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Zusammenfassung

In dieser Arbeit wird der Einfluss der Oberflichenspannung auf die Kondensation in Stro-
mungskandlen mit geringem Durchmesser untersucht. Solche Stromungskanile kommen
in der Prozessindustrie in kompakten Wérmetauschern vor. Um die Physik des Prozesses
besser zu verstehen und damit den Wéirmeiibergang zu verbessern war zunéchst geplant,
das Problem mit kommerzieller CFD-Software zu simulieren. Es stellte sich jedoch heraus,
dass die Modellgleichungen fiir das Problem in den verwendeten Programmen nicht richtig
implementiert waren.

Stattdessen werden die vollstdndigen kontinuumsmechanischen Modellgleichungen fiir sol-
che ,Moving Boundary“ Probleme mit Phaseniibergang und Oberflichenspannung hergelei-
tet und analysiert. Die Oberflichenspannung ist eine physikalische Eigenschaft der Phasen-
grenzfliche und erfordert daher eine eigene Bilanzgleichung. Aufserdem ist sie eine Funktion
der mittleren Kriimmung, und damit der Geometrie der Phasengrenzflache. Diese beiden
Tatsachen erhohen die Komplexitit der Modellgleichungen wesentlich.

Die Modellgleichungen werden mit verallgemeinerter Dimensionsanalyse fiir ein vertikales
Rohr vereinfacht und die wesentlichen Phénomene des Problems bestimmt. Das Ergebnis
wird mit einer experimentellen Untersuchung verglichen, es erkldrt den besseren Warme-
iibergang bei Fluiden hoher Oberflichenspannung in geneigten Rohren. Verallgemeinerte
Dimensionsanalyse ist eine (in Vergessenheit geratene) Weiterentwicklung der klassischen
Dimensionsanalyse, bei der zusétzlich auch die Modellgleichungen ausgenutzt werden, um
die dimensionslosen Kennzahlen des Problems zu erhalten. Damit ist es moglich die
Modellgleichungen auf Basis der beiden unterschiedlichen Léngen (Filmdicke und Rohr-
lange) zu analysieren. Es werden Phasengrenzflichenbedingungen (,Jump conditions“)
hergeleitet, die auf den gleichen Annahmen beruhen wie die Prandtlschen Grenzschicht-
gleichungen.

Anschliefsend wird auf Basis der vereinfachten Modellgleichungen ein Ein-Gleichungs-Mo-
dell hergeleitet und numerisch berechnet. Das entwickelte Modell ist eine Erweiterung der
Nufselt Theorie. Der Warmeiibergang wird im vertikalen Rohr fiir sehr kleine Rohrdurch-
messer unabhéngig von der Oberflachenspannung schlechter (der Film wird dicker) und fiir
extrem hohe Oberflichenspannung besser (der Film wird diinner). Das entwickelte Modell
wird mit parametrischen Modellen verglichen, es ist besser als Nufielts Modell und etwas
schlechter als Chens Modell.

Die diskretisierten Modellgleichungen bilden ein System von differentiellen und algebra-
ischen Gleichungen (DAE). Der Differentiationsindex des Systems wird untersucht. Es wird
gezeigt, das der Index durch die Navier-Stokes Gleichungen bestimmt ist und nicht durch
das (instationdre) Moving Boundary Problem verédndert wird. Verschiedene Methoden der
Indexreduktion werden verglichen. Das Hauptproblem von Moving Boundary Problemen
ist die Nichtlinearitdt der Gleichungen. Auf Basis der Arbeit werden die Vor-und Nachteile
von verschiedenen numerischen Methoden fiir Moving-Boundary Probleme diskutiert.

Die Transformation von dimensionsbehafteten Gleichungen in dimensionslose Gleichungen
ist eine Symmetrietransformation. Es wird ausgefiihrt wie man mit der Lie-Gruppen
Theorie analytische Losungen fiir Differentialgleichungen entwickelt. Die Lie Theorie wird
mit der verallgemeinerten Dimensionsanalyse verglichen und die Symmetrien der Modell-
gleichungen werden bestimmt.
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Nomenclature

Symbol  SI-Unit Definition

A m? area

C m curve

C kgm™3 mass matrix (energy equation)
D m film thickness

D s~ discretized gradient operator
DT s~ discretized divergence operator
GT Jacobian of algebraic constraints
H m~! mean curvature

1 identity tensor

J Jacobian determinant

K m~2 Gauf curvature

K kgs™'m~!  conductivity matrix

L m tube length

L Weingarten map

M kgm™3 mass matrix

N kgs™'m™  convection matrix

P projector matrix

R m tube radius

S N m~2 stress tensor (J = kgms™?)

S Ns m~* stiffness matrix

T N m™2 viscous stress tensor

T K temperature (°C — K - 273,15)
U ms~! velocity

1% m3 volume

Z selector matrix

a, m surface base vectors

A0p m covariant metric tensor, first fundamental tensor
bas m~! second fundamental tensor

c Jkg7' K=!  spezific heat capacity (J = Nm)
d m tube diameter

e Jkg™! spezific internal energy

€; m orthogonal base vectors

g ms—?2 gravity vector (g = 9,81 ms™?)
h m tube radius minus film thickness
a Wm2 K="  heat transfer coefficient (W = Js72)



Symbol  SI-Unit Definition

Ah Jkg™! latent heat of vaporization

7 surface Jacobian determinant

m kgs™tm3 volume specific mass flux

m m vector normal to a boundary curve

n m normal vector

p Nm~2 pressure

p vector of the algebraic variables

q Jm—2s7! heat flux vector

t m tangential vector

u ms! interface velocity

T vector of the differential variables

Y vector of the unknowns

u® m surface coordinate

v ms? velocity vector

w m ! intrinsic surface velocity v — u

T; m Cartesian coordinates

x m position vector

0ij Kronecker-delta

4} m film thickness

€ film thickness divided by tube length ¢ = %
¢ arbitrary conductive flux vector

1 kgm~ts™!  dynamical viscosity

A Wm tK=!  thermal conductivity

I3 m position vector of reference configuration

s arbitrary volume specific production density
p kgm™3 density

o N m™! surface tension

% arbitrary volume specific balance property
U rotation angle

P arbitrary mass specific balance property ¢ = %
B arbitrary extensive balance property

S arbitrary extensive surface balance property






Chapter

Introduction

1.1 Motivation of the thesis

Condensation is important in the refrigeration, automotive and process industries
[Car92|. Higher energy efficiency requirements and the move to more environmen-
tally friendly refrigerants increased the need for highly efficient heat transfer for
in-tube condensation (and evaporation) processes |[KSD99|. Improved heat transfer
technologies are nowadays not only used to save energy but rather to save space.
Over the last decades experimental studies show that the heat transfer is signifi-
cantly higher in compact heat exchangers than in classical tube condensers (i.e. 1.5
to 2 times greater), which made compact heat exchangers popular |[CT94|. The
diameters of hydrodynamic flow channels in such condensers are in the millimeter
range. This implies that surface tension plays a crucial role in the heat transfer.
Increasingly, numerical simulations are used to reduce the costs of laborious exper-
imental studies. Efficient computational fluid dynamics (CFD) software packages
offer a great deal in flexibility in geometry and material properties. However, two-
phase flow problems with moving boundaries still represents a major challenge to

the current state of engineering in computational fluid dynamics [Li06].

At the beginning of this thesis, the plan was to simulate the condensation process nu-
merically using a computational fluid dynamics (CFD)-program. The condensation
process has to be modeled three-dimensional, or two-and-a-half-dimensional, if the
problem is assumed to have rotational symmetry. It turned out that the necessary
equations were not implemented correctly in this (and other) CFD-programs. Ex-
pecting no further difficulties we looked for the correct equations. But what we were
looking for did not exist. Physics of fluids and heat transfer has been well established

during the last century, see the reference work |TT60|, and has been intensively in-
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vestigated for a wide range of hydrodynamical problems [BSL60|. However, the
formulation of the governing equations for flows involving moving surfaces is more

difficult.

Balance equations at moving boundaries are called jump conditions. A moving sur-
face is described mathematically either using tensor calculus or modern differential
geometry.! The equations of continuum physics are tensor equations, so that the
jump conditions are naturally expressed in tensor notation. Anyway, jump condi-
tions for moving boundary problems with phase change and surface tension are not
covered by the existing literature. It is possible to find literature for one of them
(phase change) without the other (surface tension) or vice versa, but not both to-
gether |Gre03| [Hut03| [Sch70] [Spu93|; with the exception of three references which
deal with this problem, but not in a sufficient manner [Ari89] [S1a90] [EBW91].2
However, these references are beyond comprehension for most engineers and math-
ematicians. To bridge this gap we derive in this thesis jump conditions mostly in
symbolic tensor notation, and give a straightforward description of the geometry of
the surface. By this we make available the necessary equations for the solution of
moving boundary problems with phase change and surface tension in a way that

they are comprehensible by the mathematician, the physicist and the engineer.

The next step was to simplify the model equations with the aim to derive model
equations that can be solved either analytically or numerically (within feasible lim-
its). In literature simplifications of the complete model equations exist for special
cases, but not for condensation in a cylindrical tube when surface tension has to
be considered. Interestingly sometimes for the same process different jump condi-
tions are used. Often the model equations are simplified intuitively or the method
of simplification remains unclear. What was needed was a reliable method to find
the physically relevant terms in the model equations. Classical dimensional analy-
sis |Bri31] can not be applied because the problem depends on two different length
scales (film thickness and tube length). Perturbation method [Hol95| overcomes
this problem by rescaling the variables. However, we finally found a better method:
generalized dimensional analysis |[Lon63|, a generalization of dimensional analysis

which fell into oblivion over the last decades, a highly algorithmically method which

!The notation in differential geometry varies from author to author (which is makes it not easier

for someone not close to this discipline).
2 |Ari89] added jump conditions at the end of his book, based on the paper of [Scr60], who

first described interfacial dynamics for Newtonian surface fluids, but this last chapter is not an
organic part of the book. [Sla90] and [EBW91] also cover both but lack a convincing description

of curvature (for surface tension).



1.1 Motivation of the thesis 3

is based on the physical dimensions of the problem. By this it serves as a less error-
prone method which made apparent the major phenomena of the analyzed problem.
Here we reintroduce generalized dimensional analysis in a more mathematical rigor
and bring the method on a level with classical dimensional analysis, so that it can

be applied by researchers of different disciplines to other problems.

In appendix|A we make a digression to Lie groups [BK89] [O1v93] and extend our
analysis further. A dimensionless equation is the result of a symmetry transforma-
tion of the original equation (with dimensions). Symmetry transformations can be
used in certain cases to successively transform a differential equation to a simpler
equation and to finally solve it analytically. We analyze the Lie groups of the sim-
plified model equations using a Mathematica program |[Bau00| and demonstrate for
a sub-problem how to construct an analytical solution from the symmetry groups.
The intention is to point out a way towards an analytical solution, which can be used

in a next step to derive a parametrical model by including additional phenomena.

Next, it was planned to solve the simplified model equations numerically. But the
equations are still too complicated so that the work to do this would have been be-
yond the scope of this thesis. Instead, we simplify the equations further and derive
an ordinary differential equation for condensation in a vertical tube under rotational
symmetry where we take surface tension into account. We solve it numerically and
compare the results for two different fluids with experimental results. Yet by this
we also close another gap. Two kinds of models are used by engineers: parametri-
cal models (correlations) based on experimental data, and models from continuum
physics. However, in the various handbooks of heat transfer [Cro06] [RHC98| [Lie87|
there can be found analytical models only for the simple case of condensation along
a flat plate (as derived by |Nuf16]). Our model is an extension of Nufelt’s theory
for condensation in a tube of rotational symmetry by taking surface tension into

account.

For a numerical simulation it is essential to know the characteristics of the model
equations. After spatial discretization the model equations form a system of dif-
ferential algebraic equations (DAE). We analyze the complexity of the discretized
model equations from a DAE point of view and analyze the “index” of the moving
boundary problem. We show the main problems in the numerical solution of moving

boundary problems and discuss appropriate solution methods.

Our interest is to give an analytical foundation for researchers of both disciplines,
mathematics and engineering, who are working with moving boundary problems and

by this to contribute to improved heat exchangers.
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1.2 Literature related to condensation in tubes with small di-

ameter

In process industries compact plate heat

exchangers are increasingly used for re-

flux condensation applications [JCO0O].
In reflux condensation a vapor enters a
vertical or inclined mounted condenser
at the bottom and flows upward. The

condensate stream flows gravity controlled

downward countercurrently to the va-

Figure 1.1: Compact plate heat exchanger

por flow. Typical applications of reflux
condensation are in overhead condensers of distillation columns and vent condensers
of reactors or stirred vessels. Other applications are in the vent cooling section of
air-cooled steam condensers and in two-phase closed thermosyphons. In such con-
densers the hydraulic diameter of the flow channels formed between two plates is
5-10 mm, and the flow channels are inclined to the vertical, as depicted in figure 1.1.
The fundamental mechanisms of heat and mass transfer as well as of two phase flow

in these small channels are not well understood.

Experimental studies on compact heat exchangers

The vast majority of studies about con-

. . 0.5
densation in compact heat exchangers

are studies on compact plate heat ex- 04

changers (see e.g. the 5th International
0.3

Conference on Enhanced, Compact and

E
=
=

Ultra-Compact Heat Exchangers [Sha05] — ©2
and its predecessors). In an experimen- e e

tal study at the Institute for Energy u

. . 0
Englneerlng, Area of Momentum, Heat 0 40 80 120 160 200
Re

and Mass Transfer of the University of

Technology of Berlin, the heat transfer Figure 1.2: Experimental results [Fie03]

in a single representative sub-channel of a compact condenser was investigated [Fie03].
The inner diameter of the tube is 7 mm and its length is 500 mm. As condensate
the refrigerant R134a was used. In figure 1.2 the Nufelt number (dimensionless heat

transfer number) as a function of the Reynolds number with the inclination angle as
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parameter is shown. The main result is that for an inclination angle of 45° against

the horizontal the heat transfer is twice times better compared to the vertical.

Analytical and numerical studies on condensation in tubes with small diameters

Literature on condensation in tubes (or channels) with small diameters is on in-
clined, vertical or horizontal tubes (or channels), and the effect of surface tension
is either taken into account or not. Three authors studied condensation in inclined
tubes. [FR93| derived an analytical solution for condensation in/on elliptical cylin-
ders but neglected variations of the film thickness with the tube radius. [Mos99] stud-
ied interfacial shear stress but without considering surface tension. [WDO00| compared
heat transfer in a horizontal and an inclined tube by energy considerations. He con-
sidered surface tension. However, he studied tubes with diameters of 1.94 mm and
4.98 mm, which are smaller than diameters of compact heat exchangers. Conden-
sation in vertical tubes are investigated by the following authors, where the first
two authors considered surface tension but the last three authors do not. According
to [WDO03| small surface waves enhance the heat transfer mainly due to film thinning
effect. [ZL02] investigated condensation in vertical triangular channels with a diam-
eter between 0.2 mm and 0.3 mm. [Pan01]| showed that the effect of interfacial shear
stress on the heat transfer depend on the vapor velocity and on the mass transfer
(operating Temperature). |[Pan03| investigated a tube with a diameter of 24 mm,
where he showed that turbulent flow enhances the heat transfer. [FBMBO01] stud-
ied evaporative cooling. Further there are two studies on horizontal tubes. [SOS02]
studied condensation in horizontal parallel plate channels but he neglected surface
tension. [WHNO2| investigated horizontal micro-fin tubes by dividing the flow in two
flow regimes. However, these papers are based on simplified model equations and

show a great variety especially in the interface equations.

Stability of thin films

Heat exchanger often operate at moderate Reynolds numbers (Re < 100), with a
film thickness in the millimeter range and small surface waves with wave length
in the centimeter range. Stability of thin films was first investigated of |Ben57|
and |Yih63| by a linear stability analysis with the result that thin films are instable
for all Reynolds numbers and that surface tension has a stabilizing effect on the
film. [Ban70] [ML72] [UT78] and [Spi81] extended linear stability analysis on phase
change problems and showed that condensation in opposite to evaporation tends to

stabilize the film. However, critical Reynolds numbers predicted with linear stability
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analysis are too small for technical applications (Re < 5). Later nonlinear stability
analysis as derived by [Ben66| (Benney equation), where small surface waves are
modeled by partial differential equations which are then perturbed, was applied on
small films with phase change. [BBD88|, |[JDB90| (evaporation) and [HW87| (con-
densation) demonstrated the dependency of stability on the frequency of the initial
perturbation. However, only flows along plates are studied in Cartesian coordinates,
so that the effect of surface tension due to the small tube diameter is not modeled.
With Benney’s equation experimental observations of two and three-dimensional
waves studied by [ANP94] and [YNN96| were simulated numerically by [MNT02].

Studies on numerical methods for moving boundary problems

Numerical methods for moving boundary problems with continuous interfaces are of
two kinds: Tracking methods, such as Marker and Cell methods (MAC), first devel-
oped by [HW96] and later considerably improved by [Kot98] and [TBaWT98| and
capturing methods, such as Volume of Fluid methods (VOF) [HN75] [HN81] [KR9S|,
or level set methods [Set99]. |BKZ92| extended VOF methods by a continuous sur-
face tension force (CSF) model, [JT98| enhanced tracking methods for phase change
problems, [WWO00] proposed a VOF method with a CSF model together with the
phase change model of [JT98], [SD02| extended level set methods on phase change
problems. However, in these studies surface tension and phase change are not im-
plemented exactly but are treated as source terms. A comparison of both methods

by means of the underlying equations can not be found in literature.

1.3 Organization of the thesis

In part I we derive the model equations for the condensation problem. The model
equations for the condensation problem are the mass, momentum, and energy bal-
ance equations for the liquid film and the vapor phase and for the interface between
both phases. All equations in the first part are valid for both condensation and

evaporation.

The balance equations at the interface (jump conditions) contain geometrical quan-
tities, such as normal and tangential vectors on the interface and mean curvature
of the interface. For these quantities we need a geometrical description of the in-
terface. This is given in chapter 2. For the derivation of the balance equations

and the jump conditions we also need kinematical relations, such as the Reynolds
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transport theorem for a material body, but also a Reynolds transport theorem for
a material body with an internal interface. They are given in chapter [3. After
this preliminaries we are able to derive generic balance equations. This is done in
chapter|4. Here we derive generic balance equations for the two phases and generic
jump conditions for the interface, where we assume both phases to be incompressible
Newtonian fluids. In chapter 5, we apply the generic equations to mass momentum
and energy and derive the desired model equations for the condensation problem.
Here also the boundary conditions are given. By this we conclude the first part with

the model equations for the condensation problem in symbolic notation.

Modeling the two-phase problem becomes more laborious when the effect of surface
tension is taken into account. In all chapters of part|I surface tension increases the
complexity. The normal and tangential vectors on the interface can be derived by a
simple geometric demonstration, as described at the beginnings of section 2.1 and
in section 2.3. However, for the description of the mean curvature (to model the
effect surface tension) we need tensor notation. Similarly the derivation of a jump
condition including the effect of a curved surface is not a trivial task. In section (4.2
in the first attempt we derived the generic jump condition starting from the generic
balance equation. However, the resulting jump condition does not contain mean
curvature. We need additionally a generic balance equation for the interface itself,
as described in section |4.3. This in turn involves the need of kinematical relations of
the interface and the Reynolds transport theorem for surfaces, given in section (3.3
and 3.4.

After the model equations are formulated the next step is to find out as much as
possible about the problem. This is what we do in part II. We analyze the model
equations by means of a generalized dimensional analysis and simplify the model
equations according to the main relevant physical phenomena of the condensation

problem.

Based on the experimental results, that the flow regime of the condensate in the
inclined tube is an almost circular film along the inner tube wall [Fie03], we derive
in chapter |6 the equations for condensation in a tube with small diameter under the
assumption of rotational symmetry. Then we reduce the complexity of this model
equations further by a generalized dimensional analysis in chapter 7.2 We derive

equations of boundary layer type for the bulk flow equations and find comparable

3Dimensional analysis should not be confused with a nondimensionalization of the terms of an

equation, which is often useful for a numerical simulation.
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simplifications for the jump conditions. By this the main physical phenomena in the

condensation process are determined.

Generalized dimensional analysis allows us to analyze the equations in terms of the
characteristic length scales of the problem, that is the film thickness (= 1 mm) and
the tube length (0.5 m). In section 7.1 we present the method and compare it to
dimensional analysis. In the following sections, the method is applied to the model
equations for the vertical tube. As a result of this analysis we get nondimensional
equations containing the main physical phenomena of condensation in a tube with
small diameter. We refer to section [7.4 for the equations of the bulk flow and
section [7.6 for the jump conditions. In section 7.7 we evaluate the nondimensional
equations for two different fluids and discuss the effect of surface tension for water

and R134a. Finally we consider the effect of an inclination of the tube on the results.

A general definition of symmetry due to [Wey52| is, that a thing is symmetrical
if there is something we can do to it so that after we have done it, it looks the
same as it did before. From this definition we understand that the transformation
of a differential equation into a nondimensional differential equation by means of a
dimensional analysis is a symmetry transformation. The first who systematically
investigated symmetry transformations of differential equations was [Lie22]. In the
last years there has been intense research on solving differential equations using their
symmetries. In appendix A we discuss the symmetries of the simplified model
equations by a Lie group analysis. We present the method of finding the Lie groups
of point transformations which let a given system of differential equations invariant
and discuss its relation to generalized dimensional analysis. We find the symmetry
groups of transformations admitted by the model equations of the condensation

problem using a Mathematica® software package and discuss them.

In part ITI we deal with the numerical simulation of the moving boundary problem
from two different angles. In chapter 8 we simplify the model equations which we
derived in part |II further and derive a single nonlinear ordinary differential equation
(ODE) for the film thickness and in chapter 9 we analyze the complete model

equations from a DAE point of view.

In section 8.1 we demonstrate how the single model equation is derived and we
compare it with Nufelt’s condensation theory. Then we extend this equation in
section 8.2 for the case of surface tension and solve it by a standard Runge-Kutta
method. In section [8.3 we compare the effect of surface tension for two different

fluids with experimental results of |Fie03|.
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The complete model equations consist of the transient Navier-Stokes equations, the
energy equation and the jump conditions, as derived in part I. The numerical
solution of Navier-Stokes problems is not a trivial task. The main problems are the
nonlinearity due to the convective terms in the momentum equation and that the
pressure cannot be computed directly, but is determined by the continuity equation.
With conventional methods in every time iteration step some further iterations need
to be done to compute the pressure. As a result only lower order time integration
methods can be used. The DAE approach is to solve the pressure problem by
reducing the index of the differential algebraic equations (which are the result of
the spatial discretization). This has the advantage that higher order methods can
be used for the solution of the transient problem and is especially useful if the
problem is highly transient and/or nonlinear. However, it has also disadvantages:
In section 9.2 we compare this approach with the conventional methods for the
numerical solution of Navier-Stokes problems, and in section 9.4 we analyze how the
jump conditions change the index of the DAEs. Finally we discuss some aspects of
numerical algorithms for the solution of moving boundary problems based on our

analysis and on our work with two CFD-software packages in section[9.5.4

4We worked with SEPRAN, a semi-commercial program distributed by G. Segal, Delft, and with
FIDAP, a trademark of FLUENT, both of which were not able to perform the task satisfactory.
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Chapter

Geometry of the moving interface

In this chapter we derive the geometrical properties of the moving interface between
condensate and vapor phase, such as normal and tangential vectors and mean cur-
vature. For the description of three-dimensional flows a Cartesian frame of reference
really suffice. However, a surface is a two-dimensional non Euclidean space and de-
mands a tensorial treatment. First, the formulas for normal and tangential vectors,
mean curvature and interface velocity are given. Then, by an implicit surface rep-
resentation the geometrical properties for the interface of the condensation problem
are computed. Two formulas to compute the normal vector and two formulas to

compute the mean curvature are discussed.

