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Abstract
The approximation of probability measures on compact metric spaces and in par-
ticular on Riemannian manifolds by atomic or empirical ones is a classical task in
approximation and complexity theory with a wide range of applications. Instead of
point measures we are concerned with the approximation by measures supported on
Lipschitz curves. Special attention is paid to push-forwardmeasures of Lebesguemea-
sures on the unit interval by such curves. Using the discrepancy as distance between
measures, we prove optimal approximation rates in terms of the curve’s length and
Lipschitz constant. Having established the theoretical convergence rates, we are inter-
ested in the numerical minimization of the discrepancy between a given probability
measure and the set of push-forward measures of Lebesgue measures on the unit inter-
val by Lipschitz curves. We present numerical examples for measures on the 2- and
3-dimensional torus, the 2-sphere, the rotation group on R

3 and the Grassmannian of
all 2-dimensional linear subspaces of R

4. Our algorithm of choice is a conjugate gra-
dient method on these manifolds, which incorporates second-order information. For
efficient gradient and Hessian evaluations within the algorithm, we approximate the
given measures by truncated Fourier series and use fast Fourier transform techniques
on these manifolds.

Keywords Approximation of measures · Curves · Discrepancies · Fourier methods ·
Manifolds · Non-convex optimization · Quadrature rules · Sampling theory
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1 Introduction

The approximation of probability measures by atomic or empirical ones based on their
discrepancies is a well examined problem in approximation and complexity theory
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[59,62,67] with a wide range of applications, e.g., in the derivation of quadrature rules
and in the construction of designs. Recently, discrepancies were also used in image
processing for dithering [46,72,77], i.e., for representing a gray-value image by a finite
number of black dots, and in generative adversarial networks [28].

Besides discrepancies, Optimal Transport (OT) and in particular Wasserstein dis-
tances have emerged as powerful tools to compare probability measures in recent
years, see [24,81] and the references therein. In fact, so-called Sinkhorn divergences,
which are computationally much easier to handle than OT, are known to interpolate
between OT and discrepancies [30]. For the sample complexity of Sinkhorn diver-
gences we refer to [37]. The rates for approximating probability measures by atomic
or empirical ones with respect toWasserstein distances depend on the dimension of the
underlying spaces, see [21,58]. In contrast, approximation rates based on discrepan-
cies can be given independently of the dimension [67], i.e., they do not suffer from the
curse of dimensionality. Additionally, we should keep in mind that the computation
of discrepancies does not involve a minimization problem, which is a major drawback
of OT and Sinkhorn divergences. Moreover, discrepancies admit a simple description
in Fourier domain and hence the use of fast Fourier transforms is possible, leading to
better scalability than the aforementioned methods.

Instead of point measures, we are interested in approximations with respect to
measures supported on curves. More precisely, we consider push-forward measures
of probability measures ω ∈ P([0, 1]) by Lipschitz curves of bounded speed, with
special focus on absolutely continuous measures ω = ρλ and the Lebesgue measure
ω = λ. In this paper, we focus on approximation with respect to discrepancies. For
related results on quadrature and approximation on manifolds, we refer to [31,47,64,
65] and the references therein. An approximation model based on the 2-Wasserstein
distance was proposed in [61]. That work exploits completely different techniques
than ours both in the theoretical and numerical part. Finally, we want to point out
a relation to principal curves which are used in computer science and graphics for
approximating distributions approximately supported on curves [49,50,50,55,57]. For
the interested reader, we further comment on this direction of research in Remark 3 and
in the conclusions. Next, we want to motivate our framework by numerous potential
applications:

– In MRI sampling [11,17], it is desirable to construct sampling curves with short
sampling times (short curve) and high reconstruction quality. Unfortunately, these
requirements usually contradict each other and finding a good trade-off is neces-
sary. Experiments demonstrating the power of this novel approach on a real-world
scanner are presented in [60].

– For laser engraving [61] and 3D printing [20], we require nozzle trajectories based
on our (continuous) input densities. Compared to the approach in [20], where
points given by Llyod’s method are connected as a solution of the TSP (traveling
salesman problem), our method jointly selects the points and the corresponding
curve. This avoids the necessity of solving a TSP, which can be quite costly,
although efficient approximations exist. Further, it is not obvious that the fixed
initial point approximation is a good starting point for constructing a curve.
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– Themodel can be used forwire sculpture creation [2]. In viewof this, our numerical
experiment presented in Fig. 5 can be interpreted as a building plan for a wire
sculpture of the Spock head, namely of a 2D surface. Clearly, the approach can be
also used to create images similar to TSP Art [54], where images are created from
points by solving the corresponding TSP.

– In a more manifold related setting, the approach can be used for grand tour com-
putation on G2,4 [5], see also our numerical experiment in Fig. 11. More technical
details are provided in the corresponding section.

Our contribution is two-fold. On the theoretical side, we provide estimates of the
approximation rates in terms of themaximal speed of the curve. First, we prove approx-
imation rates for general probability measures on compact Ahlfors d-regular length
spaces X. These spaces include many compact sets in the Euclidean space R

d , e.g.,
the unit ball or the unit cube as well as d-dimensional compact Riemannian manifolds
without boundary. The basic idea consists in combining the known convergence rates
for approximation by atomic measures with cost estimates for the traveling salesman
problem.As for pointmeasures, the approximation rate Ld/(2d−2) ≤ L−1/2 for general
ω ∈ P([0, 1]) and Ld/(3d−2) ≤ L−1/3 for ω = λ in terms of the maximal Lipschitz
constant (speed) L of the curves does not crucially depend on the dimension of X. In
particular, the second estimate improves a result given in [18] for the torus.

If the measures fulfill additional smoothness properties, these estimates can be
improved on compact, connected, d-dimensional Riemannian manifolds without
boundary. Our results are formulated for absolutely continuousmeasures (with respect
to the Riemannian measure) having densities in the Sobolev space Hs(X), s > d/2. In
this setting, the optimal approximation rate becomes roughly speaking L−s/(d−1). Our
proofs rely on a general result of Brandolini et al. [13] on the quadrature error achiev-
able by integration with respect to a measure that exactly integrates all eigenfunctions
of the Laplace–Beltramiwith eigenvalues smaller than a fixed number. Hence, we need
to construct measures supported on curves that fulfill the above exactness criterion.
More precisely, we construct such curves for the d dimensional torus T

d , the spheres
S
d , the rotation group SO(3) and the Grassmannian G2,4.
On the numerical side, we are interested in finding (local) minimizers of discrep-

ancies between a given continuous measure and those from the set of push-forward
measures of the Lebesguemeasure by bounded Lipschitz curves. This problem is tack-
led numerically on T

2, T
3, S

2 as well as SO(3) and G2,4 by switching to the Fourier
domain. The minimizers are computed using the method of conjugate gradients (CG)
on manifolds, which incorporates second order information in form of a multipli-
cation by the Hessian. Thanks to the approach in the Fourier domain, the required
gradients and the calculations involving the Hessian can be performed efficiently by
fast Fourier transform techniques at arbitrary nodes on the respective manifolds. Note
that in contrast to our approach, semi-continuous OT minimization relies on Laguerre
tessellations [41], which are not available in the required form on the 2-sphere, SO(3)
or G2,4.

This paper is organized as follows: In Sect. 2 we give the necessary preliminaries
on probability measures. In particular, we introduce the different sets of measures
supported on Lipschitz curves that are used for the approximation. Note that measures
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supported on continuous curves of finite length can be equivalently characterized
by push-forward measures of probability measures by Lipschitz curves. Section 3
provides the notation on reproducing kernelHilbert spaces and discrepancies including
their representation in the Fourier domain. Section 4 contains our estimates of the
approximation rates for general given measures and different approximation spaces of
measures supported on curves. Following the usual lines in approximation theory, we
are then concerned with the approximation of absolutely continuous measures with
density functions lying in Sobolev spaces. Our main results on the approximation
rates of smoother measures are contained in Sect. 5, where we distinguish between
the approximation with respect to the push-forward of general measures ω ∈ P[0, 1],
absolute continuous measures and the Lebesgue measure on [0, 1]. In Sect. 6 we
formulate our numerical minimization problem. Our numerical algorithms of choice
are briefly described in Sect. 7. For a comprehensive description of the algorithms on
the different manifolds, we refer to respective papers. Section 8 contains numerical
results demonstrating the practical feasibility of our findings. Conclusions are drawn
in Sect. 9. Finally, Appendix A briefly introduces the different manifoldsX used in our
numerical examples together with the Fourier representation of probability measures
on X.

2 Probability Measures and Curves

In this section, the basic notation on measure spaces is provided, see [3,32], with focus
on probability measures supported on curves. At this point, let us assume that

X is a compact metric space endowed with a bounded non-negative Borel mea-
sure σX ∈ M(X) such that supp(σX) = X. Further, we denote the metric by
distX.

Additional requirements on X are added along the way and notations are explained
below. By B(X)we denote the Borel σ -algebra on X and by M(X) the linear space of
all finite signed Borel measures on X, i.e., the space of all μ : B(X) → R satisfying
μ(X) < ∞ and for any sequence (Bk)k∈N ⊂ B(X) of pairwise disjoint sets the relation
μ(
⋃∞

k=1 Bk) = ∑∞
k=1 μ(Bk). The support of a measure μ is the closed set

supp(μ) := {
x ∈ X : B ⊂ X open, x ∈ B �⇒ μ(B) > 0

}
.

For μ ∈ M(X) the total variation measure is defined by

|μ|(B) := sup

{ ∞∑

k=1

|μ(Bk)| :
∞⋃

k=1

Bk = B, Bk pairwise disjoint

}

.

With the norm ‖μ‖M = |μ|(X) the space M(X) becomes a Banach space. By C(X)

we denote the Banach space of continuous real-valued functions on X equipped with
the norm ‖ϕ‖C(X) := maxx∈X |ϕ(x)|. The space M(X) can be identified via Riesz’
theorem with the dual space of C(X) and the weak-∗ topology on M(X) gives rise to
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the weak convergence of measures, i.e., a sequence (μk)k ⊂ M(X) converges weakly
to μ and we write μk⇀μ, if

lim
k→∞

∫

X

ϕ dμk =
∫

X

ϕ dμ for all ϕ ∈ C(X).

For a non-negative, finitemeasureμ, let L p(X, μ) be theBanach space (of equivalence
classes) of complex-valued functions with norm

‖ f ‖L p(X,μ) =
(∫

X

| f |p dμ
) 1

p

< ∞.

ByP(X)we denote the space of Borel probabilitymeasures onX, i.e., non-negative
Borel measures with μ(X) = 1. This space is weakly compact, i.e., compact with
respect to the topology of weak convergence. We are interested in the approximation
of measures in P(X) by probability measures supported on points and curves in X. To
this end, we associate with x ∈ X a probability measure δx with values δx (B) = 1 if
x ∈ B and δx (B) = 0 otherwise.

The atomic probability measures at N points are defined by

Patom
N (X) :=

{ N∑

k=1

wkδxk : (xk)
N
k=1 ∈ X

N , (wk)
N
k=1 ∈ [0, 1]N ,

N∑

k=1

wk = 1

}

.

In other words, Patom
N (X) is the collection of probability measures, whose support

consists of at most N points. Further restriction to equal mass distribution leads to the
empirical probability measures at N points denoted by

Pemp
N (X) :=

{
1

N

N∑

k=1

δxk : (xk)
N
k=1 ∈ X

N
}

.

In this work, we are interested in the approximation by measures having their
support on curves. Let C([a, b], X) denote the set of closed, continuous curves
γ : [a, b] → X. Although our presented experiments involve solely closed curves,
some applications might require open curves. Hence, we want to point out that all of
our approximation results still hold without this requirement. Upper bounds would not
get worse and we have not used the closedness for the lower bounds on the approxi-
mation rates. The length of a curve γ ∈ C([a, b], X) is given by


(γ ) := sup
a≤t0≤...≤tn≤b

n∈N

n∑

k=1

distX
(
γ (tk), γ (tk−1)

)
.

If 
(γ ) < ∞, then γ is called rectifiable. By reparametrization, see [48, Thm. 3.2],
the image of any rectifiable curve in C([a, b], X) can be derived from the set of closed
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Lipschitz continuous curves

Lip(X):={γ ∈ C([0, 1], X) : ∃L∈R with distX
(
γ (s), γ (t)

)≤L|s − t | ∀s, t ∈ [0, 1]}.

The speed of a curve γ ∈ Lip(X) is defined a.e. by the metric derivative

|γ̇ |(t) := lim
s→t

distX
(
γ (s), γ (t)

)

|s − t | , t ∈ [0, 1],

cf. [4, Sec. 1.1]. The optimal Lipschitz constant L = L(γ ) of a curve γ is given by
L(γ ) = ‖ |γ̇ | ‖∞([0,1]). For a constant speed curve it holds L(γ ) = 
(γ ).

We aim to approximate measures in P(X) from those of the subset

Pcurv
L (X) := {

ν ∈ P(X) : ∃γ ∈ C([a, b], X), supp(ν) ⊂ γ ([a, b]), 
(γ ) ≤ L
}
.

(1)
This space is quite large and in order to define further meaningful subsets, we derive
an equivalent formulation in terms of push-forward measures. For γ ∈ C([0, 1], X),
the push-forward γ ∗ω ∈ P(X) of a probability measure ω ∈ P([0, 1]) is defined
by γ ∗ω(B) := ω(γ −1(B)) for B ∈ B(X). We directly observe supp(γ ∗ω) =
γ (supp(ω)). By the following lemma, Pcurv

L (X) consists of the push-forward of mea-
sures in P([0, 1]) by constant speed curves.

