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ZUSAMMENFASSUNG

Diese Arbeit beschäftigt sich mit der Wasserstoffverteilung in der Exosphäre des

Saturnmondes Titan. Grundlage dieser Arbeit sind Messungen des HDAC In-

strumentes (Hydrogen Deuterium Absorption Cell), welches an Bord der Cassini-

Raumsonde das D/H Verhältnis direkt durch die Messung der Emissionslinien

von atomarem Wasserstoff und Deuterium im Ultravioletten bei 121.567 nm bzw.

121.533 nm bestimmen sollte.

Mit HDAC wurden am 26. Dezember 2005 beim neunten Titanvorbeiflug der

Cassini-Sonde Messungen vorgenommen. Leider konnte die Menge an Deuterium

in der Absorptionszelle nicht bestimmt werden, sodass HDAC seinen vorgesehen

Zweck nicht erfüllen konnte. Die Menge an Wasserstoff in der Zelle ist jedoch

bekannt, so dass zumindest die Wasserstoff-Lyman-α Messungen verwendet wer-

den kann, um Titan’s Exosphäre zu untersuchen.

Ziel dieser Arbeit war es, die HDAC Messungen zu simulieren und somit Rückschlüsse

auf die Exosphäre von Titan ziehen zu können, wie z.B. die Verteilung von atom-

arem Wasserstoff in der Exosphäre.

In dieser Arbeit wurde ein Modell der Titanexosphäre entwickelt, welches atomaren

Wasserstoff und Methan berücksichtigt. Für das Exosphärenmodell wurden zwei

unterschiedliche Dichtemodelle gewählt, welche die Dichteverteilung von Wasser-

stoff in der Exosphäre unterschiedlich berechnen und insbesondere in der unteren

Exosphäre voneinander abweichen. Der Strahlungstransport durch die Modell-

Exosphäre wurde mit Hilfe der Monte-Carlo-Methode gelöst.

Detaillierte Strahlungstransportrechnungen haben gezeigt, dass die HDAC Mes-

sungen mit Dichteprofilen aus beiden Dichtemodellen reproduziert werden können.

Dabei konnte gezeigt werden, dass das von HDAC gemessene Signal aus Höhen-

schichten 2000 km oberhalb der Exobase stammt. Die mit den Dichtemodellen bes-

timmten Exobasendichten unterscheiden sich dabei um einen Faktor vier. Somit

konnte keine Aussage darüber getroffen werden, welches Dichtemodell die HDAC

Messung am besten beschreibt. Dennoch liegen die bestimmten Exobasendichten

im Bereich der in der Literatur zu findenden Werte.

Beruhend auf den Ergebnissen dieser Arbeit wird HDAC im Jahr 2010 bei zwei

weiteren Titanvorbeiflügen erneut verwendet werden, und somit noch genauere



Daten für die Bestimmung der Exosphärendichte und Temperatur liefern.

Strahlungstransportrechnungen für diese Vorbeiflüge wurden ebenfalls in dieser

Arbeit durchgeführt.
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ABSTRACT

This work focuses on the distribution of atomic hydrogen in the exosphere of

Saturn’s moon Titan. This work is based on measurements performed by the

“Hydrogen Deuterium Absorption Cell” (HDAC) aboard the Cassini spacecraft,

that should directly determine the D/H ratio from the UV emission of atomic

hydrogen and deuterium at 121.567 and 121.533 nm, respectively.

HDAC measurements were performed on December 26, 2005 during the ninth Ti-

tan flyby of the Cassini orbiter. Unfortunately the amount of deuterium in the

absorption cell could not be determined. Thus, the purpose, HDAC was designed

for could not be achieved. For this reason, HDAC has performed measurements

only once. However, the amount of atomic hydrogen in the absorption cell is well

known, hence the data using only the hydrogen cell can be used in order to inves-

tigate Titan’s exosphere.

This work aims at simulating the HDAC measurements performed in order to in-

vestigate Titan’s exosphere, e.g. to determine the distribution of atomic hydrogen.

A model of Titan’s exosphere including atomic hydrogen and methane has been

developed and the transfer of solar radiation is calculated in order to simulate

the HDAC measurements. The radiative transfer is solved using the Monte Carlo

method. For the exospheric model, two different atomic hydrogen density distribu-

tions were applied, which determine the distribution in the exosphere by different

approaches. Density profiles calculated by both models mainly differ in the lower

exosphere.

It was found that the HDAC measurements can be fitted using density profiles cal-

culated by both exospheric density distribution models for the radiative transfer

calculations. Detailed investigations however showed that the signal measured by

HDAC originates at much higher altitudes of about 2000 km above the exobase.

