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Zusammenfassung

Die in dieser Arbeit behandelten Modelle kbnnen aus der Sicht von bestimmten Polymer-
ketten motiviert werden. Das sind langgestreckte mikroskopische Objekte, die aus einzel-
nen Molekiilen, sogenannten Monomeren, bestehen. Mathematisch kénnen diese Modelle
durch sogenannte self-avoiding walks beschrieben werden. Allerdings sind diese Modelle
dusserst kompliziert zu handhaben, vor allem wenn eine zuséitzliche Wechselwirkung mit
der Umgebung ins Spiel kommt. Daher betrachtet man iiblicherweise das vereinfachte Mo-
dell der gerichteten walks. Vom mathematischen Standpunkt her erlauben die gerichteten
walks einen weitreichenderen Einsatz von Techniken und fiihren auf interessante und her-
ausfordernde Fragen.

Wir betrachten ein (1 + d)-dimensionales gerichtetes Modell einer Polymerkette, gegeben
durch i — ¢; € R?, also die Position des i-ten Momomers. Das Polymer unterliegt sowohl ei-
ner Wechselwirkung mit sich selbst, als auch einer Wechselwirkung mit der Umgebung. Die
Umgebung iibt dabei eine anzichende Wirkung aus und wird durch einen m-dimensionalen
Untervektorraum (Referenzebene) représentiert. Beim Kontakt mit der Referenzebene er-
hélt das Polymer einen zusétzichen Bonus € > 0. Die Interaktion zwischen den einzelnen
Monomeren wird durch den Hamilton-Operator mit Nullrandbedingungen gegeben

a N+1 ﬁ N
M1 v (015 oN41) =5 > Vi(Vei) + 5 > Va(Ag)
=1 1=0

Dieses Modell nennen wir das Pinning-Modell. Wir studieren hier insbesodere das Lokalisie-
rungsverhalten des Polymers an der Referenzebene. D.h., wir fragen, ob bei wechselnder An-
ziehungskraft des Parameters ¢ ein Phaseniibergang zustande kommt. In diesem Falle gédbe
es einen kritischen Wert e, so dass fiir € > ¢, die Polymerkette eine positive Kontaktdichte
an der Referenzebene besitzt (Lokalisierung). Andererseits ist dies nicht der Fall fiir € < e,
(Delokalisierung). Dieses Verhalten ist zusétzlich abhéngig von der Wahl der Parameter
a, 3 und der Interaktionspotentiale V1, V5. Zunéchst studieren wir das (1+1)-dimensionale
Pinning-Modell mit den typischen Gaufschen Potentialen V;(n) = Va(n) = n%. Dieses Mo-
dell erweitern wir dann auf allgemeine Interaktionspotentiale mit sehr schwachen Bedingun-
gen an Vi und V5. Es stellt sich heraus, dass beim Vorhandensein der Gradienteninteraktion
immer ein trivialer Phaseniibergang (¢. = 0) besteht. Dies ist insofern bemerkenswert, als
dass fiir @ = 0 ein echt positiver kritischer Wert bereits bekannt ist. Weiterhin untersuchen
wir das Verhalten des Pinning-Modells in der N&dhe einer undurchdringlichen Membran
(Wettingmodell). Hier fluktuiert das Polymer oberhalb der Referenzebene, die einen repul-
siven Effekt ausiibt. Wir zeigen, dass in diesem Fall ein echter Phaseniibergang stattfindet.
Im Weiteren betrachten wir (1 + d)-dimensionale Modelle mit Gaufschen Potentialen. Hier
hat man zusétzlich die Wahl an unterschiedlichen Referenzebenen, die eine entscheidende
Rolle fiir das Lokalisierungsverhalten darstellt. Schlieflich interssieren wir uns fiir den Pha-
seniibergang und dessen Ordnung an dem kritischen Wert e.. Hierbei spielt die Regularitét
der sogenannten Freien Energie eine wichtige Rolle.
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0 About this work

0.1 Motivation

We start our motivation from the point of view of polymers. This are chain-like molecules
build up from small molecular units (monomers), which are connected by strong covalent
bonds. There are several examples of matter consisting of polymers like: plastic, rubber
or soap and some more complicated biopolymers like: cellulose, DNA or filaments, which
form the cytoskeleton of cells. The variety and numerous applications of these objects
interested originally chemists, biologists, physicists and material scientists. A situation of
particular interest is the bundling of two (or more) polymers. For instance the stability of
cytoskeletons of cells heavily depends on the bundling and number of interacting polymers.
The second example is the so called DNA denaturation, which can be used to analyze some
aspects of DNA. Here the two strands of the DNA are nothing else than polymers consisting
of nucleotides as monomers. Another situation is the adsorption of a polymer on a planar
substrate, for instance a polymer attracted to a membrane.

polymer

v

attractive region

/

membrane

Figure 0.1: Polymer fluctuating nearby an impenetrable membrane with attractive regions.

Recently also mathematicians showed an active interest in a stochastic description of poly-
mers. In order to develop such a probabilistic model for a polymer (random polymer) on
an abstract level we have to extract some crucial properties. The following certainly belong
to it

e stochastic spatial distribution

e self-avoidance

e interaction within the polymer

e interaction with environment .
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Whereas those properties should be clear, it is worth to make a comment on the second
point. The self-avoidance refers to the property of excluded-volume, which means that one
part of a long chain molecule can not occupy space that is already occupied by another
part of the same molecule. This seems to be trivial from physical point of view, however
mathematically it causes a lot of trouble. The reason is that such a random polymer
can be naturally described by self-avoiding walks. However, this models are eminently
complicated to approach, especially when an interaction with the environment has to be
taken into account. Instead one considers usually the so called directed walks. Here an
additional deterministic component for the direction is introduced to obtain artificially the
property of self avoidance. From the mathematical point of view the directed walks enable
a much more farreaching analysis and application of technics and lead to interesting and
challenging questions.

In this work we consider a (1+4d)-dimensional direct model for a polymer chain, given
by i — ¢; € R? ie. the position of the i-th monomer. The polymer is subject to an
interaction with itself as well as an interaction with the environment. The environment has
an attractive effect and is represented by an m-dimensional subspace (reference-plane). By
touching the reference-plane the polymer receives a reward € > 0. The interaction among
individual monomers is given by the Hamilton operator with zero boundary conditions
o N1 3 N

M- vy (015 9N41) = 5 > Vi(Vei) + 5 > Va(Ag;) .
i=1 i=0

We call this model the pinning model and study particularly the localization behavior of
the polymer in proximity of a reference plane. In other words, we are asking if the polymer
sticks close to the reference plane (localization) or fluctuates away from it (delocalization).
This can be seen as a phase transition, which occurs by modifying the force of attraction
in the parameter €. In this case we would have a critical value e., such that for ¢ > ¢,
the polymer chain has a positive contact fraction at the reference plane, i.e. localization.
On the other hand it would not be the case for ¢ < e, i.e. delocalization takes place.
This behavior addionally depends on the choice of the parameters «, 6 and the interaction
potentials Vi, Va. At the criticality the behavior has to be investigated separately and is
closely connected to some regularity properties, which depend on the model. Furthermore
we study also the so called wetting model. This corresponds to the situation in figure 0.1,
where addionally a hard wall (membrane) is present and the chain is not allowed to enter
into it.

From the physical point of view the models described above appear also in context of
semiflexible polymers, cf. [19]. Here the bending rigidity of the polymer can be expressed
in terms of the persistence length L,. It is known that on length scales L < L, there
occurs a semiflexible behavior, i.e. a rigid straight shape dominates. On the other hand
on length scales L > L, large polymers appear to be flexible. Another example appears
for instance in [24], here it serves as a model for interacting surfaces. The parameter «
denotes the lateral tension and S the bending rigidity of some membranes. For just two
interacting membranes there is a rigidity-dominated regime for sufficiently small scales
and a tension-dominated regime for sufficiently large scales. In the last case the bending
potential Vo becomes irrelevant.
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In mathematical papers the model for a flexible polymer (5 = 0) is well known and has
been studied by various authors, cf. [1],[7], [12], [13], [16], [18], [20]. The case of the pure
Laplacian model (« = 0) has been studied by Deuschel and Caravenna in [10] and [11] as a
model for semiflexible polymers. In [11] also results on scaling limits have been obtained.

The purpose of the thesis is to combine both cases and study a new model with a mixed
gradient and Laplacian interaction. The emphasis lies on localization and delocalization
phenomena and we present new results in this context, cf. outline of the thesis. So far
I am not aware of authors who studied the particular model in this thesis in any way.
Nevertheless, [10] is the most important paper for the methods developed in this thesis.
Coming back to the physical example above, a semiflexible polymer which is much longer
than its persistence length L, behaves effectively as a flexible chain of loosely connected
rigids segments of size Ly, cf. also [9]. This behavior can be recovered in our simulations
in chapter 1. However, observe that in our analysis we will take N — oo and therefore the
flexible behavior should prevail. This is indeed the case, as will be shown later.

0.2 Localization in terms of the free energy

In order to capture the phenomenon of localization and delocalization described above, one
is inherently interested in a quantity that corresponds to each situation. Indeed, a fluctu-
ating polymer in the proximity of an attractive region (and not only) can be described by
the so called free energy F'. This quantity should therefore reflect the behavior of “long*
polymers in dependence of all relevant parameters of any kind of involved interaction. How
could one define such an F' 7 Since we are dealing with an object that is motivated from
statistical mechanics, it is known that the so called partition function plays an important
role in this context. The partition function is just a normalizing quantity for the Gibbs-
measures and so in discrete lattice-models it represents all the possible configurations of
the corresponding model. Therefore it fulfills the demand on the free energy to capture
the whole system and one can expect a relationship of both quantities.

Let us be more precise and relate the situation described above to the specific models that
we study in this thesis. Throughout the thesis the spatial distribution of polymer-chains
o) = Lo, ..., on_1} € RN~ of finite length N — 1 is basically given by measures of

type

N—-1
P. n(dp™) = eXp(_ZNy(N))) IT (edo(der) + dii) (0.1)
& i=1

We remark at this point that this model will be modified in various ways in the following
chapters. There we will explain the corresponding model in detail. Nevertheless it is worth
to consider first (0.1) to getting started and relate some important properties. To explain
the model briefly we denote by dy; the Lebesgue measure on R and by dg(.) the Dirac
mass at zero. Moreover the Hamiltonian Hx(.), which will be specified later, describes
the self-interaction of the chain. This interaction determines the shape of the free model
(¢ = 0), i.e. when no external impact is present. The parameter £ > 0 is called pinning
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parameter and reflects a force that tries to pull down the chain towards the xz-axis, which is
also called the defect-line. In that sense we are dealing with a directed model that fulfills
the properties of a polymer being attracted to some regions in the environment, confer
section 0.1.

We return to the importance of the partition function, that we have already mentioned in
the beginning of this section. In our case it is the normalizing quantity

—H (N)yy N1
Z.N ::/ 0 ZN((p ) [T (edo(dei) + dgi) -
RN—l 87N i1

To capture the competing behavior of the fluctuations of the free model and the interaction
with the environment, which is represented by pinning to the defect-line, we introduce
finally

Definition 0.1 (Free energy)

1 Z,
F(e):= A}iinooFN(e) and Fn(e) = Nlog <Z;Z> ,e>0.

The free energy F' is well defined by a super-additivity argument, cf. (0.3) for existence in
our models. In the following we will give some properties of the free energy and explain
why this quantity is related to localization. For this purposes we define the number of
contacts to the defect line as

ty = #{k € {1,.., N} | oy = 0} .

Observe that under P, y it holds £x > 1, since ¢ = 0. By Lemma 5.3 and its proof we
know that in our case the distribution of 5 can be written as follows

ek

ZSN

)

]P&N(EN =k+ 1) =

N-1
Rpny andso Z.ny= Z ek Ry N - (0.2)
k=0

Setting now Fy(t) := Fy(e) and F(t) := F(e'), t € R, it is a simple computation to
obtain

Fuo(t) = %EPM[ZN ~1] and  Fu(t) = %varpet‘N[eN —1]>0.
Therefore Fy(.) is convex and so is the limit F(.). Hence F(¢) = F(loge) is continuous,
as long as it is finite. We have scaled the free energy in such a way that at the origin the
free energy of the free model (¢ = 0) is zero. Let us remark an obvious, but important
property

ZE,NZZO,N — F(E—I)ZF(O):O.

Since Z. n is non-decreasing in ¢, the same holds for F'. So one could ask whether there
exists an e, such that F(e) becomes strictly positive for all € > .. Indeed, we will see
later on that this is true and hence the following definition is meaningful.
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Definition 0.2 The polymer measure P, y is called
e delocalized, if e € D:={e > 0| F(e) =0} and
o localized, if e € L :={e > 0| F(e) > 0}.
The point €. := sup{e | € € D} is called the critical point.

We will speak of a (proper) phase transition, when e, is strictly positive. Otherwise, if
€. = 0, we call the phase transition trivial. However, due to the monotonicity and conti-
nuity of F' at the moment it is only clear that 0 < e, < oo and that localization can only
occur if € > .. It seems that speaking of phase transition just by distinguish whether F’
is strictly positive or zero is quite high-toned. Nevertheless, we will see now that there is
more behind it.

To this purpose we recall a fact from [10] that also fits in our setting. Namely, the rela-
tionship of F' to the path-behavior of the polymer. We remark that in all our models F
will be differentiable for every e # e, hence in this case we can set d. := eF’(g) > 0. Now
for every x > 0 and K > 0 we can estimate by the Markov-inequality

Pon(On/N > d. + K) < e ?@HONE, [eﬂN} . (0.3)

We will show that the r.h.s. decays exponentially in N. Observe now that by applying
(0.2)

N—1
1 1
108 BR[| = 1 log (Z eEEDIP, N (ly = ki + 1)>
k=0
N-1
1 1 ZO N Zexs N)
= —log|e* ") R =—1lo (ez . :
N & < Z.N kZ:O( ) k’N> N 8 Z.N ZoN

— F(e%e) — F(e) .

