This gives the twi
e extended in�nitesimal as
η

[xx]
=

[dη
[x]dx − yxx

dξdx] . (A.18)Higher order extended in�nitesimals are found similar, we refer to [BK89℄, or one ofthe other referen
es 
ited at the beginning of this 
hapter. From (A.17) and (A.18)we get the expli
it formulas
η

[x]
= ηx + (ηy + ξx) yx − ξy y

2
x ,

η
[xx]

= ηxx + (2 ηxy − ξxx) yx + (ηyy − 2 ξxy) y
2
x − ξyy y

3
x (A.19)

+ (ηy − 2 ξx) yxx − 3 ξy yx yxx .



A.1 Lie groups of transformations of a given differential equation 117The extended in�nitesimals are linear in the highest derivative of the dependentvariable (yxx) and polynomial in the other derivatives of the dependent variable,where the 
oe�
ients are linear in the non-extended in�nitesimals.Sin
e the derivatives have to be taken with respe
t to all variables, expli
it formulasfor higher order extended in�nitesimals 
ontain more and more terms. However, thislaborious work is generally left to 
omputers.
Extended infinitesimal generatorThe twi
e extended in�nitesimal generator is then given by

X
[xx]

= ξ
∂

∂x
+ η

∂

∂y
+ η

[x]

∂

∂yx
+ η

[xx]

∂

∂yxx
, (A.20)[Can02℄. With the extended in�nitesimal generator we are able to �nd the Lie groupsof transformations whi
h leave a given ordinary di�erential equation invariant. Theinvarian
e 
ondition for partial di�erential equations is derived similar and we referto the referen
es given at the beginning of this 
hapter for it. In the last se
tion ofthis 
hapter we analyze exemplarily a se
ond order ordinary di�erential equation.

Multi-parameter Lie groups and Lie algebrasIn general a Lie group of transformations admitted by a di�erential equation dependson more than one parameter
x̂ = x̂(x,a) where x = [x1, x2, ..., xn]T , a = [a1, a2, ..., ak]

T . (A.21)If the parameters are independent of ea
h other and if (A.21) satis�es the four groupaxioms, then (A.21) de�nes a k-parameter Lie group of transformations [BK89℄.Here we restri
t ourselves to one dependent and one independent variable x = [x, y]T .To ea
h parameter ar a non-extended in�nitesimal generator Xr 
an be asso
iated
Xr = ξr

∂

∂x
+ ηr

∂

∂y
with ξr =

∂x̂

∂ar

∣∣∣∣
a=0

, ηr =
∂ŷ

∂ar

∣∣∣∣
a=0

. (A.22)The ve
tor spa
e spanned by the k in�nitesimal generators is 
alled a Lie algebra,if the in�nitesimal generators have an additional stru
ture whi
h is 
alled 
ommu-tator [BK89℄. The 
ommutator of two in�nitesimal generators is de�ned as
[X1, X2] = X1 (X2) −X2 (X1) . (A.23)



118 Chapter A Symmetry groups of the model equations/rotational symmetryIts result is again an in�nitesimal generator and 
an be written as a linear 
ombi-nation of the k basi
 in�nitesimal generators
[X1, X2] = cr Xr , (A.24)where the 
oe�
ients cr are 
alled stru
tural 
onstants [Olv93℄. Commutators are
onveniently displayed in a 
ommutator table, su
h as the 
ommutator table in�gure A.2, and for that it is more 
onvenient to write (A.24) as [X1, X2] = Cr

1 2 Xr,so that the stru
tural 
onstants 
an be dire
tly read o� the 
ommutator table.As an example we 
onsider the three dimensional Lie algebra where the in�nitesimalgenerators
X1 =

∂

∂x
, X2 = x

∂

∂x
, X3 = x2 ∂

∂xspan the basis of a ve
tor spa
e [Can02℄. We 
ompute with (A.23) the 
ommuta-tor [X1, X2] and get
[X1, X2] =

∂

∂x

(
x

∂

∂x

)
−x ∂

∂x

(
∂

∂x

)
=

(
∂

∂x
+ x

∂
2

∂x2

)
−x ∂

2

∂x2
=

∂

∂x
= X1, (A.25)where the stru
ture 
onstants are C1

1 2 = 1 and C2
1 2 = C3

1 2 = 0. The other 
om-mutators are 
al
ulated similarly. By this we get the 
ommutator table shown in�gure A.2. Note that se
ond order derivatives are 
an
eled out, so that the result isagain an in�nitesimal operator.A subspa
e of in�nitesimal generators is
X1 X2 X3