The material in this chapter is mainly
based on |[EBWI1| [Ari89] [TT60| and

[Eri71]. They present classical contin-

u? =const.

uum physics intrinsically tied with ten-
sor calculus. For an introduction in ten-
sor calculus we refer to [Sch97|. [S1a90|
[S1a99] and [Dee98| present transport phe-
nomena including interphase transport

phenomena using moderate tensor no-

tation. |Kiih99| is a differential geome-

try book designed for the mathemati- ”
cian [OprOO] has (for the engineer) a Figure 2.1: Tangent space on a surface
far easier notation but also lack some

derivations.
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2.1 Curvilinear coordinate systems

A two-dimensional surface can be best analyzed by covering the surface with a
grid, see figure 2.1. The grid is obtained by the curves defined by u' and u? held
constant. The position of a point on the surface can be given intrinsically in terms
of the two curvilinear surface coordinates (or parameters) u' and u?, or extrinsically
by a position vector to that point This defines a curvilinear coordinate system which
is not orthogonal in general. In this thesis cartesian coordinates are denoted by z;
and indexed by a subscript. Curvilinear coordinates are denoted by u® and are
indexed by a superscript. When the index takes only the values 1,2 greek letters
are used and when the index takes the values 1,2, 3 latin letters are used. Einstein
summation convention is used, which states that if an index is repeated in a term

that implies a sum over all possible values for that index.

Tangential and normal vectors

In our case the interface between condensate and vapor is not stationary, so that

the position vector to a point on the interface is given in cartesian coordinates by
x(u',u®t) = z1(u',u? t) ey + zo(ut, u? t) eo + z3(ut, u? t) es (2.1)
or in index notation by
x(u®t) = x;(ut) e; , where u® = u', u?. (2.2)

Hence, all geometrical properties are functions of time.

A Taylor series expansion of « in the surface variables u® up to the linear term yields

the total derivative

o
 duo

dx @

If u* = constant (du® = 0), only the component along the u' curve remains and 2%
defines the tangent vector along this curve; similarly % defines the tangent vector
along the u? curve [Sch97]. The derivatives with respect to the curvilinear coor-
dinates u® are called covariant derivatives. The covariant derivatives of a position

vector

=5~ “w 29

a,
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form the base vectors of a local surface coordinate system. In terms of the covariant

base vectors the surface metric tensor is defined as
(ap = Qo - Q5 , (2.4)

[Ari89]. The metric tensor is also called first fundamental tensor. The local unit
normal vector at a point (u',u*) normal to the surface is defined by
a; X sy

= — 2.5
|CL1 X a2| ( )

Dual basis

Another set of base vectors a” is defined by the surface Kronecker delta .4
Ao - a’ =dag

they are called dual base vectors or reciprocal or contravariant base vectors respec-
tively |Sch97]. This condition is called orthogonality relation. It defines a vector a'
that lies in the plane formed by the vectors a, as, is perpendicular to a,, forms an
acute angle with a; and its length is given by a; - a'. This is also the definition
of the gradient Vu' of the surface coordinate, which is perpendicular to the level
surface defined by u'(zy, xo,x3,t) = constant. Similarly the orthogonality relation
defines the vector a®. Then the dual or contravariant base vectors are given by
ou”

YTyt = ey — . 2.6
a u eaxi (2.6)

With the contravariant base vectors the covariant surface metric tensor is

«

a®’ =a”-a’ . (2.7)

However, the dual basis is more convenient calculated by means of the local unit

normal vector

ol = P2 xm a?— _rxan (2.8)
[a’lva’27n] ’ [a’lua’27n] . ‘

[a1,as,n] = [a; X ay] - n is the scalar triple product |[Dee98].
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Orthogonal curvilinear coordinate systems

If the base vectors of a curvilinear coordinate system are orthogonal (a; - ay = 0),

the covariant and contravariant metric tensor reduce to

a _ a1 0 aaﬁz CLH 0
o 0 929 ’ 0 a22

For such orthogonal systems the normalized surface vectors are called self reciprocal,

1 _a al _az a2 . . . .
in the sense that o = o and s = Ve It is convenient to introduce unit
vectors
a Qas
€ = ) €y =
Vv a11 vV a22 ’
[EBWI1].

Surface gradient

The identity tensor is defined by

I=a'a +d*’a;+nn,
and possesses the property I-a = x for any @ [EBW91|. This relation is also called
orthogonality relation. By subtracting the part related to the normal vector from I
the surface identity tensor is defined as

Is=1-nn=a"a,, (2.9)

[EBWOI1|. Similarly the surface gradient is defined by the projection in normal

direction subtracted from the gradient
V=V -nnV. (2.10)

By this we get (Wlth €; -€; = 57,])

X 2 T 2 2
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2.2 Mean curvature

The mean curvature is defined as

1 1 0
He —-Ven—=——la*—]. 2.12
Lvyn 2(aaua)n, 2.12)
[Dee98|. The mean curvature is proportional to the rate of change with respect to

the surface coordinates of the local normal vector.

2.3 Implicit parameterized surface

To compute the normal and tangential vectors and the mean curvature of the moving
interface it is necessary to choose a parametrization of the interface. For example, if a
vertical tube is assumed and the condensate flows down along the inner walls without
showing waves, then the problem has rotational symmetry and the interface between
the condensate and the vapor can be parameterized with the surface coordinates
u! = z and u? = 9, see section 6. Here we derive the geometrical surface properties

by a more general parametrization.

Normal and tangential vectors of an implicit parametrized surface

Every moving surface can be locally described by a real-valued function of two

variables and time

z = h(u,v,t) or implicitly F(u,v,z,t) =z — h(u,v,t) =0,

2

[Ari89] [Opr00]. For convenience we write u' = u, u> = v. By this parametrization

the position vector becomes
x(u,v,t) =ue; +vey+ h(u,v,t)es .

The tangential vectors are given by the covariant base vectors (2.3) as

0 ! 0 0

T T

i = = . 2.1
@ ou aSL ’ @2 ov alh (2.13)
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The local unit normal vector is the cross product of the tangent vectors, scaled by
its length. Alternatively, if the surface is given by z = h(u,v,t), the unit normal
vector can be obtained from the gradient of the implicit function F'(u,v,z,t) = 0.
Expanding F'(u, v, z,t) in a Taylor series up to the linear term for the variables u, v, z
leads to the total derivative

oF oF oF

dFf = —d —dv+ —d

ou u ov v 9z 7
which is zero because F' = 0. Writing the total derivative as VF' - du = 0 where
du = [du, dv,dz] shows that the gradient V F' is perpendicular to the level surface

defined by F(u,v,z,t) = 0. The local unit normal vector reads then

_ o
VF o 1
VF v 2 2
VEE L @)+ () 41

Mean curvature of an implicit parametrized surface

The mean curvature is given by (2.12) as being proportional to the rate of change

of the surface normal with respect to the surface coordinates

1 . 0 5 O 1 . on , Om

Alternatively the mean curvature is often computed more conveniently by means of
the first and second fundamental tensor as explained below |Ari89] |[Kiih99|. For the
implicit surface parametrization the first fundamental tensor, or covariant metric

tensor (2.4), reads in matrix form

a;-a; ai-ap
a’(xﬁ o g
Qs -a; as-a

14 (&) So ]

Oh Oh 0h\2
wor LT (E)

Between the covariant and the contravariant metric tensor (2.7) the relation
aa,=(a*-a’)(a,-a3) =a“-(a’a,)-ag=a" - Ig-asz=a" ag = 0,3

holds, so that the contravariant metric tensor a®’ is the inverse of the covariant

metric tensor a,g [EBW91|. The inverse of a matrix is given by the transpose of
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the cofactor matrix (denoted by a tilde), divided by the determinant of the matrix.!
This yields

a®? = (

)

detaogs  a11 a2 —anas |—ay  ap

R 1 [022 —a12]
- - )

and for the implicit surface parametrization

1

a®’ = oh oh
1+ (5) + (5)?

oh\2 dh dh
1+ (3) ‘aa]
dh dh or\2 |

o 1T (G

Both metric tensors are evidently symmetric. They are also positive definite.?

Next, the second fundamental tensor is defined as

b, — 0% lternativel buy = on
0 = 6uﬁ'n or alternatively g = —Qo =

. 2.1
5o (2.15)

|Ari89| |[Kiih99]. The first equation of (2.15) yields for our parametrization

day | day | h  2%h
b _ aa’a _ ou n v n _ 1 ou? dudv
B = n=— = )

0 day | day | Ohy2 4 (2hy)2 | @°h  ?%h
ﬁ ow oy 1+(6u) +(6v dvdu ov2

The second fundamental tensor is also symmetric but not necessarily positive defi-
nite. From the first and second fundamental tensor the shape operator or Weingarten

map is defined

biy b —
L = bya = [11 12] 1 [@2 am] ’ (2.16)

bor byo| detans |—ay an

|Kih99|. It becomes for the implicit surface parametrization

02h h 92h oh dh  0%h oh\2\ _ 92h h dh
L e UG —am s man (LHG)Y) — G255
0 | 2% oh 92h dh dh  2%h 0h )2 92h dh dh |
\/_ oudv (1_'_( >)_W$$ W(l—i_(_u))_auﬁvauav
with /o = \/ 1+ + (2)2. The eigenvalues of a product of a symmetric matrix

with a symmetric pos1t1ve definite matrix are all real, Zurmiihl [Zur64].

!For the computation of the inverse of a matrix by its cofactor matrix [Apo69].
2The condition that a matrix is positive definite is that all upper left determinants are positive,

Apostol [Apo69] a'! =1+ (2£)? > 0 and
a2 — (@) = (1+ (B))(1+ ()?) - B — 14 ()2 4 ()2 4 P _ 2B g
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The two eigenvalues k; and ko of L are called principal curvatures. The mean

curvature and the Gaufs curvature K are defined by

det ba 5

1 1
H = 3 trace L = 5 bag a® = k) +ky and K =detL = = K1 Ka, (2.17)

det aqp

[S1a90]|. So that finally the mean curvature becomes for our parametrization

L[S0+ 258 S8+ 58 (1+(53)7)

H ==
2 (2)2 + ()2 + 1)

(2.18)

3
2

For the computation of the mean curvature with (2.17) only the covariant base
vectors and the derivatives of the covariant base vectors need to be computed. If
(2.12) is used to compute the mean curvature also the contravariant base vectors and
their derivatives need to be computed. That shows that using the shape operator
to compute the mean curvature often simplifies the computations, especially in the
case of orthogonal coordinate systems. However, the definition of the mean curvature

with (2.12) is more physically intuitive. We will use this formulas again in chapter|6.



Chapter

Kinematics of bulk fluids and of the moving

interface

In this chapter we discuss the kinematical relations that are necessary to formulate
the balance equations of the condensation problem.! Experiments show that a fluid
interface is in fact a three-dimensional region with a thickness on the micro-scale
level [EBWO1]| [Sla99|. Following |Gib28] such an interface can be regarded as a
two-dimensional dividing surface where the effects of the interface on the adjoining
bulk phases are represented by surface excess mass, momentum and energy [Sla90].
By this the effect of surface tension is included in the balance equations of the

condensation problem (see section 4.3).

First we give the kinematical relations for the bulk fluids, then a material volume
with an internal interface is considered. Next we discuss the kinematical relations of
the two-dimensional moving interface and in the last section we deal with kinematical

relations related to curvature of the interface.

The first part of this chapter is mainly based on [Ari89] [Sch99| [BB75] and [TT60).
The interface related sections are further based on [Sla90]| [Sla99] and on [EBWI1|.

3.1 Kinematics of a material volume

To clarify terminology we first recall some kinematics of bulk fluids and the Reynolds

transport theorem for a material volume.

Kinematics is the description of motion per se” [Ari89).
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Basic kinematics

From the basic assumption of continuum theory, a body consist at every moment of
infinitely many particles without dimension and no space between them, it follows
that every particle correspond to a position in space. A particle is represented at a
given initial time, by a position vector &, as shown in figure 3.1. The coordinates of
& are called material coordinates. At another time the same particle is represented
by another position vector as a function of the initial position of the particle and

time

x=x(&1) (3.1)

The coordinates of  are called spatial
coordinates. The initial position of the Py
particle is taken as a reference configu-
ration. Equation (3.1) defines the mo-
tion of a particle [TT60]. Assuming con-
tinuous motion and that a particle can
not occupy two places at the same time

the relation is a one-to-one mapping and

we can also write conversely /
x

E = E(wat) :

Figure 3.1: Mowving particle
Physical quantities like density, velocity

and temperature, which are functions of space and time, are called field variables
and they are here denoted by ¢. A field variable can also be given as a function of
particle and time. The representation of a field variable as a function of space and

time is called spatial (or Euler) representation, that is

¥ = Qp(wa t) or Y= @(E(w>t)a t) :

The representation of a field variable as a function of particle and time is called

material (or Lagrange) representation, that is

o= t) or o =p(@(§ 1)) .

Balance equations of mass, momentum and energy are appropriately represented in
spatial variables |BB75].
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Material derivative and velocity

Field variables are functions of several variables, so that their derivatives are par-
tial derivatives. Partial derivatives where spatial coordinates are held constant are
denoted by 0. Partial derivatives where material coordinates are held constant are

denoted with an uppercase D [Sch99].2 The partial derivative with respect to time

Tt ot

Dy 3p(§,t) (5_<P)
Dt or e

is called material (or convected) derivative and gives the rate of change an observer
moving with the particle would see. The material derivative of a position vector is

the velocity of a given particle

_D:c

’U—D—t.

(3.2)

Balance equations are given in spatial coordinates. To obtain the material derivative

of a field variable ¢(x(&,t),t) in spatial variables the chain rule has to be applied

Dy  0¢ 0y Du;

Dt ot Ox; Dt ’
0y
= 4 Tv Vo, (3.3)

where we used Einstein summation convention. The material derivative is the local
rate of change of a given particle at a given position and at a given time plus the

convective rate of change related to the moving volume [S1a99).

Reynolds transport theorem for a material volume

For the derivation of the balance equations we need the Reynolds transport theorem
for a material volume. A mass conserving volume is called material volume (or
material body) and here denoted by Vp. It is moving with time and deforming in
general. A quantity By continuously defined over a material volume V{ is given by

By = fVo @ dV. The rate of change of By with respect to time is given by

dBy(t) d

Vo(:z:,t)

2 Another common notation for the material derivative is a dot on the variable .
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In a spatial representation Vy(x,t) depends on time, so that integration and dif-
ferentiation can not be interchanged. With the Jacobian J = det <aml> the vol-

ume element can be transformed from spatial coordinates into material coordinates
dV = JdV,. The material volume element dVj does not depend on time, so that then
integration and differentiation can be interchanged. The time derivative becomes

the material derivative
d D
G [ v@nav= [ 5 (e ).
Vo(a),t) V()(g,t)

Using the material derivative of the J acoblan =JV . v we get

D DJ D
/Dt(w)dvo /(DtJ+ Dt) dvoz/(D—f+<pV~v) Jdvp,

where we dropped the integration limits for simplicity [Ari89]. After transforming
the volume element back to the spatial volume element and by using the material
derivative (3.3) of a field variable we get for the rate of change with time of By

D
pdV = /(Df—l—gov 'v) v, (3.4)

— /(aa—t+V[ ])dv.

Note that when the derivative of the integral is taken the integration domain has to

dt

Vo

be indicated. Using Gauk theorem? the divergence term in the volume integral can

be changed into a surface integral

godV /—(pdeLj{gov-ndA, (3.5)

where the normal vector is directed outwards on the surface. The velocity v is the
velocity of mass while moving across the surface. Equations (3.4) — (3.5) are called
Reynolds transport theorem. In the form of (3.5) the Reynolds transport theorem
has a physical meaning: The rate of accumulation of a quantity in a material volume
can be interpreted as the rate of accumulation of the quantity in a volume that
equals the material volume at a given time plus convective flux (connected to mass)
leaving the volume through the surface at that time [Sch99|. In Dziubek [Dzi04] a

more detailed discussion of the Reynolds transport theorem can be found.

3The Gauf theorem or divergence theorem for a vector f is given as: [V-fdV = § f-ndA.
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3.2 Reynolds transport theorem for a material volume with an

interface

In this section we consider a material volume Vy = V; + V, where the field variable
has the value ¢; (I for liquid phase) in the volume V; and the value ¢, (g for gas
phase) in the volume V, as shown in figure 3.2. An interface between two immiscible
fluids is called a material interface, if is formed by the same material elements or
particles at all times. If phase change occurs at an interface between two aggregate
states of a fluid, as is the case in the condensation problem, the surface velocity u
of the interface differs from the velocity v of the mass, and the interface is called

singular interface, Greve |Gre03|.

Jump

The difference between the two values

at the surface is denoted by
||:Q0:| =Py —

and called the jump of ¢ [TT60].

The rate of change of By with respect to
. . Fq 3.2: Material vol ith int
time is the sum of the rate of change of wgure aterial volume with interface

B; and B, with respect to time

ABo(t) _ dBi(t) | dB,(1)

dt dt dt
that is
d d d
Vo Vi \Z

The volumes V; and V, are not material, so that we need the Reynolds transport

theorem in a modified version for an arbitrary volume.
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Reynolds transport theorem for two arbitrary volumes

A quantity B, which is continuously defined over an arbitrary volume V, is given
by B, = fVu @ dV. The volume V, is assumed to consist of fictive mass and shall be
material (conserving the fictive mass). Then the rate of change with time of B, is

according to the Reynolds transport theorem (3.5) given as

<pdV /—(pdeLj{(pu-ndA, (3.6)

though here the velocity u is the velocity of the boundary of the considered volume.

Now we apply the general formula to our control volumes. With (3.6) the Reynolds

transport theorems for the two volumes V; and V are given as

0 ~
T pdV = /—SodV+/g0v-dA+/g0lu-ndA, (3.7)
Vi A
and
d dp ~
T pdV = 3¢ AV + pv-dA+ [ p,u-(—m)dA, (3.8)
Vg Vg Ag A

where we choose the normal vector n at the interface such that it shows from the
liquid to the vapor. By adding (3.7) and (3.8) we get the Reynolds transport theorem
for the entire volume V) = V; 4V, as

d
= [ wdv = /ﬁdv+7{¢v dA — /[gp w-ndA (3.9)

Vo

[Sch99]. Equation (3.9) is the Reynolds transport theorem for a material volume
with a singular interface. It states that the rate of accumulation of a quantity in a
material volume, where ¢ undergoes a jump on an interface can be interpreted as
the rate of accumulation of the quantity in a volume that equals the material volume
at a given time plus convective flow of the quantities ¢; and ¢, leaving the volume
through the outer surface and the interface at that time. Here again the integration
limits are dropped where the integrals are evaluated at a given time. Only the

integration domain of the integral along the interface A has to be indicated.
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Using Gauk theorem? the Reynolds transport theorem (3.9) for a material volume

with a singular interface can be rewritten as

dt
Vo

4 gode/(%—ijV-[gov]) dV+/[g0(v—u)]-ndfl, (3.10)

[S1a90].

3.3 Kinematics of the moving interface and velocities

As explained in the introduction of this chapter, the interface between the vapor
and the condensate is assumed to be a two-dimensional surface. In this section the
kinematics of the moving interface are discussed and the material (or convected)

surface derivative, the fluid velocity and the velocity of the interface are given.

Kinematics of the moving interface

The interface is not composed of a fixed set of particles, there will be mass transfer
between the interface and the two adjoining phases |[EBWOI1|. According to the
basic assumption of continuum theory also a surface consist at every moment of
infinitely many particles. In particular, a particle joining the interface coincides
with the particle that was at that position before. For a particle that is leaving the
interface instantaneously another particle emerges. So although there is a many-
to-one mapping between particles and the region in the surface that is occupied
by them, we can assign one representing particle for all possible particles at one
point [TT60].

The position vector to a point on the surface was given in chapter 2 as a function

of surface coordinates and time (2.1) and is here denoted by a lower index S

x, =x (u,t) with a =1,2. (3.11)

S

At a given time this particle on the surface is represented by a position vector, which

is here also denoted by a lower index S

£, = &,(up) - (3.12)

‘For a material volume with an internal interface Gauf theorem becomes (compare footnote 3)
[ V-pv]dV =§pv-dA— fA[[gp]]vndfl.
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We take this as a initial position and call it intrinsic surface reference configuration.

Conversely every position in the surface corresponds to a particle

ug = ug (&) - (3.13)

Obviously the initial position of a particle located at the surface can be identified
either by (3.12) or by (3.13). At another time the particle is represented by another
set of coordinates as a function of the reference configuration of the surface particle

and time
u® = u(ug,t) . (3.14)

With the assumption of a representing surface particle we established a one-to-one
mapping between the coordinates of a surface particle and the surface coordinates,

so that we can write reversely
uy = ug(u®,t) . (3.15)
Equations (3.14) and (3.15) describe the intrinsic motion of a surface particle within

the surface, without knowing how the surface itself is moving.

The motion of a surface particle in space we get from the motion of the surface
(3.11) and the intrinsic motion of the surface particles on the surface (3.14), (3.15)

as

=z (ug,t) or r, =x (u(ug,t),t) . (3.16)

€T s

S

Equation (3.16) is not reversible. A position in space is corresponding to every

surface particle, but the converse is not true [Sla90].

A surface field variable is here denoted by . It can be given as a function of space

and time
v, =@ (xg,t), that is with (3.11) v, =@ (u®t) .
Or it can be given as a function of particle and time

05 = @g(ug,t),  pg = @g(u(ug,t),t) .
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Material surface derivative

The partial derivative of a surface field variable with respect to time where mate-
rial surface coordinates are held constant is called material (or convected) surface

derivative and it is here denoted with D,

Dyps _ dpg(uf,t) _ <%)
ot ).

Dt ot
It is the rate of change of a surface field variable with respect to time an observer
moving with a surface particle would see. The material surface derivative of a

position vector is the velocity of a given surface particle

_ Dsws

=55 1
v D (3.17)

Here we did not denote v with a lower index S to be consistent with the balance
equations as they are given later. Surface balance equations are given in spatial
surface coordinates. To obtain the surface material derivative of a surface field
variable ¢ (u®(ug, t),t) in spatial surface coordinates the chain rule has to be applied

Dy, B dp, Oy, Du”

Dt ot  ou~ Dt ’

With the surface gradient (2.11)

w=—a, (3.18)

the material surface derivative becomes

Dyps _ 0py
= -V 3.19
Dt at _I_ w S()OS Y ( )

where we used a®a, = I, according to (2.9). The material surface derivative is

S
the local rate of change at a position of a given surface particle at a given time plus

the convective rate of change related to the moving surface.
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Velocity of an interface particle relative to velocity of the moving interface

The material surface derivative of the surface position vector o (u®(uf,t),t) is with

(3.19) given as

D,xz, Oz,
——=—+w-V_x,. 3.20
Dt at Ss ( )
The partial derivative of the surface position vector with respect to time (where u®

held constant) is the velocity of the moving interface

ox,
= 21

The surface gradient of the surface position vector is with (2.3) the surface identity

tensor

V.x, = a® =a,a” =1 (3.22)

S S_aua

Using (3.21), (3.22) and (3.17) the material derivative of the surface position vector

becomes an equation with three velocities

D 0
‘i%?ﬁ = ;f tw- Vi, (3.23)
VvV = utw.

By this we see that the intrinsic surface velocity is the velocity of a surface particle

relative to the velocity of the surface
w=v—u. (3.24)

Note that in general w has a normal and a tangential part, so that w is not necessarily

the tangential part of v,.

Surface velocity for an implicit surface parametrization

In section [2.3 we discussed the geometrical properties of a surface defined by an
implicit function F(x,(u®,t),t) = 0. Differentiating F' = 0 with respect to time

gives

OF  OF 0z,
— +
ot ' dx,, ot

Si

oF
=0 and equivalently o +u-VF=0. (3.25)
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With the normal vector n = % as derived in (2.14) we then can write either

oF
. w -~ VF
u- -n=— or u-NnNn=u-

|V F| \VF|

(3.26)

The first equation is independent of the parametrization, so that all possible surface
velocities have the same normal component w-n, which is called speed of displace-
ment [TT60] [Sla90]. It is convenient to choose a parametrization such that the

surface velocity becomes the surface normal velocity
u=u-nn.

The surface defined by F(u,v,z,t) = z — h(u, v, t) has the surface position vector
x (u,v,t) =ue, +ve,+h(u,v,t)e, .

For an implicit surface parametrization the surface velocity is the surface normal

velocity and is given by

oz
= . 3.27
3 0 (3.27)

u —=

Multiplying (3.23) with n gives

Du® .
vs~n:u~n+D—taa-n that is VsrMm=u-n.