Lemma 1 The space Pcurv
L (X) in (1) is equivalently given by

Pcurv
L (X) = {

γ ∗ω : γ ∈ Lip(X) has constant speed L(γ ) ≤ L, ω ∈ P([0, 1])}.
(2)

Proof Let ν ∈ Pcurv
L (X) as in (1). If supp(ν) consists of a single point x ∈ X only,

then the constant curve γ ≡ x pushes forward an arbitrary δt for t ∈ [a, b], which
shows that ν is contained in (2).

Suppose that supp(ν) contains at least two distinct points and let γ ∈ C([a, b], X)

with supp(ν) ⊂ γ ([a, b]) and 
(γ ) < ∞. According to [16, Prop. 2.5.9], there exists
a continuous curve γ̃ ∈ Lip(X) with constant speed 
(γ ) and a continuous non-
decreasing function ϕ : [a, b] → [0, 1] with γ = γ̃ ◦ ϕ. Now, define f : X → [0, 1]
by f (x) := min{γ̃ −1(x)}. This function is measurable, since for every t ∈ [0, 1] it
holds that

{
x ∈ X : f (x) ≤ t

} = {
x ∈ X : min{γ̃ −1(x)} ≤ t

} = γ̃ ([0, t])

is compact. Due to supp(ν) ⊂ γ̃ ([0, 1]), we can define ω := f ∗ν ∈ P([0, 1]). By
construction, ω satisfies γ̃ ∗ω(B) = ω(γ̃ −1(B)) = ν( f −1 ◦ γ̃ −1(B)) = ν(B) for all
B ∈ B(X). This concludes the proof. ��

The set Pcurv
L (X) contains Patom

N (X) if L is sufficiently large compared to N and
X is sufficiently nice, cf. Sect. 4. It is reasonable to ask for more restrictive sets
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of approximation measures, e.g., when ω ∈ P([0, 1]) is assumed to be absolutely
continuous. For the Lebesgue measure λ on [0, 1], we consider

Pa-curv
L (X) := {

γ ∗ω : γ ∈ Lip(X), L(γ ) ≤ L, ω = ρλ ∈ P([0, 1]), L(ρ) ≤ L
}
.

In the literature [18,61], the special case of push-forward of the Lebesgue measure
ω = λ on [0, 1] by Lipschitz curves in T

d was discussed and successfully used in
certain applications [11,17]. Therefore, we also consider approximations from

P ˘-curv
L (X) := {

γ ∗λ : γ ∈ Lip(X), L(γ ) ≤ L
}
.

It is obvious that our probability spaces related to curves are nested,

P ˘-curv
L (X) ⊂ Pa-curv

L (X) ⊂ Pcurv
L (X).

Hence, one may expect that establishing good approximation rates is most difficult
for P ˘-curv

L (X) and easier for Pcurv
L (X).

3 Discrepancies and RKHS

The aim of this section is to introduce thewaywe quantify the distance (“discrepancy”)
between two probability measures. To this end, choose a continuous, symmetric func-
tion K : X × X → R that is positive definite, i.e., for any finite number n ∈ N of
points x j ∈ X, j = 1, . . . , n, the relation

n∑

i, j=1

aia j K (xi , x j ) ≥ 0

is satisfied for all a j ∈ R, j = 1, . . . , n. We know by Mercer’s theorem [23,63,76]
that there exists an orthonormal basis {φk : k ∈ N} of L2(X, σX) and non-negative
coefficients (αk)k∈N ∈ 
1 such that K has the Fourier expansion

K (x, y) =
∞∑

k=0

αkφk(x)φk(y) (3)

with absolute and uniform convergence of the right-hand side. If αk > 0 for some
k ∈ N0, the corresponding function φk is continuous. Every function f ∈ L2(X, σX)

has a Fourier expansion

f =
∞∑

k=0

f̂kφk, f̂k :=
∫

X

f φk dσX.
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The kernel K gives rise to a reproducing kernel Hilbert space (RKHS).More precisely,
the function space

HK (X) :=
{
f ∈ L2(X, σX) :

∞∑

k=0

α−1
k | f̂k |2 < ∞

}

equipped with the inner product and the corresponding norm

〈 f , g〉HK (X) =
∞∑

k=0

α−1
k f̂k ĝk, ‖ f ‖HK (X) = √〈 f , f 〉HK (X) (4)

forms a Hilbert space with reproducing kernel, i.e.,

K (x, ·) ∈ HK (X) for all x ∈ X,

f (x) = 〈
f , K (x, ·)〉HK (X)

for all f ∈ HK (X), x ∈ X.

Note that f ∈ HK (X) implies f̂k = 0 if αk = 0, in which casewemake the convention
α−1
k f̂k = 0 in (4). The space HK (X) is the closure of the linear span of {K (x j , ·) :

x j ∈ X} with respect to the norm (4), and HK (X) is continuously embedded in C(X).
In particular, the point evaluations in HK (X) are continuous.

The discrepancy DK (μ, ν) is defined as the dual norm on HK (X) of the linear
operator T : HK (X) → C with ϕ �→ ∫

X
ϕ d(μ − ν):

DK (μ, ν) = max‖ϕ‖HK (X)≤1

∣
∣
∣

∫

X

ϕ d(μ − ν)

∣
∣
∣, (5)

see [40,67]. Note that this looks similar to the 1-Wasserstein distance, where the space
of test functions consists of Lipschitz continuous functions and is larger. Since

∫

X

ϕ dμ =
∫

X

〈
ϕ, K (x, ·)〉HK (X)

dμ(x) =
〈
ϕ,

∫

X

K (x, ·) dμ(x)
〉

HK (X)
,

we obtain by Riesz’s representation theorem

max‖ϕ‖HK (X)≤1

∫

X

ϕ dμ =
∥
∥
∥

∫

X

K (x, ·) dμ(x)
∥
∥
∥
HK (X)

,

which yields by Fubini’s theorem, (3), (4) and symmetry of K that

D2
K (μ, ν) =

∫∫

X×X

K dμ dμ − 2
∫∫

X×X

K dμ dν +
∫∫

X×X

K dν dν (6)

=
∞∑

k=0

αk |μ̂k − ν̂k |2, (7)
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where the Fourier coefficients of μ, ν ∈ P(X) are well-defined for k with αk �= 0 by

μ̂k :=
∫

X

φk dμ, ν̂k :=
∫

X

φk dν.

Remark 1 The Fourier coefficients μ̂k and ν̂k depend on both K and σX, but the identity
(6) shows that DK (μ, ν) only depends on K . Thus, our approximation rates do not
depend on the choice of σX. On the other hand, our numerical algorithms in Sect. 7
depend on φk and hence on the choice of σX.

Ifμn⇀μ and νn⇀ν as n → ∞, then alsoμn⊗νn⇀μ⊗ν. Therefore, the continuity
of K implies that limn→∞ DK (μn, νn) = DK (μ, ν), so that DK is continuous with
respect to weak convergence in both arguments. Thus, for any weakly compact subset
P ⊂ P(X), the infimum

inf
ν∈P

DK (μ, ν)

is actually a minimum. All of the subsets introduced in the previous section are weakly
compact.

Lemma 2 The sets Patom
N (X), Pemp

N (X), Pcurv
L (X), Pa-curv

L (X), and P ˘-curv
L (X) are

weakly compact.

Proof It is well-known that Patom
N (X) and Pemp

N (X) are weakly compact.
We show that Pcurv

L (X) is weakly compact. In view of (2), let (γk)k∈N be Lipschitz
curves with constant speed L(γk) ≤ L and (ωk)k∈N ⊂ P([0, 1]). Since P([0, 1])
is weakly compact, we can extract a subsequence (ωk j ) j∈N with weak limit ω̂ ∈
P([0, 1]). Now, we observe that distX(γk j (s), γk j (t)) ≤ L|s − t | for all j ∈ N. Since
X is compact, the Arzelà–Ascoli theorem implies that there exists a subsequence of
(γk j ) j∈N which converges uniformly towards γ̂ ∈ Lip(X) with L(γ̂ ) ≤ L . Then,
ν̂ := γ̂ ∗ω̂ fulfills supp(ν̂) ⊂ γ̂ ([0, 1]), so that ν̂ ∈ Pcurv

L (X) by (1). Thus, Pcurv
L (X) is

weakly compact.
The proof for Pa-curv

L (X) and P ˘-curv
L (X) is analogous and hence omitted. ��

Remark 2 (Discrepancies and Convolution Kernels) Let X = T
d := R

d/Z
d be the

torus and h ∈ C(Td) be a function with Fourier series

h(x) =
∑

k∈Zd

ĥke
2π i〈k,x〉, ĥk :=

∫

Td
h(x)e−2π i〈k,x〉 dσTd (x),

which converges in L2(Td) so that
∑

k |ĥk |2 < ∞.
Assume that ĥk �= 0 for all k ∈ Z

d . We consider the special Mercer kernel

K (x, y) :=
∑

k∈Zd

|ĥk |2e2π i〈k,x−y〉 =
∑

k∈Zd

|ĥk |2 cos(2π〈k, x − y〉)

with associated discrepancy Dh via (6), i.e., φk(x) = e2π i〈k,x〉, αk = |ĥk |2, k ∈ Z
d

in (3). The convolution of h with μ ∈ M(Td) is the function h ∗ μ ∈ C(Td) defined
by
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(h ∗ μ)(x) :=
∫

Td
h(x − y) dμ(y).

By the convolution theorem for Fourier transforms it holds (̂h ∗ μ)k = ĥkμ̂k , k ∈ Z
d ,

and we obtain by Parseval’s identity for μ, ν ∈ M(Td) and (7) that

‖h ∗ (μ − ν)‖2L2(Td )
= ∥
∥
(
ĥk (μ̂k − ν̂k)

)
k∈Zd

∥
∥2


2
=
∑

k∈Zd

|ĥk |2|μ̂k − ν̂k |2 = D2
h (μ, ν).

In image processing, metrics of this kind were considered in [18,33,77].

Remark 3 (Relations to Principal Curves) A similar concept, sharing the common
theme of “a curve which passes through themiddle of a distribution” with the intention
of our paper, is that of principle curves. The notion of principal curves has been
developed in a statistical framework and was successfully applied in statistics and
machine learning, see [38,55,57]. The idea is to generalize the concept of principal
components with just one direction to so-called self-consistent (principal) curves. In
the seminal paper [49], the authors showed that these principal curves γ are critical
points of the energy functional

E(γ, μ) =
∫

X

‖x − projγ (x)‖22dμ(x), (8)

where μ is a given probability measure on X and projγ (x) = argminy∈γ ‖x − y‖2
is a projection of a point x ∈ X on γ . This notion has also been generalized to
Riemannian manifolds in [50], see also [57] for an application on the sphere. Further
investigation of principal curves in the plane, cf. [27], showed that self-consistent
curves are not (local) minimizers, but saddle points of (8). Moreover, the existence of
such curves is established only for certain classes of measures, such as elliptical ones.
By additionally constraining the length of curves minimizing (8), these unfavorable
effects were eliminated, cf. [55]. In comparison to the objective (8), the discrepancy
(6) averages for fixed x ∈ X the distance encoded by K to any point on γ , instead of
averaging over the squared minimal distances to γ .

4 Approximation of General Probability Measures

Given μ ∈ P(X), the estimates1

min
ν∈Patom

N (X)
DK (μ, ν) ≤ min

ν∈Pemp
N (X)

DK (μ, ν) � N− 1
2 , (9)

1 We use the symbols� and� to indicate that the corresponding inequalities hold up to a positive constant
factor on the respective right-hand side. The notation ∼ means that both relations � and � hold. The
dependence of the constants on other parameters shall either be explicitly stated or clear from the context.
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are well-known, cf. [43, Cor. 2.8]. Here, the constant hidden in� depends onX and K
but is independent ofμ and N ∈ N. In this section, we are interested in approximation
rates with respect to measures supported on curves.

Our approximation rates for Pcurv
L (X) are based on those for Patom

N (X) combined
with estimates for the traveling salesman problem (TSP). Let TSPX(N ) denote the
worst case minimal cost tour in a fully connected graph G of N arbitrary nodes
represented by x1, . . . , xN ∈ X and edges with cost distX(xi , x j ), i, j = 1, . . . , N .
Similarly, let MSTX(N ) denote the worst case cost of the minimal spanning tree of G.
To derive suitable estimates, we require that X is Ahlfors d-regular (sometimes also
called Ahlfors-David d-regular), i.e., there exists 0 < d < ∞ such that

σX
(
Br (x)

) ∼ rd , for all x ∈ X, 0 < r ≤ diam(X), (10)

where Br (x) = {y ∈ X : distX(x, y) ≤ r} and the constants in ∼ do not depend on
x or r . Note that d is not required to be an integer and turns out to be the Hausdorff
dimension. For X being the unit cube the following lemma was proved in [75].

Lemma 3 If X is a compact Ahlfors d-regular metric space, then there is a constant
0 < CTSP < ∞ depending on X such that

TSPX(N ) ≤ CTSPN
1− 1

d .

Proof Using (10) and the same covering argument as in [74, Lem. 3.1], we see that
for every choice x1, . . . , xN ∈ X, there exist i �= j such that distX(xi , x j ) � N−1/d ,
where the constant depends on X.