N—o0
Further on, by setting h(z) := F(e"¢) and performing Taylor-expansion in z = 0
h(z) = h(0) + 1 (0)(z — 0) + o(z?) = F(e) + (e*cF'(€%€))|p—o(z — 0) + o(x?)
= F(e) +exF'(¢) + o(2?®) = F(e) + dex + o(x?)

and therefore

1
lim N log (e‘x(dsJ“K)N Ep. [e””zND = —2(d. + K) + dex + 0(2®) = —zK + o(2?) .

N—oo

Consequently for every K > 0 there exists a constant ¢ > 0 such that for all N € N
P.n({n/N > d. + K) <e N .

Analogously one can show P, (¢ /N <d. — K) < e~ N Recall that this holds for each
€ # &, since we already mentioned that here d. is well defined. Consequently we can
distinguish between two cases:
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a) If ¢ < e, then d. = 0 and for every K > 0 there exists an ¢ > 0 such that

P.n(Uy/N>K)<e ™™ | foral NeN. (0.4)

b) If € > e, then d. > 0 and for every K > 0 there exists an ¢ > 0 such that

P.n({n/N —de| > K)<e ™ | forall NeN. (0.5)

Although at the critical point F(e.) = 0, it is not at all clear which of the cases above
should be the right one here. We defer this question to chapter 5, where the differentiabil-
ity at the critical point is of special interest.

Case a) and b) tell us in which way the paths behave on the basis of the contact fraction
N /N. In case a) the typical paths touch the z-axis just in a sub-linear way, i.e. o(NN)-
times. Whereas in case b) the typical paths touch the x-axis linearly with the contact
fraction d.. Thus, except at criticality, the differentiation between F(¢) = 0 or F(g) > 0
diplays the crucial difference also in this paths-sense and in this context the term of phase
transition in €. should be justified.

As we have already mentioned, the model (0.1) will be modified in different directions.
Nevertheless, exactly the same considerations as above can be made for all our models
that we treat in the thesis. Also the definitions of localization/delocalization and the free
energy transfer directly to the extended models choosing the appropriate partition function
Z. N

0.3 Existence of the free energy in our models

Although the existence of the free energy in our models will be implicitly ensured by its
construction, we will give here the classical approach on how to prove that fact. It is
usually provided through a supper-additivity argument. Let Z. y be a representative for
all partition functions of the mixed model that we consider in this thesis. First of all by
expansion of the product measure (1.22) and restricting only to A = {N, N + 1} we obtain
forall N,M > 1

ZoNtM+1 > €22 NZe
which, by fixing ¢ and setting Zy := Z, y_1, is equivalent to Znrypr > e2Zni Zy . Here
we have set N’ := N 4+ 1 and M’ := M + 1. Therefore we have
log(Zn4m) > 2log(e) + log(Zy,) + log(Zy,) - (0.6)

Setting Z!, := log(Z,) + 2log(e) by a well known Lemma of Fakete the limit of Z] /n
(n — o00) exists (possibly infinite), since by (0.6) we have the super-additivity condition
Z)om = Z), + Z),. Hence of course also

. 1
lim N log Z. N

N—oo

exists for all € > 0. The limit for € = 0 will be investigated separately in later chapters.
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0.4 Some notations

In the following we give some notations that are frequently used throughout the thesis.

In case of existence, let us define for sequences a,, and b,, the notation

an

an =o0(by) <= lim — =0,
n—oo bn
anp =0(by,) <= lim — =c, |c] #0 (and |c| # o)
n—oo bn
ap ~ by <= lim — =1,
n—oo

and furthermore for two positive sequences {cy, tnen and {dy, }rnen
. Cn
cp = d, <= lim — >c¢ ,forsomec>0

and

cp =d, <= lim <¢ ,forsomec¢>0.

The number-sets we use are Z* := {0,1,2,...}, N:= {1,2,...} and R* := [0,00). For t € R
the lower (upper) integer part |¢]| ([t]) is the largest (smallest) integer smaller (larger) or
equal than t. Sometimes we use in calculations constants in a wide sense, meaning that a
constant represents just a constant expression, independently of its value. This happens
usually in long calculations and by that we simply avoid an introduction of numerous
constants.

Let us denote as usual by B(R) the Borel o-field of R. We call a function K : R xB(R) —
R* a o-finite kernel, if

o for every x € R the K,  is a o-finite Borel-measure on R and

e for every A € B(R) the K 4 is a Borel-measurable function.

Let K, G be two o-finite kernels, then we define

the composition by (K o G)g 4y 1= szR Kya:Gay »

on

the n-fold self composition by

z,dy
e the 0-fold composition by K;Ody := 0,(dy) and
e the sum of compositions (1 — K);by =3 o 10, -

We consider also o-finite kernels that additionally depend on n € Z*, ie. Kggy(n).
Analogously for two kernels K_(.),G. (.) of this type we define

5

e the convolution by

n

(K 5+ Gaayn) = Y (K 0 Gln = oty =Y [ Koae@)Goayn =)
i—0 7 2€R

=0
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e the m-fold self convolution of Ky qy(n) by K;'; (n) and
e the 0-fold convolution by K;?dy := 6z(dy) (7)1 =0y

Let ¢, be a positive sequence and < € {~,=<,>}. In order to capture the asymptotical
behavior between kernels K (.),G. . we denote by
Gac,dy GZ‘,B

< K%B(n) =
Cn Cn

,as n — 00

nydy(n) =

for every x € R and every bounded set B € B(R).



0.4 SOME NOTATIONS 19

Outline of the thesis

The thesis is structured in the following way:

In chapter 1 the (14 1)-dimensional pinning model is studied as a first model with gradient
and Laplacian mixture type interaction and Gaussian potentials. In the beginning we
consider some simulations for the free model in dependence of o and 3. The parameters
tune the strength of influence that each potential contributes. Then we investigate the
connection of the free model to some integrated Markov chain and treat in detail the
representation of the density for the two last steps of the chain. We then prove a trivial
phase transition (¢, = 0) for this model. The approach via Markov renewal theory is based
on ideas developed by Deuschel and Caravenna for the Laplacian case in [10]. We also
extend the idea of [7] to present an alternative way to obtain a trivial phase transition.
Finally we make a comment on the critical absence time from the defect-line for a model
with modified pinning strength.

Chapter 2 is devoted to studying the pinning model with general interaction potentials. It
turns out that even for strong potentials of the Laplacian interaction the transitions stays
still trivial. This is remarkable in view of results in [10], where for the pure Laplacian
model a (non-trivial) phase transition has been proven. This result has been obtained
during my stay in Padova supervised by Francesco Caravenna. The proof is based on a
lower bound for the free energy and requires sufficient estimates on the inter-arrival law.

The Gaussian wetting model is treated in chapter 3. Here we introduce the additional effect
of a wall, which the chain is not allowed to cross. This effect is of repulsive character and we
can indeed prove that there is a phase transition with strictly positive critical point. The
approach here is similar to that in chapter 1, however we give an explicit representation for
the Markov chain, which simplifies some arguments. This representation is mainly used to
handle the so called entropic repulsion that is crucial for the investigation of this model.
Here we use a “decoupling-argument” that allows us to extract a random walk from the
integrated Markov chain. This argument is based on Gaussian properties and is the reason
why we cannot extend the results to non-Gaussian potentials in that way.

In chapter 4 we consider higher dimensional Gaussian pinning and wetting models. Here
we have the additional choice in the dimension of the pinning subspace, which alters the
localization behavior substantially. We treat heavy and weak pinning spaces (referring
to the possible extremal dimension of the pinning subspace) and then a general pinning
subspace, which can be seen as a combination of both. Our analysis yields the same
results as in the pure gradient case [7]. The approach is similar as in chapter 1 and our
main concern will be compactness criteria of some integral operators. A comment on the
(1 4+ d)-dimensional Laplacian model will be also given in this context.
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Finally in chapter 5 we study the regularity of the phase transition in the critical regime.
It turns out that higher dimensional models display a discontinuity, if considering the
fraction of times the Polymer touches the defect-subspace. For the weak-pinning models
we have proven a first order phase transition for pinning in d > 5 and wetting in d > 3.
Moreover the transition is of second order for the pinning model in d = 3 and d = 4.
Under some assumptions we have treated also the remaining lower dimensions. Similar to
[10], the investigation of the first moment of the double-contact process in the model at
criticality is the key in the proof. At the end, in the Appendix we give some calculations
and technichal results needed in the thesis.



1 Gaussian pinning model

1.1 Introduction and description of the model

We consider a (1+1)-dimensional model, i.e. a directed model for a linear chain, which
is described by its configurations {(n, ¢n)}o<n<n. The chain is randomly distributed in
space and undergoes an interaction with the environment and itself. Thus, it can be seen
as a so called random polymer and we want to study its spatial distribution as a function
of its length and its interaction parameters. The selfinteraction consists of a Gradient and
Laplacian mixture type. Whereas the interaction with the environment will be reduced to
a 0-pinning, i.e. the chain gets a reward € > 0 by touching the x-axis (defect-line). We are
going to discuss the localization behavior, which was already introduced and motivated in
chapter 0. As we will see this behavior is substantially different, depending on the param-
eters a, § and € > 0.

We are going to explain the model in more detail now. For j, k € Z with £k — j > 2 and
¢ € RF=I*1 consider the Hamiltonian

Hya () =M (0) + 12 ()
where
. k
Hbi(e) = > Vi(Ves)
i=j+2

k—1
Hi () = Zlvzwi) .
i=j+

The interaction potentials Vi(n) = aV(n) and Va(n) = BV (n) are defined by V: R — R |

n + n?/2, for some later in Remark 1.4 specified admissible constants a, 3 that are fixed.
Furthermore V and A denote the discrete gradient

Vo := on — on-1
and discrete Laplace operator

A(pn = thn+1 — V(Pn = Opt+1+ Pn-1 — 2@” .
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In this chapter we are interested in the following pinning model, which is given by the
spatial distribution on RV—1 :

exp(—H—1,n+1)(¥)) =
IP(—:,N(d(p) = z H (550((1%) + dgpl) 3 (11)
&N i=1
where the Hamiltonian can be written now in the form
o N+1 3 N
Hii,n+1) (=15 oN41) = B Z Vi) + 5 Z Agi)?
i=1 =0

and for simplicity we impose zero boundary conditions, i.e.

p-1 =90 =¢N =¢N+1=0.

Furthermore, the remaining quantities in the pinning model (1.1) denote

e ¢ > ( the pinning parameter

e Jp(.) the Dirac mass at zero

e dy; the Lebesgue measure on R

e Zj n the normalization constant (partition function).
The interaction with the environment is reduced to a J-pinning at the x-axis and so the
chain is rewarded by touching this defect-line. We remark that this model undergoes two
opposite effects, the entropy and the energy, represented by the self-interaction and the

0-pinning. Both effects can be strengthened or weakened by varying the parameters «, 3
and e.

pinning model

@i

Figure 1.1: This is a sketch of the pinning model P, . The polymer is represented by the
heights ¢; of monomers, which are attracted to the interger-sites at the x-axis. The black
points denote the contacts to those sites. Of course, here it is possible for the polymer to
overcome the defect line without getting any reward.

1.2 Free model in dependence of self-interaction parameters

As a first step it is worth to gain a feeling on how the free model (¢ = 0) behaves by
choosing different self-interaction parameters o and 3. Let us first take a look at some
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simulations. For the sake of convenience, except in figure 1.2, we have chosen free boundary
conditions on the right.

MN=50, b.c.: phi_=1, phi_=0, phi =3, phi_ =0

1

-10 a 10 20 30 40 S0

Figure 1.2: We have simulated here five minimizers (most favored paths) for the model
(1.1) with the boundary conditions ¢_1 = 1,0 = 0,on = 3, on+1 = 0 and N = 50. It is
clear that for zero boundary conditions all minimizers would be = 0. The colors correspond
to(a=1,=0),(a=1,0=1),(a=1,5=10), and (o =0,0=1).

Here we can see the crucial difference between the gradient case (5 = 0) and the Laplacian
one (o = 0). The gradient model (blue) favors a direct path without carrying about
smoothness. In contrast, the Laplacian model (red) is rigid to bendings and prefers a
smooth path. In between we have fixed a and by increasing [ the path of the Laplacian
model can be approximated. Therefore one can speak (like in physical literature) of flexible
polymers in gradient and of semi-flexible polymers in the Laplacian case.

50
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M=10*, alpha=1, beta=0,10,10*10°°
0%

2000 4000 6000 8000 10000

Figure 1.3: This is a simulation of some trajectories of Pgx with free bound-
ary conditions on the right and N = 10% The colors correspond to
(a=1,8=0), Jao=1,3=10",(a=1,8=10°) and (a = 1,3 = 10).

The blue trajectory, corresponding to the gradient model, is the most jagged one. In fact,
we will see later that it is nothing else than a random walk trajectory. Now, by increasing
3 the trajectories become smoother, cf. the red one with 8 = 105. We didn’t simulate
a trajectory of the Laplacian model in the same figure, since this takes place on different
height-scales, as can be seen by the next picture.