3.4 Reynolds transport theorem and divergence theorem for a

surface

In the balance equations we also need the Reynolds transport theorem for the inter-
face between condensate and vapor. Because of the mass transfer due to condensa-
tion the interface is not material. However, we can always assume the interface is
composed of a fixed set of particles, as explained in section 3.3. For a quantity Sy
continuously defined over such an interface Ay we write Sy = S Ao <psdf~1. The rate of

change of Sy with respect to time is given by

dSO(t) = E / Ps (:‘st t) d;l :

dt dt
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In a spatial representation flo(:cs, t) depends on time. Analog to the Reynolds trans-

port theorem for a material volume we transform the area element with the surface

g
dinates dA = jdA, [S1a90]. Then AO(ES) does not depend on time and integration
and differentiation can be interchanged. The time derivative becomes the material
surface derivative (3.19)

c;lt Ps dA = /?)t <<st) dzzlo

Ao

)
Jacobian determinant j = det ( 7s ) from spatial coordinates into material coor-

The material surface derivative of the surface Jacobian determinant is 5 = =1V v,

so that we get

D D.o. . AR D L
] B () ado= /(B—?H% Dsf) dAOZ/(B—?+¢sV'”s)JdAO>

where we can transform the area element back into spatial coordinates [EBWI1|.

Using the material surface derivative (3.19) with the relative velocity (3.24) we get

for the rate of change of Sy with respect to time

d D )
dt/gosdA - /(B—fS+¢SV-vS) dA

d ~
= / (% + [vs - u] ) VSSOS + @ V. vs) dA, (3'28)

0y -
/( at5+VS-[gosvs]—u-ngps) dA .

This equations are called Reynolds transport theorem for surfaces. Comparing the

last equation with the Reynolds transport theorem for material volumes (3.4) here

we have an additional term related to the moving surface.

Divergence theorem for surfaces

Finally the surface integral with the surface divergence term in the last equation
of (3.28) is transformed further using the so called divergence theorem for surfaces.
The divergence theorem for surfaces will be used here and again in section 4.3.

Therefore we derive it using the abbreviation f = ¢, v,. Then, splitting f in
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normal and tangential part we get for the surface integral of the surface divergence

of f

/Vs-fd/i:/VS-[(f'n)n] df~l+/Vs'[(f'm)m] dA .
Firstly, the first integral on the right hand side is considered. Applying product rule

on the integrand result in

Vo lif - n)nl=n-V,(f-n)+(f - n)V,-n==-2Hf-n, (3.29)
=0
where we used mean curvature (2.12) as defined in section 2.2, and that the surface

gradient (2.9) is perpendicular to the normal vector on the surface.

The second integral is an intrinsic sur-
face integral. The vector m is directed
outwards normal on the boundary curve.
It is perpendicular to the tangential vec- m
tor t along the curve and to the surface
normal vector m = t X n as shown in
figure 13.3.5 We use Stokes theorem® to

Figure 3.3: Base vectors on a bounded surface

transform the surface integral in a curve integral

/VS[(fm)m] d[lz%(f~m)dé’. (3.30)

With (3.29) and (3.30) the surface integral of the surface divergence of f becomes
/Vs-fd/i:—/2Hf-nd£1+7{f-mdé. (3.31)

This equation is called the divergence theorem for surfaces, (it should not be confused

with the divergence theorem in footnote [6).
Alternative version of the Reynolds transport theorem for surfaces
If we substitute in the last equation of (3.28) the surface integral of the divergence

term with (3.31) an alternative version of the Reynolds transport theorem for sur-

faces can be given as

d ~ 0 - -
a/gos dAz/( E;Ots—u-VSgos—ZHgosvs-n) dA+7{gos'vs-de. (3.32)

Ao

>See [Sla99] for the relation between m, ¢ and the local base vectors at the interface as defined

in chapter 2.
6Stokes theorem entirely defined in surface vectors is given as: [V - fdA = § f-mdC.
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The rate of accumulation of a quantity in a surface can be interpreted as the rate
of accumulation of the quantity in a material surface that equals the surface at a
given time plus flux arising from the moving surface, plus convective flux normal to
the surface (curvature term) and convective flux through the boundary curve of the

area.



Chapter

Generic model equations for two-phase

flows with surface tension

In this chapter we derive the generic model equations for the moving surface problem.
First we give the generic differential balance equation for incompressible fluids and
then we derive a generic differential balance equation at a moving interface between
two fluids, the so called jump condition. This interface balance equation includes
phase change but does not yet include surface tension. To include surface tension a
balance equation for the interface itself has to be formulated, which is then added
to the generic balance equation for the bulk phases. By this we derive the desired

generic jump condition.

The material about balance equations in general is mainly based on [BSL60| [Sch99|
and [Sla99|. Further on [Dee98| |Gre03| and [Hut03]. The material about interface
balance equations is mainly based on |[TT60] [Sch99| [S1a90| and [EBWI1].

4.1 Balance equations for bulk fluids

Balance equations are formulated for physical quantities that are continuously de-
fined over a spatial region (for instances a volume), such as mass, momentum or

energy. We denote those quantities by B = fV pdV.

Generic balance equation for a material volume

A material (mass conserving) volume Vj is in general moving with time. A generic

balance equation for a physical quantity By = fVo @ dV in a material volume states
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that the rate of accumulation of quantity in the material volume is given by con-
ductive flux of the quantity (not connected to mass) that enters the volume across

the surface plus supply of the quantity to the material volume!

% dv:_jfc-dA+/7rdv, (4.1)

Vo

where ¢ is the flux density and 7 is the supply density [Sch99|. The surface element
vector dA = n dA is directed outwards normal on the surface. As before we drop the
integration limits except in the case the derivative of the integral is taken. With the
Reynolds transport theorem (3.4) the generic balance equation (4.1) for a material

volume becomes

/(%_fJFV.[@U]) dv:_%gdAjL/de. (4.2)

Generic balance equation for a stationary volume

To derive a generic balance equation for a stationary volume the Reynolds transport
theorem in the form of (3.5) is substituted for the right hand side of (4.1)

/%_fdv+f¢v-dA :—%CdA—i—/ﬁdV.

Now the integration domain of the volume integral on the left hand side is constant
and derivation and integration can be interchanged. By doing so we get the generic

balance equation for a stationary volume

d
T cpdV:—fgov-dA—ng-dAjL/ﬁdV. (4.3)

This equation has again a physical meaning: The accumulation of B = [ dV in a
stationary volume is given by convective and conductive flux of quantity across the

surface to the volume plus supply of quantity to the volume |[BSL60|.

1Some authors distinguish between supply of quantity to the volume and production of quantity
within the volume. Then conservation equations can be defined as balance equations without a
production term. However, it is more intuitive to distinguish only between surface terms and

volume terms.
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Generic differential balance equation

Next, we need a differential version of the generic balance equation for the numerical

computation. The starting point is (4.2)

/(%—f—l—V~[gpv]) dV:—f¢~dA+/7rdv.

Using divergence theorem (see footnote [3 in section [3.1) we transform the surface

integral in a volume integral and get

/(aa_%:JrV.[erd_w)dvzo.

This equation must hold for any arbitrary volume. By this we get the differential

balance equation we were looking for

%—f+V-(gpv):—V-C—l—7r. (4.4)

Although this equation represent the same physical phenomenon as before (accu-
mulation, flux, supply) the various terms can not be interpreted in the same way as

the integral balance equations [Sch99].

In section 5.1 the generic differential balance equation will be applied on mass,

momentum and energy of the condensate and the vapor.

4.2  Jump conditions at an interface between two fluids

In the condensation process we have two homogeneous bulk phases, the vapor and
the condensate, and we have the interface between both phases. At the interface
the phase change from the gas phase to the liquid phase occur. Here the generic
balance equations of the interface are derived, particulary under the criterion of

phase change.

Generic balance equation for a material volume with a singular interface

The generic balance equation (4.1) for a quantity B, in a material volume

% dvz—jfg~dA+/7rdv

Vo
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holds for a material volume whether or not there is a singular surface within it [TT60].
However, the rate of accumulation in 1} is the sum of the rate of accumulation in

the volumes V; and V

d d d
— dV = — dV + — dv .
at ) ¥ T AT I

Vo Vi \Z
The volumes V; and V} are not material, so we need the Reynolds transport theorem
for an arbitrary volume with a singular interface. Substituting (3.10) for the left
hand side of (4.1) gives us the generic balance equation for a material volume with

a singular interface

(54 100) dv+[[¢<v—u>]~ndA=—fc~dA+/de<4.5>

The double bracket denotes the difference between the two values at the surface as

discussed in section 3.2.

Generic jump condition

To derive a differential form of (4.5) a

special volume in a form of a small box

is considered, which is moving together Ap,
with the interface as shown in figure 4.1.
Two faces of the box are parallel to the
interface. By taking the limit of the
shorter side faces A;, — 0 the volume
integrflls vanish and A; and A, merge Figure 4.1: Volume in form of a bo
with A. For the volume integrals to van-

ish their integrands must be limited (but not necessary continuously) [TT60|. Then

the normal vectors of the two outer faces of the box transform into either n or —mn

and only the surface integral over the interface A remains

/([@(”_"”]'"Jr[C;'(—n)—cg-nb dA=0.

A

The integral must hold for any arbitrary surface so that the integrand must be zero

lofv—ul-n|+[¢n|=0. (4.6)
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Equation (4.6) is called generic jump condition and describes the phase change at

the interface and the conductive flux across the interface [S1a90].

With this jump condition we can describe phase change and conductive flux across
the surface, but it does not allow to model intrinsic surface properties like surface
tension, compare chapter 3. In analogy to the external surfaces an interface of

infinitesimal thickness was assumed (we took the limit of A, — 0).

4.3 Balance equation and jump condition including surface

tension

Based on the assumption that a fluid interface is actually a three-dimensional region
with a thickness of maybe one or more molecule diameter, the effect of the inter-
face on the adjoining bulk fluids is best represented by assuming a two-dimensional
interface consisting of surface excess mass. Surface mass is assumed to have simi-
lar properties as three-dimensional mass, such as surface density, surface viscosity,
surface tension and so on [EBW91|. Then, analog to the generic balance equation
of three dimensional continua, a generic balance equation for the interface can be
given. By adding the so derived interface balance equation to the generic balance
equation for a material volume with a singular interface we finally get a generic

balance equation including surface tension.

Generic balance equation for a surface

The interface between condensate and vapor is not material, the fluid velocity differs
from the velocity of the surface. Nevertheless a balance equation similar to the
generic balance equation (4.1) for a material volume can ge given, as explained in
section 3.3. For a quantity Sy continuously defined over a surface A we write Sy =
fA O dA. Then a generic balance equation for Sy states that the rate of accumulation
of surface quantity in the surface A is given by conductive flux of surface quantity
across the boundary curve of the surface plus supply of surface quantity at the

surface
d ~ _ ~
T psdA=—9 ¢, -dC+ [ m,dA, (4.7)
A

where ¢ is the surface flux density and 7 is the surface supply density [S1a90].

The curve element vector dC = m dC is directed outwards normal on the boundary
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curve, see figure 3.3 in section 3.4. With the Reynolds theorem for a surface (3.28)
equation (4.7) becomes

/<ag,;s +Vs-[sos'vs]—U~Vssos) dfl:—]{ﬁs'dC”F/”sdA’ (48)

Generic differential balance equation for a surface

To get a differential version of the generic surface balance equation (4.8) we trans-
form the curve integral on the right hand side in an area integral using the surface

divergence theorem (3.31)

3 -
/( gpts+Vs'[gosvs]_u'vsgps+[Vs'Cs—i_QHCs'n}_WS) d4 =0,

where H is the mean curvature. This equation must hold for any arbitrary area so

that we get the differential surface balance equation

0,
ot

+VS-[gpsvS]—u-VS<pS:—[VS-CS—|—2HCS-n}—|—7rs. (4.9)

Generic balance equation including phase change and surface tension

Now we are able to state a generic balance equation that includes phase chance and
surface tension. For that we add the generic surface balance equation (4.8) to the
generic balance equation for a material volume with a singular interface (4.5) and

get

/(aa_fw-[sov]) dV+/[go<v—u>]~nd21

A

0p -

+/ (a—;+vs ’ [¢svs] —U'VSQOS) dA
:—%C-dA—%CS-dC’+/7rdV+/7rSd/1. (4.10)

Generic jump condition including phase change and surface tension

From (4.10) we derive a generic jump condition in the same way as discussed in

the last section. For that we transform the curve integral in an area integral using
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the surface divergence theorem (3.31) and consider a small volume enclosing the

interface that we let shrink into a surface. By this we get

[ 1o~ wln]+[en] = -2V do, v ruwV o - [V, ¢, + 20, ) im,

ot
(4.11)

If there is no material accumulation in the surface, the surface density variables ¢
and 7, are zero and the surface is called a clean surface and from the right hand
side only the (underlined) terms remain [EBWO91]. For the condensation problem

material accumulation in the surface can be neglected. So we finally get
|[g0['v—u]-n]+|[§'~n]:—VS~CS—2Hn-CS. (4.12)

This jump condition covers phase change, conductive flux across the interface, and
surface tension. In section 5.2 we apply (4.12) on mass, momentum and energy
and derive jump conditions at the moving interface between condensate and the
vapor. For the jump condition we made no additional assumption than to assume a

continuous surface, in particular we do not allow the interface to break off.



Chapter

Model equations for condensation in a tube

with small diameter

In this chapter we obtain the balance equations for mass, momentum and energy
for the bulk flow of the both phases and for the interface between them from the
generic balance equations derived in the last chapter. Further we discuss appropriate
simplifications for the condensate problem. The last section we summarize the up
to then deduced system of partial differential equations plus the jump conditions
and discuss the boundary conditions. The references for the equations used in this

chapter are given in the last chapter unless otherwise noted.

5.1 Mass, momentum and energy equation

Mass

The mass balance equation is given by (4.4) with p =pand ( =7 =0

0
S+ Y (pv) =0, (5.1)

which gives for the condensate film with the assumption of constant density
V.-v=0. (5.2)

Also the vapor can be treated as an incompressible fluid.!

LIf the Mach number of a fluid is small compared to unity the fluid can be considered as an
incompressible fluid [BSL60].
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For momentum and energy another balance equation which makes use of (5.1) is
more preferable. For that we substitute ¢ in (4.4) by ¢ = p, apply the product

rule on both terms on the left side and recieve

A(p )
ot

£V ((pd) 0] = ¢ {@w-(pv)]fp ERR R

ot ot

-

'

=0

The first bracket is zero according to (5.1). The second bracket is the material

derivative of ¢ as derived in section 3.1.

Dy 0y
D—t—a‘l"v'vw.

Thus we get the generic balance equation (4.4) in an equivalent form [Dee98|

Dy

-7 - _V. 5.3
Momentum
The momentum equation we get by substituting in (5.3) ¥ = v, { = —S and

7 = pg (note that here ¢ and 7 are vectors and ¢ is a second rank tensor)

p[%—qg+v~VU} = V-S+pg. (5.4)
The stress tensor S = —p I + T can be divided into a contribution of the fluid at
rest and the fluid in motion [BB75|.2 g is the vector of body force, in our case the
gravity vector. The condensate and the vapor are Newtonian fluids, so the viscous
stress tensor for both phases is given by T' = p [Vv + (Vv)7] +%l (V - v), with vis-
cosity p and modified bulk viscosity p' [BSL60|. Together with the incompressibility

condition the momentum equation

0
p {a—$+v~Vv} = —Vp+uViv+opg

forms then the well known Navier-Stokes equations.

2If we had derived the momentum equation from (4.4), the divergence term in the convective
term would be nonlinear. The advantage of deriving the momentum equation from (5.3) is that

the divergence term is then linear, that makes the numerical discretization easier.
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Energy

Lastly, we consider the heat transfer. According to the first law of thermodynamics
the increase of internal and kinetic energy in a material control volume is given by
heat supply plus power due to work acting on the fluid. The differential energy
equation is
D v?

pa(e—l—?) = (V-v-S+pv-g)+(-V-q+p2), (5.5)
where e is the internal energy per unit mass, v - S is the power due to surface forces
per unit area, pv - g is the gravity power per unit volume, g the heat flux per unit
area and z the heat production per unit volume, which is zero in our case [BSL60).
Here ¢ = e+ %, (=—v-S+qgand m=p(v-g+2). To get the energy in a more
commonly used form, we subtract the mechanical energy equation from (5.5). The
mechanical energy equation is formed by the scalar product of momentum equation

and velocity [Dee98|. By this we get?

0
P {a—ijv-Ve} = —V.-q+S5:Vvu.
The heating effect of friction can be neglected for the condensation problem, so that

the dissipative term T': Vv is zero. Moreover the whole term vanishes S: Vv =
T:Vv—p(I:Vv)=—p(V-v)=0.

Constitutive equations for internal energy and heat flux complete our equations.
For small temperature differences internal energy can be described by a linear func-
tion e = ¢ (T — Ty) + e(Tp), where ¢ is the specific heat capacity. The heat flux is
given by Fourier’s law ¢ = —AV T, where ) is the heat conductivity, Hutter [Hut03|.
By this we finally get the energy equation for the condensate and the vapor

T
pc [aa—tjtfv-VT} = AVT.

The material properties viscosity, heat capacity and heat conductivity are in general
functions of density, pressure and temperature, but for incompressible fluids only
temperature dependency need to be considered. The temperature interval between
wall temperature and vapor temperature is small (Tiyan — Toapor < 5K), so that we

can assume the material properties to be constant.

3Note that we used hereby the identity V- (v-S) =v-(V-8)+ S: Vv
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By this we derived three partial differential equations for the three unknowns veloc-
ity, pressure and temperature. For a solution of this system of partial differential
equations we need boundary and initial conditions* and especially we need to know
appropriate balance equations at the interface between the condensate and the vapor

phase.

5.2 Mass, momentum and energy jump conditions

Mass

We start with (4.12) and set the bulk variables ¢ = p, ( = 0 and the surface variable

¢, = 0 to get the mass jump condition at the surface between condensate and vapor

|[p ['v—u]~n] = 0. (5.6)

Equation (5.6) states that the same amount of mass flux that enters the surface as
vapor phase leaves the surface as condensate phase 1y = 1, (so we can omit the

index).

Momentum

To get the momentum jump condition at the surface between condensate and vapor
we set in (4.12) ¢ = pv, ( = =8 and ¢, = —Ss. Analog to the stress tensor the
surface stress tensor can be divided into two components Sg = olg + T'g, where
I is the surface identity tensor (2.9). Assuming a clean surface T's = 0 from the
surface stress tensor simply the interfacial tension remains Sg = o I, where o is the
surface tension coefficient, see section 4.3. The surface tension can be understood as
the counterpart of the pressure in the bulk fluid [EBW91|. With this substitutions

we get for the momentum jump condition
|[,0'v [v—u]-n]—|[5-n] = Vgo+2Hon. (5.7)

In the condensation problem we neglect temperature dependency of the liquid-vapor
surface tension coefficient (Marangony effects) but assume o to be constant within

the surface.

4We need as many boundary conditions for each coordinate of an unknown as the equation has

derivatives of that unknown.
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We split the vector equation (5.7) into three scalar equations by multiplying it first
with the normal vector and then with the two tangential vectors. The tangential
equations are equal, so we skip the third equation and use the symbol t to denote
the tangential vectors. Further we make use of (5.6) and the assumption of no-slip

at the surface ['v . t] = 0 and get

[iv-n]+[p] = [n-T-n] = 200, (5.8)

[t-T-n] = 0.

Energy
The energy jump condition is with ¢ = p(e + %), ¢ = —v-S+ q and with
¢, = —0l,-u = —owu (with the same assumptions as for the momentum jump

condition) given by

[p(e+v_2) [’v—u]-n]—|[v-S-n]+|[q-n]=V5- (cu)+2Hon-u. (5.9)

2
Instead of a balance equation for the internal energy we need a formulation with the
enthalpy h = e+ %, because enthalpy is a measurable quantity, whereas the internal
energy is not easy to measure. To get this equation we find it convenient to split
the vectors on the left side of (5.9) into their normal and tangential components
according toa-b= (a-n)(b-n)+ (a-t)(b-t). Applying chain rule on the surface
gradient term gives Vg - (0' u) =0Vgs-u+u-Vgo. By this we get

[m <u—|— ("7'2")2+('”'2t)2)]_[(v-n)(n-S-n)+('v-t)(t-5-n)]+[q-n]

= oVsg-u+u-Vgo+2Hon -u, (5.10)

We then subtract the scalar product of momentum jump condition (5.7) and surface

velocity
|[m(un)('vn)] — [(un)(nSn)] =u-[Vgo+2Hou-n|,
from the energy jump condition, of which after splitting the vectors on the left side

in normal and tangential components only the contribution in normal direction re-

mains, because the surface velocity has no tangential component [Sch70|. Together
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with the no-slip condition, the tangential momentum jump condition and after re-

arranging the pressure term we get

[m<u+§+(v'27n>2—(u-n)(v-n))]—[[v—u]-n(n-T-n)]—l—[q-n]

=o0Vg-u.

We expand the kinetic energy term

[('v-n)2] _ [(v-n—u-n)2

2 2 (un)]

+(ven)(un) - 2

and use that the surface velocity jump is zero. Then the energy jump condition at

a surface between two fluids becomes

2
[mh] + [m%]—[['v — uj -n(n-T-n)]+|[q-n]:aVS-u . (5.11)
Similar as for the energy equation we assume that kinetic energy and viscous energy
can be neglected in the energy jump condition. Certainly the surface gradient of the

surface velocity is small. by this the energy jump condition finally becomes
mAh—l—[q-n] ~0, (5.12)

where Ah = |[h] is the latent heat of vaporization.

5.3 Governing equations

We finish this chapter with a summary of the derived system of equations for the
condensation problem. The condensate (index [) and the vapor (index ¢) bulk phase
are described by the continuity equation for an incompressible fluid, the momentum
equation and the energy equation (For clarification the assumptions involved are

shown again on the right):
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Balance equations for condensate and gas phase (i =1, g)

Continuity equation const. density
V. v, = 0
Newtonian fluid

Momentum equation ) )
const. viscosity

0v;
Pi ( : +U¢'VU1) =— Vo +wm Vv + pig
ot pressure friction gravity
inertia
no dissipation
Energy equation const. heat conductivity

oT; const. thermal capacit
2 . y
pici| = +vi- VI | = NV
ot heat conduction
transient convection

At the interface between condensate and vapor we have jump conditions for mass,
momentum and energy (from now on we leave out the tilde over the normal and

tangential vectors):®

Jump conditions at the interface

Mass
mass flu
const. surface tension coefficient
Momentum )
no slip between both phases
[mv~n]+ |[p] —|[n-T~n] = 2Ho
surface tension
momentuimn su 31;\ ce IL'( ssure
4,]1\(} to
condensation
[t T n] — 0
shear stress
no kinetic energy
Energy

no dissipation
mAh = [q . n]
condensation

heat flux

with T = p [Vv + (Vv)"] and ¢ = —AVT.

Swith [[(pﬂ = Qg — Q-
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From the five jump conditions we need one equation to calculate the mass flux, so
that four equations remain to calculate the boundary conditions for three velocity
components, pressure and temperature. We need one more equation. As the missing
equation we take the condition of thermodynamic equilibrium, according to which

the condensate and vapor temperatures are equal at the moving surface

Teondensate = Tvapor . (513)

Theoretically we can use either the mass jump condition or the energy jump condi-
tion to calculate the mass flux.® From the remaining equations we can use either the
mass or the normal momentum jump condition to calculate one velocity boundary
condition, depending on which equation we use to compute the mass flux. Which
one of both equations is more suitable we discuss in part III, where we present
the numerical algorithms for the computational solution of the condensation prob-
lem. The second and third velocity boundary condition we take from the tangential

momentum jump conditions.

6In chapter|6 we derive some more simplifications, one of which is that we can drop the term
with the mass flux in the normal momentum jump condition, so that this equation will not be

available to calculate the mass flux.



Part 11

Analysis



Chapter

Model equations under the assumption of

rotational symmetry

Experimental results show that for condensation in an inclined tube the flow regimes
are almost cylindrical [Fie03|. Based on this we begin our analysis of the model equa-
tions by assuming a rotational film as depicted in figure 6.1. First the equations for
the bulk fluids of the condensate problem and the jump conditions for the interface
between condensate and vapor defined in part I are evaluated for this case. The

references for this equations are given in part I unless otherwise noted.