Nevertheless the best fitting atomic hydrogen exobase densities of both models

differ by a factor of 4. A strong noise pattern was found in the measurements

avoiding a more accurate determination of the atomic hydrogen distribution in

Titan’s exosphere. However, the inferred exobase densities are in the range of

literature values.



As a result of this work, HDAC will be used again during two future flybys in

2010, providing more accurate measurements for the determination of densities

and temperatures in Titan’s exosphere.
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1. INTRODUCTION

Planetary research nowadays not only focuses on the new and exciting subject

of extrasolar planets - the planets and moons within the Solar System are

still not fully understood and ongoing targets of investigation. Objects in

the Solar System have the advantage of allowing space missions to probe

atmospheric or even surface conditions in-situ, which will, of course not be

possible for extrasolar planets. The Cassini mission for example was started

in 1997 and arrived at Saturn in 2004. Henceforth, new insights into Saturn

and its moons will be made. The most interesting subject of the mission,

however, is Titan, the only moon in the entire Solar System having a dense

atmosphere.

From the chemists’ point of view, Titan’s atmosphere is often believed to

have certain parallels with the early Earth atmosphere with a carbon and

nitrogen based chemistry, although at a much lower temperature (see e.g.

Neish et al. 2009; Raulin 2008; Simakov 2001). The Miller-Urey experiment

and several following experiments have shown that with an atmosphere sim-

ilar to Titan’s and with the addition of UV radiation, complex molecules

and polymer substances can be generated, which are thought to be the main

precursor molecules for life as we now it.

Besides the rocky planets Mercury, Venus, Earth and Mars, Titan may be

a very good example of a possible extrasolar terrestrial planet, that could

be found in the near future, even representing a glimpse at the evolution of

planet Earth.

The first detection of an extrasolar planet around a main sequence star in

1995 (51 Peg b, Mayor and Queloz 1995) gave planetary research an insight

into the architecture of other planetary systems, questioning the state-of-the

art models of planetary formation. More and more planets have been found

over the years, with more than 350 planets so far. As instruments get better

and better, the focus of extrasolar planet research now shifts from detecting

these planets to investigate them. As in-situ investigations of these plan-

ets are not possible, the planetary research is forced to investigate them by

their spectral appearance and orbital evolution. Their spectral appearance

allows for the determination of the basic atmospheric parameters using ra-
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diative transfer methods (see e.g. Segura et al. 2003; Kaltenegger et al. 2007;

Ehrenreich et al. 2006).

The mass range for which detection methods are sensitive, is steadily de-

creasing and the detection of an Earth-mass planet is now in reach: three

planets with masses close to that of Earth (0.02, 3.81, 4.13M⊕) were detected

in 1992 around the pulsar PSR 1257+12 (Wolszczan and Frail, 1992) and re-

cently three planets with 1.9, 5.3 and 5.7 Earth masses have been detected

around the star Gliese 581 (Udry et al., 2007). Clearly the discovery of an

Earth twin is very unlikely, nevertheless one might find terrestrial exoplanets

which feature a comparable atmospheric composition to the planets in our

Solar System or even like Titan. Radiative transfer calculations therefore

represent a necessary tool to investigate not only exoplanetary atmosphere

but also the atmospheres of known planets and moons in our Solar System.

All planetary bodies in the Solar System were initially formed from the sub-

solar nebula, hence the initial ratio of atomic deuterium (D) to hydrogen

(H) was about the same in the entire Solar System (see e.g. Horner et al.

2008). Since atomic hydrogen is lighter than deuterium, it can more easily

escape from a given atmosphere and hence deuterium is enriched, of course

depending on the escape mechanism. Measurements of the current ratio of

deuterium to hydrogen of a given body therefore provide information about

the evolution of the atmosphere as well as of the abundances in the Solar

System.

The D/H ratio of Titan’s atmosphere so far was determined by measur-

ing the relative abundances of CH3D/CH4, HD/H2 and C2HD/C2H2. How-

ever the inferred values differ: in total a higher D/H ratio can be inferred

from acetylene (C2HD/C2H2) and deuterated hydrogen (HD/H2) with re-

spect to methane (CH3D/CH4). Coustenis et al. (2007) and Coustenis et al.

(2008) argue that the enrichment of deuterium occurs during the photolysis

of methane, which produces acetylene and molecular hydrogen.

The Hydrogen Deuterium Absorption Cell (HDAC, Esposito et al. 2004)

aboard the Cassini orbiter was thus designed to determine the D/H ratio of

Titan by directly measuring the hydrogen and deuterium Lyman-α emission

of Titan. Unfortunately, due to contamination of the deuterium absorption

cell, only the hydrogen Lyman-α emission was detected. However, the data

measured by HDAC can be used in order to investigate Titan’s atomic hy-

drogen corona.