X1 0 X1 2X2

X2 −X1 0 X3

X3 −2X2 −X3 0Figure A.2: Commutator table of (A.25)

alled a subalgebra if the 
ommutators ofthe subspa
e are the in�nitesimal gener-ators of the subspa
e [BK89℄. That is
[X1, X2] = X1 and [X2, X3] = X3 are sub-algebras, but [X1, X3] = 2X2 is not. ALie algebra is 
alled solvable if there existan in
lusive 
hain of subalgebras [Can02℄. The 
hain of subalgebras [[X1, X2], X3] =

[X1, X3] = 2X2 is not solvable, so the Lie algebra of our example is non-solvable.Any two-dimensional Lie algebra is solvable. A zero subalgebra is always solvable.
Canonical variablesLie group analysis is a method to solve di�erential equations analyti
ally. Here wedis
uss the method of so 
alled 
anoni
al variables [Ibr99℄. By a suitable 
hange of



A.1 Lie groups of transformations of a given differential equation 119variables u(x, y), v(x, y) any one-parameter Lie group of transformations admittedby a given equation 
an be simpli�ed to a group of translation transformation
û = u+ a ,

v̂ = v ,[BK89℄. The new variables u and v follow from the solution of the system of linearpartial di�erential equations de�ned by
X u = 1 ,

X v = 0 .On
e the 
anoni
al variables are found they 
an be used to simplify the original equa-tion. The pro
edure is as follows: Find the in�nitesimals, 
al
ulate the 
anoni
alvariables, and then transform the original equations to a simpler form by 
hangingthe variables [Bau00℄.In 
ase of an ordinary di�erential equation of order two or higher this pro
edure willredu
e the order of the ordinary di�erential equation. In 
ase of a partial di�erentialequation with more then two independent variables the result will still be a system ofnonlinear partial di�erential equations but in less independent variables. Repeatedappli
ation (if possible) then leads to an ordinary di�erential equation. The su

essof the method depends on the symmetry groups (i.e. the in�nitesimals) admited bythe di�erential equations. For further reading we refer to [BK89℄ [Can02℄ [Bau00℄.
How to find the symmetry groups of transformations of a differential equationNow we show exemplarily how to �nd the symmetry groups (Lie groups) of trans-formations under whi
h a given ordinary di�erential equation is invariant. Usingthis example we demonstrate the main steps of a Lie group analysis in the way it isimplemented in the software pa
kage of [Bau00℄, whi
h we use in the next se
tionto investigate the symmetry groups of the 
ondensation problem. The example istaken from [Can02℄.For the ordinary di�erential equation

F (x, y, yx, yxx) = yxx = 0
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e 
ondition (A.12) with the twi
e extended in�nitesimalgenerator (A.20) has to be satis�ed
X

[xx]
yxx = η

[xx]
= 0 .This gives with (A.19)

ηxx + (2 ηxy − ξxx) yx + (ηyy − 2 ξxy) y
2
x − ξyy y

3
x + (ηy − 2 ξx) yxx − 3 ξy yx yxx = 0.The last two terms are zero with yxx = 0. The remaining terms have to be zeroindependently, be
ause yx is an arbitrary fun
tion. This result in the followingover-determined system of linear partial di�erential equations

ηxx = 0 , (A.26)
2 ηxy − ξxx = 0 ,

ηyy − 2 ξxy = 0 ,

ξyy = 0 ,whi
h has to be solved for the in�nitesimals to �nd the groups of in�nitesimal trans-formations under whi
h the di�erential equation is invariant. One possibility is totry an ansatz in the form of a third-order series
ξ = a1 + a2 x+ a3 y + a4 x

2 + a5 x y + a6 y
2 + a7 x

3 + a8 x
2 y + a9 x y

2 + a10 y
3,

η = b1 + b2 x+ b3 y + b4 y
2 + b5 x y + b6 y

2 + b7 x
3 + b8 x

2 y + b9 x y
2 + b10 y

3.Substituting this ansatz into the determining equations (A.26) and solving them for
ξ and η by 
omparing the 
oe�
ients of x and y gives the in�nitesimals as

