Optimization and Engineering
https://doi.org/10.1007/511081-021-09691-3

RESEARCH ARTICLE

®

Check for
updates

Multi-objective optimization of energy-efficient production
schedules using genetic algorithms

Tobias Kiister' - Philipp Rayling? - Robin Wiersig' - Francisco Denis Pozo Pardo'

Received: 14 August 2020 / Revised: 16 September 2021 / Accepted: 16 September 2021
© The Author(s) 2021

Abstract

The optimization of production schedules to be more energy efficient while still
meeting production goals is a difficult task: How to schedule and distribute produc-
tion tasks to meet production goals, while making best use of fluctuating energy
market prices and availability of locally installed energy sources? Although a large
body of related work exists in this domain, most of those seem to focus on indi-
vidual aspects and not the whole picture. In this paper, a genetic algorithm for opti-
mization of production schedules with respect to energy consumption, peak shaving,
and makespan is presented, that also takes into account that tasks can be performed
in different ways, having different characteristics. The algorithm has been success-
fully employed within the SPEAR project by applying it for optimization of an auto-
motive production line and for the pathway of an automated guided vehicle.

Keywords Industrial optimization - Genetic algorithms - Energy modeling -
Schedule optimization

This paper is based on research conducted in the SPEAR project, funded by the German Federal
Ministry of Education and Research (BMBF), funding Reference Numbers 011S17024G and
01IS17024H.

< Tobias Kiister
tobias.kuester @dai-labor.de

Philipp Rayling
science @twt-gmbh.de

! DAI-Labor, Technische Universitit Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany
2 TWT GmbH Science & Innovation, Ernsthaldenstrale 17, 70565 Stuttgart, Germany

Published online: 04 October 2021 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-021-09691-3&domain=pdf

T. Kiister et al.

1 Introduction

In order to stay competitive in the modern globalized world, production processes
have to be more agile, flexible, and faster-paced than ever before. And indeed, the
rise of Industry 4.0 and increasing automation and digitization of production chains
provide the opportunity to adapt and re-schedule processes on short notice. At the
same time, today’s variability in available energy sources and more flexible tariffs
allow for shifting energy-intense tasks to more favorable times, and thus for the pro-
duction to be both more economical and ecological. But production processes are
also more complex, and often more fragile, with less slack, than ever before, making
the timely optimization of such processes a challenging task.

The optimization of production schedules, as a variant of the prototypical Job
Shop Scheduling Problem, has been the topic of numerous research papers (Fuch-
igami and Rangel 2018). The optimization goals usually are the minimization of the
makespan or tardiness, but in recent times research also started to consider aspects
such as energy consumption, availability of locally produced energy, and variable
energy prices.

In the typical Job Shop Scheduling Problem, there are n jobs, each consisting of
a number of o, operations, each of which has to be executed on a specific machine,
with the goal of minimizing the total time required for the operations such that no
machine is used by two operations at the same time. Of course, there are also many
different variations of the problem, such as the flexible job shop scheduling prob-
lem, or the flow shop scheduling problem (Dahal et al. 2007).

In this work, which is partially based on results previously introduced by Wiersig
(2019), we will tackle a variant of the problem as presented in a recently completed
research project, SPEAR.!

e There can be multiple energy sources, each with a variable price and availability,
which can be used for representing power from locally installed sources or the
grid, including tariffs with an upper limit on power.

e Products consist of fasks, which can be executed in different rask modes, each of
which can require a different machine, or have a different power consumption or
duration.

e Order of execution and the concurrency of tasks can be constrained.

e Machines are grouped into cells, with the additional constraint that all the tasks
required for creating one instance of a product have to be executed on machines
from the same cell.

e Limited resources besides electric energy should be considered, e.g. the state of
charge of buffer batteries, pressurized air, or raw materials.

e The goal of the optimization can be the reduction of the total makespan, the total
energy usage and costs, the peak power consumption, or any weighted combina-
tion of those.

! SPEAR Project Website: https://spear-project.eu/.

@ Springer

https://spear-project.eu/

Multi-objective optimization of energy-efficient production...

The entire problem domain model resulting from those requirements will be
explained in more details in Sect. 2. To the best of the authors’ knowledge, those
framing conditions, and in particular the concept of different task modes, have not
been considered in related work until now (see Sect. 6).

Due to the large amount of variables and their complex inter-dependencies, the
search space is very large and difficult to navigable efficiently using deterministic
search and optimization approaches. Indeed, a study of several production sched-
uling systems found most using non-exact methods, especially for multi-criterion
optimization (Fuchigami and Rangel 2018). In particular genetic algorithms have
found much use in the field of production scheduling: They do not have many math-
ematical requirements to the underlying problem, can handle a variety of objective
functions and constraints, and are well suited for multi-objective optimizations (Gen
and Lin 2014).

With the inclusion of variable energy availability and costs, not only the alloca-
tion of machines and task modes to tasks and their ordering, but also the exact start
times of all tasks have to be taken into account, resulting in a high number of pos-
sible combinations, and the dependencies between tasks can cause small changes
to have large effects, possibly making the entire plan invalid. Hence, in this paper,
we are using a genetic algorithm: A non-deterministic search algorithm inspired by
the process of natural selection (Sakawa 2012), using concepts such as populations,
crossover and mutation, fitness and selection to converge to a near-optimal solu-
tion. The used genetic representations and mutation operations minimize the chance
for creating invalid intermediate schedules, and the fitness function can be tuned
towards different optimization goals, as will be shown in Sect. 3.

The genetic algorithm described in this paper has been implemented as part of a
production scheduling system in the course of the aforementioned research project
(see Sect. 4). It was evaluated on different real-world problems presented by the pro-
ject’s industrial partners, which will be elaborated in Sect. 5. The main results of the
paper are concluded in Sect. 7.

2 The production domain model

In the following, we will describe the production domain model used in this
approach. The model can roughly be subdivided into three parts: The production
system, consisting of the tasks and products and the infrastructure they can be pro-
duced with, the available energy sources, and different constraints that can restrict,
e.g., the order in which tasks can be executed. Finally, all those parts are aggre-
gated to an optimization request, yielding an optimization result, i.e. the production
schedule.

