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Abstract 

Integrating gene expression data at transcript and protein level from many experiments helps in              

understanding functional relationships between genes, transcripts and the proteins they encode.           

Such approaches, collectively known as co-expression analysis, use various statistical methods to            

create pairwise association scores between genes or proteins. Co-expression analyses have been            

traditionally focused on transcript data due to the ever-increasing number of deposited datasets             

owing to the accessibility of mRNA-based technologies. However, there is growing evidence that             

protein expression is more closely linked to gene function. In this cumulative dissertation, I present               

my work on non-functional genomic effects on mRNA co-expression, which are absent on the protein               

level. These effects are predominantly rooted in genomic features such as 3D genome structure and               

epigenetic state. Genomic organization seems to have a direct, long-range effect on mRNA             

co-expression, e.g. through stochastic fluctuations between open and closed chromatin states or            

DNA replication timing. A considerable proportion of mRNA co-expression of spatially close gene             

pairs is not functional and buffered on the protein level, possibly through various post-transcriptional              

mechanisms. I demonstrate this effect in a human lymphoblastoid cell line panel and terminally              

differentiated mouse tissues by integrating publicly available omics datasets. Moreover, based on the             

notion of using protein data for co-expression analysis, I show how Random Forests can help in                

distinguishing patterns of mitochondrial protein localization in high-dimensional interphase chromatin          

data and even predict potential novel mitochondrial proteins. Finally, I show how machine learning              

can improve protein co-expression analytics over more classical statistical approaches, such as            

Pearson correlation. I integrate 294 high-quality SILAC experiments deposited in the PRIDE archive             

and calculate protein-wise functional links using tree-based unsupervised learning algorithm. The           

functional links between 5013 proteins resulting from my analysis are becoming part of the widely               

used STRING tool and thus will benefit biological researchers directly. Additionally, the resulting             

scores and data were made available via the ProteomeHD web app which I developed              

(https://www.proteomehd.net). At the methodological level, my work adds to the domain of            

computational systems biology and has impact on gene and protein function prediction efforts in the               

field. For example, the analysis of the protein co-expression scores helped to further annotate              

peroxisomal protein PEX11B and show its dual peroxisomal-mitochondrial function. 

 

3 



 

Zusammenfassung 

Die Integration von Genexpressionsdaten aus Transkript- und Proteinhochdurchsatzmessungen hilft,         

funktionelle Beziehungen zwischen Genen, Transkripten und Proteinen zu verstehen. Ein          

bestimmter Ansatz, im Feld auch als Koexpressionsanalyse bezeichnet, nutzt verschiedene          

statistische Methoden, um paarweise Assoziationsmetriken zwischen Genen und Proteinen zu          

generieren. Bislang stützen sich Koexpressionsanalysen zumeist auf Transkriptionsdaten, da         

insbesondere dieser Typ Messdaten generiert und öffentlich verfügbar gemacht wurde. Jüngste           

Forschungsergebnisse legen jedoch nahe, dass die Expression von Proteinen stärker an die            

betreffende Genfunktion gebunden sind, als bisher angenommen. Diese kumulative Dissertation          

behandelt von mir untersuchte nicht-funktionale, genomische Effekte auf die Koexpression von           

mRNA, welche sich nicht auf die zu regulierenden Proteine auswirken. Diese Effekte beruhen zum              

überwiegenden Teil auf spezifischen genomischen Eigenschaften, wie der dreidimensionalen         

Chromatinstruktur und epigenetischer Zustände. Die genomische Architektur scheint direkte,         

weitreichende Effekte auf die mRNA-Koexpression zu haben, die beispielsweise aus stochastischen           

Fluktuationen zwischen offenen und geschlossenen Zuständen des Chromatins oder der Replikation           

von DNA hervorgehen könnte. Ein großer Anteil koexprimierter mRNAs proximal-liegender Gene           

besitzt keinen funktionalen Zusammenhang und wird auf Proteinebene gepuffert, wahrscheinlich          

aufgrund verschiedener posttranskriptioneller Mechanismen. Ich zeige diesen Effekt in menschlichen          

lymphoblastoiden Zelllinien und in differenzierten murinen Geweben durch Integration von öffentlich           

vorhandenen Omics-Datensätzen. Außerdem lege ich dar, wie ein  Random Forest -Algorithmus          

Kovariationsmuster mitochondrialer Proteinen aus hochdimensionalen Interphasen-Chromatin-Daten      

extrahieren kann, um mögliche neue mitochondriale Proteine vorherzusagen. Schließlich zeige ich           

wie maschinelles Lernen die Analyse von Proteinkoexpression im Vergleich zu traditionellen           

statistischen Methoden, wie beispielsweise der Pearson Korrelationsanalyse, verbessern kann. Ich          

integriere 294 SILAC-Experimente, die im  PRIDE -Archiv hinterlegt wurden und kalkuliere eine           

paarweise Protein-Assoziationsmetrik via  Decision Tree -basiertem maschinellen Lernen.       

Beispielsweise erbrachte die detaillierte Analyse der Proteinkoexpressionsassoziationsmetrik eine        

neue Annotation des peroxisomalen Proteins PEX11B und half somit, dessen doppelte           

peroxisomal-mitochondriale Funktion aufzuklären. Die funktionelle Assoziationsmetrik zwischen den        

5013 in meiner Analyse untersuchten Proteinen wird Teil der sehr weit verbreiteten            

STRING -Datenbank und wird die biologische Forschung unterstützen. Zusätzlich wurden die          

erarbeitete Assoziationsmetrik und Daten über die von mir erstellte ProteomeHD Web App            
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(https://www.proteomehd.net) verfügbar gemacht. Meine Arbeit fügt ein bedeutendes Werkzeug zur          

Vorhersage von Gen- und Proteinfunktionen zu bisherigen Mitteln hinzu und trägt somit dazu bei,              

das Forschungsfeld rechentechnischer Systembiologie weiterzuentwickeln. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 



 

Abbreviations 

BLAST: Basic Local Search Alignment Tool 

CAFA: critical assessment of protein function annotation 

DBSCAN: Density-based spatial clustering of applications with noise 

GEO: Gene Expression Omnibus 

GO: Gene Ontology 

MIPS: Munich Information Center for Protein Sequences 

miRNAs: microRNAs 

ncRNAs: non-coding RNAs 

PCA: principal component analysis 

PRIDE: Proteomics Identifications 

PSI-BLAST: Position-specific Iterative Basic Local Alignment Search Tool 

PTM: post-translational modifications 

RNAseq: RNA sequencing 

STRING: Search Tool for the Retrieval of Interacting Genes/Proteins 
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Introduction 

Genes are the basic functional units of genomes. Understanding the functional relationships            

between genes has long been a major goal of molecular biology. Genes can have regulatory               

relationships with each other, for example based on their physical proximity on the genome, while               

their products (RNA and protein) can have functional relationships throughout the cell. Functional             

relationships of gene products can take many forms, such as direct physical interactions whereby              

the RNA or proteins they encode form complexes, or indirect “functional” interactions, for example              

where their encoded RNA or proteins cooperate in a metabolic pathway. Further understanding of              

these relationships can be applied to improve drug design  (Hase et al. 2009) , clinical diagnostics               

(Su, Yoon, and Dougherty 2010; Zhang and Chen 2010) or improve biotechnological processes  (D.              

Li et al. 2016) . 

 

Proteins constitute the main functional output of the genome. These amino acid-based machines are              

responsible for most of the functional aspects of the cell such as creating structural scaffolds,               

carrying out intra- and intercellular signalling, performing enzymatic reactions, among others. Out of             

ca. 58.000 known human genes, ~20.000 are protein-coding  (Harrow et al. 2012) . Studying the              

function of those genes and their relationship to phenotype has long been a goal of functional                

genomics, a mature subfield of biology. While traditionally functional genomics has been focused on              

genomics and transcriptomics technologies, proteomics can help in developing understanding of the            

relationships between genes by analyzing the functions of the proteins they encode. For this reason,               

I use here the terms “gene function prediction” and “protein function prediction” interchangeably. 

 

Despite many years of extensive research, the function of many proteins remains elusive. Around              

38% of the human proteome is considered “understudied” and without extensive functional            

annotation  (Oprea et al. 2018) . The necessary extensive wet-lab characterization is a tedious and              

and resource-consuming task. To aid this process, systems biology and bioinformatics methods that             

help infer the function of proteins are being developed to help shed light on the potential function of                  

genes and proteins.  

 

One of such computational methods is gene and protein function prediction. Gene function prediction              

has a long history, with the main impact coming from the BLAST  (Altschul et al. 1990) and                 

PSI-BLAST algorithms  (Altschul et al. 1997) which allowed researchers to search (or “blast”) their              
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sequences of interest against functionally annotated databases and learn something about the            

possible function of the analyzed gene or protein. With the explosion of genomic data in the last two                  

decades and development of statistical frameworks, sequence-based approaches to function          

prediction became more sophisticated. Currently, community-based initiatives, like the critical          

assessment of protein function annotation (CAFA)  (Radivojac et al. 2013) , document fifty-four such             

methods for function prediction which include approaches such as Bayesian phylogenomics           

(Engelhardt et al. 2005) , protein function prediction using patterns of native disorder  (A. Lobley et al.                

2007)  or function prediction using sequence-based features  (A. E. Lobley et al. 2008) .  

 

However, these and similar sequence-based approaches have drawbacks. In most of these            

methods, gene and protein co-function is typically defined as gene or protein pairs sharing same               

gene ontology (GO) terms  (Ashburner et al. 2000) . While such ontologies are useful for functional               

classification of genes and proteins, they don’t always capture their multifunctional character and             

contain many electronic annotations without manual curation  (Khatri and Drăghici 2005) . Moreover,            

it’s not clear how much functional information can be extracted from primary amino acid sequence               

alone, as protein function is mainly conferred by its 3D structure, assemblies of proteins into protein                

complexes and post-translational modifications (PTMs). Apart from primary amino acid sequence           

homology analysis, one can use amino acid sequences to predict protein domains  (Bateman et al.               

2004) , protein-protein interactions  (Singh et al. 2010; Planas-Iglesias et al. 2013) or subcellular             

localization signals in their N-terminal amino acid sequence  (Dönnes and Höglund 2004) . These             

features are informative on protein functions, but far from offering a complete picture. 

 

Gene and protein expression data has been helpful in further developing our understanding of their               

functions. Typically, experiments designed to analyze differential gene and protein expression           

between different conditions, such as gene knock-outs or chemical perturbations, provide hints at             

their possible role in cellular networks. While the data from such experiments can be informative on                

its own, additional information can be extracted from integrating many such experiments into one              

analysis, commonly referred to as co-expression analysis  (Serin et al. 2016) . 

 

Gene co-expression analysis is a mature subfield with impact on functional annotation of genes and               

gene-disease relationships  (van Dam et al. 2018; Zhao et al. 2010) . It offers a way of exploiting the                  

large amounts of data deposited into public repositories such as Gene Expression Omnibus (GEO)              

(Barrett et al. 2013) and Proteomics Identifications (PRIDE) archive  (Vizcaíno et al. 2016) . The most               

prevalent technologies used for generating gene expression data are microarrays and RNA            
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sequencing (RNAseq). There are over 55.000 microarray and over 21.000 RNAseq experiments            

(“Series”) deposited into GEO alone (state on 09.10.2018). One of the biggest efforts to integrate the                

gene expression data deposited in GEO is the calculation of co-expression scores between pairs of               

genes available as part of the STRING database  (Szklarczyk et al. 2017) . 

 

However, using transcriptomics data for co-expression analysis has pitfalls. The central dogma of             

biology describes how genes are transcribed into transcripts which, in turn, are being translated into               

proteins. Transcriptomics technologies monitor transcript levels and do not provide information on            

their final products, proteins. Transcript levels are only partially informative on the cellular protein              

levels due to interplay of post-translational mechanisms such as protein synthesis and degradation             

(Schwanhäusser et al. 2011; Y. Liu, Beyer, and Aebersold 2016) . These mechanisms also have              

strong impact on gene and protein co-expression. For example, in  Saccharomyces cerevisiae            

microarray data ,  gene  co-expression of many protein complexes defined by Munich Information            

Center for Protein Sequences (MIPS) is not much stronger than for random pairs  (C.-T. Liu, Yuan,                

and Li 2009) (excluding large complexes such as ribosomes). Perhaps not surprisingly, monitoring             

protein levels proved to be more powerful than monitoring transcript levels for co-expression-based             

gene function prediction  (Wang et al. 2017; Grabowski, Kustatscher, and Rappsilber 2018;            

Kustatscher, Grabowski, and Rappsilber 2017) . Protein co-expression is being successfully used           

also in biomedical context. For example Ryan  et al. found that genomic mutations in genes encoding                

one protein complex subunit often lead to downregulation of whole protein complexes  (Ryan et al.               

2017) . Lapek  et al . integrated protein expression data from 41 breast cancer cell lines to create a                 

map of breast cancer cell line protein-protein associations and looked at affected submodules in the               

resulting functional networks  (Lapek et al. 2017) . 

 

Co-expression of genes is affected by their genomic context, which includes genomic distance             

between genes  (Hurst, Pál, and Lercher 2004; Xu, Chen, and Shen 2012; Williams and Bowles               

2004; Y.-Y. Li et al. 2006; Purmann et al. 2007) , epigenetic signals such as DNA methylation and                 

histone modifications and even higher-order 3D spatial conformations of chromatin  (Kustatscher,           

Grabowski, and Rappsilber 2017; Grabowski, Kustatscher, and Rappsilber 2018; Nora et al. 2012) .             

These genomic effects are largely buffered on the protein level. For example, levels of protein               

complex subunits do not scale with gene copy number variations in yeast  (Dephoure et al. 2014) and                 

are not affected by transcript fluctuations resulting from genetic variation between individuals  (Battle             

et al. 2015) . Taken together, this suggests that using protein-level technologies, such as mass              

spectrometry-based proteomics, is a better choice for functional annotation using co-expression. 
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However, inferring gene function through protein analysis also has drawbacks. For example, it is not               

possible to functionally annotate genes which are not protein-coding. This means that such             

approaches cannot help in understanding the function of the many non-coding RNAs (ncRNAs),             

including regulatory microRNAs (miRNAs), which account for almost half of the known human genes              

(Harrow et al. 2012) . Moreover, mass spectrometry suffers from sensitivity issues when dealing with              

complex samples such as the human proteome. Compared to RNA sequencing, which can quantify              

expression of tens of thousands of genes in one analysis, mass spectrometry is limited to reliably                

measuring only the more abundant portion of the proteome in one acquisition. Last, but not least,                

studying the functions of the various protein isoforms encoded by distinct transcripts on a large scale                

is still challenging for proteomics  (Stastna and Van Eyk 2012) . This is due to the often limited protein                  

coverage (in terms of distinct peptides detected per protein) and the fact that different isoforms of a                 

protein may differ only by few amino acids. 

 

Analyzing large protein co-expression datasets is not simple. They often contain thousands of             

proteins and dozens of features (such as measured quantities and changes in experiments), forming              

massive expression matrices. Calculating co-expression strength between pairs of proteins is           

typically performed using standard statistics such as Pearson or Spearman correlation coefficients,            

Biweight midcorrelation, Mutual Information or simple regression models  (Song, Langfelder, and           

Horvath 2012) . These long-established methods are used to create N x N protein-protein             

co-expression matrices (where N is the number of proteins in the input data). Such matrices are then                 

often used by network topology-based algorithms which help define separate co-expressed           

“modules”  (Langfelder and Horvath 2008) . Such modules can then be analyzed and screened for              

novel functional relationships between proteins (and thereby their respective genes). 

 

Machine learning offers an additional mode of exploration of such co-expression datasets. Machine             

learning is a collective term for computer algorithms that iteratively fit a predictive model to the                

observed data that are of growing importance in biosciences  (Huang, Chaudhary, and Garmire 2017;              

Camacho et al. 2018; Angermueller et al. 2016) . Generally, machine learning approaches are             

divided into two main classes: supervised and unsupervised algorithms. Supervised algorithms           

(classifiers and regressors) expect a predefined target variable such as “protein is mitochondrial” vs.              

“protein is not mitochondrial”. Such algorithms expect training sets of positive and negative examples              

of the target variable and build a predictive model that can label unseen examples with class                

probabilities (in case of classifiers) or predicted continuous values (in case of regressors). Examples              
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of use of machine learning on proteomics data include integration of subcellular fractionation             

experiments to predict protein subcellular localization  (Mulvey et al. 2017; Itzhak et al. 2016;              

Kustatscher, Grabowski, and Rappsilber 2016) or prediction of peptide chromatographic retention           

time  (Giese, Ishihama, and Rappsilber 2018; Moruz, Tomazela, and Käll 2010) . Conversely,            

unsupervised algorithms do not require a specified target variable. These algorithms are useful for              

finding structure within data, for example by performing clustering (such as k-means, hierarchical             

clustering or DBSCAN  (Rehman et al. 2014) algorithms). Moreover, this class of algorithms can also               

calculate pairwise distances between examples  (Buttrey and Whitaker 2015) or perform           

dimensionality reduction (such as the ubiquitous Principal Component Analysis, PCA). 
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Contributions and Main Findings 

In this cumulative dissertation I combine four manuscripts describing primary research to which I              

contributed significantly (three with first authorships and one with second authorship). Two            

manuscripts are about the effect of genomic features on gene and protein co-expression. They              

essentially answer the question “Why is proteomics better than transcriptomics for gene function             

prediction?”. The third and fourth manuscripts build on the notion of using proteomics for gene               

function prediction and use machine learning with proteomics datasets for predicting functional            

relationships between protein-coding genes. Moreover, I add a fifth Opinion manuscript in which I              

offer an entry point for bench-side biologists to become oriented in the field of computational biology                

and data analytics. Finally, I list three manuscripts that do not form part of this thesis but to which I                    

contributed significantly during my time as a PhD student. 

 

The first manuscript, entitled “ Pervasive Coexpression of Spatially Proximal Genes Is Buffered            

at the Protein Level ”  (Kustatscher, Grabowski, and Rappsilber 2017) , integrated multiple published            

omics datasets for a lymphoblastoid cell line (LCL) panel to show that mRNA co-expression is               

strongly affected by genomic features. Protein co-expression, however, was not affected by genomic             

features and was more closely related to cellular functions than mRNA co-expression. The data              

ranged from transcriptomics  (Pickrell et al. 2010) , mass spectrometry  (Battle et al. 2015) to              

epigenomics  (ENCODE Project Consortium 2012) and Hi-C 3D genome confirmations  (Rao et al.             

2014) . In this manuscript, I was responsible for Hi-C data analysis and correlating this data with                

mRNA and protein expression levels. 

 

The second manuscript, entitled “ Epigenetic Variability Confounds Transcriptome but not          

Proteome Profiling for Coexpression-based Gene Function Prediction ”  (Grabowski,        

Kustatscher, and Rappsilber 2018) , in which I am the first author, was a follow-up on the findings in                  

the previous manuscript  (Kustatscher, Grabowski, and Rappsilber 2017) . Here, I analyzed published            

mRNA (GEO, ENCODE) and protein expression  (Geiger et al. 2013) datasets for mouse tissues              

which I integrated with epigenomics data available from the ENCODE consortium. In this manuscript,              

we show that the observations from human cell lines are transferable to mouse tissues. Moreover,               

we observed that while in the human cell line panel linear proximity between pairs of genes had a                  

stronger impact on mRNA co-expression than epigenetic states, the converse was true for             
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differentiated mouse tissues. I was responsible for experiment planning, integration and analysis of             

the data and writing of the manuscript. 

 

In the third manuscript, entitled “ Multiclassifier Combinatorial Proteomics of Organelle Shadows           

at the Example of Mitochondria in Chromatin Data ”  (Kustatscher, Grabowski, and Rappsilber            

2016) , we looked at the usefulness of integrating published proteomics datasets for subcellular             

localization prediction. This proof-of-principle work showed that one can train a well-performing            

classifier with proteins localizing to an organelle that was not enriched in the original proteomics               

data. We used published interphase chromatin enrichment experiments and trained our machine            

learning workflow to detect patterns of mitochondrial proteins in these data, which was possible due               

to the non-random nature of mitochondrial protein contaminants. I was responsible for co-developing             

the machine learning workflow, analyzing and visualizing the data and writing of the manuscript. 

 

The fourth manuscript, entitled “ The Human Proteome Co-Regulation Map Reveals Functional           

Relationships Between Proteins ” was submitted to Nature Biotechnology and is currently in            

revision there. I am a shared first author of this work. This manuscript expands on the idea of protein                   

co-expression and machine learning-based integration of many published datasets. Here, we           

integrated published SILAC datasets from PRIDE  (Vizcaíno et al. 2016) repository, arriving at a data               

matrix documenting expression of 10.323 proteins over 294 experimental conditions. By using a             

tree-based unsupervised learning approach  (Buttrey and Whitaker 2015) , we created a matrix of             

pairwise functional interaction scores. Furthermore, we improved this matrix by applying a network             

topology-based algorithm for re-scoring of co-expression data, the Topological Overlap Matrix  (Yip            

and Horvath 2006) . This allowed us to find a novel mitochondrion-peroxisome interface protein,             

PEX11B, formerly annotated as peroxisomal only. Moreover, we show functional relationships of            

many microproteins for which there is very limited functional annotation, as they generate very few               

peptides observable by mass spectrometry. Our protein-protein co-expression scores are being           

currently integrated into the STRING database and will be officially released as part of the STRING                

version 11. I was responsible for testing and comparing multiple statistical and machine learning              

approaches and data dimensionality reduction techniques. I created a web application and a web              

server which constitute the gateway to our resources (available at  https://www.proteomehd.net/ ).           

Moreover, I was involved in multiple data analysis and visualization stages. 

 

The fifth manuscript, entitled  “A Primer on Data Analytics in Functional Genomics: How to Move               

from Data to Insight? ” is an Opinion paper published in the peer-reviewed review journal Trends in                
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Biochemical Sciences. It contains a primer for early stage researchers and students who are              

predominantly wet-lab oriented and are interested in learning more about analyzing large biological             

datasets. 

 

Finally, three other manuscripts which I first- or co-authored, but which are not part of this thesis are: 

 

1. “Proteome Analysis of Human Neutrophil Granulocytes from Patients with Monogenic          

Disease”, in which I analyze proteomes from neutrophils of patients with rare monogenic             

diseases and show that data-independent acquisition (DIA) proteomics can aid genetic           

medical diagnostics. The manuscript is currently under peer review at Molecular and Cellular             

Proteomics. I am the first shared author on this manuscript and was the lead driver of the                 

project. 

2. “ Machine-Learning Captures Higher-Order Modular Architecture of the Proteome ”,        

currently in writing. In this manuscript we show that the human proteome is organized into               

distinct higher-order functional modules, detectable using machine learning and large          

proteomics datasets. Here, I was mainly responsible for developing a supervised           

machine-learning workflow running on the computer cluster of the University of Edinburgh. 

3. “ The treeClust Algorithm Improves Coexpression Analysis in Large Datasets ”, currently          

in writing. In this technical manuscript we show how the unsupervised learning algorithm,             

treeClust, can improve co-expression analysis in large protein expression datasets. We show            

how it handles outliers, weak and strong correlations, missing values and other properties of              

large protein expression datasets. We propose treeClust as an attractive alternative to more             

classical statistical approaches, such as Pearson correlation, for building protein functional           

association scores. 
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Article

Pervasive coexpression of spatially proximal genes
is buffered at the protein level
Georg Kustatscher1,* , Piotr Grabowski2 & Juri Rappsilber1,2,**

Abstract

Genes are not randomly distributed in the genome. In humans,
10% of protein-coding genes are transcribed from bidirectional
promoters and many more are organised in larger clusters. Intrigu-
ingly, neighbouring genes are frequently coexpressed but rarely
functionally related. Here we show that coexpression of bidirec-
tional gene pairs, and closeby genes in general, is buffered at the
protein level. Taking into account the 3D architecture of the
genome, we find that co-regulation of spatially close, functionally
unrelated genes is pervasive at the transcriptome level, but does
not extend to the proteome. We present evidence that non-
functional mRNA coexpression in human cells arises from stochas-
tic chromatin fluctuations and direct regulatory interference
between spatially close genes. Protein-level buffering likely reflects
a lack of coordination of post-transcriptional regulation of func-
tionally unrelated genes. Grouping human genes together along
the genome sequence, or through long-range chromosome folding,
is associated with reduced expression noise. Our results support
the hypothesis that the selection for noise reduction is a major
driver of the evolution of genome organisation.

Keywords gene expression noise; genome organisation; proteomics;

regulatory interference; transcriptomics

Subject Categories Chromatin, Epigenetics, Genomics & Functional

Genomics; Genome-Scale & Integrative Biology

DOI 10.15252/msb.20177548 | Received 19 January 2017 | Revised 21 July

2017 | Accepted 24 July 2017

Mol Syst Biol. (2017) 13: 937

Introduction

The position of genes in the human genome is not random (Hurst

et al, 2004). Genes are often found in pairs or larger clusters that

tend to be coexpressed (Caron et al, 2001; Lercher et al, 2002;

Trinklein et al, 2004). Some of these coordinate transcription of

genes with related functions, for example histone genes and other

clusters resulting from gene duplication. However, the majority of

closeby, coexpressed human genes appear not to have a higher

functional similarity than random gene pairs (Hurst et al, 2004;

Williams & Bowles, 2004; Li et al, 2006; Purmann et al, 2007;

Michalak, 2008; Xu et al, 2012). For example, 35 DNA repair genes

are transcribed from bidirectional promoters, but none of their

paired genes is involved in DNA repair (Xu et al, 2012). This raises

intriguing questions: Why are functionally unrelated genes clustered

in the genome and how can the cell tolerate their coexpression?

Pioneering work in yeast identified the selection for reduced gene

expression noise as a key driver for the evolution of chromosome

organisation (Batada & Hurst, 2007; Wang et al, 2011). A major

cause of gene expression noise is thought to be the random fluctua-

tion of chromatin domains between an active and inactive state,

causing mRNAs to be synthesised in short, stochastic bursts (Raj

et al, 2006). Clusters of active genes may mutually reinforce their

open chromatin state, minimising stochastic chromatin remodelling,

and thereby reduce expression noise (Batada & Hurst, 2007; Wang

et al, 2011). Similarly, genes flanking bidirectional promoters have

lower expression noise than other genes, even if one of the diver-

gent partners is a noncoding RNA (Wang et al, 2011). Noise-

sensitive genes, such as those encoding protein complex subunits,

are enriched among bidirectional pairs, but neither in yeast nor in

human do any of these pairs encode two subunits of the same

protein complex (Li et al, 2006; Wang et al, 2011). Consequently, it

has been suggested that bidirectional promoters may drive noise

reduction rather than the coexpression of functionally related genes

(Wang et al, 2011).

The noise reduction model not only provides a potential explana-

tion for the occurrence of clusters of functionally unrelated genes,

but also predicts that such genes may be coexpressed (Wang et al,

2011). In yeast, chromatin-modifying enzymes are major contribu-

tors to gene expression noise (Newman et al, 2006) and chromatin

remodelling drives the incidental coexpression of neighbouring,

functionally unrelated genes (Batada et al, 2007). This coexpression

may be due to a passive mechanism, whereby random transitions

between open and closed chromatin simultaneously expose all

genes within a chromatin domain to the transcriptional machinery.

Alternatively, for very close genes such as those with bidirectional

promoters, the up- or downregulation of one gene may directly

affect the transcriptional status of its neighbour (Wang et al, 2011).

Indeed, such a “ripple effect” of transcriptional activation has been

observed in yeast and humans (Ebisuya et al, 2008). The noise and
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expression levels of transgenes also vary with their insertion site, as

a result of both domain-wide effects and interference with individ-

ual neighbouring genes (Gierman et al, 2007; Chen & Zhang, 2016).