6.1 Bulk flow equations and outer boundary conditions

If the tube is in vertical position as shown in fig-
ure /6.1, then gravity is acting in the direction of
the tube axis. A laminar flow can be assumed.
As velocity increases surface becomes wavy with
at first two-dimensional surface waves [ANP94|
[YNN96|. For small surface waves the flow is still
laminar [BS98|. Then the condensation problem
has rotational symmetry, so that all derivatives

of velocity, temperature and pressure with re-

spect to the rotation angle are zero. The veloc-

ity component in the plane of rotation is zero.

Further vapor velocity is assumed to be small, Figure 6.1: Vertical tube

so that shear stress exerted by the vapor on the condensate film can be neglected.
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The vapor temperature is constant, so that heat flux in the vapor phase is zero. The

pressure in the vapor phase is determined mainly by the hydrostatic pressure [Fie03].

Under this conditions the problem reduce to a one-fluid problem and only the bulk
flow equations for the condensate phase have to be solved. The balance equations
for the condensate flow, given in section 5.3, are in cylindrical coordinates r, 9, z and

in the case of rotational symmetry reads

the continuity equation:

10 v,
;E(T’Ur)_k az —0, (6]‘)

the momentum equations:

ov, ov, ov, op 0|10 0%v,
— — ] = —= — - = 2
p(at o or +Uzaz) ar+“<ar {rar(rvr)}_l—aza)’ (6.2)
%4_@ %—FU% - _@4_ li Ta’Uz _|_@ +
p ot " or © 0z - o MG | o 022 rg
the energy equation:
orT oT orT 10 orT 0°T

[BSL60]. From the balance equations of the vapor phase only the hydrostatic

pressure terms in the second momentum equation remain

5. ~ Pg9- (6-4)

Outer boundary conditions

For the condensation problem in a vertical tube the outer boundary conditions of
the momentum equations are

a given parabolic velocity profile at the tube inlet:

Uy =0, v, =0, (6.6)
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the outflow condition at the outlet:

ov,
0z

0, (6.7)
rz=L

where R is the tube diameter and L is the tube length. The outer boundary condition
of the energy equation is that

the temperature at the tube wall is known:

T =T, . (6.8)

r=R,z

Finally the temperature at the interface is given by the vapor temperature:

T| =T,, (6.9)

r=R—D,z
the temperature derivative is zero at the tube inlet and at the tube outlet:

T T
0 _o, O 0. (6.10)

aZ r,z=0 aZ rz=L

where D = R — h is the film thickness (compare figure 6.1).

The question of the correct pressure boundary conditions is discussed later after the

equations are simplified, compare section 7.3.

Cylindrical basis

The equations (6.1) — (6.10) are given in cylindrical coordinates and are related
to a cylindrical coordinate system. A cylindrical coordinate system is orthogonal
and the corresponding covariant and contravariant cylindrical base vectors are self
reciprocal (they only differ in scale factors), so that conveniently unit vectors are

used, see section 2.1. The balance equations above are related to the unit base

vectors
cos v —sin ¥ 0
e = |sind| , ey = | cos? | , e.= |0 (6.11)
0 0 1

The velocity vector is given in this unit vectors by v = v, e, +vyey + v, €., with
Einstein summation convention we write shortly v = v; ;. Equations (6.1) — (6.3)

for the condensate flow in a vertical tube are found in [BSL60].
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The procedure of deriving them from the symbolic equations given in the last section
of part I by computing the derivatives of the base vectors (which are not constant
but functions of r,v, z) and the metric tensor and finally relating the variables to
the unit base vectors (6.11) is here already done. However, for the interface jump

conditions there exist no such reference.

6.2 Geometrical properties and velocity of the interface

To derive the interface balance equations in cylindrical coordinates we need a para-
metrization of the surface, so that the normal and tangential vectors, the surface

velocity and the mean curvature can be computed (compare chapter 2).

The position vector of a surface with rotational symmetry is given in a cartesian

coordinate system as
x(V, z,t) = h(z,t) cosVe, + h(z,t) sinde, + ze, ,

where radius A is a function of time and tube length and the surface variables are z

and ¥. Related to a cylindrical coordinate system the position vector becomes
x(V,z,t) =h(z,t)e, +0ey + ze, (6.12)

[Dee9s|.

Tangential and normal vectors

The tangential vectors are obtained by (2.3) as

0 oh
dx de, dx  dh 0z
tﬁ_@_haﬁ+0eﬁ+0ez_ h ,tz—a—aeerewrlez— 01,

0 1

and the normal vector is obtained by (2.5) as

1
ty X t, 1
_|t ><t|_ ’ oh\ 2
POl 1+ (52)
oz

Note that this normal vector points inwards on the condensate film. The normal

vector that points outwards on the condensate film is given by

n=-—-n
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Mean curvature

The mean curvature we defined in (2.12) as

1 1/.0 .,
H=—V, n=—(tr!—+t'— |-
g Ve m 2( 3. " 619) "

and alternatively by (2.17) using the first and second fundamental form. Because

the basis is orthogonal, here it is more convenient to compute H by means of (2.17).

With the first fundamental form (2.4)

t.-t, t, -ty
]: =
to - t, ty- to

z

1+ (2)* 0
0 %

and the second fundamental form (2.15)

22n
t.on ty-n —2= 0
][: [ 2z T 29 ] _ 1+(%) .
ty. n tyy-n 0
1+(82)*

the shape operator (2.16) for a rotational surface becomes

I— t..-m ty-n 1 ty-ty —t, -1y B o (1+(;)2)3/2 0
to, - m tgy-m|detl |—¢,-¢t, ¢ -t, 0 4 1

The shape operator is already in diagonal form, so that the diagonal entries are the

principal curvatures kq, ko. The mean curvature of the liquid-vapor surface is then

according to (2.17) given by

1 1 &h 1 1
H:§traceL:§ — 0z 3/2+ > 25(%1%—/@2).
2 oh
(1+ (1) myir ()

The first term is zero if the surface is flat. It describes the curvature due to surface

waves in the r, z plane. The second term describes the curvature due to the tube

radius.
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Surface velocity

The surface velocity is according to (3.21) given by the derivative of the position
vector (6.12) with respect to time

oh
ot
ox

u = — =
ot |,

6.3 Jump conditions

After we discussed the geometrical properties of the interface between the condensate

and the vapor phase, now we can compute the jump conditions.

Mass flux

The mass flux (5.6) across the surface of rotational symmetry is obtained in cylin-

drical coordinates as

m = plv—ul-n (6.13)
= plli—w)el-(nje;) =p (vi—uw) nj e -e =p(vi—u)n
p ( dh ah) bi
= —— (vt tu ],

where ¢;; is the Kronecker delta.

Momentum jump conditions

In the momentum jump conditions the stress tensor appear. In cylindrical coordi-

nates and under the assumption of rotational symmetry the stress tensor is

b0 ()
T=2pu 0 0 0 ,
(+3) 0 3

[BSL60]. From the momentum jump condition in normal direction (5.8), with the

assumption of small vapor velocity, only the velocity terms of the condensate remain

mv-n+(p—p,)—n-T-n=-2Ho,
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We compute the first and the third terms separately. With

mv-n = M(v,-e,-)-(njej):mvini ei-ej:mvin,-
——
and
n-T-n = (ne) (Tuepe)- (nje;)=nTun;e -e;e-e =nT;n;
Sik élj

the momentum jump condition in normal direction is given as

#—v+%+v% v+vah+
1_'_(%)2 r ot ZaZ i za P —Dg

B 1 <6v, .y [Qv, N 61}2} % avz )
1+ (a_h) or | 0z Or 6z 0z
2h
= —0 %2 . (6.14)

e RN ﬁ

The momentum jump condition in tangential direction (5.8) becomes

t-T -n= (tiei)~(Tklekel)~(njej) :tiTklnj € €L € €; :tiﬂjnj

dik 6lj

(o g on e (o)) on o)
14 (%)2 dr 0z 0z or 0z 0z 0z

0z

(6.15)

Energy jump condition

Finally, we consider the energy jump condition (5.12) at the interface between con-

densate and vapor
mAh=—q-n.
With g = =\ [2£,0, 217 we get
pAh (_ oh 6h> _ A < o7 0T oh
2 " N 2

+ U ——w_——).(ma
1+(%) ot 0z 1+(%) or 0z 0z

Equations (6.1) — (6.16) form the system of model equations for the condensation
problem in the case of a vertical position of the tube where rotational symmetry is
assumed. In the next chapter we simplify this model equations further by means of

a dimensional analysis.



Chapter

Dimensional analysis of the model

equations/rotational symmetry

In this chapter the condensation equations for the vertical position of the tube

derived in chapter |6 are analyzed by a generalized dimensional analysis.

For the vertical tube position the average thickness D of the condensate film is much
smaller than the length L of the condensate film, compare figure!6.1. With classical
dimensional analysis the variables of a problem are reduced to a fewer amount of
nondimensional variables, but all spatial variables are scaled by the same length
scale [Bri31l]. Generalized dimensional analysis is based on different length scales
for each spatial variable and therefore allows an analysis in terms of the slenderness
€ = % of the balance region. We get equations of boundary layer type for the
condensate phase and comparably great simplifications are achieved for the jump
conditions. In the last section the derived equations are evaluated for water and for
R134a.

Generalized dimensional analysis is not very well documented in literature, so that

we elaborate more on this method here.

The benefit of a generalized dimensional analysis is twofold. It gives the main
relevant terms of the model equations, but also reduces the number of variables by
combining them to a fewer number of variables. This does not change the equations

besides a scaling and such a transformation is called symmetry transformation.

The first section of this chapter is mainly based on the lecture notes of [NS01|. Fur-
ther on [Go6r75| [Spu92| [BK89|, and [Bar79] [Bar96|. From this authors only [NS01]
describe generalized dimensional analysis. [Gor75] and [Spu93| present mainly di-
mensional analysis for hydrodynamical problems. |Bar96| also starts with dimen-

sional analysis but eventually differs by using symmetry transformations to solve
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problems which contain a small dimensionless parameter such as . [BK89| present
the theory of solving differential equations using symmetry methods in a more math-

ematical rigor.

7.1 Dimensional analysis and generalized dimensional analysis

In this section some terminology is given. Generalized dimensional analysis is com-

pared to dimensional analysis.

Units and Dimensions

Length, mass and time are called dimensions. Meter, kilogram, second (MKS) are
called units and centimeter, gram, second (c.g.s) are other units. Length, mass
and time (LTM) are fundamental dimensions of the MKS unit system and the c.g.s
unit system |Gor75|. They have the same physical properties but differ by scale
factors. Another set of fundamental dimensions are length, force and time (LFT). An
equation in which the units balance on both sides of the equal sign is called coherent.
An equation in which the dimensions balance on both sides of the equal sign is called
homogeneous. The equation 3m +3cm =3m + 3 X 0.1 m = 3.3m is homogeneous
but not coherent. It is nevertheless a meaningful physical equation. The usage of two
different unit systems in one equation makes it necessary to convert all units to the
same system of units by scaling them appropriately before calculating the result, and
is therefore laborious, but permissible. As afore mentioned balance equations are
tensor equations and have to be invariant under a change of a coordinate system.
Similarly physically meaningful equations have to be invariant under a change of
system of units.! Yet, a dimensionless equation is invariant under a change of unit

system, the values of the dimensionless quantities do not change.

Buckingham II-Theorem

According to the Buckingham II-Theorem every physically meaningful equation with

n variables

flai,ag,...,a,) =0,

Tt can be understood from the example that dimensional homogeneity is a necessary but not

sufficient condition for an equation being invariant under a change of system of units.
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where the n variables are expressed in terms of r fundamental dimensions, can be
rewritten as an equation of n — r = k dimensionless variables constructed from the

original variables [Spu93|.

Here we denote the value of a variable by a hat and the dimension by a tilde:
a; = a;a;.2 Each tilded variable is a power monomial function of fundamental
dimensions. For instance the dimension of the streamwise velocity is in the LMT
system 7, = LT~'. We denote the fundamental dimensions by l~)i, that is 131 =L,
by = M, bs = T. The dimensions of the variables a; are in terms of power monomials

of fundamental dimensions

ao— i
G = el e
(7.1)
Gy = i fe
The vector of the powers b; = [by;, by, . . ., by5]T is called dimension vector of a; [BK89].

For instance the dimension vector of the streamwise velocity we get from v, =
L*M°T~ as b,, = [1,0,—1]7. The dimension vectors form the dimension matrix

of the problem

bii bz ... biy
b1 b ... by

The rank of the dimension matrix r = rank B is the number of the fundamental
dimensions. To construct the n—r = k£ nondimensional variables we make an ansatz

in form of power monomials of the dimensions of the original variables

~T1j ~T25

o= ay, Gy A, j=1,...k, (7.2)

where the dimensions are substituted with (7.1) by their power monomials of fun-

damental dimensions

~ ~ ~ 14 ~ ~ ~ X224 ~ ~ ~ Tng
_ b11 7b21 br1 bi2 7b22 b2 bin 7b2n brn
wj_<bl o b) <b1 o b) <bl b T ) ,

2According to DIN 1313 the value of a variable is set in curly brackets and the dimension
in square brackets a = {a}[a]. However, for a dimensional analysis this notation seems a bit

cumbersome.
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[NSO1|. By sorting the right hand side in terms of fundamental dimensions

T = Z;ll)ll z15+b12 22+ +b1n Thnj 612721 T1+b22 xoj4+-+ban Thnj o Z;farl 21j+br2 Tj++brn Tnj 7

we see that the exponents of the fundamental dimensions have to be zero because 7;

has no dimension. The equations defined by this form a linear equation system

with n — r = k linearly independent solutions. The nondimensional variables are

thus constructed and f can be written in dimensionless form
F(my,m,...,m) =0. (7.3)

With dimensional analysis a given problem can be analyzed without knowing the
model equations of the problem explicitly. As a result the relation (7.3) of nondimen-
sional combinations of the original dependent and independent variables is obtained.
However, the decision what are the relevant variables of the problem and which unit

system is appropriate is sometimes not trivial, see |Gor75| [Spu93| and also |[Bar96].

Note that in dimensional analysis the nondimensional variables are constructed from
the coherent dimension equations (7.1) of the problem variables. By this all dimen-
sions have the same fundamental dimensions, for instance the spatial dimensions

arer =2z = L.

Generalized dimensional analysis

From the last section we know that in dimensional analysis only one fundamental
dimension is assigned for all spatial dimensions. The generalized dimensional anal-
ysis allows different fundamental dimensions for each dimension, so that different
lengths for each spatial dimension are permissible (i.e. 7 = L,, Z = L,). It can be
applied to the model equations, e.g. the ordinary or partial differential equations,

including the necessary initial and boundary conditions [NSO1].

For a generalized dimensional analysis the variables in the differential equations are
substituted by their product of value and dimension. Because every equation must

be of dimensional homogeneity this result in equations for the dimensions only. For

example, in the definition of the velocity v = % we substitute v =00, x = 22 and
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t =t t. The derivatives are not carried out over the dimensions. With the condition

of dimensional homogeneity we get

)

0
0

IS
=

o(
o(

41
Il

, which gives

>

v

| R
=
SRS

2
>

>
~—

If the dimension equation is written as: &' £ 0 = 1, it is called normalized dimension

equation.

Thus, using generalized dimensional analysis we derive the coherent equations for
the construction of the nondimensional variables from the differential equations and
their boundary conditions. Depending on this equations eventually more than only

one length scale appears in the dimensionless variables of the problem.

A system of ¢ physically meaningful ordinary or partial differential equations with n
variables, where the n variables are expressed in terms of  fundamental dimensions,

result in [ normalized dimension equations

abgbe b = 1,
abraye . ab = 1,

(7.4)
aalz o gbe = 1.

Note that here the sequence of numbering is the other way round then in (7.1). The

powers b;; form the matrix

bii bz ... by
B— bgl b22 e bgn ’
oo bz b

with £ = rank B. From the [ coherent equations k are linear independent, such that

k nondimensional variables can be constructed.

Surely the dimension of the variable a; is a function of power monomials of the

dimensions of all variables, so that we make the following ansatz:

i = aMaye ...ane
G, = @ ay?...ae

(7.5)

G, = a"may’...av
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where the coefficients y;; are unknown [NSO1]. Next, in the dimension equations
(7.4) the dimensions a; are substituted with (7.5), which is here exemplarily done

for the 7’th equation:

~Y11 ~Y12 ~yin\bil [xY21 ~y22 ~yon \bi2 ~Ynl ~Yn2 ~Ynn\bin __
(@™ a3 ...as)" (af ay® ...apm)? oL (@it ayt LLLalkm)y = 1.

By reordering the exponents in terms of dimensions

~bi1 Y11+bi2 Y21+ +bin Yn1 ~bi1 y12-+bi2 y22+--+bin Yn2 ~b;i1 Yin+bi2 Y2n+-+bin ynn _ 1
a, ay c =1,

we see that the exponents have to be zero. Doing so for all [ unit equations result
in the equation system

By, =0.

J

We said that from the £ = rank B linear independent equations, k dimensionless
variables can be constructed. Then the number of dimensions which we can choose
as fundamental dimensions is given by the Buckingham II-Theorem as the number

of variables minus the number of nondimensional variables n — k = 7.

To construct the dimensionless variables the columns of the matrix B are reordered
such that the r column vectors corresponding to the fundamental dimensions are
collected at the right hand side and those column vectors form the matrix R. The

remaining k£ column vectors form the matrix K. We write the matrix B as
B=[K|R],

Note that the r base units are chosen under the condition that rank K = rank B

[NSO1]. The nondimensional variables are then given by

_ =Y ~Y2j ~UYnj s
o= ay’ ay’ ...ai j=1 ... k.

Generalized dimensional analysis extends dimensional analysis

Generalized dimensional analysis removes the restriction of only one fundamental

dimension for every dimension. Therefore it is an extension of dimensional analysis.

Generalized dimensional analysis is poorly documented in the literature, most au-
thors focus on dimensional analysis. Instead of using generalized dimensional anal-

ysis |Spu93| and |Gor75| receive some of the results that can be obtained with
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a generalized dimensional analysis by first using a dimensional analysis and then
applying some further treatment. [Bar79| archives the result of a generalized dimen-
sional analysis also by first using dimensional analysis but then transforming the
gained nondimensional equations with a transformation group. We will come back

to the group aspect in appendix A.

In the next sections the generalized dimensional analysis is applied to the bulk flow

equations and the jump conditions of the condensate problem.

7.2 Bulk flow equations and outer boundaries

In this section we use generalized dimensional analysis to reduce the amount of
variables to a fewer amount of nondimensional variables of the bulk equations (6.1)

— (6.3) and the outer boundary conditions (6.5) — (6.10) of condensation in a vertical

tube as derived in chapter 6.

Variables in terms of value and dimension

We start by writing all variables as a product of two new variables, one that rep-
resent the value (hatted variables) while the other represent the dimension (tilded
variables). The variables of the moving surface problem are the independent vari-
ables r, z, t and the dependent variables v,, v,, p, the material properties p, u,

gravity ¢, and the variables of the boundary conditions

ro= FF, v, = o0, p = pp, U = UU,
z 23, v, 0,0, , if, R RR,
t = fit, p = PP, g = 93, D DD,

L = LL.

For the condensation problem we also have to consider the variables of the energy

equation
T = TT, c = 66, Tw - TwTw>
A= 5‘5\ ) T, = Av ~v s

and the variables of the momentum equation for the vapor phase

Py = DgDy, Pg = PgPyg -
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Next, the variables in the equations of the condensation problem in the vertical tube

are substituted by these expressions.

Dimension equations of the boundary conditions

We begin with the boundary conditions. The first boundary condition (6.5), which

states a given velocity profile at the inlet, becomes in terms of value and dimension

0, 0, MH:O:UU(TT), OpOpl. ...  =0.

Each term of an equation must be of dimensional homogeneity, so the streamwise

velocity must have the same dimension as the velocity at the inlet

v, =U. (7.6)

The other dimension equations of (6.5) are homogeneous and provide no further

information.

The outflow condition (6.7) becomes in terms of value and dimension and by keeping

in mind that derivatives are not carried over dimensions

from which we found the dimension equation

™
I
~

(7.7)

From the first boundary condition of the energy equation (6.8) and from the second

boundary condition of the energy equation (6.9) we get the dimension equations

T="T,, (7.8) F=R, (7.9) R=D, (7.10) T =Ts. (7.11)

The last two boundary equations of the energy equation provide no new information.

We continue with the bulk flow equations.



64 Chapter 7 Dimensional analysis of the model equations/rotational symmetry

Dimension equation of the continuity equation

Substituting the variables of the continuity equation (6.1) by the product of value
and dimension gives
v, 00,

a A0 —_
o )+ 557 =0,

T Uy

f2

1
,f,
from which we get the dimension equation

which is in normal form Flzo, 00t =1. (7.12)

The normal dimension equations of the remaining model equations we write without

derivation.

Remaining dimension equations in normal form

The normalized dimension equations of the momentum equations are

Ftlot = 1, (7.13) Ftlot o= 1, (7.18)
Flzo o0t = 1, (7.14) Flzo. 000 = 1, (7.19)
FElo.uptp = 1, (7.15) vty = 1, (7.20)
FotppTt = 1, (7.16) Pzt tppt = 1, (7.21)
PR =1, (7.17) P2 o= 1, (7.22)
o0 pgt = 1. (7.23)

The normalized dimension equations of the energy equation are
ot =1, (7.24) PRrlopeNTt = 1, (7.26)
Fzo.000 = 1, (7.25) FPF o= 1. (7.27)

The momentum equation of the vapor phase completes the system of dimension
equations for the bulk flows. From that we get the dimension equation in normal

form

' pep, g = 1. (7.28)

Before we continue deriving the nondimensional variables of the jump conditions the

derived dimension equations are checked for linear dependence.
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Linear dependent dimension equations

The equations (7.7) — (7.28) form a homogeneous system of 23 linear equations

for n = 20 unknowns
Bx=0 with k=rank B =14 . (7.29)

The linear equation system is solved by Gaufian elimination. After applying Gaufian
elimination to B = [K }R] the matrix K becomes essentially the identity matrix
(plus some zero rows for the linear dependent equations) and the nondimensional
variables can read from the row-reduced echelon form of B. Clearly the rank defi-
ciency is the result of the fact that some equations appear as linear combinations of

others.

- The dimension equations of the convective terms (7.14) and (7.19) are obvi-
ously equal. Furthermore they are also equal to the dimension equation (7.12)
of the continuity equation and to the dimension equation (7.25) of the energy

equation.

- The dimension equation (7.13) describing the transient-convection relation in
the radial momentum equation, is equal to (7.18) of the streamwise momentum

equation and to (7.24) of the energy equation.

- The dimension equation (7.17) describing the second derivatives of the viscous
term is equal to (7.22) of the streamwise momentum equation and to (7.27) of

the energy equation.

- From the four pressure related equations (7.15), (7.16), (7.20), (7.21) two are

linearly dependent.

If the above 23 — k = 9 linear dependent equations are eliminated, then B will be
a 14 x 20 matrix with rank k& = 14, so that B would have maximum rank. However,
before we do this the equations we found are analyzed in terms of the two different

length scales.

7.3 Simplifications in terms of the two different length scales

If we apply Gaufian elimination to our linear equation system this result in nondi-

mensional variables where the dimensions of all length scales are equal: 7 = 2z =
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R = L = D. This is not the solution we are looking for. The problem arises from
the fact that until now no values are assigned for any of these variables. By setting
L =1L and D = D we get with (7.7) and (7.9)

=L, 7=0D.

But after the length scales are assigned as dimensions for the spatial variables,
the linear equation system are inconsistent. There are some equations that are
contradictory to our assignment. To get back a consistent linear equation system

the equations we have to investigate the equations further.

Viscous terms

From the dimension equations of the conductive terms of the momentum equations
(7.17), (7.22) and the heat equation (7.27) we get

P22 =1.