2.1 Production system

The production system model provides information on all the tasks, task modes
and machinery that are relevant for the optimization problem. This information can

@ Springer

T. Kiister et al.

Entities Activities

High Level
contains requires
exec. on
has variants
d. .

Fig. 1 Production system model, subdivided into entities and activities and showing their relations and
dependencies

come from measurements performed on real hardware, or estimated by means of
simulation of so-called digital twins.

The model can be subdivided into two sides: Entities, i.e. the installed machin-
ery, and activities, i.e. the tasks that are to be performed. Also, those are subdivided
into multiple levels: Production cells and products on a high level, and individual
machines within a cell and fasks that make up those products on a low level. Each
task has one or more fask modes that describe different ways how the task can be
executed and can require or produce different resources (Fig. 1).

One key distinguishing feature of this model is that each task can be implemented
in different task modes, which could simply represent performing the same task on
different machines, or different ways to manufacture the task that could, e.g., take
more time while consuming less energy or vice versa, or consume the energy at a
different point in time within the task.

Also, the model features resources that can be used to represent different interme-
diate products that are produced by one task and consumed by the next, or they can
stand for environmental factors, such as one task (or task mode) producing waste
heat that must not exceed a certain level, or the state-of-charge of a buffer battery.
All resources must always remain within their respective minimum and maximum
capacity during the entire production. While resources can be useful for modeling
concepts and circumstances that could not be represented otherwise, in other set-
tings they may not be needed and are thus optional. We will come back to resources
later when discussing constraints.

2.2 Energy sources

The production system can be powered by different energy sources. Here, we do not
make a strict distinction between different categories of energy sources, like energy
bought from a provider or locally generated energy. Instead, each energy source has
two attributes: A price and an availability, which can both vary for each point in
time. Here, the price defines the amount of money to be paid for one unit of energy,
and the availability denotes the units of energy available at that point in time. Note
that units of time, energy, and price are chosen by the user and have to be used con-
sistently throughout the entire optimization request.

@ Springer

Multi-objective optimization of energy-efficient production...

This way, the same model can be used for socket power that has a (possibly vari-
able) price and is (for all practical purposes) available in infinite quantities, as well
as for limited locally installed “free” renewable energy. Further, negative availability
can be used for energy sinks (parts of the production system that consume energy
and can not be changed or shifted).

The model can also be used for capped energy tariffs, i.e. tariffs that offer a cer-
tain price but allow only a maximum of x Wh to be consumed, and will charge a
higher price if that consumption is exceeded. Those can be modeled as two energy
sources: The first with the lower price and an availability of x Wh, and another with
the higher price and unlimited availability.

2.3 Constraints

The production system is subject to two types of constraints: General constraints
and user-specified constraints. The first group includes, among others:

e No two tasks can be executed on the same machine at the same time;
all tasks constituting one product must be performed in the same cell;
the total energy consumption in any time step must not exceed the total available
energy from energy sources;

e atask must be executed by a machine matching its task mode.

These constraints constitute the general “laws” of the system that always have to be
respected.

Besides those, there are user-specified constraints, e.g., the production system
may have a maximum peak energy usage (independently of what is available in indi-
vidual energy sources) and a maximum total duration. Further, the tasks in a produc-
tion system can have dependencies among each other, e.g., task A may have to be
executed after task B, or at the same time as task C, or not at the same time as task
D.

Finally, resource constraints can be used to specify more complex dependencies
between tasks by having one task (or task mode) produce a resource that is then
consumed by another task (or task mode). Among others, resources and resource
constraints can be used for representing:

resources like gas or pressurized air that are used for certain task modes,
intermediate products passed from one stage of production to the next,
waste products that may not be produced beyond a certain quantity,
environmental states, e.g., the position or elevation of a table,

the state-of-charge of, e.g., an electric forklift, or

charging and discharging buffer batteries used for softening load peaks.

The aforementioned task-dependencies could also be represented using only
resource-constraints, but dedicated task-dependencies make those both easier to
describe in the model and more efficient to enforce or check.

@ Springer

T. Kiister et al.

request response
Constraint [Product] Cell CellSchedul
type: string o
parameters: string[][] 0
’ Sl
4 A -
"' ‘_\1 Assignment
Task [Machine je——
Resource Configuration start: double
initial: int time_window: double L—
min: int num_restarts: int / __
max: int TaskMode Statistics
duration: double makespan: int
power: double[] cost: double
StopCondition Weights
seconds: int energy_cost: double EnergySource EnergyC "
generations: int energy_usage: double availability: double[] gy
stagnation: int makespan: double price: double[] consumed: double[]

Fig.2 Optimization model, divided into request and response part, slightly simplified. For readability,
the actual Request and Response classes aggregating the different parts are not shown. All parts except
for Configuration and Statistics can appear in multiple instances

2.4 Optimization requests and result

The actual optimization request includes, beside the above described production
system, the energy sources with up-to-date availability and prices, and user-spec-
ified constraints, also a “configuration” object holding the number of products to
complete, which then dictates how often to execute the individual tasks, as well as
individual weights to the three competing optimization goals (the total makespan,
energy costs, and peak energy consumption), and a stopping condition.

The result is a schedule for each production cell, describing for each of the tasks
that make up the products (a) when the task is to be executed, (b) which task mode
to use, and (c) on which machine to execute the task, as well as some statistics,
like the total duration, energy consumption in each step, and total energy costs (see
Fig. 2).

The request and result as well as the several features comprised in them have
been modeled in an object-oriented way, allowing a straightforward implementation
in Java and a transformation to readable JSON, as shown in Sect. 4. This request can
then be passed to the optimization system, which will be described in more detail in
the following section.

3 Optimization of production schedules

The optimization approach employed in this paper is based on Genetic Algorithms
(GA), i.e. optimization algorithms that are inspired by genetics and the processes of
evolution, mutation, and natural selection (Eiben and Smith 2003; Sakawa 2012).

The basic working principle of a genetic algorithm consists of the following steps:

1. Creating an initial population of candidate solutions,

@ Springer

Multi-objective optimization of energy-efficient production...