Transgenes can also affect the mRNA expression levels of endoge-

nous genes located close to the insertion site (Akhtar et al, 2013).

If the transcription of noise-reduced, clustered genes is unduly

influenced by their neighbours, how can individual genes reach

their optimal expression levels? Notably, gene expression is usually

measured at the mRNA level. However, protein levels are buffered

against certain transcript fluctuations (Liu et al, 2016), such as

those caused by stochastic transcription initiation (Raj et al, 2006;

Gandhi et al, 2011) and genetic variation between individuals

(Battle et al, 2015) and species (Khan et al, 2013). The abundance

of some proteins can also be buffered against gene copy number

variations (Geiger et al, 2010; Stingele et al, 2012; Dephoure et al,

2014). We therefore speculated that protein abundances may also

be buffered against regulatory interference between genes in close

spatial proximity.

Results

Coexpression of bidirectional gene pairs is buffered at the
protein level

We investigated the expression of 4,188 genes across 60 different

human lymphoblastoid cell lines (LCLs), for which mRNA (Pickrell

et al, 2010) and protein abundances (Battle et al, 2015) have been

reported (Fig 1A, Dataset EV1). These genes are highly expressed in

all human tissues and their promoters are in active chromatin states

(Appendix Fig S1). Although constitutively active, expression levels

of these “housekeeping” genes vary between LCLs, as a result of

genetic and other differences, including age and growth conditions

(Akey et al, 2007; Stark et al, 2014; Yuan et al, 2015). The LCL cell

line panel has been instrumental in identifying expression quantita-

tive trait loci, that is DNA sequence variants that specifically influ-

ence the expression level of one or more genes (Albert & Kruglyak,

2015). Here, instead of assessing how a gene’s expression level

depends on the genotype, we analyse how it is influenced by the

expression of other, closeby genes. LCLs are a valuable test system

as their genome structure and regulatory elements have been

mapped at unparalleled resolution (Lieberman-Aiden et al, 2009;

Ernst et al, 2011; ENCODE Project Consortium, 2012; Rao et al,

2014).

First, we analysed gene pairs that are transcribed from bidirec-

tional promoters. These are commonly defined as genes that are

found in head-to-head orientation with < 1 kb between their tran-

scription start sites (TSSs) (Trinklein et al, 2004). Out of 167 such

gene pairs in this dataset, the mRNA abundances of 31 (19%)

are strongly and significantly co-regulated across LCLs (Pearson’s

correlation coefficient, PCC > 0.5, BH-adjusted P-value < 0.001).

However, protein co-regulation is attenuated or buffered for 28 of

these (Fig 1B, Appendix Table S1). Literature analysis revealed that

the buffered gene pairs generally have unrelated biological func-

tions, in contrast to the three gene pairs whose co-regulation is

sustained at the protein level (Appendix Table S1).

We next considered the 929 non-bidirectional gene pairs with up

to 50 kb between their TSSs, regardless of their orientation (Dataset

EV2). Although these pairs do not share a promoter region, we find

that 22% have co-regulated mRNA abundances (PCC > 0.5, BH-

adjusted P < 0.001). However, only 3% are also co-regulated at the

protein level (Fig 1B).

Genes with similar functions have co-regulated mRNA and
protein abundances

To confirm that the different impact of gene proximity on mRNA

and protein abundances reflects a biological phenomenon, rather

than simply a difference in data quality, we assessed the co-regula-

tion of genes with known functional links, irrespective of their

genomic position. We analysed subunits of the same protein

complex, enzymes catalysing consecutive reactions in metabolic

pathways and proteins with identical subcellular localisations. In all

cases, we observe strong co-regulation on mRNA and protein levels,

but co-regulation of proteins is significantly stronger than that of

mRNAs (Fig EV1, P < 3 × 10!16). Therefore, data quality appears

not to be limiting. Instead, the observed differences between mRNA

and protein co-regulation indicate that post-transcriptional processes

eliminate co-regulation of genes which are related spatially, but not

functionally.

A fraction of closeby genes is enriched for similar functions

Our observation that only 3% of closeby genes have co-regulated

protein abundances appears to contrast with the fact that genes in

close genomic proximity are enriched for similar functions

(Thévenin et al, 2014). However, functional enrichment does not

exclude the possibility that the bulk of closeby gene pairs does not

share similar functions. For example, we find that co-regulation of

transcripts and proteins from closeby genes is more common than

for random protein pairs (Fig 1B), and this enrichment is highly

significant (3% versus 0.4%, P < 4 × 10!14).

To analyse the relationship between gene distance and func-

tion more systematically, we assessed functional associations

between our gene pairs using the STRING database (Szklarczyk

et al, 2017). We considered gene pairs to be functionally associ-

ated if their STRING score, that is the likelihood of the associa-

tion to be biologically meaningful, specific and reproducible, was

> 0.7. Using this comprehensive definition, we find that 4.5% of

closeby gene pairs, that is those with < 50 kb between their TSSs,

are related functionally (Fig EV2A). As observed by Thévenin

et al, we find this to be a significant enrichment over gene pairs

that are farther apart. Likewise, gene pairs from the same chro-

mosome are enriched for similar functions relative to those from

different chromosomes. Nevertheless, the extent of mRNA co-

regulation (22%) strongly exceeds co-function, and mRNA co-

regulation of most closeby gene pairs is not sustained at the

protein level (Fig EV2A).

Notably, a similar analysis in yeast has shown that adjacent

genes tend to have correlated mRNA expression and are statistically

enriched for similar functions (Cohen et al, 2000). However, in

striking agreement with our observations, only about 2% of these

coexpressed neighbouring gene pairs have related functions (Batada

et al, 2007) and only for these is gene order evolutionarily

conserved (Hurst et al, 2002). Coexpression of neighbouring genes

has also been observed in Arabidopsis thaliana, but only a fraction
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of the observed cases could be explained through a shared function

(Williams & Bowles, 2004).

Long-range gene co-regulation leads to coordinated mRNA but
not protein expression

The influence of gene distance on co-regulation of transcripts is not

limited to genes in close proximity. As seen in the example of chro-

mosome 11, mRNA co-regulation extends over many megabases but

does not affect protein abundances (Fig 1C). Although co-regulation

generally declines with increasing gene distance, such long-range

effects are unlikely to result from transcriptional interference in cis.

A major co-regulation peak of genes that are more than 50 Mb apart

on chromosome 11 suggests that long-range chromosome folding

may be involved. In agreement with this, all chromosomes have

distinct co-regulation curves (Appendix Fig S2).

The co-regulation map of chromosome 11 shows large patches of

genes whose transcripts are coordinately up- and downregulated

(Fig 1D). Importantly, no corresponding co-regulation is observed

on the protein level (Fig 1E). However, the mRNA co-regulation

map shows a striking similarity to physical associations observed

for our gene set, as extracted from existing Hi-C data (Rao et al,

2014; Fig 1F). The Hi-C contact matrix of chromosome 11 is corre-

lated with the mRNA co-regulation map (PCC 0.21, P < 2 × 10!318),

but not the protein map (PCC 0.00, P = 0.4). Similar mRNA

co-regulation patches can be observed on other chromosomes

(Fig EV3) as well as between different chromosomes (Fig EV4).

Generally, both intra- and interchromosomal co-regulation patches

A B C

D E F

G

Figure 1. Spatial proximity of genes affects mRNA but not protein regulation.

A We analysed previously reported mRNA and protein abundances in 59 lymphoblastoid cell lines (LCLs), relative to a reference sample.
B Genes transcribed from bidirectional promoters frequently have co-regulated mRNA abundances, but only a fraction of these also have co-regulated protein

abundances (left). The same is true for non-bidirectional gene pairs whose transcription start sites (TSS) are < 50 kb apart, irrespective of their orientation (right)
(*P < 0.05, **P < 2 × 10!7, ***P < 4 × 10!14 based on Fisher’s exact test).

C mRNA co-regulation of gene pairs on chromosome 11 decreases with chromosomal distance over many megabases, but not monotonously. Protein co-regulation is
unaffected by genomic distance.

D mRNA co-regulation map for chromosome 11 showing large patches of co-regulated (brown) and anti-regulated (blue) gene pairs. Four large, co-regulated patches
are highlighted (i–iv).

E No regulation patches exist on the protein level.
F mRNA co-regulation patches partially coincide with physical associations between genes derived from Hi-C data (Rao et al, 2014). Numbers in grey box show the

Pearson correlation between the Hi-C map and mRNA (blue) or protein (red) co-regulation maps.
G Patches i, iii and ii, iv broadly coincide with genome subcompartments A1 and A2, respectively.

ª 2017 The Authors Molecular Systems Biology 13: 937 | 2017

Georg Kustatscher et al Co-regulation of closeby genes Molecular Systems Biology

3

Published online: August 23, 2017 



correspond to areas with increased Hi-C contacts (Appendix Table S2).

Some chromosomes have more prominent patches than others

(Fig EV3). Chromosome 19, which is short but exceptionally

gene-dense, is unique in forming a single large co-regulation patch

(Fig EV3C). Importantly, none of these mRNA co-regulation patches

are reflected at the protein level (Figs EV3 and EV4, Appendix Fig

S2). This suggests that regulatory interference between genes that

are close in 3D could be associated with similar non-functional

mRNA co-regulation as observed for neighbouring genes in the

genome sequence.

We next sought to determine which structural features of the

genome give rise to mRNA co-regulation patches. Four large mRNA

co-regulation patches can be observed on chromosome 11 (labelled

i–iv in Fig 1D). Co-regulation patches differ widely in size but often

span many megabases, likely reflecting broad architectural features.

Notably, promoters and enhancers typically interact on a smaller

scale, within topologically associated domains (Gibcus & Dekker,

2013). However, co-regulated groups of genes are more reminiscent

of genome compartments. Genome compartments were first identi-

fied on the basis of long-range interactions mapped by Hi-C, which

showed that open and closed chromatin spatially segregate into two

genome-wide compartments (Lieberman-Aiden et al, 2009). The

compartments containing active and repressive chromatin were

designated A and B, respectively. A high-resolution Hi-C map of the

genome in LCLs subsequently identified that these compartments

segregate further into six subcompartments: A1-2 and B1-4 (Rao

et al, 2014). Genomic loci within each subcompartment tend to be

associated with each other more often than with loci from other

subcompartments, that is they are in closer spatial proximity. We

find that co-regulation patches i and iii of chromosome 11 align with

subcompartment A1 and patches ii and iv align with subcompart-

ment A2 (Fig 1G). These are the two subcompartments of the

genome formed by transcriptionally active chromatin, which is

expected given that we analyse housekeeping genes. Interestingly,

genes across patches i and iii are co-regulated, as are genes across

patches ii and iv, suggesting that co-localisation in subcompart-

ments may contribute to the existence of these patches.

Genes with co-regulated mRNAs co-localise in genome
subcompartments

To assess systematically the overlap of co-regulated gene groups

with genome compartments, we clustered genes by co-regulation.

We found four transcriptome regulation groups T1-4 (Fig 2A and

Dataset EV3), explaining more than 50% of the total variance

(Appendix Fig S3). Transcripts within each group are co-regulated

(Fig 2A and B). Genes from T1 and T2 are strongly enriched for

subcompartments A2 and A1, respectively (Fig 2C). Curiously, they

are anti-correlated, that is when T1 genes are upregulated, T2 genes

tend to be downregulated, and vice versa (Fig 2B). Co-regulated

genes of the T3 and T4 groups are also enriched for A1 and A2

subcompartments, respectively. However, they are independent of

T1 and T2, that is there is neither a positive nor a negative correla-

tion between T1/T2 and T3/T4 (Fig 2B). Therefore, while subcom-

partments A1 and A2 are strongly related to transcriptome

regulation groups, they are not sufficient to explain them.

Genome compartments and subcompartments were defined

solely based on their physical interaction patterns, but also have

A

B

C

D

E

Figure 2. Transcriptome and proteome regulation are driven by
different factors.

A k-means clustering of genes based on their mRNA or protein abundance
changes across LCLs.

B Median Pearson’s correlation coefficients (PCCs) for each transcriptome and
proteome k-means cluster. Genes assigned to different k-means clusters
can either be anti-regulated (e.g. T1 and T2) or not correlated (e.g. T1 and
T3). k-means clusters formed by genes that are co-regulated at the mRNA
level are not generally co-regulated at the protein level, and vice versa.

C Transcriptome clusters are strongly enriched for subcompartment A1 or A2.
Dashed lines indicate the percentage of genes expected if
subcompartments were evenly distributed across clusters.

D Proteome clusters are mainly composed of proteins from distinct
subcellular locations. Dashed lines indicate the percentage of genes
expected if subcellular locations were evenly distributed across clusters.

E Genomic and epigenomic features enriched in each cluster relative to the
whole dataset.
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different genomic and epigenomic characteristics. A1 and A2

subcompartments are both enriched for features associated with

transcriptionally active chromatin, but to different extents (Rao

et al, 2014). Interestingly, we also found clear differences in

histone modifications and DNA methylation associated with tran-

scriptome regulation groups (Fig 2E). For example, in comparison

with T2, T1 gene bodies are enriched for H3K9me3, depleted in

activating marks such as H3K4me3 and H3K27ac, are longer,

replicate later and have a lower GC content. These differences

mirror those observed between A2 and A1 subcompartments (Rao

et al, 2014). In contrast, T3 and T4 do not show these features

despite preferentially localising to A1 and A2 subcompartments.

Instead, T3 genes display heavy CpG methylation, which is almost

an order of magnitude stronger than for T4 genes. Consequently,

T3 and T4 define their own epigenetic subpopulation within

A-type compartments.

Genes with co-regulated protein abundances are related
functionally, not spatially

Clustering analysis of protein expression profiles led to three

proteome regulation groups P1-3 (Fig 2A and Dataset EV3), explain-

ing more than 50% of the total variance (Appendix Fig S3). Neither

genome compartments nor epigenomic signatures appear to be asso-

ciated with proteome regulation groups (Fig 2C and E). In contrast,

proteome regulation groups broadly correspond to subcellular loca-

tions: nucleus (P1), mitochondria, ER and Golgi (P2) and cytoplasm

(P3) (Fig 2D). They are also enriched for biological processes taking

place in these subcellular locations (Appendix Fig S4). In contrast,

T1-4 only weakly coincide with subcellular locations or biological

processes.

Intriguingly, T1-4 and P1-3 are independent of each other, that is

genes that are clustered based on their transcript expression signa-

ture are generally not co-regulated on the protein level, and vice

versa (Fig 2B). This suggests that much of the mRNA coexpression

of genes from the same subcompartment may be non-functional.

Note that as for sequence proximity (see above), this appears to

contrast with a previous report that genes which are close in 3D

nuclear space often have similar functions (Thévenin et al, 2014).

However, we also find significant enrichment of functional associa-

tions between genes from the same subcompartment (Fig EV2B).

Nevertheless, in quantitative terms, the extent of mRNA co-regula-

tion strongly exceeds co-function as well as protein co-regulation.

For example, while 11% of gene pairs in the same (intrachromoso-

mal) subcompartment have co-regulated mRNAs, < 1% have similar

functions according to STRING and are co-regulated at the protein

level (Fig EV2B).

Gene clustering within but not between chromosomes associates
with reduced expression noise

In yeast, clustering of genes in the genome sequence is associated

with reduced expression noise (Batada & Hurst, 2007; Wang et al,

2011). However, the situation is more complex when considering

the 3D structure of the genome. Highly transcribed gene clusters

tend to form fewer contacts with other chromosomes, and genomic

loci with more interchromosomal contacts tend to have higher

expression noise (McCullagh et al, 2010; Sandhu, 2012).

We tested whether gene clustering has a similar effect in human

cells. For each gene in our dataset, we calculated a clustering

degree, defined as the average distance to its three nearest neigh-

bouring genes along the DNA sequence. We then compared the

expression noise of the 5% most and least clustered genes, respec-

tively. As observed in yeast, we find that gene expression noise in

LCLs is significantly reduced for genes in gene-dense areas (Fig 3A).

The noise-reducing effect is much more significant on the mRNA

than the protein level.

In a second step, we investigated whether gene clustering in

nuclear space has a similar noise-reducing effect. In principle, gene-

dense regions may interact with each other in 3D to benefit from

further noise reduction by forming “super-clusters”. The three

human histone gene clusters on chromosome 6, for example,

converge in 3D to form such a super-cluster (Sandhu et al, 2012).

Therefore, we calculated a second clustering degree for each gene,

defined as the average distance to its three nearest neighbours in

3D, using Hi-C contacts. To capture long-range interactions resulting

from chromosome folding, we only considered neighbouring genes

that were on the same chromosome, but at least 500 kb up- or

downstream in terms of DNA sequence. There is a positive correla-

tion between the clustering degree in 1D and 3D (PCC 0.32,

P < 6 × 10!97), suggesting that genes clustered along the sequence

are also more densely packed in the 3D structure of a chromosome.

Moreover, this gene clustering due to chromosome folding is also

associated with a significant reduction of gene expression noise,

albeit not as strongly as sequence-based clusters (Fig 3A).

Next, we investigated clusters that genes from different chromo-

somes may form in nuclear space, calculating a third clustering

degree based on interchromosomal Hi-C contacts. As shown in yeast

(McCullagh et al, 2010; Sandhu, 2012), we find a negative correla-

tion between sequence-based and interchromosomal clustering

(PCC !0.1, P < 5 × 10!11). This suggests that gene-dense regions,

while forming long-range, noise-reducing interactions within the

same chromosome, are less likely to interact with gene clusters on a

different chromosome. Moreover, genes forming interchromosomal

clusters are associated with higher expression noise than those with

fewer interactions (Fig 3A). This difference is not statistically signifi-

cant but is in agreement with earlier findings in yeast (McCullagh

et al, 2010; Sandhu, 2012).

Coexpression of closeby genes is driven by stochastic epigenetic
fluctuations and regulatory interference

How can gene proximity lead to mRNA coexpression? Many inci-

dents of coexpressed genes that are close in sequence have been

linked to stochastic alternation between an active and inactive chro-

matin state (Batada et al, 2007). Such chromatin fluctuations can

lead to coordinated transcriptional bursts of all genes within a chro-

matin domain (Raj et al, 2006). We first compared the chromatin

environment of genes that are co-regulated with their sequence

neighbours with genes that show no such co-regulation (“neigh-

bours” being defined as genes whose TSSs are < 50 kb away). We

find that genes which are coexpressed with their neighbours are

more often flanked by heterochromatin, upstream of their transcrip-

tion start site (Fig 3B). This is consistent with mRNA coexpression

driven by stochastic spreading of the adjacent heterochromatin

domain into the active locus, silencing all genes therein. This is
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reminiscent of subtelomeric regions in yeast, which are hot spots for

expression noise (Batada & Hurst, 2007) due to transient spreading

of telomeric heterochromatin (Anderson et al, 2014).

Notably, chromatin fluctuations may lead to mRNA coexpression

that is not restricted to genes in close spatial proximity. Chromatin

factors play a key role in creating gene expression noise (Newman

A B C D

E F G

H I J

Figure 3. mRNA coexpression of neighbouring genes is driven by chromatin fluctuations and regulatory interference.

A Intrachromosomal gene clustering reduces gene expression noise. We determined the expression noise (coefficient of variation, CV) of the most and least densely
clustered genes, considering three different types of clustering: in terms of sequence proximity (seq), using long-range Hi-C contacts (> 500 kb) within the same
chromosome (intra) and using interchromosomal Hi-C contacts (inter). Expression noise is reduced for clustered genes, except for genes forming more
interchromosomal contacts (*P < 0.01, **P < 0.002, ***P < 5 × 10!6 based on Kolmogorov–Smirnov test). Boxplot drawn in the style of Tukey, that is box limits
indicate the first and third quartiles, central lines the median, whiskers extend 1.5 times the interquartile range from the box limits. Notches indicate the 95%
confidence interval for comparing medians.

B The upstream region of genes that are co-regulated with their neighbours, that is other genes within 50 kb, is more likely to be occupied by heterochromatin than
that of genes showing no such co-regulation. Heterochromatin regions in LCLs have been reported previously (Ernst et al, 2011).

C Epigenetic similarity calculated on the basis of histone marks and CpG methylation is a strong general predictor of mRNA co-regulation. Curves are fitted to all
intrachromosomal gene pairs irrespective of their genomic distance.

D Two randomly picked gene pairs exemplifying low and high epigenetic similarity, respectively. Each column represents a gene and each row an epigenetic feature.
Colours show the standardised, average abundance of each mark across the gene body.

E mRNA co-regulation requires epigenetic similarity or spatial proximity, but not both. Intrachromosomal gene pairs were binned by epigenetic similarity and spatial
proximity (Hi-C contacts), and the percentage of co-regulated mRNAs is shown in colour. Note bins 2 and 4 are both enriched for co-regulated mRNAs despite
containing gene pairs that are spatially distant and epigenetically different, respectively.

F Description of bins highlighted in panel (E).
G Gene pairs binned as in (E) but colour showing percentage of co-regulated proteins. Protein co-regulation does not depend on epigenetic similarity or spatial

proximity.
H On average, gene pairs in bins 1 and 4 have many more Hi-C contacts than those in bins 2 and 3, that is they are spatially closer. Dashed line shows average Hi-C

contacts between genes in the dataset.
I On average, gene pairs in bins 1 and 2 are epigenetically much more similar than those in bins 3 and 4. Dashed line shows average epigenetic similarity between

genes in the dataset.
J Heterochromatin profile for genes in bins 1–4.
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et al, 2006). Fluctuating expression levels of, for example, a

histone-modifying enzyme may simultaneously affect all its target

chromatin domains in the genome. To test for such a global chro-

matin-mediated co-regulation effect, we determined the epigenetic

similarity between all genes in our dataset. We defined “epigenetic

similarity” based on the abundance of various histone marks within

gene bodies. We used the Mahalanobis distance to measure similar-

ity, as this takes into account that some histone marks are strongly

co-dependent, for example H3K9ac and H3K4me3. Genes with simi-

lar epigenetic profiles are targeted by a similar set of chromatin-

modifying factors, and are therefore expected to respond similarly

to stochastic fluctuations of these factors. Indeed, we find that the

epigenetic similarity is a strong predictor of non-functional mRNA

co-regulation (Fig 3C and D).

This chromatin fluctuation scenario is a passive mechanism

where genes simply respond to changes in their chromatin domain.

However, on a local scale, transcriptional changes of one gene may

directly affect the transcription of its neighbours, if chromatin

remodelling or transcription factors spill over to adjacent genomic

regions (Ebisuya et al, 2008; Wang et al, 2011). This “regulatory

interference” model crucially depends on spatial proximity, but

does not require co-regulated genes to be part of the same chro-

matin domain. To compare the impact of chromatin and gene

distance on non-functional mRNA coexpression, we grouped gene

pairs based on epigenetic similarity as well as based on Hi-C contact

frequency. We then observed which groups contain co-regulated

mRNAs (Fig 3E). This shows that gene pairs which are far apart

both spatially and epigenetically are rarely co-regulated (bin 3 in

Fig 3E and F). Gene pairs with similar histone marks tend to be

co-regulated, even if they are spatially distant (Fig 3E and H).

Co-regulation of such genes is consistent with the passive

chromatin fluctuation model, but not the transcriptional inter-

ference model. Importantly, spatially close gene pairs can be

co-regulated even if their histone marks show no similarity (bin 4

in Fig 3E and I). This type of coexpression is not consistent with

the passive chromatin fluctuation model, since the epigenetic dif-

ferences between the gene pairs suggest that, in steady state, they

occupy distinct chromatin domains. These genes are also the least

likely to be flanked by heterochromatin (Fig 3J). However, the

behaviour of gene pairs in bin 4 is consistent with the regulatory

interference model, where fluctuations in one gene affect the chro-

matin and transcriptional state of its neighbours, in sequence and

3D. Note that this effect is buffered at the protein level (Fig 3G),

which is in agreement with this type of coexpression being not

functional.

Buffering of non-functional mRNA coexpression tends to be a
non-selective process

Finally, we asked which post-transcriptional mechanisms might

buffer the coexpression of genes that are spatially close, but func-

tionally unrelated. In principle, this could be a selective process that

specifically targets closeby genes and disentangles their expression

patterns. Alternatively, buffering could be a neutral process, where

the lack of coordination between post-transcriptional mechanisms

prevents the mRNA coexpression to be propagated to the protein

level. In this case, a selective process would need to exist to ensure

that functionally related genes do in fact have co-regulated protein

abundances. To distinguish between these two possibilities, we

analysed five measures of post-transcriptional gene expression

control (Fig 4).

First, we tested whether gene pairs with sustained protein co-

regulation are more likely to have similar mRNA half-lives in LCLs

(Duan et al, 2013), relative to co-regulated gene pairs with buffered

protein abundances. Indeed, we find this to be the case, even

though the difference is modest (Fig 4A). Next, we analysed which

co-regulated gene pairs are more likely to be targeted by the same

miRNA (Helwak et al, 2013). Again, gene pairs that are also co-

regulated on the protein level are enriched for pairs sharing at least

one miRNA. Third, as an indication for translation-related effects,

we took into account ribosome profiling data for the LCL cell line

panel (Battle et al, 2015), which reflect both the abundance of

mRNAs and the extent to which they are occupied by ribosomes

(Ingolia, 2014). Gene pairs with coexpressed proteins are almost

three times as likely to have correlated ribosome profiles than pairs

which only have co-regulated mRNA abundances. Then, we looked

at the impact of protein degradation, by considering the occurrence

of non-exponentially degraded proteins (NEDs) (McShane et al,

2016). These are proteins that are rapidly degraded after synthesis,

for example because they are protein complex subunits produced

in super-stoichiometric amounts. Again, we find that NEDs are

enriched among gene pairs with co-regulated proteins rather than

those with buffered protein levels. Finally, we show that the

protein sequence length, which strongly correlates with the extent

of post-transcriptional control (Vogel et al, 2010), is more similar

for co-regulated than buffered proteins. Proximity in the genome

seemed to have no impact on the similarity of gene pairs in any of

the five measures of post-transcriptional gene expression control

investigated here (Fig 4B). Taken together, these results suggest

that buffering of co-regulated closeby genes may occur via a

neutral mechanism, with buffered gene pairs consistently lacking

the extent of shared post-transcriptional processing observed for

functionally related gene pairs. If mRNA coexpression is func-

tionally relevant, multiple layers of post-transcriptional control

appear to work together to ensure that this is propagated to the

protein level.

Discussion

Genes are not randomly distributed across the sequence and struc-

ture of the genome, forming clusters that tend to be coexpressed but

do not generally have a shared function. Gene expression noise is

detrimental to cell fitness, especially for housekeeping genes (Fraser

et al, 2004). Clusters of actively transcribed genes have low expres-

sion noise, which may drive the evolution of non-random gene

order (Batada & Hurst, 2007). The coexpression of functionally

unrelated neighbouring genes may then be a side effect of the selec-

tion for noise reduction. However, such coexpression is not neces-

sarily deleterious. As we show here, non-functional co-regulation is

frequently observed at the mRNA level, but is largely buffered at the

protein level. Consequently, non-functional coexpression is unlikely

to offset the benefit of noise reduction.