ξ = a1 + a2 x+ a3 y + a4 x
2 + a5 x y ,

η = b1 + b2 x+ b3 y + a4 x y + a5 y
2 .The symmetry group of transformations de�ned by this in�nitesimals is a proje
tivegroup and its Lie algebra is spanned by the one-parameter in�nitesimal generators

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = y

∂

∂x
, X4 = x2 ∂

∂x
+ x y

∂

∂y
,

X5 = x y
∂

∂x
+ y2 ∂

∂y
, X6 =

∂

∂y
, X7 = x

∂

∂y
, X8 = y

∂

∂y
.Amongst others this Lie algebra has the solvable subalgebra [X2, X6] = 0, whi
hde�nes the Lie group of translation transformations (A.2)

ξ = x , η = 1 .
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A.2 Scaling transformations and Lie groups of bulk equationsIn this se
tion �rst we dis
uss the similarities and di�eren
es between the generalizeddimensional analysis and the Lie group analysis. Then we make a Lie group analysisof the bulk �ow equations for 
ondensation in a verti
al tube, using a softwarepa
kage implemented in Mathemati
ar [Bau00℄.
Scaling transformations of the dependent and the independent variablesDimensional analysis is based on the invarian
e of an equation under a 
hange ofsystem of units. Therefore any physi
al equation is invariant under a group ofs
aling (dilatation) transformation applied to the dimensions of the variables. In
hapter 7 we denoted the value of a variable by a hat x̂ and its dimension by atilde x̃, x = x̂ x̃. Here we the notation 
ommonly used in Lie group analysis anddenote a s
aling transformation by an exponential term x̂ = ex̄ x (with the identityelement x̂ = e0 x = x).Then s
aling transformations of the dependent and the independent variables of thebulk equations for 
ondensation in a verti
al tube are given by

r̂ = er̄ r , v̂r = ev̄r vr ,

ẑ = ez̄ z , v̂z = ev̄z vz ,

t̂ = et̄ t , p̂ = ep̄ p , T̂ = eT̄ T .This s
aling transformations we substitute in the simpli�ed model equations of the
ondensation problem for the verti
al position of the tube in dimensional form,
ompare (6.1) � (6.3) and (7.34) � (7.36). This gives us the following equations.The 
ontinuity equation:
e(v̄r−r̄) 1

r

∂

∂r
(r vr) + e(v̄z−z̄) ∂vz

∂z
= 0 , (A.27)the momentum equations:

e(v̄z−t̄)∂vz

∂t
+e(v̄r+v̄z−r̄)vr

∂vz

∂r
+e(2v̄z−z̄)vz

∂vz

∂z
=−e(p̄−z̄) 1

ρ

∂p

∂z
+e(v̄z−2r̄)η

ρ

1

r

∂

∂r

(
r
∂vz

∂r

)
+g,

e(p̄−r̄) ∂p

∂r
= 0 , (A.28)and the energy equation:

e(T̄−t̄) ∂T

∂t
+ e(v̄r+T̄−r̄) vr

∂T

∂r
+ e(v̄z+T̄−z̄) vz

∂T

∂z
= e(T̄−2r̄) λ

ρ c

1

r

∂

∂r

(
r

∂T

∂r

)
. (A.29)
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tor in ea
h equation are equal we 
an groupthem together. For example, for the 
ontinuity to be invariant under a s
alingtransformation (v̄r − r̄) = (v̄z − z̄) has to hold. Then we 
an write
e(v̄r−r̄)−(v̄z−z̄)
︸ ︷︷ ︸

=1

(
1

r

∂

∂r
[r vr] +

∂vz

∂z

)
= 0 .Obviously the s
aling transformations of the variables let the equation invariant ifthe exponential term vanishes.In a �rst attempt we assume zero gravity, that makes it easier to 
ompare general-ized dimensional analysis with Lie group analysis. Then in (A.28) the sum of theexponents in ea
h term has to be zero to let the equation invariant. The system oflinear equations we get from (A.27) � (A.29) is then given by




(A.27) −1 1 1 −1(A.28) 1 −1 −1(A.28) 2 −1(A.28) 2 −1 −1 1(A.29) 2 −1 1







r̄

z̄

t̄

v̄r

v̄z

p̄




= 0 .