Table 1 Genetic representation and corresponding real-world concepts

Genetic concept Meaning

Population Current pool of candidate solutions

Phenotype Production schedule (represented in the domain model)
Genotype Production schedule (numeric repr. of variable parts)
Chromosome Section representing a specific feature, e.g. pause times
Gene Number representing, e.g., one specific pause time
Allele E.g., pause time for one task in one spec. schedule

2. Randomly selecting, combining, and mutating individuals from that population,
3. Using a quality- or fitness-function to select the best individuals to carry over to
the next generation.

Those steps are repeated, continuously improving the average quality of the popula-
tion, until a predefined stopping-condition is met, e.g., a certain number of genera-
tions. Local minima can be circumvented by optimizing multiple populations and
selecting the best result.

What sets genetic algorithms apart from other kinds of evolutionary algorithms is
that the above steps are not carried out on the individuals directly. Instead, they are
translated to a genetic representation, typically a sequence of numbers constituting
the “genome” of the individuals, which is then mutated on a very low level, e.g., by
changing or swapping individual numbers.

In the following, we will provide a detailed description of the genetic representa-
tion used for the production schedules, how their quality or fitness is determined,
and how they are allowed to be mutated, or altered.

3.1 Genetic representation

Each candidate solution is represented as a genetic code, i.e. an array of integer num-
bers, subdivided into different “chromosomes” for different aspects of the schedule,
which can then be mutated and recombined with a number of primitive and mostly
domain-agnostic functions. Table 1 shows an overview of the terms used in the GA
and the concepts they represent.

Given the information that makes up the schedule (not considering the derived
information like total duration or total energy cost), a first naive representation
would be to encode each task with three numbers on three different chromosomes:
The starting time, the selected task mode, and the machine to execute the task.

The problem with this representation is that it is very easy to create invalid
schedules. For instance, it is not easily possible to swap the order of two tasks to
be executed on the same machine. First, one task would have to be moved “out
of the way” before the other task can take its place and finally the first task can
take the place of the second, otherwise there would be an immediate constraint
violation. But even with this three-way-swap, each of the intermediate steps will

@ Springer

T. Kiister et al.

Genotype /

g Scheduk) | 0|12 3| 4|5|6|7]|8 [
PY | PS | PL| C Scheduk | ook Orter ‘PL‘ PS ‘c PY

Start-Time Al PY [

e ﬂ oflla q Pause Tme \i‘ o b B
o l —Decode [——re «Decode— | Assanment | L]|
wdesd A1‘ A2| | PM AZ‘ -

. nn-n -mn ity ‘PM‘ A2 ’Azl Al
Mode -

MY | MS| | MPs | |Mc2 PM PL
Aesgnmen | mh:;ﬁan« mPs| |MS| | Mcz| MY

Fig.3 Comparison of the initial start-time encoding (left) and the final order/pause encoding (right) rep-
resenting the same schedule (centre)

Genotype /
Schedu\e)0123456789
Product Order Product 2
Cell1| | MachineX | | Task &'
Product Pause 2 /

ime
Machine Y

Task 16" Task 3¢’
—Decode—> Machine Z Task1¢ | Task 3

Cell2 | Machine X Task 24
/

Cell
Assignment Cell 2

Task Order 2a 2c 2b 1c

Task

Pause Ti »
ause Time

Assignment 0 4 0 0

Machine Y Task 2¢*

i

Machine
Assignment

Mode . 5 B
Assignment

QU

Fig.4 Example genotype and corresponding schedule for multiple products and cells and the tasks and
machines contained therein (based on Wiersig (2019))

likely have a lower quality than the original setup. Thus, the candidate sched-
ules containing the partial swap will have a very high chance of being discarded
before the swap is complete. Implementing this swap as an atomic operation is
not trivial either, as the tasks might have different length and there might be other
tasks in between.

An alternative representation, which was adopted in this work, is to replace
the starting-time chromosome with two chromosomes for task ordering and pause
times, where the former is a valid permutation of the tasks and the latter encodes
the time for the task to wait after the last task occupying the same machine has
been completed (or after the start of the corresponding product, if there is no
prior task on the same machine). While this representation is slightly more com-
plex and more computationally intensive to encode and decode, the benefit is that
there can, by definition, be no two tasks occupying the same machine at the same
time, and hence fewer candidate schedules will violate constraints. A swap opera-
tion as described above can be completed in a single mutation, even if the swap
affects more than two tasks. Figure 3 shows a simple example comparing the two
representations.

Similarly, on a higher level, the assignment of products to cells is encoded in
another chromosome, as are the product ordering and product pause times, i.e. the
times to wait before starting the next product (Fig. 4). Consequently, the tasks’ start/
pause times are always relative to the start/pause times of their product, and the
machine used for a task is always taken from the machine pool of the corresponding
product’s cell.

@ Springer

Multi-objective optimization of energy-efficient production...

3.2 Fitness function

The fitness function is subdivided into two parts: The hard score and the soft
score. The hard score includes all the constraints that were defined in Sect. 2
(those that are not prevented by construction), while the soft score includes the
makespan, total costs and energy usage, and the maximum power peak. The dif-
ferent aspects of both the hard and the soft score are combined as two weighted
products, and then both are combined to the total score. The weighted products
are calculated as (1), where rating(s, c¢) is the rating of schedule s w.r.t. criterion
¢, and w, is the weight given to that criterion.

score(s) = H rating(s, c)"« "

ceC

For both hard and soft scores, a lower score is considered better, i.e. if a schedule
has a hard score of zero it has no constraint violations. A schedule with a lower hard
score will always be preferred to a schedule with a higher hard score, independently
of their soft scores. All individual ratings are > 0, and, by adding a small € > 0 to
each, effectively > O so the product does not degrade to zero. The weights are nor-
malized to have a sum of 1, such that, after subtracting the same & from the final
product, the score is O for a schedule without any defects.