12000
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# 10 M=10000, alpha=0kbeta=10%
T T

u} 2000 <000 [=1u]ulu] ={u]ulu] 10000 12000

Figure 1.4: This is a simulation of twelve trajectories of IPg ; with free boundary conditions
on the right and N = 10%. The parameters are o = 0, 3 = 106.

| M=10000, alpha=1 bheta=10% |I
150 T T T T T

100

S0

-50

-100

-150

-200

=50 1 1 1 1 1
n] 2000 4000 |={u]a]u] j={ulu]u] 10000 12000

Figure 1.5: This is a simulation of twelve trajectories of P ; with free boundary conditions
on the right and N = 10*. The parameters are o = 1, 3 = 10°.
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At a first glance the comparison of figure 1.4 and figure 1.5 seems to suggest a similar
smoothness behavior. However, observe that by the height-range one could conjecture
different behavior on variances of ¢x. In figure 1.4 one can read off Var(¢y)~ N3 and in
figure 1.5 Var(on)~ N. These is indeed true, as will be seen later on.

1.3 Related models and the main result

Some natural questions arise in the context of the competing behavior between entropy
(fluctuations of the free model) and the energy (interaction with the defect-line):

Q1: Is the energy large enough to pin the chain at the x-axis ?
Q2: Does a critical point exist, where below entropy and above energy prevail 7

It is known that the model behaves dramatically different for the two extremal cases a = 0
and 3 = 0. For instance, the gradient case has been studied by [7]| for Gaussian potentials,
cf. also [1], [12], [13], [16], [18], [20]. Whereas the Laplacian case was investigated for
general potentials in [10], which is the most important paper for the methods developed in
this thesis. In the gradient case the phase transition was proven to be trivial and for the
Laplacian model it is proper, meaning €. > 0. Consequently one is immediately inclined to
ask whether there are some critical values for a and § where the model changes its behavior.
Recall the meaning of localization/delocalization in chapter 0 and the free energy

1 Ze N
F(e) = lim —1 - >0. 1.2
0= Jim_ylog (22) . e>0 (1.2

We were able to prove the following localization result for the model (1.1)

Theorem 1.1 (Localization for the pinning case) For every «, 3 > 0 the model P, n
exhibits a trivial phase transition . = 0, i.e.

D={0} and L =(0,00).
Furthermore, on L the free energy is real analytic and

F(e) ~loge ,e—00.

In terms of localization the model reflects the behavior of the gradient model, as was
mentioned above. It is remarkable that even a huge 8 > 0 in the Laplacian part has
no influence on change in the localization behavior. This shows a very strong impact of
the V-interaction in our model (1.1). Therefore in the limit N ' co our model behaves
effectively as a flexible chain, although on small scales it is rigid to bendings. Thus, it can
be called also semi-flexible, cf. section 0.1.
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1.4 Construction of a Markov chain

1.4.1 The construction

First of all we would like to describe the simplified situation where no pinning is present,
i.e. the free model Py ;. We will see that there is a connection to a specific Markov chain,
which will be constructed in what follows.

For z € R and f € L?(R, dz) we define the operator

K(x, f) = Kf(x) = / £ () Kz, ) dy (1.3)

and k(z,y) = e Vily)—Valy—z)

It is an compact operator on L?(R,dx). Indeed, it is even a Hilbert-Schmidt operator, due
to the quadratic potentials V1, V5 and assumption (AP) in Remark 1.4 below

//k’(:c,y)zdxdy:/ezvl(y) dy/ezvr"(x) dr < oo .
R JR R R

Thanks to the infinite dimensional Perron-Frobenius Theorem A.1, there exists an almost
surely strictly positive right eigenfunction v € L?(R,dz) to the largest eigenvalue A > 0.
This fact enables us to construct a certain process, which will be very useful later on. More
precisely the construction goes as follows.

For a,b € R we consider a probability space (€2, A, P(*?) and two processes {V;};cz+,
{Wi;};ez+ with the properties:

o {Y;};cz+ is a Markov process with Y = @ and the transition probability

PO (Y1 = dgl ¥ = o) ~ bz, ) dy (1.4)
v

and

o {W;}icz+ is the integrated Markov process with

Wo=0b and Wpo=b+Y14+..4Y,.
Of course, the transition probability has to be well defined and therefore the a.s. positive-
ness of v is not enough. Nevertheless rewriting

V(x)=/1\/RV(y)k(w,y) dy

one sees that also v(z) > 0 for all x € R. Since we are in a Gaussian setting much more
can be said on the quantities defined above, cf. Proposition 1.5.
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Remark 1.2

The model (1.1) is well defined when o« > 0 and additionally « + 43 > 0 (but of course
not « = [ = 0). This can be seen by writing the Hamiltonian like in the proof of
proposition 1.11

1
H[—l,n—i—ﬂ (07 0, wT’ 0, 0) = §<w’ (aAn—l + ﬁBn—l)w> .
If a, 8 >0 (but not « = f =0), then aA,, + 3B, is positive definite for all n € N, because
A, and B,, have this property. Let us consider now the case o > 0,3 < 0 and o+ 403 > 0.
Here we have

n

1 p
H[—l,n-ﬁ-l} (07 0, wT7 0, 0) = H[(f)lynJrl] (07 0, wT) 0, O) + E (wi—i-l + Wwi—1 — Qwi)z
=0

n

> HY, L 1(0,0,07,0,0) +

2
8
2 4

=0
_ %(w, (a+48)A,_1w)

and so in this case oA, + BB, is positive definite for alln € N. In the last case a« > 0,3 < 0
and o + 43 = 0 we have computed the determinant, cf. appendix A.2

det (@ + BBa) = 5 [8" + (—B)"(7 + 80+ 20°)]

which is also positive for all n € N and so implies the positive definiteness. For the sake of
completeness, for a = 0 and 8 = 0 we have

det (6B,) = %ﬁ"(2+n)2(3+4n+n2) and det (aA,) = a™(n+1) .

Remark 1.3

At a first glance, considering the inequalities between the Hamiltonians above, one is
inclined to compare the gradient, Laplacian and mixed model just over the corresponding
partition functions to obtain easily a statement about the free energy. However this is a
deception regarding definition (1.2) of the free energy as a ratio.

Remark 1.4

Observe that for the extremal values o = 0, 8 =0 or a + 43 = 0 the statements we make
later on are not always defined, but you can get the according results by passing to the
limit « — 0, 8 — 0 or &« — —40. Nevertheless, from now on we will assume that

(aP) |

This is not a restriction on parameters and it prevents some unnecessary case differentia-
tions, cf. chapter 2 and Remark A.6.

As already mentioned above, in the Gaussian case we can obtain a much more detailed
information about the transition probability:
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Proposition 1.5 The spectral radius of K and its corresponding eigenfunction v have the
following explicit representation

)\_<27T>1/2 - a+ 20+ ay/a+43
S 7 =
2

O+
and
v(z) = e’ la—vavatip/a g e R

Before proving this we will need a small

Lemma 1.6 If any eigenfunction r € L?*(R,dx) of K has the property r(z) > 0 a.s. then
its corresponding eigenvalue has to be the spectral radius of K.

Proof This Lemma can be of course extended to any compact operator on LP(R,dx),
1 < p < o0, taking r in the appropriate space.

Now wlog consider any right-eigenfunction r € L?(R, dx) with the property in the Lemma
and the corresponding eigenvalue M, i.e.

/ k(o) r(y) dy = M r(z) .
R

Furthermore consider the corresponding left eigenfunction [ € L?(R,dz) to the spectral
radius A of K, i.e.

/ k(z,y)l(z)dx = Nl(y) .
R

By Zerner’s Theorem A.1 we know that [(z) > 0 a.s., therefore it follows

A /Rl(y)r(y) dy = /R (/Rk(a;,y)l(x) dm) r(y)dy = /Rl(a;)Mr(:c) dx .
Due to [I(y)r(y)dy > 0 this means that A = M. 0

This Lemma enables us now to approach

Proof of Propsition 1.5

We will first calculate the explicit form of an eigenvalue X of K and its corresponding
eigenfunction v and afterwards prove that they equal A and v. We make a guess on v and
take as an ansatz a quadratic function 7(z) = exp {ry? + sy + t} with 7, s, to be specified.
Now for 2r < a4 [3 one can calculate

2 2
K(z, ery2+sy+t) _ V21 exp x*(20r — af) + 20sx + s* + 2at + 20t — 4rt ‘
Va+ [ —2r 2(a+ 5 —2r)

_ (1.5)
To verify the eigenvalue equation Kv(x) = Av(xz) we compare both sides and obtain:

+ 244
7"1,2=a 0214—046, s=0, teR.
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We choose t = 0 to simplify the multiplicative constant of the eigenvalue and r := 75 to
have (recall 3 > 0) 7 € L?(R,dz). Consequently, from (1.5) an eigenvalue of K and its
corresponding eigenfunction are

oy 1/2
= $ = 21 and 7(z) = er2®’ _ vt (a—Vavatap) /4
va+ 8 —2ry o+
Clearly #(z) > 0 for all # € R and therefore Lemma 1.6 tells us that A indeed equals A,
the spectral radius of K and so it holds v = 1. O
Remark 1.7

Similarly to the last proof one can compute the left eigenfunction w € L?(R,dx) of K to
the spectral radius A

T oo
w(z) = N ,

ie. [k(z,y)w(x)dr = Aw(y), y € R. It holds (v, w) 12(w,4z)=1. The invariant distribution
of the Markov chain {Y,,}, is

m(dz) := v(z)w(x)dx = W e~ (Vavatip)/2 gy (1.6)
2m

as one can convince hisself by direct computation.

1.4.2 Connection to the free model P x

Next, let us take a look at the finite dimensional distribution of our Markov chain {W;};cz+.

Proposition 1.8 Forn € N and w_1 :=b— a, wg := b we have

PO (W, ..., W,) € (dwy, ..., dwy,)) = We_H[—lml(wl““’w") [[dw: . @7
i=1

Proof Under P(@?) we have already set Y;, = W,, —W,,_1, n > 1, so the law of (W1, ..., Wy)
is determined by the law of (Y1,...,Y,). If we set y; := w; — w;—1, 7 > 2 and y; := w; — b,
then we have to show that under the r.h.s. of (1.7) the (y;)i=1,..n are distributed like the
first n steps of a Markov chain starting at a with the transition probability given by (1.4).
The Hamiltonian can be now written in the following way

n n—1
M) (W1, wn) = Y Vi(wi) + Valyr —a) + > Valyisr — ui) -
i=1 i=1

Therefore we conclude

~—

V(wn wnfl) —Hi—1,n)(W—1,007) V(yn <
PWn 7 Wn=1) (—Hiy ) (w-1estm) — k [T ki1
)\nl/(a) € )\ny(a) (CL, yl) J (y 1 y)
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and we are done, because the last statement is just the density of the law of (Y1,...,Y},)
under P(®?) w.r.t. the Lebesgue-measure dy; - - - dyp. O
Observe that like in the Laplacian-model by the last proposition under P(@:) the integrated
Markov chain {W;};cz+ is a process with memory two. Whereas the combined process
{(Y;, W) }iez+ is a Markov process starting in (Yp, Wy) = (a,b). The next quantity will
play an important role in the further analysis.

Definition 1.9 Forn > 2 we define the density of (Wp—1, Wy) by

P@D) (W1, Wy,) € (dwy, dws))
dwidws .

ol (wy, wa) = (1.8)

The following statement connects the free model Py x to our constructed Markov chain.

Proposition 1.10
]PQJV(.) = P(070)<(W1, ey WN—l) c .‘WN = WN+1 = 0) (1.9)

and
Zon = AT WE\?ﬂ(O, 0) .
Proof With the help of (1.7), the r.h.s. of (1.9) can be written (conditional density)
P(O’O)((Wl, v W) € .‘WN =Wny41 =0)
N-1

1 / M
— o e M- vy (W-1,ewN4) | | dw;
0,0 ’
ANA+L gangr)l(O, 0) /. i=1

where w_; = wyp = wy = wy4+1 = 0. The first expression in the above calculation is a
probability measure, so plugging in RV ! we have

— fRN—l e M= 1N+ (w o wn) Hfi}l dw; _\N+1 905874?)1(07 0)
0,0
< Z()’N = )\N+1 905\7_’_)1 (O, O) .
This concludes the proof. O

Here we see that our free model is just the law of the integrated Markov chain conditioned
on {Wx = Wy =0}, i.e. a“bridge” of the process {W;};cz+.

We have already seen the importance of the free energy as an indicator for the behavior of
the model. We will first study the normalizing part of the free energy. More precisely, we
are interested in the asymptotical behavior of the free partition function Zy .

Proposition 1.11 We have the following limits for the free partition function

n—1

vn—1 (%)T Zon —26 CE (0,00)
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and therefore
1
—log 2y, — logA (1.10)
n n—oo

where o was defined in Proposition 1.5.

Proof Let w = (w1, ...,wl ;) and w_1 = wp = w, = wy41 = 0, then it is easily seen that
the Hamiltonian can be written as a quadratic form

1
R 1n41)(0,0,0T,0,0) = 5(“& (Ap—1+ BBn_1)w)

where A, B,, € R"™"™ are

6 -4 1 0 0
2 -1 0 0
, 4 6 -4 1
—1 :
A= o o | . B.=| 0
_ 0 1
S | .
0 0 -1 2 . —4
0 0 1 -4 6

This enables us to write

n—1 2 n—1 1/2
2. = / IR ST | (27) .
;1 Rr—1 det (aAn—]_ + ﬂBTL—l)

i=1

Now we are left with the problem of finding a nice representation of the determinant of
a matrix, which depends on the variables «, 8 and the size parameter n of the matrix.
Finding such a representation has cost us a lot of time, but finally we discovered that for
the so called finite Toeplitz matrices there are methods which give certain representation
for the determinants, cf. [8]. We defer the calculation to appendix A.2 and this method
gives

det (A, 1 + Bp_1) = P 4 5P — 1) + o(a7 1) (1.11)

with some constants which we computed exactly, but we indicate here only the crucial one

(B _ 26%/a + oo+ 45 + a®/? + 2a6/a + 45 + 4y/aaf .
? 202/ + 48

So

et . 1/2 NG
Vi=1(50) T B = | ) =
2m " ey (n—1)+o(1) n—oo |\ ¢y

and therefore

1 -1 2 1 2
lim — lOg Zop = lim i log <7T> = — log (71') .
n—00 1N ’ n—oo 21 o 2 oy
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1.4.3 Identification of the density of (W, 1, W,)

We turn to the density go,(f’b) defined in (1.8). It appeared already in connection with the
free partition function in Proposition 1.10 and will play further on an important role when
interaction with the defect line is present. The next Proposition gives us an explicit form

of this density.