The expression profiles of genes in a cluster co-evolve, such that

the evolutionary change in expression of one gene on average

predicts changes in its neighbours (Ghanbarian & Hurst, 2015).
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Nevertheless, it is still unclear whether expression clusters are the

result of natural selection. In yeast, only the most highly coex-

pressed neighbours are conserved as a pair, but these also tend to

be functionally related (Hurst et al, 2002). Neighbouring gene pairs

that separate tend to show interchromosomal co-localisation (Dai

et al, 2014). In Drosophila, highly coexpressed neighbouring gene

pairs are less likely to be conserved than expected (Weber & Hurst,

2011). In mammals, although some coexpression clusters are evolu-

tionarily maintained (Sémon & Duret, 2006), natural selection

generally tends to separate gene pairs that show a strong position-

related coexpression effect (Liao & Zhang, 2008) or that involve

tissue-specific expression (Lercher et al, 2002). This indicates that

non-functional coexpression can affect cell fitness under some

circumstances, possibly if it becomes so strong that it persists

through the uncoordinated post-transcriptional processes.

The existence of coexpression clusters may also reflect the way

new genes originate. For example, highly transcribed chromatin

regions are more susceptible to retroposition (Hurst et al, 2004).

Recently, it has been proposed that the large number of human gene

pairs in head-to-head orientation may arise from divergent tran-

scription of single genes, when initially noncoding, antisense tran-

scripts evolve into new protein-coding genes (Wu & Sharp, 2013). In

both of these cases, new genes would have no sequence homology

with their neighbours, and would therefore be unlikely to share

their function. However, some of the most well-known coexpression

clusters, such as histone gene clusters, arose by gene duplication.

Gene duplicates could potentially explain why some gene clusters

are functionally related. There are 30 gene pairs in our dataset that

are located within 50 kb from each other and are coexpressed on

both the mRNA and the protein level. Of these, 10 (33%) are classi-

fied as paralogues by Ensembl, a strong enrichment considering that

paralogues account for only 1.5% of these closeby gene pairs over-

all. However, 20 (66%) of the clustered gene pairs with co-regulated

protein abundances show no evidence for paralogy, suggesting that

functionally relevant clusters need not necessarily arise by gene

duplication.

Our analysis focussed on housekeeping genes, because compara-

ble data for tissue- or condition-specific genes were not available.

Housekeeping genes constitute about half of all human genes (Uhlén

et al, 2015). They have a higher tendency to cluster than other

genes (Lercher et al, 2002), presumably because they are more

sensitive to gene expression noise (Fraser et al, 2004). Interestingly,

post-transcriptional expression control is particularly important for

housekeeping genes (Gandhi et al, 2011; Jovanovic et al, 2015).

Notably, transcriptional activation of induced genes can also lead to

co-activation of functionally unrelated neighbouring genes (Spitz

et al, 2003; Ebisuya et al, 2008). However, it remains to be seen if

such co-activation is also buffered at the protein level.

A

B

Figure 4. Buffering of non-functional mRNA co-regulation likely is a passive process.

A Percentage of gene pairs with coordinated post-transcriptional regulation, irrespective of genomic distance. Gene pairs with sustained protein co-regulation
consistently stand out as more likely to share similar aspects of post-transcriptional control. Genes were considered to have a similar mRNA half-life if the half-life
ratio between the more and less stable gene was < 1.5. For miRNAs, all gene pairs targeted by at least one shared miRNA were considered. Gene pairs were said to
have correlated ribosome profiles if their ribosome occupancy correlated with PCC > 0.5 (BH adj. P < 0.001) across LCLs. For the non-exponentially degraded proteins
(NEDs) barchart, gene pairs containing at least one NED were counted. Coding length was considered similar if the longer protein was < 1.5-fold longer than the
shorter protein. Numbers of gene pairs are shown inside the bars. Statistical significance was calculated using Fisher’s exact test (*P < 0.01, **P < 1 × 10!6,
***P < 3 × 10!27).

B No striking relationship between gene distance and the extent to which gene pairs show similar post-transcriptional regulation. Note that the small increase of
similar ribosome occupancy towards closeby genes may be explained by the fact that ribosome profiles partially reflect mRNA abundance.
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In conclusion, non-functional mRNA coexpression, due to chro-

matin fluctuations and regulatory interference, is far more common

than previously thought. Generally, this does not hamper cell fitness

as post-transcriptional regulatory mechanisms enforce functional

coexpression while dampening non-functional coexpression. Our

observations suggest that evolution of human genome organisation

is driven by noise reduction, which is a hypothesis initially made in

yeast (Batada & Hurst, 2007). The large presence of non-functional

coexpression of genes at the transcript but not protein level has

implications for the fields of transcriptomics and proteomics when

screening for functional links between genes.

Materials and Methods

mRNA abundances in human lymphoblastoid cell lines

RNA-sequencing data for human lymphoblastoid cell lines (LCLs)

have been reported (Pickrell et al, 2010). Counts per mapped reads

were downloaded from http://eqtl.uchicago.edu and converted to

log2 “reads per kilobase transcript per million mapped reads”

(RPKMs). Genes expressed in < 30 LCLs were removed. In order to

make mRNA measurements comparable to proteomics data, expres-

sion levels needed to be analysed relative to the same reference

LCL. To do so, log2 RPKMs values from the reference cell line

GM19238 were subtracted from all other LCLs.

Protein abundances in human lymphoblastoid cell lines

Protein abundances in LCLs have also been reported (Battle et al,

2015). They have been measured by mass spectrometry and quanti-

fied relative to the reference cell line GM19238, using stable isotope

labelling by amino acids in cell culture (SILAC) (Ong et al, 2002).

Mass spectrometry raw files were downloaded from the PRIDE

repository (Vizcaı́no et al, 2016) (project identifier PXD001406) and

re-processed using MaxQuant 1.5.2.8 (Cox & Mann, 2008). Raw files

tagged as “run2” were omitted. Mass spectra were searched against

human Swiss-Prot sequences downloaded from Uniprot (UniProt

Consortium, 2015). To facilitate combining mRNA and protein data-

sets, no protein isoforms were considered. We used non-normalised

SILAC ratios obtained by MaxQuant with at least two ratio counts.

Because the internal standard had been used as heavy SILAC sample,

heavy/light (H/L) SILAC ratios were inverted to obtain L/H ratios

(i.e. test LCLs / reference LCL). Proteins that could not be unambigu-

ously mapped to a single gene were removed, as were proteins

detected in 30 LCLs or less. SILAC ratios were also log2-transformed.

Combining mRNA and protein expression data

To combine mRNA and protein data, ENSEMBL gene IDs from RNA

sequencing were mapped to Uniprot IDs using Uniprot’s webtool

(UniProt Consortium, 2015). Genes with ambiguous mappings were

removed. We also only considered LCLs for which both mRNA and

protein data were available. The resulting file contains mRNA and

protein abundances for 4,188 human genes in 59 LCLs, relative to

the GM19238 reference sample (Dataset EV1). It contains 0.1 and

6.7% missing values for mRNA and protein measurements,

respectively.

Defining positions of genes in the genome

Genomic coordinates of human genes (dataset version GRCh38.p5)

were downloaded from ENSEMBL (Yates et al, 2016). As we are

considering genes but not specific transcript or protein isoforms,

transcription start sites (TSSs) were defined as the start site of the

outermost transcript of a gene.

Testing gene pairs for co-regulation

Coordinated up- and downregulation of gene expression was

measured using Pearson’s correlation coefficient (PCC). The gene

expression datasets for LCLs (Dataset EV1) were used as input. The

median log2 fold change of each LCL was set to zero, in order to

prevent correlations reflecting irrelevant data features such as

uneven mixing of light and heavy SILAC samples. Gene pairs

were considered to be co-regulated at PCC > 0.5, but only if the

correlation was significant (Benjamini and Hochberg-adjusted

P-values < 0.001).

Characterisation of genes as housekeeping genes

To demonstrate that the 4,188 genes in the LCL dataset belong to

the constitutively expressed core proteome, we performed a number

of tests:

Chromatin states of gene promoters
Chromatin states of the genome of the GM12878 lymphoblastoid

cell line were determined previously (Ernst et al, 2011). They

were downloaded as hg19 genome coordinates from the USCS

genome browser (Rosenbloom et al, 2015) and converted to

GRCh38 coordinates using the liftOver command line tool (avail-

able at https://genome-store.ucsc.edu/). Genomic regions with

conflicting chromatin state annotations, resulting from the genome

coordinates update, were removed. For each gene in our dataset,

the chromatin state mapping to its transcription start site was

determined.

GO term enrichment
A statistical overrepresentation test was performed using the

PANTHER classification system (Mi et al, 2016) according to the

reported protocol (Mi et al, 2013). Overrepresentation of Gene

Ontology Biological Process (slim) terms was assessed for our 4,188

genes compared to the entire human genome. Only significantly

enriched terms (more than twofold; P < 0.05 after Bonferroni

correction) were considered.

mRNA tissue expression data
mRNA expression levels in different human tissues have been

assessed using RNA sequencing (Uhlén et al, 2015). Transcripts

detected with FPKM ≥ 1 were considered to be expressed.

Protein tissue expression data
Protein expression levels in different human tissues have been

assessed using mass spectrometry (Wilhelm et al, 2014) (available

at www.proteomicsdb.org). To avoid bias due to the incomplete

nature of current proteome maps, only tissues with expression

values for more than 6,000 proteins were considered.
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Defining pairs of genes with related functions (focussed
on accuracy)

To test whether genes with related functions are co-regulated across

LCLs, we defined three sets of functionally linked gene pairs. Func-

tional associations in these test sets are as accurate—not as compre-

hensive—as possible.

Gene pairs from same protein complexes
Human protein–protein interaction pairs based on Reactome path-

ways (Fabregat et al, 2016) were downloaded from www.reactome.

org (homo_sapiens.interactions.txt file; March 2016). They were fil-

tered for physical interactions of the “direct_complex” category.

Gene pairs belonging to more than one complex and homodimeric

interactions were removed.

Gene pairs encoding enzymes from consecutive metabolic reactions
As for protein complexes, human protein–protein interaction pairs

based on Reactome pathways (Fabregat et al, 2016) were down-

loaded from www.reactome.org (homo_sapiens.interactions.txt file;

March 2016). They were filtered for interactions of the “neighbour-

ing_reactions” category. These are interactions where one gene/

protein produces the input or catalyst for the second reaction. Any

gene pairs known to interact also physically, that is belonging to

the “direct_complex” or “indirect_complex” categories, were

removed. In addition, gene pairs were filtered for those involved

in metabolic pathways, as opposed to, for example, the cell cycle

pathway which would contain irrelevant reactions such as “Mis18

complex binds the centromere”. To do so, we first inferred all

pathways mapping to the metabolism root pathway, using the

pathway hierarchy relationship file (ReactomePathwaysRela-

tion.txt, available on www.reactome.org). Enzymatic reactions

belonging to each metabolic pathway were then identified using

another interaction file available from Reactome (homo_sapi-

ens.mitab.interactions.txt). Finally, to avoid “trivial” consecutive

reactions such as those involving ubiquitous metabolites like

NAD+, we removed metabolic reactions with more than ten neigh-

bouring reactions.

Gene pairs from identical subcellular locations
Subcellular localisations of human proteins were downloaded from

Uniprot (UniProt Consortium, 2015). Proteins localising to more

than one subcellular location were removed. To avoid trivial locali-

sations such as “cytoplasm”, only subcellular compartments with

200 or less known protein components were considered.

Defining pairs of genes with related functions (focussed
on completeness)

To estimate an upper limit for how many coexpressed neighbouring

genes may be functionally related, we defined a separate test set

based on the STRING database (Szklarczyk et al, 2017). Functional

associations in this test set are as comprehensive as possible.

Protein network data for Homo sapiens were downloaded from

http://string-db.org. We considered all functional associations with

a combined STRING score > 0.7. This score integrates various types

of evidence and indicates the likelihood of the association to be

biologically meaningful, specific and reproducible.

Testing functionally related gene pairs for co-regulation

Correlation coefficients were obtained for every gene pair in our

three test sets (protein complexes, consecutive metabolic reactions,

subcellular locations) and their distribution was displayed in histo-

grams. As a control, gene pairs were randomly shuffled to break the

link between the pairs. For example, gene pairs encoding subunits

of the same protein complexes were shuffled such that the same

genes were paired randomly, in which case most gene pairs encode

subunits of different protein complexes. The Kolmogorov–Smirnov

test was used to assess whether PCC distributions of relevant gene

pairs were significantly different from those obtained with rando-

mised pairs.

Chromosome co-regulation mapping

PCCs were calculated for all relevant gene combinations, as

described for histograms above. For chromosome co-regulation

curves, PCCs were plotted against the genomic distance between

transcription start sites, with curves fitted by a generalised additive

model. For chromosome co-regulation maps, genes were plotted in

their chromosomal order and PCCs between all gene combinations

were represented by a colour scale.

Hi-C interactions for our gene set

Hi-C contact matrices for a lymphoblastoid cell line (Rao et al,

2014) were downloaded from NCBI GEO database (accession

GSE63525). An unpublished script from Liz Ing-Simmons (available

at https://github.com/liz-is/readhic) was adapted (available at

https://github.com/Rappsilber-Laboratory/readhic) and then used

to import the Hi-C contact matrices into R, using 10-kb resolution

and “KRnorm” normalisation for intrachromosomal pairs and 50-kb

resolution and “INTERKRnorm” normalisation for interchromoso-

mal pairs. All reads used passed the MAPQ>0 filter. Hi-C data are

based on GRCh37 genome coordinates. GRCh37 transcription start

sites for all genes were obtained using the biomaRt R package

(Durinck et al, 2009), considering only the TSS of the outermost tran-

script of each gene. The GenomicInteractions R package (Harmston

et al, 2015) was used to determine the contact frequency between the

genes in our dataset, considering the median read count of all Hi-C

pixels in a range " 40 kb around the TSS of each gene.

Analysis of genome subcompartments

Nuclear subcompartments A1, A2, B1, B2, B3 and B4 have been

defined previously (Rao et al, 2014). A genome-wide mapping of

subcompartments in a lymphoblastoid cell line is available via the

NCBI GEO database (accession GSE63525). Subcompartment anno-

tations were lifted from hg19/b37 to GRCh38 genome coordinates

using the UCSC genome browser service (Rosenbloom et al, 2015).

k-means clustering of transcript and protein expression changes

k-means clustering was performed using the default algorithm and

settings in R (R Core Team, 2016), with k = 4 (mRNAs) or k = 3

(proteins) and five random start sets. Values of k were chosen such

that the clusters explain at least 50% of the total variance.
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Analysis of cluster features

Subcellular locations
To get a broad understanding of subcellular locations enriched in

k-means clusters, we downloaded all Uniprot entries mapping to the

locations Nucleus (Uniprot subcellular location ID: SL-0191), Endo-

plasmic reticulum (SL-0095), Golgi apparatus (SL-0132), Mitochon-

drion (SL-0173) and Cytoplasm (SL-0086) (UniProt Consortium,

2015). Proteins localising to the Endoplasmic reticulum and/or the

Golgi apparatus were combined as “ER-Golgi”. Proteins mapping to

more than one organelle were removed.

GO term enrichment
A statistical overrepresentation test was performed using the

PANTHER classification system (Mi et al, 2016) according to the

reported protocol (Mi et al, 2013). Overrepresentation of Gene

Ontology Biological Process (complete) terms in each cluster, rela-

tive to other clusters, was assessed. Using PANTHER’s GO hierarchy

annotation, we reported only the most specific GO terms and omit-

ted any co-enriched parent terms for clarity. All reported GO terms

were significantly enriched (P < 0.05 after Bonferroni correction).

Genomic and epigenomic features
Raw signals of ChIP-seq experiments for lymphoblastoid cells

were downloaded from ENCODE (ENCODE Project Consortium,

2012) in hg19 genomic coordinates. ENCODE accessions were

ENCFF000ARW (H2AZ), ENCFF000ARZ (H3K4me1), ENCFF000ATL

(H3K4me2), ENCFF001EXX (H3K4me3), ENCFF000ASJ (H3K27ac),

ENCFF000ATX (H3K79me2), ENCFF000AUF (H3K9ac), ENCFF000

AUL (H3K9me3), ENCFF000AUS (H4K20me1), ENCFF001EXC (H3K

27me3), ENCFF001EXP (H3K36me3), ENCFF001GNK (RepliSeq

G1b), ENCFF001GNN (RepliSeq G2), ENCFF001GNR (RepliSeq S1),

ENCFF001GNT (RepliSeq S2), ENCFF001GNX (RepliSeq S3) and

ENCFF001GOA (RepliSeq S4). These bigWig files were converted to

bedGraph files, lifted over to GRCh38 coordinates, cleared of any

resulting overlaps and converted back to bigWig files using

command line tools from the UCSC genome browser (Rosenbloom

et al, 2015) (tools available at https://genome-store.ucsc.edu/). GC

percentage over 5-bp windows was downloaded from the UCSC

genome browser (Rosenbloom et al, 2015). Average signals over

gene bodies were calculated with the UCSC bigWigAverageOverBed

command line utility, using the coordinates of our genes as bed

files. CpG methylation from reduced representation bisulphite

sequencing of a lymphoblastoid cell line was also available from

ENCODE (ENCODE Project Consortium, 2012) (experiment

ENCSR000DFT; file accession ENCFF001TLQ). After lifting the hg19

bedMethyl file over to GRCh38 genomic coordinates, the mean

percentage of CpG methylation in gene bodies was calculated using

an R script. For each epigenomic or genomic feature, the median

enrichment for genes in each k-means cluster, compared to all genes

in our dataset, was calculated and plotted as log2 ratio in a

heatmap.

Calculation of gene expression noise

Gene expression noise at the mRNA and protein levels was calcu-

lated as the coefficient of variation (CV; standard deviation divided

by the mean) of log2-transformed RPKM and SILAC ratios,

respectively. To avoid dividing by zero (for unchanged genes with a

log2 ratio of zero), a constant value of 10 was added to all mRNA

and protein log2 ratios before calculating the noise.

Calculating the clustering degree

To define local gene density in a manner that can be applied to both

the sequence and the 3D structure of the genome, we determined

the average distance of a gene to its three nearest neighbouring

genes. We calculated three such “clustering degrees” for each gene

in our dataset. For the sequence-based clustering degree, the

distance to neighbouring genes was calculated in base pairs. For

intrachromosomal clustering in 3D, gene distance was calculated

based on Hi-C counts. However, we only considered “nearest”

neighbours which were at least 500 kb away in terms of DNA

sequence, to catch long-range interactions and avoid replicating the

sequence-based clustering degree. For interchromosomal clustering,

we considered the three nearest neighbours on other chromosomes,

based on interchromosomal Hi-C contacts.

Heterochromatin profiles of upstream regions

Chromatin states throughout the LCL genome were previously

described (Ernst et al, 2011). To simplify the analysis, we combined

the five inactive chromatin states defined by Ernst et al (“Hete-

rochromatin”, “Repressed”, “Repetitive”, “Poised Promoter” and

“Insulator”) into one “heterochromatin” state. We then scanned the

promoter region of test genes for the presence of heterochromatin,

moving in 100-bp intervals from !50,000 bp to +10,000 bp relative

to their transcription start site.

Calculating epigenetic similarity

Epigenetic similarity was calculated on the basis of the histone mark

abundance within gene bodies (see section “Analysis of cluster

features” for processing of ChIP-seq data). For this analysis, we

considered H2AFZ, H3K4me1, H3K4me2, H3K4me3, H3K27ac,

H3K79me2, H3K9ac, H3K9me3, H4K20me1, H3K27me3, H3K36me3

and CpG methylation, but not GC content, gene length and replica-

tion timing. For every pair of genes, we then determined how simi-

lar or dissimilar they are regarding the abundance of these

epigenetic features. This was calculated using the Mahalanobis

distance measure, which takes into account that some histone

marks strongly covary.

Analysis of post-transcriptional mechanisms

mRNA half-lives in seven different LCLs were previously reported

(Duan et al, 2013). We first calculated the average half-life of each

mRNA in these LCLs. We considered two mRNAs to have a similar

stability if the half-life of the more stable one was < 1.5-fold longer

than the less stable one. mRNA targets of human miRNAs were also

described previously (Helwak et al, 2013). Ribosome occupancy

profiles for the LCL cell line panel were recently published (Battle

et al, 2015). We considered ribosome profiles for 57 LCLs and 4,033

genes for which we had matching mRNA and protein measure-

ments. We calculated Pearson correlation coefficients (PCCs) for

ribosome profiles between all gene pairs. Two genes were said to
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have correlated ribosome profiles at PCC > 0.5 (BH-adjusted P-

value < 0.001). Proteins subjected to non-exponential degradation

in human RPE-1 cells were also described recently (McShane et al,

2016). Finally, protein sequence lengths were downloaded from

Uniprot (UniProt Consortium, 2015).

Human paralogous genes

Human gene duplicates were downloaded from ENSEMBL (Yates

et al, 2016). We only considered paralogues with at least 25%

sequence identity.

General data processing and plotting

Data processing was performed in R (R Core Team, 2016), unless

indicated otherwise. Plots were created using the ggplot2 package

(Wickham, 2009).

Expanded View for this article is available online.
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Epigenetic Variability Confounds
Transcriptome but Not Proteome Profiling for
Coexpression-based Gene Function
Prediction*□S

Piotr Grabowski‡, Georg Kustatscher§, and Juri Rappsilber‡§¶

Genes are often coexpressed with their genomic neigh-
bors, even if these are functionally unrelated. For small
expression changes driven by genetic variation within the
same cell type, non-functional mRNA coexpression is
not propagated to the protein level. However, it is un-
clear if protein levels are also buffered against any non-
functional mRNA coexpression accompanying large,
regulated changes in the gene expression program, such
as those occurring during cell differentiation. Here, we
address this question by analyzing mRNA and protein
expression changes for housekeeping genes across 20
mouse tissues. We find that a large proportion of mRNA
coexpression is indeed non-functional and does not lead
to coexpressed proteins. Chromosomal proximity of
genes explains a proportion of this nonfunctional mRNA
coexpression. However, the main driver of non-functional
mRNA coexpression across mouse tissues is epigenetic
similarity. Both factors together provide an explanation
for why monitoring protein coexpression outperforms
mRNA coexpression data in gene function prediction.
Furthermore, this suggests that housekeeping genes
translocating during evolution within genomic subcom-
partments might maintain their broad expression
pattern. Molecular & Cellular Proteomics 17: 2082–
2090, 2018. DOI: 10.1074/mcp.RA118.000935.

Genes are not arranged randomly but tend to be clustered
in the genome into coexpressed domains (1). Such clustering
can be a regulatory strategy of both prokaryotic and eukary-
otic genomes. Interestingly, this does not mean that genes
that are coexpressed are necessarily also linked functionally.
There exist gene clusters that tend to be coexpressed, yet
lack evident cofunctionality (1, 2). This is especially visible for
bidirectional gene pairs which are coexpressed because of
shared regulatory context, but commonly seem to lack a
functional relationship (3). This has an impact on gene coex-

pression studies which infer functional associations between
genes based on similar gene activity. Coexpression of spa-
tially close genes can be driven by stochastic transcriptional
bursting (4) or transcriptional interference between neighbor-
ing genes (5). The existence of coexpressed gene clusters
that lack a functional connection is intriguing given that non-
specific gene expression should have a negative impact on
cell fitness. Interestingly, Hurst and colleagues have shown
that clustered genes mutually reinforce their active state and
are less likely to be accidentally silenced, for example by
stochastic fluctuations of chromatin states (6). Therefore,
clustered genes show lower expression noise, a benefit that
may offset the negative impact of their coincidental coexpres-
sion. In agreement with this, we have recently demonstrated
that coexpression of proximal genes, both in terms of se-
quence and 3D genomic proximity, is pervasive in the human
genome. Importantly, however, coexpression of spatially
close, functionally unrelated genes is restricted to their mRNA
abundances and is not propagated to the protein level (7).
This protein-level buffering of non-functional mRNA coex-
pression supports the idea that reduction of expression noise
is a key driver of the evolution of genome organization. Con-
sequently, function prediction is based better on protein co-
expression than mRNA coexpression data (8, 9).

Our previous analysis was based on a panel of human
lymphoblastoid cell lines (LCLs)1 for which the expression
changes had a prominent noise component owing to the little
variability between the cell lines. A related analysis of human
cancer panels also found mRNA—but not protein—coex-
pression to reflect chromosomal gene colocalization (8). How-
ever, it remains to be seen if a similar uncoupling of transcrip-
tome and proteome exists also for strong, regulated and
biologically important expression changes. For example, dif-
ferent cell types have different metabolic needs, morphology,
organelle numbers and sizes. Even for ubiquitously expressed
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housekeeping genes, this can amount to large quantitative
differences in expression levels. Here, we investigate the im-
pact of genome organization and epigenetic states on mRNA
and protein coexpression across different mouse tissues by
integrating multiple published omics data sets. We show that
the observations made on cell lines regarding factors govern-
ing mRNA and protein coexpression also hold in tissues, with
changes in the relative weights of the contributions from
genome position versus epigenetic state. We point at possible
biases in expression profiling for functional genomics that
researchers should consider.

EXPERIMENTAL PROCEDURES

Mouse Tissue mRNA and Protein Expression Data Set Assembly—
SILAC mouse tissue proteomes were downloaded from (10), normal-
ized SILAC H/L ratios for each tissue extracted and log2-transformed.
SILAC kidney values were obtained by averaging expression values
for kidney cortex and medulla.

Transcriptomics profiling data of tissues were obtained from (11–
15) (links in supplemental Table S1). Data downloaded from ENCODE
were in Gencode M4-aligned bam format with the only exception of
the skeletal muscle data which were downloaded in fastq format and
aligned using TopHat v2.0.9 and Gencode M4 annotation. The
TopHat settings were set to default apart from using “bowtie1” pa-
rameter and library type set to “fr-secondstrand.” The bam files were
subsequently processed using Cufflinks 2.2.1 with default settings to
obtain gene expression (fragments per kilobase of exon model per
million mapped reads, FPKM) values. The three tissues downloaded
from GEO were in normalized FPKM or RPKM format. All the mRNA
expression data were transformed into a common transcripts per
million (TPM) unit. To make the RNAseq data set comparable with the
proteomics data, each mRNA expression value was divided by a
median expression value for a given gene in all 20 tissues (analo-
gously to the Super-SILAC approach (16) used in the proteomics data
set). Finally, the normalized TPM ratios were log2-transformed.

The resulting mRNA and protein expression data set contains 3391
genes with expression values in at least 8 tissues on both mRNA and
protein levels. The proteomics data and mRNA data contain 15.5%
and 6.7% missing values, respectively.

The processed data set is available as supplemental File S1.
Epigenetics Data Processing—ChIPseq data for 9 mouse tissues

(marks: H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3,
H3K79me2) were obtained from ENCODE in bigWig format (fold
change versus control). The data for H3K9ac was available only for
two tissues. To extract mean ChIPseq signal per gene body for all
tissues, a UCSC bigWigAverageOverBed command line tool was
used in conjunction with a custom-made bed file based on Gencode
M4 mouse gene annotation. The processed ChIPseq data set is
available as supplemental File S2.

Gene Expression Correlation Analysis—To obtain the between-
gene correlation values the data were centered at 0 for each exper-
iment and a Pearson correlation coefficient was calculated using R

function “corr.test” from the psych package with the “use” parameter
set to “pairwise.complete.obs.” For improved statistical power, cor-
relations were calculated only for genes which had data in at least 8
overlapping tissues (both on protein and mRNA levels). Gene pairs
were considered correlated if their PCC value was ! 0.5. For subse-
quent analyses, only correlations with Benjamini-Hochberg adjusted
p values " 0.05 were considered.

Genomic Positions of Genes and Intergenic Distances—Mouse
gene positions on mm10 genome were obtained from Ensembl
Biomart (17, 18) (state on 29.06.2017). For gene distance calculation,
first base pair of each gene’s outermost transcription start site (TSS)
was used and distances between those positions calculated for each
gene pair.