The aim of this work is to investigate Titan’s exosphere by simulating the

18



HDAC measurements performed during the ninth Titan flyby of the Cassini

orbiter in December 2005. For this purpose first the HDAC data measured

during is analyzed. Afterwards a model of Titan’s exosphere is developed

and the transfer of solar radiation through the exosphere is calculated. Per-

forming a parameter study, the exospheric parameters that best fit the mea-

surements will be determined and thus Titan’s exosphere will be investigated

in detail. Furthermore calculations will be performed for future Titan flybys,

during which HDAC will be used again.

In Chapter 2 a general overview of Titan is given, including a review of

the lower atmospheric properties as well as a detailed description of Ti-

tan’s exosphere. In this chapter also atmospheric escape mechanisms are

also discussed, as well as the D/H ratio in the Solar System and in Titan’s

atmosphere.

Chapter 3 introduces the general radiative transfer problem and discusses

solutions to the radiative transfer equation. An introduction to the Monte

Carlo method is given. Additionally sample calculations for a plane-parallel

atmosphere are shown.

Chapter 4 describes the Cassini/HDAC instrument in detail and introduces

the measurement principle. Calibration measurements are reviewed and the

measurements performed during the T9 Titan flyby of the Cassini mission

are presented. This chapter also focuses on the data analysis of the measure-

ments.

Chapter 5 presents two different models for the calculation of the density

distribution of atomic hydrogen within the exosphere used for the radiative

transfer calculations. The general differences between both models are dis-

cussed.

Chapter 6 describes the radiative transfer model used in this work for the

calculation of resonance scattering of solar radiation within Titan’s exo-

sphere, which calculates the path of single photons through the exosphere

and simulates the measurement performed by HDAC during the flyby.

In Chapter 7 the Monte Carlo calculations are summarized. A parameter

study is performed and the statistics of the Monte Carlo output are discussed

in order to investigate the response of the emitted radiation to different

exospheric parameters.

In Chapter 8 simplified analytical radiative transfer calculations including

only single scattering are performed for the validation of the Monte Carlo

radiative transfer model. With this simplified model the parameter varia-

tions performed in the previous chapter are repeated. A quantitative and

19
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qualitative comparison to the Monte Carlo calculations is drawn.

Finally in Chapter 9 the model calculations performed are compared to

the data measured by HDAC in order to find the best fitting exospheric

parameters. Using these parameters, calculations are performed for the mea-

surement during the two future Titan flybys T66 and T67 in 2010, during

which HDAC is planned to be used again.

The results of this work are summarized in Chapter 10 followed by an

outlook in Chapter 11 in which possible applications of absorption cells

like HDAC as well applications of the exospheric radiative transfer model

are discussed.

In the Appendix A a glossary can be found in which important phrases used

in this work are explained. Appendix B introduces the Liouville equation

that is used for the calculation of atomic hydrogen densities in the exosphere.

Appendix C describes the effect of radiation pressure on the distribution

of atomic hydrogen in Titan’s exosphere. Appendix D shows how to create

photons equally distributed on a sphere. Finally in Appendix E a simple

flow chart of the entire Monte Carlo radiative transfer model is presented, in-

cluding the model part which calculates the distribution of scattering points,

as well as the model part which simulates the flyby of HDAC.
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2. TITAN

This chapter first gives an overview about Titan’s orbital and atmospheric

characteristics in section 2.1. In this section also the space missions that

have examined Titan are reviewed. In section 2.2 a detailed description of

Titan’s surface and atmospheric properties is given. Section 2.3 introduces

atmospheric escape mechanisms, followed by a description of Titan’s exo-

sphere in section 2.4, on which this work focuses. Finally in section 2.5 an

introduction on D/H ratios in the Solar System as well as on Titan is given.

2.1 Overview

Saturn’s biggest moon Titan is the largest moon after Ganymede in the entire

Solar System. It orbits Saturn at an average distance of 20.3 Saturn radii

(1,221,870 km) every 15.95 days, and was discovered on March 25, 1655 by

Christiaan Huygens. See Table 2.1 for a summary of Titan’s basic physical

parameters. Like the Moon or many of the other gas giant satellites, Titan’s

orbital period is identical to its rotational period. Titan is thus tidally locked

in synchronous rotation with Saturn. Its orbital eccentricity is 0.0288, and

the orbit is inclined at 0.348◦ relative to the Saturnian equator. The surface

temperature and pressure were measured by Fulchignoni et al. (2005) and

Harri et al. (2006) being 93.7K and 1.467 bar (compared to 1.013 bar for

Earth), respectively. Titan is thus the only moon in the Solar System having

a dense atmosphere. The atmosphere consists mainly of molecular nitrogen

(N2) and methane (CH4). Titan is covered by a thick organic hydrocarbon

haze, appearing orange in the visible (see Figure 2.1). This obscuring haze

was particularly frustrating for planetary scientists following the NASA Voy-

ager mission encounters in 1980 and 1981, avoiding any investigations of the

lower atmosphere and surface.