Proposition 1.12 We have the following three statements:
(a,b

(i) The density defined in (1.8)is Gaussian: ¢p, )~ N(m&P(a,b), ). The expectation

is R? 5 mg’ﬂ(a,b) = (Mz;ﬁl(a,b),p%’ﬂ(a, b)T where

V(2 — a) + ay/a + 48 + a(%)(—/a — Va + 15)

O[,ﬂ b —
Mn—l(av ) 2\/5 )
0B(q b Va(2b —a) + ava+ 48 +a(%)" (Vo — Va +45)
and
_:a+26—\/&\/a+4[3 7_1<a;<1'
2 g
The (2 x 2)-covariance matriz has the form ¥, = R,M, 'RL where
(0 -~ 0 10 o%n
R"‘(o 0000 1>€R

and R"*™ 3 M,, = oA, + 8B, + (Va/a +45/2 — a/2)C, with

0 0
-1
0
0 0 -1 2 -1 0 8 _i _1
0 0 -1 1
and
6 —4 1 0 0 0
—4 6 —4 1 0 0
1
Bo=| O
0 0 1 —4 6 —4 1
0 0 1 —4 5 —2
0 0 1 -2 1

(ii) The following asymptotics holds: det 3, = O(n).
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(iii) In particular 807(10,0) is a N'(0,%,,) Gaussian density.

Proof We first look at the proof of (iii).
Let us take the left b.c. w_1 = wy = 0, the right wy,_1,w, free and w = (w_1, ..., wy,
then

)T

I

I/(wn—wn_1)efH[—l,n](w) = exp <—; [(wn —w,_1)?(

VOO L) 4w (0o + 5B,)ui ).

Therefore proposition 1.8 allows us to write

POO) (W, ..., W,) € (dwy,...,dw,)) 1
_: s ooy ¥V RRRS) n)) _ —(w,Mpw)/2
(W1, ey Wy dur - dw, 3 € .

From proposition 1.8 we know that 95510’0) is a density, furthermore M, is symmetric, so M,
has to be positive definite and @ﬁ?’o) is Gaussian. Now (W,,_1,W,) ~ N(0, R, M, ' RT),
because (W1, ..., Wy,) ~ N (0, M,;!). Thus we can write

1 1, (w,— Wy,
(0,0) 1, W) = —————— - n—1 2—1 n 1> }
Pn (w 1, W ) 9 /—det(En) €xp { 2 << W, ) y “in ( W, >

and by proposition 1.10 and proposition 1.11 we get

1/2

1 . Zo’n,1 . 0’1/2 < 1 )1/2 . (o 1
om\/det(S,) An 2r \det (aA, 2 + BB, 2) 2m \ P 4 5P (n —2) 4 0(1)
(1.15)
But this implies (ii).
So it remains to show (i). For this purpose we take the left b.c. w_1 = b-a, wg = b, the
right wy,—1, wy, free and w = (w_1, ..., wn)T, then

1 Vv 43 —
(1 — w0y 1)e~ 1) exp <—2 [(wn w22 O“; boay, 2H; 1) (w)D :
(1.16)
Next we will try to obtain a quadratic form in (1.16), so we denote by H[(f’lbzﬂ(w) the
expression [---]. Due to symmetric matrices it can be written in the way
a,b It 5
HD () = alw — v, An(w — pe)) + Blw — s, Balw — pa))
ava—+406 — «
(g — w2 VAT
= (w, Myw) — 2(w, 0An iy + BBnpia) + oy, Anpig) + B{ua, Bupa)
(1.17)

where pv, ua € R™ and
py = (b,...0)T | pa=(b+ab+2a,...b+na)l .

Our aim is to find u, T (of course dependent on n,a,b, « and [3), s.th.

H®P (w) = (w — i, My (w — ) + T . (1.18)



1.4 CONSTRUCTION OF A MARKOV CHAIN 35

Comparing (1.17) and (1.18) and using the symmetry of M,,, we have

! ~ ~
so Mpu = a[lnuv + ﬁBn,uA and therefore
=M, YA,y + BBnua) . (1.19)

Furthermore this implies

T = apy, Anpv) + B{1a, Bopa) — (p, Mop) (1.20)
Observe that to compute ji,_1, it and T, we need only 8 elements of M, !, because
Appy = (0,0,...,007 | Buoua = (3b+a,—b,0,...,0)T .

It took us quite a while, but in the end we found a paper by Rozsa, who describes in [26]
how to compute the inverse of some banded matrices. We defer the calculation to appendix
A.3. This method was quite costly, but finally we were able to compute exactly the means

in (1.12),(1.13) and
Tzﬁ(ﬁw5+4—a>.
2

Now, from (1.16), (1.18) and proposition 1.8 it follows by e~Y/2/v(a) = 1 that
P(a,b) ((Wl, ceey Wn) S (dw1, ceey dwn)) o i €*<W*H,Mn(w*/$)>/2

dwi - - - dwy, P
Finally we conclude that (W,_1, W,,) ~ N(RnM,RnM,flRZ) under P(a,b)7 0
! L (wns = i@ b)) gor (waes = piny(a.b)
(a,b) Wp_1,Wp) = —————— €X - n—1 ,u‘n—l ) 72 1 n—1 ,Un_l 5 '
o (tn—1,0n) 27/ det(X,,) P 2< wn, — 1 (a, b) " wn — & (a,b) )
(1.21)

The last thing is to show (1.14). If o, 5 > 0,
a+206—a+46Va+ 438 <0 a+28— oo )

20 B 20
Ifa>0,0<0and a+48 > 0, then

o. _ VayaTas—(a+2)

1=

B 2|8
and so
_y_Vetdbvatdf-(a+26) o _Java-(a+25)
2|5 B 2|

O

Remark 1.13 From proposition 1.12 we know, that for all a,b,z,y € R there exists ¢c; > 0
such that

(a.b) = 000 (g B (b — 1B b)) € < L
Pn (l’,y) 2% (CE lu’nfl(aﬂ )7y Hy, (CL, )) —= 277\/@ — \/ﬁ
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1.5 Pinning and interaction

Up to now we have studied the free pinning model Py 5. Now it is time to approach a
description where interaction comes into play and a “strength” attracts the chain at the
x-axis. This describes exactly the model IP. x for an ¢ > 0.

1.5.1 The contact process

We define the contact process (7;);cz+ by
T0:=0 and Tit1 := inf{k > 7; | o = 0}
and the process (J;);cz+, which gives the height of the polymer before the contact points

J() =0 and Ji = Pr-1 -

Next, one can expand the product measure in the definition of P, y in the following way.
Let M :={1,...,N — 1}, then

N-1
H (ed0(dei) + dipi) = Z el (H 50(d60i)> H dej | - (1.22)

i=1 ACM icA jEM\A

Set the number of contacts to the defect line as ¢y = #{i € {1,...,N}|¢; = 0} or
equivalently /x = max{k |7, < N}. Now take for fixed k € N a time-partition (¢;);=1,x €
N with 0 < t; < --- <tp_1 < tx := N. Moreover suppose the contacts are only at 7, = t;,
i=1,..,k—1and set in (1.22) A = {7, ..., 7x,—1}. In order to obtain now the joint law
of the process {¢n, (7:)i<ey, (Ji)i<ey }, One has to integrate over ¢; where i ¢ AU (A —1).
More precisely, for (y;)i=1,..x € Rit is

PE,N(EN = k,Ti = 1;, Ji € dyz-, 1= 1, ,k‘)
gkfl

" Z.N Fo.ay, (1) Fyy ays (b2 = t1) -+ Fy (N = tr1) Fy, g0y (1) (1.23)
(3

)

where Fy gy (n) := foy(n)p(dy), u(dy) := do(dy) + dy and

e_/Bx2/2]]_{y:0} S =

—H_ ,0,,0 —
e a0 ) T2 12y

Jano e @t i duy - dwn g, m >3

foy(n) =
with w_1 = x,wg = 0, wp—1 =y, w, =0 .

Next we set

Ec,y(n) = )\:I(jzg)x)fx,y(n) and ﬁz,dy(n) = ﬁ,y(n)ﬂ(dy) :
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Because of (1.7) we have

n—2
(a,b) _vy—=) / “Hi ) reen) TT duos
Pn (z,9) )\”l/(a) - e };[1 W;

where w_1 = b — a,wy = b, w,—1 = x and w, = y. Therefore for z,y € R and n > 2

Fry(n) = 5" (y,0)1 00 - (1.25)

1.5.2 Markov renewal description

We are going to describe the process of contact points in a more exact way. Our model
consists of three-body interaction terms, therefore it won’t be possible to describe (7;);c7+
by a renewal process. Nevertheless something else can be proven, but first we define

€ T —Fbs(e nVE y
£ ay(n) i= eFy gy (m)e ) Exi (1.26)

for an F and v, which are specified by the next proposition.

Proposition 1.14 For every € > 0 there ezist Fs(e) € (0,00) and v(e) € (0,00) with the
property

/ > Kign)=1 , foralzeR. (1.27)
yeR

neN

We postpone the proof to section 1.6, where a lot more can be said about Fy and v and
even an explicit representation can be given.

This proposition is very useful, because it says that K (-) denotes just a semi Markov
kernel. The probabilistic interpretation of such kernels is the fact that one can now define
a law P. under which {(7;, J;) };ez+ is a Markov chain on Z* x R with (79, Jo) = (0,0) and
the transition kernel

Pe((Tiv1, Jivr) € ({n}, dy) | (7, Ji) = (m, 2)) = K gy (n —m) . (1.28)

Then the contact process (7;);cz+ is called a Markov renewal process and (J;);cz+ its
modulating chain. The reason for this name comes from the fact that the increments
{Tk — Tk—1}ren are independent conditionally on (J;);cz+, cf. [10]. Furthermore we can
rewrite (1.23) as follows

]Pg,N(EN =k, =1t,J; €dy;, 1 =1, ,k‘)

eFs(e)(N+1)

= AT Kadyl (tl)KZhdyz (t2 - tl) o K

e2Z. N Zkﬂ,dyk (N — tk—l)K6k7{o}(1) (1.29)

Y
and for tg = yo = 0 the normalizing constant of P, x; has then to be

FEwy N k
— € £
Zen=—""7 A > /k [T ot = tima) | K, (1) -
k=1 t;eNi=1,..k “R" \i=1
0<t1<--<tg:=N
(1.30)
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The next result reveals a connection between P, n, which is dependent on N, and P,
which is not.

Proposition 1.15 Define Ay :={3j > 0|7; = N,7j11 = N+1}. Then forall N € N,e > 0
and k < N ((t;)i=1,..ks (Yi)i=1,..k as usual)

Pon(Un =k,7i=t;,Jiedy;, i <k)=P.(Un=Fk,7i =t;,J; €dy;, 1 <k|Apn)

and
oFe(e)(N+1)

ZEN:

)

= MFLD (AN) (1.31)

Proof Due to (1.28) we have
Pg(gN = k,’i‘z’ = ti,Ji € dyi, 1 < k ‘ .AN)

1

and knowing that P.(. | Ax) is a probability measure and comparing with (1.29) and (1.30)
we arrive at the end of the proof. O

We remark that this is an important observation, since we have obtained a connection

between the contacts of the chain and a Markv renewal process conditioned on Ay. Even
more, all the dependence on N is “concentrated ” just in the set Ay.

1.6 Accurate determination of F

In this section we are going to prove Proposition 1.14 and give some explicit representations
for the quantities therein. In particular, we show that Fs and v, in (1.26) can be chosen
such that (1.27) is fulfilled. The first step is the following Lemma, which is even more than
we want.

1.6.1 Hilbert-Schmidt property

Lemma 1.16 For every 0 > 0 the operator ( Be fR e dy on the Hilbert-space
L3(R,dp) is a Hilbert-Schmidt operator, where B:C ay ZneN e H”Fm7dy(n).

Proof Let § > 0. We set BY ay = = b9 (x, y)p(dy) and

be(x,y)i fxo ]l{y 0}+Z€ fr,y Il{ya'éo}v
n>2

//be(:c,y)Zu(dl’)u(dy) < oo
R JR

then we have to show
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It is
bg(x7y)2 20fx0 ﬂ{y 0}+ Z f(ntm) fx ( )ﬁ,y(m)ﬂ{y¢o}
n,m>2
and so
[ ¥ ) ) = [ oo o) + 3 e [ Foulo) o) dy
+ > e ”+m>//fxy 1) fay(m) dz dy . (1.32)

n,m>2

The first term on the r.h.s.

et = (2O - (MO oy (2 0 vavar )

is integrable for our conditions (AP) on « and 3, because [...] > 0 (cf. Calculation A.9).

Let us consider n > 2. From (1.25) and Remark 1.13 we know that ﬁ),y(n) = @QO’O) (¥,0)1gy0y <
c1/+/n for some constant ¢1. In addition

/ Joy(m)dy = / @99 (y,0) 1120 dy < ca, for all m > 2,
R R

because Lpn?’o)(., .) is a Gaussian density and (X,;!)11 — ¢ > 0, as m — oo. Moreover for

all z,y € R, 807(2,0) (z,y) is decreasing in m. So the second term in (1.32) is all right.