Statistical Significance Analysis of Close-by and Other Coregulated
Genes—Two Pearson Chi-squared tests were performed on two 2 #
2 contingency tables (for mRNA and protein levels). The first contin-
gency table (mRNA-level) divided gene pairs by two variables. The
first variable considered genomic distances between the gene pairs
(close-by/other) and the second variable divided the gene pairs ac-
cording to their mRNA coexpression (gene pairs with mRNA Pearson
correlation coefficient ! 0.5 and BH-adjusted p value " 0.05 were
considered correlated and all other pairs were considered uncorre-
lated). Similarly, for the protein-level analysis, the first variable was
genomic proximity. In the second variable, pairs were correlated if
they both had mRNA and protein PCC ! 0.5 and the BH-adjusted p
value " 0.05.

Analysis of Post-transcriptional Mechanisms—The miRNA/gene
mapping data for mouse brain were obtained from (19). The CDS
lengths of coexpressed genes were obtained from Biomart using
Ensembl Genes 92 database and the GRCm38.p6 data set. The
genes were considered to have similar CDS length if the ratio of the
length of the longer CDS to the shorter CDS was below 1.5. The liver
time-series ribosome profiling data was obtained from (20). Ribosome
profiling matrices were scaled using the accompanying mRNA ex-
pression data and the resulting ratios were log2-transformed. Finally,
Pearson correlation coefficients between genes were calculated us-
ing R function “corr.test” from the “psych” package (21). Gene pairs
with Pearson correlation coefficient ! 0.5 and the Holm-adjusted p
value " 0.001 were considered as correlated. Protein translation rates
were obtained from (22). For each gene pair, a ratio of their translation
rates was calculated, log2-transformed and the absolute values
taken. Gene pairs were considered to have similar translation rates if
this absolute log2 ratio was lower or equal to 1. The protein degra-
dation profiles were obtained from (23) and gene pairs coding at least
one nonexponentially degraded protein were counted.

K-means Clustering of mRNA and Protein Expression Data—The
Pearson correlation coefficients for all gene pairs were used to cluster
the mRNA and protein data separately. An R clustering function
“kmeans” was used for this purpose. The first k value that explained
50% of the variance in the data was selected. The percentage of
variance explained was defined as the ratio of the between sum of
squares to the total sum of squares for every given k. The parameter
“nstart” was set to 3 and “max.iter” set to 20.

Subcellular Localization Enrichment—Subcellular localization an-
notation was obtained from Uniprot (24). Proteins localized to more
than one subcellular compartment were removed. Endoplasmic retic-
ulum was joined with Golgi as “ER/Golgi” to balance the group sizes.
Only “nucleus,” “mitochondrion,” and joined “ER/Golgi” groups were
considered for subcellular localization enrichments. The expected
value for each cluster was defined as the percentage of proteins with
the given subcellular localization annotation in the data. The observed
value was calculated as a percentage of those proteins in the given
cluster. Finally, log2 observed/expected values were calculated for
each of the cluster and subcellular localization.

1 The abbreviations used are: LCL, lymphoblastoid cell lines; CDS,
coding sequence; CV, coefficient of variation; FDR, false discovery
rate; FPKM, fragments per kilobase million; GAM, generalized addi-
tive model; GEO, gene expression omnibus; GO, gene ontology; PCC,
Pearson correlation coefficient; RPKM, reads per kilobase million;
SILAC, stable isotope labeling with amino acids in cell culture; TPM,
transcripts per million; TSS, transcription start site; UTR, untranslated
region.
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GO Enrichment Analysis—Gene Ontology enrichments were per-
formed using DAVID online service (25). All Uniprot Accession num-
bers belonging to each of the clusters were used as a query and the
whole mouse genome used as background for statistical analysis.
The top 5 significantly enriched terms were reported for each cluster
(FDR " 0.01).

Tissue-specific Epigenetic Cluster Profiling—The median log2 fold-
change values used in Fig. 2E were calculated as follows: the median
of the epigenetic signal of genes over all clusters in each tissue served
as the expected value. The observed value was the median epigenetic
signal in a given combination of cluster and tissue. Finally, a log2
observed/expected value was obtained showing the relative enrich-
ment of the epigenetic signal between clusters for each tissue.

Calculating Epigenetic Similarity—Inverted Mahalanobis distance
(1/Mahalanobis distance) was used to calculate the similarity between
epigenetic profiles of genes. The “mahalanobis” R function was used
with a user-specified covariance matrix.

Calculation of Gene Positional Clustering—Distances between all
possible pairs of genes located on same chromosomes were calcu-
lated. For each gene, the mean distance to its 5 nearest neighbors
was calculated. The list of genes was sorted by increasing mean
distance to their 5 nearest neighbors. Finally, the genes at the top and
bottom 5% of the list were labeled as most and least positionally
clustered, respectively.

Calculation of Gene Expression Variability—Gene expression vari-
ability at the mRNA and protein levels was calculated as the coeffi-
cient of variation (CV; standard deviation divided by the mean) of
log2-transformed TPM and SILAC ratios. To avoid dividing by zero
(for unchanged genes with a log2 ratio of zero), a constant value of 10
was added to all mRNA and protein log2 ratios before calculating the
variability.

Data Processing and Plotting—All data processing was performed
in R (26) and the plots made using the ggplot2 package (27). The R
scripts used to analyze data and generate most of the figures can
be found on our GitHub (https://github.com/Rappsilber-Laboratory/
tissue_mRNA_protein_scripts_MCP).

RESULTS AND DISCUSSION

Coexpression of Nearby Gene Pairs Is Buffered at the Pro-
tein Level in Mouse Tissues—We assembled a mouse tissue
expression data set comprising 3391 genes in 20 different
tissues by combining proteomics and transcriptomics from
different sources. Protein abundance data were derived from
a quantitative proteomics data set based on metabolic iso-
tope labeling of mice (10). Transcriptomics data were ob-
tained from the ENCODE Consortium (11) and Gene Expres-
sion Omnibus (GEO) repository (12) (Fig. 1A). The tissue
collection comprises few main broad functional categories
such as the nervous system (cerebellum, brain cortex), diges-
tive system (stomach, intestine, pancreas), immune system
(thymus, spleen) and multifunctional organs such as the liver
and kidney. To compare the gene expression between multi-
ple tissues with enough statistical power, we used only genes
expressed ubiquitously in all tissues as opposed to using
tissue-specific genes. These so-called housekeeping genes
account for about half of the genome in human (28) and
presumably also in mouse. They are involved in basic cellular
functions such as energy metabolism (including mitochondrial
proteins), genome integrity maintenance, gene expression,
protein trafficking, and cell structural functions.

To generate a coexpression matrix for all observed gene
pairs on both mRNA and protein level, we calculated their
Pearson correlation coefficients (PCCs) across the 20 tissues
(exemplified in supplemental Fig. S1). Importantly, compared
with a previous study on lymphoblastoid cell lines (LCLs) (7),
the expression changes observed between tissues and con-
sequently many different cell types were substantially larger
(fold-change increased by a mean of $75% for both mRNA
and proteins, Fig. 1B). We then assessed the quality and
information content of the integrated data set by plotting the
mRNA- and protein-level correlations for functionally related
gene pairs. As expected, functional gene pairs have much
higher correlation coefficients than randomly shuffled gene
pairs (supplemental Fig. S2). This effect is more pronounced
on protein than mRNA level (Fig. 1C). Subunits of the same
complex correlated to a median of 0.59 at protein level and
0.35 at mRNA level. For comparison, in lymphoblastoid cell
lines we observed 0.61 and 0.27, respectively. As one would
expect, mRNA coexpression appears to be closer linked to
function across tissues than closely related cell lines. Never-
theless, protein coexpression remains more indicative of
shared function.

Next, we wondered about the impact of gene proximity on
their correlated expression. We took gene pairs separated by
less than 50 Kb between their transcription start sites
(“close-by genes”) and looked at their mRNA correlation com-
pared with gene pairs further apart (Fig. 1D). We observe 13%
of close-by genes to have coregulated mRNAs. However, only
a quarter of these (3.3%) are also coregulated on the protein
level. This suggests that only a fraction of those coregulated
mRNA pairs is functionally related. It is worth noting that even
though our mRNA and protein data have similar numbers of
data points per gene, the protein data is slightly sparser
(15.5% and 6.7% missing values, respectively). Despite the
numerical disadvantage of the protein data set, protein-level
correlations are still more informative on the function than
mRNA (Fig. 1C, supplemental Fig. S2). The data also differs in
their measurement-based variation as they were acquired by
different technologies. However, we are limiting our compar-
isons in most cases to within-mRNA and within-protein,
avoiding direct mRNA-protein comparison.

As a second line of inquiry into the impact of gene proximity
on their correlated expression, we grouped the gene pairs by
chromosomes, arranged them in their genomic order and
plotted their correlation values as a coregulation map (Fig.
1E). Patches of coregulated mRNAs are clearly visible on
chromosome 17 that are not reflected on the protein level. The
patches are seen along the diagonal, suggesting that neigh-
boring genes tend to be cotranscribed. Patches are also
found away from the diagonal. These patches likely reflect
large-scale 3D architecture as we have shown in human (7).
Fitting a generalized additive model (GAM) to the linear cor-
relation data further highlights the observed coregulation
patches which might be indicative of the chromosome folding
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(Fig. 1F, chromosome 17). The patches are not equally pro-
nounced in all chromosomes, for example see chromosome 2
(Fig. 1E, 1F).

Gene Pairs with Sustained Coexpression Have Similar Post-
transcriptional Regulation—For many gene pairs, protein co-
expression correlates with mRNA coexpression, while for
other gene pairs mRNA and protein coexpression are not
correlated. To identify possible mechanisms leading to buff-
ered or sustained gene coexpression we conducted an anal-
ysis of post-transcriptional mechanisms using five published
data sets (Fig. 2A). First, we looked at how many miRNAs are
shared between gene pairs. miRNAs have been implicated in
post-transcriptional gene expression control by binding to
transcripts and regulating mRNA degradation and protein
translation (29). Using miRNA-gene interaction data gener-
ated using the CLEAR-CLIP protocol (19), we found that gene
pairs with sustained coexpression tend to share significantly
more miRNAs than pairs with buffered coexpression (Mann

Whitney U test p value % 0.002). We then looked at protein
coding sequence (CDS) lengths which are a general indicator
of the extent of post-transcriptional control (30). Gene pairs
with sustained coexpression had significantly (Chi-squared
Test p value " 0.0001) more similar CDS lengths than gene
pairs with buffered coexpression patterns. Subsequently, we
looked at levels of ribosome occupancy using ribosome pro-
filing data from mouse liver (20) and protein translation rates
determined using mass spectrometry (22). In both cases,
gene pairs with sustained coexpression tend to have similar
translation levels (Chi-squared Test p values " 0.0001 in both
cases). Finally, we looked at protein degradation profiles by
considering gene pairs having at least one nonexponentially
degraded protein (NEDs) (23). We found that gene pairs with
sustained coexpression are significantly enriched in NEDs
(Chi-squared Test p value " 0.0001). Together, this suggests
that various post-transcriptional mechanisms are involved in
propagating functional gene coexpression to the protein level.
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FIG. 1. Genomic distance between gene pairs affects their coexpression stronger on the mRNA than on the protein level. A, We
analyzed mRNA and protein expression changes between 20 different mouse tissues. Additionally we analyzed epigenetic profiles of genes by
using ENCODE data for 9 different tissues. B, The global log2-fold changes in the mouse tissue data set are larger on both mRNA and protein
levels compared with the LCL data set as used in (7). C, The coregulation of enzymes catalyzing consecutive metabolic reactions and protein
complexes is significantly stronger on protein level compared with mRNA level (Mann-Whitney test p value " 0.0001 in both cases, m %
median). D, The fraction of close-by genes (" 50 kilobases separation) coregulated on mRNA level is four times as large as on protein level
which suggests that only about a quarter of the proximal mRNA coregulation is functional. Statistical significance was assessed using a
Pearson’s Chi-squared test (***p value " 0.0001). E, Chromosomal gene coregulation patterns are visible on mRNA level but disappear on
protein level on chromosome 17. However, this effect seems not to be as strong for chromosome 2. F, The mRNA coregulation decreases with
the linear gene separation albeit not monotonously, reflecting the observed chromosomal coregulation patches on chromosome 17. This effect
is not observed on protein level. No long-range effects can be observed for chromosome 2. The gray area around the lines signifies 95%
confidence intervals.
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FIG. 2. mRNA and protein coregulation clusters are functionally distinct and display different epigenetic signatures. A, Analysis of
post-transcriptional regulation of gene pairs coexpressed on mRNA level. Gene pairs with sustained coexpression on the protein level share
on average more miRNA targeting than pairs with buffered coexpression on the protein level (Mann Whitney p value " 0.0001). Gene pairs were
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Gene pairs were considered to have similar translation rates if the absolute log2 ratio of their translation rates was lower or equal 1. For the
non-exponentially degraded proteins (NEDs) bar chart, gene pairs containing at least one NED were counted. B, K-means clustering of the
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Protein Coregulation Clusters Are More Functional Than
mRNA Coregulation Clusters—To group genes with similar
coexpression patterns we used k-means clustering (Fig. 2B).
This expands our analysis of coregulation from gene pairs to
gene groups. This revealed specific coregulation patterns in
which each cluster tends to be coregulated or antiregulated
with other clusters (supplemental Fig. S3). Of the three tran-
script-based gene clusters, cluster T1 and T2 are anticorre-
lated. A similar anticorrelation was observed in human, which
could be traced there to chromosome subcompartments A1
and A2 (7). Briefly, compartments are regions of the genome
defined by 3D analysis of chromosome structure (31). Com-
partment A is characterized by active gene expression
whereas compartment B mostly by suppressed gene expres-
sion. It was later discovered that both A and B compartments
are divided further into subcompartments A1, A2 and B1 to
B4, each with distinct epigenetic marks and spatial interaction
patterns (32).
In the absence of equivalent high-resolution HiC data for

mouse tissues we tested for epigenetic similarity within these
clusters as epigenetic signatures closely link to chromatin
subcompartments (32). Indeed, the epigenetic signatures of
T1 and T2 clusters resemble those found in chromatin sub-
compartments A1 and A2 (see next paragraph). Notably, nei-
ther in mouse nor in human do the transcript-based gene
clusters inform on protein coexpression. The marked excep-
tion is given by cluster T3 which displays coexpression be-
havior also at the protein level. Looking at the function of
genes present in each of the clusters by performing subcel-
lular localization (Fig. 2C) and Gene Ontology (33) term en-
richment (Fig. 2D) reveals that cluster T3 is enriched for mi-
tochondrial functions. This indicates large differences in the
energetic needs of different tissues, which may require gene
regulation at both the transcriptional and protein level. The
five protein-based gene clusters correlate with each other to
various degrees, with the anti-correlations of P2 versus P4
and P3 versus P5 being most pronounced. These likely reflect
commitments of cell types to different large cellular processes
(Fig. 2D). Interestingly, we observed a large overlap between
the clusters T3 and P3. They had 734 and 686 members,
respectively, and around half of the members were shared
between them (365 genes). Similarly, to cluster T3, the protein
cluster P3 was enriched in mitochondrial functions (Fig. 2C,
2D). This suggests that the coordination of mitochondrial
protein coexpression could be tightly controlled already on
the mRNA level.

Except for P3, the protein-based gene clusters are not
reflected in transcript coexpression (supplemental Fig. S3). In
summary, one of the three transcript-based gene clusters
show some functional enrichment. However, all five protein
coregulation clusters show well-defined subcellular localiza-
tion patterns and functional GO term enrichments. As ob-
served in other systems, protein coexpression links closer to
function than transcript coexpression (7, 8).

We added a regulatory dimension to the expression data
set by leveraging the ENCODE ChIP-seq data resources for
nine different mouse tissues. This allowed us to estimate
epigenetic variability of the gene pairs in the data. We calcu-
lated ChIP-seq signal enrichment for gene bodies belonging
to the mRNA and protein coregulation clusters (Fig. 2E). Tran-
script clusters T1 and T2, which cover about 80% of the
genes, maintain their epigenetic profile across all tissues with
T2 being more enriched in activating marks compared with
T1. While these two groups are defined through their chro-
matin state, they do not experience tissue specific regulation
through epigenetic processes. This might be linked to chro-
matin subcompartments. Indeed, the epigenetic patterns of
mouse clusters T1 and T2 closely resemble human chromatin
subcompartments A2 and A1, respectively (7). This suggests
a similar chromatin subcompartmentalization in mouse as is
found in human. In contrast, transcript cluster T3 and most
protein clusters display epigenetic variation across tissues
indicating the action of an epigenetic program which is in line
with epigenetic processes being involved in cell differentiation
(34). It may initially surprise that protein clusters have epige-
netic tissue-specific changes while transcript clusters T1 and
T2 lack these (for example see H3K27ac or H3K4me1). This is
consistent with subcompartments dominating the epigenetic
signature that is associated with mRNA coexpression. It is
worth keeping in mind that we analyze housekeeping genes,
for which one would expect adjustments in expression rather
than on/off changes and consequently only weak epigenetic
influences. Interestingly, a strong between-cluster difference
can be seen for the H3K36me3 mark which displays almost
no variability between tissues for protein clusters. The
H3K36me3 mark has been shown to be implicated in gene
expression noise control through a mechanism of transcrip-
tional burst frequency modulation (35) and to be enriched
among noise-sensitive, highly expressed genes (36, 37). In full
agreement with this, the mRNA cluster enriched in the
H3K36me3 mark (T1) has significantly lower expression vari-
ability compared with other clusters (supplemental Fig. S4A).

mRNA and protein coexpression data. Three distinct mRNA clusters and five distinct proteins clusters explained $50% of the variance in the
respective data. C, mRNA coregulations clusters (T1–T3) have lower protein subcellular localization enrichments than protein coregulation
clusters (P1–P5). The significance of enrichments/depletions in each cluster was tested using Pearson’s Chi-squared test. ***p value " 0.0001,
*p value " 0.05, n.s. % not significant. D, GO enrichment analysis of the genes in the mRNA and protein coregulation clusters. More GO terms
are enriched in protein than in mRNA clusters. E, mRNA-based clusters T1 and T2 have uniform epigenetic signal distributions displaying little
between-tissue variability as opposed to protein clusters which show large between-tissue and between-cluster variability. Epigenetic signal
enrichment in tissue (squares), coefficient of variation for each histone mark (circle), color code as shown.
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Curiously, we also observed a strong expression variability
difference for protein clusters P4 and P5 which are enriched
for H3K36me3 compared with other three protein clusters.
However, it is not clear if the differences in H3K36me3 signal
in mRNA and protein clusters are a cause of different expres-
sion variability or an effect of differences in the ongoing
transcription.

Gene Clustering Reduces mRNA Expression Variability in
Mouse Tissues—We determined the gene expression varia-
bility (coefficient of variation, CV) of the most and least
densely clustered genes, considering sequence proximity
(Fig. 3A). Transcript expression variability is reduced signifi-
cantly for genes clustered in the genome sequence while the
effect is less pronounced for protein expression variability.
Importantly, although gene expression variability generally
covariates with expression level, no difference in expression
levels was observed here for the top and lowest 5% position-
ally clustered genes (53,000 and 56,000 mean TPM, respec-
tively). As observed previously for yeast (38) and human (7)
gene clustering may safeguard against accidental silencing
and the resulting expression noise. However, gene expression

variability is not exactly the same as bona fide gene expres-
sion noise. It is interesting therefore that our observations
using global between-tissue variability of expression reflect
the observations based on expression noise in its classical
sense in other systems. As a further link of expression varia-
bility between tissues to noise, we noted a strong depend-
ence of both mRNA and protein expression variability on
H3K36me3 signal in gene bodies. Genes lacking H3K36me3
signal are the most variably expressed between the tissues
whereas the opposite is true for genes with strong H3K36me3
signal (supplemental Fig. S4B). This resembles the role of this
mark in expression noise control (36, 37).

Epigenetic Similarity Is the Main Driver of Nonfunctional
mRNA Coexpression—Coexpression of close-by, unrelated
genes can be driven by at least two distinct mechanisms.
First, stochastic fluctuations between the on and off state of a
chromatin domain can affect multiple genes simultaneously
and lead to their coexpression (4, 39). In addition, coexpres-
sion can reflect a transcriptional “ripple effect,” where the
activation of one gene leads to the upregulation of other
genes in its immediate neighborhood (5). We investigated

FIG. 3. The impact of gene proximity and epigenetic similarity on mRNA- and protein-level coregulation. A, Positional gene clustering
reduces the expression variability on mRNA level. We calculated the expression variability (coefficient of variation, CV) of the 5% most and 5%
least positionally clustered genes on the genome (i.e. considering their sequence proximity). The difference is significant (using Mann-Whitney
test) on both mRNA level (***p value % 0.00029) and protein level (*p value % 0.019). When using 10 and 1% most and least clustered genes,
we obtain the same statistical results as with 5% (data not shown). Boxplot drawn in the style of Tukey, i.e. box limits indicate the first and third
quartiles, central lines the median, whiskers extend 1.5 times the interquartile range from the box limits. Notches indicate the 95% confidence
interval for comparing medians. B, Gene coregulation increases with epigenetic similarity at the mRNA level, whereas it remains largely
independent from epigenetic similarity at the protein level. C, Epigenetic similarity is the major driver of the mRNA coregulation. Gene pairs
were considered coregulated if their mRNA level correlation was ! 0.5 and the BH-adjusted p values " 0.05. The bins were created by dividing
gene pair distances and epigenetic similarity (1/Mahalanobis distance) into 10 roughly equal sets. This yielded 100 unique bin combinations.
The color signifies the percentage of coregulated mRNA in each bin. The mean gene pair distance in the left-most column is 115 Mb and 2
Mb in the right-most column. White stars (*) mark corner sectors which have significantly higher mRNA coexpression compared with an
equal-sized random background sample as judged by Kolmogorov-Smirnov test. The procedure was repeated 1000 times. The mean p values
for sectors 1, 2, 3 and 4 were 0, 10&13, 0.039 and 6*10&9, respectively. p value of 0 is reported by the KS test for extremely low values. D, Effects
in linear distance are confined to very close proximity. The 10 bins constituting the right-most column in Fig. 3C were extracted and magnified.
The mean gene pair distance for the left-most column is 4 Mb and 240 Kb for the right-most column. E, Protein-level coregulation of
housekeeping genes is not generally affected by epigenetic similarity or linear distance.
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which of these factors drives non-functional mRNA coexpres-
sion across mouse tissues. To estimate which genes may be
affected by the same chromatin fluctuations, we first deter-
mined the epigenetic profile of each gene, based on 7 histone
marks in 9 different tissues reported by ENCODE. We then
calculated the epigenetic similarity between all gene pairs
using the Mahalanobis distance, which considers that some
histone marks are codependent (exemplified in supplemental
Fig. S5). As one might expect, we observed that correlation of
mRNA abundances increases dramatically with increasing
epigenetic similarity of their respective genes. Interestingly,
the effect is largely buffered on the protein level (Fig. 3B). This
suggests that many mRNA pairs are coactivated as a side-
effect of their genes being in the same genomic neighborhood
which in turn confers a specific epigenetic profile. To place
the epigenetic similarity and coregulation into gene position
context, we plotted the coregulation values as a function of
both epigenetic similarity and a linear genomic separation of
the gene pairs (Fig. 3C). Strikingly, epigenetic similarity drives
mRNA coexpression irrespective of whether genes are far
apart (Fig. 3C, sector 2) or close-by in the genome (sector 1).
For the gene pairs that are on average within 2 Mb to each
other, those that have very different epigenetic profiles are
much less likely to be coexpressed than those with similar
chromatin features (Fig. 3C, sector 4 versus 1). This is most
likely an effect of global fluctuations of chromatin factors
shown previously in yeast (40). Gene proximity only starts to
be a driving factor for genes less than 240 Kb apart (Fig. 3D,
right-most column) which agrees with previous observations
of a local transcriptional ripple effect (5). Notably, most of this
mRNA coexpression is non-functional, because the same
group of genes show, on average, no coexpression at the
protein level (Fig. 3E).

CONCLUSIONS

In an LCL cell line panel and in cancer samples, at homeo-
static conditions much of mRNA coexpression is non-func-
tional, i.e. does not affect protein coexpression and instead
can be traced back to genome organization. We wondered
how much coexpression of mRNA and proteins would be
linked when comparing very different cellular states given by
multiple fully differentiated tissues. mRNA coexpression is
indeed more closely linked to function in mouse tissues than
in homeostatic conditions, although protein coexpression is
significantly more indicative of function. The epigenetic pro-
filing of coexpression clusters revealed that mRNA coexpres-
sion is affected by two distinct epigenetic states, most likely
reflecting the different genomic subcompartments in which
they reside. As observed in homeostatic conditions, this
broad positioning effect on mRNA coexpression is then buff-
ered on the protein level. However, in mouse tissues the
non-functional mRNA coexpression is linked more closely to
epigenetic states than to linear gene proximity. Epigenetic
differences between the tissues dwarf the linear proximity

effect on coexpression. Notably, we chose to use housekeep-
ing genes only as they conferred enough data points to be
usable in this correlation-based study. It is not clear to what
extent do the observations on housekeeping genes generalize
to the rest of the genome. Taken together, our observations
lend support to the notion of monitoring protein coexpression
for functional genomics. However, to fully understand the
impact of epigenetics on mRNA and protein coexpression and
the underlying mechanisms, more in-depth experimental
studies are needed.
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Subcellular localization is an important aspect of protein function, but the protein composition
of many intracellular compartments is poorly characterized. For example, many nuclear bodies
are challenging to isolate biochemically and thus remain inaccessible to proteomics. Here,
we explore covariation in proteomics data as an alternative route to subcellular proteomes.
Rather than targeting a structure of interest biochemically, we target it by machine learning.
This becomes possible by taking data obtained for one organelle and searching it for traces
of another organelle. As an extreme example and proof-of-concept we predict mitochondrial
proteins based on their covariation in published interphase chromatin data. We detect about⅓
of the knownmitochondrial proteins in our chromatin data, presumablymost as contaminants.
However, these proteins are not present at random. We show covariation of mitochondrial
proteins in chromatin proteomics data. We then exploit this covariation by multiclassifier
combinatorial proteomics to define a list of mitochondrial proteins. This list agrees well with
different databases on mitochondrial composition. This benchmark test raises the possibility
that, in principle, covariation proteomics may also be applicable to structures for which no
biochemical isolation procedures are available.
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1 Introduction

Eukaryotic cells contain organelles and other specialized
compartments, whose protein composition can be analyzed
by proteomics to provide important clues regarding their
biological function [1, 2]. Organelle proteomics approaches
traditionally depend on the biochemical isolation of the
analyzed structure, which can be relatively straightforward
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Abbreviations: ChEP, chromatin enrichment for proteomics;
MCCP, multiclassifier combinatorial proteomics

for membrane-enclosed organelles such as mitochondria [3].
However, the majority of spatial compartments cannot be
adequately enriched for conclusive analysis, as their isolates
may be contaminated with too many functionally unrelated
proteins that copurify. Alternative approaches have therefore
been developed to infer the composition of organelles that
cannot be purified to homogeneity. For example, subtractive
[4] and quantitative [5] proteomics approaches have been
employed to distinguish between genuine components and
contaminants in biochemical isolates of nuclear envelopes
and lipid rafts, respectively. Partial enrichment combined
with quantitative proteomic analysis was used to broadly cate-
gorize the cell into cytoplasm, nucleus, and nucleolus [6]. Pro-
tein correlation profiling was developed to study the compo-
sition of the centrosome [7] and later provided a mammalian
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Significance of the study

This study introduces a new concept for organelle pro-
teomics. Until now, specific biochemical enrichment was
paramount to study biological structures by proteomics.
However, many compartments in the cell simply cannot
be isolated or even partially separated from the rest of the
cell. Examples for this include chromatin, which is highly
charged and invariably “absorbs” functionally unrelated pro-
teins, and nuclear bodies that are not surrounded by a mem-
brane andmost likely disintegrate upon cell lysis.We present
here a method that may overcome such challenges in the fu-
ture. The basic idea is that machine-learning can identify

organelle-specific patterns across many comparative pro-
teomics studies, even if the organelle was just present as
contamination in the original experiment. As a proof-of-
principle we identified mitochondrial proteins from chro-
matin proteomics data. While we do not have enough data at
the moment to define the entire mitochondrial proteome in
this way, our experiment shows that enriching an organelle
through biochemical fractionation is no longer a strict re-
quirement to analyze its composition. We envisage that this
method may be useful to study a multitude of nonpurifiable
biological structures in the future.

organelle map [8]. Using a related method, localization of
organelle proteins by isotope tagging, proteins were assigned
to the various compartments of the endomembrane system,
which cannot be efficiently distinguished biochemically
[9].