Apart from the Earth, Titan is the only body in the Solar System with

a nitrogen dominated atmosphere. It hosts an organic chemistry, seasonal

and diurnal variations as well as condensation phenomena and dynamical

processes in the atmosphere (e.g. Lebonnois et al. 2003; Bird et al. 2005;
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Flasar et al. 2005; Atreya et al. 2006; Achterberg et al. 2008).

Fig. 2.1: Different views of Titan. The left image shows approximately what Titan

would look like to the human eye: a hazy orange globe surrounded by a

tenuous, bluish haze. The orange color is due to hydrocarbon particles

which make up Titan’s atmospheric haze, whereas haze in the upper at-

mosphere preferentially scatters blue and ultraviolet wavelengths of light.

In the right image Titan is shown, as seen from Cassini at 0.9 µm, a

near-infrared wavelength that allows Cassini to see through the hazy at-

mosphere and down to the surface. Image credits: NASA/JPL/Space

Science Institute

The presence of a significant atmosphere was first suspected by Josep Co-

mas Solà, who observed distinct limb darkening on Titan in 1903. However,

Gerard Kuiper was the first one who proved the existence of an atmosphere

in 1944 using spectroscopy. He concluded that methane was the most abun-

dant constituent of Titan’s atmosphere due to its appearance in the spec-

trum. Recent measurements have determined the global mean atmospheric

abundances to be 98.4% N2, 1.6% CH4 and traces of other gases such as

hydrocarbons (Teanby, 2005). Titan features a completely different atmo-

spheric composition to that of Earth: the breakup of methane in the upper

atmosphere by the Sun’s ultraviolet light and the coupled chemistry between

nitrogen and carbon leads to high abundances of nitrogen and carbon com-

pounds (Wilson and Atreya, 2004). Due to the low temperatures in Titan’s

atmosphere, water ice does not sublimate, so that the atmosphere is nearly

free from water vapor (a mole fraction of 8+6
−4·10−9 at an altitude of 400 km was

found by Coustenis et al. 1998). The low hydrogen abundance is caused by

the low surface gravity allowing hydrogen to escape from Titan’s atmosphere.

This is critical for the photochemistry, since it allows higher hydrocarbons to

build up, which would otherwise be recycled back into methane by hydrogen.
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2.1 Overview

Several space missions have examined Titan in the last decades:

• Pioneer 11 was the first satellite, which took close-up images of Titan

on September 2, 1979.

• In the 1980s the Voyager missions revealed Titan’s complex and diverse

atmosphere. The images of Voyager 2, taken in the visible, showed

a clear asymmetry between the southern and northern hemispheres

(Smith et al., 1982), and a detached layer of haze above 400 km altitude

(Rages and Pollack, 1983).

• In 1997, Titan’s atmosphere was furthermore investigated by the In-

frared Space Observatory (ISO), finding evidence for water vapor in

Titan’s atmosphere (Coustenis et al., 1998) (see above).

• Since 2004, Titan has been extensively examined by the Cassini-Huygens

mission (see e.g. Figure 2.2), consisting of the Cassini spacecraft that

is in a bound orbit with Saturn and the Huygens probe. The Huygens

probe was released from Cassini on December 26, 2004 entering Titan’s

atmosphere on January 14, 2005. Note that chapter 4 gives a general

overview about the Cassini spacecraft, as well as on the instrument this

work focuses on.

Fig. 2.2: Global digital map of Titan’s surface taken in February 2009. This figure

is composed of images taken by the Cassini spacecraft’s Imaging Science

Subsystem (ISS). The images were taken using a filter centered at 0.9µm.

Due to the scattering of light by Titan’s dense atmosphere, no topographic

shading is visible in these images. Image credits: NASA/JPL/Space Sci-

ence Institute
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2. TITAN

Tab. 2.1: Orbital and atmospheric characteristics of Titan. Note that the inclina-

tion is given with respect to Saturn’s equator. Unless otherwise specified,

orbital parameters obtained from JPL HORIZONS solar system data and

ephemeris computation service. Solar System Dynamics. NASA, Jet

Propulsion Laboratory. http://ssd.jpl.nasa.gov

Semi-major axis 1,221,870 km

Eccentricity 0.0288

Orbital period 15.95 days

Inclination 0.34854◦

Mean radius (2,575.5±2) km a)

Mass (1.3452±0.0002)·1023 kg b)

Mean density 1.8798±0.0044 g cm−3 b)

Equatorial surface gravity 1.352m s−2

Albedo 0.22

Surface pressure 1.467 bar c,d)

Surface temperature 93.7K c,d)

a) Lindal et al. (1983), b) Jacobson et al. (2006), c) Fulchignoni et al. (2005),
d) Harri et al. (2006)

2.2 Titan’s surface and atmosphere

During its descent, the Descent Imager/Spectral Radiometer (DISR) aboard

the Huygens probe revealed the presence of two major geological units (cf.