For the last term observe that again from (1.25) and Remark 1.13 we know f,,(n) =
o )( ;0)1gy+01 < c1/+/n. Furthermore from proposition 1.12 and (1.21)

Feam) = @l 0Ly = o0 (y = 524 (=00, =45(=2,0)) L0

and because cpn?’o)(., .) is a (Gaussian) probability density, we have by (1.12) and(1.13)

/ / fx,y dl‘ dy = / / 00) 61 + Cz) + 63} [ (61 — 62) + 63]) ]l{yyéo} dx dy

e —02|

2/a
|va-vatras-(%)" (va - va+ip)
< const. , for all meN

with appropriate values ¢1, é2, ¢ from g and pm’”, so we are done. O
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1.6.2 Zerner’s theorem and proof of Proposition 1.14

In particular, by the last Lemma we have shown the compactness of BY on L?*(R,dy). Thus
we can apply an infinite dimensional Perron-Frobenius theorem of Zerner, c¢f. Appendix
A.1. For this purpose let # > 0 and 6(0) € (0, 00) be the spectral radius of the operator B?.
By Zerner’s Theorem 6(6) is an isolated and simple eigenvalue of BY, therefore following
analogous to [10], the 4(.) is strictly decreasing on (0,00). Moreover, for § > 0 the state
{0} is a proper atom:

—On —6n s 1 _
By = S e By oy () = 3 e /{ | Foumyutdn) = 3¢ >0

neN neN

and so by [25] chapter 4.2 also a small set of Bf.. Hence, by [25] chapter 3.2, §(.) can be
represented in the variational formula

5(9):inf{g>0

i o " (B(;):,n{o} < oo} . (1.33)

n=0

A very important thing is the behavior of the spectral radius 6(.) close to zero. Here we
have to be careful, because §(0) could possibly not exist and indeed

Proposition 1.17 The “spectral radius” at the origin is §(0) = co.

Proof We will prove that already the two-fold composition of Bz dy with itself diverges
when 6 \ 0, i.e.

(Be):f{o} /00 , when 6\, 0 .

Then from the variational formula it would follow that 6(6) ' oo for 6 N\ 0.
First of all we have

—0n 10 AL s L o 5
By =S e M E gy () = 3 e /{ |, Jooln) ) = 50+

neN neN
and -
B 4. = fo=(1)do(dz) + > e " fo.(n) dz .
n=2
Therefore
02 1 279 % > 2/9 %

BY :/ BY ZBQ = _¢7f / e‘ﬂz/szl do(dz) + 6_6”/ e‘ﬁz/szndz
(B) gy = L B Bl =5 - dolds) + 3 e [ e u(o)

1 —0 1 —0 > —0n —Bz22/2 %

= 2¢ +Xe nZ::Qe zeRe /foyz(n)dz (1.34)

Now we use (1.25) and 1.21 to write for n > 2

_ 1 2
fo,z(n) = meXP{ZQ( n )1,1} :
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From 3.35 we know that there exists an ¢; > 0, such that (Zfll)l 1 Sa for all n € N and
by Proposition 1.12 we can bound from below ’

—-B22/2F _ 1 _i -1
/ZERe fO,z(n) dz = QW\/(W/ exp{ 2 (ﬁ—i_ (En )1,1)}(12

Sy S e

Now clearly by (1.34) we have

. 02 _ _on C _
K% <Ba>o,{o} = 0\0 (e 76 eze ’ ) -0

Now we know indeed that §(6) /" oo for 8 N\, 0. With that we define the inverse 6~1(.) on
(0,00) and set e, := 0 and

Fi(ee) =0,  Fye):=01'1/e) ,fore>0. (1.35)

It is not a coincidence that the notation of Fj is close to that of the free energy, we will
see later that both are even equal.

Figure 1.6: A sketch of the spectral radius §(.). It is strcitly decreasing with
limp~ 0 8(F) = oo and limg_, 6(0) = 0.

For ¢ > 0 we consider the operator BF+(¥) with the spectral radius §(Fs(e)) = 1/e. The
kernel of B+() is strictly positive, so Zerner’s theorem A.1 ensures the existence of the right
and left Perron-Frobenius eigenfunctions v.(.), w:(.) € L?(R, du), such that v.(z), w.(z) >
0 for y-a.e. x € R and

1

1
/ B v(y) = ~vela) / we (@) Bhys) p(de) = ~we(y) p(dy) . (1.36)
yeR € z€R €

From this one even sees that v.(x),ws(z) > 0 for all x € R.

Proof of Proposition 1.14
We were not very precise in using the same notation for e., Fs and v, like the one in
Proposition 1.14, since it is yet not clear if they satisfy what we would like to have.
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Nevertheless, the lines above tell us that the only remaining thing about those candidates
is to prove (1.27), but using (1.36) this is indeed true

€ n) = € Fs(s)n v
/yeRZKm’dy( ) ve(T) /yGJR (Z Fordy (. ) «(v)

neN neN
€ Fs(e)
= B == 1 .
1/5(56) y€ER 2,y E(y)

O

Remark 1.18 According to (1.28) and Proposition 1.14, the process (J;);cz+ is a Markov
chain on R. The chain starts in Jy = 0 and has the transition kernel

Pe(Jiy1 €dy|Ji =) = Z K3 ay(n) =1 Dg 4, -
neN

The left and right eigenfunctions are defined up to multiplicative constant, so we can
assume from now on that (Vg,w6>L2(R7du) = Jpvewedp = 1. This means k(dx) =
ve(z)we(z)pu(dz)is a probability measure on B(R). Due to (1.36), if ¢ > 0 then k. is

invariant for DS dy -

/ D; dy ke (dz) / <Z Fyay(n e il a)n> Z/;SL‘) Ve (y) Ve (z)we () p(dz)

neN

= eya(y)/ RBQE(;) we(2)pu(dr) = ke(dy) .
re

Therefore (J;);cz+ s a positive recurrent Markov chain under P, if € > 0, cf. [25].

1.7 Identification of the free energy and proof of Thm. 1.1

In this section we will prove the localization-delocalization result, which was stated in
Theorem 1.1. In particular we will see the connection of previous results to the free energy
defined in (1.2).

1.7.1 The double-contact process

We have already seen that {7;};cz+ is a Markov renewal process. In what follows we need
a “sub-process” of {7;};cz+, which will be an ordinary (and non Markov) renewal process.
Namely, we define the double-contact process {n;};cz+ by

no:=0 , nit1:=1inf{k>n;|pr_1 = ¢r =0} (1.37)
and the index-process of returns to zero of {J;};ez+:

Co =0 , Ci—i-l := inf {k‘ > Cz ’ Jp = 0} , (1.38)



1.7 IDENTIFICATION OF THE FREE ENERGY AND PROOF OF THM. 1.1 43

which we will also need later on in chapter 5.

A J;

Figure 1.7: A sketch of the contact process {¢;};cz+, the heights directly before contacts
{Ji}icz+, the double contacts {n;};ez+ and the index-process {(;};cz+ of returns to zero
of {Ji}iez+ under P, . For instance we have the following relations: (1 = 4,0 = J¢, =

Q07'3 = SO’TCl—l and T<1 == 771'
Because of the special structure of the transition kernel (1.28) and the remark 1.18 the

following proposition of [10] applies.

Proposition 1.19 For each ¢ > 0 under P. the double-contact process (n;);cz+ is a non
terminating renewal process.

1.7.2 Proof of Theorem 1.1

We will first show that the pinning model displays a trivial phase transition, meaning that
indeed £, = 0. To obtain this, it remains to show that the expression Fj, defined in (1.35),
for all € > 0 indeed coincides with the free energy from Definition (1.2), i.e.

. 1 ZaN
- | N
Fle) = Jim 7 log (ZO,N>

Now, with the help of (1.31) we can write for € > 0

Z. N eFs(e)(N+1)

— )\N—i—l a
20N e2Zo N Pe(An)
and so
1 Z, N +1 N +1 1 2 1
Nlog (Zzg) = Fi(e) + N 1og/\+Nlog735(AN)—Nloge—ﬁlogzow .

(1.39)

Due to Proposition 1.11, in the limit N — oo we can neglect the second and last term on
the right hand side. In view of the Definition (1.35) of F there are two cases to distinguish
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between, namely e = 0 and € > 0.

For ¢ = 0 it is trivial, because F'(0) = 0, as is obvious from the definition and F5(0) was
defined to be 0 in (1.35). We turn to the second case € > 0, in which, by definition (1.35),
Fs(e) > 0. Considering (1.39), to complete the identification of the free energy it remains
to check that one has

lim %logp (Ay)=0. (1.40)

N—oo

The set Ap, defined in proposition 1.15, can be written as Ay = {3j > 0|n; = N + 1}.
It is known that (1.40) is true for any non-terminating aperiodic renewal process, cf. [18]
Theorem A.3. However (7;);cz+ is aperiodic, because

Pe(m = 1) = Pa((r1,J1) € ({11, {0}) | (0, Jo) = (0,0)) = K 10(1) = ge%(e) >0

and due to proposition 1.19 it is a non-terminating renewal process under P. for € > 0.
Altogether we have shown

Fs(e) = F(e) = lim ilog Zen e>0.
N—oo N ZéUN T

We have already studied the property of analyticity in the localized regime £ before we
defined F,. Finally what is left is the asymptotic behavior of the free energy F(e) as
€ — oo. The idea is to use a sandwich argument and therefore first of all by the Definition
in Lemma 1.16 we have

e OF, 4,(1) < Bz,dy < e_eeeoBZ?dy , for all 0 > 6y , (1.41)

for an arbitrarily chosen 6y > 0. The last inequality is true because

—0 (n— 1 —0 —0p(n—1 —0 90 6o
Blay=e ') e !0V g(n) <e? ) e M TIE, 4 (n) = By -
neN neN

Further on one can consider their corresponding integral operators on L?(R,du), e.g.

(Fh)(z fo ay(DN(y). In particular it is by (1.24) for h(z) = e="2(®) /y(—2)

(Fi)a) = [ Fuo(DA0) oldy) = § he)

Now the same inequalities as in (1.41) have to be valid for the spectral radius of BY and
B% | this means

e <80) <ele5(6y) , forall >0 .

Now we set 0 := (§)~!
obtain

—~

1/e) > 6y, i.e. F(g) > 6p. This means, for all € > &g := 1/§(6p) we

log (e/\) < F(e) < log (5 6905(00)> ,

which implies the asymptotic behavior in Theorem 1.1.
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1.8 Alternative proof of trivial phase transition

In the last section of this chapter we want to show an alternative way how to prove a trivial
phase transition (¢, = 0) for the pinning model (1.1). For this purpose let us write the
product measure in a specific way.

Lemma 1.20 The product measure in (1.1) has the following expansion

N-—1 N-—1 N-2 [i-1 N—1
(do(deps) +dpi) = [ dei+2 D | [] des | do(dei)doldpirr) T] (edo(dpr) + dpr)
=1 =1 =1 7=1 k=i+2
N—2 [i-1 N—1
+e Z H ngj (50(d(pz‘)d<pi+1 H (Eég(dtpk) -+ dtpk)
i=1 \j=1 k=i+2
N-2
+ € H ngj (50(dg0]\/,1) .
=1

Proof Let M := {1,..., N — 1}, then the standard expansion can be written like in (1.22)

N-1
(e00(dips) + dipi) = Y e (H 50(d<Pz')> II dei| - (1.42)
i=1 ACM icA JEM\A
Denote by P(M) the power set of M and

M= |J M, M{={ACM|min{klkc A} =iandi+1€ A},
ie{1,...,N—2}

My=|J M, Mj={ACM|min{klke A} =iandi+1¢ A},
ie{1,...,N—2}

Ms={ACM|min{klkc A}=N—-1}={N—-1} , My=0.

Therefore one easily sees that the M;’s are disjoint. Furthermore for i € {1,..., N — 2} the
cardinality of the power set P{i +2,..., N — 1} is 2=27% and so M} and M} each consist
of 2NV=27% elements. Altogether the cardinality

= N—-2—1i N-2 1 2 (V=1) N-1
M{UMyUMsUM. —25 2 4+2=2.2 — —1]|4+2=2
| 1 2 3 4| g 1—-92-1

is equal to the cardinality of P(M) and so we have P(M) = MyUMsUM3UM,. Due to
the disjointness of the M;’s it is obvious from (1.42) that the r.h.s. in the lemma can be
obtained by summing over the sets My, My, My and Ms. O

Now, let us recall the partition function for the model

N-1

Z. N :/ e~ Hi-1,3(®) H (ed0(d;) + d;)
RN i=1
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where we have ¢_1 = 99 = Ny = ¢n+1 = 0 and

N+1 N

Hiainiy(p) =a Z (Vepi)? Z %(A%)Q

1=0

Therefore by the last Lemma we can “decouple” the partition function and obtain something
like a “renewal inequality” for 0 <e <1

N-1

Zon > Zon+€ ) Z0iZen-io1 (1.43)
i=1

where Z. g := 1. Furthermore by Proposition 1.11 and its proof

)\N—l

N—1 1/2
Zon = =g ), (V) = <det($N?+%BNl>> (149

where by (1.11) x(N) ~ (ca + 0(1))"/2 as N — oo and X is the spectral radius from
Proposition 1.5. We can state the following

Proposition 1.21 For every € > 0 we have F(g) > 0. More precisely the following lower
bound holds

F(g) > —log(z(¢)) (1.45)

where © = x(e) € (0,1) is the unique solution of

xn+1 AZ

g(x) =22 + Z i1 k(n) = = (1.46)

Proof First observe that g(0) = 0 and g(z) / oo if x /' 1, also is g strictly increasing in
z. Fix any € > 0 =: €, and take z := z(¢) € (0,1) as the corresponding unique solution of
g(x) = A%/e%. We extend here the idea of the proof in [7]. For n > 1 we define

a"Z., . g2z 1z, . an\?
Un = "p21 o = T R )

We set ag := by := 0 and ug := A. In particular a; = €22?A72, by = z and due to (1.44)
forn>2

82 !
an = ——F—=k(n)
"N n—1
Because of (1.43) we get
n—1
Uy > by + Zunfifl =b, + (aflun + app—1 + ... + anflu(]) , a—1:=0
1=0

= by, + (Goun + ... + anup) (1.47)
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where we set a@; := a;_1 for i =0,1,2,.... Now let 4, be defined by
ln =bp + > Gilln—i , Tig=A. (1.48)

By definition of a,, and the choice of z = x(g) we know that

n+1 2

Zodn Zanl 37 —i——z\/; n) = Fg(gg(g))zl_

But this is enough to apply a theorem from the renewal theory (cf. [15] chap.XIII) on the
sequence Uy, defined by (1.48) and we get

i i =
where
22
B := Zb —m—l—z\/ﬁ —xg(m):xE—Q
and
A= Znan_— 21 —i-zn\j;)i_:“ﬁ;(n) :i\zxg’(a:).