When analyzing mitotic chromosomes we also encoun-
tered an abundant presence of background proteins [10]. Im-
portantly,mitotic chromosomes are large and highly charged,
attracting many functionally unrelated proteins, and thus are
physically contaminated themselves. This made it difficult to
identify contaminants using the existing fractionation-based
procedures. We therefore proposed a machine learning ap-
proach, multiclassifier combinatorial proteomics (MCCP), as
a solution. Taking the outcome of multiple proteomic analy-
ses of mitotic chromosomes that were done under biochemi-
cally or genetically distinct conditions, and integrating those
by Random Forest analysis provided a ranked list of protein
components of mitotic chromosomes. Interphase chromatin
is another example of a specialized functional compartment
whose biochemical isolates remain highly impure [11]. Work-
ingwithpartially purifiedmaterial, weusedMCCP to infer the
protein composition of interphase chromatin from biological
covariation. For this we analyzed chromatin-enriched sam-
ples from a wide variety of biological conditions and showed
that proteins with well-known chromatin functions tend to
respond in a similar way to various perturbations, such as
drug treatments. We subsequently used a machine learning
algorithm to capture the covariation pattern corresponding
to chromatin factors. The resulting model allowed us to pre-
dict hundreds of new potential interphase chromatin proteins
simply based on their covariation with already known chro-
matin proteins.

Some compartments may be inherently unstable in vitro.
For example, it has been proposed that many intracellular
bodies represent liquid droplets that form by phase transi-
tion from the surrounding cyto- or nucleoplasm [12]. Such
compartments may be very difficult or even impossible to pu-
rify biochemically, and presumablywould start to disintegrate
after cell lysis. Therefore, new approaches may be required

to determine their protein composition. Possibly, also here a
solution could come from machine learning.

One conclusion from our analysis of interphase chromatin
was that covariation with reference proteins was more accu-
rate than biochemical enrichment in identifying chromatin
components. This raised the intriguing possibility that bio-
chemical enrichment may not be an essential element of
determining the composition of cellular structures by pro-
teomics. To push this hypothesis to its extreme we wondered
if an entirely untargeted organelle could be defined through
its changing coappearance in the analysis of chromatin. This
would offer a way to study the composition of nonpurifiable
compartments, especially that of many elusive nuclear bodies
that may stick to chromatin when it is isolated but that cannot
be isolated on their own.

To test the hypothesis that covariation in proteomic
datasets can be the central element of studying the composi-
tion of cellular structures by proteomics, we attempted to de-
fine the composition ofmitochondria on the basis of our chro-
matin proteomics dataset. Our intention was not to present
an alternative or even superior way of analyzing mitochon-
dria but simply to use mitochondria as a test system for other
organelles or structures that challenge current analysis ap-
proaches. Mitochondria are large, well defined, and not func-
tionally linked to chromatin in any obvious way, but are fre-
quently part of the background of our chromatin enrichment
procedure. We defined a high-quality reference set of mito-
chondrial proteins and used this to train a machine-learning
algorithm to spot other mitochondrial proteins in our chro-
matin dataset. The results agreed well with the current con-
sensus of which proteins are in mitochondria. We could not
expect to obtain a comprehensive mitochondrial protein in-
ventory, because only⅓ of the knownmitochondrial proteins
were detected in our chromatin samples.However, this proof-
of-principle experiment demonstrates the possibility that tar-
geted biochemical enrichment may be optional and not es-
sential for defining organelles. Subcellular localization may
be predicted through covariation, thus allowing targeting a
structure during data analysis rather than experimentally.

C⃝ 2015 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com



Proteomics 2016, 16, 393–401 395

2 Materials and methods

2.1 Chromatin proteomics data

Proteomic analyses of interphase chromatin were described
previously [11]. For this project we only considered 45 SILAC
ratios comparing chromatin under different biological con-
ditions. Only those 4565 proteins with values in at least ten
out of all 45 chromatin proteomics experiments were consid-
ered (Supporting Information Table 1). In brief, these experi-
ments consisted of human cell lines grown in SILACmedium
and subjected to various perturbations, such as treatment
with drugs, growth factors, or irradiation. They also include
SILAC-based comparisons of different cell types and cell-cycle
phases. In order to preferentially detect chromatin-boundpro-
teins, all samples were subjected to the chromatin enrich-
ment for proteomics (ChEP) procedure [13]. Tryptic digests
were analyzed by LC-MS/MS on an LTQ-Orbitrap or LTQ-
Orbitrap Velos (Thermo Fisher Scientific). These samples are
described as “biological classifier” experiments in Table 1 of
Kustatscher et al. [11] in more detail. Raw data have been de-
posited in the PRIDE [14] repository (www.ebi.ac.uk/pride)
as part of the dataset PXD000493 (for this study we only
used a subset of these data, namely experiments 3–7 and
18–35).

2.2 High-confidence mitochondrial reference protein
set

We compiled a set of well-studied, high-confidence mito-
chondrial reference proteins. As a starting point, we down-
loaded all 1065 human proteins that mapped to “mitochon-
drion” in Uniprot’s [15] subcellular localization database
(www.uniprot.org/locations) and that were part of Swiss-Prot.
We kept only proteins with an annotation score of at least
four out of five. To remove proteins with ambiguous local-
ization we filtered out proteins whose localization annotation
matched the following keywords: nucleus, reticulum, Golgi,
secreted, cytosol, peroxisome, and cell projection. This short-
listed 653 proteins, for which we manually evaluated Uniprot
and GO [16] annotations and, where necessary, searched the
available literature to extract a final list of 486 bona fide mi-
tochondrial proteins with no reported functions elsewhere
in the cell. Of these 486 mitochondrial reference proteins,
172 (35%) were detected in the chromatin proteomics dataset
(Supporting Information Table 2).

2.3 Random Forest prediction of mitochondrial
proteins

For supervised machine learning we used the Weka 3.7 [17]
implementation of the Random Forest algorithm [18], exe-
cuted through an in-house workflow built on the KNIME
data analytics platform [19]. This implementation of Random

Forest does not impute missing values. The Random For-
est was constructed using 500 trees, six random features at
each split and an unlimited maximum tree depth. The high-
confidence mitochondrial reference protein set was used as
positive training data. Negative training data were randomly
selected fromall nonmitochondrial proteins in our chromatin
proteomics dataset (for this purpose, nonmitochondrial was
defined as having no such annotation in GO or Uniprot).
To avoid using unbalanced training data, only 172 negative
training instances were selected, i.e. the same number as
positive training instances. However, rather than construct-
ing just one Random Forest, the workflow was executed ten
times with different randomly drawn negative training data.
The average Random Forest scores and their standard devia-
tion were collected. Prediction accuracy was assessed in two
different ways. The out-of-bag error, an unbiased estimate
of the test set error inbuilt to the algorithm, was collected.
In addition, the training dataset was cross-validated 100-fold,
and the cross-validated data were used to judge performance
based on the area under a ROC curve. Random Forest scores,
including the cross-validated scores for the mitochondrial
training dataset, are reported in the Supporting Information
Table 2.

2.4 Comparison with other mitochondrial datasets

We compared our mitochondrial predictions to five differ-
ent sources of mitochondrial annotation. The human ver-
sion of MitoCarta [20] was downloaded on May 1, 2015
from www.broadinstitute.org/pubs/MitoCarta. GO annota-
tions [16] were downloaded from QuickGO [21] using the
identifier “mitochondrion” (GO:0005739), restricted to the
qualifiers “contributes to,” “colocalizes with” and “none”.
Only annotations with evidence level “manual experimental”
were considered. The third externalmitochondrial protein set
consisted of proteins annotated as mitochondrial in Uniprot
and was downloaded as described for the high-confidence
mitochondrial reference protein set, without filtering against
multiple localizations. An immunofluorescence-based list of
proteins with mitochondrial localization was retrieved from
the Human Protein Atlas [22], omitting proteins with “uncer-
tain” reliability status. The fifth reference set consisted of mi-
tochondrial matrix proteins identified via spatially restricted
enzymatic tagging and MS [23].

2.5 Further data processing and visualization

Data were processed using R version 3.2 [24]. ID conversions,
where necessary, were done using Bioconductor biomaRt
package [25]. ROC curves were generated and visualized us-
ing ROCR R package [26]. Data analysis plots were prepared
using ggplot2 R package [27].

C⃝ 2015 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com
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3 Results and discussion

Covariation proved to be a successful concept in defining core
proteins of mitotic and interphase chromatin when starting
from multiple but impure proteomic lists of these struc-
tures [10, 11]. To test if this approach could be expanded
to structures that have not been the target of experimen-
tal data collection we attempted here to define mitochondria
through their coappearance in chromatin analyses. We chose
mitochondria for this proof-of-principle experiment, because
this organelle has been well-defined through other studies
and thus allows us to evaluate the success of our approach.
Mitochondria are membrane-enclosed and thus presumably
clearly defined, and their composition has been studied for
decades with many different experimental approaches, in-
cluding proteomics. This makes them a good reference point
to assess the performance of novel organelle proteomics ap-
proaches. Moreover, mitochondria contain more than thou-
sand proteins [20], several hundred of which are detected in
our chromatin samples, providing a reasonably sized test set
for our setup. It should be noted that somemitochondrial pro-
teins, such as prohibitins, have genuine additional functions
as nuclear transcription factors and so would be expected to
be found in chromatin [28]. However, the majority of mito-
chondrial proteins in our assay likely become associated with
chromatin in an artificial way at some point during chro-
matin enrichment, i.e. they are likely contaminants in our
chromatin analysis.

3.1 Biological perturbations affect the abundance of
mitochondrial proteins in chromatin samples

We observed that the presence of mitochondria in chro-
matin samples tends to change—very gently—in response
to biological perturbations (Fig. 1). This is initially counter-
intuitive as one would expect from a contaminating protein
that its presence would be largely unaffected by biologi-
cal changes in chromatin. Surprisingly, mitochondrial pro-
teins become mildly but significantly depleted (p = 1.13 ×
10–10) in chromatin samples after treating cells with TNFɑ
(Fig. 1A), they are more abundant (p = 7.26 × 10–22) in chro-
matin samples from HepG2 than HEK293 cells (Fig. 1B)
and they are depleted (p = 7.95 × 10–30) from chromatin
following 4-hydroxytamoxifen treatment (Fig. 1C). Indeed,
in most comparative chromatin proteomics experiments, we
find thatmitochondria are slightly enriched or depleted in one
condition compared to the other (Supporting Information
Table 3). These changes are likely due to the primary or sec-
ondary effects of a perturbation on the cell, although we can
only speculate about the precise mechanisms involved. For
example, alterations in chromatin structuremay affect the as-
sociation of background proteins, leading to increased or de-
creased copurification ofmitochondria with chromatin under
different conditions. In addition, the number ofmitochondria

per cell may also be altered in some experiments, e.g. when
comparing different cell types. While it is difficult to pinpoint
the exact reasons for mitochondrial abundance variation in
chromatin samples, we set out to test whether these changes
can be exploited to study mitochondrial proteins.

3.2 Mitochondria are not major contaminants in
chromatin samples

To ensure that mitochondria are a valid initial test system
for our method, we first confirmed that mitochondria are not
preferentially coenrichedwith chromatin. First, we noted that
mitochondrial proteins are nearly an order of magnitude less
abundant than chromatin proteins in these samples (Fig. 1D).
To further confirm their status as contaminants, we turned to
our chromatin proteome study, in which we assigned prob-
abilities for genuine chromatin-based functions to human
proteins. As expected, the vast majority of mitochondrial pro-
teins (94%) are not predicted to have a functional association
with chromatin (Supporting Information Fig. 1A). Finally, we
tested how mitochondrial abundance in chromatin samples
compares to that of various other organelles and common
contaminants, such as ribosomes, the cytoskeleton and the
Golgi apparatus. In fact, mitochondria are the least abundant
of the tested chromatin contaminants (Supporting Informa-
tion Fig. 1B).

3.3 Covariation in chromatin samples can predict
mitochondrial proteins

We previously observed coordinated bulk behavior for chro-
matin proteins versus background proteins across various bi-
ological situations [11]. This covariation of chromatin factors
allowed us to construct a comprehensive inventory of inter-
phase chromatin. We defined a reference set of known chro-
matin factors and then used a Random Forest machine learn-
ing algorithm to identify proteinswith similar behavior across
various chromatin proteomics experiments. Now, we tested
whether this approach could also capture a mitochondria-
specific pattern across the same set of chromatin proteomics
experiments.

We first assembled a high-confidence set of mitochondrial
proteins. We started from a list of proteins annotated asmito-
chondrial in Uniprot and removed all entries with potentially
ambiguous subcellular localization, such as mitochondrial
proteins with additional reported functions in the endoplas-
mic reticulum or elsewhere in the cell. For this we considered
information from Uniprot, GO, and the primary literature.
We further removed proteins which were generally not well
characterized, and could therefore not be considered bona
fide mitochondrial proteins. Of the remaining 486 proteins
we observed 172 (35%) in our data. We also sought to define
a high-confidence set of nonmitochondrial proteins without
introducing a bias. Such a bias could result from simply
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Figure 1. Mitochondrial proteins in interphase chromatin samples. (A–C) Mitochondrial proteins (magenta) are present in chromatin
proteomics data, and are up- or downregulated in response to biological perturbations. For example, they are downregulated after treating
HeLa cells for 10 min with TNF! compared to untreated controls (A). They are upregulated in chromatin samples purified from HepG2
as opposed to HEK293 cells (B). Mitochondria are also depleted from chromatin samples after treating estradiol-treated MCF7 cells with
4-hydroxytamoxifen (4-OHT) (C). The fold change is the SILAC ratio and protein abundance is the sum of measured peptide intensities.
The significance of mitochondrial fold-changes was evaluated by t-test and yielded p-values < 0.001 in all three cases, as illustrated by
the triple asterisks. (D) Boxplot of protein abundances showing that chromatin proteins are nearly an order of magnitude more abundant
than mitochondrial (Mitochon.) proteins, supporting the contaminant status of the latter. The sum of protein intensities measured across
all experiments is plotted. The intensity difference is highly significant according to a t-test (p-value = 5.4 × 10–32).

selecting nuclear proteins, for example. We solved this by
drawing nonmitochondrial proteins randomly from all pro-
teins in our dataset, except from proteins that had mitochon-
drial annotations in either Uniprot or GO.

We then conducted a supervised machine learning
experiment based on the Random Forest algorithm [18] to
distinguish mitochondrial from nonmitochondrial proteins
using a publically available chromatin proteomics dataset
(ProteomeXchange PXD000493) [11]. The dataset was
obtained by analyzing chromatin-enriched samples from
human cell lines grown in SILAC medium and subjected to
various perturbations, such as treatment with drugs, growth
factors, or irradiation. They also include SILAC-based com-
parisons of different cell types and cell-cycle phases. In order
to preferentially detect chromatin-boundproteins, all samples
were subjected to the ChEP procedure [13]. The chromatin
dataset comprised 23 double- and triple-SILAC experiments
with 45 SILAC ratios in total (Supporting Information
Table 1). The Random Forest was trained using the reference
sets ofmitochondrial and nonmitochondrial proteins. For the
nonmitochondrial training set to be representative of most
nonmitochondrial cellular compartments we would have had
to use significantly more than 172 proteins, as we used for
the mitochondrial training set. However, using unbalanced
training data skews the resulting scores. We therefore opted
to train ten Random Forests, each time with the same 172
mitochondrial proteins but a different set of 172 randomly
chosen nonmitochondrial training proteins. We collected
the average Random Forest scores for each protein. This
approach has the advantage of using a balanced training set
and still sample a large fraction of all nonmitochondrial pro-
teins to minimize prediction bias. In addition, the standard
deviation of the score across the ten different Random Forest

models reveals the impact of the choice of nonmitochondrial
training proteins. The resulting set of Random Forests could
distinguish between the known mitochondrial and nonmi-
tochondrial training proteins very well, as indicated by the
mean out-of-bag error of 0.1± 0.008. This shows that we can
identify mitochondrial proteins only based on their SILAC
ratios across many chromatin proteomics experiments.

We next performed 100-fold cross-validation to determine
reliable prediction scores for our high-confidence mitochon-
drial proteins. This means we constructed 100 Random
Forests and in each left out a different 1% of the reference
data, using the model generated with the remaining 99% to
obtain unbiased prediction scores for these proteins. This
allowed us to use a ROC curve to estimate the model’s per-
formance, in addition to the inbuilt out-of-bag error estimate
of the Random Forest algorithm. The mean area under the
ROC curve we obtained was 0.96 (Fig. 2A). This confirms the
high accuracy of our prediction already indicated by the low
out-of-bag error.

In addition to our reference mitochondrial proteins, many
other proteins with known mitochondrial functions received
high Random Forest scores (Fig. 2B). To evaluate our pre-
diction accuracy in a systematic way, we searched for false
positive predictions among our top hits. For this wemanually
assessed the available literature and labeled proteins as false
positives if they were well-characterized but lacked evidence
for mitochondrial localization. At a Random Forest score cut-
off of 0.69 we had 169 proteins of which 18 were clearly not
mitochondrial (!10% false positives). Of the remaining 151
proteins (Fig. 2B), 94 are part of our high-confidence mito-
chondrial protein set and an additional 51 proteins are known
to bemitochondrial. Six proteins were poorly or ambiguously
annotated. For example, the prolyl hydroxylase LEPRE1 has
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Figure 2. A Random Forest model can predict mitochondrial proteins based on their covariation in chromatin proteomics data. (A) High
accuracy of mitochondrial prediction is shown by ROC curves derived from the 100-fold cross-validated mitochondrial and nonmito-
chondrial reference set. The ten curves correspond to ten Random Forests generated with different negative training data, highlighting
the robustness of the Random Forest model. AUC: area under the curve. (B) Random Forest scores for the 4565 proteins (gray) in our
analysis. High-confidence mitochondrial reference proteins (magenta) are heavily enriched toward higher scores. The pie-chart shows the
manual annotation of proteins within the dashed rectangle, corresponding to a score cut-off of 0.69. Most proteins are either part of our
high-confidence mitochondrial reference set or other known mitochondrial proteins. Six proteins were poorly annotated. 18 proteins were
classified as nonmitochondrial, i.e. they are well-annotated but no evidence for mitochondrial function exists. This group was used to
estimate that we have about 10% false positives at this score cut-off.

one isoform that is thought to be secreted [29] and another one
that may reside in mitochondria [30], but our data do not al-
low us to distinguish between the two. The other five proteins
are candidates for novel mitochondrial proteins, warranting
further study into their biological function.

3.4 Mitochondria predictions agree well with
established mitochondrial protein inventories

To determine the specificity and sensitivity of our approach
in more detail, we compared its predictions to existing mito-
chondrial annotation data (Fig. 3). The most comprehensive
inventory ofmitochondrial proteins yet,MitoCarta, combined
proteomic analysis of isolated mitochondria with GFP tag-
ging and microscopy, and included additional genome-scale
datasets such as the occurrence ofmitochondrial targeting se-
quences [20]. The vast majority of proteins that receive high
mitochondrial scores in our study are indeed found in Mi-
toCarta, confirming the high specificity of our predictions
(Fig. 3A). There is also strong enrichment of MitoCarta pro-
teins toward high RandomForest scores. However, a number
of MitoCarta proteins do not score high in our approach, rais-
ing the possibility that “prediction by covariation” may lack
sensitivity. Alternatively, low-scoring proteins in our model
may have been falsely assigned to mitochondria by classical
proteomic approaches, for example due to an artificial copu-
rification with mitochondria-enriched biochemical fractions.

To test this possibility, we followed three separate lines of
evidence.

First, we compared MitoCarta’s confidence measure, the
Maestro score, to our Random Forest score. MitoCarta en-
tries which scored low in our analysis also tend to have been
assigned to MitoCarta with lower confidence (Supporting In-
formation Fig. 2). Next, we compared our predictions to a
second, independent proteomic dataset that targeted proteins
of the mitochondrial matrix rather than the entire mitochon-
drion [23]. In this approach, a geneticallymodified peroxidase
enzyme is fused to a localization signal that specifically targets
it to the mitochondrial matrix, where it biotinylates proteins
in close physical proximity. This method results in very high
specificity, because the inner mitochondrial membrane acts
as a barrier confining the biotin label tomatrix proteins. Inter-
estingly, when compared to our Random Forest predictions,
there are far fewer low-scoring proteins amongmitochondrial
factors identified in this way (Fig. 3B). This is also exempli-
fied by a shift of median Random Forest score from 0.60 for
MitoCarta proteins to 0.76 for mitochondrial proteins listed
by Rhee et al. [23].

For a third specificity test, we compiled a consensus list of
mitochondrial proteins by integrating four subcellular local-
ization databases: MitoCarta, Uniprot, GO, and the Human
Protein Atlas [15, 16, 20, 22]. There was complete agreement
among the four databases on 245 proteins. One hundred
forty-three of these we observed in our study. Similar to
the matrix annotations from Rhee et al. [23], we find that
the vast majority of these 143 consensus proteins rank very
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Figure 3. Covariation-based prediction evaluated by comparison to existingmitochondrial protein inventories. (A) Mitochondrial prediction
for all 4565 proteins is shown as their Random Forest machine learning score. Proteins that are present in MitoCarta [20] are highlighted in
orange. There is a strong enrichment ofMitoCarta proteins toward high Random Forest scores (see bar chart). (B) Same plot but highlighting
proteins in green that were specifically assigned to the mitochondrial matrix by Rhee et al. [23]. Note that very few of these annotations
receive low Random Forest scores. Many high scoring proteins are mitochondrial but not in Rhee et al.’s [23] matrix proteome. (C) Proteins
in magenta are annotated as mitochondrial in four different databases: MitoCarta, Uniprot, GO, and the Human Protein Atlas (HPA). These
overlapping, high-confidence annotations include fewer low-scoring predictions than proteins found in only 1, 2, or 3 of these databases
(see bar chart). (D) Distribution of mean Random Forest scores for proteins annotated as mitochondrial in either of the four indicated
databases. Individually, all databases show a bimodal distribution. Restricting the analysis to the overlapping annotations shows a marked
reduction in low-scoring annotations (see arrow). This indicates that such proteins are not just missed in our prediction due to lack of
sensitivity, but are also not supported by other databases. (E) Venn diagram depicting the overlap of mitochondrial annotations in the four
databases, including proteins not detected in our dataset.

high in our predictions (median Random Forest score 0.74)
(Fig. 3C). Interestingly, any individual database contains a
number of mitochondrial annotations that receive low scores
in our assay (Fig. 3D). Increasing the number of databases
that must agree on a protein to be mitochondrial decreases
the number of low scoring annotations and improves the
median Random Forest score (any database: 0.27, any two
databases 0.46, any three databases: 0.63, all four databases:
0.74).

These three points suggest that our Random Forest anal-
ysis succeeds in recognizing bona fide components of mito-
chondria. Scoring low in our analysis indicates that a protein
is less likely to be a genuine component of mitochondria.
A conclusive evaluation of false negatives in our analysis is
complicated by an absence of large consensus on mitochon-
drial proteins. A total of 1798 proteins are labeled “mitochon-
drial” by at least one database while the four databases agree
on only 245 (Fig. 3E). However, two reasons could account
for genuine mitochondrial proteins scoring low in our as-
say. First, the accuracy of the Random Forest classification
depends on the number of experiments available to it, so in-
creasing the number of input experiments will increase per-
formance further. Also, we cannot expect to identify “condi-
tional”mitochondrial factors, i.e. proteins that only localize to

mitochondria under certain biological conditions. This is be-
cause such proteins may have a predominant function else-
where in the cell and therefore not covary with mitochondrial
reference proteins.

Due to the low coverage of mitochondrial proteins in the
chromatin dataset, we are unable to make predictions on
the majority of the estimated 1129 mitochondrial proteins
[20]. For example, we detected 389 (38%) of the 1013 pro-
teins in human MitoCarta. Therefore, we cannot carry out
a comprehensive analysis of the entire organelle and cannot
match existing resources likeMitoCarta in terms of complete-
ness. Most published proteomics data now become available
through repositories such as PRIDE, so we expect that in
the future it will be possible to mine much larger datasets
for mitochondrial proteins in this way. While we only show
here the example of mitochondria in chromatin samples, we
would expect that, in principle, any comparative proteomics
experiment could be used as input dataset, as long as some
components of the target structure have been detected and
accurately quantified in it. It should be noted that with this
method no individual experiment needs to strongly separate
the target structure from the rest of the cell, but separation is
achieved by integrating many small, apparently insignificant
differences into one machine learning score.
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3.5 Feature count influences prediction accuracy

One important parameter affecting the accuracy ofmitochon-
drial predictions by machine learning is the “feature count,”
i.e. the number of different experiments in which a protein
was quantified. The more feature counts (SILAC ratios) are
available to establish the “covariation pattern” of a protein,
the better a protein can be assigned to a certain functional
group. For example, some of the 143 mitochondrial consen-
sus proteins, onwhich all annotation databases agree, remain
below our mitochondrial prediction cut-off. These mitochon-
drial proteins have been quantified in a median of 16 ± 7
SILAC experiments. By contrast, the consensus proteins that
score above cut-off and are thus successfully predicted to be
mitochondrial, have a median of 22 ± 9 features, and this
difference is statistically significant (p-value < 0.001).

Ourmitochondrial protein predictions are based on SILAC
data, i.e. relative rather than absolute protein abundances.
This implies that protein abundance itself should not have
a direct impact on prediction accuracy, but there is arguably
an indirect effect of protein abundance on performance. For
example, abundant proteins will generally be observed more
often, resulting in higher feature counts. SILAC quantitation
itself also tends to be more accurate for abundant proteins.

3.6 Implications for the design of SILAC studies

The observation that background in SILAC experiments
changes systematically has implications for the design of
comparative proteomics studies. For example, studies that
test the effect of a drug on chromatin proteins would typi-
cally compare chromatin fractions from treated samples with
a mock control and may conclude that all measured changes
relate to the drug’s effect on chromatin composition. How-
ever, our observations suggest that care should be takenwhen
drawing such conclusions. Changes among the purification
background, either through direct or indirect effects of the
perturbation, are in fact widespread. This is illustrated by the
fact that mitochondria can be up- and downregulated signif-
icantly in chromatin samples between experiment and con-
trol (Fig. 1A–C). We made a similar observation in a screen
for novel DNA replication factors, where we isolated nascent
chromatin using an unrelated biochemical procedure [31].
Upon comparing nascent andmature chromatin we observed
many differences that were clearly unrelated to chromatin
replication. These rather reflected alterations in chromatin as-
sociation of background proteins. To obtain high-confidence
DNA replication factors we filtered the data using interphase
chromatin probabilities [11].