Then either 7 and 2z have to be equal, or, if they are different as in our case, one of
the second derivatives in the conductive terms in each equation must vanish. We
multiply the conductive terms in the momentum equations (6.2) and in the energy
equation with 72. For the conductive terms of the first momentum equation we get

with € = £ (=0.2e-3, see appendix B)

o 72 _ 9%,
7o) | + 2 Uraa

9

0, 020, 0 (
or

37 (fﬁr)] + 252 we get 0, 3

<5 =

€

The second derivatives in streamwise direction are of order £2 smaller than the second

derivatives in radial direction

9%, 0 [1 0

2
<L — |=-=—(rv)|, aUZ<<318
022 or |ror 022 or

rarrz T 022 or

——(rT)}.

r or

So we drop also the remaining equation of (7.17), (7.22), and (7.27). Note that
eliminating (7.22) changes (7.23) to

FRO,p g =1 (7.30)

The gravity term refers now to the second derivative of v, with respect to r (in-

stead of z).
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Radial pressure derivative and radial velocity

With two different length scales also the pressure related dimension equations (7.15)
and (7.20), or (7.16) and (7.21)

FE o 0.p 7 p = 1, Fotppt = 1,
op e =1, PE T = 1,

19,071 = 1, which is

L35, 07 =1,

are inconsistent. They result in the dimension equation 7z~
contradictive to the dimension equation of the continuity equation 7~
A zero pressure derivative in either radial or streamwise direction would solve the
problem. In streamwise direction acts the hydrostatic pressure. Hence, the pressure
derivative in radial direction must be zero and the condensate pressure is a function
of z and t

op

— =0, SO =p(z,t) . 7.31
or p=p(z,1) ( )
To neglect the inertial terms and the viscous terms in the radial momentum equation
would also solve the problem, since it would involve a zero radial pressure derivative
in the condensate phase. To investigate this further we evaluate the continuity
equation (7.12) with D = D and L = L and get that the dimension of the radial

velocity is of order € smaller compared to the streamwise velocity
U =cv,=U. (7.32)

Substituting this in (6.2) we see that the convective and viscous terms of the radial
momentum dimension equation are of order € smaller compared to the inertial and
viscous terms of the streamwise momentum dimension equation. With the assump-
tion of no sudden changes (so that transient and convective terms are of the same
order) this suggest to neglect the radial pressure derivative because the inertial and
viscous terms are small. Hence we omit the dimension equations (7.13) — (7.16) of

the momentum equation in radial direction.

With the assumption that the pressure is a function of z (and t), the pressure

derivative in the condensate equals the pressure derivative in the vapor flow

0 0 0
a—f - % which gives with (6.4) a—’z’ = 0,9 (7.33)
Note that the results of our analysis in terms of the two different length scales

(i.e. second order derivatives in streamwise directions are of order two smaller than
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second order derivatives in radial direction, zero pressure derivative in radial di-
rection, radial velocity is of order one smaller compare to sreamwise velocity) are
the assumptions that Prandtl made when he derived the boundary layer equations,
see Schlichting [Sch79|. Prandtl’s boundary layer equations are based on classical
dimensional analysis, plus that he had a good intuition. With generalized dimen-
sional analysis we prove that the boundary layer equations can also be obtained by

a method of more mathematical rigor.

7.4 Dimensionless variables and dimensionless equations of the

bulk flows

Next we solve the system of the dimension equations to find the dimensionless vari-
ables, as discussed in the first section of this chapter. Then the model equations of

the condensate are given in dimensionless form.

The simplifications discussed above reduces the system of linear equations fur-
ther Bx = 0. After removing the linearly dependent equations from the system of
linear equations, we have a system of 13 homogeneous linear equations and n = 19
unknowns with £ = rank B = 13, such that the matrix B formed by the coefficients

of the normalized dimension equations becomes
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According to the Buckingham II-Theorem from this equation system k£ = 13 nondi-
mensional variables can be constructed from n — k& = 6 fundamental dimensions. We
choose the characteristic quantities of the condensation problem D, L, U, T, and the
material properties p, ¢ as fundamental dimensions, they fulfill the condition that
rank K = rank B. After applying Gaufian elimination to the matrix B = [K‘R],

we obtain the row-reduced echelon form of B as:

FozZ i b 9 p T @ § A pg R Tw p é U D L T,
_1 = -
1 —1
1 1 —1

1 -1 -1 1
1 —1
1 —1 —2
rref B= 1 —1
1 —1 -1 -2 1
1 —2 1
1 -1 -1 -1 -2 1
1 —1
1 1
L 1 _1_

By assigning the values D =D, L=L, U=U,T,=T,and p=p, § =g, ¢ = c we

get the nondimensional variables:?

W—i W—g W:E—U W:{JTL 71':% 71':—25
1 D’ 2 I’ 3 I 4 UD’ 5 U’ 6 P 2
T _ RL gL AL By
W?—ﬁ, Ws—ma 9 ﬁ’ 10 peUD?’ 11 ;7
R T,
T2 = 7 T13= 7

D

The variables m; — 77 define the dimensions of the dependent and the independent

variables, such asr =D, z2 =L, t = %, etc.

3Note that for a numerical simulation the temperature dimension is set to T=T,—T,= AT,

compare chapter (8.
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Simplified bulk flow equations in dimensionless form

To write the bulk flow equations in dimensionless form we define the Reynolds
number, Froude number, Prandtl number and Peclet number of the condensation

problem as follows

UDpc
N

UD U2
Re=""2  pm=—"" pr=HS @ pe=
I gD A

Setting ji = p, g = g and A= A, we write the dimensionless numbers g — 719 as

1 1 1 1
g —= — Mg = —— Y = — .
8 ’ ? ’ 07 cRePr ePe

Then we substitute the dimensions of the independent and dependent variables
in (6.1) —(6.4) with m — 7. We do not use the dimensionless variables mg — 711 but
let the material properties remain in the equations. By this we get

the continuity equation:

00,

0 ..
3 (70,) + 3 = 0, (7.34)

=>| =

the momentum equations:

00, . 00, 00, op 1 10 (. 00, 1
~ T A~ Z A~ = —axz D ~Aans ~ T 7.35
ot e or U 0z az+5 erar(rar)_l_eFr (7.35)
op
= 0
or ’

the energy equation:

aT+AaT+AaT 1 (10 | 9T (7.36)
PR Tz Tepe \Far "o | '

and the momentum equation of the vapor flow:

The pressure derivative in the momentum equation (7.35) of the condensate may be

substituted with the momentum equation (7.37) of the vapor flow, compare (7.33).
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First and zero order equations

We conclude this section with a discussion of the first and zero order equations. In
the continuity equation all terms are of the same order. In the momentum equa-
tions the inertial terms, and in the energy equation the transient and convective
terms are of order €. For zero order momentum equations only viscous and gravity
terms remain and the radial pressure derivative vanishes [Sch79]. The zero order
energy equation (conductive terms) is the Laplace equation in cylindrical coordi-
nates. Nufelt used zero order equations for the condensate flow in his theory of
condensation along a flat plate [Nufs16| |[BS98|.

With a generalized dimensional analysis of the equations of the flow problem (yet
without considering the condensation) we confirmed the equations of Nufelt and the
boundary layer equations of Prandtl [Spu93]. The advantage of using generalized
dimensional analysis is that we now have a tool to investigate the jump conditions,

where the result is not known.

7.5 Jump conditions

In this section we analyze the jump conditions (6.13) — (6.16) for condensation in
a vertical tube by a generalized dimensional analysis in terms of ¢ = %. From the
normalized dimension equations of the jump conditions we find two more nondimen-

sional variables.

Dimension equations from the mass jump condition

The mass jump condition (6.13) becomes in terms of value and dimension variables

0
© 02

| S

m = PP : <—{;r@r+%
1+ 4 (%)

From the square root we get the dimension equation

h? .
==, which is equivalent to Rz 2=1.
z
From R — D = h we know that A = D. But then again either the length scales are

equal or the square of the derivative term has to vanish. With Z—; = ’B—Q = €2 the
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square of the derivative of h with respect to the tube axis z is of order two smaller

than one and is neglected

(%)2 <1. (7.39)

This reflects the assumption of small surface waves. The remaining dimension equa-
tions of the mass jump condition are linearly dependent on the dimension equation
of the continuity equation (7.12). So the mass jump condition provides no additional

dimension equation.

Dimension equations from the normal momentum jump condition

The momentum jump condition in normal direction (6.14) becomes

ﬁﬁ —fﬁ@%—é 6_?1 +f}§: 6h_ —fﬁ@%—ﬂé 0 +pp—DPgP
ﬁ ( h> r Ur f a£ 22 ZaZA’ rUr 3z z PP —DgPg
T= % L
. . - N\ 2
i f1 U, | 00, U, | 00, 0, [00,1\ h |Oh| 1, [00,] h* [ Oh
- 5 | = —| =4 = — | +—= ~ — |==|+—= | = | 32
14 B2 (ah) 7 | or zZ |0z o7 Z |0z zZ|0z]| 2 0z
T (% ] )
ﬁ.(éﬁ
. 22\ 022 1
=—00 | — - 3 + — — 5
{1+@5 o } i1+ 5 ($)

and is analyzed term by term:

1. The first term describes the momentum due to the phase transition (v - n).

The square of h with respect to 7 in the denominator of the first term is of

order 2. From the dimensions % =¢, t= 5, v, = e U, v, = U, we see that all
terms in the brackets are of order ¢
. o h |oh| _ h|. oh 5 h . oh
pPp — Uy Ur“’ ? a +UZT UzaA - Up UT+UZ~ a )
~—~ ~— \/.z/ z v v z
elU eU eU eU

so that after the multiplication is carried out all terms are of order £2. That
is the momentum transport due to the condensation can be neglected in the
zero and first order normal momentum jump condition. In the case of evapo-

ration this term describes the recoil of vapor particles from the interface after
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evaporation. In the case of condensation the vapor particles slow down after

the phase change.
2. The pressure terms remain.

3. The third term describes the viscous normal stress exerted on the interface

(n-T -n). The orders of the terms in the brackets are

- . - 2
v, [ 00, U | 00, v, |00, h | 0h 0, [00.] h® [0h
— —| -4 = — |+ = ~ = ~ |+ = —| = =
T or z 02 T or zZ |02 z 02| 22 \ 03
U U U U 2
T €T D ¢ T €

Terms of different order in one term are not permissible, the dimension equa-
tion of the terms in the inner brackets is 7 27! 9, 9! = 1 and hence a singular
equation. After the multiplication is carried out the underlined terms are of
the same order and the other two terms are of order two smaller than the un-
derlined terms. In the first instance the underlined terms remain in the normal

momentum jump condition.

4. The surface tension terms (after dropping second order terms) are

where again the terms of different order cause the singular dimension equation:
h%2:72 = 1, so that one of both terms has to be dropped. The curvature
term related to the surface waves is of order £ smaller than the (underlined)
curvature term related to the small diameter of the tube, so that the surface
tension is determined by the small diameter of the tube. In the case of a
flow along a flat plate only the curvature term related to surface waves would

remain in the equation.

For higher velocities (higher Reynolds numbers) surface waves may become
more wavy and cause instabilities, so that the laminar flow breaks down [DR04].
However, the dimension equation of the curvature terms suggest that for a

small tube diameter the influence of surface waves is comparably small.
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The dimension equations of the normal momentum jump condition are
pp,t = 1, (7.39) htie. o7t = 1, (7.41)
Fotp Tt = 1, (7.40) FrR?z Yo, uet = 1. (7.42)
Equation (7.41) depends linearly on the continuity equation (7.12). Equation (7.40)
depends linearly on the pressure dimension equation (7.16) of the radial momen-
tum equation. However, this equation was contradictive to the pressure dimension

equations of the streamwise momentum equation. So we have to eliminate either

the pressure term or the normal stress term. Because the normal stresses are of

order 5% smaller than the pressure terms we drop the normal stress terms. This

cause a change in (7.42)
hpg67t = 1. (7.43)

The surface tension term refers now to the pressure.

By this, two dimension equations (7.39) and (7.43) are derived from the normal

momentum jump condition for condensation in a vertical tube.

Dimension equations from the tangential momentum jump condition
The interface momentum equation in tangential direction becomes
i fi ( o h {6% ah}
- N 2 7Z | Or 0z
1+ 4 (%)
o (B [30] - [0 k2 Jan)? +@Zﬁ 00. 0k |\ _
z oz F |oF ENEE 2 |0z 0z|)

After dropping second order terms we get

. o, h [dv, dh o, [0, b, [09, o, h |06, oh

Uy
,’2’
U
D

The order of the terms in the inner round brackets are different, so that the term of
order € % vanishes. By this the tangential momentum jump condition reduces to the
condition of no shear stress at the interface. This yields a homogeneous dimension

equation which is useless.
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Dimension equations from the energy jump condition

Finally the interface energy equation becomes in terms of value and dimension vari-
ables

5p Ah Ah . h|dh| _ h|. 0h
e T TR | ez
Vit % [3]

B A (TaT+~iL aTaﬁ)
T o CFoor 2 |0z oaz|)
i (2
After dropping the second order terms we get
— ho|oh h|. oh
ppAhARl — U, 0.+ = . +f;zf[ﬁzaA]
t | ot Z z
eU eU eU
_ | T o Th|oT dh
B FooFr 32 |02 02
~— =~
Ty e o
D L

The mass flux terms remain. On the right hand side the second term is of order two
smaller than the first term, so it vanishes. By this the energy jump condition of the

condensation problem under rotational symmetry yields the dimension equation

hiz o, T p AL AR (7.44)

7.6 Dimensionless variables and dimensionless equations of the

interface

Introducing (7.39), (7.43) and (7.44) into the equation system Bax = 0 results in
three additional nondimensional variables

Ah

o
T4 = U2D 7T16—CTU

;@‘|"®z
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for the condensation problem. We define Weber number and Stefan number as

follows:*

cT.
W St = —-
¢ o’ Ah '’

Then the nondimensional numbers 75 and 7 becomes

1 1
T4 = 75 s M5 = &7 -

We

Simplified jump conditions in nondimensional form

Now we write the analyzed and simplified jump conditions at the interface between

the condensate and the vapor in nondimensional form. For that we use the dimen-

sions of the independent and dependent variables defined by 7 — 7 in section 7.4.

Again we do not use the dimensions of the material properties defined by 7g — 711

and 75 — mg but the material properties remain in the equations. This gives

the mass jump condition:
m eU Oy + Oh + 0 i
= —Up ~ UV 7% ’
P oi 7oz

the normal momentum jump condition:

the tangential momentum jump condition:

07,

or

=0,

the energy jump condition:

i N _|_a_il_|_Aa_il —ia_T
st \ """ T "%z T Peor

(7.45)

(7.46)

(7.47)

(7.48)

4Note that in chapter 8 the temperature dimension is set to T=T,-T,= AT, so that there

the Stefan number is defined as St = £ AA,:*F .
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Main physical relevant terms of condensation in a vertical tube

All mass flux terms are of the same order. In the normal momentum jump condition
the momentum transport due to phase change and some of the normal viscous stress
terms were of order €2 and were dropped. The remaining normal viscous stress
terms were of order ¢ but contradictive to the pressure dimension equation. So the
pressure difference at the interface is mainly determined by surface tension stress.
The tangential momentum jump condition is the condition of no shear stress at
the interface. The energy jump condition states that the heat flux of condensation
is proportional to the heat flux at the interface exerted by the vapor. The jump
conditions (7.45) — (7.48) are based on the same assumptions as the boundary layer
conditions. However, note that also dimension matrix has to be consistent (compare

normal momentum jump condition).

Zero order equations

All mass flux terms are of order £, which means that the condensation process cannot
be modeled with zero order jump conditions. The zero order normal momentum
jump condition is the Young-Laplace equation [Dee98|. The condition of no shear
stress is a zero order equation. A zero order energy jump condition would state that
the heat flux at the interface vanishes. This comes from the assumption that the

heat flux in the vapor vanishes, see section 6.1.

With a generalized dimensional analysis based on the slenderness of the condensate
film we determined the main relevant physical effects of condensation in a vertical
tube.

7.7 Water and R134a

We conclude this chapter by evaluating equations (7.34) — (7.37) and (7.45) — (7.48)
derived in the last sections for water and for the refrigerant R134a. These fluids
were also used in [Fie03]. The dimensionless numbers of water and R134a are given
in appendix B, where also material properties and process properties (such as film
thickness and velocity) are be found. For both fluids the quotient of the two length

scales is ¢ = 0.2 e-3.
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In the nondimensional continuity equation (7.34) all terms have the same magnitude.
For the nondimensional momentum equation (7.35) and the nondimensional heat

equation (7.36) we get

0v, . 00, . 00, op 1 10 [/ 00, 1
=1263 water =9034 water
=58 Ri134a =247 ri34a
or . or . oJdT 1 10 |.0T
aA—er? Uzg = e 737 3 ) . (7.50)
=321 water
=17 ri34a

In both fluids viscous forces and gravity forces dominate the inertial terms. Conduc-
tive heat transport dominates convective heat transport, but the difference is more

distinct for water than for R134a.

The terms of the nondimensional mass jump condition (7.45) are again of same
order. For the nondimensional normal momentum jump condition (7.46) and the

nondimensional energy jump condition (7.48) we get

L 1 1

P—DPy = — We 27 (7.51)
:1261 ‘Water
=3.46 Rr134a

— Uy + — + 0y — = — —. 7.52
St Ur ot Y 0z ePe Or ( )

—1.8 water =321 water

1 oh aﬁ) 1 a7

=0.4 r134a =17 R134a

Clearly for water surface tension is the dominant force. However, if the condensate
fluid is R134a, surface tension has almost the same order of magnitude as the pressure
terms. In the energy jump condition the temperature deriative dominates. This
shows that the flow is the dominating process, the position of the moving surface is
mainly determined by the solution of the free surface problem. Again this is more

true for water than for R134a.

The inclined tube

From what we found out about condensation in a vertical tube we can also explain

the results given in |Fie03] about condensation in a tube inclined to the vertical.
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There it was shown that for R134a the heat transfer due to condensation is ap-
proximately two times better for an inclination angle of 45° degree compared to the

vertical tube, but this effect could not be observed with water (compare section 1.2).

For a horizontal position of the tube the in-
terface is most probably not any more rota-
tional. We showed that the main forces in
the condensation process are gravity force
and surface tension force. In an inclined Figure 7.1: Condensate film cross sections
tube gravity force can be divided into two

components. One component acts in the plane of rotation and the other acts in the
direction of the tube axis. Because of gravity the condensate will flow down along
the tube walls and continue flowing in a gathered stream at the bottom of the tube.
Surface tension force acts normal to the interface. The effect of surface tension can
be described by the tendency to minimize the surface, and the minimal surface is
the circular surface. The balance of the two forces acting in the plane of rotation

result for both fluids in a cross section between the two extremal positions of the

moving surface as shown in figure [7.1.

Actually the effect of surface tension is to minimize potential energy. Surface tension
is caused by molecular forces. In the bulk of the condensate the molecules are
surrounded by other molecules and are attracted equally in all directions. At the
surface of the condensate the attraction forces result in a force that is directed

inwards the condensate film such that the condensate film is pulled into circular
shape |WIK].

We showed that surface tension force is the dominant force for water, but is com-
parably small for R134a. By this, we conclude that for a given inclination angle of
the tube the cross section for water will be more like the figure on the left and the

cross section for R134a will be more like the figure on the right.

We showed that the heat transfer through the condensate is mainly conductive.
According to Fourier’s law the conductive heat flux through a fluid is for a given
film thickness and a constant temperature difference better if the film is thinner.
That is the reason why the cross section of the right figure is the better one for a
better heat transfer. So a better heat transfer can be expected for R134a, which is

in agreement with the experimental results.
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Chapter

Single ordinary differential equation

(ODE) /rotational symmetry

In this chapter, we consider again the model equations for condensation in a vertical
tube with small diameter, as derived in part II, chapter 7. In section 7.7 we showed
that, if the condensate is water, surface tension is the most dominant force beside
gravity. For R134a the effect of surface tension was considerably small. Based on the
results of our evaluation of the model equations for water and R134a we simplify the
model equations further and derive a nonlinear ordinary differential equation for the
film thickness. In a first attempt we neglect surface tension, then we include surface
tension into the single model equation, finally we compute numerical solutions of

these ODEs and discuss the effect of surface tension for water and R134a.

For numerical methods for the solution of ODEs we refer to [SW95|.

Dimensionless variables

In a numerical simulation, dimensionless variables are used to reduce the amount
of variables to a fewer amount of nondimensional variables, whereas in a numerical
analysis the main purpose is to normalize the value of the variables such that all
variables range between 0 and a positive number a, say 10, to avoid roundoff and

cancelation errors.

For a better normalization of the temperature we revise the dimension of the tem-
perature, which we assigned in chapter 7.4 to T = T,. The energy equation is a

linear differential equation and is therefore invariant under translation of the de-
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pendent variable (compare appendix A.2), for example a translation with the wall

temperature
T=TT+T,. (8.1)

The dimension of the temperature we set to T = T, — T, = AT. Then the dimen-

sionless temperature is given as

T -1, .

T = AT so that T,=0, T,=1.

In section 7.4 the Stefan number was defined as St = %. With the temperature

dimension T' = AT the Stefan number is

c AT

St = N

This definition is more appropriate for the numerical simulations, compare sec-
tion 8.3. The other nondimensional variables and numbers remain as discussed

in chapter 7 and as given in appendix B.

8.1 Derivation of a single ODE for the film thickness

We derive a single ODE for the film thickness, in a first attempt without taking
surface tension into account. We will use this equation in section 8.3 as a test
equation for the numerical computations. We show that our model equation is an

extension of Nufselt’s theory of condensation along a flat plate.

Further reduction of the model equations to ODEs

Based on the evaluation of the model equations for water and R134a in section 7.7
we neglect transient and convective terms in the condensate equations (7.49), (7.50),
(7.51), and we neglect the pressure derivative in (7.49). For the moment we also

neglect the normal momentum jump condition (7.51). Then we get

%i (favz) _ Re (8.2)

or \ of R

o [ oT

ﬁ(raf) =0 (8:3)
g, o B0 at F=h, (8.4)

9z ePedr
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together with the boundary conditions

00, . . R )

~

Uz

=R
By this we reduced the partial differential model equations to ordinary differential
equations for the variables v, T, and iz, which are much easier to solve.

The boundary condition for the last ODE (8.4) is that the film thickness is given at
the inlet

~

I
Dw
o

(8.6)

2=0

Velocity and temperature profile

Equations (8.2) and (8.3) can be solved analytically. Integrating (8.2) once gives

where the first integration constant is determined by the condition of no shear stress

at the interface, C; = % h2, Integrating again gives

where the second integration constant is determined by the condition of no-slip at
the wall, Cy = ;{—F‘fr (R; — h2ln f?) Then the dimensionless velocity is a function of

the radius depending on the film thickness

R R Rz_ﬂ R A
@Z(f,h):—e< . N & 111%) . (8.7)

To get the temperature we integrate the energy equation (8.3) twice. This gives first

or  C .
oF A3 , integrating again gives T=0Cs;Int+Cy.
r 7

The integration constants are determined by the boundary conditions, C3 = 71&:51”}?,
Cy= —%. Then the dimensionless temperature is given by

T 7 Tv_Tw ~ Tvl E—Twl iL

T h) = —2——% Jpjp— 2ot “w (8.8)

Inh—InR Inh—InR
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Single ODE for the film thickness

Now we evaluate 0 and %—CS at 7 = h and substitute the results into the mass-energy

jump condition (8.4). This gives

Re (R*—h> ., h\oh St T,-1T,
+h IHT A~ = =
2 Fr 2 R 0z € Pe (lnh—lnR)h

or equivalently

A~

oh  2FrSt(T, —1T,,) 1

RE cRePe  (B—® o qmi\mid
C Iy

(8.9)

This equation is a first order homogeneous nonlinear ordinary differential equation

1

for the film thickness in autonomous form*. Obviously the condensation process

causes the nonlinearity, without condensation we would have g—g = 0 and hence a film
of constant thickness. Equation (8.9) is quasilinear?, and can be solved numerically
together with the boundary condition (8.6). We come back to the numerical solution

of (8.9) later in this section.

Comparison with NuBelt's theory of condensation along a flat plate

The equation we derived in the last section for condensation in a vertical tube is
as an extension of Nufelt’s theory of condensation along a flat plate [Nufs16|. In
Cartesian coordinates the momentum equation, energy equation and mass-energy

jump condition are given as follows

9%t Re GRI 30 StoT

= — 0 _>xe
202 Fr’ 22 “3i  Pedg

Here 7 is the dimensionless streamwise coordinate, y denotes the dimensionless co-
ordinate perpendicular to Z in counter clockwise direction, # is the dimensionless
streamwise velocity, and 0 is the dimensionless film thickness [BS98|. The boundary
conditions are again the condition of no-slip at the wall and of no shear-stress at the

interface and the given temperature at the wall and at the interface. By using the

Yimplicit in the independent variable y(z)" = f(y(z))
2linear in the highest derivative
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boundary conditions the dimensionless velocity and the dimensionless temperature

derivative become as follows

. Re (s 2 or T, —T,
U= — - = = .
YT )

Evaluating the velocity and the temperature derivative at § = 5 we get the following

ordinary differential equation for the dimensionless film thickness

Re 0 30 St7, T,

- 36 2FrSt(T,—1T,) 1
= - , or equivalen — = —.
Fr 2 0 Pe 4 4 Y Re Pe 33

This equation is a Bernoulli differential equation of type ' = ky~3 and can be solved
analytically after linearization [WIK| [MW]. With §(z = 0) = 0 we obtain

s 2FrSt (1, —T,) . \"
o =v2 ( Bobe x) . (8.10)

The film thickness is a function of the streamwise coordinate to the power of one
fourth. This result is in exact agreement with Nufelt’s well known equation for the

film thickness of a condensate flow along a flat plate [BS98].