Therefore the hmlt is

4
lim a, = A

Jim_ e (1.49)

The next what we show is that for every sequence w,,, which fulfills (1.47) and ug = A, it
holds
lim u, > lim @, . (1.50)

n—oo n—oo

Set 1, 1= up — Uy, for n > 0, then by (1.47) and (1.48) we have

n
> Gl , p=0. (1.51)

i=0
We claim that @, > 0 for every n € Ng. Forn =0itisdg = A—X = 0. Let 4o, 01, ..., U, >0
then by (1.51) and induction it follows
n+1
Upt1 > Z Ailipg1—; = A1ln + ... + Apy1lg > 0
i=0

due to the fact, that ag = g = 0 and aq, ..., an > 0. So we get lim,, o Uy > 0 and as we
know from (1.49) that lim,,_, U, exists, we get finally (1.50) and

)\4
. > A
nh—{go tn = 54g’(1’)
By the definition of wu,
ANV+3
Ze N =

N7 N @) |
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Dividing by Zy y and using (1.44) we have

ZoN M(ea +0(1)V2 VN =1
Zon etg/(z) N

and therefore

1.9 Modification of the pinning model

In this chapter we have seen that the pinning model displays a localization behavior as
soon as an arbitrary positive pinning-strength is present. This behavior prevails even if we
choose very strong potentials for the Laplacian interaction, cf. chapter 2. In this section we
will artificially force the pinning model to display a proper phase transition. Since pinning
by an constant € > 0 does not reflect this behavior, we could for example pin by weaker
strength. In the following we take a pinning-strength according to the absence-time from
0. Consider the same model for ¢ = {¢1, ..., on—1} as in 1.1, but with modified pinning

EXP(—H[A,NH}((P)) =
Pen(dp) = Zx H (ai(p)edo(dpi) + dei)
& i=1

where
CL(Z‘)CL(N—Tngl) y i:Tl
ai(p) == a(r; — 7j-1) L =T, =2,.,0n—1
1 , otherwise .

Here {a(n)}nen is a positive sequence with a(n) — 0, n — oo. Although artificial, one
can ask what kind of situation does this model describe. Well, apparently the pinning-
strength is smaller when the last contact is far way. This behavior could be interpreted
in our case in the way that “longer pieces” of this polymer are harder to localize. In any
way, we will see that the behavior of the contact process is immediately influenced. How
can we see that? Similarly to the pinning model (1.1) we can consider the distribution
of the contacts in the following way. Recall the number of contacts to the defect line
In =#{i € {1,..,N}|¢; = 0}. Now take for fixed k > 2 a time-partition (t;);=1,.r € N
with 0 < t; < -+ < tg_1 < tx := N. Moreover suppose the contacts are only at 7; = t;,
i=1,....,k — 1 then

IP&N(EN =k,1=1%,J;€dy;, i1=1,..., k‘)
k—1
E
= a(tl)a(t2 - tl) T a(N - tk—l)FO,dyl (tl)Fyl,dw (t2 - tl) T Fyk—ladyk (N - tk—l)Fyk,{O}(l) :

Zs,N
(1.52)
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This can be again modified by the following semi Markov (sub)-kernel

dy(n) = gﬁx’dy(n)a(n)eF(s)nllei;

to obtain
eF(E)(N+1)

£2a(1)

We don’t want to go into detail, but confering chapter 1 and 3 one can show that this
model exhibits a (proper) phase transition if and only if

a(n) =o0 (n_l/Q) .

Therfore we can say that 1/4/n is the critical decay for the substantial difference between
trivial and non-trivial phase transition.

MVFLD (An) .

Z&,N =






2 General pinning model

2.1 Introduction, model, results

2.1.1 Introduction

In this chapter we are going to generalize the Gaussian pinning model that was defined in
(1.1). In the last chapter we have always observed a trivial phase transition, no matter
how small the parameter in front of the gradient part was. Nevertheless one should remark
that the potential was of quadratic form and maybe still too strong. Here the results of a
Gaussian interaction-potential will be extended to more general interaction potentials. In
this setting one could be inclined to expect a non-trivial phase transition . > 0, taking a
very strong Laplacian potential and at the same time a weak gradient potential. However
it turns out that even very strong Laplacian potentials are not able to change the local-
ization behavior. In other words, the number of contacts to the defect line growth linearly
for arbitrarily small pinning parameters € > 0.

2.1.2 The model

We consider the model determined by the following distribution on RV~1 :

N-1
exp(—H_ ©®
P. n(dp) = ( [levé“”( ) [T (ed0(dg:) + des) (2.1)
& i=1

where N € N, ¢ > 0 denotes the pinning parameter and Jp(.) the Dirac mass at zero.
Furthermore dyp; is the Lebesgue measure on R and Z. n is a normalization constant,
called partition function, to turn P, y into a probability measure. Since we do not expect
a conflict in the notation, we will use the same symbols like in the previous chapter. We
define the Hamiltonian

N+1 N
Hii v (-1, on41) = Z Vi(Vei) + ZV2<A%‘) ) (2.2)
i=1 i=0

and choose zero boundary conditions ¢p_; = @9 = ¢n = @n+1 = 0. Next we consider
continuous interaction potentials V1, Vo : R — R with the following properties:
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C1 symmetric potential Vp, i.e. Vi(x) = Vi(—x) for all z € R
C2 3M > 0: V; is decreasing on (—oo, M| and increasing on [M, co)
C3 [e V2@ dr < 0o and e~ "1(®) bounded
C4 [|z]e "1(®) dr < 0o and ™2 is bounded .
Remark 2.1
A sufficient condition for C4 would be a growth rate of at least Vi(z) > (24 ¢)In|z| for

|z| — 0o and § > 0. We don’t know what happens if we abandon condition C4, since for
instance, it is needed in Proposition 2.8.

2.1.3 The result

So far a trivial phase transition, meaning €. = 0, has been established in Gaussian case,
i.e. for interaction potentials of the type

n* .

N |

«
‘/1(77)25772 and  Va(n) =

where «a, (8 > 0, c¢f. Theorem 1.1. The extremal cases of pure gradient or Laplacian
interaction have been already investigated in a non-Gaussian setting. We refer to [12]
and [20] in the gradient case and to [10] for the Laplacian model. These models display
substantially different localization behavior. While the gradient interaction shows a trivial
phase transition, the Laplacian interaction leads to a “real” phase transition, i.e. &, >
0. Regarding those facts, a natural question arises: what happens, if we choose a weak
interaction potential V; and a very strong potential Vo 7 We were able to prove the
following

Theorem 2.2 (Localization for general potentials) For general continuous interac-
tion potentials with conditions C1-C}Y the pinning model displays a trivial phase-transition.

Somewhat surprisingly we see that even arbitrarily strong Laplacian potentials V5 have no
impact on the localization, the model behaves just like the gradient model. On the other
hand it underlines again the semi-flexible character of polymers with length beyond the
persistence length, cf. section 0.1.

The rest of this chapter deals with the proof of the Theorem 2.2. We have divided it into
four parts, where in the first part we deal with the free model (¢ = 0) and show that it can
be seen as a bridge of an integrated Markov chain. In the second part we obtain certain
bounds for the density of the Markov chain and its sum. The third part will provide the
construction of a “double-contact” process from the partition function Z. y. Finally in the
last part we obtain a sufficient lower bound for the free energy. We remark that an explicit
representation of the free energy similar to chapter 1 won’t be given, since we don’t have

a local limit theorem for the density @ﬁla’b) (z,y).
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2.2 Markovian description of the free model

With our conditions on the potential we are now able to construct a Markov chain, which
will be the basis for further investigations. Consider the linear integral operator

(Kf)() = / k) fy)dy  where k(z,y) = e i®-1-2)

Of course, immediately one might and should ask on which space this operator is defined.
The next Proposition will provide an answer.

Proposition 2.3 K is compact on L>®(R, ||.||c0) -

Proof For the proof of compactness we will apply an useful result of [14], namely Theorem
5.1 and its Corollary (cf. also Theorem 4.7 in this thesis). With that and B(0, R) = {z €
R : |z| < R} it is sufficient to show that the following three conditions are fulfilled

(i) 3C > 0 such that for almost all z € R [, [k(z,y)|dy < C
(i) Ve > 0 3R > 0 such that for almost all z € R fR\B(U R k(@ y)ldy <e

(iii) Ve > 0 36 > 0 such that for almost all x € R and |h| < ¢

/ |k(z,y +h) = k(z,y)|dy <e .
R
Now condition (i) is easily seen by Holder and the property C3, for all z € R:

/ k(s 9)| dy < [le="0] e / Ve gy = O < o0
R R

Next for (ii), let € > 0 and choose R € R such that fR\B(o R) e dy < €2/ [ e 2V2W) gy,
Indeed, conditions C3 and C4 imply [ e Vil¥) dy < oo for i = 1,2 and

/ e 2w gy < / e_vi(y)l{vizo} dy + (const.) - Leb({V; < 0}) ,
R R

where the last term has to be finite since
00 > / e Vi) gy > / e*V"(y)l{Vi@} dy > Leb({V; < 0}) .
R R

Therefore by the Cauchy-Schwarz inequality we obtain

1/2 1/2
/ |k(z,y)| dy < (/ e M) dy) (/ e~ 2V2(y=2) dy) <e. (23)
R\B(0,R) R\B(0,R) R
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Finally we prove (iii). Let again ¢ > 0 be fixed and choose R € R like in proof of (ii). For
every “small” § > 0, which will be specified later, and all |h| < § by triangle-inequality

[y —kldy = [ by )~ )l dy
R R\B(0,R+4)

+/ |k(x,y +h) — k(z,y)|dy
B(0,R+5)

S/ k(x,y+h)dy+/ k(w,y)der/ |k(x,y + h) — k(z,y)|dy
R\ B(0,R+5) R\B(0,R+5) B(0,R+96)

2
<a+/’ k(. y + h) — k()| dy
3 B(0,R+5)

The last bound is due to the fact that for |h| < d itis {y +h | y € R\B(0,R+ 9)} C
R\ B(0, R) and then we proceed like in (2.3). Next we set g(x,y, h) := |k(z,y+h)—k(z,y)|.
To finish the proof we have to find a § > 0 such that for almost all z € R and |h| < §

g
/ g(z,y,h)dy < 3
B(0,R+5)

Now we are going to investigate the supremum over x. For all R>0

R+06
sup/ g(x,y,h) dyS/ sup  g(x,y,h)+ sup g(x,y,h)| dy
z€R JB(0,R+9) —R=6 | 4.ly—2|eB(0,R) a:|ly—z|€R\B(0,R)

R+5 R+6
—/ sup g(z,y,h)der/ sup  g(z,y,h) dy
—R=0 eB(0,R) R=0 _cR\B(0,R)

(2.4)

where
G(z,y,h) = |6—V1(y+h)—V2(Z+h) _ e—Vl(y)—V2(Z)| ]
Since Vi, Va are continuous, for every |h| < ¢ the function g attains its maximum on
D := B(0,R+0) x B(O,E), say at (zp,yn). On D is g uniformly continuous, therefore
9(zn, yn, h) — 0 for |h| — 0. This means we can choose a § > 0 such that for all |h| < &
€

< —
6 Vol(B(0, R + 0))

9(zh, yn, h) (2.5)

Next by triangle-inequality and C4 for the second integral in (2.4) we have

R+96
/ sup ’e—V1(y+h)—V2(z+h) N e—V1(y)—V2(z)’ dy
—R=0 ,er\B(0,R)
R+6 R+6
< sup eVl / VI gy 4 gup e Y2(®) / W) gy
2€R\B(0,R) —R=o 2€R\B(0,R) —R—3

< const. sup e 2(2) (2.6)
2€R\B(0,R—9)
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Because of C2 and C3 the last expression converges to 0, when R — 0o. Therefore we
can choose R > 0 such that (2.6) is smaller than ¢/6. Collecting all together by (2.4) and
(2.5) we have proven
sup/ gla,y h)ydy < - .
z€R J B(0,R+) 3
O

The infinite dimensional Perron-Frobenius Theorem A.l ensures now the existence of an
isolated spectral radius A > 0 of K and the corresponding left and right eigenfunctions
w € LYR,|.]11), v € L®(R,||.|]|sc) With 0 < w(x) and v(z) > 0 a.s. . This can be
extended to w(x) > 0 and v(z) > 0 for all z € R, due to the eigenfunction representations

W) = 5 /R By) v(w)dy and w(y) = 5 / ke, y) w(z) d |

R

With that we are able to construct a Markov chain. For a,b € R we consider a probability
space (€2, A, P@?) and two processes {V;}iez+, {Wi}iez+ with the properties:

o {Y;};,cz+ is a Markov process with Yy = @ and the transition probability

v(y)
Av(zx)

P@b)(Y, ) = dy|Y, = z) ~ k(z,v) dy (2.7)

o {W;};cz+ is the integrated Markov process with
Wy=b and Wo=b+Y1+..4+Y,.