The matrix is the same matrix as the lower right sub-matrix of B in se
tion 7.4ex
ept that the s
aling variable for the temperature and the two gravity relatedrows do not appear here. To solve this system of linear equations we pro
eed in thesame way as for a generalized dimensional analysis (as des
ribed in 
hapter 7). We
hoose some of the s
aling variables as base variables and 
olle
t the 
orresponding
olumns at the right side of the matrix B̄ = [K̄|R̄] su
h that rank K̄ = rank B̄. We
hoose v̄z = a as base s
aling variable. After applying Gauÿian elimination to B̄ weget the row-redu
ed e
helon form of B̄ as
rrefB =




r̄ z̄ t̄ v̄r p̄ v̄z

1 −a
2

1 −2a

1 −a
1 a

2

1 −2a




.

By this we found that the bulk equations of the 
ondensation problem are invariantunder a two-parameter group of s
aling transformations given by:
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(A.30)r̂ = e
a
2 r , v̂r = e−

a
2 vr ,

ẑ = e2a z , v̂z = ea vz ,

t̂ = ea t , p̂ = e2a p , T̂ = eb T .Note that the s
aling transformations (A.30) are valid also if we 
onsider gravity inthe momentum equations. Then ea
h exponent has to be zero itself, be
ause thegravity remains uns
aled in the equations, g = e0 g.
Lie groups of transformations of bulk equations without gravityWe again 
onsider equations (A.27) � (A.29) with the assumption of vanishing grav-ity, but now we analyze these equations by the method of Lie as des
ribed in se
-tion A.1. For that we use the software pa
kage MathLie [Bau00℄. By this we dis
usssome of the relevant groups of the 
ondensation problem. The result of our Liegroup analysis gives the following in�nitesimals (A.31)ξr = a

2
r , ηvr = −a

2
vr ,

ξz = 2 (a+ b) z + F1(t) , ηvz = (a+ b) vz + ∂F1

∂t
,

ξt = d+ a t , ηp = 2 (a+ b) p+ F2(t) − ρ z ∂2F1

∂t2
,

ηT = e+ c T .This in�nitesimals 
orrespond to seven in�nitesimal generators
Xa =

r

2

∂

∂r
+ 2 z

∂

∂z
+ t

∂

∂t
− vr

2

∂

∂vr
+ vz

∂

∂vz
+ 2 p

∂

∂p
,

Xb = z
∂

∂z
+ vz

∂

∂vz
+ 2 p

∂

∂p
,

Xc = T
∂

∂T
,

Xd =
∂

∂t
,

Xe =
∂

∂T
,

XF1 = F1(t)
∂

∂z
+

∂F1

∂t

∂

∂vz
− ρ z

∂
2F1

∂t2
∂

∂p
,

XF2 = F2(t)
∂

∂p
.The in�nitesimal generators Xa, Xb, Xc de�ne a three-parameter group of s
alingtransformations, whi
h is solvable, be
ause [[Xa, Xb], Xc] = 0. Xd and Xe de�ne



124 Chapter A Symmetry groups of the model equations/rotational symmetrya translation transformation in time and in temperature. The translation groupof the dependent variable temperature represents the superposition prin
iple whi
hholds for the energy equation [Can02℄. The superposition prin
iple states that fora linear (di�erential) equation a linear 
ombination of solutions is again a solutionof the equation. XF1 de�nes an arbitrary time dependent translation in streamwisedire
tion, showing that the model equations are invariant for an observer at rest oran observer translating or a

elerating in streamwise dire
tion [Can02℄. XF2 de�nesan arbitrary time dependent translation of pressure.The three-parameter group of s
aling transformations de�ned by Xa, Xb, Xc are
r̂ = e

a
2 r , v̂r = e−

a
2 vr ,

ẑ = e(2a+b) z , v̂z = e(a+b) vz ,

t̂ = ea t , p̂ = e2(a+b) p , T̂ = ec T .For b = 0 (and with c = b) this gives the s
aling transformations (A.30) we derivedby generalized dimensional analysis, whi
h shows the 
lose 
onne
tion between gen-eralized dimensional analysis and Lie group analysis.
A.3 Lie groups of bulk equations together with outer boundary