4 Concluding remarks

We provide proof-of-principle data to show that background
in comparative proteomics experiments is not static or

random, but exhibits fluctuations that are possibly biologi-
cally meaningful and can, in fact, be exploited. Background
proteins with similar functions, such as mitochondrial fac-
tors, are coordinately up- or downregulated in chromatin anal-
yses. We demonstrate that this makes it possible to predict
components of mitochondria based solely on their behavior
in chromatin samples, by quantifying their presence across
a diverse range of conditions and using machine learning to
compare it to reference proteins of known function. In prin-
ciple, we would expect our approach to work for any organelle
or compartment that has been detected in quantitative pro-
teomics data although this remains to be demonstrated. With
specific significance to nuclei, a large number of nuclear bod-
ies have been difficult to purify on their own and may well
be seen as “shadows” in our chromatin data. Future work
will have to show if shadow proteomics provides a path to
mapping these and other elusive structures in cells.
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[14] Vizcaı́no, J. A., Côté, R. G., Csordas, A., Dianes, J. A. et al., The
PRoteomics IDEntifications (PRIDE) database and associated
tools: status in 2013. Nucleic Acids Res. 2013, 41, D1063–
D1069.

[15] UniProt Consortium, UniProt: a hub for protein information.
Nucleic Acids Res. 2015, 43, D204–D212.

[16] GeneOntology Consortium, GeneOntology Consortium: go-
ing forward. Nucleic Acids Res. 2015, 43, D1049–D1056.

[17] Hall,M., Frank, E., Holmes, G., Pfahringer, B. et al., TheWEKA
datamining software: an update.SIGKDDExplorations 2009,
11, 10–18.

[18] Breiman, L., Random forests.Machine Learn. 2001, 45, 5–32.

[19] Berthold,M. R., Cebron, N., Dill, F., Gabriel, T. R. et al., KNIME:
the Konstanz information miner. Data Anal. Machine Learn.
Appl. 2008, 319–326.

[20] Pagliarini, D. J., Calvo, S. E., Chang, B., Sheth, S. A. et al.,
A mitochondrial protein compendium elucidates complex I
disease biology. Cell 2008, 134, 112–123.

[21] Binns, D., Dimmer, E., Huntley, R., Barrell, D. et al., QuickGO:
a web-based tool for Gene Ontology searching. Bioinformat-
ics 2009, 25, 3045–3046.

[22] Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C. et al.,
Proteomics. Tissue-based map of the human proteome. Sci-
ence 2015, 347, 1260419.

[23] Rhee, H. W., Zou, P., Udeshi, N. D., Martell, J. D. et al.,
Proteomic mapping of mitochondria in living cells via
spatially restricted enzymatic tagging. Science 2013, 339,
1328–1331.

[24] R Core Team, R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,
Austria. 2015.

[25] Durinck, S., Spellman, P. T., Birney, E., Huber, W., Mapping
identifiers for the integration of genomic datasets with the
R/bioconductor package biomaRt.Nat. Protoc. 2009, 4, 1184–
1191.

[26] Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T., ROCR:
visualizing classifier performance in R. Bioinformatics 2005,
21, 3940–3941.

[27] Wickham, H., ggplot2: Elegant Graphics for Data Analysis,
Springer, New York 2009.

[28] Wang, S., Fusaro, G., Padmanabhan, J., Chellappan, S. P.,
Prohibitin co-localizes with Rb in the nucleus and recruits
N-CoR and HDAC1 for transcriptional repression. Oncogene
2002, 21, 8388–8396.

[29] Willaert, A., Malfait, F., Symoens, S., Gevaert, K. et al., Reces-
sive osteogenesis imperfecta caused by LEPRE1 mutations:
clinical documentation and identification of the splice form
responsible for prolyl 3-hydroxylation. J. Med. Genet. 2009,
46, 233–241.

[30] Kazak, L., Reyes, A., Duncan, A. L., Rorbach, J. et al., Alter-
native translation initiation augments the human mitochon-
drial proteome. Nucleic Acids Res. 2013, 41, 2354–2369.

[31] Alabert, C., Bukowski-Wills, J. C., Lee, S. B., Kustatscher,
G. et al., Nascent chromatin capture proteomics determines
chromatin dynamics during DNA replication and identifies
unknown fork components.Nat. Cell Biol. 2014, 16, 281–293.

C⃝ 2015 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com



Manuscript   4.   “The   Human   Proteome   Co-Regulation   Map   Reveals  

Functional   Relationships   Between   Proteins”  

Pages   51   -   80  

Pre-print   available   online,   DOI:   https://doi.org/10.1101/582247  

50  

https://doi.org/10.1101/582247


 

1

2

3
4

5
6
7
8

9
10

11

12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

The human proteome co-regulation map reveals functional relationships 
between proteins 

 
Georg Kustatscher 1 *, Piotr Grabowski 2 *, Tina A. Schrader 3 , Josiah B. Passmore 3 , Michael 

Schrader 3 , Juri Rappsilber 1,2# 
 
1 Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK  
2 Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 

Berlin, Germany 
3 Biosciences, University of Exeter, Exeter EX4 4QD, UK 
 
* Equal contribution 
# Communicating author: juri.rappsilber@ed.ac.uk 
 
Submission as  Resource  article. 
 
The annotation of protein function is a longstanding challenge of cell biology that             
suffers from the sheer magnitude of the task. Here we present ProteomeHD, which             
documents the response of 10,323 human proteins to 294 biological perturbations,           
measured by isotope-labelling mass spectrometry. Using this data matrix and robust           
machine learning we create a co-regulation map of the cell that reflects functional             
associations between human proteins. The map identifies a functional context for           
many uncharacterized proteins, including microproteins that are difficult to study with           
traditional methods. Co-regulation also captures relationships between proteins        
which do not physically interact or co-localize. For example, co-regulation of the            
peroxisomal membrane protein PEX11β with mitochondrial respiration factors led us          
to discover a novel organelle interface between peroxisomes and mitochondria in           
mammalian cells. The co-regulation map can be explored at  www.proteomeHD.net .  
 
Functional genomics approaches often use a “guilt-by-association” strategy to determine the           
biological function of genes and proteins on a system-wide scale. For example,            
high-throughput measurement of protein-protein interactions 1–4 and subcellular localization 5–8        
has delivered invaluable insights into proteome organisation. A limitation of these techniques            
is that extensive biochemical sample processing and non-specific antibodies may introduce           
artifacts. Moreover, not all proteins that function in the same biological process also interact              
physically or co-localize. Such functional relationships may be uncovered by assays with            
phenotypic readouts, including genetic interactions 9 and metabolic profiles 10 , but these have           
yet to be applied on a genomic scale in humans. One of the oldest functional genomics                
methods is gene expression profiling 11 . Genes with correlated activity often participate in            
similar cellular functions, which can be exploited to infer the function of uncharacterized             
genes based on their coexpression with known genes 12–16 . 

However, predicting gene function from coexpression alone often leads to inaccurate           
results 17,18 . One possible reason for this is that gene activity is generally measured at the               
mRNA level, neglecting the contribution of protein synthesis and degradation to gene            
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expression control. The precise extent to which protein levels depend on mRNA abundances             
is still debated, and likely differs between genes and test systems 19–21 . However, some             
fundamental differences between mRNA and protein expression control have recently          
emerged. For example, many genes have coexpressed mRNAs due to their chromosomal            
proximity rather than any functional similarity 17,22–24 . Such non-functional mRNA coexpression          
results from stochastic transitions between active and inactive chromatin that affect wide            
genomic loci 22,23,25 , and transcriptional interference between closeby genes 23,26 . Importantly,         
coexpression of spatially close, but functionally unrelated genes is buffered at the protein             
level 17,23 . Protein abundances are also less affected than mRNA levels by genetic            
variation 27,28 , including variations in gene copy numbers 29–31 . Consequently, protein         
expression profiling outperforms mRNA expression profiling with regard to gene function           
prediction 17,18 . Protein-based profiling not only allows for a more accurate measurement of            
gene activity, but can determine additional aspects of a cell’s response to a perturbation,              
such as changes in protein localization and modification state. At the proteome level,             
expression profiling can therefore be extended to a more comprehensive protein covariation            
analysis. 

Proof-of-principle studies by us and others have shown that protein covariation can            
be used to infer, for example, the composition of protein complexes and organelles 32–40 .             
However, these studies have focussed on relatively small sets of proteins or biological             
conditions, or used samples tailored to the analysis of specific cellular structures. In addition              
to the limited amount of data, coexpression analyses may be held back by the statistical               
tools used to pinpoint genes with similar activity. Coexpressed genes are commonly            
identified using Pearson’s correlation, which is restricted to linear correlations and           
susceptible to outliers. Machine-learning may offer an increase in sensitivity and specificity. 

Despite the success of functional genomics, many human proteins remain          
uncharacterized, especially small proteins that are difficult to study by biochemical methods.            
The emergence of big proteomics data and new computational approaches could provide an             
opportunity to look at these proteins from a different angle. We wondered if protein              
covariation would assign functions to previously uncharacterized proteins or novel roles to            
characterized ones. The resulting resource is available at  www.proteomeHD.net to generate           
hypotheses on the cellular functions of proteins of interest in a straightforward manner.  

 
RESULTS 
 
ProteomeHD is a data matrix for functional proteomics 
To turn protein covariation analysis into a system-wide, generally applicable method, we            
created ProteomeHD. In contrast to previous drafts of the human proteome 7,8,20,41,42 ,           
ProteomeHD does not catalogue the proteome of specific tissues or subcellular           
compartments. Instead, ProteomeHD catalogues the transitions between different proteome         
states, i.e. changes in protein abundance or localization resulting from cellular perturbations.            
HD, or high-definition, refers to two aspects of the dataset. First, all experiments are              
quantified using SILAC (stable isotope labelling by amino acids in cell culture) 43 . SILAC             
essentially eliminates sample processing artifacts and is especially accurate when          
quantifying small fold-changes. This is crucial to detect subtle, system-wide effects of a             
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perturbation on the protein network. Second, HD refers to the number of observations             
(pixels) available for each protein. As more perturbations are analysed, regulatory patterns            
become more refined and can be compared more accurately. 

To assemble ProteomeHD we processed the raw data from 5,288 individual           
mass-spectrometry runs into one coherent data matrix, which covers 10,323 proteins (from            
9,987 genes) and 294 biological conditions (Supplementary Table 1). About 20% of the             
experiments were performed in our laboratory and the remaining data were collected from             
the Proteomics Identifications (PRIDE) 44 repository (Fig. 1a). The data cover a wide array of              
quantitative proteomics experiments, such as perturbations with drugs and growth factors,           
genetic perturbations, cell differentiation studies and comparisons of cancer cell lines           
(Supplementary Table 2). All experiments are comparative studies using SILAC 43 , i.e. they            
do not report absolute protein concentrations but highly accurate fold-changes in response to             
perturbation (Fig. 1b). About 60% of the included experiments analysed whole-cell samples.            
The remaining measurements were performed on samples that had been fractionated after            
perturbation, e.g. to enrich for chromatin-based or secreted proteins. This allows for the             
detection of low-abundance proteins that may not be detected in whole-cell lysates.  
 
Machine-learning captures functional protein associations 
Proteins that are functioning together have similar patterns of up- and downregulation across             
the many conditions and samples in ProteomeHD (Fig. 1c). Proteins with unrelated function             
can be clearly distinguished, even though most expression changes are well below 2-fold.             
Therefore, we reasoned that it should be possible to reveal functional links between proteins              
on the basis of such regulatory patterns, and reveal the function of unknown proteins by               
associating them with well-characterized ones. To increase the accuracy of pattern           
recognition we focussed on the 5,013 proteins that were quantified in at least 95 of the 294                 
perturbation experiments. We used the treeClust 45 machine-learning algorithm to calculate          
how similar any two proteins behave across ProteomeHD, resulting in a “co-regulation            
score”. We define proteins with a co-regulation score above 0.5 as “co-regulated”. In this              
way, we find 56,587 protein co-regulation pairs, or 0.5% of the 1.2 x 10 7 possible pairs (Fig.                 
1d). 

We then tested whether co-regulation indicates co-function. Indeed, we find that           
co-regulated protein pairs are heavily enriched for subunits of the same protein complex,             
enzymes catalysing consecutive metabolic reactions and proteins occupying the same          
subcellular compartments (Fig. 1e). Most proteins are co-regulated with at least one other             
protein, and nearly half have more than ten co-regulation partners (Fig. 1f). For 97% of the                
tested proteins, the group of their co-regulation partners is enriched in at least one Gene               
Ontology 46  biological process (Fig. 1h). 

The extent of coexpression between two genes is often determined using Pearson’s            
correlation coefficient (PCC). We calculated correlation coefficients for protein pairs across           
ProteomeHD. Surprisingly, they do not agree well with the co-regulation scores obtained by             
treeClust machine-learning (Supplementary Fig. 1a). To assess which metric identifies          
known protein associations more accurately we performed a precision-recall analysis. At a            
recall of 1,000 functionally related protein pairs, the precision is 0.99, 0.67 and 0.10 for               
treeClust learning, PCC and a random classifier, respectively (Supplementary Fig. 1b). This            
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indicates that treeClust strongly outperforms PCC at predicting functional relationships from           
the same dataset. To understand the reason for this we inspected a number of protein pairs                
in detail. We find that treeClust’s robustness towards data outliers allows it to detect more               
true-positive and fewer false-positive protein associations (Supplementary Fig. 1c,d).  
 
A co-regulation map of the human proteome 
As a result of treeClust learning we know for each protein how strongly - or weakly - it is                   
co-regulated with any other protein. To visualize this complex dataset in a human-readable             
form we applied t-Distributed Stochastic Neighbor Embedding (t-SNE) 47,48 . This produces a           
two-dimensional proteome co-regulation map in which the distance between proteins          
indicates how similar they responded to the various perturbations in ProteomeHD (Fig. 1g).             
The map shows that protein co-regulation is closely related to co-function. From a global              
perspective, the map reflects the subcellular organization of the cell (Fig. 1i). For example, it               
separates the nucleolus from the nucleus, sets apart most secreted proteins and broadly             
distinguishes between small and large subunits of the ribosome. A closer look into three              
sections of the map reveals that it captures more detailed functional relationships, too. For              
example, the five protein complexes of the respiratory chain are almost resolved (Fig. 1i,              
section i). The section also contains the phosphate and ADP carriers that transport the              
substrates for ATP synthesis through the inner mitochondrial membrane. Similarly, a section            
containing various RNA-related processes shows most subunits of the exosome complex           
grouped together, next to other nucleolar rRNA processing factors and the nuclear pore             
complex (Fig. 1i, section ii). In a third example section, cytoskeleton proteins such as actins               
and myosins are next to their regulators, including Rho GTPases and the Arp2/3 complex              
(Fig. 1i, section iii). Notably, these annotations are only used to illustrate that the              
co-regulation map reflects functional similarity; the map itself is generated without any            
curated information, solely on the basis of protein abundance changes in ProteomeHD.            
Therefore, the co-regulation map provides a data-driven overview of the proteome,           
connecting proteins into functionally related groups. 
 
Co-regulation complements existing functional genomics methods 
We next asked if protein co-regulation can predict associations that are not detected by other               
methods. We first compared co-regulation to physical protein-protein interactions determined          
by various methods, as catalogued in BioGrid 49 (Fig. 2a). In total, only about 10% of               
co-regulated protein pairs showed evidence of physical interaction. These were mainly           
derived from co-fractionation experiments, which tend to capture indirect interactions, rather           
than methods that detect direct interactions, such as two-hybrid screens. In addition, we             
assessed how co-regulation compares to functional associations mapped by STRING 50 ,          
based on methods such as text mining, evolutionary co-occurrence or mRNA coexpression.            
We find that the combined STRING evidence captures about 26% of all co-regulation pairs,              
showing that co-regulation analysis confirms existing links, but also provides many additional            
ones. 

We then compared the co-regulation approach to an individual functional genomics           
experiment. BioPlex 2.0 is the most comprehensive affinity purification–mass spectrometry          
(AP-MS) study reported to date 4 . BioPlex reports 11,229 physical interactions between the            
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proteins used in our study, of which 12% are also co-regulated (Fig. 2b). An additional               
54,064 potential links between these proteins are identified uniquely by co-regulation. These            
are strongly enriched for functional protein associations found in STRING, compared to a             
random set of protein pairs (Fig. 2b). Importantly, co-regulation links complement physical            
interactions not only in numbers, but also qualitatively. For example, FAM45A is a protein of               
unknown function that BioPlex reports to interact with two protein complexes involved            
endosomal cargo sorting, CCC and retriever 51 . FAM45A is also co-regulated with several            
CCC subunits, various other endosomal trafficking proteins and three regulatory factors of            
NF-κB signaling, suggesting that FAM45A may be an additional link between this key             
signaling pathway and endocytic trafficking 52  (Fig. 2c). 

 
Co-regulation provides functional annotation for uncharacterized proteins 
The co-regulation map contains 339 uncharacterized proteins, which we define as proteins            
with a Uniprot 53 annotation score of 3 or less (Fig. 2d). Of these, 80% are co-regulated with                 
at least one fully characterized protein, i.e. a protein with an annotation score of 4 or 5 (Fig.                  
2e). A median of 9 well-studied proteins are co-regulated with each uncharacterized protein,             
making it possible to predict the potential function of hundreds of uncharacterized proteins             
on the basis of their co-regulation partners. We observe a similar connectivity for the cancer               
gene census 54 , i.e. genes that cause cancer when mutated, and for DisGeNET 55 genes,             
which are genes implicated in a broad range of human diseases (Fig. 2e). Therefore, protein               
co-regulation may be helpful for functional analysis of human disease genes. To facilitate             
such functional annotation efforts we created the website  www.ProteomeHD.net , which          
allows proteins to be queried regarding their position in the co-regulation map and their              
co-regulation partners. 

A common property of uncharacterized proteins is their small size. For example,            
proteins smaller than 15 kDa constitute 16% of the uncharacterized proteins in the human              
proteome, but only 5% of the characterized ones. Among the least well understood fraction              
of the proteome, i.e. proteins with an annotation score of 1, 38% are smaller than 15 kDa                 
(Fig. 2f). This discrepancy is set to increase further, since hundreds or thousands such              
microproteins have so far been overlooked by genome annotation efforts 56,57 . Microproteins           
can regulate fundamental biological processes 58 , but their small size makes it difficult to             
identify interaction partners 56,59 or to target them in mutagenesis screens 56 . Microprotein           
sequences also tend to be less conserved than those of longer protein-coding genes 60 . We              
reasoned that protein covariation may help to reduce the annotation gap for small proteins,              
because simply quantifying proteins in cell extracts should introduce less bias against small             
proteins than methods which require extensive genetic or biochemical sample processing.           
Indeed, we find that 12% of the uncharacterized proteins in the co-regulation map are              
smaller than 15 kDa. While this is less than the 16% in the proteome overall, the bias is                  
considerably smaller than that of physical protein-protein-interaction maps. For example,          
BioPlex contains 6% uncharacterized microproteins (Fig. 2g). 

Protein co-regulation can predict the potential function of uncharacterized         
microproteins that are absent from BioPlex 2.0, and in some cases these predictions are              
supported by additional evidence from small-scale studies. For example, the mitochondrial           
proteolipid MP68 is co-regulated with subunits of the ATP synthase complex, suggesting a             
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function in ATP production (Fig. 2h). Intriguingly, MP68 co-purifies with the ATP synthase             
complex, but only in buffers containing specific phospholipids 61,62 , and knockdown of MP68            
decreases ATP synthesis in HeLa cells 63 . In addition, several membrane proteins of the             
endoplasmic reticulum are co-regulated with MP68, suggesting an additional function in that            
membrane. Second, the conserved C11orf98 microprotein is located in the nucleolar area of             
the co-regulation map (Fig. 2i). C11orf98 was also identified as a nucleolar protein by  in situ                
proximity tagging, another approach proposed to reduce non-specific interactions obtained          
by affinity-purification of microproteins 59 . 

  
A new function for PEX11β in peroxisome-mitochondria interplay 
Some well-characterized proteins have unexpected co-regulation partners. For example,         
PEX11β is a key regulator of peroxisomal membrane dynamics and division 64 . However, only             
one of PEX11β’s co-regulation partners is a peroxisomal protein. Instead, it is most strongly              
co-regulated with subunits of the mitochondrial ATP synthase and other components of the             
electron transport chain (Fig. 2j). These proteins are located to the inner mitochondrial             
membrane, making a physical interaction with PEX11β unlikely. However, peroxisomes and           
mitochondria in mammals are intimately linked cooperating in fatty acid β-oxidation and ROS             
homeostasis 65 . How these organelles communicate or mediate metabolite flux has been           
elusive. Live cell imaging revealed that expression of PEX11β-EGFP in mammalian cells            
induced the formation of peroxisomal membrane protrusions, which interact with          
mitochondria (Fig. 3, Supplementary movies 1-3). Interactions of elongated peroxisomes          
with mitochondria were more frequent than those of spherical organelles, and long-lasting            
excluding random events (Fig. 3n,o). Miro1 (RHOT1), a membrane adaptor for the            
microtubule-dependent motors kinesin and dynein 66 , is also co-regulated with PEX11β (Fig.           
2j). We recently showed that Miro1 distributes to mitochondria and peroxisomes 67 indicating            
that it coordinates mitochondrial and peroxisomal dynamics with local energy turnover.           
Peroxisome-targeted Miro1 (Myc-Miro-PO) can be used as a tool to exert pulling forces at              
peroxisomal membranes, which results in the formation of membrane protrusions in certain            
cell types (Supplementary Fig. 2) (I Castro, DM Richards, J Metz, JL Costello, JB Passmore,               
TAS, A Gouveia, D Ribeiro, MS, submitted). We show here that silencing of PEX11β inhibits               
membrane elongation by Myc-Miro-PO, confirming that PEX11β is required for the formation            
of peroxisomal membrane protrusions (Supplementary Fig. 2). These findings are in           
agreement with studies in plants, where  At PEX11a has been reported to mediate the             
formation of peroxisomal membrane extensions in response to ROS 68 . In yeast,           
peroxisome-mitochondria contact sites are established by  Sc Pex11 and  Sc Mdm34, a          
component of the ERMES complex 69 . We conclude that PEX11β and Miro1 contribute to             
peroxisome membrane protrusions, which present a new mechanism of interaction between           
peroxisomes and mitochondria in mammals. They likely function in the metabolic           
cooperation and crosstalk between both organelles, and may facilitate transfer of metabolites            
such as acetyl-CoA and/or ROS homeostasis during mitochondrial ATP production. These           
findings now enable future studies on the precise functions of peroxisome membrane            
protrusions in mammalian cells and the role of PEX11β. 
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Proteomics enables higher accuracy but lower coverage than transcriptomics 
To compare the impact of mRNA and protein abundances on expression profiling we first              
focussed on 59 SILAC ratios in ProteomeHD that measured abundance changes across a             
panel of lymphoblastoid cell lines 28 . For these samples, corresponding mRNA abundance           
changes have been determined using RNA-sequencing 70 . Repeating treeClust learning on          
the basis of these data, we observed that protein coexpression predicts functional            
associations with far higher precision than mRNA coexpression (Fig. 4a). Similar results            
have recently been reported for a panel of human cancer samples 17 . 

Such analyses show that in a direct gene-by-gene, sample-by-sample comparison,          
protein expression levels are better indicators for gene function than mRNA expression.            
However, the amount of transcriptomics data published to date vastly exceeds that of             
proteomics studies. For example, the NCBI GEO repository currently holds mRNA           
expression profiling data from more than one million human samples 71 . This raises the             
possibility that the sheer quantity of available transcriptomics data could overcome their            
reduced reflection of functional links and, in combined form, perform better than            
protein-based measurements. To test this we compared the ProteomeHD co-regulation          
score with Pearson correlation coefficients obtained by STRING, which leverages the vast            
amount of mRNA expression experiments deposited in GEO 50,72 . Remarkably,         
precision-recall analysis shows that the protein co-regulation score still outperforms mRNA           
coexpression, despite being based on only 294 SILAC ratios (Fig. 4b). Much of this              
improvement is due to the robustness of treeClust machine-learning, as Pearson’s           
correlation coefficients derived from the same ProteomeHD data work only partially better            
than mRNA correlation (Fig. 4b). While only gene pairs with both mRNA and protein              
expression measurements were considered for the precision-recall analysis, the         
transcriptomics and proteomics datasets individually covered 17,436 and 4,976 genes,          
respectively (Fig. 4b). Therefore, mRNA profiling outperforms protein profiling in terms of            
gene coverage. 

 
 

DISCUSSION 
ProteomeHD in conjunction with machine learning provides an entry point for “big-data”-type            
protein co-regulation analysis into the functional genomics methods repertoire. It is possible            
that accuracy and coverage could be increased further by adding additional proteomics data.             
To test this we randomly removed 5%, 10% or 15% of the data points in ProteomeHD. This                 
decreases performance reproducibly and proportionally to the amount of removed data           
(Supplementary Fig. 3), suggesting that ProteomeHD has not reached saturation and           
expanding it will further enhance its performance. One possibility would be to incorporate             
other types of proteomics experiments, such as affinity-purifications or indeed the entire            
PRIDE 44 repository. The latter approach is for instance taken by the Tabloid Proteome, which              
infers protein associations based on detecting them in the same subset of many different              
proteomics experiments 39 . However, there is a benefit of restricting ProteomeHD on           
perturbation experiments. It supports a biological interpretation of protein associations          
derived from it: two co-regulated proteins are part of the same cellular response to changing               
biological conditions, even though the precise molecular nature of the connection remains            
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unknown. In this way, protein co-regulation analysis is analogous to genetic interaction            
screening. This also sets protein co-regulation apart from indiscriminate protein covariation           
or co-occurrence analyses, which find protein links in a mix of proteomics data and therefore               
give no insight into the possible biological connection. 

A key difference between our approach and previous gene coexpression studies is            
our application of two machine-learning algorithms, treeClust 45 and tSNE 47,48 . Inferring          
protein associations through treeClust learning is both more robust and sensitive than a             
traditional correlation-based approach, providing a leap in the accuracy with which           
functionally relevant interactions can be identified from the same dataset. For example, a             
recent study reported a protein co-regulation network across 41 cancer cell lines and             
subsequently identified dysregulated protein associations that predict drug sensitivities of          
these cell lines 18 . High-quality proteomics data allowed Lapek  et al 

18 to detect protein-protein             
associations with an accuracy that was tenfold higher than that based on matching mRNA              
coexpression data. When applying treeClust, strikingly, we can further improve this           
performance (Supplementary Fig. 4a). This suggests that treeClust may be helpful for the             
detection of “dysregulation biomarkers” in the future. The second machine-learning tool we            
apply here, tSNE, visualizes treeClust-learned protein associations as a 2D map. Correlation            
networks are typically built from a limited number of the strongest pairwise interactions,             
whereas tSNE takes into account the similarity - or dissimilarity - between all possible              
pairwise protein combinations. It creates the map that best reflects both direct and indirect              
relationships between all proteins. In this way, also proteins that are not directly linked to the                
core network can be placed into a functional context. For example, a tSNE co-regulation              
map obtained for Lapek  et al ’s cancer proteomics dataset contains the complete set of              
~6,800 proteins, rather than the 3,024 proteins that are directly correlated with another             
protein (Supplementary Fig. 4b). Moreover, protein-protein associations visualized by tSNE          
can be explored in a hierarchical manner, with larger distances indicating weaker            
co-regulation. This may be useful for studying connections between related protein           
complexes (Fig. 1i) or to reveal broad functional clues for uncharacterized proteins for which              
no detailed predictions are available, such as the C11orf98 protein assigned to the nucleolar              
area of the co-regulation map (Fig. 2j). Our web application at  www.proteomeHD.net is             
designed to support researchers in exploring co-regulation data at multiple scales, to validate             
existing hypotheses or create new ones. 