3.3 Alteration and selection

In each generation g, the individuals of the population P, are derived from the
previous population P,_; by selecting a random sample of » individuals to be kept
without change, i.e. survivors, and a random sample of m individuals to be kept
with random alterations, i.e. offspring. (2)

P, = select(P,_,,n) U alter(select(Pg_l ,m)))

g—1°

The following altering methods have been implemented:

e Assign: Assign a new value to a randomly chosen gene (e.g., pause times,
task-mode, cell and machine assignment).
Swap: Swap two values in a permutation chromosome (e.g., task ordering).
Shift: Increase or decrease pause time for some task, consequently shifting the
task itself and all tasks after it by some amount.

e To-zero: Set pause before a random task to zero; basically just giving a higher
probability to one specific assign or shift alternation, but resulting in a signifi-
cant performance boost in practice.

Recombination/crossover was tried in the form of partially matched crossover for

permutations and single-point crossover for assignment chromosomes, but did not
result in a significant improvement of quality.

@ Springer

T. Kiister et al.

4 Implementation

The optimization algorithm is based on the Jenetics library for Java.> Besides pro-
viding well-tested implementations for the basic genetic algorithm, Jenetics’ exten-
sive use of the Java Stream API and builder- and factory-patterns allows for a well-
configurable and customizable optimization and parallel execution. Accordingly, the
different mutation operations have been implemented as Al terers for Jenetics and
the fitness function as a Comparator factory.

Besides the domain-agnostic alterers typical to genetic algorithms, the implemen-
tation also includes a variant of the swap alterer on task order permutations, using
a graph-based algorithm to make sure that all task-dependency-constraints are still
satisfied after the swap. This way, the number of mutations that are immediately dis-
carded due to constraint violations is greatly reduced.

The domain model has been implemented using the Lombok® library, allowing
the resulting classes to be very concise and consistent. Most of the relevant con-
cepts have been explained in Sect. 2 and shall not be repeated here. The time series
(for energy sources’ price and availability, task modes’ power consumption, and the
overall schedule) can be represented either using a simple array of values, one for
each discrete time step, or using a sparse navigable map, holding values from a cer-
tain starting time onward, using a TreeMap.

For running the optimization locally, and particularly for testing and debugging, a
simple graphical user interface has been created using JavaFX.* Besides controls for
loading a problem definition, configuring the different weights and for starting and
stopping the optimization, the UI mainly consists of a large canvas for visualizing
the currently best schedule, including the start times of the different tasks and the
used task modes, the machines they are executed on, and the total energy consump-
tion over all time steps.

The optimization has been wrapped into a Spring Boot® application, providing
REST services for configuring and running the optimizations, and made available
as a Docker image at https://hub.docker.com/r/dailab/spear-rest-interface. Param-
eters and results are encoded as JSON strings, making the services easily usable
from other applications or using a simple Swagger® Web UL A publicly accessi-
ble instance of this application is running at https://spear.aot.tu-berlin.de:8082/. The
code has been made available as open source (ITEA 2021) and can now be found in
the GitLab repository at https://gitlab.dai-labor.de/spear/spear-optimisation.

Besides the actual optimization and its implementation, another notable goal of
the SPEAR project was the specification of a generic and reusable interface for opti-
mization services. Based on the above REST interfaces and JSON models, a fur-
ther consolidated version has been worked out together with the project partners, for

Jenetics (v 4.3.0): https://jenetics.io/.

Lombok (v 1.18.6): https://projectlombok.org/.

JavaFX (v. 11.0.2): https://openjfx:io/

Spring Boot (v 2.0.5): https://spring.io/projects/spring-boot.
Swagger (v 2.9.2): https://swagger.io/.

[RV I SN

@ Springer

https://hub.docker.com/r/dailab/spear-rest-interface
https://spear.aot.tu-berlin.de:8082/
https://gitlab.dai-labor.de/spear/spear-optimisation
https://jenetics.io/
https://projectlombok.org/
https://www.openjfxio
https://spring.io/projects/spring-boot
https://swagger.io/

Multi-objective optimization of energy-efficient production...

Power supply: photovoltaic and electrical grid

v"‘v
Manufacturing process

(] S e B e

1. Worker 2. Pneumatic @ T b e 7. Turn table moves 8. Pneumatic
puts parton | gripper fix part part in manufacturing SRErERes process e.g. welding grlpper fixpart partoutofmanufac- gripper release
or takes part area part turing area part

from the turn
table

t

Fig.5 Schematic illustration of the manufacturing process

controlling and optimizing processes in the textile and food industries. This version
of the API as well as an extensive description can be found at http://spear.aot.tu-ber-
lin.de:8080/.

The optimization algorithm and API were used as part of a larger production
scheduling system, together with a data provisioning backend and web-based user
dashboard provided by the project partners.

5 Evaluation

In this section, we will evaluate the optimization using two examples based on real-
world processes: A production process involving a turn table with gripper, which
is part of an automotive manufacturing line, and a process including an automated
guided vehicle (AGV). Both examples are part of the research project SPEAR and
exploit the advantages of having appropriate digital twins capable of describing the
different tasks. In this manner, a large number of task variants can be considered
with little effort. This approach is especially advantageous during virtual commis-
sioning, where measurements on real hardware are not yet possible. Also, for both
examples measured energy values were available for validation. The processes will
be optimized for makespan, costs, and energy usage with different relative weights.

5.1 Turn table with gripper

For security reasons, automated production cells are commonly enclosed by a safety
fence preventing human-machine collisions. The use case analyzed here makes
use of a turn table that can safely bring a part in- and outside the enclosed cell by
rotating +180°. The turn table is driven by a bevel gear (SEW KTF57/R) and an
asynchronous motor (SEW DRL100L4BE45) with six pneumatic grippers (Festo
ADVU-12-50). The electrical power for the machine is provided by a photo vol-
taic plant (PVP) with a limited availability but assumed as free of charge (installa-
tion, amortization and running costs are neglected) and from an electrical grid with

@ Springer

http://spear.aot.tu-berlin.de:8080/
http://spear.aot.tu-berlin.de:8080/

T. Kiister et al.

unlimited availability but energy costs. The process consists of several tasks, which
are exemplary shown in Fig. 5 and are described in the following:

1. Outside of the production cell, a worker puts the unmachined part on the turn
table

2. The part is fixed by the pneumatic gripper

3. The turn table rotates by 180°, bringing the unmachined part inside the production
cell

4. The gripper releases the part

5. The part is taken by robots for the further manufacturing process inside the cell
like deep drawing and attachment of additional components by welding; upon
achieving these tasks, the robot puts the part back on the turn table