conditionsIn this se
tion analyze the Lie groups of the bulk equations together with the outerboundary 
onditions. First we �nd a similar three-parameter group of s
aling trans-formations that leaves the bulk equations invariant, and then we �x one parametersu
h that also the boundary 
onditions admit this group of transformations.
GravityThe in�nitesimals whi
h we get from a Lie group analysis for the model equa-tions (A.27) � (A.29) of the 
ondensate problem, di�er from (A.31) (where we ne-gle
ted gravity) in the in�nitesimals (A.32)The 
orresponding group of s
aling transformations is 
alled a spe
ial s
aling group.We 
ome ba
k to spe
ial s
aling groups later.
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ξz =
(

a
2

+ b
g

)
z + F1(t) ,

ηvz =
(

b
g
− a

2

)
vz + ∂F1

∂t
,

ηp =
(

2b
g
− a
)
p+

(
3
2
a g − b− ∂

2F1

∂t2

)
ρ z + F2(t) .

Boundary value problemUntil now we did not mention how to treat boundary 
onditions in a Lie groupanalysis. For a given boundary value problem to be invariant under a group oftransformations, not only the system of partial di�erential equations has to be in-variant under the group of transformations, but also the boundary 
onditions haveto admit the group of transformations [BK89℄.For the in�ow boundary 
ondition (6.5)
vz

∣∣
r,z=0

= U(r) (A.33)to be invariant under the group of s
aling transformations v̂z = ev̄z vz, r̂ = er̄ r,and ẑ = ez̄ z,
v̂z

∣∣
r̂,ẑ=0

= U(r̂)must hold. The boundary itself has to be invariant under the group of transfor-mations (i.e. ẑ = z must hold at the boundary), and the boundary 
ondition hasto be invariant under the group of transformations (i.e. v̂z = vz must hold at theboundary) [BK89℄. For a homogeneous boundary 
ondition, su
h as the no-slip
ondition (6.6) at the wall and the out�ow 
ondition (6.7)
vr

∣∣
r=R,z

= 0 , vz

∣∣
r=R,z

= 0 , and ∂vz

∂z

∣∣∣∣
r,z=L

= 0 , (A.34)to be invariant under the same group of s
aling transformations the 
orrespondingdimensionless equations has to hold. In a homogeneous boundary 
ondition theexponential fa
tors of the s
aling group of transformations 
an
el out by division,so that it is su�
ient if the boundary is invariant.The remaining non-homogeneous boundary 
onditions of the model equations of the
ondensation problem are the temperature boundary 
onditions (6.8) and (6.9) atthe wall and at the interfa
e
T
∣∣
r=R,z

= Tw , T
∣∣
r=h,z

= Tv . (A.35)
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Invariance of the outer boundariesThe outer boundaries are invariant under the group of s
aling transformations de-�ned by (A.31) and modi�ed by (A.32) if the invarian
e 
ondition (A.12) applied tothe boundary is zero lo
ally at the boundary. The invarian
e 
ondition applied to avariable gives the 
orresponding in�nitesimal, e.g. Xr = ξr, or Xz = ξz, so that thein�nitesimal at the boundary must be zero at this boundary.We have for the inlet, the outlet, the wall, and the interfa
e
ξz(z = 0) = F1(t) ,

ξz(z = L) =

(
a

2
+
b

g

)
L+ F1(t) .

ξr(r = R) =
a

2
R ,

ξr(r = h) =
a

2
h .The inlet is invariant under (A.32) if F1(t) = 0. The outlet is invariant under (A.32)if F1 = −

(
a
2

+ b
g

)
L. If we lo
ate the 
oordinate system at the outlet boundary,su
h that the outlet boundary is at x = 0 and the inlet boundary is at x = −L theresult is vi
e versa. That is, by taking the inlet and outlet boundary 
onditions intoa

ount we restri
t the invarian
e of the model equations under a 
hange of frameof referen
e to a simple translation, so that F1 is determined by a 
onstant F1 = j.If we lo
ate the 
oordinate system at the interfa
e, then the interfa
e is invariantunder (A.32). If we lo
ate the 
oordinate system at the wall, then the wall isinvariant under this group of transformations. Be
ause the model equations are givenin 
ylindri
al 
oordinates the bulk equations are not invariant under a translationin radial dire
tion, only one boundary is invariant under (A.32) and we de
ide thatit is the wall boundary. We 
ome ba
k to the interfa
e in se
tion A.4.