Let S = {x1, . . . , xN } be an arbitrary selection of N points from X. First, we
choose xi and x j with distX(xi , x j ) ≤ cN−1/d . Then, we form a minimal spanning
tree T of S \ {xi } and augment the tree by adding the edge between xi and x j . This
construction provides us with a spanning tree and hence we can estimateMSTX(N ) ≤
MSTX(N − 1) + cN−1/d . Iterating the argument, we deduce

MSTX(N ) � N 1− 1
d ,

cf. [75]. Finally, the standard relation TSPX(N ) ≤ 2MSTX(N ) for edge costs satis-
fying the triangular inequality concludes the proof. ��

To derive a curve in X from a minimal cost tour in the graph, we require the
additional assumption that X is a length space, i.e., a metric space with

distX(x, y) = inf
{

(γ ) : γ a continuous curve that connects x and y

}
,

cf. [15,16]. Thus, for the rest of this section, we are assuming that

X is a compact Ahlfors d-regular length space.

In this case, Lemma 3 yields the next proposition.
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Proposition 1 For a compact, Ahlfors d-regular length space X it holds Patom
N (X) ⊂

Pcurv
CTSPN1−1/d (X).

Proof The Hopf-Rinow Theorem for metric measure spaces, see [15, Chap. I.3]
and [16, Thm. 2.5.28], yields that every pair of points x, y ∈ X can be connected
by a geodesic, i.e., there is γ ∈ Lip(X) with constant speed and 
(γ |[s,t]) =
distX(γ (s), γ (t)) for all 0 ≤ s ≤ t ≤ 1. Thus, for any pair x, y ∈ X, there is a
constant speed curve γx,y ∈ Lip(X) of length 
(γx,y) = distX(x, y)with γx,y(0) = x ,
γx,y(1) = y, cf. [16,Rem. 2.5.29]. ForμN ∈ Patom

N (X), let {x1, . . . , xN } = supp(μN ).
The minimal cost tour in Lemma 3 leads to a curve γ ∈ Lip(X), so that μN = γ ∗ω ∈
Pcurv
L (X) for an appropriate measure ω ∈ Patom

N ([0, 1]). ��
By Proposition 1 we can transfer approximation rates from Patom

N (X) to Pcurv
L (X).

Theorem 1 For μ ∈ P(X), it holds with a constant depending on X and K that

min
ν∈Pcurv

L (X)
DK (μ, ν) � L− d

2d−2 .

Proof Choose α = d−1
d . For L large enough, set N := �(L/CTSP)

1
α � ∈ N, so that we

observe Patom
N (X) ⊂ Pcurv

L (X). According to (9), we obtain

min
ν∈Pcurv

L (X)
DK (μ, ν) ≤ min

ν∈Patom
N (X)

DK (μ, ν) � N− 1
2 � L− 1

2α .

��
Next, we derive approximation rates for Pa-curv

L (X) and P ˘-curv
L (X).

Theorem 2 For μ ∈ P(X), we have with a constant depending on X and K that

min
ν∈Pa-curv

L (X)
DK (μ, ν) ≤ min

ν∈P ˘-curv
L (X)

DK (μ, ν) � L− d
3d−2 . (11)

Proof Let α = d−1
d , d ≥ 2. For L large enough, set N := �L 2

2α+1 / diam(X)� ∈ N.
By (9), there is a set of points {x1, . . . , xN } ⊂ X such that

DK (μ, νN ) � N− 1
2 � L− 1

2α+1 , νN := 1

N

N∑

j=1

δx j . (12)

Let these points be ordered as a solution of the corresponding TSP. Set x0 := xN and
τi := distX(xi , xi+1)/L , i = 0, . . . , N − 1. Note that

N ≤ L
2

2α+1 / diam(X) ≤ L/ distX(xi , xi+1),

so that τi ≤ N−1 for all i = 0, . . . , N−1.We construct a closed curve γL : [0, 1] → X

that rests in each xi for a while and then rushes from xi to xi+1. As in the proof of
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Proposition 1, X being a compact length space enables us to choose γi ∈ Lip(X) with
γi (0) = xi , γi (1) = xi+1 and L(γi ) = distX(xi , xi+1). For i = 0, . . . , NL − 1, we
define

γL(t) :=
{
xi for t ∈ [ i

N , i+1
N − τi

)
,

γi
( 1

τi

(
t − i+1

N + τi
))

for t ∈ [ i+1
N − τi ,

i+1
N

)
.

By construction, L(γL) is bounded bymini d(xi , xi+1)τ
−1
i ≤ L . Defining themeasure

ν := (γL)∗λ ∈ P ˘-curv
L (X), the related discrepancy can be estimated by

DK (μ, ν) = sup
‖ϕ‖HK (X)≤1

∣
∣
∣

∫

X

ϕ dμ −
∫ 1

0
ϕ ◦ γL dλ

∣
∣
∣

≤ DK (μ, νN ) + sup
‖ϕ‖HK (X)≤1

N−1∑

i=0

(
τi |ϕ(xi )| +

∣
∣
∣

∫ i+1
N

i+1
N −τi

ϕ ◦ γL dλ
∣
∣
∣
)
.

The relation (12) yieldsDK (μ, νN ) ≤ CL− 1
2α+1 with some constant C > 0. Since for

ϕ ∈ HK (X) it holds ‖ϕ‖L∞(X) ≤ CK ‖ϕ‖HK (X) with CK := supx∈X
√
K (x, x), we

finally obtain by Lemma 3

DK (μ, ν) ≤ C L− 1
2α+1 + 2CK

N−1∑

i=0

τi ≤ C L− 1
2α+1 + 2CK CTSP

Nα

L

≤ (C + 2CK CTSP/ diam(X)
)
L− 1

2α+1 .

��

Note that many compact sets in R
d are compact Ahlfors d-regular length spaces

with respect to the Euclidean metric and the normalized Lebesgue measure such as
the unit ball or the unit cube. Moreover many compact connected manifolds with or
without boundary satisfy these conditions. All assumptions in this section are indeed
satisfied for d-dimensional connected, compactRiemannianmanifoldswithout bound-
ary equipped with the Riemannian metric and the normalized Riemannian measure.
The latter setting is studied in the subsequent section to refine our investigations on
approximation rates.

Remark 4 For X = T
d with d ∈ N, the estimate

min
ν∈P ˘-curv

L (X)

DK (μ, ν) � L− 1
d . (13)

was derived in [18] provided that K satisfies an additional Lipschitz condition, where
the constant in (13) depends on d and K . The rate coincides with our rate in (11) for
d = 2 and is worse for higher dimensions as d

3d−2 > 1
3 for all d ≥ 3.
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5 Approximation of Probability Measures Having Sobolev Densities

To study approximation rates inmore detail, we follow the standard strategy in approx-
imation theory and take additional smoothness properties into account. We shall
therefore considerμwith a density satisfying smoothness requirements. To define suit-
able smoothness spaces, we make additional structural assumptions onX. Throughout
the remaining part of this work, we suppose that

X is a d-dimensional connected, compact Riemannian manifold without bound-
ary equipped with the Riemannian metric distX and the normalized Riemannian
measure σX.

In the first part of this section, we introduce the necessary background on Sobolev
spaces and derive general lower bounds for the approximation rates. Then, we focus
on upper bounds in the rest of the section. So far, we only have general upper bounds
for Pcurv

L (X). In case of the smaller spaces Pa-curv
L (X) and P ˘-curv

L (X), we have to
restrict to special manifolds X in order to obtain bounds. For a better overview, all
theorems related to approximation rates are named accordingly.

5.1 Sobolev Spaces and Lower Bounds

In order to define a smoothness class of functions on X, let −Δ denote the (negative)
Laplace–Beltrami operator on X. It is self-adjoint on L2(X, σX) and has a sequence of
positive, non-decreasing eigenvalues (λk)k∈N (with multiplicities) with a correspond-
ing orthonormal complete system of smooth eigenfunctions {φk : k ∈ N}. Every
function f ∈ L2(X, σX) has a Fourier expansion

f =
∞∑

k=0

f̂ (k)φk, f̂ (k) :=
∫

X

f φk dσX.

The Sobolev space Hs(X), s > 0, is the set of all functions f ∈ L2(X, σX) with
distributional derivative (I − Δ)s/2 f ∈ L2(X, σX) and norm

‖ f ‖Hs (X) := ‖(I − Δ)s/2 f ‖L2(X,σX) =
( ∞∑

k=0

(1 + λk)
s | f̂ (k)|2

) 1
2
.

For s > d/2, the space Hs(X) is continuously embedded into the space of Hölder
continuous functions of degree s−d/2, and every function f ∈ Hs(X) has a uniformly
convergent Fourier series, see [70, Thm. 5.7]. Actually, Hs(X), s > d/2, is a RKHS
with reproducing kernel

K (x, y) :=
∞∑

k=0

(1 + λk)
−sφk(x)φk(y).
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Hence, the discrepancy DK (μ, ν) satisfies (5) with HK (X) = Hs(X). Clearly, each
kernel of the above form with coefficients having the same decay as (1 + λk)

−s for
k → ∞ gives rise to a RKHS that coincides with Hs(X) with an equivalent norm.
Appendix A contains more details of the above discussion for the torus T

d , the sphere
S
d , the special orthogonal group SO(3) and the Grassmannian Gk,d .
Now, we are in the position to establish lower bounds on the approximation rates.

Again, we want to remark that our results still hold if we drop the requirement that
the approximating curves are closed.

Theorem 3 (Lower bound) For s > d/2 suppose that HK (X) = Hs(X) holds with
equivalent norms. Assume that μ is absolutely continuous with respect to σX with a
continuous density ρ. Then, there are constants depending on X, K , and ρ such that

N− s
d � min

ν∈Patom
N (X)

DK (μ, ν) ≤ min
ν∈Pemp

N (X)

DK (μ, ν),

L− s
d−1 � min

ν∈Pcurv
L (X)

DK (μ, ν) ≤ min
ν∈Pa-curv

L (X)
DK (μ, ν) ≤ min

ν∈P ˘-curv
L (X)

DK (μ, ν).

Proof The proof is based on the construction of a suitable fooling function to be used in
(5) and follows [13, Thm. 2.16]. There exists a ball B ⊂ X with ρ(x) ≥ ε = ε(B, ρ)

for all x ∈ B and σX(B) > 0, which is chosen as the support of the constructed fooling
functions. We shall verify that for every ν ∈ Patom

N (X) there exists ϕ ∈ Hs(X) such
that ϕ vanishes on supp(ν) but

∫

B
ϕ dμ � ‖ϕ‖Hs (X)N

− s
d , (14)

where the constant depends on X, K , and ρ. For small enough δ we can choose 2N
disjoint balls in B with diameters δN−1/d , see also [39]. For ν ∈ Patom

N (X), there are
N of these balls that do not intersect with supp(ν). By putting together bump functions
supported on each of the N balls, we obtain a non-negative function ϕ supported in B
that vanishes on supp(ν) and satisfies (14), with a constant that depends on ε, cf. [13,
Thm. 2.16]. This yields

∣
∣
∣

∫

X

ϕ dμ −
∫

X

ϕ dν
∣
∣
∣ =

∫

B
ϕ dμ � ‖ϕ‖Hs (X)N

− s
d .

The inequality for Pcurv
L (X) is derived in a similar way. Given a continuous curve

γ : [0, 1] → X of length L , choose N such that L ≤ δNN−1/d . By taking half of
the radius of the above balls, there are 2N pairwise disjoint balls of radius δ

2N
−1/d

contained in B with pairwise distances at least δN−1/d . Any curve of length δNN−1/d

intersects at most N of those balls. Hence, there are N balls of radius δ
2N

−1/d that
do not intersect supp(γ ). As above, this yields a fooling function ϕ satisfying (14),
which ends the proof. ��
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5.2 Upper Bounds forPcurv
L (X)

In this section, we derive upper bounds that match the lower bounds in Theorem 3
for Pcurv

L (X). Our analysis makes use of the following theorem, which was already
proved for X = S

d in [51].

Theorem 4 [13, Thm. 2.12] Assume that νr ∈ P(X) provides an exact quadrature for
all eigenfunctions ϕk of the Laplace–Beltrami operator with eigenvalues λk ≤ r2, i.e.,

∫

X

ϕk dσX =
∫

X

ϕk dνr . (15)

Then, it holds for every function f ∈ Hs(X), s > d/2, that there is a constant
depending on X and s with

∣
∣
∣

∫

X

f dσX −
∫

X

f dνr
∣
∣
∣ � r−s‖ f ‖Hs (X).

For our estimates it is important that the number of eigenfunctions of the Laplace–
Beltrami operator on X belonging to eigenvalues with λk ≤ r2 is of order rd , see [19,
Chap. 6.4] and [52, Thm. 17.5.3, Cor. 17.5.8]. This is known as Weyl’s estimates on
the spectrum of an elliptic operator. For some special manifolds, the eigenfunctions are
explicitly given in the appendix. In the following lemma, the result from Theorem 4 is
rewritten in terms of discrepancies and generalized to absolutely continuous measures
with densities ρ ∈ Hs(X).

Lemma 4 For s > d/2 suppose that HK (X) = Hs(X) holds with equivalent norms
and that νr ∈ P(X) satisfies (15). Letμ ∈ P(X) be absolutely continuous with respect
to σX with density ρ ∈ Hs(X). For sufficiently large r , the measures ν̃r := ρ

βr
νr ∈

P(X) with βr := ∫
X

ρ dνr are well defined and there is a constant depending on X

and K with
DK
(
μ, ν̃r

)
� ‖ρ‖Hs (X)r

−s .