Protein coexpression analysis identifies functional connections between proteins with         
an accuracy and sensitivity that is substantially higher than traditional mRNA coexpression            
analysis. This may be particularly important for constitutively active genes, which constitute            
about half of human genes 42 and are primarily controlled at the protein level 73,74 . With an ever                
increasing amount of protein expression data making their way into the public domain, and              
the simplicity of exploiting the analysis results by the scientific community, protein            
coexpression analysis has a large potential in gene function annotation. Only 300            
quantitative proteomics measurements sufficed in conjunction with machine learning to          
establish functional connections between many human genes, which may be of considerable            
interest for proteome annotation in less studied or difficult to study organisms. 
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FIGURE 1 

 
Figure 1. The co-regulation map shows functional associations between human          
proteins. 
( a ) Assembly of ProteomeHD, which quantifies the protein response to 294 perturbations            
using SILAC 43 . Most measurements document protein abundance changes in whole-cell          
samples, but in some cases subcellular fractions were enriched to detect low-abundance            
proteins. Data were collected from PRIDE 44 and produced in-house. ( b ) All data are             
comparative, i.e. SILAC-labelled samples are quantified relative to each other. ( c ) Example            
experiments showing that groups of proteins with related functions, e.g. Gene Ontology 46            
(GO) biological processes, display similar expression changes. Note that the fold-changes           
are often very small. ( d ) Unsupervised machine learning using the treeClust 45 algorithm            
produces a co-regulation score, indicating the extent of covariation between two proteins. A             
small fraction of protein pairs exceeds the 0.5 cut-off and is defined to be “co-regulated”. ( e )                
Co-regulated protein pairs are strongly enriched for subunits of the same protein complex,             
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enzymes catalysing consecutive metabolic reactions and proteins with identical subcellular          
localization. ( f ) Most proteins are co-regulated with 1 to 5 other proteins, but many have               
more co-regulated partners. ( g ) Considering proteins that are co-regulated with ≥10 proteins,            
these groups of co-regulated proteins are almost always enriched in one or more GO terms.               
( h ) The global co-regulation map of ProteomeHD created using t-Distributed Stochastic           
Neighbor Embedding (t-SNE) 47,48 . Distances between proteins indicate how similar their          
expression patterns are. See  www.proteomeHD.net for an interactive version of the map. ( i )             
The co-regulation map broadly corresponds to subcellular compartments, and more detailed           
functional associations can be observed at higher resolution, as exemplified in i-iii.  
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FIGURE 2 

 
 
Figure 2. Protein co-regulation complements existing methods and predicts functions          
of unknown proteins. 
( a ) Percentage of co-regulated protein pairs that were previously linked physically (BioGrid 49 )            
or functionally (STRING 50 ) by a range of functional genomics methods. BioGrid and STRING             
integrate data from many small and large-scale studies. ( b ) Number of co-regulation links             
compared to links found for the same set of genes by BioPlex 2.0 4 , the largest               
protein-protein-interaction (PPI) dataset reported to date by a single study. Associations           
unique to co-regulation are also enriched for links in STRING, compared to random protein              
pairs. ( c ) Co-regulation and BioPlex complement each other to predict an endosomal            
trafficking function for uncharacterized protein FAM45A, possibly related to NFκB signaling.           
Inset shows the position of FAM45A (black circle) in the co-regulation map, other proteins              
are color-coded by their co-regulation score with FAM45A. ( d ) Proteins in the co-regulation             
map are defined as uncharacterized if their Uniprot annotation score is ≤3. ( e ) Connectivity              
of uncharacterized and disease genes to well-characterized genes (annotation score ≥4).           
80% of uncharacterized proteins have at least one co-regulation partner, 60% have more             
than five. ( f ) Microproteins are heavily enriched among the uncharacterized human proteins            
in SwissProt. ( g ) The co-regulation map contains fewer microproteins (12%) than SwissProt            
overall (16%), but this bias is smaller than that of a state-of-the-art affinity-purification             
mass-spectrometry (AP-MS) experiment, represented by BioPlex (6%).  P -values are from          
one-sided Fisher’s Exact test (*  P < 0.05, ***  P < 0.001). ( h, i ) Protein co-regulation reveals                 
potential functions of two uncharacterized microproteins that are absent from BioPlex. ( j )            
Unexpected behavior of peroxisomal PEX11β, which is co-regulated with mitochondrial          
respiration factors. 
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FIGURE 3 
 
Figure 3. PEX11β mediates the     
formation of peroxisomal   
membrane protrusions which   
interact with mitochondria in    
mammalian cells. 
( a-m ) COS-7 cells were    
transfected with PEX11β-EGFP,   
mitochondria were stained with    
Mitotracker (red) and cells    
observed live using a spinning     
disc microscope. PEX11β, a    
membrane shaping protein,   
induces the formation of tubular     
membrane protrusions from   
globular peroxisomes. We show    
here that those membrane    
protrusions can interact with    
mitochondria. ( a-f ) shows a    
peroxisome which interacts with a     
mitochondrion via its membrane    
protrusion (arrowhead), and   
follows it, occasionally detaching    
and re-establishing contact before    
interacting with another   
mitochondrion ( see Supplemen-   

tary Movie 1). ( g-m ) shows a mitochondrion (arrowhead) which interacts with a peroxisome             
via a peroxisomal membrane protrusion. It then detaches and moves away to interact with              
another peroxisome, which wraps its protrusion around it, before interacting with another            
mitochondrion ( see Supplementary Movie 2). ( n ) Quantification of interactions between          
spherical or elongated peroxisomes (PO) with mitochondria (MITO). The average result of 3             
independent experiments is shown, error bars indicate standard deviation. ( o ) Quantification           
of contact time. Note that elongated PO interact more frequently with MITO than spherical              
PO, but for similar time periods. PO-MITO interactions are generally long-lasting and not             
random ( see Supplementary Movie 3) (n=200 peroxisomes from 5 different cells). Dotted line             
indicates the mean, error bars indicate standard deviation. ***  P < 0.001 from a two-tailed               
unpaired  t  test; Time (min:sec). Scale bars, 5 µm. 
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FIGURE 4 
 
Figure 4. Protein co-regulation    
enables higher precision from less     
data, but lower coverage than     
classic mRNA coexpression. 
( a ) Precision-recall analysis of    
treeClust machine-learning on a    
subset of ProteomeHD, that is 59      
samples for which matching RNA-seq     
data were available from a separate      
study 70 . Reactome pathways were    
used as gold standard for true      
functional associations (proteins   
found in same pathway) and false      
associations (never found in same     
pathway). ( b ) Venn diagram showing     
number of genes covered by each      
analysis (only genes covered by both      
were considered for precision-recall    
curves). ( c ) Barchart showing number     
of experiments the curves are based      
on. ( d ) Similar precision-recall    

analysis of treeClust machine-learning on the full ProteomeHD database ("protein /           
treeClust"), in comparison to Pearson correlation obtained by STRING 50 on the basis of one              
million human mRNA profiling samples deposited in the NCBI Gene Expression Omnibus 71            
("mRNA / PCC"). Protein co-regulation outperforms mRNA correlation despite being based           
on orders-of-magnitude less data. This is partially due to the use of machine-learning, as              
predicting associations from ProteomeHD using PCC decreases performance markably         
("protein / PCC"). ( e, f ) same as (b, c). 
 
 
 
 
 
 
 
 
 
 
 
 

14 / 30 



 

 
 
  

15 / 30 



 

 
 

  

16 / 30 



 

 

 
 
 
  

17 / 30 



 

 

18 / 30 



 

462

463
464

465
466
467
468
469
470

471
472

473
474
475
476

477
478

479
480
481
482

SUPPLEMENTARY MOVIE LEGENDS 

 

Supplementary Movie 1. Interaction of peroxisomal membrane protrusions with         
mitochondria in COS-7 cells.   See  Fig. 4a-f.  

COS-7 cells were transfected with PEX11β-EGFP, mitochondria were stained with          
Mitotracker (red), and analysed by live-cell imaging using an IX81 microscope (Olympus)            
equipped with a CSUX1 spinning disk head (Yokogawa). A peroxisome interacts with a             
mitochondrion via its membrane protrusion, and follows it, occasionally detaching and           
re-establishing contact. 200 stacks of 9 planes (0.5 µm thickness, 100 ms exposure) were              
taken in a continuous stream. 118 frames, 14× speed. Scale bar, 5 µm. 

  

Supplementary Movie 2. Interaction of peroxisomal membrane protrusions with         
mitochondria in COS-7 cells.  See  Fig. 4g-m and legend Movie 1.  

Note a peroxisome at the bottom, which interacts with a mitochondrion via its membrane              
protrusion and then wraps around it, possibly to increase the membrane contact area. 200              
stacks of 9 planes (0.5 µm thickness, 100 ms exposure) were taken in a continuous stream.                
200 frames, 14× speed. Scale bar, 5 µm. 

  

Supplementary Movie 3. Interaction of peroxisomal membrane protrusions with         
mitochondria in COS-7 cells.  See  legend Movie 1.  

A mitochondrion, which moves to the left, is dragging a peroxisome with a membrane              
protrusion with it, indicating that the organelles are tightly tethered to each other. 200 stacks               
of 9 planes (0.5 µm thickness, 100 ms exposure) were taken in a continuous stream. 100                
frames, 14× speed. Scale bar, 5 µm. 
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ONLINE METHODS 
 
Data selection for ProteomeHD  
MS raw data were produced in-house or downloaded from the PRIDE repository 44 . Only             
experiments fulfilling the following inclusion criteria were considered: 

(1) Comparative proteomics experiments, i.e. relative protein quantitations of two or           
more biological states. For example, cells treated with an inhibitor  vs.  mock control. (2)              
Biological - not biochemical - comparisons, i.e. fold-changes must have been brought about             
in vivo , not by differential biochemical purification. For example, SILAC-labelled cells were            
treated with inhibitor or mock control, harvested and combined, and chromatin was enriched             
on the combined sample. In such cases any observed fold-change reflects the response to              
the inhibitor in the living cell, for example a protein re-localising from cytoplasm onto              
chromatin. We did not consider experiments that compared, for example, a whole-cell lysate             
with a chromatin-enriched fraction, as this would measure the impact of the biochemical             
enrichment rather than a biological event. (3) Quantitation by “stable isotope labeling by             
amino acids in cell culture” (SILAC) 43 . (4) Samples of human origin. 

In addition to these conceptual considerations, the following restrictions were          
imposed by the data processing pipeline: (5) The SILAC mass shift introduced by heavy              
arginine must be distinct from heavy lysine. (6) Raw data acquired on an Orbitrap mass               
spectrometer. (7) Samples alkylated with iodoacetamide, resulting in carbamidomethylation         
of cysteines. 

In total, we considered 294 experiments (SILAC ratios) from 31 projects. A full list of               
these is provided in Supplementary Table 2. 
 
In-house data collection 
80 experiments were performed in-house and analyzed chromatin-enriched samples. Of          
these, 65 measured the effect of growth factors, radiation and other perturbations on             
interphase chromatin, which was prepared using Chromatin Enrichment for Proteomics          
(ChEP) 75 . About half of these experiments had previously been published 34 . Another 15            
experiments documented perturbations specifically on freshly replicated chromatin, which         
was prepared using Nascent Chromatin Capture (NCC) 76 . 
 
MS raw data processing 
The 5,288 MS raw files were processed using MaxQuant 1.5.2.8 77 on a Dell PowerEdge              
R920 server. Default MaxQuant search parameters were used with the following exceptions:            
In group-specific parameters, match type was set to “No matching”. In global parameters,             
“Re-quantify” was enabled, minimum ratio count was set to 1 and “Discard unmodified             
counterpart peptide” was disabled. Also in global parameters, writing of large tables was             
disabled. SILAC labels were set as group-specific parameters as indicated in Supplementary            
Table 2. Canonical and isoform protein sequences were downloaded from Uniprot 53 on 28th             
May 2015, considering only reviewed SwissProt entries that were part of the human             
proteome. 

Protein fold-changes were then extracted from the proteinGroups file returned by           
MaxQuant. Non-normalized SILAC ratios were considered for downstream analysis and log2           
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transformed. From triple labelling experiments, the heavy/light and medium/light ratios - but            
not the heavy/medium ratios - were considered. Proteins detected in less than 4 experiments              
were discarded, as were proteins labeled as contaminants, reverse hits and those only             
identified by a modification site. We named the resulting data matrix ProteomeHD. It covers              
10,323 proteins and protein isoforms, mapping to 9,987 genes, and 294 SILAC ratios. On              
average, each protein has 112 SILAC measurements. Each experiment covers, on average,            
3,928 proteins. ProteomeHD can be downloaded as Supplementary Table 1. 
 
Protein co-regulation analysis using unsupervised machine-learning 
We used the R 78 package for the treeClust 45 algorithm to learn expression dissimilarities             
between proteins in ProteomeHD. For improved accuracy, we only considered 5,013           
proteins that were detected in ≥ 95 experiments. TreeClust is an unsupervised            
machine-learning algorithm based on decision trees that can handle missing values. Note            
that treeClust was designed not only to measure inter-point dissimilarities but also to perform              
clustering 45 . However, in this study we use it only to calculate dissimilarities, via the              
treeClust.dist function. The dissimilarity specifier was set to d.num = 2, so that dissimilarities              
are weighted according to tree quality. The protein co-regulation score between two proteins             
was defined as 1 - treeClust dissimilarity. While the co-regulation score is continuous, some              
analyses benefitted from a simplified categorical approach. In these cases, an arbitrary            
cut-off was chosen to define “co-regulated protein pairs” (> 0.5) and “not co-regulated pairs”              
(≤ 0.5).  

To visualize ProteomeHD as a 2D co-regulation map, treeClust dissimilarities were           
subjected to t-Distributed Stochastic Neighbor Embedding (t-SNE) 47,48 using the Rtsne          
package for R. The theta parameter was set to zero, perplexity to 50 and 1,500 iterations                
were performed. 
 
Functional annotation of co-regulated proteins 
To test if protein co-regulation reflects co-function (Fig. 1e) we defined three sets of              
“functionally related” protein pairs (subunits of the same protein complexes, enzymes           
catalyzing consecutive metabolic reactions and proteins with identical subcellular         
localization) as previously described 23 . 

To test larger groups (not pairs) of co-regulated proteins for functional enrichment, we             
analyzed enrichment of Gene Ontology terms using the topGO 79 R package (Fig. 1g). For              
each protein we tested the group of its co-regulation partners for GO term enrichment.              
Because some proteins are co-regulated with no or very few other proteins, we restricted the               
analysis to the 2,139 proteins that are co-regulated with at least 10 proteins. The three               
aspects (Biological process, Molecular function, Cellular component) of GO were          
downloaded from QuickGO 80 with taxon set to human and qualifier to null. Rather than the               
whole proteome, only proteins that were included in the treeClust analysis and had GO              
annotations were used as the gene “universe” or background for the topGO analysis.             
Enrichment of GO terms among protein co-regulation groups was tested considering GO            
graph structure and using a Fisher’s exact test. 
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Annotation of the co-regulation map 
Proteins localizing to specific subcellular compartments were downloaded from Uniprot 53          
using the following tags: Nucleus (SL-0191), Nucleolus (SL-0188), Endoplasmic reticulum          
(SL-0095), Mitochondrion (SL-0173), Cytoplasm (SL-0086), Secreted (SL-0243). Proteins        
and protein complexes were annotated individually based on the available literature (Fig.            
1h). 
 
Creating the www.proteomeHD.net framework 
The ProteomeHD online application was written in Python Flask web framework. The            
interactive plots are generated using Bokeh visualization library for Python          
( https://github.com/bokeh/bokeh ). The Gene Ontology and KEGG enrichment statistics are         
obtained from a STRING 50 server using an API call with maximally top 100 proteins              
co-regulated with the query. Only significantly enriched terms (Bonferroni adjusted  P value <             
0.1) are displayed. 
 
Comparison to orthogonal methods 
Physical protein-protein-interactions detected by a comprehensive range of small- and          
large-scale methods were assessed using BioGRID 49 , version 3.4.152. BioPlex 2.0 4 served           
as an example for physical interactions mapped by a single project. Functional protein             
associations mapped by a large range of methods and publications were inferred from             
STRING 50 , version 10.5. 
 
Annotation of uncharacterized and disease genes 
Proteins were defined as “uncharacterized” on the basis of having an annotation score ≤ 3 in                
Uniprot 53 . The Cancer Gene Census, i.e. genes that can cause cancer when mutated, was              
curated by COSMIC (Catalogue Of Somatic Mutations In Cancer, version 81) 54 . DisGeNET            
was used as a comprehensive, curated list of human gene - disease associations 55 . 
 
Precision - Recall analyses 
A gold standard set of reference proteins was defined using Reactome 81 . Bona fide             
functionally associated protein pairs (true positives) were defined as protein pairs found in             
the same “detailed” Reactome pathway. This was inferred from the file UniProt2Reactome.txt            
(available at  https://reactome.org/download-data ), where each protein is annotated to the          
lowest level subset of Reactome pathways. To make sure that only closely related protein              
pairs were assigned the “true positive” label, we excluded two pathways that were composed              
of > 200 proteins. We defined protein pairs that are not functionally associated (false              
positives) as proteins that are never in the same Reactome pathway, at any annotation level.               
This was inferred from UniProt2Reactome_All_Levels.txt (also available at        
https://reactome.org/download-data ), a file that maps proteins to all levels of the Reactome            
pathway hierarchy.  

On the basis of these true and false positive protein pairs, precision - recall analyses               
were carried out using the ROCR package 82 for R. The number of false positive protein pairs                
was randomly downsampled to 90%, so that a random classifier used as reference would              
have a consistent precision of 0.1. 
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Comparison of treeClust and Pearson correlation 
Pearson’s correlation coefficients (PCCs) for proteins across ProteomeHD were obtained          
using R. As for treeClust learning, only proteins quantified in ≥ 95 experiments were              
considered.  
 
Comparison of mRNA and protein expression profiling 
For the comparison of matched samples and proteins we considered mRNA and protein             
expression changes across 59 lymphoblastoid cell lines (Fig. 4a). The protein fold-changes            
are part of ProteomeHD and were originally published by Battle and colleagues 28 .            
RNA-sequencing data for the same cell lines and proteins were also previously reported 70 .             
We used the RNA-sequencing data to calculate mRNA fold-changes relative to a 60th cell              
line, which was the same cell line used as a SILAC reference for the protein expression data.                 
The combined mRNA and protein dataset has been described in more detail elsewhere 23 . 

For a more comprehensive comparison we considered protein associations predicted          
using treeClust learning or PCC on the basis of all 294 SILAC ratios in ProteomeHD (Fig.                
4b). This was compared to mRNA associations inferred by PCC on the basis of all human                
mRNA expression data processed by STRING. STRING’s state-of-the-art mRNA         
coexpression analysis pipeline considers all microarray and RNA-sequencing data deposited          
in the GEO repository 71 , resulting in one of the largest mRNA coexpression analyses             
available to date 50,72 . Note that for this comparison we did not use the STRING coexpression               
score, which is calibrated against the KEGG database, but the original uncalibrated            
Pearson’s correlations, which were kindly provided by Damian Szklarczyk. STRING PCCs           
are calculated separately for one- and two-channel microarrays and RNA-sequencing          
experiments. We used the average of these for the precision - recall analysis, which              
performed better than any individual experiment type. 

 
Validation of treeClust and tSNE on the cancer proteomics dataset  
Lapek  et al measured the abundances for 6,911 proteins in 41 different breast cancer cell               
lines 18 . These data are available as Supplementary Table 2 (tab 3) of their report. As               
described by Lapek  et al , we converted the protein intensities into log2 fold-changes over the               
median intensity measured for each protein across all cell lines. We then calculated             
Pearson’s and Spearman’s rank correlations for all possible protein pairs using R’s base             
function. The Spearman’s correlation coefficients obtained in this way are identical to the             
ones obtained by Lapek  et al using the cor.prob function (Supplementary Table 6 in their               
report 18 ). We also determined treeClust co-regulation scores for all protein pairs. However,            
treeClust can only grow one decision tree per input variable, i.e. 41 in this dataset, which                
would be too few for it to perform properly. To circumvent this, we forced treeClust to                
generate 1,000 decision trees by applying it iteratively. We created 100 treeClust forests,             
each generated with a random subset of 10 of the 41 variables, and used the average                
co-regulation score for downstream analysis. Precision-recall analysis using a Reactome          
gold standard and tSNE visualization were performed as described above. The CORUM            
protein complexes displayed in Lapek  et al ’s Figure 2, reported in their Supplementary Table              
7 18 , were color-coded in the co-regulation map.  
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General data processing 
Unless specified otherwise, all data processing was performed in R 78 , where possible using             
the data.table package 83 . All plots were created using the ggplot2 package 84 . 
 
Plasmids, siRNA, and antibodies 
For cloning of peroxisome-targeted Miro1, the C-terminal TMD and tail of Myc-Miro1 (kindly             
provided by P. Aspenström, Karolinska Institute, Sweden) was exchanged by a PEX26/ALDP            
fragment previously shown to target proteins to the peroxisome membrane (I Castro, DM             
Richards, J Metz, JL Costello, JB Passmore, TAS, A Gouveia, D Ribeiro, MS, submitted).              
PEX11β-EGFP was kindly provided by G. Dodt (Univ. of Tuebingen, Germany). PEX11β            
siRNA (AUU AGG GUG AGA AUA GAC AGG AUGG) (Eurofins) was previously verified 85 .             
Control siRNA (si-GENOME nontargeting siRNA pool #2) was obtained from GE Healthcare            
(D-001206-14-05). Antibodies used were as follows: rabbit polyclonal antibody against          
PEX14 (1:1400, kindly provided by D. Crane, Griffith University, Australia); mouse           
monoclonal antibody 9E10 against the Myc epitope (1:200, Santa Cruz Biotechnology, Inc.,            
sc-40), rabbit monoclonal antibody against PEX11β (1:1000, Abcam, ab181066); rabbit          
polyclonal antibody against GAPDH (1:2000, ProSci3783). Secondary anti-IgG antibodies         
against rabbit (Alexa 594, 1:1000, Molec. Probes/Life Technol. A21207) and mouse (Alexa            
488, 1:400, Molec. Probes/Life Technol. A21202) were obtained from ThermoFisher          
Scientific. HRP-coupled donkey polyclonal antibody against rabbit IgG (1:5000) was          
obtained from Biorad (172-1013). 
  
Cell culture and transfection 
COS-7 cells (African green monkey kidney cells; ATCC CRL-1651), and PEX5 deficient            
fibroblasts (kindly provided by H. Waterham, AMC, University of Amsterdam, NL) were            
cultured in DMEM (high glucose, 4.5 g/L) supplemented with 10% FBS, 100 U/ml penicillin              
and 100 μg/ml streptomycin at 37°C (5% CO 2 , 95% humidity) (HERACell 240i CO 2             
incubator). COS-7 cells were transfected using diethylaminoethyl-dextran (Sigma-Aldrich).        
dPEX5 fibroblasts have enlarged peroxisomes, which facilitates the visualization of          
membrane extensions. For transfection of dPEX5 fibroblasts, the Neon® Transfection          
System (Thermo Fisher Scientific) was used following the manufacturer’s protocol. Briefly,           
cells (seeded 24h before transfection) were washed once with PBS and trypsinized using             
TrypLE Express. Trypsinized cells were resuspended in complete medium, pelleted by           
centrifugation, and washed with PBS. The cells were once again centrifuged and carefully             
resuspended in 110 μl buffer R. For each condition, 4 × 10 5 cells were mixed with the DNA                  
construct (5 μg) or with 100 nM siRNA. Cells were microporated using a 100 μl Neon tip with                  
the following settings: 1400 V, 20 ms, one pulse. Microporated cells were immediately             
seeded into plates with prewarmed complete medium (without antibiotics) and incubated at            
37°C with 5% CO 2 and 95% humidity. The efficiency of silencing was monitored by              
immunoblotting of cell lysates and confirmed as previously reported 85 . 
  
Immunofluorescence and microscopy 
Cells grown on glass coverslips were processed for immunofluorescence 24h after           
transfection. Cells were fixed for 20 min with 4% paraformaldehyde in PBS (pH 7.4),              
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permeabilized with 0.2% Triton X-100, and blocked with 1% BSA, each for 10 min.              
Incubation with primary and secondary antibodies took place for 1h each in a humid              
chamber. Coverslips were washed with ddH 2 O to remove PBS and mounted with Mowiol             
medium on glass slides. All immunofluorescence steps were performed at room temperature            
and cells were washed three times with PBS between each individual step. Cell imaging was               
performed using an IX81 microscope (Olympus) equipped with an UPlanSApo 100×/1.40 oil            
objective (Olympus). Digital images were taken with a CoolSNAP HQ2 CCD camera and             
adjusted for contrast and brightness using the Olympus Soft Imaging Viewer software and             
MetaMorph 7 (Molecular Devices). For live-cell imaging, COS-7 cells were plated in 3.5 cm              
diameter glass bottom dishes (Cellvis). MitoTracker Red CMXRos (Life Technologies) at 100            
nM was used for visualisation of mitochondria. Live-cell imaging data was collected using an              
Olympus IX81 microscope equipped with a Yokogawa CSUX1 spinning disk head,           
CoolSNAP HQ2 CCD camera, 60 x/1.35 oil objective. Digital images were taken and             
processed using VisiView software (Visitron Systems, Germany). Prior to image acquisition,           
a controlled temperature chamber was set-up on the microscope stage at 37ºC, as well as               
an objective warmer. During image acquisition, cells were kept at 37ºC and in             
CO 2 –independent medium (HEPES buffered). 200 stacks of 9 planes (0.5 µm thickness, 100             
ms exposure) were taken in a continuous stream. All conditions and laser intensities were              
kept between experiments. 
 
Quantification and statistical analysis of peroxisome morphology and interaction 
Analysis of statistical significance was performed using GraphPad Prism 5 software. A            
two-tailed unpaired  t  test was used to determine statistical difference against the indicated             
group. * P  < 0.05, ** P  < 0.01, *** P  < 0.001. For analysis of peroxisome morphology, a                
minimum of 150 cells were examined per condition, and organelle parameters (e.g.            
membrane protrusions) were microscopically assessed in at least three independent          
experiments. The analysis was made blind and in different areas of the coverslip. Organelle              
interaction and contact time were analysed manually from live-cell imaging data using            
MetaMorph 7 (Molecular Devices). A region of interest (ROI) was drawn in different areas of               
the cell. Spherical and elongated peroxisomes within the ROI were tracked over the whole              
time course, and the frequency and duration of contacts monitored. Multiple interactions of             
the same peroxisome with mitochondria were treated as separate events. Data are            
presented as mean ± SD. 
 
Data availability 
The data that support the findings of this study are available as Supplementary Tables 1 and                
2, and on  www.proteomeHD.net . All data analysis has been performed with publically            
available and documented R packages that are referred to in the online methods section. 
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Abstract
High-throughput methodologies and machine learning have been central in developing
systems-level perspectives in molecular biology. Unfortunately, performing such integrative
analyses has traditionally been reserved for bioinformaticians. This is now changing with the
appearance of resources to help bench-side biologists become skilled at computational data
analysis and handling large omics datasets. Here, we show an entry route into the field of omics
data analytics. We provide information about easily accessible data sources and suggest some
first steps for aspiring computational data analysts. Moreover, we highlight how machine learning
is transforming the field and how it can help make sense of biological data. Finally, we suggest
good starting points for self-learning and hope to convince readers that computational data
analysis and programming is not intimidating.