Invariance of the outer boundary conditionsThe in�ow boundary 
ondition (A.33) is invariant under the group of transformationsif the invarian
e 
ondition applied to the boundary 
ondition is zero at z = 0, andif the inlet boundary is invariant under the group of transformation. That is thein�nitesimal ηvz must vanish at z = 0 under the 
onditions imposed by ξz(z = 0) = 0.Then the in�nitesimal ηvz given by (A.32)
ηvz(z = 0) =

(
b

g
− a

2

)
vz ,
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h is true for b = a g
2
.The temperature boundary 
ondition (A.35) at the wall is invariant under the groupof transformations if

ηT (r = R) = e+ c Tvanishes. This gives e = c = 0.By this the group of transformations de�ned by the in�nitesimals (A.31) and mod-i�ed by the in�nitesimals (A.32) of the 
ondensation problem given by the bulkequations (A.27) � (A.29) and the boundary 
onditions (A.33) � (A.35) be
omeswith F1 = j, e = c = 0, and b = a g
2 (A.36)ξr = a

2
r , ηvr = −a

2
vr ,

ξz = a z + j , ηvz = 0 ,

ξt = d+ a t , ηp = aρ g z + F2(t) , ηT = 0 .We see that the three-parameter group of s
aling transformations redu
ed to a one-parameter group. The in�nitesimal generator of the s
aling group is given by
Xa =

r

2

∂

∂r
+ z

∂

∂z
+ t

∂

∂t
− vr

2

∂

∂vr

+ ρ g z
∂

∂p
. (A.37)

Special scaling transformationsTo get the group of s
aling transformations de�ned by (A.37) we 
ompute p̂ by aLie series (A.10)
p̂ = p + aXa p+

a2

2!
Xa (Xa p) + ... = p+ ρ g z

(
a +

a2

2!
+ ...

)
= p+ (ea − 1) ρ g z .This gives the group of s
aling transformations as (A.38)r̂ = e

a
2 r , v̂r = e−

a
2 vr ,

ẑ = ea z , v̂z = vz ,

t̂ = ea t , p̂ = p+ (ea − 1) ρ g z T̂ = T .The s
aling transformations de�ned by p̂ are 
alled spe
ial s
aling transformations.The additional term in p̂ 
an
els out the gravity term in the momentum equation.22For the sum of pressure and gravity terms in (A.28) we get
− 1

ρ
∂p̂
∂ẑ

+ g = − 1
ρ

∂(p+(ea
−1) ρ g z)

ea ∂z
+ g = − 1

ρ ea

∂p
∂z

+ g
ea .
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A.4 Lie groups of the condensation problem including surface

tensionFinally we analyze the 
ondensation problem de�ned by the model equations (A.27) �(A.29) together with the jump 
onditions at the interfa
e. Re
all the jump 
onditions(
ompare (6.1) � (6.16) and (7.45) � (7.48)). That is,the mass jump 
ondition:
ṁ = ρ

(
−vr +

∂h

∂t
+ vz

∂h

∂z

)
, (A.39)the normal momentum jump 
ondition:

p− pg = −σ
h
, (A.40)the 
ondition of free shear-stress:

∂vz

∂r
= 0 , (A.41)and the energy jump 
ondition:

ṁ∆h = λ
∂T

∂r
. (A.42)Here we 
onsider only the model equations of the 
ondensate, so that we 
an as-sume pg = 0.

Lie groups of transformations of the condensation problem (without surface tension)At �rst we investigate the problem de�ned by the bulk equations (A.27) � (A.29)plus the mass jump 
ondition (A.39) and the energy jump 
ondition (A.42), butignore the momentum jump 
ondition. A Lie group analysis with MathLie gives thein�nitesimals (A.43)
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ξr = a
2
r , ηvr = −a

2
vr ,

ξz = b z + F1(t) , ηvz = (b− a) vz + ∂F1

∂t
,

ξt = d+ a t , ηp = 2 (b− a) p+ (2 a− b) ρ g z + F2(t) − ρ z ∂
2F1

∂t2
,

ηT = e ,

ηh = a
2
h+ F3(r) .