Proof Note that Hs(X) is a Banach algebra with respect to addition and multiplication
[22], in particular, for f , g ∈ Hs(X) we have f g ∈ Hs(X) with

‖ f g‖Hs (X) ≤ ‖ f ‖Hs (X) ‖g‖Hs (X). (16)

By Theorem 4, we obtain for all ϕ ∈ Hs(X) that

∣
∣
∣

∫

X

ϕρ dσX −
∫

X

ϕρ dνr
∣
∣
∣ � r−s‖ϕ ρ‖Hs (X) � r−s‖ϕ‖Hs (X)‖ρ‖Hs (X). (17)

In particular, this implies for ϕ ≡ 1 that

∣
∣1 − βr

∣
∣ � r−s‖ρ‖Hs (X). (18)
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Then, application of the triangle inequality results in

∣
∣
∣

∫

X

ϕ dμ −
∫

X

ϕ dν̃r
∣
∣
∣ ≤

∣
∣
∣

∫

X

ϕ dμ −
∫

X

ϕρ dνr
∣
∣
∣+
∣
∣
∣

∫

X

ϕρ
βr−1
βr

dνr
∣
∣
∣.

According to (17), the first summand is bounded by � r−s‖ϕ‖Hs (X)‖ρ‖Hs (X). It
remains to derive matching bounds on the second term. Hölder’s inequality yields

∣
∣
∣

∫

X

ϕρ
βr−1
βr

dνr
∣
∣
∣ � ‖ϕ‖L∞(X) |βr − 1| � ‖ϕ‖Hs (X)r

−s‖ρ‖Hs (X),

where the last inequality is due to Hs(X) ↪→ L∞(X) and (18). ��
Using the previous lemma, we derive optimal approximation rates for Patom

N (X) and
Pcurv
L (X).

Theorem 5 (Upper bounds) For s > d/2 suppose that HK (X) = Hs(X) holds with
equivalent norms. Assume that μ is absolutely continuous with respect to σX with
density ρ ∈ Hs(X). Then, there are constants depending on X and K such that

min
ν∈Patom

N (X)
DK (μ, ν) � ‖ρ‖Hs (X)N

− s
d , (19)

min
ν∈Pcurv

L (X)
DK (μ, ν) � ‖ρ‖Hs (X)L

− s
d−1 . (20)

Proof By [13, Lem. 2.11] and since the Laplace–Beltrami has N ∼ rd eigenfunctions
belonging to eigenvectors λk < r2, there exists a measure νr ∈ Patom

N (X) that satisfies
(15). Hence, (15) is satisfied with r ∼ N 1/d , where the constants depend on X and K .
Thus, Lemma 4 with ν̃r ∈ Patom

N (X) leads to (19).
The assumptions of Lemma 3 are satisfied, so that analogous arguments as in the

proof of Theorem 1 yield Patom
N (X) ⊂ Pcurv

L (X) with suitable N ∼ Ld/(d−1). Hence,
(19) implies (20).

��

5.3 Upper Bounds forPa-curv
L (XXX) and special manifoldsXXX

To establish upper bounds for the smaller space Pa-curv
L (X), restriction to special

manifolds is necessary. The basic idea consists in the construction of a curve and
a related measure νr such that all eigenfunctions of the Laplace–Beltrami operator
belonging to eigenvalues smaller than a certain value are exactly integrated by this
measure and then applying Lemma 4 for estimating the minimum of discrepancies.
We begin with the torus.

Theorem 6 (Torus) Let X = T
d with d ∈ N, s > d/2 and suppose that HK (X) =

Hs(X) holds with equivalent norms. Then, for any absolutely continuous measure
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μ ∈ P(X) with Lipschitz continuous density ρ ∈ Hs(X), there exists a constant
depending on d, K , and ρ such that

min
ν∈Pa-curv

L (X)
DK (μ, ν) � L− s

d−1 .

Proof 1. First, we construct a closed curve γr such that the trigonometric polynomials
from�r (T

d), see (33) in the appendix, are exactly integrated along this curve. Clearly,
the polynomials in �r (T

d−1) are exactly integrated at equispaced nodes xk = k
n ,

k = (k1, . . . , kd−1) ∈ N
d−1
0 , 0 ≤ ki ≤ n−1, with weights 1/nd−1, where n := r +1.

Set z(k) := k1 + k2n + . . . + kd−1nd−2 and consider the curves

γk : Ik := [ z(k)
nd−1 ,

z(k)+1
nd−1

] → T
d with γk(t) :=

(
xk

nd−1t

)

.

Then, each element in �d
r is exactly integrated along the union of these curves, i.e.,

using I := {0, . . . , n − 1}d−1, we have

∫

Td
p dσTd =

∑

k∈I

∫

Ik
p ◦ γk dλ, p ∈ �d

r .

The argument is repeated for every other coordinate direction, so that we end up with
dnd−1 curves mapping from an interval of length 1

dnd−1 to T
d . The intersection points

of these curves are considered as vertices of a graph, where each vertex has 2d edges.
Consequently, there exists an Euler path γr : [0, 1] → T

d trough the vertices build
from all curves. It has constant speed dnd−1 and the polynomials �d

r are exactly
integrated along γr , i.e.,

∫

Td
p dσTd =

∫

Td
p dγr ∗λ, p ∈ �d

r .

2. Next, we apply Lemma 4 for νr = γr ∗λ. We observe ν̃r = γr ∗((ρ ◦ γr )/βrλ)

and deduce L(ρ ◦ γr/βr ) ≤ L(γr )L(ρ)/βr � rd−1 ∼ L as βr ∼ 1. Here, constants
depend on d, K , and ρ. ��

Now, we provide approximation rates for X = S
d .

Theorem 7 (Sphere) Let X = S
d with d ≥ 2, s > d/2 and suppose that HK (X) =

Hs(X) holds with equivalent norms. Then, we have for any absolutely continuous
measure μ ∈ P(X) with Lipschitz continuous density ρ ∈ Hs(X) that there is a
constant depending on d, K , and ρ with

min
ν∈Pa-curv

L (X)
DK (μ, ν) � L− s

d−1 .
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Proof 1. First, we construct a constant speed curve γr : [0, 1] → S
d and a probability

measure ωr = ρrλ with Lipschitz continuous density ρr : [0, 1] → R≥0 such that for
all p ∈ �r (S

d), it holds

∫

Sd
p dσSd =

∫ 1

0
p ◦ γr dωr . (21)

Utilizing spherical coordinates

x1=cos θ1, x2 = sin θ1 cos θ2, . . . , xd =
d−1∏

j=1

sin θ j cosφ, xd+1=
d−1∏

j=1

sin θ j sin φ,

(22)
where θk ∈ [0, π ], k = 1, . . . , d − 1, and φ ∈ [0, 2π), we obtain

∫

Sd
p dσSd =

∫ π

0
cd sin(θ1)

d−1
∫

Sd−1
p
(
cos(θ1), sin(θ1)x̃

)
dσSd−1(x̃) dθ1, (23)

where cd := (
∫ π

0 sin(θ)d−1 dθ)−1. There exist nodes x̃i ∈ S
d−1 and positive weights

ai , i = 1, . . . , n ∼ rd−1, with
∑n

i=1 ai = 1, such that for all p ∈ �r (S
d−1) it holds

∫

Sd−1
p dσSd−1 =

n∑

i=1

ai p(x̃i ).

To see this, substitute uk = sin θk , k = 2, . . . , d − 1, apply Gaussian quadrature
with nodes �(r + 1)/2� and corresponding weights to exactly integrate over uk , and
equispaced nodes and weights 1/(2r + 1) for the integration over φ as, e.g., in [82].
Then, we define γr : [0, 1] → S

d for t ∈ [(i − 1)/n, i/n], i = 1, . . . , n, by

γr (t) := γr ,i (2πnt), γr ,i (α) := (
cos(α), sin(α)x̃i

)
, α ∈ [0, 2π ].

Since (1, 0, . . . , 0) = γr ,i (0) = γr ,i (2π) for all i = 1, . . . , n, the curve is closed.
Furthermore, γr (t) has constant speed since for i = 1, . . . , n, i.e.,

|γ̇r |(t) = |γ̇r ,i |(2πnt) = 2πn ∼ rd−1.

Next, the density ρr : [0, 1] → R is defined for t ∈ [(i − 1)/n, i/n], i = 1, . . . , n, by

ρr (t) := ρr ,i (2πnt), ρr ,i (α) := ai cdπn| sin(α)|d−1, α ∈ [0, 2π ].

We directly verify that ρr is Lipschitz continuous with L(ρr ) � maxi ai n2. By [34],
the quadrature weights fulfill ai � 1

rd−1 so that L(ρr ) � n2r−(d−1) ∼ rd−1. By
definition of the constant cd and weights ai , we see that ρr is indeed a probability
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density

∫ 1

0
ρr dλ =

n∑

i=1

∫ i
n

i−1
n

ρr ,i (2πnt) dt = 1

2πn

n∑

i=1

∫ 2π

0
ρr ,i (α) dα

= cd
2

n∑

i=1

ai

∫ 2π

0
| sin(θ)|d−1 dθ = 1.

For p ∈ �r (S
d), we obtain

∫ 1

0
p ◦ γr ρr dλ

=
n∑

i=1

∫ i
n

i−1
n

p
(
γr ,i (2πnt)

)
ρr ,i (2πMt) dt =

∫ 2π

0

1

2πn

n∑

i=1

p
(
γr ,i (α)

)
ρr ,i (α) dα

=cd
2

∫ 2π

0
| sin(α)|d−1

n∑

i=1

ai p
(
cos(α), sin(α)x̃i

)
dα

=cd
2

∫ π

0
| sin(α)|d−1

n∑

i=1

ai
(
p
(
cos(α), sin(α)x̃i

)+ p
(− cos(α), − sin(α)x̃i

))
dα.

Without loss of generality, p is chosen as a homogeneous polynomial of degree k ≤ r ,
i.e., p(t x) = tk p(x). Then,

∫ 1

0
p ◦ γr ρr dλ = 1 + (−1)k

2

∫ π

0
cd | sin(α)|d−1

n∑

i=1

ai p
(
cos(α), sin(α)x̃i

)
dα,

and regarding that for fixed α ∈ [0, 2π ] the function x̃ �→ p(cos(α), sin(α)x̃) is a
polynomial of degree at most r on S

d−1, we conclude

∫ 1

0
p ◦ γr ρr dλ = 1 + (−1)k

2

∫ π

0
cd | sin(α)|d−1

∫

Sd−1
p
(
cos(α), sin(α)x̃

)
dσ

Sd−1 (x̃) dα.

Now, the assertion (21) follows from (23) and since
∫
Sd

p dσSd = 0 if k is odd.
2. Next, we apply Lemma 4 for νr = γr ∗ρrλ, from which we obtain that ν̃r =

γr ∗((ρ◦γr )ρr/βrλ). As allρr are uniformly bounded by construction andρ is bounded
due to continuity, we conclude using L(ρr ) � rd−1 and L(γr ) ∼ rd−1 that

L(ρ ◦ γr ρr/βr ) ≤ (L(ρ ◦ γr )‖ρr‖∞ + L(ρr )‖ρ‖∞
)
/βr �

(
L(ρ) + ‖ρ‖∞

)
rd−1,

which concludes the proof. ��
Finally, we derive approximation rates for X = SO(3).
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Corollary 1 (Special orthogonal group) Let X = SO(3), s > 3/2 and suppose
HK (X) = Hs(X) holds with equivalent norms. Then, we have for any absolutely
continuous measure μ ∈ P(X) with Lipschitz continuous density ρ ∈ Hs(X) that

min
ν∈Pa-curv

L (X)
DK (μ, ν) � L− s

d−1 ,

where the constant depends on K and ρ.

Proof 1. For fixed L ∼ r2, we shall construct a curve γr : [0, 1] → SO(3) with
L(γr ) � L and a probability measure ωr = ρrλ with density ρr : [0, 1] → R≥0 and
L(ρr ) � L , such that

∫

SO(3)
p dσSO(3) =

∫

SO(3)
p dγr ∗(ρrλ).

We use the fact that the sphere S
3 is a double covering of SO(3). That is, there is

a surjective two-to-one mapping a : S
3 → SO(3) satisfying a(x) = a(−x), x ∈ S

3.
Moreover, we know that a : S

3 → SO(3) is a local isometry, see [42], i.e., it respects
the Riemannian structures, implying the relations σSO(3) = a∗σS3 and

distSO(3)
(
a(x1), a(x2)

) = min
(
distS3(x1, x2), distS3(x1, −x2)

)
.

It also maps �r (SO(3)) into �2r (S
3), i.e., p ∈ �r (SO(3)) implies p ◦ a ∈ �2r (S

3).
Now, let γ̃r : [0, 1] → S

3 and ω̃r be given as in the first part of the proof of Theorem 7
for d = 3, i.e., γ̃r ∗ω̃r satisfies (21) with L(γ̃r ) � L and ω̃r = ρ̃rλ with L(ρ̃r ) � L .

We now define a curve γr in SO(3) by

γr : [0, 1] → SO(3), γr (t) := a ◦ γ̃2r (t),

and let ωr := ω̃2r . For p ∈ �r (SO(3)), the push-forward measure γr ∗ωr leads to

∫

SO(3)
p dσSO(3) =

∫

SO(3)
p da∗σS3 =

∫

S3
p ◦ a dσS3

=
∫

S3
p ◦ a d ˜γ2r ∗ω̃2r =

∫

SO(3)
p dγr ∗ωr .

Hence, property (15) is satisfied for γr ∗ωr = γr ∗(ρ̃2rλ).
2. The rest follows along the lines of step 2. in the proof of Theorem 7. ��

5.4 Upper Bounds forP -curv
L (XXX) and special manifoldsXXX

To derive upper bounds for the smallest space P ˘-curv
L (X), we need the following

specification of Lemma 4.
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Lemma 5 For s > d/2 suppose that HK (X) = Hs(X) holds with equivalent norms.
Let μ ∈ P(X) be absolutely continuous with respect to σX with positive density
ρ ∈ Hs(X). Suppose that νr := γr ∗λ with γr ∈ Lip(X) satisfies (15) and let βr :=∫
X

ρ dνr . Then, for sufficiently large r ,

g : [0, 1] → [0, 1], g(t) := 1

βr

∫ t

0
ρ ◦ γr dλ

is well-defined and invertible. Moreover, γ̃r := γr ◦ g−1 satisfies L(γ̃r ) � L(γr ) and

DK (μ, γ̃r ∗λ) � r−s, (24)

where the constants depend on X, K , and ρ.