6. The gripper fixes the part again

7. The turn table rotates back by 180° bringing the manufactured part outside the
production cell

8. The gripper releases the part again and the worker takes the finished part from
the turn table

The components were modeled in the object-oriented and equation-based lan-
guage Modelica’ (Mattsson et al. 1998; Fritzson and Engelson 1998; Fritzson 2010)
making use of the Modelica Standard Library. The models were validated against
measured energy curves taken from the cell provided by FFT Produktionssysteme
GmbH & Co. KG® as part of the SPEAR project. To extend the modularity, these
digital twins have been exported as functional mock-up units (FMUs) (Blochwitz
et al. 2011, 2012; Modelica 2019). A large set of consumption profiles (task modes)
have been computed by varying relevant parameters in the digital twins using the
PyFMI9 simulation environment. In this use case, the task modes for each of the
components differ on their execution velocity, as will be explained later. The result-
ing consumption profiles are expressed as time series of power.

The resulting power curves for the non-optimized process are plotted in Fig. 6a.
In red the consumed power for the manufacturing stages are depicted. For the actual
manufacturing process inside the cell a generic constant power consumption of
10 kW is assumed as no real values can be given due to intellectual property protec-
tion considerations. In green the power from the photo voltaic plant is plotted. If the
power consumption is higher than the energy from the PVP (negative sign), addi-
tional power is taken from the electrical grid, whereas unused photo voltaic power is
fed back in the power system (positive sign). This power, which is a balance of the
green and red curve, is plotted in blue. The resulting energy curve is plotted as blue
dashed line. The whole non-optimized manufacturing process takes approximately
46.5 s per part and a total energy of 5.9 kJ is taken from the electrical grid.

7 Modelica: https://www.modelica.org/modelicalanguage.
8 FFT Produktionssysteme GmbH & Co. KG: https://www.fft.de.
 PyEMI: https://www.jmodelica.org/pyfmi.

@ Springer

https://www.modelica.org/modelicalanguage
https://www.fft.de
https://www.jmodelica.org/pyfmi

Multi-objective optimization of energy-efficient production...

@Pneumatic cylinder @Turn table @Manufacturing process

7500 I 320000
2 L 220000 =
5 2500 A
3 b 120000 ©
° &
a N
-2500 —P_grid - = =P_consumer | 20000
- - =P_solar — = Energy_grid
-7500 -80000
0 20 40 60 80 100
time [s]
(a) Without Optimization
7500 I 320000
2 I 220000 =
5 2500 &
2 k120000 @
o w
& 200 20000
i -~ . .
_ - | P_grid — — Energy_grid
-7500 = = = -80000
] 20 40 60 80 100
time [s]
(b) Optimized for minimum makespan
7500 I 320000
2 I 220000 =
— 2500 r_m N 3
3 o
2 I 120000 @
° S
e e -7 20000
| ——P_grid = = Energy_grid
-7500 -80000
0 20 40 60 80 100
time [s]
(¢) Mixed Optimization
7500 e =~ L 320000
= N N ---" I~ o | 220000 =
5 2500 — - - &
2 === I 120000 ©
5 _ - S
8- -2500 = 20000
| —P_grid — = Energy_grid |
-7500 80000
0 20 40 60 80 100
time [s]

(d) Optimized for minimum power consumption from the electrical grid

Fig.6 Comparison of a original process, b optimized for makespan, ¢ optimized for makespan and costs,
and d optimized for minimum power consumption from the electrical grid for the turn table with gripper

For the optimization process different production modes were considered, cor-
responding to different production speeds, i.e. 25%, 50%, 75% and 100% of the
maximum production speed. For validation, the process was optimized for makes-
pan, costs and energy usage with different relative optimization weights. In Fig. 6
the original process without optimization (Fig. 6a), the process purely optimized for
makespan (Fig. 6b), a mixed optimization for makespan and energy consumption of

@ Springer

T. Kiister et al.

(a) Rendering of the AGV (b) Pathway of the AGV in the plant

Fig. 7 Depiction of the AGV, the plant and the pathway

energy from the electrical grid with equal weights (Fig. 6¢), and purely optimized
for minimizing the power consumption from the electrical grid (Fig. 6d) are depicted
beside each other for comparison. Additionally, the curves for the energy taken from
or fed into the electrical grid are depicted as blue dashed lines. The manufacturing
process optimized for makespan takes only 33.5 s, but the power consumption from
the electrical grid is increased to 60.0 kJ. When optimizing for minimum costs and
energy usage, the process takes 107.5 s and a total energy of 369.3 kI is fed into
the energy grid due to the PVP. Mixed optimizations lies in between these extreme
cases. As a compromise the process takes 51.5 s and a total energy of 55.7 kJ is
fed into the energy grid. This means for less than 10% longer makespan 61.6 kJ
can be saved, which is approximately 30% of the overall power consumption. The
results show that the presented algorithm is capable of optimizing the process in the
machine for different optimization goals.

5.2 Automated guided vehicle

As a second use case, the driving path for an automated guided vehicle (AGV) is
optimized. The AGV, which was designed and developed by Reeb-Engineering

@ Springer

Multi-objective optimization of energy-efficient production...

GmbH'’, is depicted in Fig. 7a. It serves as an alternative for the turn table,
described in Sect. 5.1, supplying the manufacturing cell with new parts and trans-
porting the processed parts away automatically. For this example, the velocity and
drive modes for the path shown as red dotted line in Fig. 7b were optimized.

The AGV considered here moves on four Mecanum wheels that allow holonomic,
omnidirectional movement in the plane. Thus, an infinite number of displacement
combinations (directions, orientations and velocities of the movement) exist for a
given target position. To limit the number of possible combinations, only longitu-
dinal and transverse movement as well as rotation is considered. In position 1 an
unmanufactured part is loaded onto the AGV. Afterwards the AGV drives to posi-
tion 2, where the part is taken from it automatically and further processed. Dur-
ing the manufacturing, the AGV battery is charged by induction marked by the blue
rectangle in Fig. 7b. Then the AGV drives to position 3 where the processed part
is taken from the AGV for further processing. In total the pathway consists of six
different positions (two of which are visited twice, hence seven segments) with two
driving modes (longitudinal and transverse) and ten different maximum velocities
for each driving mode as well as five charging speeds. The rotation is automati-
cally included where it is needed to achieve the target orientation. This leads to
(2-10)" - 5 = 6.4 - 10° different possibilities in total.