In analogy to the Gaussian case we can state

Proposition 2.4 Forn e N and w_1 :=b—a , wg := b we have

PO (Wr,..., Wy) € (dwr, ..., dwy)) = ”(w;n_y(lsg”) e~ M-t (=renon) TT oy
=1

Proof Under P(*?) we have already set Y, = W,, —W,,_1, n > 1, so the law of (W1, ..., W)
is determined by the law of (Y1, ...,Yy). If we set y; := w; — w;—1, ¢ > 2 and y; := w; — b,
then we have to show that under the r.h.s. of the statement the (y;)i=1,.. » are distributed
like the first n steps of a Markov chain starting at a with the transition probability given
by (2.7). The Hamiltonian can be now written in the following way

n n—1
M) (Wots oo wn) = Y Vi) + Valyr — a) + > Valyiss — i) -
i=1 =1

Therefore we conclude

n

V(wn wnfl) —H_1 ](w,l veeyWn) V(yn)
- - 7 -1,n yeenWn) — k | | k i1, Ui
)\”Z/(a) € )\ny(a) (‘173/1)i:2 (y 1 y)

_ v k(a,yﬂH%M%b%) ;
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and we are done, because the last statement is just the density of the law of (Y1,...,Y},)
under P(@?) w.r.t. the Lebesgue-measure dy; - - - dyp. O

The following density will play a crucial role later on.
Definition 2.5 Forn > 2 we define the density of (Wp—1, Wy) by

P@D) (W1, Wy,) € (dwy, dws))
dwidws .

o)

(w1, ws) :=

The next Proposition provides a representation for the free model, which can be seen as a
bridge of the integrated Markov chain.

Proposition 2.6
Pon(.) = POO(Wy,...,Wx_1) € Wy = Wxi1 =0)

and
0,0
Zon = AT <P§v+)1(070) :
Proof By Proposition 2.4, the r.h.s. can be written (conditional density)

POO(Wr,.., Wr—1) € Wy = Wi = 0)

_ 1 ) /6—H[_1,N+1] (W1, WN 1) Nl:f dw;
0,0 5
AW+ 00 (0,0) /. i1

where w_1; = wg = wy = wys1 = 0. The first expression in the above calculation is a
probability measure (conditioned on the event {Wy = Wx 1 = 0}), so plugging in RV~
we have

— fRN—l 67H[_1,N+1J(w71 ..... wn) sz\izl dwz :AN-H 905\27—1(—))1(07 0)
0,0
— Zo,N = AN+ SDSV7+)1 (0,0)
This concludes the proof. O

Proposition 2.7 The right-eigenfunction v of K is bounded, i.e there exists an k > 0,
such that for all x € R we have v(z) < k.

Proof We know already that v € L®(R, ||.||s), i-e. almost surely boundedness. Now by
the eigenfunction equation and Holder-inequality with p = 1 we obtain the result, for all
zeR

Av(z) = /R k(e ) v(y) dy < /R k(. 9) dy [ ]lso < M[1]]oo

where the last step is due to the proof of Proposition 2.3. O
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Proposition 2.8 The Markov chain {Y;};cz+ has the invariant measure w(dz) = v(z) w(z) dz

and it holds
/mﬂm<m

Proof The invariance can be seen immediately. Now as a right eigenfunction of X is
v € L®(R, |].||so) and so w € L(R, ||.]|1). Therefore by Hélder and condition C4

[ lalw) A/m/'wmwww<>wﬂ

< < o]y fle™¥5 /MI ?) dz < oo,

then again using Holder we arrive by

/M(u<wh/m 2) dz < 0o .

Proposition 2.9
The Markov chain {Y;};cz+ Is uniformly bounded in the sense that there exists an Ly > 0,
such that for all n € N we have

Ep©o|Yn] < L1 .

Proof Let P,(x,dy) = P,(z,y)dy denote the n-step transition probability of {Y;};cz+.
starting in  and going to dy, i.e. the n-th convolution of the transition operator

e_vl (y)_VQ(y_$) V(y)
Av(z)

Pl('r7 dy) =

First we want to show, that for all y € R, P;(0,y) < cv(y)w(y) for an ¢ > 0 independent
of y. Thanks to continuity of the potentials we have for y € [-M — 1, M + 1]

e~ Vi()=Va()

w() [-M—-1,M+1](.)

() w(y) = A (0)

=:¢1 <

o0

In the other case we can bound from below by

-Vi(y) L e—Va(y—2) d M+1
e min{foe w(z)dz , y>M+

>
D fi)l ~Va(y—2) w(z)dz , y<—(M+1)

e~ Viy)—Valy fo 2)dz  ,y>M+1
A Y (Mz,y<%M+D
e Vily)—Valy)

= ———————¢

A

| \/



58 GENERAL PINNING MODEL

and therefore y
Pl (O) y) < c

v(y)w(y) ~ v(0)
Alltogether we have with ¢ := max{¢é1, é2}

Pi(0,y) < cv(y)w(y) forallyeR

and so from Proposition 2.8 for all n € N (set Py := Id)
EpoolVal = [ dzPal0.9) |2l = [ = [ dyPi(0.9) Paa(y2) |2
<c /dz /W(dy) P,_1(y,2) |2
:c/ﬂ(dz)|z]<oo.

2.3 Bounds on the density @5\9’0)(0, 0)

Later we will see that crucial for further investigation is the behavior of the density in
Definition 2.5 at (0,0), when the Markov chain {Y;};cz+ and the integrated Markov chain
{W;}icz+ start in (a,b) = (0,0). The next bounds will be sufficient

Proposition 2.10 The following lower and upper bound hold

o There exists a ¢ > 0, such that 5 < @S\?’O)(O,O) for all N € N>o

o limy oo +10g 0 (0,0) <0 .

Observe that the lower bound is not sharp. Recalling the behavior of @5\0,’0) (0,0) from
the previous chapter, one should rather expect an order of N—1/2. This inaccuracy is due
to the rough estimate in (2.9). However, pre-empting chapter 5, even the accurate lower
bound would yield at most a fourth-order phase transition, which is not enough.

Proof of the Proposition 2.10

2.3.1 The lower bound

Proposition 2.6 allows us to write

N-2

(0,0) 1 1 ZN Vi (V) J_V—IV(Q )
© 0,0) = —=2Z = — im1 Vi(Ve) =302y Va(Aw; | | do;
N ( ) ) )\N 0,N—1 )\N N2 € P Pi
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with v_1 = g = pn—1 = ¢n = 0. For the sake of convenience we want to consider just
an odd number for N. The reason is, that now we have an even number of field variables
and it is possible to use a symmetry argument. In this case the boundary conditions are

01 =0 = pan = pan+1 = 0 and

2N—-1

(0,0) _ 1 — SV (Vi) - T2 Va(Agy) .
(702N+1(0’0) = 2N+ /RQN1 e =1 1(Vep o V2(Ap 1_{ d@z
i

Since we want to obtain a lower bound, we restrict the integration to C}(g) := R2V-1n
{len —@n-1]l < e, |pn — @n+1| < €}, for an arbitrary fixed € > 0. On C}(¢) we have
IVont1] < € and |Apn| < 2¢. By our assumption V3 is continuous and so there is a
M. > 0 with Va(z) < M, for all |z| < 2. Therefore we obtain

0,0
SOéN-i)-l (07 O)
2N—-1

—(V1(0)+M.
> e()\;iv)ﬂ) / e i Vi(Ve) =210 Va(Ag) o= SN Vi(Ve) =Sy 1 Va(Agi) H dep;
On(e) i=1

N—1 2

—(V1(0)+M-.
R C?

~ () i=1

9

where in the last step we have used the symmetry of V; and the symmetry of the integrand
on Cj (e), setting C%(¢) := RN 1N {|on — on_1| < €}. Now we take cy > 0 and make a
further restriction on the integration, then we use Jensen’s inequality

0,0
(PgNll (07 0)

e*(V1(0)+M5) CN N N1 N-1 2
> =it i(Vei) =320 Va(Agi) .
< T 2N+ / dpn [ /012\1 © € ' ’ H depi

—¢N i=1

~(Vi(0)+Me) | 1 pen N-1 2
> e — / don / e SN Vi(Ve) =S, Va(Agy) H do;
A 3 () =1

QCN)\ —cN
O e [ e [ e ey
2cN A AN e N C2(e) v(eN — ¢N-1) v(0)

N-1 2
.8—2?7:1 Vi(Vei) =N ot Va(Aps) H d@i]
=1
L WO ()2
- 2en )\ K2

2
[P(O’O)(|WN| <cen, Wy —Whoq] < 6)} . (2.8)

In the last inequality we have used Proposition 2.7 and Proposition 2.4. Now we use twice
the Markov-inequality to obtain
POO(Wy| < e, [Yn| <€) = 1= POO{Wy| > en} U{[Yn] > €})
> 1-POO(Wy| > ey) = POO(JYy] > €)

1 1
>1——Epoo||Wn|] — = Epoo|Yn| -
CcN €
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By Proposition 2.9 we have

N
Epo.0 Wyl £ EpoolYy| < LN . (2.9)
i=1
Furthermore, since cy,e > 0 were arbitrary, we choose ¢y = Lo N such that Ly > 3L; and
€ = 2L; to get finally
LiN I, Ly 1

1
POO Wy < Yn|<e)=1- B e

Of course this lower bound is not optimal, but any lower bound greater than 0 suffices to
conclude from (2.8) that

e~ (V1(0+Mar) (,(0))2
72L2)\ H,2 ’

cpg\?’o)(0,0) > % , where 0 <c:=

and this gives the desired lower bound.

2.3.2 The upper bound

The upper bound seems to be trivial because we allow even something less than exponential
growth of ap(o 0)(0, 0). Nevertheless, it requires still some work. By condition C3 and C4
we can “erase” V1(Voani1), Vi(Voan), Va(Apan) and Va(Apan_1) to obtain

2N-1 _de 2N-1

(0.0) 1 M1 2n41) () o © ~Hi_1 v-1)(#) |
QOQN_H(O 0) = NZNTT /R2N1e [-1,2N+1] (¥ Z1;[1 dy; < NI R2N716 —1,2n-1)(® g de;
e e v(0
= —3 / ©) PO (Won_s € dpan—a, Wan—1 € dpan—1)
A Jre v(p2n—1 — pan-—2)

v(0) _4 1
_ W) e ).
€ P<0’0)<V(Y2N1)>

It only remains to prove that there exists C' > 0, such that

1
E — | < . 2.1
P(0,0) <V(Y2N_1)> < C, Vn e N ( 0)

Now similarly to the proof of Proposition 2.9 we have

Epoo <1> :/dan(() 5 (1 /dz/dypl 0,y) Pn1(y, 2 )(lz)
<c/dz/ (dy) Pr-1(y,2) ()— /(dz)y(lz)

:c/y(z) v(z)w(z)dz =c|lw|i < oo .
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2.4 The “double-contact” process

The technical tool here will be the construction of a renewal process that will help to
provide a sufficient lower bound for the free energy. Fix an arbitrarily chosen € > 0 and
without loss of generality we take N even (for an odd N in the calculations below one
should sum up to | N/2] instead of (IV —2)/2). Using the expansion (1.22) of the product
measure and restricting summation to sets g, C P(N?*) defined by

Aoy := {{tl —1,t1,t0 — 1,20, ...ty — 1,tk} ‘ O=ty<ti <..<ty<Nandt;—ti_q1> 2}

we obtain
N-1
Zy=Y¢ % /e—H[l,NJrl](‘P) IT doden) TT den
k=0 AC{1,.N-1} meA neAC
|Al=k
N2
2
> o2k Z /e—H[l,N+1](‘p) H So(dom) H don
k=0 AC{1,.N-1} meA neAC
A =2k
N2
2
>3 Y /e—H[l,NH](w) [T do(dem) ] den
ACRAsy, meA neAC

i
|
v O

k+1

> [TE®-t-1) . (2.11)

O0=to<t1<..<tp,<N<tp41=N+1 j=1
ti—ti—1>2

v
[
™
=

B
Il
o

In the last step we factorized according to A C o with

e~ Hi-1,2(0,0,0,0) _ ,—2(V1(0)+V2(0))

I

R(n) i= { [z e Moot gy o dw, oy n2 3

with w_1 =0,wy =0, wp—1 =0, w, =0 .

We can now choose a p > 0 and for n € N>p set

2

K#e(n) = £ IN((n) e Hem (: 2009 (0, 0) 67“5”>
>\n
such that

> Ef(n)=1.

nENZQ

Indeed, due to the lower bound in Proposition 2.10 we have . > 0 for all € > 0. Now we
define a probability measure P*< and a renewal process {n; };cz+ on N>o. More precisely
a process starting in 79 = 0 and having i.i.d. increments {nx+1 — 7% }x and the inter-arrival
law

Pre (kg1 — e =n) = KF<(n) .
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We stress also that this process can be written as

mo =20, N1 = 1Inf{i > +2 | pic1 = p; =0} .
no=0 M N2 N3 N4 Ns

Figure 2.1: A sketch of the double contacts {n;};cz+. We have imposed ng4+1 — nx > 2.