Proof Since ρ is continuous, there is ε > 0 with ρ ≥ ε. To bound the Lipschitz
constant L(γ̃r ), we apply the mean value theorem together with the definition of g and
the fact that (g−1)′(s) = 1/g′(g−1(s)) to obtain

∣
∣γ̃r (s) − γ̃r (t)

∣
∣ ≤ L(γr )

∣
∣g−1(s) − g−1(t)

∣
∣ ≤ L(γr )

βr

ε
|s − t |.

Using (18), this can be further estimated for sufficiently large r as

∣
∣γ̃r (s) − γ̃r (t)

∣
∣ � L(γr )

1 + ‖ρ‖Hs (X)r−s

ε
|s − t | � L(γr )

2

ε
|s − t |.

To derive (24), we aim to apply Lemma 4 with νr = γr ∗λ. We observe

ν̃r = ρ

βr
γr ∗λ = γr ∗

(ρ ◦ γr

βr
λ
)

= γr ∗(g′λ) = (γr ◦ g−1)∗λ = γ̃r ∗λ,

so that Lemma 4 indeed implies (24). ��
In comparison to Theorem 6, we now trade the Lipschitz condition on ρ with the

positivity requirement, which enables us to cover P ˘-curv
L (X).

Theorem 8 (Torus) Let X = T
d with d ∈ N, s > d/2 and suppose that HK (X) =

Hs(X) holds with equivalent norms. Then, for any absolutely continuous measure
μ ∈ P(X) with positive density ρ ∈ Hs(X), there is a constant depending on d, K ,
and ρ with

min
ν∈Pa-curv

L (X)
DK (μ, ν) ≤ min

ν∈P ˘-curv
L (X)

DK (μ, ν) � L− s
d−1 .

Proof The first part of the proof is identical to the proof of Theorem 6. Instead of
Lemma 4 though, we now apply Lemma 5 for γr and ρr ≡ 1. Hence, γ̃r = γr ◦
g−1
r satisfies L(γ̃r ) ≤ βr

ε
d(2r + 1)d−1 � rd−1, so that γ̃r ∗λ satisfies (24) and is in

P ˘-curv
L (X) with L ∼ rd−1. ��
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The construction on X = S
d for Pa-curv

L (X) in the proof of Theorem 7 is not
compatible with P ˘-curv

L (X). Thus, the situation is different from the torus, where we
have used the same underlying construction and only switched from Lemma 4 to
Lemma 5. Now, we present a new construction for P ˘-curv

L (X), which is tailored to
X = S

2. In this case, we can transfer the ideas of the torus, but with Gauss-Legendre
quadrature points.

Theorem 9 (2-sphere) Let X = S
2, s > 1 and suppose HK (X) = Hs(X) holds with

equivalent norms. Then, we have for any absolutely continuous measure μ ∈ P(X)

with positive density ρ ∈ Hs(X) that there is a constant depending on K and ρ with

min
ν∈Pa-curv

L (X)
DK (μ, ν) ≤ min

ν∈P ˘-curv
L (X)

DK (μ, ν) � L−s .

Proof 1.We construct closed curves such that the spherical polynomials from�r (S
2),

see (35) in the appendix, are exactly integrated along this curve. It suffices to show
this for the polynomials p(x) = xk1xk2xk33 ∈ �r (S

2) with k1 + k2 + k3 ≤ r restricted
to S

2. We select n = �(r + 1)/2� Gauss-Legendre quadrature points u j = cos(θ j ) ∈
[−1, 1] and corresponding weights 2ω j , j = 1, . . . , n. Note that

∑n
j=1 ω j = 1. Using

spherical coordinates x1 = cos(θ), x2 = sin(θ) cos(φ), and x3 = sin(θ) sin(φ) with
(θ, φ) ∈ [0, π ] × [0, 2π ], we obtain
∫

S2
p dσS2 = 1

4π

∫ 2π

0
cos(φ)k2 sin(φ)k3

∫ π

0
cos(θ)k1 sin(θ)k2+k3 sin(φ) dθ dφ

= 1

4π

∫ 2π

0
cos(φ)k2 sin(φ)k3

∫ 1

−1
uk1(1 − u2)

k2+k3
2 du dφ,

see also [83]. If k2 + k3 is odd, then the integral over φ becomes zero. If k2 + k3 is
even, the inner integrand is a polynomial of degree ≤ r . In both cases we get

∫

S2
p dσS2 = 1

2π

n∑

j=1

ω j

∫ 2π

0
p
(
cos(θ j ), sin(θ j ) cos(φ), sin(θ j ) sin(φ)

)
dφ.

Substituting in each summand φ = 2π t/ω j , j = 1, . . . , n, yields

∫

S2
p dσS2 =

n∑

j=1

∫ ω j

0
p ◦ γ j dλ,

where γ j : [0, ω j ] → S
2 is defined by

γ j (t) := (
cos(θ j ), sin(θ j ) cos(2π t/ω j ), sin(θ j ) sin(2π t/ω j )

)
,
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and has constant speed L(γ j ) = 2π sin(θ j )/ω j . The lower bound ω j � 1
n sin(θ j ), cf.

[34], implies that L(γ j ) � n. Defining a curve γ̃ : [0, 1] → S
2 piecewise via

γ̃ |[0,s1] = γ1, γ̃ |[s1,s2] = γ2(· − s1), . . . , γ̃ |[sn−1,1] = γn(· − sn−1),

where s j := ω1 + . . . + ω j , we obtain

∫

S2
p dσS2 =

∫ 1

0
p dγ̃ ∗λ, p ∈ �r (S

2).

Further, the curve satisfies L(γ̃ ) � r .
As with the torus, we now “turn” the sphere (or switch the position of φ) so that

we get circles along orthogonal directions. This large collection of circles is indeed
connected. As with the torus, each intersection point has an incoming and outgoing
part of a circle, so that all this corresponds to a graph, where again each vertex has
an even number of “edges”. Hence, there is an Euler path inducing our final curve
γr : [0, 1] → S

2 with piecewise constant speed L(γr ) � r satisfying

∫

S2
p dσS2 =

∫ 1

0
p d(γr ∗λ), p ∈ �r (S

2).

2. Let r ∼ L . Analogous to the end of the proof of Theorem 8, Lemma 5 now yields
the assertion. ��

To get the approximation rate for X = G2,4, we make use of its double covering
X = S

2 × S
2, cf. Remark 8.

Theorem 10 (Grassmannian) Let X = G2,4, s > 2 and suppose HK (X) = Hs(X)

holds with equivalent norms. Then, we have for any absolutely continuous measure
μ ∈ P(X) with positive density ρ ∈ Hs(X) that there exists a constant depending on
K and ρ with

min
ν∈Pa-curv

L (X)
DK (μ, ν) ≤ min

ν∈P ˘-curv
L (X)

DK (μ, ν) � L− s
3 .

Proof By Remark 8 in the appendix, we know that G2,4 ∼= S
2 × S

2/{±1} so that is
remains to prove the assertion for X = S

2 × S
2.

There exist pairwise distinct points {x1, . . . , xN } ⊂ S
2 such that 1

N

∑N
j=1 δx j sat-

isfies (15) on S
2 with N ∼ r2, cf. [9,10]. On the other hand, let γ̃ be the curve

on S
2 constructed in the proof of Theorem 9, so that γ̃ ∗λ satisfies (15) on S

2 with

(γ̃ ) ≤ L(γ̃ ) ∼ r . Let us introduce the virtual point xN+1 := x1.

The curve γ̃ ([0, 1]) contains a great circle. Thus, for each pair x j and x j+1 there
is Oj ∈ O(3) such that x j , x j+1 ∈ Γ j := Oj γ̃ ([0, 1]).

It turns out that the set on S
2 × S

2 given by
⋃N

j=1({x j } × Γ j ) ∪ (Γ j × {x j+1}) is
connected. We now choose γ j := Oj γ̃ and know that the union of the trajectories of
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the set of curves

t �→ (
x j , γ j (t)

)
, t �→ (

γ j (t), x j+1
)
, j = 1, . . . , N ,

is connected. Combinatorial arguments involving Euler paths, see Theorems 6 and 9,
lead to a curve γ with 
(γ ) ≤ L(γ ) ∼ NL(γ̃ ) ∼ r3, so that γ ∗λ satisfies (15). The
remaining part follows along the lines of the proof of Theorem 7. ��

Our approximation results can be extended to diffeomorphic manifolds, e.g., from
S
2 to ellipsoids, see also the 3D-torus example in Sect. 8. To this end, recall that

we can describe the Sobolev space Hs(X) using local charts, see [78, Sec. 7.2]. The
exponential maps expx : TxX → X give rise to local charts (B̊x (r0), exp−1

x ), where
B̊x (r0) := {y ∈ X : distX(x, y) < r0} denotes the geodesic balls around x with the
injectivity radius r0. If δ < r0 is chosen small enough, there exists a uniformly locally
finite covering of X by a sequence of balls (B̊x j (δ)) j with a corresponding smooth

resolution of unity (ψ j ) j with supp(ψ j ) ⊂ B̊x j (δ), see [78, Prop. 7.2.1]. Then, an
equivalent Sobolev norm is given by

‖ f ‖Hs (X) :=
( ∞∑

j=1

‖(ψ j f ) ◦ expx j ‖2Hs (Rd )

) 1
2
, (25)

where (ψ j f ) ◦ expx j is extended to R
d by zero, see [78, Thm. 7.4.5]. Using Defini-

tion (25), we are able to pull over results from the Euclidean setting.

Proposition 2 LetX1,X2 be two d-dimensional connected, compact Riemannianman-
ifolds without boundary, which are s +1 diffeomorphic with s > d/2. Assume that for
HK (X2) = Hs(X2) and every absolutely continuous measure μ with positive density
ρ ∈ Hs(X2) it holds

min
ν∈P ˘-curv

L

DK (μ, ν) � L− s
d−1 ,

where the constant depends on X2, K , and ρ. Then, the same property holds for X1,
where the constant additionally depends on the diffeomorphism.

Proof Let f : X2 → X1 denote such a diffeomorphism and ρ ∈ Hs(X1) the density of
the measureμ on X1. Any curve γ̃ : [0, 1] → X2 gives rise to a curve γ : [0, 1] → X1
via γ = f ◦ γ̃ , which for every ϕ ∈ Hs(X1) satisfies

∣
∣
∣

∫

X1

ϕρ dσX1 −
∫ 1

0
ϕ ◦ γ dλ

∣
∣
∣ =

∣
∣
∣

∫

X2

(ϕρ) ◦ f | det(J f )| dσX2 −
∫ 1

0
ϕ ◦ f ◦ γ̃ dλ

∣
∣
∣,

where J f denotes the Jacobianof f .Now, note thatϕ◦ f , ρ◦ f | det(J f )| ∈ Hs(X2), see
(16) and [78, Thm. 4.3.2], which is lifted tomanifolds using (25). Hence, we can define
a measure μ̃ on X2 through the probability density ρ ◦ f | det(J f )|. Choosing γ̃L as a
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realization for someminimizer of infν∈P ˘-curv
L

D(μ̃, ν), we can apply the approximation
result for X2 and estimate for γL = f ◦ γ̃L that

∣
∣
∣

∫

X1

ϕρ dσX1 −
∫ 1

0
ϕ ◦ γL dλ

∣
∣
∣ � L− s

d−1 ‖ϕ ◦ f ‖Hs (X2) � L− s
d−1 ‖ϕ‖Hs (X1),

where the second estimate follows from [78, Thm. 4.3.2]. Now, L(γL) ≤ L( f )L
implies

inf
ν∈P ˘-curv

L

DK (μ, ν) � L− s
d−1 .

��
Remark 5 Consider a probability measure μ on X such that the dimension dμ of its
support is smaller than the dimension d of X. Then, μ does not have any density with
respect to σX. If supp(μ) is itself a dμ-dimensional connected, compact Riemannian
manifold Y without boundary, we switch from X to Y. Sobolev trace theorems and
reproducing kernel Hilbert space theory imply that the assumption HK (X) = Hs(X)

leads to HK ′(Y) = Hs′
(Y), where K ′ := K |Y×Y is the restricted kernel and s′ =

s − (d − dμ)/2, cf. [36]. If, for instance, Y is diffeomorphic to T
dμ (or S

dμ with
dμ = 2), and μ has a positive density ρ ∈ Hs′

(Y) with respect to σY, then Theorem 8
(or 9) and Proposition 2 eventually yield

min
ν∈P ˘-curv

L

DK (μ, ν) � L
− s′

dμ−1 .

If supp(μ) is a proper subset of Y, we are able to analyze approximations with
Pa-curv
L (Y). First, we observe that the analogue of Proposition 2 also holds for

Pa-curv
L (X1),Pa-curv

L (X2) when the positivity assumption on ρ is replaced with the
Lipschitz requirement as in Theorems 6 and 7. If, for instance, Y is diffeomorphic to
T
dμ or S

dμ and μ has a Lipschitz continuous density ρ ∈ Hs′
(Y) with respect to σY,

then Theorems 6 and 7, and Proposition 2 eventually yield

min
ν∈Pa-curv

L

DK (μ, ν) � L
− s′

dμ−1 .