8.2 ODE for the film thickness including surface tension

Now we include surface tension in the single model equation (8.9) which we derived

in the last section.

System of ordinary differential equations including surface tension

To include the effect of surface tension we again neglect transient and convective
terms in (7.49), (7.50), (7.51), but let remain the pressure gradient in (7.49)

1 0 [, .00, op 1 op
- _ - — = 0. 11
(T & ) eFr’ 0 (8.11)

cRe

=>| =

oF E oF
Then we use the normal momentum jump condition (7.51)

p = ——= (8.12)
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to get the pressure gradient by differentiating p with respect to 2

op 1 1 9h
P - (8.13)
With the assumption of a steady condensate flow the pressure is only a function

of 2 (compare section 7.3), and we can substitute the pressure gradient in (8.11)
with (8.13). This gives the following system of ODEs

190 (.00, cRe 1 0 Re
G = === 14
7 or (r af) We j2 02 Tt (8.14)
o (.7
5(7“ af> = 0, (8.15)
oh St o7 -
L oL P 1
22 T cpeor at i =h (8.16)

The boundary conditions are the same as before, see (8.5) and (8.6).

Velocity (including surface tension) and temperature gradient

Integrating (8.14) and (8.15) and evaluating the boundary conditions gives the di-

mensionless velocity and the dimensionless temperature gradient with respect to 7

as follows
cRe 1 dh Re R . f
b, = [ — — h% In — 1
: ( 2 We 72 62+2Fr>< 5 T ”R> ) (8.17)
o7 T T, 1
- w2 (8.18)
or ln% 7

Single ordinary differential equation for the film thickness including surface tension

Evaluating (8.17) and (8.18) at 7 = h and substituting the results into the mass-

energy jump condition (8.16) gives

eRe 1 dh Re R? — ]2 - h\ oh St T, — T,
- A__A‘I’ +h ll’l—A - = — = s
2We p2 02 2FT 2 R) 0z ¢cPe ln%h

or equivalently

N 2 N ~ ~ N
<6h> _ We,0h _ 2WeSt(T, —T.) h

- ) 8.19
0z eFr 0z 2 Re Pe (Rtﬁ? + 712 1n %) In h ( )

R
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This equation is a fully nonlinear first order differential equation for the film thick-
ness. However, we can transform (8.19) into a quasilinear ODE. For that we write

more conveniently

~ 2 ~
(ah> a2t —bf(h).

02 02

with a = EW—;r and b = W. The left hand side can be transformed in an

quadratic expression

~ ~ 2 ~
oh h? ht -
( —a—> @ =),

0z 2 4
so that
oh h2 h4 .
— JR— 2
32 =05 +1/a 1 bf(h).

Substituting back the parameters a and b we finally receive the following quasilinear

ODE for condensation in a vertical tube with small diameter

A . oy — -
oh  We h? + (We) ht 2WeSt (T, — T,) h (8.20

0 eFr2 A\|\eFr) 4 e2Re Pe <R2;ﬁ2+ﬁ21n%)ln@'

N>

~ eFr 2
R

We are seeking for the solution of the ODE with the negative signed root.

8.3 Numerical simulations of condensation including surface

tension

To investigate the effect of surface for condensation in a vertical tube for Water and

R134a we solve equation (8.20) numerically.

Water

First we compare the model equations without surface tension (8.9) and with sur-
face tension (8.20) with Nufselt’s solution (8.10). We assume a tube diameter of
7 mm and a tube length of 500 mm and take water as condensate. The initial film

thickness is 0.1 mm. All calculations are dimensionless. Further details, such as
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R—h Water (8.9),(8.20)

Nufelt

IS

0.2 0.4 0.6 0.8 1
Figure 8.1: Water: (8.10) Nufelt, (8.9) without and (8.20) with surface tension

wall temperature and dimensionaless numbers of water, are given in appendix |B.
The results of our computations using Euler implicit and Runge-Kutta(4) are done
with Mathematica and are shown in figure'8.1. The numerical solutions of the model
equations without surface tension and with surface tension are not distinguishable.
If the condensing fluid is water an effect of surface tension cannot be observed. The
film thickness predicted by (8.9) and (8.20) is slightly above the film thickness pre-
dicted by Nufselt. The reason is that because of the circular tube the condensing

mass result in a thicker condensate film.

For a larger diameter of about 60 mm Nufselt’s solution is almost identical with
the numerical solution. Figure 8.2 shows the film thickness for two different tube

diameter.®> The numerical solution of nonlinear ODEs often requires a higher order

R-h Water
141 d=8mm
121 d=60mm
10}
Nuflelt
8 [
6
4
21

02 04 06 08 1

Figure 8.2: Water: (8.10) Nufelt, (8.9) and (8.20) for d = 60 mm, d =8 mm

3Note that the characteristic velocity and length are based on measured values with a fixed

diameter.



8.3 Numerical simulations of condensation including surface tension 89

accuracy method or a more stable implicit method, or a combination of both, an im-
plicit method of higher order [SW95]. However, the nonlinearity of (8.9) and (8.20)
is smooth, so that the results of Euler implicit and Runge-Kutta are not distinguish-

able and a standard Runge-Kutta(4) is sufficient.

R134a

For R134a we assume the same tube geometry, the same initial film thickness, and
the same temperature interval as before. The data and the dimensionless numbers
of R134 are given in appendix|B. The numerical solutions of (8.9) and (8.20) for
R134a using Runge-Kutta are shown in figure 8.3. The R134a film is thinner than the

35% —h Rl34a  (8.9),(8.20)
/ N\
251 Nufelt
2
1.5
3

02 04 06 08 1
Figure 8.3: R134a: (8.10) Nufelt, (8.9) without and (8.20) with surface tension

water film, which is in agreement with |Fie03]. Beside this the results are similar as
before. The difference between Nufelt’s solution and the numerical solutions of (8.9)
and (8.20) is smaller, because of the thinner film thickness of the R134a film.

Higher surface tension coefficient

For the vertical tube we could not observe an effect of surface tension on the film
thickness for water and R134a. Now we increase the surface tension coefficient
(i.e., reduce the Weber number) by two powers of ten. This is an unrealistic value
but serves for an estimation. The result is shown in figure 8.4. In a vertical tube
cross sections of the film are always circular, but especially at the tube inlet the
film thickness varies substantial over the tube length (compare section [7.7). In the
vertical tube the effect of surface tension to minimize the surface results in a more

evenly distributed film thickness along the tube length.
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R—h Water (8.9)

N>

0.2 0.4 0.6 0.8 1
Figure 8.4: R1384a: (8.9) without surface tension, (8.20) with surface tension

NuBelt number — dimensionless heat transfer

The heat transfer in the condensate film is mostly conductive so that the temperature

profile in the film is almost linear and we can write

¢ =aAT.
Equating ¢” with the energy jump condition at the interface (where the heat transfer

process occurs) gives
a AT =AVT -n=mAh,

which becomes in terms of dimensionless variables,*

AT_)\ATaTA_AhpUDAai}
S T N A E

Multiplying this equation with % gives the local Nufselt number, which is defined

as the dimensionless temperature gradient at the interface

N _Q_E)T_AhpUD2aai}
UDGL = T\ = 58 T TNATL L as
—_——

€ Pe
St

Figure 8.5 shows the local Nufelt number of Water and R134a as a function of tube

length. Note that the local Nufselt number is almost inversely proportional to the

film thickness.
4With the dimensions # = h =D, @ =U, 2 = L, and T = AT, compare chapter 7 and (8.1).
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Nu Water and R134a

02 04 06 08 1
Figure 8.5: Nuflelt number of Water and R134a

We compare our results with the mean Nufelt number Nuy, = (3 Re)'/? for conden-
sation along a flat plate according to Nusselt’s theory [BS98|, and with the mean
Nufselt number given by Chen for condensation in tubes [Bej04]

NuChen =

1/2
prl3 /2 2/3 0156 , 9\ 0788 b 1.8
—0.44 —613 ,0.8p..1/3 —4 w Thwg Puw
(Re +5.82107°Re™"Pr/°43.27 10 2R2(_) (—) <_pw) 1191 .

(8.21)

The mean Nufelt numbers for water and R134a are given in table 8.1. It shows

Water | R134a
Nuyy 0.44 | 0.15
Nupgr | 0.52 | 0.23
Nucpen | 0.74 | 0.37

Table 8.1: Comparison of mean Nufelt numbers

that our model is better then Nufelt’s model, but Chen’s model is better then our
model. Chen reviewed available experimental information for co-current condensa-
tion inside vertical tubes. His model is more accurate for Reynolds numbers greater
than Re=30. It takes into account that at higher Reynolds numbers the film is
thinner due to the co-current vapor flow. This explains the difference between our
model and Chen’s model. However, we derived an ordinary differential equation
that is easy to solve by standard numerical methods, and can be extended in a next

step to include the effect of an inclination angle.



Chapter

Model equations as differential algebraic
equations (DAEs)

In this chapter we analyze the model equations for condensation including surface
tension from a DAE point of view and discuss the requirements for a numerical

solution of this moving boundary problem.

For a three-dimensional numerical simulation of the condensation problem where
surface tension occurs at the interface, the Navier-Stokes equations and the energy
equation have to be solved, together with the jump conditions at the interface (com-
pare section 5.3). We discretize the spatial terms of the bulk flow equations, which
lead to a system of differential and algebraic equations (DAEs). We discuss the
basic ideas of DAEs with Navier-Stokes equations for which the results are known.
Then we analyze the complete system of DAEs including the jump conditions, and
we relate the DAE approach with conventional methods. Finally we discuss some
aspects of numerical solution schemes for the moving boundary problem based on

our analysis.

For the spatial discretization of the model equations with finite element method
(FEM) and and finite difference method (FDM) for Navier-Stokes equations we refer
to [KAO00] [Bra97|. For the numerical solution of differential algebraic equations we
refer to [BCP96] [HW02a] [AP98]. For the numerical solution of the linear equation
systems (LES) which result from the discretization we refer to [Mei05] [Saa00] |GLI6|
|QSS00].
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0.1 Spatial discretization of Navier-Stokes equations and en-

ergy equation

In figure 9.1 the numerical methods for the solution of the bulk equations of the

condensation problem are depicted.

model equations

Fly,4,Vy)=0

nonlinear PDEs
¥

spatial Index linearization time solve
discretization reduction with discretization | |Les
FDM/FEM Ly = f(y) b Newton method b Euler implicit | direct +
fly,y)=0 0=g(y) EAy = AAy+b||BAy™ =r ||iterative
Quasilin. DAE || Index 1 DAE | |linear DAE LES solver

Figure 9.1: Numerical methods for the solution of the bulk equations

Both programs we worked with!, use finite
element method (FEM) for the spatial dis-
cretization of the unknowns. The main ad-
vantage of FEM for the solution of mov-
ing boundary problems over finite difference
method (FDM) and finite volume method
(FVM) is that FEM allows greater flexibility

to model complex geometries. The matrices

resulting from all three methods have simi-

lar characteristics. However, in this chaper . _
Figure 9.2: Rectangular grid

we use finite difference method for the dis-

cretization of the spatial terms, because this is more instructive and allows us to

perform some necessary calculations using Matlab.

Discretization of the spatial terms — FDM

For the three-dimensional simulation we can write the equations in cartesian coor-
dinates, there is no need to use cylindrical coordinates as long as we not assume
rotational symmetry. We first consider a two-dimensional condensate slice as shown
in figure 9.2. The complexity of a three-dimensional simulation arises on the level of

!SEPRAN and FIDAP
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implementation due to the geometrical information that has to be handled and due
to the immense increase of the number of unknowns and therefore the dimension of

the equation systems.

The equations for the bulk flow equations as given at the end of part I in section 5.3
form a system of nonlinear partial differential equations, where the nonlinearity
comes from the convective terms in the momentum equations. Assume a fluid slice
as shown in figure 9.2 covered by a quadrilateral grid, with ¢ = 1, ..., n points in z
direction and 7 = 1,...,m points in y direction. Using central difference formulas
for the second order spatial derivatives and backward difference formulas for the first
order spatial derivatives, see e.g. [QSS00|, we get for the fluid unknowns at an inner

grid point ¢, j

the equation of continuity

Uzz‘,j - ,Uzifl,j + in,j ,in,jfl —0 (9 1)
Az Ay o '

the momentum equation

Uy . — /Uz.i . Uy = — Uy, . P, —D._.
: (2% i—1,5 4,J 4,j—1 _ Ty i—1,j
g (U'Zi’j T TR T T Ay ) T A
Uz. . 21Uz.. _F Uz. . Uz.. - 2 Uz.. _F Uz..
+ i+1,7 ] i—1,j + 4,j+1 i, 4j—1 + cos 7 9.9
1t ( N A Py (9.2)

Uy, . — Uy

v - —
. , i—1,5 Yi,j Yij—1 Dy = Pija
vy  +v, —m----+v, ——] =——
p < yi»j Zi»j AZ yi;j Ay ) Ay

vy —2v, +v, v, —2v, +v,
+ 1 ( Y AZ’; oty g S AZZ; y”l)+pg sin ¥

the energy equation

T + Tm - 7—;71,3' + Tm - Z,jfl
p ] Zi’j AZ yi,j Ay

é Ti+1,j B 2Ti,j + Tifl,j + TM“ _ 2Ti'j t Ti’j*l (9.3)
C Az2 Ay2 7

where Az =2z, — 2, and Ay =y, . —y,. ..

i—1,j
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If we let run the indices over the entire domain, equations (9.1) — (9.3) define the

matrix equations

Dlv.+DJv, = 0,
M.v,+ [N.(v.)+ Ny(vy)]v. = —D.p+[S.+8S,]v.+g., (9.4)
M, v, + [N.(v.)+ Ny(v,)]v, = —D,p+[S.+8S,]v,+g,,

CT+ [N.(v.)+N,(v,)|]T = [K.+K,|T,

where the vectors are of length nm and the matrices are of dimension (nm) x (nm).

Quasi-linear system of differential algebraic equations (DAE)

With v = [v.,v,)", D= [D,,D,]", g = g..9,]", and

the four matrix equations (9.4) can be written more conveniently as

My = [S—N(w)]v-—Dp+g,
CT = [K-N@w)]T, (9.5)
0 = D'v.

M, C, S, K, N are quadratic matrices with dimension (2nm)x (2nm), and D is a
rectangular matrix with dimension (2nm) x (nm). The matrices M, C, S, and K
are symmetric. They are also strictly diagonally dominant and therefore positive
definite [Saa00]. IN is not symmetric. Because the convective terms are discretized
with backward difference formulas (upwind discretization) the sums S — N and
K — N respectively are diagonal dominant.? D has full rank. Equation (9.5) is a

quasi-linear system of differential algebraic equations.

2Discretization with second order difference formulas would result in a non-diagonally dominant
matrix. A discretization that makes the matrix diagonal dominant is called upwind discretization

and is preferred, although it decreases the order of the discretization [Saa00].



96 Chapter 9 Model equations as differential algebraic equations (DAEs)

9.2 Basic definitons of DAEs

In this section we analyze the quasi-linear DAE (9.5) which we derived by spatial
discretization of the model equations. The differential equations and the algebraic
constraints in (9.5) are separated. The differential variables are velocity and tem-
perature and the algebraic variable is the pressure. The DAE (9.5) is a semi-explicit

DAE in autonomous form and can be written as

= g,(z).

Index of a DAE

The complexity of a DAE is characterized by the smallest number of times that
the algebraic equations must be differentiated with respect to time in order to de-
termine an explicit ODE. This number is called the (differential) “index” of the
DAE [BCP96].> Thus ODEs have index zero. If the algebraic equations depend on

the algebraic variables g = g(«, p), then one derivative with respect to time?

d91_ag1. 09, .
TR P e

gives p in principle. For a DAE of index one the matrix of the derivatives % must
91 __

. . o d .
be non-singular. However, in our case g, = g () and hence 5 = 0 singular.

Differentiating g () twice with respect to time using chain rule gives with (9.6)

dg, dg9, . _ 9g,
L g I 9.7
dt oz " oz 60
d291 6291 . dg, (Oof . of .
e = o T T s P T ?)
... . . .. . .. . dg, d
By this p is determined in principle. For a semi-explicit DAE of index two %a—z{

must be non-singular [AP98]. So obviously (9.6) is an index two DAE.

3In literature different index definitions exist, from which the differential index is most commonly
used [SW95]. AL of1

CI T OYn

4Here we follow the notation commonly used in DAE literature, where % = :
fn fn
Note that this notation confuses with tensor notation when the gradient 1 Oyn

is defined as V = ei%. Then Vf = ei%(fj e;), which is the transposed of %.



9.2 Basic definitons of DAEs 97

A DAE of index one can be solved by an implicit ODE method or a higher order
method (e.g. Runge-Kutta method) [HW02a]. However, from (9.6) we see that an
explicit time discretization of & does not work for the constraint, so that at least an
semi-explicit method must be used, with an explicit discretization of the ODE and

an implicit discretization of the constraints.

Consistent initial conditions

The constraints of a DAE must be satisfied at any time. An index two DAE must
satisfy the constraint of the DAE

09, .
9:(z) = 0 and 9:(@.p) = ==& = 0 (98)

at any time. The second constraint is called hidden constraint |[AP98|. Initial
conditions of a DAE that satisfy the constraints of the DAE are called consistent.

Index reduction and drift

The first idea to reduce the index of (9.6) is to perturb the algebraic constraint with

the algebraic variable multiplied by a small penalty parameter

0=g,(x)+ep.

Then the algebraic constraint is a function of differential and algebraic variables
and the DAE has index one.® The algebraic variable can be eliminated from the
momentum equation by substituting p = ¢~1g,. However, the penalty method may

lead to inaccurate results.

The next idea is to reduce the index by differentiating the constraints. If we substi-
tute the constraint g, (x) = 0 in (9.6) by its derivative (9.7) with respect to time we
get the DAE

x = f(z,p), (9.9)
= go(z,p),

This DAE has index one. However, with the differentiation we lost the integration

constant.® Even if the initial conditions satisfies g; = 0, the numerical solution

>The penalty method is easy to implement and a standard method in CFD-software packages.
6The integration constant is in our case zero, integrating g, gives f g, dt = g, + ¢, with ¢ = 0.
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not any longer satisfy the constraint exactly due to roundoff errors in every iteration
step, and the solution may drift away from the constraints. This is why DAEs require
more stable methods, so that implicit methods are preferred over explicit methods.

But for an DAE of index two or higher an implicit method is not sufficient [HW02a|.

Overdetermined system and constraint stabilization

The DAE (9.6) together with the second constraint

z = f(x,p), (9.10)
= gi(z),
0 = g,(z,p),

is a DAE with index one. However, (9.10) is an overdetermined system, which is
contradictive after time discretization [BCP96|. The ODE has dimension n, = 2nm
and the constraints have dimension n, = nm, so that we have n, + 2n, equations
for n, + n, unknowns. The hidden constraints are still present in the ODE. The
idea is to eliminate the n, superfluous equations by multiplying the ODE with a

matrix Z whose column vectors are perpendicular to the row vectors of

0g
Gr =2
ox ’
so that
G'Z=0, or equivalent zZ'g =0 (9.11)

[BCP96]. G” has n, rows and n, columns and has full rank. Z has n, rows and
n,—n, columns and must have full rank. Then any vector v which satisfies G'v = 0
can be written as a linear combination of the n, —n, base vectors of Z. The matrix Z

is computed by means of an orthogonal projector.” Multiplying the ODE in (9.10)

"The projector P = G (GTG) o GT project an arbitrary vector onto the vector space spanned
by all vectors which are the result of y = G« for any «; that is, the span (or range) of G.
From Z7 (G z) = 0 and G*(Z x) = 0 (for any x) we know that the span of G is the orthogonal
complement of the span of Z. P = I — P project an arbitrary vector onto the span of Z (or
onto the null space of GT). Multiplying P with n, — n, arbitrary linearly independent vectors
A = [ay,...,a,, p,] (such that Z has full rank) gives Z = P A [Saa00] [WIK]. Then (9.11) is

—1
satisfied, GTZ = GTPA=GTA - G (G (GTG) GT) A=o.
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with Z7T eliminates the redundant n, — n, equations, so that the reduced index one
DAE

Z'¢ = Z"f(z,p),
0 = gl(w)>
0 = gy(x,p),

can then be solved numerically with an implicit method or an semi-implicit method
of higher order [HW02a]. See [Ste06] for a concise index-reduction procedure for any

arbitrary semi-explicit DAE.

Transformation of an index two DAE of special structure into an ODE with invariant

If the index two DAE (9.6) can be written as

z = f(x)+Gp, (9.12)
= Gz,

then by multiplication the ODE with Z” the DAE is transformed to an ODE with

invariant

z = f(z),
0 = gy(z),
[AP9S].

9.3 Index of Navier-Stokes equations and energy equation

Now we analyze the index of the discretized bulk equations (9.5) of the condensation

problem
Mv = [S—N@]v—-Dp-+g,
CT = [K-N@)]T, (9.13)
0 = D'w.

The Navier-Stokes equations have index two [BCP96|. Equation (9.13) is a semi-
explicit DAE of form (9.6). Consequently we obtain the following result: The Navier-
Stokes equations together with the energy equations have index two. The energy

equation does not change the index.
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Index reduction

The hidden constraint of the Navier-Stokes equations we get by differentiating the
discretized equation of continuity with respect to time
d (D"v)
—~— J D" =0. 14
Multiplying the ODE in (9.5) from left with M~
v=M"'[S-N@w)]v-M'Dp+M'g
and substituting this in (9.14) gives the hidden constraint as follows
0=D"M'[S-N@w)]|v-D'M'Dp+D"M'g. (9.15)

DT M™'D must be non-singular. D7 is the discretized divergence operator, D is
the discretized gradient operator, and M = pI. Then DY M D is the discretized
Laplace operator V2 = V-V times density, so that (9.15) defines a Poisson equation

for the pressure, where the right hand side is a function of velocity

The Navier-Stokes equations have the same structure as (9.12). So the index can
be reduced by transforming the Navier-Stokes equations in an ODE plus invariant.
Multiplying the momentum equation in (9.13) with a matrix Z7 (constructed as
described in section9.2) such that

D"Z =0 or equivalent Z'D =0, (9.17)

gives an ODE for the velocity only, with the discretized equation of continuity as

invariant

Tars — T iQ T T
Z My = Z'[S— N(w)]wv Z_ODp+Z g, (9.18)

0 = D'v.
By this the Navier-Stokes equations are decoupled in an ordinary differential equa-
tion for velocity and a Poisson equation (9.15) for pressure. See [Sch07] for a more

general version of this decoupling for the Navier-Stokes equation®

8If e.g. finite element method is used, then M is not anymore the identity matrix times a
constant. To apply the above transformation, then M must be decomposed by means of a Cholesky

factorization M = UTU and the velocity v must be transformed by u = U v.
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However, multiplication with Z7 destroys the sparse structure of the matrices result-
ing from spatial discretization, so that this method is only practicable for systems
with small matrix dimensions. To avoid this, the projection step in index reduction

of Navier-Stokes equations is usually implemented as follows.