Observe that by independence

k+1

[T "t —ti0) =P (m =tr,me —m =to —tr, oo mpgr — e = N+ 1 — )
j=1

and therefore from (2.11) and recalling that 111 — 7 > 2 we obtain

Z

—2

¥ ‘

AN+ gpie (N+1)
ez > Phe(m = t1,m2 = t2, .., fpr1 = N + 1)

O=to<t1<..<tp,<N<tp41=N+1
ti—t;—122

ZEN

)

Vv
o~
g

N-—2
AN+ e (N+1) 2
S E— > PE(rar = N +1)
k=0
AN+ e (N+1)
=5 ) Pl =N+1)

2
< k=1
AN+ e (N+1)
= PN +len). (2.12)

In the last but one equation we substituted N/2 by oo since from here on the sum is
empty, due to 914 n/2 > N +2 (m > 2,m2 > 4 and so on). Furthermore 7 denotes the set
of restricted double-contacts:

ni={k€Z" | pp_1 = =0} N Aoy, .

2.5 Lower bound for the free energy

First of all we recall the definition of free energy in our setting

. 1 Z. N
F(e) = lim —1 — .
(8) Ngrnl)oN o8 Z()’N
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It is well defined for all € > 0, as can be shown again by a standard super-additivity
argument, cf. chapter 0. Observe that by Proposition 2.6 and both bounds in Proposition
2.10 it holds

lim L log Zyn = lim — ((N + 1) log A + log %% (0 0)) —log \ .

N ’ N—oco N N+1LD

N—o0

Therefore for an arbitrarily chosen ¢ > 0, by (2.12) we obtain

. Zen o Lo [ ANHLene (VD 1
lim —1 — > lim —log | ———— P (N +1 — lim —log Z
N:H;oNogzo,N—N:H;ONOg[ a PrWELen| - i ylesZon
1
> e + lim —log[P*s(N +1 € n)] (2.13)
N—oo N

As we have already mentioned above, for all £ > 0 we have uc > 0. So, if we can show that

1
lim —1 He(N 41 >
Jim - log [PH(N +1 €n)] =0
then we have proven the trivial phase transition. Now, since P#<(n; = n) = K*<(n) > 0

for all n € N,,>9 the process {ny}rez+ is aperiodic and by the Classical Renewal Theorem
of [3] (chapter I, Thm. 2.2)

1
PHe(N+1en) — —,

N—oo Mg
where me =), -, n K" (n). Furthermore it is by Proposition 2.10
0 < m.=¢? anpﬁ?’o)((},(}) e M < oo
n>2

Therfore as soon as € > 0 the free energy is also strictly positive. This means we have
proven a trivial phase transition for our pinning-model with general potentials.






3 The polymer above a “hard wall” :
entropic repulsion in GGaussian case

3.1 The model with a wall

In this chapter we study a further extension of the pinning model (1.1), which now will
additionally interact with a neutral hard wall. This interaction is also known as the
phenomenon of entropic repulsion. The presence of the hard wall in {1, ..., N-1} is modeled
by the positivity constraint Q3 := {¢; > 0]i € {1,..., N — 1}}. The measure describing
this process is then the conditional measure ]ng N

v ()= Py (+19F) (3.1)

where [P, n denotes the “pure”™-pining measure in (1.1).

Now putting it in a formal way, (3.1) is described by the distribution on RV=1 :

w exp(—H—1,n+1)(®)) =
en(dy) = Zw H (€do(des) + dpi Lig.>0}) (3.2)
&N i=1

where the Hamiltonian is of the following form (a, 3 > 0 )

o N1 5 &
M N (p-1 s pv1) =5 D (Vo) + 5 > (Api)®
i=1 i=0

and for simplicity we impose again zero boundary conditions, i.e.

p_1=po=pN =pnNs1=0.



66 THE POLYMER ABOVE A “HARD WALL’ : ENTROPIC REPULSION IN (GAUSSIAN CASE

wetting model

=1 0 i M+1

Figure 3.1: A sketch of the wetting model PY ;. This time the polymer-chain fluctuates
above an impenetrable wall (membrane). On the one hand it is attracted by the interger-
sites at the x-axis, on the other hand it is repelled by the wall through its own fluctuations.

The additional effect of an impermeable wall, which the chain is not allowed to cross, is
known in the context of interface models, confer for instance [29]. This model is then
usually called the wetting model, since by means of localization one is interested if the
wet-phase between the wall and the interface (here the chain) prevails or not. By the
definition (3.2) one can immediately see that indeed :

PEn(dpr---dpn—1) =Pen (der---don-1 | p1>0,...,08-120) .

3.2 The main result on wetting

We remark that similarly to the pinning, the wetting model undergoes two opposite effects,
the entropy and the energy. However, this time those effects are represented on the one
hand by the self-interaction and the wall and on the other hand by pinning towards the
defect-line. The additional effect of the wall is of repulsive nature, since the polymer can
achieve space for its fluctuations just by repelling itself away from the wall. Especially
in view of the previous results in the pinning case it is therefore interesting, if the wall-
constraint is strong enough to obtain this time a (proper) phase transition.

We refer to the previous chapters for definitions of localization/delocalization. Recall the
free energy in the setting of the wetting model

1 ZEN
Fw(a)zj\;imooﬁlog (Zi” ) ,e>0.
- 0,N

So far we had to realize that fluctuations of our model are not strong enough, meaning
that an arbitrarily small pinning strength localizes the behavior of the chain. This happens
even when, comparing to the V-potential, we impose very strong Laplacian-potentials in
the model. This behavior changes finally dramatically, if the chain meets an impermeable
wall.
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Theorem 3.1 (Localization in wetting case) For every o, 3 > 0 there exists ef > 0,
such that the model PY 5, reveals the following delocalization-localization behavior:

D=10,ef] and L= (gf 00).
Furthermore, on L the free energy s real analytic and
FY() ~loge ,e—o00.
The gradient model (3 = 0) has been studied for instance by [7] for Gaussian and by [12]
for general potentials, cf. also [1], [13], [16], [18], [20]. The Laplacian case (o = 0) was
investigated for general potentials in [10]. In both cases the critical point turns out to be

strictly positive, i.e. the models exhibit also a non-trivial phase transition. At this point
we remark again that [10] was the most important paper for the methods developed here.

3.3 The free wetting model

First of all we would like to describe the free model, i.e. 1137({ n- There is a connection to
the same Markov chain, which was constructed in the subsection 1.4.1 of the pinning model.

Let us define the orthant set of the integrated Markov chain {W;};cz+ defined in the
subsection 1.4.1

Qf ={W1>0,..,Wy >0} . (3.3)
Similarly to the density in pinning case we introduce

Definition 3.2 For n > 2 we define the conditional density of (W1, W) by

(a.b) P@b) ((W,,_1, Wy,) € (dwy, dws) | 4t
5 (w1 1g) = (Wa—1, Wa) € (dwy, dws) | 27)

dwydws
This density enables us to write our free model Py in the following way:
Proposition 3.3

Wy =POO (W, ., Wx_1) € |Q5_,, Wy = Wrs1 = 0)

and 00
Z¢n = AN ON (0,00 POOQF )

Proof We can write (conditional density)

POO(Wh, ., W) € QK Wiy = Wiy1 = 0)

1 . efH[fl,Nle](w—l""va+l) ]VH1 dw;
+(070) + v
ANHL Gy 11(0,0) 7N =1
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where w_; = wy = wy = wy4+1 = 0. The first expression in the above calculation is a
probability measure (conditioned on the event {Q},_,, Wy = Wy = 0}), so plugging in
QE_I, we obtain

—|—(070)

—H- w LW N—
e o e T [Ny ANVHE (0,00 PO (@)
— Z¥y = AV o011 (0,0) PODQE ).
This concludes the proof. O

The last Proposition makes it possible to represent our free model as a “bridge” of the
process {W; };cz+, conditioned to stay positive.

3.3.1 Convenient representation for the integrated Markov chain

We have seen in the pinning case that the density in (1.21) has played a central role. Since
we are dealing with the Gaussian case it is clear that covariances of the process { Wy} ez+
are of special interest in order to obtain a representation for this density. Contrarily to the
laborious method of inverting a band matrix in chapter 1, we can receive a more convenient
representation in a more direct and easier way. Recall that we assume always «, 5 > 0, if
not explicitly stated.

In the Gaussian case we have found a very nice representation of our Markov chain {Y; };c7+
and the integrated Markov chain {W;},;cz+, defined in the subsection 1.4.1. More precisely,
if we start in (Yp, Wo) = (a, b), then under P(@)

Y, =7"a+~""ter + ... + 4%, (3.4)

and

n
anzn =Tpn_1a+b+ 71,161 + ... + T0En (3.5)
i=1

where (sgn denotes the signum function):

RS (o428 —JayaFag\'?
T'n—i _;7 and Y= <a+2ﬂ+\/a\/m> Sgn(/@) :

The process {&;}icz+ is an ii.d. sequence of centered Gaussian variables ~ N(0,0?),
0% =1/0, with o defined in Proposition 1.5.

Remark 3.4
The values for v are dependent on o and 3 and we will distinguish between three cases:

(i) 0<~y<1 |, for the mixed model (o, 3 >0)
(ii) v=0 , In V-case (f=0)
(iii) vy=1 , in A-case (a =0).
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Considering (3.5) in the last two cases {Wy},ecz+ represents either a random walk or an
integrated random walk. Confer Remark 1.4 and Remark A.6 for § < 0.

In case of 0 < 4 < 1 we can write the integrated Markov (under P(*?)) chain as

n

1
(614 .4+ 6n) — ——(Y"e1 + 7" Lea + ... Fyen) -

W, =
1 -y

— " a+b+
T lL—v
This representation seems to be surprising at a first glance and we were very happy to
have found it. The reason is that it will be very convenient for further analysis. For the
justification of the upper representation confer Appendix A.4.

3.4 Entropic repulsion

This section is devoted to the problem of entropic repulsion, which results as an effect of
introducing an impermeable wall in our model. In this context let us define an important
term w; (V) that we call the “conditional orthant probability”.

Definition 3.5 For N > 3 and x,y € R we define the quantity
Way(N) == PEPO(W, >0, n=1,...,N =2 | Wy_1 =y, Wy = 0)1, 50} -

As a remark we mention that

+(0,0) 1 2N

_ 0,0
Pn1(0,0) = ANFIPOO)(QF )

Z(]’N = QDNJFI(O, 0) wo70(N + 1)

Zo,N POO@QF )’

with the density being already defined in the pure-pinning model:

P (W1, Wy) € (dwy, dwy))

>2.
dwidws "=

)

o (w,w) =

We will see later that the quantity w..(-) plays an important role in the investigation of
the wetting model. For our purposes it will be necessary to control w; ,(n) in all variables
z,y € Ry and n € Nxo. This non-trivial problem is known as entropic repulsion in
physical, but also in mathematical literature, e.g. [29] in the context of random interfaces.
For the (d + 1) gradient model we refer to [6] for d > 3 and to [12]| for d = 1. For the
(d+1)-Laplacian case with Gaussian potentials confer [27],[22] for d > 5 and [23] for d = 4.
We remark that in lower dimensions the decay in N for the entropic repulsion takes place
on different (polynomial) scales, cf. [10] for the Laplacian model with general potentials
and d = 1. In the following we will treat the entropic repulsion for our mixed case. We
will give sufficient lower and upper bounds for w, ,(n) in the next subsections.

Before attempting that, let us first see what can be said in the much more easier non-
conditional case. For this purpose we refer to the representation (3.5) for W,, and set
P := PO, We define Sy = S5 :=0 and

STY:51+"'+511 and Sﬁ:ngl+(n_1)52+...+€n.

We have the following inequalities for the entropic repulsion
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Proposition 3.6 For alln € N it holds

P(SY >0,...5y >0) <P(Wy >0,...,W, >0) <P(S{ >0,.., 85 > 0) .

Proof Let us consider first the left-hand-side inequality. We will show by induction that
{s¥ =0} c{Wi=0}.
i=1 i=1

For n = 1 it is trivial, since SlV > 0 includes W7 > 0. Now observe that
Wit1 = (L4+y+-+9"er 4+ +eng1 = Sypq + W

and therefore by induction

n+1 n n
N {SY 20} = (" {SY =0} N {Woys — /W = 0} € () {Wi =0} N { W1 — 4 Wy > 0}
i=1 =1 i=1

Qﬁ{WiZO} N {Wn+120}§ﬁ{Wi20} :
i=1 i=1

Now for the second inequality in the Proposition again n = 1 is trivial. Here we observe
that for alln € N

SE=Wp+ 1 —7) Wi+ +Wy1) ,
since
Sp=nei+(n—Dex+ - Fen=0+7+ -+ Da+1+y+--+7" e+ +ep
ter(l=v+1—-+ 41"l —g+1-+ - +1=9") 4 te,1(1 —7)

1_,)/ 1_72 1_,)/71—1 1_7 1_,72 1_771—2
- 1— -7 R A -7 R A
Wi + ( 7)[51<1_7+1_7+ + T + €2 1_7+1_7+ + T

ot ]
=Wou+ Q=)W+ +Wy1) .
This yields

n+1 n
() {Wi > 0} = () {W; > 0} N {Wyp1 >0}
i=1

=
—

(W; >0} N {S8, — (L—7) (Wi + -+ W1) >0}

I

s
I
—

n+1
(Wi =0} n{S2, =0} c){sP=>0}.
=1

n

N

.
Il
—
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This means in particular that for Qj\} in definition 3.3 there exist two constants ki, ko > 0
such that for all N ¢ N

N2 <P(Qy) < Na