Invariance of the interfaceThe interfa
e is de�ned by F = r−h(z, t) = 0 (
ompare se
tion 2.3 and se
tion 6.2).That is, the interfa
e is invariant under the group (A.43) of transformations, if r̂ = ĥat r = h. From this we get
ξr(r = h) = ηh(r = h) ,

a

2
h =

a

2
h+ F3(h) ,whi
h gives F3 = 0.

Surface tensionNext we 
onsider the normal momentum jump 
ondition (A.40). For the normalmomentum jump 
ondition to be invariant under the group (A.43) of transformationsthe invarian
e 
ondition (A.12) applied to (A.40)
X (p+

σ

h
) = ηp + ηh

σ

h2has to be zero at the interfa
e. This gives
ηp + ηh

σ

h2
=

(
a g − ∂

2F1

∂t2

)
ρ z + F2(t) +

a σ

2 h
= 0 ,whi
h is zero if F2 = 0 and

∂
2F1

∂t2
= a g +

a σ

2 h ρ z
. (A.44)The se
ond quotient on the right hand side is small (< 1e−4 for R134a and < 1e−3for water, see appendix B) and 
an be negle
ted. Then we get F1 by integrat-ing (A.44) twi
e as

F1(t) =
a g t2

2
+ f t+ j , (A.45)whi
h de�nes a non-uniform motion in streamwise dire
tion and is 
alled a spe
ialGalilean boost [Ibr99℄.



130 Chapter A Symmetry groups of the model equations/rotational symmetry

Not bothRemember that the boundary 
onditions were invariant under the group of trans-formations for 
onstant F1. This means that we 
an �nd a group of transformationsunder whi
h the 
ondensation problem is invariant where either the momentum jump
ondition or the inlet and outlet boundary 
onditions are invariant under the samegroup of transformations, but not both. However, we 
an assume a homogeneousin�ow 
ondition (i.e. ∂vz

∂z
= 0 at z = 0) to pro
eed. A Lie group analysis for themodel equations (A.27) � (A.29) plus the jump 
onditions (A.39) � (A.42) in
ludingthe momentum jump 
onditions gives the in�nitesimals

ξr = 4a
5g
r , ηvr = −4a

5g
vr ,

ξz = 6a
5g
a z + a t2 + (f t+ j) , ηvz = −2a

5g
vz + 2 a t+ f ,

ξt = d+ 8a
5g
t , ηp = −4a

5g
p ,

ηT = e ,

ηh = 4a
5g
h .Obviously here the 
oe�
ient b suppress the gravity terms in p̂. The 
orrespondingLie groups of s
aling transformations are with s = 5 a g given as follows (A.46)

r̂ = e4 s r , v̂r = e−4 s vr ,

ẑ = e6 s z + g t2

2
(e16 s − e6 s) , v̂z = e−2 s vz + e−2 s (e2 s − 1) g t ,

t̂ = e8 s t , p̂ = e−4 s p ,

T̂ = T ,

ĥ = e4 s h .By this we 
on
lude our 
hapter about Lie group analysis. We related Lie groupanalysis to generalized dimensional analysis and analyzed the groups of transforma-tions admitted by the model equations of the 
ondensation problem. We dis
ussedthe groups of s
aling transformations admitted by our model equations, whi
h arespe
ial s
aling transformations. We demonstrated how to deal with the boundary
onditions and the interfa
e 
onditions in terms of a Lie group analysis. The nextstep is to 
onstru
t an analyti
al solution of the 
ondensation problem using thesymmetry groups of the 
ondensation problem by �rst transforming the PDEs intoODEs and than into algebrai
 equations, as outlined in se
tion A.1. This is beyondthe s
ope of this thesis. However, by this appendix we a

omplish the ne
essarybasis for this.