Figure 2.3): (1) bright highlands north of the landing site which consist of

hills incised with dark-colored, river-like valleys that are suggestive of erosion

by methane rainfall and (2) a dark, flat terrain to the south that is similar to

a lake bed (Soderblom et al., 2007; Keller et al., 2008). Huygens landed in the

lake bed area but no liquid was detected. However, flow features were visible

on km-scales (during descent) and possibly on meter-scales (after landing).

Soderblom et al. (2007) proposed that the bright highlands consist of bright

tholins covering dark material. According to this theory, the bright tholins

in the valleys have been partially washed away by liquids. Keller et al. (2008)

however suggested a different scenario, in which the highlands to the North

constitute the bright component of Titan’s crust, while the lake bed consists

of dark, maybe sedimentary material. The land area is eroded by liquid flow,

but the dark appearance of the river-like valleys is an illumination effect and

consists of the same material as the land area around them. In their scenario
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2.2 Titan’s surface and atmosphere

bright patches in the lake area are deposits of land material transported into

the lake bed by the rivers.

Fig. 2.3: Mosaic of three frames from the Huygens DISR instrument pro-

vides details of the high ridge area including the flow down into

a major river channel from different sources. Image credits:

ESA/NASA/JPL/University of Arizona

The Huygens Probe measured a ground temperature of 93.7K

(Fulchignoni et al., 2005) and a surface pressure of 1.467 bar (Fulchignoni

et al., 2005; Harri et al., 2006). Titan’s surface is significantly colder than its

upper atmosphere due to an inverse greenhouse effect caused by the haze in

Titan’s atmosphere, reflecting sunlight back into space. Nevertheless, atmo-

spheric methane also leads to a greenhouse effect on Titan’s surface. Without

it, Titan would be far colder. See Figure 2.4 for a temperature profile as mea-

sured by the Huygens Atmospheric Structure Instrument (HASI).

The Gas Chromatograph Mass Spectrometer (GCMS) aboard the Huygens

probe measured a mole fraction of methane being almost constant (4.92%)

between about 5 km altitude and the landing site (Niemann et al., 2005).

In the troposphere, Doppler shifts of the radio signals from the Huygens

probe gave direct in-situ determination of the vertical profile of zonal wind

at about 10◦S latitude between the surface and 140 km altitude (Bird et al.,

2005; Folkner et al., 2006). At altitudes above 8 km, the measurements show

that the winds are westerly (in the same direction as Titan’s rotation) and

increase with altitude. However, above 65 km there is a region of strong neg-

ative shear, and the winds decrease and nearly vanish at 75 km. At higher

levels, they increase strongly with altitude, reaching about 60m s−1 at 100 km

altitude (Achterberg et al., 2008). According to results obtained from a gen-

eral circulation model (GCM), tides and thermal gradients generate winds
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2. TITAN

Fig. 2.4: The temperature profile as measured by the Huygens Atmospheric Struc-

ture Instrument (HASI) (solid line) is shown compared to the model of

Yelle et al. (1997) (dashed line). Figure taken from Fulchignoni et al.

(2005).

with a typical velocity 0.3 to 1m s−1 near the surface (Tokano and Neubauer,

2002). Measurements by the Doppler Wind Experiment (DWE) aboard Huy-

gens, as well by the Composite Infrared Spectrometer (CIRS) aboard Cassini

have measured the zonal winds reaching about 100m s−1 at altitudes between

200 and 300 km (0.1 to 1mbar) indicating a strong atmospheric superrotation

(Bird et al., 2005; Flasar et al., 2005; Achterberg et al., 2008).

Simulations of global wind patterns based on wind speed data taken by Huy-

gens during its descent have suggested that Titan’s atmosphere circulates in

a single enormous Hadley cell: warm air rises in Titan’s southern hemisphere

- which was experiencing summer during Huygens’ descent - and sinks in the

northern hemisphere, resulting in high-altitude air flow from south to north

and low-altitude airflow from north to south. The pole-to-pole wind circula-

tion cell appears to be centered in the stratosphere; simulations by Crespin

et al. (2008) suggest it ought to change every twelve years, with a three-year

transition period, over the course of Titan’s year (which is equal to Saturn’s

orbital period of 29.657 years).

Like Earth, Titan has a well-defined stratosphere with a tropopause at about

44 km (Fulchignoni et al., 2005) and a stratopause at about 225 km (Flasar
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2.2 Titan’s surface and atmosphere

et al., 2005). Achterberg et al. (2008) found from CIRS observations, that the

stratopause is nearly 20K warmer in the northern polar region than at the

equator and in the southern hemisphere. They also found that its altitude

shifts from about 300 km near the equator to about 400 km poleward of 40◦N.