Can a “traditional” biologist handle big data?
Biologists are facing an exciting yet challenging time with the increasing availability of
high-throughput datasets that need to be analyzed and understood. These omics datasets can be
either integrated with self-generated data or re-analyzed independently. In the former case, the
extra dimension provided by the new data can help generate additional hypotheses on biological
systems or support hypothesis validation. In the second case, one can consider published data
from a different perspective than that intended in the original study, integrating additional data
sources, to make new discoveries without having to invest the time and funds in acquiring new
data. Re-analysis and re-purposing of published data is a growing trend [1]. The field of biological
sciences is expecting a rise in specialists in data integration and interpretation.

Integrative multi-omics is a rapidly growing field, as reviewed by [2,3]. Additionally, one of the
exciting fields with increasing amounts of impact and deposited data are the single cell
technologies which encompass genomics, transcriptomics and epigenomics [4,5]. These
technologies can be especially powerful when combined with other types of data [6].

The term “multi-omics” refers to the process of integrating data from different high-throughput
technologies. Examples of such combinations are:

1. Genomics + transcriptomics, often used in expression quantitative trait loci (eQTL) studies,
which can elucidate genomic variants that are important for cellular functions and disease



2. Transcriptomics + proteomics, relating how the transcriptome is shaping the proteome to
the possible post-transcriptional and post-translational mechanisms governing this
process , as reviewed in [7]

3. Proteomics + metabolomics, correlating differences in protein levels with the metabolites
they regulate, synthesize or degrade [8,9]

4. Epigenetics + transcriptomics + proteomics, particularly how the regulatory state of the
genome influences gene expression [10] or to obtain a holistic view of stem cell
differentiation [11]

5. Phenomics + genomics + transcriptomics, relating external phenotypic traits to genetic
sequences and gene expression, which can be helpful in plant biotechnology, for example
[12]

Analyzing and making sense of such large datasets can be challenging. A natural ally for this task
is machine learning, which is becoming the go-to method for developing analytical workflows for
multivariate omics data. It can be used to build models for data classification (for example, to
separate healthy and sick patients or protein members of different subcellular components), to
cluster data into separate groups, reduce the dimensionality of the dataset for visualization and
perform missing value estimation. However, using machine learning requires more knowledge
and experience than performing basic statistical hypothesis testing in Excel-like spreadsheet
environments. One has to understand the basic concepts in order to avoid producing nonsensical
results.

Moreover, data processing, integration and modeling require some degree of programming skills.
For this reason, analyzing such data and using machine learning has traditionally been delegated
to computer-savvy experts. This often prohibits any hands-on contact from the domain specialists
with their data, especially in heavily wet lab-oriented fields. Programming languages such as R
and Python offer unlimited power for analysis but require some level of fluency in writing
instructions and knowing relevant functions and packages. Knowing at least one analytics
platform is paramount to performing any integrative omics study.

This manuscript is a conceptual primer aimed mainly at graduate students, PhD students and
post-doctoral researchers who want to start their journey into computational data analysis, but are
not sure about the overall breadth of the field, which are the important first steps to take, and what
resources are available. We propose a meta-level workflow consisting of four elements: 1)
obtaining processed data from public repositories, which can be used alone or in conjunction with
self-generated data, 2) hands-on manipulation and processing methods for large datasets, 3)
using statistics and machine learning to find significant differences and/or relationships, 4)
accessing knowledge and annotation databases to help extract novel insights (Figure 1). Finally,
we give some tips on learning resources that might be helpful to start one’s journey into
integrative data analytics and machine learning.

Where to find publicly available data?



The volume of biological and biomedical data deposited into public repositories and databases is
vast and growing every week. This offers a valuable resource to those who are able to navigate it.
The data is free and instantly available. This can allow for rapid testing of one’s ideas without
delays associated with experiment planning and data acquisition. Some of these repositories are
listed in Table 1.

The NCBI’s Gene Expression Omnibus (GEO) is an example of such a repository which, as of
May 2018, contains nearly 4500 curated datasets on gene expression, epigenetics and genome
variation profiling. A useful web resource for GEO-deposited data is the ARCHS4
(https://amp.pharm.mssm.edu/archs4/) from the Ma’ayan lab [13], which provides access to
processed gene expression tables from the raw data deposited in GEO and Sequence Read
Archive (SRA). Of note, the main difference between GEO and SRA is that GEO contains
processed data while the raw data (such as FASTQ files from a sequencing run) are deposited
into the SRA. This means that if one is looking for “ready-to-use” gene expression tables, one
should search the GEO.

The Encyclopedia of DNA Elements (ENCODE, [14]) consortium provides a high quality
multi-omics data resource for human, mouse, worm and fruit fly models. It contains data on gene
expression, epigenetics and 3D genome conformations that are generated through a variety of
technologies. Additionally, the ENCODE consortium provides computational annotation such as
predicted DNA regulatory elements.

ProteomeXchange [15] stores published proteomics datasets from over 9000 projects, covering a
multitude of species. The datasets tagged ‘biological/biomedical’ pertain to the general research
audience, or can be tagged ‘technical’, if they are more relevant to the specialized proteomics
community. Sometimes, the deposited data is in the so-called “raw” format only, which would
require a preliminary processing step using proteomics software before it can be interpreted.
However, one can typically find the processed protein or peptide quantification tables in the
accompanying manuscript.

The European Genome-Phenome Archive (https://ega-archive.org [16]) offers a large collection
of biomedical omics data from multiple studies. However, as is often the case with medical
databases containing sensitive patient information, one has to apply to gain access via official
channels.

The GTEx Consortium Portal [17] (www.gtexportal.org) stores omics data from a panel of 53
human tissues from densely genotyped donors. The combination of gene expression data with
genomic variants and patient information greatly facilitates eQTL studies.

dbGaP [18] (https://www.ncbi.nlm.nih.gov/gap) is a database archiving data about interactions of
human genotype and phenotype. The data types encompass DNA variation, SNP assays, DNA
methylation, copy number variation and gene expression profiling using technologies such as
RNAseq and microarrays. Those are linked to phenotype data such as disease-related clinical
status.



Single Cell Expression Atlas (https://www.ebi.ac.uk/gxa/sc/) and SCPortalen
(http://single-cell.clst.riken.jp/) are repositories for data acquired using single cell technologies,
such as single cell RNAseq.

Aside from technology- and domain-specific resources, initiatives now exist for the global
integration of omics datasets according to the FAIR principles (“findable, accessible,
interoperable and reusable”). The biggest such initiative is the Omics Discovery Index [19]
(https://www.omicsdi.org/), which provides an open-source platform for discovery, access and
dissemination of published omics data, and currently integrates 11 repositories. An interesting
feature available on this platform is the “similar dataset” section, which can be used to search for
other datasets that are conceptually related, similarly to recommended products in online stores.

Repository Data type Link

Gene
Expression
Omnibus

Gene expression, non-coding RNA profiling,
epigenetics, genome variation profiling

www.ncbi.nlm.nih.gov/g
eo/

ENCODE Epigenetics, gene expression, computational
predictions

www.encodeproject.org

ArrayExpress DNA sequencing, gene and protein
expression, epigenetics

www.ebi.ac.uk/arrayexp
ress/

European
Genome-Phen
ome Archive*

Various omics with phenotype data (biomedical
studies)

https://ega-archive.org

PRIDE,
ProteomeXcha
nge

Proteomics, protein expression,
post-translational modifications

www.ebi.ac.uk/pride/arc
hive/
http://www.proteomexch
ange.org/

1000 Genomes Genome sequences, sequence variants www.internationalgeno
me.org

MetaboLights Metabolomics www.ebi.ac.uk/metaboli
ghts/



GTEx* Gene expression (microarrays and RNAseq),
genome sequences

www.gtexportal.org

NIH/NCI
Genomic Data
Commons

Gene expression, epigenetics, miRNA-seq
(focus on cancer)

https://portal.gdc.cancer
.gov

NIH dbGaP* Genotypes, gene expression, epigenetics,
phenotypes

https://www.ncbi.nlm.ni
h.gov/gap

cBioPortal Focused on cancer, contains data on gene
copy numbers, gene and protein expression,
DNA methylation and clinical data

http://www.cbioportal.or
g

Single Cell
Expression
Atlas

Single cell gene expression (RNAseq) https://www.ebi.ac.uk/g
xa/sc/

RIKEN
SCPortalen

Single cell gene expression (RNAseq) http://single-cell.clst.rike
n.jp/

Table 1. Summary of large data repositories for omics analytics.
* needs granted access for individual-level data

How to analyze big datasets?
After downloading the dataset, the next step is to carry out an integrative analysis. Initially, this
process involves a series of data quality checks (such as looking at data distributions and ranges
or looking for any missing values) and joining of datasets based on common ID systems (usually
requires downloading ID translation tables). Subsequently, one can then perform the desired
statistical analyses or run machine learning workflows and/or annotate the data using external
knowledge bases. All of these steps require appropriate software.

Next-generation sequencing data often needs processing before it can be represented in e.g.
expression table. To help with these steps, the Galaxy platform [20] offers powerful solutions. It
was developed with user-friendliness and simplicity in mind to allow non-specialists to handle
genome and transcriptome data using a simple web-based user interface. Importantly, the user
doesn’t have to worry about providing enough computational resources as these are provided by
many Galaxy-hosting institutions. Alternatively, a Galaxy server can be quickly set-up on a local
server.



KNIME [21] is an accessible entry point for time-constrained biologists or for those daunted by
programming. It is a graphical user interface (GUI) analytics environment that offers a ‘point and
click’ alternative to classical programming. One can create node-based workflows in which each
node is a function that takes in a certain object (for example, gene and protein expression tables),
processes it and outputs the results (for example, combined expression data as one matrix). This
modular approach offers flexibility and allows one to be creative while keeping the entire workflow
easy to follow and reproducible. The “Node Guide” section of the KNIME web page is a great
starting point with many examples and downloadable workflows
(https://www.knime.com/nodeguide). Moreover, a hub for bioinformatics problems was recently
developed to share KNIME workflows for biological data processing and analysis
(https://cibi.uni-konstanz.de/hub). More information on using KNIME in the life sciences can be
found here [22].

Choosing between GUI-based analytical platforms such as KNIME or “classical” programming
languages is a personal matter. KNIME offers a lot of ready-to-use functionalities to combine
using a graphical user interface. While this allows for a quicker start, it also has limitations (for
example, the user is limited only to the implemented nodes). Programming languages such as R
and Python offer much more flexibility for data analytics and are considered the standard tools of
trade in research and industry. The choice between R and Python is mostly related to personal
preferences. However, it might be more productive to start with a language that is more commonly
used in one’s professional environment as this enables code sharing and hands-on help from
colleagues. Both R and Python offer very versatile and powerful analytical environments. Until
recently, R was a more popular choice among biologists as it had more mature libraries for
biological data (including the popular Bioconductor package repository). This is changing now, as
the statistical and biological analytics suite for Python is being constantly expanded. Both
languages have a syntax that is relatively easy to learn and there are no major speed differences
between the two when it comes to typical data operations. One advice is to simply try both for a
short period of time and see which language is a better fit.

An important aspect of productive analytical programming is selecting the integrated development
environment (IDE). IDEs are programs that help programmers to write code by providing access
to coding tools, an interactive programming console, plotting areas and variable inspectors.
Analyzing data using R and Python without an IDE is more challenging and we highly recommend
using one such as RStudio for R and PyCharm or Spyder for Python.

One has to be cautious when integrating data from many sources such as multiple technologies
and even laboratories. Most quantification technologies require proper data normalization
procedures, for example using a control sample that can take into account measurement noise
related to a given platform. It is advisable to work using normalized values or to calculate them, if
both the sample of interest and a control are available in the repository. In the worst case, the
observed signal in the data might be simply technical noise and not genuine biological change,
due to lack of proper normalization. Furthermore, it is important to understand how a given unit is
being used in the field. For example, RNAseq expression values FPKM and RPKM are typically



used for visualization and ranking. However, one should avoid using those widely used units for
differential gene expression analysis [23]. Good practices for other types of data, such as
ChIP-seq, can be found elsewhere [24]. We strongly recommend familiarizing oneself with the
way analyses are carried out in respective fields prior to downloading and integrating omics
datasets.

How can machine learning help you with your data?
Dealing with big datasets is not easy. To address this, one of the tools that has become very
popular in the life sciences is machine learning. In brief, machine learning is a collective term for
computer algorithms that iteratively fit a predictive model to the observed data. This model can
then be generally applied to predict properties of yet unencountered data, as long as they can be
described by the same features. The breadth and depth of this dynamic field has been extensively
reviewed [21–23]. Here, we will focus on the practical basics regarding the usefulness of machine
learning in biology and provide an example of a machine learning workflow design in Box 1.

Generally, machine learning approaches are divided into two main classes: supervised and
unsupervised algorithms. Supervised learning algorithms build a mathematical description (a
model) of how a combination of features, such as a gene expression values, relates to some
target variable, such as “is important in cancer progression”. These models can then be used to
predict the target variable (classes) for data that the model has not yet encountered. An example
of this is predicting subcellular localization of proteins [24–26]. Here, one has to first feed the
algorithm a dataset together with high-quality annotation, such as proteins assigned to known
subcellular compartments (a training set), on which to train the model. After this process, the
trained classifier can be used to assign subcellular localizations of other proteins in the dataset.
Similarly to the classification task, a supervised machine learning algorithm can be trained to
predict continuous values instead of classes (i.e. perform regression), such as chromatographic
retention times of peptides [25] or predicting gene expression levels using data on epigenetics
and genomic features [26].

Unsupervised approaches, as opposed to supervised approaches, don’t require a pre-specified
target variable of interest. Instead, this broad group of algorithms can help find (and exploit)
structure in the data. An example of such approach widely used in biology is data clustering which
allows to group observations according to their properties. One can imagine a panel of samples
which are not clearly distinguished by some binary classification (like cancer/healthy), but rather
having various genomic mutations. Having obtained protein expression profiles for each of the
samples, one can use an unsupervised approach to see which of those mutations behave
similarly to one another. A typical algorithm used in such situation is hierarchical clustering which
generates a dendrogram in the process. Cutting this dendrogram at a selected height, results in
formation of distinct clusters. These clusters can be then analyzed for functional enrichments
(described in more detail in the next section). Unsupervised approaches have been useful for
finding groups of co-regulated proteins in cancer [30], finding co-behaving mRNA and miRNA
modules in time-series data [31] or finding co-expressed genes in many samples [7,32].



Yet another type of unsupervised algorithms allows for dealing with high-dimensional data, for
example when one is interested in visualizing it or detecting outliers, by performing dimensionality
reduction. One of the most popular algorithms for this task is principal component analysis (PCA).
A good description of how it works and its applications in biology can be found elsewhere [27].

Another interesting application of machine learning is identification of novel predictive features for
an observed phenotype (known collectively as “feature importance analysis” or “feature
selection”). Here, machine learning is first used for a classification or regression task as described
above. However, during this process, many algorithms can inform the user about which of the
used features were the most important for a given task. Subsequently, one can look at how well
the selected features correlate with the target variable. An example of such approach is
expanding the model of nonsense-mediated mRNA decay (NMD) [28]. Here, Lindeboom et al.
looked at levels of NMD in human cancers and developed additional descriptors based on
genomic features (such as length of an exon harboring mutation). By using Random Forest-based
regression they could identify which of those new features are important for predicting NMD
efficiency, thereby expanding the current model. A short review of such approaches in biology can
be found in [29].

Machine learning pipelines can be built using R, Python and KNIME (among many other
languages and platforms). While KNIME offers a great selection of machine learning nodes,
including WEKA [30] and H2O (http://docs.h2o.ai/) implementations, it offers less flexibility for
pipeline development compared to programming languages such as R and Python. We found that
starting with machine learning in KNIME and switching to “classical” programming languages
worked best for many of our students. This allowed them to first learn the absolute basics of
analytics and subsequently give them more creative freedom.

One of the best places to start using machine learning in R is the “caret” package which offers
functions for data processing, classification and regression algorithms, feature selection and
model evaluation tools. Similarly to R, Python offers a powerful machine learning environment:
“scitkit-learn” [31]. Moreover, a good place to start one’s journey with machine learning is
downloading the Iris dataset and following one of the many tutorials for a respective machine
learning environment (for example,
http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html).

How to annotate results and generate hypotheses?
Biological data that has accumulated over the last decades is collated in databases using
systems of annotations and ontologies. One can use these external databases to help explain
functional relationships between genes or proteins of interest in new datasets. For example, using
information about pathways can indicate if observed expression changes are modulating
particular cellular functions.

A popular knowledge base is Uniprot (www.uniprot.org), which is a protein-centric resource,
annotating the proteomes of many studied species. Swiss-Prot is the manually curated part of the



database, offering high-quality annotation. It should be preferred over the electronically generated
TrEMBL annotation for functional genomics analyses. The “Retrieve/ID mapping” tool by Uniprot
allows mapping of both protein/gene identifiers between different systems (such as RefSeq to
Uniprot Accession numbers) and query lists of proteins in order to annotate them with biological
properties such as protein sequences, domains, subcellular localization, etc.

BioMart is another widely-used database (with a helpful R package biomaRt [32] and a Python
library [33]), found at https://www.ensembl.org/biomart/martview/. BioMart offers biological
annotation such as genomic coordinates, transcripts and proteins associated with a given gene;
sequences, GC-content, genetic variants or protein domains. The genes of interest (“the query”)
are configured in the “Filters” section of the database while the relevant biological information that
one may wish to download is configured in the “Attributes” section. The resulting annotated data
table can be then saved to disk as a .csv file and integrated into the analytical workflow by
matching the gene, transcript or protein IDs.

For genome-level annotation, NCBI offers the Genome Data Viewer
(https://www.ncbi.nlm.nih.gov/genome/gdv/), a tool for exploring eukaryotic genomes. This tool
can be used to find positions of genes and annotate the genome track with various types of
external data. Another similar tool for genome-level analysis is the UCSC Genome Browser
(https://genome.ucsc.edu/), which focuses predominantly on human and mouse genomes and
offers vast amounts of functional data integrated in “tracks” that are aligned to a given genome.
UCSC Genome Browser can seem overwhelming at first, but the steep learning curve for this tool
is worth enduring.

Some online resources offer even more “distilled” levels of biological information. STRING [34]
offers a database (https://www.string-db.org) on functional connectivity between genes/protein.
Users can search for interaction networks between genes/proteins of interest or download the
entire database. STRING collates an array of biological sources such as biochemical experiments,
text mining and co-expression studies and produces an integrated score. It offers a very simple
and fast way to check if a group of genes/proteins are functionally related. Apart from the
integrated score, STRING also performs simple GO and KEGG enrichment analysis, further
aiding hypotheses development. An alternative resource to STRING is the BioGRID [35], which
hosts a variety of interaction data for multiple species. Other easy-to-use tools for functional
enrichment and pathway analysis are the Gene Ontology-centered DAVID [36], which can help
discover biologically important modules after performing differential expression analysis or data
clustering. Enrichr [37], available at http://amp.pharm.mssm.edu/Enrichr/enrich, is another tool
that takes a list of genes and calculates enrichments in many functional categories such as
pathways, ontologies or transcription-factor binding. Finally, Gene Set Enrichment Analysis
(GSEA, [38]) can help analyze whether an a priori defined group of genes is significantly affected
in given biological states.

In addition to knowledge bases that contain annotation for multiple species, there are specialized
resources curated by communities that are focused on specific organisms or groups of organisms.
Examples include the Saccharomyces Genome Database (https://www.yeastgenome.org/),



WormBase aimed at nematodes (https://wormbase.org), FlyBase aimed at Drosophila
(http://flybase.org) or SubtiWiki focused on Bacillus subtilis biology
(http://subtiwiki.uni-goettingen.de/).

Annotation
database /
Tool name

Description Link

Uniprot Comprehensive proteomics knowledge base
(functions, pathways, sequences, modifications,
literature references, ID conversion)

https://www.uniprot.or
g

Biomart Gene-centric database with ID conversion, genomic
features (such as exons, introns, UTRs),
sequences, positions of genes in the genome

https://www.ensembl.
org/biomart/martview/

NCBI
Genome
Data Viewer

A web tool for exploration and analysis of eukaryotic
genome assemblies

https://www.ncbi.nlm.n
ih.gov/genome/gdv/

UCSC
Genome
Browser

A collection of tools for analysis of genomes with a
plethora of available data “tracks” such as
epigenetic signals and genomic features

https://genome.ucsc.e
du/

StringDB A database of known and predicted protein-protein
interactions. Integrates functional relationship data
from various sources.

https://www.string-db.
org/

BioGRID Curated database of physical and genetic
interactions based on various experimental sources

https://thebiogrid.org/

DAVID Gene Ontology and pathway analysis web tool for
calculation of functional enrichments in lists of
genes or proteins

https://david.ncifcrf.go
v/

Enrichr Web tool for calculating various functional
enrichments in lists of genes or proteins

https://amp.pharm.ms
sm.edu/Enrichr/



G:Profiler Web tools for functional profiling of groups of genes
or proteins. Contains useful ID conversion and
orthology mapping tools.

https://biit.cs.ut.ee/gpr
ofiler/

Table 2. Summary of annotation databases and post-analysis tools helpful in making
sense of results in computational analytics.

Where to find help?
Learning to handle large-scale data analysis has become increasingly accessible thanks to
numerous resources available on the Internet. Acquiring these specialized skills is no longer
limited to hands-on training organized at institutes, but can be done from the comfort of one’s
office or home and with exceptional time flexibility. One of the largest providers of such resources
are Coursera and edX.org. These commercial platforms offer dozens of courses on programming,
statistics, machine learning and even genomics.

One of the most popular courses on machine learning is the course offered by Andrew Ng (simply
called “Machine Learning”, found at https://www.coursera.org/learn/machine-learning). This
course is a good place to start one’s adventure with machine learning, as the concepts are
explained in a very intuitive and math-light way. Another important skill (especially for people
interested in using Python and R) is understanding the basic concepts of programming and
computer science. One of these courses is the “Introduction to Computer Science and
Programming Using Python” offered by MIT on the edX.org platform. Even though the course is
Python-based, the concepts learned are transferable to other programming languages, such as R.
An advantage of this course is that it is free. In addition to this, a good read is ”Ten simple rules for
biologists learning to program” [39].

Another worthwhile resource is Coursera’s “Statistics with R Specialization”, which is a bundle of
courses that teaches statistics and R simultaneously and can be of benefit to anyone who is
interested in functional genomic analyses (which are inherently statistics-heavy). Aside from
commercial providers, there are high quality online courses from EMBL-EBI, which can be found
at www.ebi.ac.uk/training/online/. Here, the spectrum of skills is more concentrated on applied
biological problems and specific platforms, such as analyzing RNAseq data. Moreover, the
genomics and biostatistics courses from Rafael Irizarry (found at
https://rafalab.github.io/pages/teaching.html) are another high-quality and free learning resource
on biological data analytics. For a more general selection of courses on R, Python and Data
Science, one can refer to DataCamp (https://www.datacamp.com/). It offers high quality courses
with a free (albeit limited) membership plan.

Furthermore, specialists in the omics field can be accessed through various forums with specific
questions. We strongly encourage referring to those forums when analyzing data. This improves
one’s understanding of the data peculiarities and various analytical approaches needed to extract
knowledge from the datasets and allows developing all the required skills much faster, while
avoiding potential beginner’s mistakes. Biostars (https://www.biostars.org/) and SEQanswers



(http://seqanswers.com/) are forums with very active bioinformatics communities and good places
to seek help.

Concluding remarks
The curricula of most bioscience programs already contain elements of computational data
analytics. However, there is a need for increased focus on this subject, to encourage students to
complete their degrees with a working knowledge of at least one programming language and
statistics. Luckily for those who have already finished their formal education, many learning
resources are available that are well-structured and contain high-quality material, while forums
offer expert advice to overcome any challenges. The only prerequisite is that one has to be
prepared to battle through the initial confusion and understand that the time investment will pay off
in the near future. Just do it!
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Figure 1. Basic high-level flow of omics data analytics in the life sciences.

BOX 1. Machine learning in biology. How to approach a machine learning analysis for
biological questions?

Planning a machine learning analysis can be an overwhelming task for a researcher lacking
computational experience. In Figure 2, we divided an example classification workflow
(mitochondrial protein prediction) into separate stages while emphasizing important questions
that one should consider at each stage.

First, one has to define the target variable of interest and think about what can represent the
positive and negative examples of the target.

Secondly, one has to carefully assemble a training set (for supervised methods). Selecting only
confident positive and negative examples is essential for the quality of the final analysis. One
can perform a manual literature search or take examples (such as proteins) on which there is
largest agreement between the different databases.



Thirdly, the input data used by the algorithm should contain enough positive and negative
training examples. Importantly, machine learning should not be treated as remedy for low
quality data. The classical statistical rule (crap-in, crap-out) applies to machine learning as well.

Subsequently, one should select a proper algorithm for the task. This step depends on the
target type (classification vs. regression), number of available training data and technicalities
such as presence of missing values.

Finally, the resulting class probabilities (or predicted continuous target values in regression)
should be manually evaluated. At this stage one can check if there are any over- or underfitting
problems and evaluate the workflow’s performance using statistics such as mean accuracy (for
classification) or mean squared error (for regression) using left-out (“test”) data. Such
statistically evaluated ranking can then be used with external annotation databases such as
STRING or Enrichr and further validated in the wet-lab or used to build new hypothesis for more
computational exploration.

Figure 2. Planning a machine learning-based analysis requires careful consideration at each
stage of the analysis. We listed the most general elements of designing such workflow using
mitochondrial protein classification task as an example. However, same thinking patterns apply
to regression tasks or for feature importance analysis.



 

Outlook 

The combination of advanced analytics such as machine learning and high quality proteomics             

datasets holds a great promise for developing predictive pipelines. Such pipelines can be used to               

rank thousands of proteins and millions of possible functional interactions by their strength (or              

statistical plausibility) and allow the typically expensive and time-consuming follow-up work to focus             

on the most promising hits. We expect these methods to flourish with the increase of numbers of                 

well-annotated published proteomics datasets and increasing accessibility of data analytics tools for            

domain specialists. Currently, most of the published protein data and analytical efforts are focused              

on human, but understanding functional relationships between proteins in other species is also of              

high importance. Species such as the house mouse, fruit fly or zebrafish are important model               

organisms used in molecular biology and further expanding our knowledge about those species is              

paramount for all facets of biology. Furthermore, I expect that protein co-expression analytics will              

become an important tool in characterizing unknown or understudied microorganisms. By combining            

RNA sequencing and proteomics, one could measure mRNA and protein expression in many             

different growth conditions and create a draft functional map of the proteome within a matter of few                 

months. Such organisms could be then more quickly utilized for drug discovery, enzyme production              

or even help with environmental processes, such as degrading plastic pollution or cleaning up air in                

the cities. Last, but not least, there is an emerging field of tissue-specific gene co-expression               

analytics that can shed light on functional interactions between proteins in more natural states,              

instead of looking only at cultivated cell lines. Such analyses will help speed-up drug discovery and                

drug toxicity assessment (which are inherently very tissue-specific), by providing more accurate            

protein functional relationship maps for the many human tissues and cell types making up our               

bodies. Finally, I strongly believe that with the ever-increasing availability of machine learning             

resources (both regarding learning how to use it and how to apply it to data), more people will be                   

diving deep into big datasets and make use of their domain knowledge without having to delegate                

this task to bioinformaticians, who are still in short supply. I believe, the XXI century will be truly the                   

golden age of biology. 
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