Pressure projection schemes

CFD-software packages usually solve the Navier-Stokes equations not in DAE form,
but solve in every iteration the momentum equation and project the velocity (in
every iteration or once a while) back to the subspace of divergence free veloci-
ties [Wes00]. A different Poisson equation is used, based on that any velocity w can
be decomposed into w = v+ Vp, where v has zero divergence and is parallel to the
boundary v - nn = 0 [CM92|. Then

V.-w=Vp. (9.19)

Pressure projection schemes (as e.g. used by [FTM]| [STM]) are summarized by the

following scheme:

- solve momentum equation (9.13) with a pressure guess, get an intermediate
velocity w,
- solve the Poisson equation (9.19) with the intermediate velocity, get an inter-

mediate pressure,

- project the intermediate velocity on its divergence free part.’
Linearization with Newton method

For the sake of completeness we outline the remaining steps in the numerical solution
of the bulk equations as depicted in figure 9.1. The momentum equation has to be
linearized. This is done using Newton method. If we summarize the DAE (9.13)
by f(y,¥y) = 0, then a Taylor series expansion for

fyo+ Ay, 4o+ Ay) =0

gives

0 0
0= f(yy, ¥o) + —f Ay + —f Ay + higher order terms .
ay Yo ay Yo

9By means of an orthogonal projector P such that Pu = w and P Vp = 0 the intermediate

velocity can be projected on its divergence free part Pw = P(u + Vp) = u.
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This a quasi-linear DAE, which we can write as

E Ay = A(y,) Ay + f(Yo, Yo) (9.20)

where FE is a constant singular matrix and A is a non-constant singular matrix.
Linearization did not change the index, (9.20) has still index two. The linearized
DAE (9.20) has again structure (9.12), so that it can be transformed into an index
one DAE consisting of an ODE with constraint as before. The so derived linear

index one DAE we denote by

E Ay = A(yy) Ay + £ (Yo, 9o) - (9.21)
The Jacobi matrix A(y,) = g—i is not updated in every iteration (modified New-
Yo

ton) [QSS00]. Note that Newton method has a small convergence radius and there-
fore needs a good starting guess, so that it is important to provide a good initial

mesh configuration and initial velocity field.

Time discretization

The linearized index one DAE (9.21) is then solved by an implicit ODE method, for
example Euler implicit (or any other higher order implicit time integration method).
Using Euler implicit we get

~ 1 ~ ~
E At <Ayi+1 - Agi) = A(y;) Ay + f(y0)
where Ay; ., = v, — vy, and Ay, = y;, — y,_;. Rearranging the terms such that

the unknowns are on the left gives
(E ~ At A) Ay,,, = EAy, + At§ . (9.22)

This linear equation system (LES) is solved for Ay,.; in every time iteration by
means of direct (Gauf) or iterative (CGS — Conjugate gradient square, GMRES —
Generalized minimal residual) methods [Saa00| [Mei05], so that the solution at the

next iteration is given by

Y1 =Y, + A'!/z‘+1 .

By this we summarized the steps in the numerical solution of the index two DAE
which was the result of the spatial discretization of the bulk equations. We discussed
the Navier-Stokes equations from a DAE point of view. The next step is to investi-
gate the system of DAEs defined by the complete system of equations including the

jump conditions.
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9.4 Index of the condensation problem

To analyze the system of differential algebraic equations formed by the discretized
bulk equations (9.5) and (9.13) respectively, together with the discretized jump
conditions we first discretize the spatial terms of the jump conditions. For that we
simplify the jump conditions such that they are more easy to analyze but still have

the main features of the moving boundary problem with phase change.

Two-dimensional jump conditions for the one-fluid condensation problem

We neglect shear stress exerted by the vapor, assume zero heat flux in the vapor
phase and constant vapor pressure; so that the problem reduces to to a one-fluid-
problem. Further we neglect momentum due to phase transition. Then the jump

conditions (from section [5.3) are given as

mo= plv—ul-n,
pg—p+n-T-n = 2Ho, (9.23)
t-T-n = 0,

mAh = q-n.

We discretize this equations again for a two-dimensional fluid-slice as depicted in
figure 9.3. With normal and tangent vectors (2.14), (2.13), mean curvature (2.18),

q = —AVT and T = p[Vv + (Vo)'], the jump conditions become (compare
chapter 5 and [6)
o, (U o %) .
AL
(9.24)
2 2
R

2
P %%_‘_2{%_‘_602} 1_<%) _%avz =0,
1+(%)2 0z 0y 0z oy 0z 0z 0z
A (a_T_a_T%)
1+ (?)2 oy 0z0z/

Note that here surface tension is related to surface waves (and not to the tube

m Ah =

radius). Further we assume small surface waves so that the square of rate of change

of film thickness with respect to the length coordinate (%)2 can be neglected.
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Spatial disctretization of the jump conditions

If we assume that the mesh nodes on

lines of constant ¢ are free to move along
this lines (the last node, some nodes,

or all nodes), then the grid size Ay; ;

in y-direction changes with time, but AyidAvis | Ayia| Ay | Agis

the grid size Az in z-direction is fixed \ \ \ \
(method of spines [FTM]), see figure 9.3.

Film thickness and grid size in y direc-

Figure 9.3: Grid size variable in y-direction

tion are coupled by
j=1

The jump conditions are defined at the moving boundary, so that we discretize the

equations at 7 = m. Doing so we get

in,m — Uy m—1 4 in,m - infl,m Uzi,m - Uzi,mfl hz - hi—l
Paow = Pian + | =" = + X

AYim Az AYim z
hiv1 —2hi +hiy
=0
Az2 ’
h'i - hi—l in,m - ,in,'mfl 49 in,m - ,infl,m _l_vzi,m - Uzi,mfl _ hz - hi—l Uzi,m - ,Uzifl,m
Az AYim Az AYim Az Az
=0,
ahz hz - hi—l A E,m - ﬂ,m—l E,m - ﬂ—l,m hz - hi—l
Uy — ——— — U, = — .
vemo 9t tm Az pAh AYim Az Az

Discretized jump conditions are differential algebraic equations

With the assumption of equidistant step size in y-direction, so that all nodes move
equally, we get h; = m Ay;. Then these equations define fori = 1,..., n the following

matrix equations

Pm — pgm + a’l(vmavm—la h) + Bl(vmavm—la h) h = B2 h )
B;3(v,,, Vi1, h) h + as(vy, vy_1,h) + By(v,) h =0, (9.26)

BS Um — h' + Bﬁ(vm) h = a3(Tma Tm—1> h’) + B7(Tma Tm—l) h )
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where the velocities v,,, v,,_1 and the temperatures T',,, T,,_1 are the velocities
and the temperatures at the grid points on the moving boundary and next to the
moving boundary. All equations are nonlinear in velocity and film thickness, and

the last equation is also nonlinear in temperature.

The discretized momentum jump conditions are algebraic equations. The discretized
combined mass-energy jump condition is a quasi-linear ordinary differential equa-
tion for the film thickness. We can summarize (9.26) by the following nonlinear

differential algebraic equations

0 = gn—m(p’v’h) bl
0 = gt—m(v>h’) 5
h = fne(v, T h).

Index of the condensation problem

In the moving boundary problem the film thickness is an additional variable to the
variables of the bulk equations, so that now the vector of differential variables is given
by = [v,T,h]|T; and the pressure is still an algebraic variable. The discretized
bulk equations (9.13), together with the discretized jump conditions (9.26), form a
DAE which we write as

x = f(z,p),
= gi(z), (9.27)
0 = 92(wap)>

Here f represents the right hand sides of the momentum equation, the energy equa-
tion, and the combined mass-energy jump condition. g, represents the continuity
equation and the tangential momentum jump condition, and g, represents the nor-
mal momentum jump condition. Differentiating g, with respect to time gives p in

principle, so that g, is an index one constraint (compare section [9.2).

By this we obtained the following result: The discretized jump conditions have index
one. The discretized condensation problem is an index two DAE, where the index
is the index of the Navier-Stokes equations. The jump conditions do not change the

index.
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9.5 Algorithms for the moving boundary problem

We finish this chapter with a short summery of the main difficulties in solving mov-
ing boundary problems and discuss the two different approaches used by numerical

methods for such problems.

Moving boundary problems are highly nonlinear

From (9.26) we see that the discretized jump conditions are highly nonlinear DAEs,
depending on how many nodes are free to move. If only the step size of the last
interval near the boundary is variable (and the other intervals are fixed), then only
the discretized jump conditions are affected. If all nodes are free to move, then the
discretized momentum equation and energy equation are also nonlinear in the film

thickness (Ay # const.) [CS90].

Tracking methods and capturing methods

Numerical algorithms for the solution of moving boundary problems fall basically
in two categories, depending on the coordinate system which is used to describe
the interface. In part I we derived the jump conditions in the local coordinate
system of the moving surface (Lagrangian representation). Later we related the
jump conditions to a fixed coordinate system (Eulerian representation) by means
of a parametrizion of the surface.!® For example, for a moving boundary problem
without phase change m = 0 the mass jump condition in Lagrangian representation

is given as

(compare (9.23)). For a two-dimensional moving boundary problem without phase

change the mass jump condition is given in Eulerian representation as'!

_% % _,
W e T

or, using F'(y, z,t) = y — h(z,t), equivalently

OF
5 v VF=0, (9.28)

10Tn part II we used a cylindrical parametrization, here we used an implict parametrization.
U Note that the negative sign in (9.28) comes from the definition of the normal vector.
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(compare (9.24)). The last equation is also called level-set equation.

Methods based on a Lagrangian representation of the interface are called tracking
methods, and methods based on an Eulerian representation of the interface are called
capturing methods (e.g. Marker and Cell (MAC), Volume of Fluid (VOF), [Kot98|.

el L e i
—
o
=&
o
©©
olo|lojo|o

Figure 9.4: Tracking methods and capturing methods

In tracking methods the surface normal and tangential vectors and the mean curva-
ture are computed from the geometry of the surface [FP96|. In every iteration the
position of the interface is computed. After some iterations during the simulation
the mesh has to be adopted to avoid a distorted mesh topology. In capturing meth-
ods usually the mesh is fixed and the interface is reconstructed by means of equa-
tion (9.28), but sometimes with a slightly different meaning. Then F' describes the
volume fraction of one phase, e.g. F' =1 for a cell filled with condensate and F' =0

for a cell filled with vapor [Kot98|, as shown in the right side of figure(9.4.

Although for the later methods the mesh is inherently robust, the reconstruction
of the interface remains inaccurately. This qualifies tracking methods for moving
boundary problems with interface phenomena, such as phase change and surface

tension. However, the robustness of capturing methods can not be overestimated.

Implicit versus explicit method for the update of the moving boundary

If the film thickness is treated as a new unknown, additionally to velocity, pressure
and temperature, so that all variables are equally part of the solution vector (as in
section [9.4), then the moving boundary is treated implicitly. Implicit methods are
more stable and therefore preferred [HW02b|.

Often the numerical solution of a moving boundary problem is done as follows: First
the Navier-Stokes equations and the energy equation are solved using some of the
jump conditions as boundary conditions, and then the remaining jump condition is
used to update the position of the moving boundary, so that the moving boundary

is treated explicitly.



Chapter

Summary and Outlook

In this thesis we investigated condensation in a tube with small diameter where
surface tension is important. Such hydrodynamical channels are found in compact
heat exchangers. The goal was to establish a better understanding of the physical
process and to enhance the heat transfer. First, the plan was to simulate the problem
numerically using a CFD-program. But it turned out that the equations were not
implemented correctly, so that we decided to analyze the equations of continuum
mechanics of such moving boundary problems and to derive a suitable model. For
this we worked out the complete model equations for moving boundary problems
with phase change and surface tension. Surface tension is both a characteristic
of geometry, and physics of the interface between vapor and liquid. This increase
the complexity of the interface model equations significantly. To the best of our

knowledge such a complete derivation can not be found in literature.

Then we analyzed these equations using generalized dimensional analysis and derived
a simplified model for the vertical tube. By this we reintroduced and reformulated
generalized dimensional analysis, a very algorithmically method which fell occa-
sionally into oblivion. Generalized dimensional analysis is an extension of classical
dimensional analysis, where additionally the model equations are evaluated to find
the dimensionless numbers of the process. It allows an analysis based on the two
length sales of the process (film thickness and tube length). The results are com-
pared with experimental results and explain the better heat transfer in an inclined
tube in the case of low surface tension. The derived interface model equations (jump
conditions) are equivalent to boundary layer equations in the sense that they are

based on the same conditions.

Next we derived an ordinary differential equation for condensation in a vertical tube

and by this we extended Nufelt’s theory to condensation in a tube under rotational
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symmetry where surface tension is taken into account. The heat transfer decrease for
very small tube diameters independent of surface tension (thicker condensate film)
and increase for extreme high surface tension. The derived model is compared to
parametrical models from literature. It is better then Nufelt’s model. With Chen’s
model higher heat transfer rates are predicted. Chen’s model is based on available
experimental information for co-current condensation inside vertical tubes and takes
shear stress exerted by co-current vapor flow into account (which result in a thinner

condensate film).

After spatial discretization the model equations form a system of ordinary differ-
ential equations and algebraic equations (DAE). We analyzed the complexity (the
index) of this DAE system and showed that the index of moving boundary problems
is determined by the Navier-Stokes equations and not by the (transient) moving
boundary problem. We compared different index reduction methods. Based on this
thesis we discussed some aspects of numerical methods for moving boundary prob-
lems. Decisive for a moving boundary problem is not the index but the nonlinearity

introduced by the film thickness as a new unknown.

The transformation of an equation with dimension into a dimensionless equation
is a symmetry transformation. We extended the idea of symmetry analysis to Lie
group analysis and determined the symmetry groups of the model equations, and
we showed how to construct analytical solutions for differential equations using the

symmetries of an equation.

The computational development provides us with powerful simulation possibilities.
To use them efficiently we need to know the equations which we want to compute
and the characteristics of the numerical methods which we use to solve them. The
development in computer-aided simulation forces towards more and more interdis-
ciplinary work. Mathematicians are more and more requested to show results that
can be used in applied technologies. The demand on engineers is more and more
to use and implement simulation software. In every interdisciplinary work at first a
common language has to be defined. This thesis also intends to make a contribution

to this.

The next projects would be: to extend the derived model equations for the case of
an inclined tube; to implement the equations derived for the vertical tube which
we analyzed further in part III; to work out the potentialities of Lie group analysis
further and to derive an analytical model equation based on the symmetries of the

condensation problem.



Appendix

Symmetry groups of the model

equations/rotational symmetry

In this chapter we analyze the symmetry groups (Lie groups) of transformations
under which the model equations of the condensation problem from part II are
invariant. In section A.1 we briefly outline the method of finding symmetry groups
of a given differential equation by a Lie group analysis. In section|A.2 we discuss
generalized dimensional analysis in the wider framework of a Lie group analysis,
and in section A.3 we investigate the Lie groups admitted by the equations of the
bulk flow of the condensation problem and take the outer boundary conditions into
account. In section A.4 we also consider the jump conditions and analyze the Lie
groups of the condensation problem. This chapter is also intended to be useful for
future research. For example, based on a Lie group analysis one may construct
(using canonical variables) an equivalent system of equations for the condensation
problem, representing the same physical phenomena as the original model equations,

but easier to solve (it still may need to be solved numerically).

The first section of this chapter is mainly based on [BK89], [Olv93]| and [Ste94].
Further on [Bau00| [Can02| and [Ibr99]. From an engineering point of view the
approach of [Can02| and |[Bau00] is very appropriate.

A.1 Lie groups of transformations of a given differential equa-

tion

The main idea of a Lie analysis is to construct a linear operator, based on the local

action of the group of transformations in the neighborhood of the original variables,
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apply it to a given differential equation and demand whether this operation let the
differential equation invariant. The result is an over-determined system of linear
partial differential equations, whose solution gives the symmetry transformations.
We first introduce the method and then we demonstrate how to find the Lie groups

of a given ordinary differential equation exemplarily.

Lie groups of transformations

A change of variables of a physical problem depending on (at least) one parameter
z = x(x,a), (A1)

where x = |11, 13, ...z,]7 denotes the vector of the dependent and independent vari-
ables, is called a point transformation if the transformation mapping the variables
into variables is invertible, if repeated transformations yield again a transformation
of this kind (associative law), and if a transformation exist that maps a point to

itself, e.g. for a = 0,
T =2(x,0)=x, (identity element)
[Ste94]. Then the transformation satisfies the four axioms of a group and we say

(A.1) defines a one-parameter group of transformations.!

If we further assume that a is a continuous parameter, that x is infinitely dif-
ferentiable with respect to @ and an analytic function (representable in a power
series of a), and that a is also an analytic function, then (A.1) defines a one-
parameter Lie group of point transformations [BK89|. For the rest of this section

we write © = [z, y]T.

Two examples for a one-parameter Lie group are a group of translation transforma-

tions parallel to the x-axis
t=x+4a, U=y, (A.2)
and a nonlinear group of scaling (dilatation) transformations

t=(1+b)z, g=(1+b)y. (A.3)

!The four group axioms are closure (the result of the transformation of a variable in R™ is again

a variable in R™), associative law, identity element, and inverse element.
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The effect of the group of transformations &(x, a) on a point is shown in figure|A.1.
Consider the point &(x,0) = x. Varying the group parameter a will move the point
along the curve &(a) in the xy-plane [Ste94|. Different initial points are transformed

into different points on the curve.

Local coordinates and tangent vector

The Lie group of transformations &(x, a)

is a function of @ and a, so that & =

[z, y]"
nates. Then the two base vectors of the

can be considered as local coordi-

local coordinate system are the deriva-

tives of & with respect to the local coor-

dinates 22 and % (compare section [2.1
and 2.3), and the tangent vector X at-

tached at the point & reads in the local

Figure A.1: Integral curve of a vector field

coordinate system

X (&) = £(@) 2L 4 n(a) g—j , (A1)

where ¢ and 7 are the local coordinates of X [Olv93].

Tangent vector field and integral curve

On the other hand &(x, a) represent a vector field depending on a, and such a vector
field can be associated with a system of first order differential equations (one may
think of a as a time variable). For a fixed initial point & at a = 0 the integral
curve x(a) that coincides at any point with the tangent vector X along the curve

at that point is then given by

(cil_z =X (x) with z(x,0) =z

and in local coordinates

@ e@) with (@,0) =, (A5)

where & = [£,n]7 is called vector of infinitesimals [Olv93]. Equations (A.5) are
called Lie equations. That is, once we found the infinitesimals for a given differential
equation, the Lie group of transformations can be reconstructed by integrating the
Lie equations [BK89).
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Infinitesimal transformations

A local group of transformations we get by expanding &(x,a) in a Taylor series

about a =0

z(x,a) =x+a 2—23 + O(a?) (A.6)
a=0
where
ox(x,a)
§(x) = (A7)
da .-

is the vector & of the infinitesimals at @ = 0. By this we get the Lie group of

transformations in terms of infinitesimal transformations
x(x,a) =x+ak(x)+ O(a2) (A.8)

[Can02]. The infinitesimals for the group of scaling transformations (A.3) are

i 3y

§ =, n=s- =2y.

da a=0

Infinitesimal generator

Now we construct a linear generator X based on the tangent vector in local coordi-
nates, such that X = £. We define the infinitesimal generator X with the gradient

vector as

X(a) =€(@) V = @) 3+ (@) 5. (A.9)

so that we get for the Lie group of transformations &(x, a)

2

:i;:w+aX;c+%X(me%X(X(Xm)H..., (A.10)

This series is called a Lie series |[BK89.

The infinitesimal generator for the group of scaling transformations (A.3) is

d d
X=zZ 4oy
Tar Y%y



114 Chapter A Symmetry groups of the model equations/rotational symmetry

A Lie series of x with this generator gives

a

2!

fi’:x+aXx+%X(Xx)+...:x+ax+ 5

2
a
x+...:x<1+a+—+...),

which is the exponential function. By this we find a parametrization of the group (A.3)

of scaling transformations such that the identity element is &(x,0) = x

T = ez, (A.11)

<>
I
[}
<

Invariant functions

With the infinitesimal generator we are now in the position to analyze if a function
is invariant under a Lie group of transformations. F'(x) is said to be invariant under

a group of transformations (x, a) if
holds true for every value of a. Expanding F'(Z) in a Lie series gives
F(z) = F(z)+aXF(x)+0(d? .

[Ste94]. This gives us the invariance condition we are seeking:

oOF OF

A function is invariant under a group of transformations if the infinitesimal gen-
erator X applied to the function equals zero. It is the key point of Lie’s theory
that the infinitesimal generator is a linear operator, although the groups of trans-
formations admitted by a given function may be nonlinear (e.g. the scaling trans-
formation) [BK89|. To derive an invariance condition for differential equations, the

invariance conditions (A.12) has to be extended further.
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Extended transformations

We want to apply the point transformation (A.1) to a differential equation, so we
need to know how to transform the derivatives. We consider a single ordinary
differential equation, with one independent variable z and one dependent variable y.
It turns out that the transformations of derivatives are functions not only of the
dependent and the independent variables, but also of the derivatives of the dependent
variables [BK89|. So we write

(z,y,a), (A.13)

=
|

>

= :&(x7 y? a) Y

Yz = Qf(xvyayrva)u
gif = Z)ﬁ(l’,y,yz,ym,a),

The transformations of the derivatives are the derivatives of the transformed vari-

ables with respect to the transformed variables

. dy o dys
Y= YR T g

Using total derivatives

oz oz

di = —doz+=—d

T Py x—l—ay Y,

X (] 9y

dj = Zdz+-=d

N e 0¥z 97z
dg; = d dy ,+5—dy, ,
Y ox T oy 4 +ayx Y

we get for the first and second extension of the group of transformations

9y 94 oG 4 9%
Bxdx_'_Bydy_ ax+ayyr

gi = % ) - % 9% = Qi(xv Yy Yas CL) ) (A14)
aﬁj agi aﬁj
. o + 5- Yz + Mz Yzz "
Yiz 2 % % = yii(zayayxayxxaa) ) (A15)

% | o2
2 T oy Y

[Ste94|.
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Extended infinitesimal transformations

For the invariance condition we need the extended group of transformations (A.13)
in terms of infinitesimal transformations, which means we need the transformations
of the derivatives in terms of infinitesimals. So we are seeking extended infinitesi-

mals 1, 1,,,, - -, that we can write

& = x+a&(2)+0(a?), (A.16)
) = y+an(y) +0(a?),

g = Yo +an,(9:)+0(a®),

Usz = You +an,, (Ja:) + O(a?),

The once extended infinitesimal 7y,) we get by substituting the infinitesimal trans-

formations (A.8) into the first extension of the group of transformations (A.14)

A_@_d(y+an+0(a2))_yx+a%+O(a2)_ dp d¢
AR T L

yﬁ_di_d(x+a£+0(a2)) = 1+ag_§+0(a2) = -4 }—l—O(az)’

[Ste94|. By this we get the once extended infinitesimal as

_ [@ _ d_f] ‘ (A.17)

Tt dx Yo dx

The twice extended infinitesimal 7,,) we get by substituting the infinitesimal trans-
formations (A.8) and the first extended infinitesimal (A.17) into the second extension

of the group of transformations (A.15)

s Yee F a4 0(a?)

Jop = dn,, dg
*odi 1+a% 4+ 0(a?)

B as 2
dzx Yuz dx} +0(@),

:ymm+a[

[Ste94|. This gives the twice extended infinitesimal as

dnm, d
mm]=[ C —5}- (A18)

dx T dx

Higher order extended infinitesimals are found similar, we refer to [BK89], or one of
the other references cited at the beginning of this chapter. From (A.17) and (A.18)

we get the explicit formulas

Ny = Tae T (ny + &) Yo — &y yg2c )
M) = Tz + 2Ny — Eoz) Yo+ (Myy — 2&ay) y?a — &y yg (A.19)
+ (ny - 2550) Yoo — Bgyyxymc .
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The extended infinitesimals are linear in the highest derivative of the dependent
variable (y.,) and polynomial in the other derivatives of the dependent variable,

where the coefficients are linear in the non-extended infinitesimals.

Since the derivatives have to be taken with respect to all variables, explicit formulas
for higher order extended infinitesimals contain more and more terms. However, this

laborious work is generally left to computers.

Extended infinitesimal generator

The twice extended infinitesimal generator is then given by

0 0 0

— — _ A.20
oy e 0y, T T Y (4.20)

0
X[m] = € a +n
|Can02|. With the extended infinitesimal generator we are able to find the Lie groups
of transformations which leave a given ordinary differential equation invariant. The
invariance condition for partial differential equations is derived similar and we refer
to the references given at the beginning of this chapter for it. In the last section of

this chapter we analyze exemplarily a second order ordinary differential equation.