6 Discretization

In our numerical experiments, we are interested in determining minimizers of

min
ν∈P ˘-curv

L (X)

D2
K (μ, ν). (26)

Defining AL := {γ ∈ Lip(X) : L(γ ) ≤ L} and using the indicator function
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ιAL (γ ) :=
{
0 if γ ∈ AL ,

+∞ otherwise,

we can rephrase problem (26) as a minimization problem over curves

min
γ ∈C([0,1],X)

JL(γ ),

where JL(γ ) := D2
K (μ, γ ∗λ) + ιAL (γ ). As X is a connected Riemannian manifold,

we can approximate curves in AL by piecewise shortest geodesics with N parts, i.e.,
by curves from

AL,N := {
γ ∈ AL : γ |[(i−1)/N ,i/N ] is a shortest geodesic for i = 1, . . . , N

}
.

Next, we approximate the Lebesgue measure on [0, 1] by eN := 1
N

∑N
i=1 δi/N and

consider the minimization problems

min
γ ∈C([0,1],X)

JL,N (γ ), (27)

where JL,N (γ ) := D2
K (μ, γ ∗eN ) + ιAL,N (γ ). Since ess supt∈[0,1] |γ̇ |(t) = L(γ ), the

constraint L(γ ) ≤ L can be reformulated as
∫ 1
0 (|γ̇ |(t) − L)2+ dt = 0.1 Hence, using

xi = γ (i/N ), i = 1, . . . , N , x0 = xN and regarding that |γ̇ |(t) = N distX(xi−1, xi )
for t ∈ ( i−1

N , i
N

)
, problem (27) is rewritten in the computationally more suitable form

min
(x1,...,xN )∈XN

D2
K

(
μ,

1

N

N∑

i=1

δxi

)
s.t.

1

N

N∑

i=1

(
N distX(xi−1, xi ) − L

)2
+ = 0. (28)

This discretization is motivated by the next proposition. To this end, recall that a
sequence ( fN )N∈N of functions fN : X → (−∞, +∞] is said to Γ -converge to
f : X → (−∞, +∞] if the following two conditions are fulfilled for each x ∈ X, see
[12]:

(i) f (x) ≤ lim infN→∞ fN (xN ) whenever xN → x ,
(ii) there is a sequence (yN )N∈N with yN → x and lim supN→∞ fN (yN ) ≤ f (x).

The importance of Γ -convergence relies in the fact that every cluster point of mini-
mizers of ( fN )N∈N is a minimizer of f . Note that for non-compact manifolds X an
additional equi-coercivity condition would be required.

Proposition 3 The sequence (JL,N )N∈N is Γ -convergent with limit JL .

Proof 1. First, we verify the lim inf-inequality. Let (γN )N∈N with limN→∞ γN = γ ,
i.e., the sequence satisfies supt∈[0,1] distX(γ (t), γN (t)) → 0. By excluding the trivial

1 For r ∈ R, we use the notation r+ =
{
r , r ≥ 0,

0, otherwise.
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case lim infN→∞ JL,N (γN ) = ∞ and restricting to a subsequence (γNk )k∈N, we may
assume γNk ∈ AL,Nk ⊂ AL . Since AL is closed, we directly infer γ ∈ AL . It holds
eN⇀λ, which is equivalent to the convergence of Riemann sums for f ∈ C[0, 1], and
hence also γN ∗eN⇀γ∗dr . By the weak continuity of D2

K , we obtain

JL(γ ) = D2
K (μ, γ∗λ) = lim

N→∞D2
K (μ, γN ∗eN ) = lim inf

N→∞ JL,N (γN ). (29)

2. Next, we prove the lim sup-inequality, i.e., we are searching for a sequence
(γN )N∈N with γN → γ and lim supN→∞ JL,N (γN ) ≤ JL(γ ). First, we may exclude
the trivial case JL(γ ) = ∞. Then, γN is defined on every interval [(i − 1)/N , i/N ],
i = 1, . . . , N , as a shortest geodesic from γ ((i − 1)/N ) to γ (i/N ). By construction
we have γN ∈ AL,N . From γ, γN ∈ AL we conclude

sup
t∈[0,1]

distX
(
γ (t), γN (t)

) = max
i=1,...N

sup
t∈[(i−1)/N ,i/N ]

distX
(
γ (t), γN (t)

)

≤ max
i=1,...N

sup
t∈[(i−1)/N ,i/N ]

distX
(
γ (t), γ (i/N )

)+ distX
(
γN (i/N ), γN (t)

) ≤ 2L

N
,

implying γN → γ . Similarly as in (29), we infer lim supN→∞ JL,N (γN ) ≤ JL(γ ).
��

In the numerical part, we use the penalized form of (28) and minimize

min
(x1,...,xN )∈XN

D2
K

(
μ,

1

N

N∑

i=1

δxi

)
+ λ

N

N∑

i=1

(
N distX(xi−1, xi ) − L

)2
+, λ > 0.

(30)

7 Numerical Algorithm

For a detailed overview on Riemannian optimization we refer to [69] and the books
[1,79]. In order to minimize (30), we have a closer look at the discrepancy term. By
(6) and (7), the discrepancy can be represented as follows

D2
K

(
μ,

1

N

N∑

i=1

δxi

)
= 1

N 2

N∑

i, j=1

K (xi , x j ) − 2
N∑

i=1

∫

X

K (xi , x) dμ(x) +
∫∫

X×X

K dμ dμ

=
∞∑

k=0

αk

∣
∣
∣μ̂k − 1

N

N∑

i=1

ϕk(xi )
∣
∣
∣
2
.

Both formulas have pros and cons: The first formula allows for an exact evaluation only
if the expressions Φ(x) := ∫

X
K (x, y) dμ(y) and

∫
X

Φ dμ can be written in closed
forms. In this case the complexity scales quadratically in the number of points N . The
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second formula allows for exact evaluation only if the kernel has a finite expansion
(3). In that case the complexity scales linearly in N .

Our approach is to use kernels fulfilling HK (X) = Hs(X), s > d/2, and approx-
imating them by their truncated representation with respect to the eigenfunctions of
the Laplace–Beltrami operator

Kr (x, y) :=
∑

k∈Ir
αkϕk(x)ϕk(y), Ir := {

k : ϕk ∈ �r (X)
}
.

Then, we finally aim to minimize

min
x∈XN

F(x) :=
∑

k∈Ir
αk

(
μ̂k − 1

N

N∑

i=1

ϕk(xi )
)2 + λ

N

N∑

i=1

(
N distX(xi−1, xi ) − L

)2
+,

(31)

Algorithm 1 (CG Method with Restarts)
Parameters: maximal iterations kmax ∈ N

Input: twice differentiable function F : X
N → [0, ∞), initial point x(0) ∈ X

N

Initialization: g(0) := ∇
XN F

(
x(0)), d(0) := −g(0), r := 0

for k := 0, . . . , kmax do
x(k+1) := γx(k),d(k)

(
τ (k)) where τ (k) is determined by Algorithm 2

d̃(k) := γ̇x(k),d(k)
(
τ (k))

g(k+1) := ∇
XN F

(
x(k+1))

β(k) :=

⎧
⎪⎨

⎪⎩

〈
d̃(k),H

XN F(x(k+1))g(k+1)
〉

〈
d̃(k),H

XN F(x(k+1))d̃(k)
〉 ,

〈
d̃(k ,H

XN F
(
x(k+1))d̃(k)〉 �= 0,

0, else

d(k+1) := −g(k+1) + β(k)d̃(k)

if
〈
d(k+1), g(k+1)〉 > 0 or (k + 1) ≡ r mod Ndim(X) then
d(k+1) = −g(k+1)

r := k + 1
Output: iteration sequence x(0), x(1), · · · ∈ X

N

Algorithm 2 (Armijo Line Search)
Parameters: 0 < a < 1

2 , 0 < b < 1, maximal iterations kmax ∈ N

Input: smooth function F : X
N → [0, ∞), start point x ∈ X

N , descent direction d ∈ TxX
N

Initialization: k := 0,

τ (0) :=

⎧
⎪⎨

⎪⎩

∣
∣
∣
∣

〈
d,∇

XN F(x)
〉

〈
d,H

XN F(x)d
〉

∣
∣
∣
∣ ,

〈
d,H

XN F(x)d
〉 �= 0,

1, else

while f ◦ γx,d
(
τ (k))− F(x) ≥ aτ (k)〈∇

XN F(x), d
〉
and k < kmax do

τ (k+1) := bτ (k)

k := k + 1
Output: τ (k) (success if k ≤ kmax)
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where λ > 0. Our algorithm of choice is the nonlinear conjugate gradient (CG)
method with Armijo line search as outlined in Algorithm 1 with notation and imple-
mentation details described in the comments after Remark 6, see [25] for Euclidean
spaces. Note that the notation is independent of the special choice of X in our com-
ments. The proposed method is of “exact conjugacy” and uses the second order
derivative information provided by the Hessian. For the Armijo line search itself,
the sophisticated initialization in Algorithm 2 is used, which also incorporates sec-
ond order information via the Hessian. The main advantage of the CG method is its
simplicity together with fast convergence at low computational cost. Indeed, Algo-
rithm 1, together with Algorithm 2 replaced by an exact line search, converges under
suitable assumptions superlinearly, more precisely dN -step quadratically towards a
local minimum, cf. [73, Thm. 5.3] and [43, Sec. 3.3.2, Thm. 3.27].

Remark 6 The objective in (31) violates the smoothness requirements whenever
xk−1 = xk or distX(xk−1, xk) = L/N . However, we observe numerically that local
minimizers of (31) do not belong to this set of measure zero. This means in turn, if
a local minimizer has a positive definite Hessian, then there is a local neighborhood
where the CG method (with exact line search) permits a superlinear convergence rate.
We do indeed observe this behavior in our numerical experiments.

Let us briefly comment onAlgorithm 1 forX ∈ {T2, T
3, S

2,SO(3),G2,4}which are
considered in our numerical examples. For additional implementation details we refer
to [43]. By γx,d we denote the geodesic with γx,d(0) = x and γ̇x,d(0) = d. Besides
evaluating the geodesics γx (k),d(k) (τ (k)) in the first iteration step, we have to compute
the parallel transport of d(k) along the geodesics in the second step. Furthermore, we
need to compute the Riemannian gradient ∇XN F and products of the Hessian HXN F
with vectors d, which are approximated by the finite difference

HXN F(x)d ≈ ‖d‖
h

(
∇XN F

(
γx,hd/‖d‖

)− ∇XN F(x)
)
, h := 10−8.

The computation of the gradient of the penalty term in (30) is done by applying
the chain rule and noting that for x �→ distX(x, y), we have ∇X distX(x, y) =
logx y/ distX(x, y), x �= y with the logarithmic map log on X, while the distance
is not differentiable for x = y. Concerning the later point, see Remark 5. The evalua-
tion of the gradient of the penalty term at a point in X

N requires onlyO(N ) arithmetic
operations. The computation of the Riemannian gradient of the data term in (30) is
done analytically via the gradient of the eigenfunctions ϕk of the Laplace–Beltrami
operator. Then, the evaluation of the gradient of the whole data term at given points
can be done efficiently by fast Fourier transform (FFT) techniques at non-equispaced
nodes using the NFFT software package of Potts et al. [56]. The overall complexity
of the algorithm and references for the computation details for the above manifolds
are given in Table 1.
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Table 1 References for
implementation details of
Algorithm 1 (left) and arithmetic
complexity for the evaluations
per iteration for the different
manifolds (right)

X References Complexity

T
d [46], [43, Sect. 5.2.1] O(rd log(r) + N )

S
2 [45,46], [43, Sect. 5.2.2] O(r2 log2(r) + N )

SO(3) [42,44], [43, Sect. 5.2.3] O(r3 log2(r) + N )

G2,4 [26] O(r4 log2(r) + N )

8 Numerical Results

In this section, we underline our theoretical results by numerical examples. We start
by studying the parameter choice in our numerical model. Then, we provide examples
for the approximation of absolutely continuous measures with densities in Hs(X),
s > d/2, by push-forward measures of the Lebesgue measure on [0, 1] by Lipschitz
curves for the manifolds X ∈ {T2, T

3, S
2,SO(3),G2,4}. Supplementary material can

be found on our webpage.

8.1 Parameter Choice

We like to emphasize that the optimization problem (31) is highly nonlinear and the
objective function has a large number of local minimizers, which appear to increase
exponentially in N. In order to find for fixed L reasonable (local) solutions of (26),
we carefully adjust the parameters in problem (31), namely the number of points N ,
the polynomial degree r in the kernel truncation, and the penalty parameter λ. In the
following, we suppose that dim(supp(μ)) = d ≥ 2.

(i) Number of points N Clearly, N should not be too small compared to L . How-
ever, from a computational perspective it should also be not too large since the
optimization procedure is hampered by the vast number of local minimizers.
From the asymptotic of the path lengths of TSP in Lemma 3, we conclude that
N � �(γ )d/(d−1) is a reasonable choice, where �(γ ) ≤ L is the length of the
resulting curve γ going through the points.

(ii) Polynomial degree r Based on the proofs of the theorems in Sect. 5.4 it is rea-
sonable to choose

r ∼ L
1

d−1 ∼ N
1
d .