Appendix

B
Material properties and dimensionless

numbers

In this 
hapter the material properties, measured values, and dimensionless numbersof water and of R134a are given. We use the SI unit system.
B.1 Water[Fie03℄ measured the following quantities (vapor has saturation temperature):vapor temperature Tv = 318.98 K (=45.83 ◦C)temperature di�eren
e Ts − Tw ≈ 5 K Tw not measuredpressure p = 10 k Nm−2 (= 0.10 bar)mass �ux Ṁl = 0.05 m kg s−1 (= 3.0 gmin−1)

Ṁg = 0.67 m kg s−1 (= 4.0 gmin−1)�lm thi
kness δl ≤ 0.1 m mThe material properties of water are at Tv and p:density ρl = 989.9 kgm−3

ρg = 0.068 kgm−3dynami
al vis
osity µl = 0.60 m Nsm−2 (N=kgm s−2)
µ = ν ρ µg = 162.9 m N sm−2kinemati
al vis
osity νl = 0.606 µ m2 s−1

νg = 164.6 µ m2 s−1thermal 
ondu
tivity λl = 0.637 WK−1 m−1 (W=J s−1=kgm2 s−3)
λg = 19.98 m WK−1 m−1



132 Chapter B Material properties and dimensionless numbersspe
i�
 heat 
apa
ity cl = 4.179 k J kg−1 K−1latent heat of evaporation ∆h = 2.393 k J kg−1surfa
e tension σ = 68.78 m Nm−1With di = d − 2 δl = (7 − 0.2)mm the 
hara
teristi
 length and the 
hara
teristi
velo
ity are:length D = Al
π di

= 0.1 m mvelo
ity U = Ṁl
ρAl

= 0.023 m s−1
PSfrag repla
ements d

di

AlThe dimensionless numbers used in 
hap-ter 7 are then:Reynolds Re = ρU D
µ = 3.90 (= Ṁl

µ π di
)Froude Fr = U2

g D
= 0.545Prandtl Pr = µ cP

λ
= 3.94Pe
let Pe = RePr = 15.4Stefan St(Tv) = cP Tv

∆h
= 55.6 St(∆T ) = cP ∆T

∆h
= 8.373Weber We = ρDU2

σ = 0.793 e-3Nuÿelt Nu = αD
λThe quotient of �lm thi
kness and tube length is

ε =
D

L
=

0.1 e-3m
0.5m = 0.2 e-3 .

B.2 R134a (1,1,1,2-Tetrafluorethan)[Fie03℄ measured the following quantities (vapor has saturation temperature):vapor temperature Tv = 297.15 K (=273.15 + 24 ◦C)wall temperature Tw = 294.15 K (Tv − Tw = 5K)pressure p = 0.65 M kgm−2 (=6.5 bar)
ondensate mass �ux Ṁl = 0.367 m kg s−1 (=22 gmin−1)�lm thi
kness (verti
al tube) δl = 0.1 .. 0.2 m m



B.2 R134a (1,1,1,2-Tetrafluorethan) 133A

ording to Tillner-Roth the material properties are at Tv and p:density ρl = 1210 kgm−3

ρg = 31.39 kgm−3dynami
al vis
osity µl = 198.70 µ kg sm−2

µg = 12.10 µ kg sm−2kinemati
al vis
osity νl = 0.164 µ m2 s−1

νg = 0.385 µ m2 s−1thermal 
ondu
tivity λl = 82.98 m WK−1 m−1

λg = 14.35 m WK−1 m−1spe
i�
 heat 
apa
ity cl = 1.421 k J kg−1 K−1

cg = 1.025 k J kg−1 K−1thermal di�usity al = 48.26 n m2 s−1

ag = 445.9 n m2 s−1latent heat of evaporation hl = 233.1 k J kg−1

hg = 411.8 k J kg−1

∆h = 178.72 k J kg−1surfa
e tension σ = 8.21 m Nm−1With di = d − 2 δl = (7 − 0.2)mm the 
hara
teristi
 length and the 
hara
teristi
velo
ity are:length D = Al
Dπ di

= 0.1 m mvelo
ity U = Ṁl
ρAl

= 0.170 m s−1The dimensionless numbers are then:Reynolds Re = ρU D
µ = 85.25 (= Ṁl

µ π di
)Froude Fr = U2

g D
= 19.9Prandtl Pr = µCp

λ
= 3.40Pe
let Pe = RePr = 290.1Stefan St(Tv) = cP Tv

∆h
= 2.36 St(∆T ) = cP ∆T

∆h
= 0.024Weber We = ρDU2

2 σ = 0.289The quotient of �lm thi
kness and tube length is again
ε =

D

L
=

0.1 e-3m
0.5m = 0.2 e-3 .
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