Stratospheric abundances have been inferred from measurements of CIRS as

well as from the GCMS aboard the Huygens landing probe. In total, no

significant longitudinal variations were found in the CIRS data, but some-

times strong meridional variations from the equator to the north pole were

reported: C4H2, C3H4, C6H6, HCN and HC3N showed a significant higher

abundances towards the north pole (Coustenis et al., 2007).

The temperature difference between northern and southern hemisphere as

well as the meridional variation of abundances are referred to as the “North-

South asymmetry”. It has been well known since Voyager 2 that Titan’s at-

mosphere exhibits a hemispheric asymmetry depending on the season

(Smith et al., 1982). The winter hemisphere which is richer in aerosols ap-

pears brighter in the infrared, and darker in the visible, than the summer

hemisphere. The winter hemisphere is aerosol-enriched in the lower atmo-

sphere, because the polar night facilitates the condensation of larger and

more numerous aerosol particles (Yung, 1987; Rannou et al., 2002). Several

mechanisms have been proposed to explain the asymmetry, but dynamics

seem to be the most plausible explanation for this asymmetry (Hutzell et al.,

1993).

The nominal distance of the Saturnian magnetopause at the subsolar point is

approximately 24 Saturn radii. Compression or expansion of Saturn’s mag-

netosphere results from variations in the solar wind; therefore Titan’s orbit,

at about 20 Saturn radii, can be either inside the magnetosphere of Saturn

or outside. Since Titan has no significant intrinsic magnetic field, in the

latter case the solar wind interacts with Titan’s ionosphere and atmosphere

directly (Nagy et al., 2001).

2.2.1 Clouds

Even prior to the discovery of clouds in Titan’s atmosphere in the 1990s,

these were evoked to explain the continuum observed in infrared spectra

of the Infrared Radiometer, Interferometer and Spectrometer (IRIS) aboard

Voyager 1 (Courtin, 1982; Samuelson, 1983). Clouds were also hypothesized

as one possible interpretation of the scintillation of the Voyager 1 radio-

occultation profile (Lindal et al., 1983). From spectra taken in 1993 and

1995, Griffith et al. (1998) observed dramatic changes in Titan’s brightness

at 1.6 and 2.0µm, i.e. wavelengths probing down to the troposphere, which
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featured a maximum variation of up to 200%. This effect could only be

explained by the presence of reflective layers, or clouds, in Titan’s atmosphere

(Griffith et al., 1998). Since then clouds and other atmospheric phenomena

have been reported on Titan by various investigators, e.g. a tenuous ethane

cloud (Griffith et al., 2006) or the presence of a tropospheric cloud in the

altitude range of 20 to 30 km (Lorenz et al., 2007).

Recently, Cassini images showed a fast evolution of clouds at the south pole

and at midlatitudes (Porco et al., 2005; Griffith et al., 2005), in agreement

with ground-based observations (Griffith et al., 2000; Bouchez and Brown,

2005). It was observed that convective clouds on Titan seem to have a lifetime

of a few hours. If one can assign the observed features to the same cloud,

they move at speeds of typically a few meters per second (Porco et al., 2005)

which is comparable to cloud speeds on Earth.

2.2.2 Methane chemistry

The origin of methane in Titan’s interior is still controversial. Hersant et al.

(2008) argue that methane was trapped in the planetesimals formed in the so-

lar nebula and embedded in the feeding zone of Saturn. These planetesimals

formed Titan where methane is nowadays trapped within clathrate hydrates,

concentrated at the top of a subsurface ocean of liquid water. Atreya et al.

(2006) however suggest another formation mechanism such that high MgO-

bearing ultramafic silicates might react with H2O forming H2, whose reaction

with carbon dioxide produces methane in Titan’s interior.

The first scenario implies that the D/H ratio in methane would be comparable

to that in the planetesimals forming of Titan. The second scenario implies

that D/H in Titan would be comparable to that in H2O in the subsolar

nebula. However, D/H in H2O in Oort cloud comets is observed to be about

twice as large as the value in CH4 in Titan (Hersant et al., 2001). In order

to fit Titan’s value, isotopic exchange occurring in the solar nebula between

H2O and the protosolar H2 needs to be considered.

Methane plays an important role in shielding the atmosphere from being

gradually reduced to as low as tens of millibar pressure. Without the warming

provided by the methane greenhouse and also by the subsequent formation

of higher hydrocarbons, Titan’s stratosphere and troposphere would become

too cold for nitrogen to remain in the gas phase (Atreya et al., 2006). Con-

densation of large quantities during a fainter young sun period and higher

surface albedos would leave behind only a fraction of the current amount of

N2 vapor in the atmosphere.