(iii) Penalty parameter λ If λ is too small, we cannot enforce that the points approx-
imate a regular curve, i.e., L/N � distX(xk−1, xk). Otherwise, if λ is too large
the optimization procedure is hampered by the rigid constraints. Hence, to find a
reasonable choice for λ in dependence on L , we assume that the minimizers of
(31) treat both terms proportionally, i.e., for N → ∞ both terms are of the same
order. Therefore, our heuristic is to choose the parameter λ such that

min
x1,...,xN

D2
K

(
μ,

1

N

N∑

k=1

δxk

)
∼ N− 2s

d ∼ λ

N

N∑

k=1

(
N distX(xk−1, xk) − L

)2
+.
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On the other hand, assuming that for the length 
(γ ) = ∑N
k=1 distX(xk−1, xk) of

a minimizer γ we have 
(γ ) ∼ L ∼ N (d−1)/d , so that N distX(xk−1, xk) ∼ L , the
value of the penalty term behaves like

λ

N

N∑

k=1

(
N distX(xk−1, xk) − L

)2
+ ∼ λL2 ∼ λN

2d−2
d .

Hence, a reasonable choice is

λ ∼ L
−2s−2(d−1)

d−1 ∼ N
−2s−2(d−1)

d . (32)

Remark 7 In view of Remark 5 the relations in i)-iii) become

N ∼ L
dμ

dμ−1 , r ∼ N
1
dμ ∼ L

1
dμ−1 , λ ∼ L

−2s−3dμ+d+2
dμ−1 ∼ N

−2s−3dμ+d+2
dμ .

In the rest of this subsection, we aim to provide some numerical evidence for the
parameter choice above. We restrict our attention to the torus X = T

2 and the kernel
K given in (34) with d = 2 and s = 3/2. Choose μ as the Lebesgue measure on T

2.
From (32), we should keep in mind λ ∼ N−5/2 ∼ L−5.

Influence of N and λ We fix L = 4 and a large polynomial degree r = 128 for
truncating the kernel. For any λi = 0.1 · 2−5i/2, i = 1, . . . , 4, we compute local
minimizers with N j = 10 ·2 j , j = 1, . . . , 4. More precisely, keeping λi fixed we start
with N1 = 20 and refine successively the curves by inserting the midpoints of the line
segments connecting consecutive points and applying a local minimization with this
initialization. The results are depicted in Fig. 1. For fixed λ (fixed row) we can clearly
notice that the local minimizers converge towards a smooth curve for increasing N .
Moreover, the diagonal images correspond to the choice λ = 0.1(N/10)−5/2, where
we can already observe good approximation of the curves emerging to the right of it.
This should provide some evidence that the choice of the penalty parameter λ and the
number of points N discussed above is reasonable. Indeed, for λ → ∞ we observe
L(γ ) → 
(γ ) → L = 4.

Influence of the polynomial degree r In Fig. 2 we illustrate the local minimizers of
(31) for fixed Lipschitz parameters Li = 2i and corresponding regularization weights
λi = 0.2 · L−5

i , i = 1, . . . , 4, (rows) in dependence on the polynomial degrees
r j = 8 · 2 j , j = 1, . . . , 5 (columns). According to the previous experiments, it seems
reasonable to choose N = 20L2. Note, that the (numerical) choice of λ leads to
curves with length 
(γ ) ≈ 2L . In Fig. 2 we observe that for r = cL the corresponding
local minimizers have common features. For instance, if c = 4 (i.e., r ≈ 
(γ )) the
minimizers have mostly vertical and horizontal line segments. Furthermore, for fixed
r it appears that the length of the curves increases linearly with L until L exceeds 2r ,
from where it remains unchanged. This observation can be explained by the fact that
there are curves of bounded length cr which provide exact quadratures for degree r .
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N = 20 N = 40 N = 80 N = 160

�(γ) ≈ 4.20 �(γ) ≈ 4.43 �(γ) ≈ 4.49 �(γ) ≈ 4.50

�(γ) ≈ 4.47 �(γ) ≈ 5.16 �(γ) ≈ 5.38 �(γ) ≈ 5.44

�(γ) ≈ 4.66 �(γ) ≈ 5.91 �(γ) ≈ 6.64 �(γ) ≈ 6.87

�(γ) ≈ 4.73 �(γ) ≈ 6.45 �(γ) ≈ 8.15 �(γ) ≈ 9.03

Fig. 1 Influence of N and λ on local minimizers of (31) for the Lebesgue measure on T
2, L = 4 and

r = 128. Results for increasing N (column-wise) and decreasing λ = 0.1 · 2−5i/2, i = 1, . . . , 4, (row-
wise). Here, the curve length increases for decreasing λ or increasing N , until stagnation for sufficient small
λ or large N . For all minimizer the distance between consecutive points is around 
(γ )/N

8.2 Quasi-Optimal Curves on Special Manifolds

In this subsection, we give numerical examples for X ∈ {T2, T
3, S

2,SO(3),G2,4}.
Since the objective function in (31) is highly non-convex, the main problem is to find
nearly optimal curves γL ∈ P ˘-curv

L (X) for increasing L . Our heuristic is as follows:

(i) We start with a curve γL0 : [0, 1] → X of small length 
(γ ) ≈ L0 and solve the
problem (31) for increasing Li = cLi−1, c > 1, where we choose the parameters
Ni , λi and ri in dependence on Li as described in the previous subsection. In
each step a local minimizer is computed using the CG method with 100 iterations.
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r = 16 r = 32 r = 64 r = 128 r = 256

�(γ) ≈ 4.07 �(γ) ≈ 4.07 �(γ) ≈ 4.06 �(γ) ≈ 4.06 �(γ) ≈ 4.05

�(γ) ≈ 8.48 �(γ) ≈ 8.28 �(γ) ≈ 8.32 �(γ) ≈ 8.23 �(γ) ≈ 8.22

�(γ) ≈ 10.42 �(γ) ≈ 16.96 �(γ) ≈ 16.77 �(γ) ≈ 16.63 �(γ) ≈ 16.4

�(γ) ≈ 10.48 �(γ) ≈ 20.83 �(γ) ≈ 34.09 �(γ) ≈ 33.52 �(γ) ≈ 33.35

Fig. 2 Influence of r on the local minimizer of (31) for the Lebesgue measure on T
2. Column-wise we

increase r = 16, 32, 64, 128, 256 and row-wise we increase L = 2, 4, 8, 16, where λ = 0.2L−5 and
N = 20L2. Note that the degree r steers the resolution of the curves. It appears that the spacing of the
curves is bounded by r−1

Then, the obtained minimizer γi serves as the initial guess in the next step, which
is obtained by inserting the midpoints.

(ii) In case that the resulting curves γi have non-constant speed, each is refined by
increasing λi and Ni . Then, the resulting problem is solved with the CG method
and γi as initialization. Details on the parameter choice are given in the according
examples.

The following examples show that this recipe indeed enables us to compute “quasi-
optimal” curves, meaning that the obtained minimizers have optimal decay in the
discrepancy.

2d-TorusT
2 In this examplewe illustrate howwell a gray-valued image (considered

as probability density) may be approximated by an almost constant speed curve. The
original image of size 170 × 170 is depicted in the bottom-right corner of Fig. 3. Its
Fourier coefficients μ̂k1,k2 are computed by a discrete Fourier transform (DFT) using
the FFT algorithm and normalized appropriately. The kernel K is given by (34) with
d = 2 and s = 3/2.
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We start with N0 = 96 points on a circle given by the formula

x0,k =
(
1
5 cos(2πk/N0),

1
5 sin(2πk/N0)

)
, k = 0, . . . , N0.

Then, we apply our procedure for i = 0, . . . , 11 with parameters

Li = 0.97 · 2 i+5
2 , λi = 100 · L−5

i , Ni = 96 · 2i ∼ L2
i ri = �2 i+11

2 � ∼ Li ,

chosen such that the length of the local minimizer γi satisfies 
(γi ) ≈ 2(i+5)/2 and the
maximal speed is close to Li .

To get nearly constant speed curves γi , see ii), we increase λi by a factor of 100,
Ni by a factor of 2 and set Li := 2(i+5)/2. Then, we apply the CG method with
maximal 100 iterations and i restarts. The results are depicted in Fig. 3. Note that the
complexity for the evaluation of the function in (31) scales roughly as N ∼ L2. In Fig. 4
we observe that the decay-rate of the squared discrepancy D2

K (μ, ν) in dependence
on the Lipschitz constant L matches indeed the theoretical findings of Theorem 8.

3D-Torus T
3 The aim of this example is two-fold. First, it shows that the algorithm

works prettywell in three dimensions. Second,we are able to approximate any compact
surface in the three-dimensional space by a curve.We construct ameasureμ supported
around a two-dimensional surface by taking samples from Spock’s head2 and placing
small Gaussian peaks at the sampling points, i.e., the density is given for x ∈ [− 1

2 ,
1
2 ]

by

ρ(x) := c−1
∑

p∈S
e−30000‖p−x‖22 , c :=

∫

[− 1
2 ,

1
2 ]3
∑

p∈S
e−30000‖p−x‖22 dx,

where S ⊂ [− 1
2 ,

1
2 ]3 is the discrete sampling set. From a numerical point of view it

holds dim(supp(μ)) = 2. The Fourier coefficients are again computed by a DFT and
the kernel K is given by (34) with d = 3 and s = 2 so that HK = H2(T3).

We start with N0 = 100 points on a smooth curve given by the formula

x0,k =
(

3
10 cos(2πk/N0),

3
10 sin(2πk/N0),

3
10 sin(4πk/N0)

)
, k = 0, . . . , N0.

Then, we apply our procedure for i = 0, . . . , 8 with parameters, cf. Remark 7,

Li = 2
i+5
2 , λi = 10 · L−5

i , Ni = 100 · 2i ∼ L2
i , ri = �2 i+5

2 � ∼ Li .

To get nearly constant speed curves γi , we increase λi by a factor of 100, Ni by a
factor of 2 and set Li := 2(i+6)/2. Then, we apply the CG method with maximal 100
iterations and one restart to the previously found curve γi . The results are illustrated
in Fig. 5. Note that the complexity of the function evaluation in (31) scales roughly as
N 3/2 ∼ L3. In Fig. 6 we depict the squared discrepancy D2

K (μ, ν) of the computed

2 http://www.cs.technion.ac.il/~vitus/mingle/
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Fig. 3 Local minimizers of (31) for the image at bottom right

Fig. 4 Squared discrepancy
between the measure μ given by
the image in Fig. 3 and the
computed local minimizers
(black dots) on T

2 in log-scale.
The blue line corresponds to the
optimal decay-rate in Theorem 8

curves. For small Lipschitz constants, say L(γ ) ≤ 50, we observe a decrease of
approximately L(γ )−3, which matches the optimal decay-rate for measures supported
on surfaces as discussed in Remark 5.

2-Sphere S
2 Next, we approximate a gray-valued image on the sphere S

2 by an
almost constant speed curve. The image represents the earth’s elevation data provided
by MATLAB, given by samples ρi, j , i = 1, . . . , 180, j = 1, . . . , 360, on the grid

xi, j :=
(
sin
(
i π
180

)
sin
(
j π
180

)
, sin

(
i π
180

)
cos
(
j π
180

)
, cos

(
i π
180

))
.
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Fig. 5 Local minimizers of (31) for a measure μ concentrated on a surface (head of Spock) in T
3

Fig. 6 Squared discrepancy between the measure μ given by the surface in Fig. 5 and the computed local
minimizers (black dots) on T

3 in log-scale. The blue line corresponds to the optimal decay-rate in Theorem
8

The Fourier coefficients are computed by discretizing the Fourier integrals, i.e.,

μ̂m
k :=

{
1

180·360
∑180

i=1
∑360

j=1 ρi, j Ym
k (xi, j ) sin

(
i π
180

)
, 1 ≤ k ≤ 2m + 1,m ≤ 180,

0, else,
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Fig. 7 Local minimizers of (31) for μ given by the earth’s elevation data on the sphere S
2

Fig. 8 Squared discrepancy between the measure μ and the computed local minimizers (black dots) in
log-scale. The blue line corresponds to the optimal decay-rate in Theorem 9

followed by a suitable normalization such that μ̂0
0 = 1. The corresponding sums are

efficiently computed by an adjoint non-equispaced fast spherical Fourier transform
(NFSFT), see [68]. The kernel K is given by (36). Similar to the previous examples,
we apply our procedure for i = 0, . . . , 12 with parameters

Li = 9.7 · 2 i
2 , λi = 100 · L−5

i , Ni = 100 · 2i ∼ L2
i , ri = �Li� ∼ Li .

To get nearly constant speed curves, we increase λi by a factor of 100, Ni by a factor
of 2 and set Li := L02i/2. Then, we apply the CGmethod with maximal 100 iterations
and one restart to the previously constructed curves γi . The results for i = 6, 8, 10, 12
are depicted in Fig. 7. Note that the complexity of the function evaluation in (31)
scales roughly as N ∼ L2. In Fig. 8 we observe that the decay-rate of the squared
discrepancy D2

K (μ, ν) in dependence on the Lipschitz constant matches indeed the
theoretical findings in Theorem 9.

3D-Rotations SO(3) There are several possibilities to parameterize the rotation
group SO(3). We apply those by Euler angles and an axis-angle representation for
visualization. Euler angles (ϕ1, θ, ϕ2) ∈ [0, 2π) × [0, π ] × [0, 2π) correspond to
rotations Rot(ϕ1, θ, ϕ2) in SO(3) that are the successive rotations around the axes
e3, e2, e3 by the respective angles. Then, the Haar measure of SO(3) is determined by

dμSO(3)(ϕ1, θ, ϕ2) = 1
8π2 sin(θ) dϕ1 dθ dϕ2.