Similar to the first use case, the modeling of the AGV has been performed in the
Modelica Language. The system is divided into four main components: a) a target
coordinate system, b) a movement controller, c) the motion prediction describing
the transients of the different movements, and d) a simplified battery model. The
vehicle motion has been modeled based on velocity, position and energy consump-
tion measurements on the real device provided by Reeb-Engineering GmbH as part
of the SPEAR project. From these measurement, it can be seen, for example, that
longitudinal movements are energetically more efficient than transverse movements.
For visualization and validation the possibility to simulate FMUs in Siemens NX
MCD™!! was used and a video of the resulting process is provided by Reeb-Engi-
neering GmbH (2020).

The results of the optimizer are plotted in Fig. 8. The solid lines are the power
curves and the dashed lines are the corresponding energies. While the part is pro-
cessed, which takes 28 s, the AGV battery is charged, which can be seen by the
negative sign of the power curves as well as the negative slope of the energy curves.
In Fig. 8a the path optimized for minimum makespan is shown, which takes about
66 s to complete a round. To get a minimum makespan the segments 2, 4, 5 and 7
are driven transversely, because no rotation is needed. Also, as expected, the opti-
mizer proposes to use the maximum velocity for each segment. This combination
of modes consumes an energy of 10.4 kJ in total. In Fig. 8b the result of a mixed
optimization is plotted, where the energy consumption and minimum makespan are
equally weighted. This process takes approximately 71 s and an energy of 8.9 kJ is

10 Reeb-Engineering GmbH: https://www.reeb-engineering.de.
! Siemens NX: https:/www.plm.automation.siemens.com/global/en/products/mechanical-design/mecha
tronic-concept-design.html.

@ Springer

https://www.reeb-engineering.de
https://www.plm.automation.siemens.com/global/en/products/mechanical-design/mechatronic-concept-design.html
https://www.plm.automation.siemens.com/global/en/products/mechanical-design/mechatronic-concept-design.html

T. Kiister et al.

0 10 20 30 a0
time [s]

(a) Optimized for minimum makespan

Power [W]

time [s] ° @
(b) Mixed Optimization

time [s]

(¢) Optimized for minimum costs and energy usage

Fig.8 Comparison of the process a optimized for makespan, b optimized for makespan and energy
usage, and ¢ optimized for energy usage

used. To reduce the power consumption, between segments 4 and 5 as well as 7 and
1 rotations occur, and the path is driven with lower velocities than the path presented
in Fig. 8a. Because of the rotation between segments 4 and 5, the available charging
time is reduced (rotation time plus charging time equals 28 s). Finally, in Fig. 8c the
path for minimum costs and energy usage is plotted. For all way points, except the
one between 4 and 5, the AGV rotates, allowing to only drive longitudinally. This
leads to a longer makespan of 86.7 s in total and energy consumption of 7.2 kJ. Con-
trary to initial expectations, the optimum driving mode for minimum energy usage
does not employ minimum driving velocities due to the fact that lower velocities use
temporarily lower energy, but for longer time, leading to a higher energy consump-
tion in total. This observation underlines the necessity of sophisticated optimization
approaches, like the one presented in this work. The results also demonstrate that,
comparing the paths for minimum makespan and the mixed optimization, only 6%
longer makespan can save approximately 14% of the energy consumption.

For validation, also all possible combinations were evaluated to make sure to
get the global minimum of makespan and power energy usage and not just a local
minimum. This kind of “brute-force” optimization took seven days on a single-core
2.4 GHz CPU, compared to approximately one hour with the presented framework
based on genetic algorithms. It was shown that both approaches (brute-force and
genetic algorithms) give the same results and hence that the presented results are
global minima and not just local minima, but the presented approach took just about

@ Springer

Multi-objective optimization of energy-efficient production...

1% of the time of the brute-force approach. Thus, this example can be solved effi-
ciently by genetic algorithms.

Other approaches use Jacobian matrices to avoid evaluating all permutations of
possibilities (Braun et al. 2011; Akesson et al. 2012). However, not all permutations
are valid and the numerical effort would be tremendous. On the other side, sequen-
tial optimization of intermediate segments or single movements might not lead to a
global optimum.

6 Related work

As mentioned in the introduction, there is a very large body of related work for
genetic algorithms and other optimization techniques applied to the job-shop sched-
uling problem, dating back many years—see, e.g., Wall (1996) for an early over-
view, or Gen and Lin (2014) and Fuchigami and Rangel (2018) for a more recent
perspective. However, the authors are not aware of any existing work adhering to the
same constraints and framing conditions as in this work, in particular the possibil-
ity of different task modes, resources representing constraints between those task
modes, and variable energy sources.

In the following, we will discuss a number of related works—including one arti-
cle of previous work of the authors—that are close to the problem, covering sig-
nificant subsets of the above aspects or using different constraints. Table 2 gives a
comparison of the different papers and their properties.

e Bukata et al. (2017) optimize the energy consumption of robotic cells by using
different speeds, positions, or power-saving modes for the individual robots in
the cell. However, they do not consider variable prices or limited availability of
energy.

e Shrouf et al. (2014), on the other hand, take the time-of-use energy price into
account for reducing the costs by means of a genetic algorithm. However, while
they also consider different power modes, they only consider a single-machine
use case and also do not regard limited availability of energy.

e Zhou et al. (2018) use an evolutionary algorithm to bi-objectively optimize batch
processing machine schedules for makespan and total energy cost, also consider-
ing different energy prices.

e Waschneck et al. (2018) applied Google DeepMind’s Deep-Q-Network agent
algorithm for Reinforcement Learning to schedule a production system. The
agents are trained to optimize different parts of the schedule with different opti-
mization criteria and constraints. They did not schedule for any energy-related
goals, but since their solution is quite general in regard to the optimization goals
it could probably be used to optimize for energy consumption, availability and
price.