Methane is photolyzed at approximately 700 km and higher
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(Wilson and Atreya, 2004). Throughout the lower stratosphere and upper

troposphere a uniform abundance of 1.41 ± 0.07% was found from GCMS

measurements (Niemann et al., 2005) which is in good agreement with CIRS

measurements (Flasar et al., 2005). CH4 can be used to determine the at-

mospheric temperature structure, using the strong vibrational-rotational ν4

band of CH4 near 7.7µm and known opacities. Since methane is well mixed

in the stratosphere, temperatures in the altitude range from about 130 to

410 km can be derived from limb and nadir measurements. Together with

deuterated methane (CH3D), methane can be used to infer the D/H ratio in

Titan’s atmosphere, hence yielding a D/H ratio in methane of 1.17+0.23
−0.28 ·10−4

(Coustenis et al., 2007). See section 2.5 for a general discussion of the D/H

ratio in the Solar System as well as on Titan.

Below 32 km and down to approximately 8 km a gradual increase of the CH4

mole fraction was measured by GCMS during the descent of the Huygens

probe. At 16 km a sudden increase in the gradient was recorded. Below 8 km,

down to a level close to the surface it remained constant at (4.92±0.25) ·10−2

(Atreya et al., 2006). They concluded that methane condensation at 16 km

resulted in a tenuous cloud or haze that extended to at least 8 km. As the CH4

cloud persists, the rain-out of methane is expected. However, the amount of

rain is expected to be relatively insignificant (Lorenz, 2000; Ingersoll et al.,

2005).

The photolysis of methane leads to the production of the short-lived radicals

CH3, CH2 and CH, which react very rapidly with atmospheric molecules in-

cluding nitrogen and hydrogen. Stable, heavy and complex hydrocarbons and

nitrile species which can condense and form hazes are subsequently produced.

The self-reaction of CH3 radicals forms ethane (C2H6) which is a common

fate for methane itself, since ethane is very stable. Ethane eventually con-

denses and precipitates onto the surface. Cassini-Huygens measurements so

far, however, do not show any oceanic reservoirs of ethane condensates on

the surface as was proposed by Lunine et al. (1983) nor do they indicate

significant condensation in the troposphere. Atreya et al. (2006) therefore

suggested that the final products of methane photodissociation are ethane

and hazes in comparable amounts, with the contribution from ethane con-

densation being far smaller than previously predicted. Hunten (2006) argues

that ethane might condense onto smog particles instead of liquid droplets,

forming kilometer-thick deposits on the surface.

Yung et al. (1984); Lara et al. (1996); Lebonnois et al. (2001) and

Wilson and Atreya (2004) found the photochemical lifetime of CH4 to be
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in the range of about 10 to 100 million years, which is small compared to

Titan’s age. The hydrogen-poor interior of Titan prevents considerable re-

cycling of the hydrocarbon products from the methane chemistry back into

methane. Hence, a strong methane source is needed to replenish methane in

the atmosphere. Tobie et al. (2006) suggested that it could have been episod-

ically outgassed from Titan’s interior. Three major episodes of outgassing

have been suggested, occurring during, (1) the internal differentiation (sili-

cate core formation); (2) the onset of the convection in the silicate core; and

(3) during the late subsequent cooling and crystallization of the outer layer.

2.2.3 Hydrogen budget

Atomic hydrogen is mainly produced by the photolytic destruction of methane

in the homosphere (with the homopause altitude being at about 1,240 km,

de La Haye et al. 2007b) at altitudes of approximately 700 km and above,

(Lebonnois et al., 2003; Wilson and Atreya, 2004) subsequently transported

downward to the mesosphere by diffusion, where H-removal proceeds quickly.

One of the main pathways for producing H and H2 is the dissociation of CH4

by the following reactions (Mordaunt et al., 1993):

• CH4 + hν → CH3 + H.

• CH4 + hν → 1CH2 + H2.

• CH4 + hν → CH + H + H2.

Similar reactions involving the photo-dissociation of higher hydrocarbons

and nitriles such as C2H6, C2H4, C2H2, C3H8, C4H2 and HCN also leads to

production of atomic and molecular hydrogen. The production of hydrogen

due to photodissociation, however, is limited to altitudes corresponding to

high UV influx.

In the altitude range of 300 to 500 km (in the mesosphere), the conversion

of H to H2 occurs via the reaction H + CH2 → H2 + CH. At lower altitudes

of about 100 to 300 km (mid to upper stratosphere) atomic hydrogen is pro-

duced mainly via the photodissociation of acetylene (C2H2) and diacetylene

(C4H2). For acetylene (C2H2), the photodissociation rate remains significant

down to the tropopause producing substantial amounts of H in this region.