We are interested in the full three-dimensional doughnut

D = {
Rot(ϕ1, θ, ϕ2) : 0 ≤ θ ≤ π

2 , 0 ≤ ϕ1, ϕ2 ≤ 2π
} ⊂ SO(3).
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Next, we want to approximate the Haar measure μ = μD restricted to D, i.e., with
normalization we consider the measure defined for f ∈ C(SO(3)) by

∫

SO(3)
f dμD = 1

4π2

∫ 2π

0

∫ π
2

0

∫ 2π

0
f (ϕ1, θ, ϕ2) sin(θ) dϕ1 dθ dϕ2.

The Fourier coefficients of μD can be explicitly computed by

μ̂k
l,l ′ =

{
Pk−1(0) − Pk+1(0), l, l ′ = 0, k ≥ 0,

0, l, l ′ �= 0,

where Pk are the Legendre polynomials. The kernel K is given by (37) with d = 3
and s = 2. For i = 0, . . . , 8 the parameters are chosen as

Li = 0.93 · 2 2i+12
3 , λi = 10 · L−4

i , Ni = 64 · 2i ∼ L2
i , ri = �2 i+9

3 � ∼ L
1
2
i .

Here, we use a CG method with 100 iterations and one restart. Step ii) appears to
be not necessary. Note that the complexity for the function evaluations in (31) scales
roughly as N ∼ L3/2.

The constructed curves are illustrated in Fig. 9, where we utilized the following
visualization: Every rotation R(α, r) ∈ SO(3) is determined by a rotation axis r =
(r1, r2, r3) ∈ S

2 and a rotation angle α ∈ [0, π ], i.e.,

R(α, r)x = r(rTx) + cos(α) ((r × x) × r) + sin(α)(r × x).

Setting q := (cos(α
2 ), sin(α

2 )r) ∈ S
3 with r ∈ S

2 and α ∈ [0, 2π ], see (22), we
observe that the same rotation is generated by −q = (cos( 2π−α

2 ), sin( 2π−α
2 (−r)) ∈

S
3, in other words SO(3) ∼= S

3/{±1}. Then, by applying the stereographic projection
π(q) = (q2, q3, q4)/(1+q1), wemap the upper hemisphere onto the three dimensional
unit ball. Note that the equatorial plane of S

3 is mapped onto the sphere S
2, hence

on the surface of the ball antipodal points have to be identified. In other words, the
rotation R(α, r) is plotted as the point

π(q) = sin
(

α
2

)

1 + cos
(

α
2

)r = tan
(

α
4

)
r ∈ R

3.

In Fig. 10 we observe that the decay-rate of D2
K (μ, ν) in dependence on the Lips-

chitz constant L matches the theoretical findings in Corollary 1.
The 4-dimensional Grassmannian G2,4 Here, we aim to approximate the Haar

measure of the Grassmannian G2,4 by a curve of almost constant speed. As this curve
samples the space G2,4 quite evenly, it could be used for the grand tour, a technique to
analyze high-dimensional data by their projections onto two-dimensional subspaces,
cf. [5].
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Fig. 9 Local minimizers of (31) for the Haar measure μD of three-dimensional doughnut D in the rotation
group SO(3) with a color scheme for better visibility of the 3D structure

Fig. 10 Squared discrepancy between the measure μD and the computed local minimizers (black dots) in
log-scale. The blue line corresponds to the optimal decay-rate in Corollary 1

The kernel K of the Haar measure is given by (38) and the Fourier coefficients are
given by μ̂

k,k′
m,m′ = δm,0δm′,0δk,0δk′,0. For i = 0, . . . , 8 the parameters are chosen as

Li = 0.91 · 2 3i+16
4 , λi = 100 · L− 11

3
i , Ni = 128 · 2i ∼ L2

i , ri = �2 3i+16
12 � + 1 ∼ L

1
3
i .
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Fig. 11 Local minimizers of (31) for the Haar measure of the Grassmannian G2,4

Fig. 12 The squared discrepancy between the Haar measure μ and the computed local minimizers (black
dots) in log-scale. Here, the blue line corresponds to the optimal decay-rate, cf. Theorem 10

Here, we use aCGmethodwith 100 iterations and one restart. Our experiments suggest
that step ii) is not necessary. Note that the complexity for the function evaluation in (31)
scales roughly as N ∼ L3/2.

The computed curves are illustrated inFig. 11,whereweuse the followingvisualiza-
tion. By Remark 8, there exists an isometric one-to-one mapping P : S

2×S
2/{±1} →
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G2,4. Using this relation, we plot the point P(u, v) ∈ G2,4 by two antipodal points
z1 = u + v, z2 = −u − v ∈ R

3 together with the RGB color-coded vectors ±u.3

More precisely, R = (1 ∓ u1)/2, G = (1 ∓ u2)/2, B = (1 ∓ u3)/2. This means a
curve γ (t) ∈ G2,4 only intersects itself if the corresponding curve z(t) ∈ R

3 intersects
and has the same colors at the intersection point. In Fig. 12 we observe that the decay-
rate of the squared discrepancy D2

K (μ, ν) in dependence on the Lipschitz constant L
matches indeed the theoretical findings in Theorem 10.

9 Conclusions

In this paper, we provided approximation results for general probability measures on
compact Ahlfors d-regular metric spaces X by

(i) measures supported on continuous curves of finite length, which are actually push-
forward measures of probability measures on [0, 1] by Lipschitz curves;

(ii) push-forward measures of absolutely continuous probability measures on [0, 1]
by Lipschitz curves;

(iii) push-forward measures of the Lebesgue measure on [0, 1] by Lipschitz curves.

Our estimates rely on discrepancies between measures. In contrast to Wasserstein
distances, these estimates do not reflect the curse of dimensionality.

In approximation theory, a natural question is how the approximation rates improve
as the “measures become smoother”. Therefore, we considered absolutely continuous
probability measures with densities in Sobolev spaces, where we have to restrict our-
selves to compact Riemannian manifolds X. We proved lower estimates for all three
approximation spaces i)-iii). Concerning upper estimates, we gave a result for the
approximation space i). Unfortunately, we were not able to show similar results for
the smaller approximation spaces ii) and iii). Nevertheless, for these cases, we could
provide results for the d-dimensional torus, the d-sphere, the three-dimensional rota-
tion group and theGrassmannianG2,4, which are all of interest on their own.Numerical
examples on these manifolds underline our theoretical findings.

Our results can be seen as starting point for future research. Clearly, wewant to have
more general results also for the approximation spaces ii) and iii). We hope that our
research leads to further practical applications. It would be also interesting to consider
approximation spaces of measures supported on higher dimensional submanifolds as,
e.g., surfaces.

Recently, results on the principal component analysis (PCA) on manifolds were
obtained. It may be interesting to see if some of our approximation results can be also
modified for the setting of principal curves, cf. Remark 3. In contrast to [55, Thm. 1]
that bounds the discretization error for fixed length, we were able to provide precise
error bounds for the discrepancy in dependence on the Lipschitz constant L of γ and
the smoothness of the density dμ.

3 Note that the decomposition of z ∈ R
3 with 0 < ‖z‖ < 2 into u and v is not unique. There is a

one-parameter family of points us , vs ∈ S
2 such z = us + vs . The point z = 0 has a two-dimensional

ambiguity v = −u, u ∈ S
2 and the point z ∈ 2S

2 has a unique pre-image v = u = 1
2 z.
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A Special Manifolds

Here, we introduce the main examples that are addressed in the numerical part. The
measure σX is always the normalized Riemannian measure on the manifold X. Note
that for simplicity of notation all eigenspaces are complex in this section. We are
interested in the following special manifolds.
Example 1: X = T

d . For k ∈ Z
d , set |k|2 := k21 + . . . + k2d and |k|∞ :=

max{|k1|, . . . , |kd |}. Then −Δ has eigenvalues {4π2|k|2}k∈Zd with eigenfunctions
{e2π i〈k,·〉}k∈Zd . The space of d-variate trigonometric polynomials of degree r ,

�r (T
d) := span

{
e2π i〈k,x〉 : |k|∞ ≤ r

}
(33)

has dimension (2r+1)d and contains the eigenspaces belonging to eigenvalues smaller
than 4π2r2. As kernel for Hs , s = (d + 1)/2, we use in our numerical examples

K (x, y) =
∑

k∈Zd

(1 + |k|22)− d+1
2 e2π i〈k,x−y〉 =

∑

k∈Zd

(1 + |k|22)− d+1
2 cos

(
2π〈k, x − y〉).

(34)
Example 2: X = S

d ⊂ R
d+1, d ≥ 1. We use distance distSd (x, z) = arccos(〈x, z〉).

The Laplace–Beltrami operator −Δ on S
d has the eigenvalues {k(k + d − 1)}k∈N

with the spherical harmonics of degree k,

{
Y k
l : l = 1, . . . , Z(d, k)

}
, Z(d, k) := (2k + d − 1) Γ (k+d−1)

Γ (d)Γ (k+1)

as corresponding orthonormal eigenfunctions [66]. The span of eigenfunctions with
eigenvalues smaller than r(r + d − 1) is given by

�r (S
d) := span

{
Y k
l : k = 0, . . . , r , l = 1, . . . , Z(d, k)

}
. (35)
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It has dimension
∑r

k=0 Z(d, k) = (d+2r)Γ (d+r)
Γ (d+1)Γ (r+1) ∼ rd and coincides with the space

of polynomials of total degree r in d variables restricted to the sphere. As kernel for
Hs(S2), s = 3/2, we use

K (x, y) = 1

3
+

∞∑

k=1

2

(2k − 1)(2k + 1)(2k + 3)

2k+1∑

l=1

Y k
l (x)Y k

l (y)

= 1

3
+

∞∑

k=1

2

(2k − 1)(2k + 3)
Pk
(〈x, y〉) = 1 − 1

2
‖x − y‖2 (36)

with the Legendre polynomials Pk . Note that the coefficients have the decay as
(k(k + 1))−3/2.
Example 3: X = SO(3). This 3-dimensional manifold is equipped with the distance
function distSO(3)(x, y) = arccos((trace(xTy) − 1)/2)/2. The eigenvalues of −Δ are
{k(k+1)}∞

k=0 and the (normalized)Wigner-D functions {Dk
l,l ′ : l, l ′ = −k, . . . , k} pro-

vide an orthonormal basis for L2(SO(3)), cf. [80]. The span of eigenspaces belonging
to eigenvalues smaller than r(r + 1) is

�r (SO(3)) := span
{Dk

l,l ′ : k = 0, . . . , r , l, l ′ = −k, . . . , k
}

and has dimension (r + 1)(2r + 1)(2r + 3)/3. In the numerical part, we use the
following kernel for Hs (SO(3)), s = 2,

K (x, y) = π

8
− 1

3
+

∞∑

k=1

1

(2k − 1)(2k + 1)2(2k + 3)

k∑

l=−k

k∑

l ′=−k

Dk
l,l ′(x)Dk

l,l ′(y)

= π

8
− 1

3
+

∞∑

k=1

1

(2k − 1)(2k + 1)(2k + 3)
U2k

(
1
2

√

tr(x%y) + 1
)

= π

8
− π

√
2

16
‖x − y‖F, (37)

where Uk are the Chebyshev polynomials of the second kind.
Example 4: X = G2,4. For integers 1 ≤ s < r , the (s, r)-Grassmannian is the collec-
tion of all s-dimensional linear subspaces of R

r and carries the structure of a closed
Riemannian manifold. By identifying a subspace with the orthogonal projector onto
this subspace, the Grassmannian becomes

Gs,r := {
x ∈ R

r×r : x% = x, x2 = x, rank(x) = s
}
.

In our context, the cases G1,2, G1,3, and G2,3 can essentially be treated by the spheres
S
1 and S

2. The simplest Grassmannian that is algebraically different is G2,4. It is a
4-dimensional manifold and the geodesic distance between x, y ∈ G2,4 is given by

distG2,4(x, y) = √
2
√

θ21 (x, y) + θ22 (x, y),
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where θ1(x, y) and θ2(x, y) are the principal angles between the subspaces associated
to x and y, respectively. The terms cos(θ1(x, y))2 and cos(θ2(x, y))2 correspond to
the two largest singular values of the product xy. The eigenvalues of −Δ on G2,4 are
4(λ21 + λ22 + λ1), where λ1 and λ2 run through all integers with λ1 ≥ λ2 ≥ 0, cf. [6–
8,29,53,71]. The associated eigenfunctions are denoted by ϕλ

l with l = 1, . . . , Z(λ),
where Z(λ) = (1 + λ1 + λ2)η(λ2) and η(λ2) = 1 if λ2 = 0 and 2 if λ2 > 0 cf. [35,
(24.29) and (24.41)] as well as [7,8].

The space of polynomials of total degree r on R
16 ∼= R

4×4 restricted to G2,4 is

�r (G2,4) := span
{
ϕλ
l : λ1 + λ2 ≤ r , l = 1, . . . , Z(λ)

}
.

It contains all eigenfunctions ϕλ
l with 4(λ21 + λ22 + λ1) < 2(r + 1)(r + 2), cf. [14,

Thm. 5].
For Hs(G2,4) with s = 5/2, we chose the kernel

K (x, y) =
∑

λ1≥λ2≥0

(
1 + λ21 + λ22

)− 5
2

Z(λ)∑

l=1

ϕλ
l (x)ϕλ

l (y). (38)

Remark 8 It is well-known that S
2 × S

2 is a double covering of G2,4. More precisely,
there is an isometric one-to-one mapping P : S

2 × S
2/{±1} → G2,4 given by

P(u, v) = P(−u, −v) := 1

2

(
1 + uTv −(u × v)T

−u × v uvT + vuT + (1 − uTv)I3

)

,

cf. [26].Moreover, theϕλ
l are essentially tensor products of spherical harmonics,which

enables transferring the non-equispaced fast Fourier transform from S
2 × S

2 to G2,4,
see [26] for details.
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