e Lee et al. (2017) propose a dynamic control algorithm that multi-objectively
optimizes a single-machine use case in regard to energy price while penaliz-
ing for earliness or tardiness of certain jobs. They evaluated their approach by
the usage of real energy and machining parameters of a Haas milling machine,

@ Springer

T. Kiister et al.

/ / / / Va S1om sty ur pajuesard unpriosry
/ / / / , (€107 ‘Te 10 13Isy]
/ / , (L107) Te 10997
V)])) V) , (8107) T 12 Yoauydsep
/ / / , (81027) 'Te 39 noyz,
Vs Vs Vs (¥100) ‘T8 19 Jnoxys
/ / (L102) 'Te 10 wivdng

‘[reAe AS1oug 1800 AS1oug 'Suod A31oug ‘wndo [eqo[H 103[qo-nA

"103[e "InjoAg

(6107) SISIATA\ UO paskq “JIom paje[ar Jo uosireduwio) g ajqel

pringer

As

Multi-objective optimization of energy-efficient production...

which resulted in an overall lower total cost on average compared to the
metaheuristic approach.

e Kiister et al. (2013) used an evolutionary algorithm to optimize manufacturing
processes according to various criteria, including energy consumption, cost
and makespan. The production system model is divided into activities (pro-
duction tasks and secondary processes) and resources (raw materials, inter-
mediate products, and others). They also consider both variable energy prices
and limited availability of locally produced energy. However, while the model
is very flexible and domain-agnostic, the lack of a concept for different modes
for the same task makes it impossible (or very cumbersome, using a combina-
tion of ‘primary’ and ‘secondary’ activities) to represent certain problems.

Similar approaches can also be found, among others, in Bernik and Bernik
(2007), who use genetic algorithms for optimizing production schedules, but do
not account for energy aspects, or Schreiber et al. (2009), optimizing for produc-
tion targets and lot-sizes.

As can be seen, some of the state of the art is close to the approach presented
in this work, while using a variety of techniques from mathematical optimiza-
tion via stochastic or evolutionary algorithms to machine learning. Still, while
some of the existing approaches could probably be extended in this direction,
the exact conditions encountered in the SPEAR project were not yet tackled in
related work. The major weak point of our approach—as with other stochas-
tic approaches—is that there is no guarantee that the global optimum is found,
although the chances can be improved with a variable mutation rate and random
restarts.

7 Conclusion

In this work, a versatile framework for optimizing production schedules is presented.
The underlying model includes concepts such as products, tasks and task-modes,
machines and cells, resources for modeling dependencies between tasks, and vari-
able energy sources, allowing a wide range of production scenarios to be modeled
and optimized. The optimization, based on a genetic algorithm, allows to optimize
for makespan, energy consumption or cost, or a mixture/compromise of those goals.

The model, optimization, and API have been developed in the course of the
SPEAR project, involving several partners from research and different sectors of
industry, thus ensuring the applicability and versatility of the approach. The imple-
mentation of the optimization algorithms and API (see Sect. 4) have been provided
as both open source code and as Docker images ready for deployment.

To demonstrate the broad range of applications, the optimization of a machine
from an automotive manufacturing line and the optimization of the pathway of an
AGYV are shown. In both cases, the optimization was able to find a non-trivial solu-
tion trading a slight increase in makespan for a significant gain in energy efficiency.
From the results we draw the following four main conclusions:

@ Springer

T. Kiister et al.

e The presented framework is capable of efficiently optimizing a wide range of
production tasks.

e Its flexibility enables the user to optimize complex tasks with several energy
sources and constraints. Due to the usage of resources, even dynamic processes
like charging and discharging of batteries can be included in the optimization
process.

e The framework is well-suited for typical engineering use-cases, as demonstrated
by two application examples.

e While the employed genetic algorithm can, by its nature, not guarantee to reach
the optimal solution, it yielded reliable near-optimal results in practice.

This work showed the capability of the presented approach to create production
schedules that are competitive w.r.t. production time while being both, more eco-
nomical, and, by preferring locally installed green energy sources, more ecological.

Acknowledgements This paper is based on research conducted as part of the SPEAR project, funded
by the German Federal Ministry of Education and Research (BMBF), funding Reference Numbers
01IS17024G and 011S17024H. The authors of this paper want to express their gratitude towards the entire
SPEAR project consortium, in particular to Alejandro Cardenas from TWT GmbH Science & Innovation
for valuable feedback to the paper, the management of TWT GmbH Science & Innovation for supporting
this research, the partners of FFT Produktionssysteme GmbH & Co. KG and Reeb-Engineering GmbH,
especially Thomas Bleistein, for their contributions to the evaluation. We thank Anton Strahilov from
EKS InTec GmbH for his efforts as the project lead, as well as the ITEA Office and the German Federal
Ministry of Education and Research (BMBF) for making the research conducted within the SPEAR pro-
ject possible.

Author Contributions The authors have contributed in the following ways to the research and the manu-
script: FDPP created the initial concept for the optimization model. RW refined the concept and created
the implementation in the course of his master’s thesis. PR conducted the evaluation of the algorithm
on different scenarios. TK refined and extended the optimization model and implementation. All listed
authors have contributed to and reviewed the final manuscript. Further, Alejandro Cardenas of TWT
GmbH Science & Innovation provided valuable feedback and helped with formulations in various parts of
the manuscript. Also, the partners of FFT Produktionssysteme GmbH & Co. KG and Reeb-Engineering
GmbH, especially Thomas Bleistein, contributed data on their processes and graphics for the evaluation.

Funding Open Access funding enabled and organized by Projekt DEAL.
Declarations
Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen
ses/by/4.0/.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Multi-objective optimization of energy-efficient production...