Multi-parameter Lie groups and Lie algebras

In general a Lie group of transformations admitted by a differential equation depends

on more than one parameter

A

& = #(x,a) where =z =[v1,29,...,7,)", a=]a,a9,...,a;)]". (A.21)

If the parameters are independent of each other and if (A.21) satisfies the four group
axioms, then (A.21) defines a k-parameter Lie group of transformations |[BK89).
Here we restrict ourselves to one dependent and one independent variable x = [z, y]T.
To each parameter a, a non-extended infinitesimal generator X, can be associated
0% 0y
) T

X, =& % X with & (A.22)

ay B aa'r a=0 - aaT’ a=0

The vector space spanned by the k infinitesimal generators is called a Lie algebra,
if the infinitesimal generators have an additional structure which is called commu-

tator |[BK89]. The commutator of two infinitesimal generators is defined as

X1, Xs] = X (X2) — Xo (X)) - (A.23)
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Its result is again an infinitesimal generator and can be written as a linear combi-

nation of the k basic infinitesimal generators
[Xl,Xg] = Cp Xr s (A24)

where the coefficients ¢, are called structural constants [Olv93|. Commutators are
conveniently displayed in a commutator table, such as the commutator table in
figure A.2, and for that it is more convenient to write (A.24) as [X1, Xo] = C7, X,

so that the structural constants can be directly read off the commutator table.

As an example we consider the three dimensional Lie algebra where the infinitesimal

generators

0 0 0
Xlz— ngl'a, X3:£L'2a

span the basis of a vector space [Can02]. We compute with (A.23) the commuta-
tor [ X7, X] and get

o ([ d o (0 o 2 2
XX =~ (o2 ) e 2 ()= (L D)2 L = 2 2 X, (A25
X, Xe = 57 (xax) o (ax) <ax+$ax2> Tt "o ()

where the structure constants are C}, = 1 and C?, = C%, = 0. The other com-
mutators are calculated similarly. By this we get the commutator table shown in
figure/A.2. Note that second order derivatives are canceled out, so that the result is

again an infinitesimal operator.

A subspace of infinitesimal generators is

called a subalgebra if the commutators of X Xo X3
the subspace are the infinitesimal gener- X1 0 X1 | 2X,
ators of the subspace [BK89|. That is Xo | =Xy 0 X3
(X1, X5] = X; and X, X3] = X3 are sub- X3 | —2Xo | —X3| O

algebras, but [X1>X3] = 2X, is not. A Figure A.2: Commutator table of (A.25)
Lie algebra is called solvable if there exist

an inclusive chain of subalgebras [Can02|. The chain of subalgebras [[ X7, X5, X3] =
[X1, X3] = 2 X5 is not solvable, so the Lie algebra of our example is non-solvable.

Any two-dimensional Lie algebra is solvable. A zero subalgebra is always solvable.

Canonical variables

Lie group analysis is a method to solve differential equations analytically. Here we

discuss the method of so called canonical variables |[Ibr99]. By a suitable change of



A.1 Lie groups of transformations of a given differential equation 119

variables u(z,y), v(z,y) any one-parameter Lie group of transformations admitted

by a given equation can be simplified to a group of translation transformation

Uu = u+ta,

>
Il

v,

[BK89]. The new variables u and v follow from the solution of the system of linear

partial differential equations defined by

Xu=1,
Xv=0.

Once the canonical variables are found they can be used to simplify the original equa-
tion. The procedure is as follows: Find the infinitesimals, calculate the canonical
variables, and then transform the original equations to a simpler form by changing
the variables [Bau00).

In case of an ordinary differential equation of order two or higher this procedure will
reduce the order of the ordinary differential equation. In case of a partial differential
equation with more then two independent variables the result will still be a system of
nonlinear partial differential equations but in less independent variables. Repeated
application (if possible) then leads to an ordinary differential equation. The success
of the method depends on the symmetry groups (i.e. the infinitesimals) admited by
the differential equations. For further reading we refer to [BK89] [Can02] [Bau00).

How to find the symmetry groups of transformations of a differential equation

Now we show exemplarily how to find the symmetry groups (Lie groups) of trans-
formations under which a given ordinary differential equation is invariant. Using
this example we demonstrate the main steps of a Lie group analysis in the way it is
implemented in the software package of [Bau00|, which we use in the next section
to investigate the symmetry groups of the condensation problem. The example is
taken from [Can02].

For the ordinary differential equation

F($a Y, Yz, yxx) =Ygz = 0
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to be invariant, the invariance condition (A.12) with the twice extended infinitesimal
generator (A.20) has to be satisfied

Xpa) Yoz =1 = 0

This gives with (A.19)

New + (2 Ny — o) Yo + (nyy - ngy) yi — &y yg + (ny —2&) Yoo — 3 &y Yo Yuw = 0.

The last two terms are zero with y,, = 0. The remaining terms have to be zero
independently, because ¥, is an arbitrary function. This result in the following

over-determined system of linear partial differential equations

New = 0, (A.26)
2Ny — &z = 0,
Nyy —2&y = 0,

&y = 0,

which has to be solved for the infinitesimals to find the groups of infinitesimal trans-
formations under which the differential equation is invariant. One possibility is to

try an ansatz in the form of a third-order series

£ = a1+a2a7+a3y+a4:)s2+a5a:y+a6y2+a7a:3+a8x2y+agxy2+aloy3,
N o= by +byx+byy+biyt+bsry+bsyt+brad +bga’y+byry® + bioyP.

Substituting this ansatz into the determining equations (A.26) and solving them for

¢ and n by comparing the coefficients of x and y gives the infinitesimals as

£ = a1+agz+a3y+a4x2+a5a¢y,
n o= bit+br+by+azy+asy’.

The symmetry group of transformations defined by this infinitesimals is a projective

group and its Lie algebra is spanned by the one-parameter infinitesimal generators

0 0 0 0 0
T Ty, Xs=y5-, Xi=a"—+oy—,
x

X
! oz’ oz

0 0 0 0 0
X5:a7ya+y2a—y, XG:a_y’ X?ZIa—y, stya_y'

Amongst others this Lie algebra has the solvable subalgebra [X,, Xs] = 0, which

defines the Lie group of translation transformations (A.2)
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A.2 Scaling transformations and Lie groups of bulk equations

In this section first we discuss the similarities and differences between the generalized
dimensional analysis and the Lie group analysis. Then we make a Lie group analysis
of the bulk flow equations for condensation in a vertical tube, using a software

package implemented in Mathematica® |Bau00).

Scaling transformations of the dependent and the independent variables

Dimensional analysis is based on the invariance of an equation under a change of
system of units. Therefore any physical equation is invariant under a group of
scaling (dilatation) transformation applied to the dimensions of the variables. In
chapter [7 we denoted the value of a variable by a hat % and its dimension by a
tilde , * = 2. Here we the notation commonly used in Lie group analysis and
denote a scaling transformation by an exponential term & = e* z (with the identity

0

element & = e’ x = ).

Then scaling transformations of the dependent and the independent variables of the

bulk equations for condensation in a vertical tube are given by

A _ T o~ _ U

7 err, 9. = e,

z z ~ _ v

3 ez, 0, = e%u,,

t = e't, p = €ePp, T = e'T.

This scaling transformations we substitute in the simplified model equations of the
condensation problem for the vertical position of the tube in dimensional form,
compare (6.1) — (6.3) and (7.34) — (7.36). This gives us the following equations.

The continuity equation:

.10 5 OV
(or=r) = 2 (0—2) 272 _ A2
e 3 (rv,) +e 3, 0, (A.27)

the momentum equations:

o %+6(57,+62—F)UT%_‘_6(2@—5)1}2% _ -9l @Jre(@z—zf) nlo (7» avz) +9,

ot or 0z p oz pror or
o ap
(-2 _ A2
e P 0, (A.28)

and the energy equation:

A 0T o 0T sy 0T 5o A 10 oT
(T-t) ¥+ (or+T—F) il (0 +T-%) oL (1= A 2 M il ) A2
¢ at+e v 6r+6 ., T ° pcr or <Tar> (A.29)
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If the terms with an exponential factor in each equation are equal we can group
them together. For example, for the continuity to be invariant under a scaling

transformation (v, — 7) = (0, — 2) has to hold. Then we can write

(10 o,
i G ( [r v, + ! ) =0.

T r or 0z

Obviously the scaling transformations of the variables let the equation invariant if

the exponential term vanishes.

In a first attempt we assume zero gravity, that makes it easier to compare general-
ized dimensional analysis with Lie group analysis. Then in (A.28) the sum of the

exponents in each term has to be zero to let the equation invariant. The system of

linear equations we get from (A.27) — (A.29) is then given by

- . T
(a2r) | —1 1 1 -1 -
z
(A.28) 1 -1 -1 P
(A.28) 2 -1 | =0.
Uy
(A.28) 2 -1 -1 1 -
Uy
(A.29) 2 -1 1 i
L |7

The matrix is the same matrix as the lower right sub-matrix of B in section 7.4
except that the scaling variable for the temperature and the two gravity related
rows do not appear here. To solve this system of linear equations we proceed in the
same way as for a generalized dimensional analysis (as described in chapter 7). We
choose some of the scaling variables as base variables and collect the corresponding
columns at the right side of the matrix B = [K|R] such that rank K = rank B. We
choose U, = a as base scaling variable. After applying Gaufian elimination to B we

get the row-reduced echelon form of B as

Foz t v P Uz
_ X i -
1 —2a
rref B = 1 —a
1 3
i 1 —2a |

By this we found that the bulk equations of the condensation problem are invariant

under a two-parameter group of scaling transformations given by:
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r o= ezxr, U = e 21,,
2z e* z U, = e'v,, (A.30)
t = et p = e¥p, T = €T

Note that the scaling transformations (A.30) are valid also if we consider gravity in
the momentum equations. Then each exponent has to be zero itself, because the

gravity remains unscaled in the equations, g = €° g.

Lie groups of transformations of bulk equations without gravity

We again consider equations (A.27) — (A.29) with the assumption of vanishing grav-
ity, but now we analyze these equations by the method of Lie as described in sec-
tion/A.1. For that we use the software package MathLie [Bau00]. By this we discuss
some of the relevant groups of the condensation problem. The result of our Lie

group analysis gives the following infinitesimals

57« = %T, N, = _%Ura
62 = 2(a+b)Z+F1(t) ) Mo, = (CL‘I‘ b) UV, + % s (A31)
& = d+at, Ny = 2(a—i-b)p+Fg(iE)—pza;f;jl7

nr = e+cl.

This infinitesimals correspond to seven infinitesimal generators

Xo = fa—+2za—+ta——ﬁa—+vza—+2pa—,
2 or 0z ot 2 ov, o, op

Xy = z%+vzaa—%+2p§—p,

g

Xqg = §,

X = o=

X = RO GG 0

Xp, = Fg(t)g—p.

The infinitesimal generators X,, X;, X, define a three-parameter group of scaling

transformations, which is solvable, because [[X,, X3], X.] = 0. X; and X, define
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a translation transformation in time and in temperature. The translation group
of the dependent variable temperature represents the superposition principle which
holds for the energy equation |Can02|. The superposition principle states that for
a linear (differential) equation a linear combination of solutions is again a solution
of the equation. X gy defines an arbitrary time dependent translation in streamwise
direction, showing that the model equations are invariant for an observer at rest or
an observer translating or accelerating in streamwise direction [Can02]. Xp, defines

an arbitrary time dependent translation of pressure.

The three-parameter group of scaling transformations defined by X,, X, X, are

r = e2r, U = € 21, ,
3 el2a+b) o 9, = el@thy, |
t = e't, p = ettty T = eT

For b =0 (and with ¢ = b) this gives the scaling transformations (A.30) we derived
by generalized dimensional analysis, which shows the close connection between gen-

eralized dimensional analysis and Lie group analysis.

A.3 Lie groups of bulk equations together with outer boundary

conditions

In this section analyze the Lie groups of the bulk equations together with the outer
boundary conditions. First we find a similar three-parameter group of scaling trans-
formations that leaves the bulk equations invariant, and then we fix one parameter

such that also the boundary conditions admit this group of transformations.

Gravity

The infinitesimals which we get from a Lie group analysis for the model equa-
tions (A.27) — (A.29) of the condensate problem, differ from (A.31) (where we ne-

glected gravity) in the infinitesimals

The corresponding group of scaling transformations is called a special scaling group.

We come back to special scaling groups later.
(A.32)
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6, = (g+§)z+F1(t),
N, = < _%) UZ_I_%a

N, = ( —a)p+<%ag—b—a;£1>pz+F2(t).

Boundary value problem

Q|g Qo

Until now we did not mention how to treat boundary conditions in a Lie group
analysis. For a given boundary value problem to be invariant under a group of
transformations, not only the system of partial differential equations has to be in-
variant under the group of transformations, but also the boundary conditions have

to admit the group of transformations [BK89|.

For the inflow boundary condition (6.5)

V|, = U(r) (A.33)

r,z=0

to be invariant under the group of scaling transformations v, = e¢%v,, & = €' r,

and 2 = €* z,

~

Uz

=0 u(r)

must hold. The boundary itself has to be invariant under the group of transfor-
mations (i.e. Z = z must hold at the boundary), and the boundary condition has
to be invariant under the group of transformations (i.e. 0, = v, must hold at the
boundary) [BK89|. For a homogeneous boundary condition, such as the no-slip
condition (6.6) at the wall and the outflow condition (6.7)

ov,

r. =0, ,UZ}T:R,Z =0, and 5 =0, (A.34)

v
rz=L

to be invariant under the same group of scaling transformations the corresponding
dimensionless equations has to hold. In a homogeneous boundary condition the
exponential factors of the scaling group of transformations cancel out by division,

so that it is sufficient if the boundary is invariant.

The remaining non-homogeneous boundary conditions of the model equations of the
condensation problem are the temperature boundary conditions (6.8) and (6.9) at

the wall and at the interface

=T,. (A.35)
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Invariance of the outer boundaries

The outer boundaries are invariant under the group of scaling transformations de-
fined by (A.31) and modified by (A.32) if the invariance condition (A.12) applied to
the boundary is zero locally at the boundary. The invariance condition applied to a
variable gives the corresponding infinitesimal, e.g. Xr =&, or Xz = £,, so that the

infinitesimal at the boundary must be zero at this boundary.

We have for the inlet, the outlet, the wall, and the interface

€(z=1) = (%+§)L+F1(t)
&(r=R) = 3R,
&(r=1h) = Sh

The inlet is invariant under (A.32) if F7(¢) = 0. The outlet is invariant under (A.32)
if 17 = — <% + g) L. If we locate the coordinate system at the outlet boundary,
such that the outlet boundary is at x = 0 and the inlet boundary is at x = —L the
result is vice versa. That is, by taking the inlet and outlet boundary conditions into
account we restrict the invariance of the model equations under a change of frame

of reference to a simple translation, so that Fj is determined by a constant F; = j.

If we locate the coordinate system at the interface, then the interface is invariant
under (A.32). If we locate the coordinate system at the wall, then the wall is
invariant under this group of transformations. Because the model equations are given
in cylindrical coordinates the bulk equations are not invariant under a translation
in radial direction, only one boundary is invariant under (A.32) and we decide that
it is the wall boundary. We come back to the interface in section |A.4.

Invariance of the outer boundary conditions

The inflow boundary condition (A.33) is invariant under the group of transformations
if the invariance condition applied to the boundary condition is zero at z = 0, and
if the inlet boundary is invariant under the group of transformation. That is the
infinitesimal 7,, must vanish at z = 0 under the conditions imposed by &,(z = 0) = 0.
Then the infinitesimal 7, given by (A.32)

0= (-2
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must be zero, which is true for b = <.

The temperature boundary condition (A.35) at the wall is invariant under the group

of transformations if
nr(r=R)=e+cT

vanishes. This gives e = ¢ = 0.

By this the group of transformations defined by the infinitesimals (A.31) and mod-

ified by the infinitesimals (A.32) of the condensation problem given by the bulk
equations (A.27) — (A.29) and the boundary conditions (A.33) — (A.35) becomes
with F1 =j,e=c=0,and b= %!

é-T = %Tv Ny, = _%/UT7
& = az+j, N, = 0, (A.36)
& = dHat, n = apgz+R(t), nr = 0.

We see that the three-parameter group of scaling transformations reduced to a one-

parameter group. The infinitesimal generator of the scaling group is given by

0
+pgz—. (A.37)
v p

Special scaling transformations

To get the group of scaling transformations defined by (A.37) we compute p by a
Lie series (A.10)

a2

2!

a2
§+) =p+(e*—1)pgz.

p=pt+aX,p+ Xa(Xap)—i-...:p—i—ng(a—l—

This gives the group of scaling transformations as

r o= e2r, U = € 20, ,
Z ez, v, = v, (A.38)
t = et p = pt+(e*—1)pg=z T = T.

The scaling transformations defined by p are called special scaling transformations.

The additional term in p cancels out the gravity term in the momentum equation.?

2For the sum of pressure and gravity terms in (A.28) we get

_12p — _13(pt(e"—1pg=2) __ 1%, g
p52+ - p e® dz +9= peaaz+ea'
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A.4 Lie groups of the condensation problem including surface

tension

Finally we analyze the condensation problem defined by the model equations (A.27) —
(A.29) together with the jump conditions at the interface. Recall the jump conditions
(compare (6.1) — (6.16) and (7.45) — (7.48)). That is,

the mass jump condition:

oh oh
n=pl— —t+v,— |, A.39
m p( vr+at+v az) ( )
the normal momentum jump condition:
o
P=Pg= =7 (A.40)
the condition of free shear-stress:
ov
2 =0 A4l
or ’ ( )
and the energy jump condition:
oT
mAh =\—. (A.42)
or

Here we consider only the model equations of the condensate, so that we can as-

sume p, = 0.

Lie groups of transformations of the condensation problem (without surface tension)

At first we investigate the problem defined by the bulk equations (A.27) — (A.29)

plus the mass jump condition (A.39) and the energy jump condition (A.42), but

ignore the momentum jump condition. A Lie group analysis with MathLie gives the

infinitesimals

(A.43)
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& = 371, Moy = —50r,

& o= b2+ Rl n = (b—a)u.+%L,

& = d+at, N, = 2(b—a)p+(2a—b)pgz+Fz(t)—pzaazgl>
nr = ¢,
= gh+F(r).

Invariance of the interface

The interface is defined by F' = r —h(z,t) = 0 (compare section 2.3 and section 6.2).

That is, the interface is invariant under the group (A.43) of transformations, if 7 = h

at r = h. From this we get

a a

which gives F5 = 0.

Surface tension

Next we consider the normal momentum jump condition (A.40). For the normal
momentum jump condition to be invariant under the group (A.43) of transformations
the invariance condition (A.12) applied to (A.40)

g

o
X(p+ﬁ):np+nhﬁ

has to be zero at the interface. This gives

o 02F, ao
Tty = (ag— Yo )PZ+F2(t)+ﬁ:0,
which is zero if F5 = 0 and
0%F, ao
= . A.44
ot? ag+2hpz ( )

The second quotient on the right hand side is small (< 1le —4 for R134a and < le—3
for water, see appendix B) and can be neglected. Then we get F; by integrat-

ing (A.44) twice as

2

t
Rit) = 5=+ ft+j. (A.45)

which defines a non-uniform motion in streamwise direction and is called a special
Galilean boost [Ibr99).
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Not both

Remember that the boundary conditions were invariant under the group of trans-
formations for constant F;. This means that we can find a group of transformations
under which the condensation problem is invariant where either the momentum jump
condition or the inlet and outlet boundary conditions are invariant under the same
group of transformations, but not both. However, we can assume a homogeneous

inflow condition (i.e. 2= = 0 at 2 = 0) to proceed. A Lie group analysis for the

model equations (A.27) — (A.29) plus the jump conditions (A.39) — (A.42) including

the momentum jump conditions gives the infinitesimals

& = fr, e = g U
& = Saztat?+(ft+5), n. = —fv.+2at+f,
& = d+2¢, o= —EP

nr = ¢,

M = §—§;h-

Obviously here the coefficient b suppress the gravity terms in p. The corresponding

Lie groups of scaling transformations are with s = 5a g given as follows

7 ey 6= ety (A.46)
2 eﬁsz—l—%(ems—eﬁs) , U, = e 2%u,+e?%(e?*—1)gt,
t eSSt p = etp,

T = T,

h etsh .

By this we conclude our chapter about Lie group analysis. We related Lie group
analysis to generalized dimensional analysis and analyzed the groups of transforma-
tions admitted by the model equations of the condensation problem. We discussed
the groups of scaling transformations admitted by our model equations, which are
special scaling transformations. We demonstrated how to deal with the boundary
conditions and the interface conditions in terms of a Lie group analysis. The next
step is to construct an analytical solution of the condensation problem using the
symmetry groups of the condensation problem by first transforming the PDEs into
ODEs and than into algebraic equations, as outlined in section A.1. This is beyond
the scope of this thesis. However, by this appendix we accomplish the necessary

basis for this.



Appendix

Material properties and dimensionless

numbers

In this chapter the material properties, measured values, and dimensionless numbers

of water and of R134a are given. We use the SI unit system.

B.1 Water

[Fie03] measured the following quantities (vapor has saturation temperature):

vapor temperature T, = 31898 K (=45.83 °C)
temperature difference T, —T, =~ b5 K T, not measured
pressure p = 10 k Nm™2 (= 0.10 bar)
mass flux M, = 005 m kgs' (=3.0gmin!)
M, = 067 m kgs' (=4.0gmin™!)
film thickness o < 0.1 m m
The material properties of water are at T, and p:

density o = 989.9 kgm™3

pg — 0.068 kg m™3
dynamical viscosity g = 060 m Nsm™ (N=kgms™?)
L=vp pg = 1629 m Nsm™?
kinematical viscosity v, = 0.606 x4 m?s!

v, = 164.6 p m?s!
thermal conductivity A, = 0.637 WK 'm™ (W=Js'=kgm?s™?)

Ag — 1998 m WK'm™!
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specific heat capacity q = 417 k Jkg'K!
latent heat of evaporation Ah — 2393 k Jkg!
surface tension o — 6878 m Nm!

With d; = d — 26, = (7 — 0.2) mm the characteristic length and the characteristic

velocity are: d
length D= WAcli- = 0.1 m m
velocity U = %{—l = 0.023 ms~! s
The dimensionless numbers used in chap- d;
ter 7 are then:
Reynolds  Re = =—7— = 3.90 (= ,u7rd,~)
U2
Froude Fr = = = 0.545
gD
Prandtl Pr = % = 394
Peclet Pe = RePr = 154
_Cp Tv o __ Cp AT _
2
Weber We = pDU = 0.793e-3

o
NuRelt Nu = %

The quotient of film thickness and tube length is

D 01e3m
g_f_705m —0.26—3.

B.2 R134a (1,1,1,2-Tetrafluorethan)

|Fie03| measured the following quantities (vapor has saturation temperature):

vapor temperature T, = 297.15 K (=273.15 + 24 °C)
wall temperature T, — 294.15 K (T, — T, = 5K)
pressure p = 065 M kgm™2 (=6.5 bar)
condensate mass flux M, = 0.367 m kgs! (=22 gmin™!)

film thickness (vertical tube) ¢ = 0.1.02 m m
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According to Tillner-Roth the material properties are at 7T, and p:

density

dynamical viscosity

kinematical viscosity

thermal conductivity

specific heat capacity

thermal diffusity

latent heat of evaporation

surface tension

Pl
Pg
Hi
Hg
Y

Vg

i
Ag
C
Cq
ap
Qg
hy
hyg

Ah

o

198.70

= 178.72

1210
31.39

12.10
0.164
0.385
82.98
14.35
1.421
1.025
48.26
445.9
233.1
411.8

~ = B E T ® B X

E = = = B B

8.21

kgm™3
kgm™3
kgsm 2
kgsm ™2

m?s!

m?s!

WKm™!
WKm™!
Jkg 1K1
Jkg 1K1

m?s!

m?s!
Jkg™!
Jkg™!
Jkg™!

Nm™!

With d; = d —26; = (7 — 0.2) mm the characteristic length and the characteristic

velocity are:

length

velocity U:pij‘[ll_l =

— Drd;

D=4 _ g1
0.170

m m

ms

The dimensionless numbers are then:

Reynolds
Froude

Prandtl
Peclet

Stefan

Weber

Re:#

Pe — RePr

SU(T3,) = e
2

85.25

19.9

3.40
290.1

2.36

0.289

1

(-
pd;

St(AT)

)

The quotient of film thickness and tube length is again

D
E = — =

L

0.1e-3m
0.5m

=0.2e3.
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