References

Akesson J , Braun W, Lindholm P, Bachmann B (2012) Generation of sparse Jacobians for the Function
Mock-up Interface 2.0. In: Proceedings of the 9th international Modelica conference, pp 185-196

Bernik I, Bernik M (2007) Multi-criteria scheduling optimization with genetic algorithms. In: Proceed-
ings of the 8th WSEAS international conference on evolutionary computing, world scientific and
engineering academy and society (WSEAS), Stevens Point, Wisconsin, USA, pp 253-258

Blochwitz T, Otter M, Arnold M, Bausch C, Clauss C, Elmqvist H, Junghanns A, Mauss J, Monteiro M,
Neidhold T, et al. (2011) The functional mockup interface for tool independent exchange of simula-
tion models. In: Proceedings of the 8th international modelica conference, Linkoping University
Press, pp 105-114

Blochwitz T, Otter M, Akesson J, Arnold M, Clauss C, Elmqvist H, Friedrich M, Junghanns A, Mauss
J, Neumerkel D, et al. (2012) Functional mockup interface 2.0: the standard for tool independent
exchange of simulation models. In: Proceedings of the 9th international Modelica conference

Braun W, Ochel L, Bachmann B (2011) Symbolically derived Jacobians using automatic differentiation-
enhancement of the OpenModelica compiler. In: Proceedings of the 8th international Modelica con-
ference; March 20th-22nd; Technical Univeristy; Dresden; Germany, Citeseer, 063, pp 495-501

Bukata L, Sucha P, Hanzalek Z, Burget P (2017) Energy optimization of robotic cells. IEEE Trans Ind Inf
13(1):92-102. https://doi.org/10.1109/T11.2016.2626472

Dahal K, Tan KC, Cowling PI (2007) Evolutionary scheduling. Springer

Eiben A, Smith J (2003) Introduction to evolutionary computing. Springer

Fritzson P (2010) Principles of object-oriented modeling and simulation with Modelica 2.1. Wiley

Fritzson P, Engelson V (1998) Modelica-A unified object-oriented language for system modeling and
simulation. In: European conference on object-oriented programming, Springer, pp 67-90

Fuchigami HY, Rangel S (2018) A survey of case studies in production scheduling: analysis and perspec-
tives. J Comput Sci 25:425-436. https://doi.org/10.1016/j.jocs.2017.06.004

Gen M, Lin L (2014) Multiobjective evolutionary algorithm for manufacturing scheduling problems:
state-of-the-art survey. J Intell Manuf 25(5):849-866. https://doi.org/10.1007/s10845-013-0804-4

ITEA (2021) SPEAR optimisation algorithm for production processes now available as open source.
Tech. rep., ITEA, https://itea4.org/news/spear-optimisation-algorithm-for-production-processes-
now- available-as-open-source.html, Accessed on 03 sept, 2021

Kiister T, Liitzenberger M, Freund D, Albayrak S (2013) Distributed evolutionary optimisation for elec-
tricity price responsive manufacturing using multi-agent system technology. Int J Adv Intell Syst 7

Lee S, Do Chung B, Jeon HW, Chang J (2017) A dynamic control approach for energy-efficient produc-
tion scheduling on a single machine under time-varying electricity pricing. J Clean Prod 165:552—
563. https://doi.org/10.1016/j.jclepro.2017.07.102

Mattsson SE, Elmqvist H, Otter M (1998) Physical system modeling with Modelica. Control Eng Pract
6(4):501-510

Modelica (2019) FMI specification 2.0.1. Tech. rep., Modelica Institution, https://www.fmi-standard.org,
Accessed on 03 sept, 2021

Reeb-Engineering GmbH (2020) Energiesimulation fahrerloses Transportsystem FTS, AGV Simulation
(video). https://www.youtube.com/watch?v=D-RInfyVhXo, Accessed on 03 sept, 2021

Sakawa M (2012) Genetic algorithms and fuzzy multiobjective optimization. Springer

Schreiber P, Vazan P, Tanuska P, Moravcik O (2009) Production optimization by using of genetic algo-
rithms and simulation model. In: Katalinic B (ed) DAAM International Scientific Book 2009.
DAAM International

Shrouf F, Ordieres-Meré J, Garcia-Sénchez A, Ortega-Mier M (2014) Optimizing the production sched-
uling of a single machine to minimize total energy consumption costs. J Clean Prod 67:197-207.
https://doi.org/10.1016/j.jclepro.2013.12.024

Wall MB (1996) A genetic algorithm for resource-constrained scheduling. Ph.D. thesis, Massachusetts
Institute of Technology

Waschneck B, Reichstaller A, Belzner L, Altenmiiller T, Bauernhansl T, Knapp A, Kyek A (2018) Opti-
mization of global production scheduling with deep reinforcement learning. Proc CIRP 72:1264—
1269. https://doi.org/10.1016/j.procir.2018.03.212

Wiersig R (2019) Applying genetic algorithms for multi-objective optimisation of energy-efficient pro-
duction schedules. Master’s thesis, Technische Universitiit Berlin

@ Springer

https://doi.org/10.1109/TII.2016.2626472
https://doi.org/10.1016/j.jocs.2017.06.004
https://doi.org/10.1007/s10845-013-0804-4
https://itea4.org/news/spear-optimisation-algorithm-for-production-processes-now-%20available-as-open-source.html
https://itea4.org/news/spear-optimisation-algorithm-for-production-processes-now-%20available-as-open-source.html
https://doi.org/10.1016/j.jclepro.2017.07.102
https://www.fmi-standard.org
https://www.youtube.com/watch?v=D-RInfyVhXo
https://doi.org/10.1016/j.jclepro.2013.12.024
https://doi.org/10.1016/j.procir.2018.03.212

T. Kiister et al.

Zhou S, Li X, Du N, Pang Y, Chen H (2018) A multi-objective differential evolution algorithm for paral-
lel batch processing machine scheduling considering electricity consumption cost. Comput Oper
Res 96:55-68. https://doi.org/10.1016/j.cor.2018.04.009

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer

https://doi.org/10.1016/j.cor.2018.04.009

	Multi-objective optimization of energy-efficient production schedules using genetic algorithms
	Abstract
	1 Introduction
	2 The production domain model
	2.1 Production system
	2.2 Energy sources
	2.3 Constraints
	2.4 Optimization requests and result

	3 Optimization of production schedules
	3.1 Genetic representation
	3.2 Fitness function
	3.3 Alteration and selection

	4 Implementation
	5 Evaluation
	5.1 Turn table with gripper
	5.2 Automated guided vehicle

	6 Related work
	7 Conclusion
	Acknowledgements
	References