This is due to the combined effect of major amounts of C2H2 and a large disso-

ciation cross section of C2H2 at wavelengths below 0.2µm. The destruction is

independent of the UV screening by other hydrocarbons, because only C2H2

has a significant absorption cross section between 0.16µm and 0.2µm, e.g.
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the photodissociation of CH4 is limited to wavelengths shorter than 0.16µm.

In the mid to upper stratosphere, H is in steady state: production occurs due

to dissociation of acetylene and destruction through the reaction given above.

2.2.4 Haze production and the role of atomic hydrogen

Atomic hydrogen is plays a key role in the producing organic haze layers in

Titan’s atmosphere, which have been revealed by the Voyager and Cassini

spacecrafts (Smith et al., 1981; Porco et al., 2005). Haze is considered to

be produced by polymerization of unsaturated gas species and consists of

polycyclic aromatic compounds (i.e. containing benzene rings or similar rings

of atoms), aliphatic polymers (i.e. which do not contain rings) and nitriles.

Under the temperature and pressure conditions of Titan’s stratosphere, these

hydrocarbons and nitriles can condense and precipitate.

Polymers of polyacetylenes, polyynes (e.g. diacetylene C4H2) and nitriles

form hazes in the upper atmosphere (>500 km), whereas polycyclic aromatic

hydrocarbon (PAH) polymers condense to form hazes in the middle and

lower stratosphere (<200 km) (Atreya et al., 2006; Wilson and Atreya, 2003).

Some hydrocarbons survive as hazes suspended in the atmosphere until they

approach the tropopause cold trap where the majority condense. At large

concentrations of atomic hydrogen, however, the unsaturated gas species in

Titan’s atmosphere react to form saturated gas species, and the production

efficiency of organic haze would be reduced.

2.3 Atmospheric escape

2.3.1 Escape mechanisms

There are several different processes that can lead to the escape of a plane-

tary atmosphere. In some cases escape can be a very important process for

the development of a planet. For example, Mars has probably lost much of

their water due to atmospheric escape since Mars has a low gravity.

Thermal escape

The Jeans escape is a thermal escape mechanism of particles from the upper

atmosphere, where the mean free path is comparable to the scale height. This

atmospheric layer is usually called the exosphere with the exobase being the

layer, where the mean free path equals the scale height (see also section

2.4). Below the exobase, the particle velocities obey the Maxwell-Boltzmann
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distribution of velocities v

f(v) = 4π

(

m

2πkBT

)3/2

v2 exp

(

− mv2

2kBT

)

, (2.1)

with m being the mass of the particle, kB the Boltzmann constant and T

the temperature. The temperature of any physical system is the result of

the motions of the molecules and atoms, which make up the system. These

particles have a range of different velocities, and the velocity of any single

particle constantly changes due to collisions with other particles. However,

the fraction of a large number of particles within a particular velocity range

is nearly constant if the system is at or near equilibrium. The Maxwell-

Boltzmann distribution of velocities specifies this fraction, for any velocity

range, as a function of the temperature of the system.

Although equation 2.1 gives the distribution of speeds or in other words the

fraction of particles having a particular speed, one is often more interested in

quantities such as the average speed of the particles rather than the actual

distribution. Different averages can be defined:

• The most probable speed, vp, is the speed most likely to be possessed

by any particle in the system and corresponds to the maximum value

of f(v). In case of equation 2.1 it is given by

vp =

√

2kBT

m
(2.2)

• The mean speed v̄ is the mathematical average of the speed distribution

f(v):

v̄ =

√

8kBT

πm
=

2√
π
vp (2.3)

• The root mean square speed, vrms is the square root of the average

squared speed v̄2:

vrms =
√

v̄2 =

√

3kBT

m
=

√

3

2
vp (2.4)

The escape efficiency depends on the escape parameter λ(r), which is the

ratio of gravitational potential energy to kinetic energy at the critical level

(the exobase):

λj(r) =
GMmj/r

1/2mv2
p

=
2

η

GMmj

rkBTc
=
vesc

vp
, (2.5)

with G being the gravitational constant, M the mass of the body (here: Ti-

tan), mj the mass of the escaping particle of species j, r the distance to the
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center of the body, kB the Boltzmann constant, η the degrees of freedom and

Tc the temperature at the critical level (the exobase), vesc the escape veloc-

ity and vp the most probable Maxwellian velocity (Chamberlain, 1963). At

the exobase the critical escape parameter is then λj(rc) =: λj,c. The Jeans

escape hence describes the escape of individual particles from the high veloc-

ity tail of the Maxwell-Boltzmann distribution of velocities from the exobase.

The Jeans escape rate can then be obtained by integrating the Maxwell-

Boltzmann distribution of velocities over the radial flux of particles, giving

ΦJ =
1

2
√
π
ncvp(1 + λ) exp(−λ). (2.6)

When the escape parameter λj is lower than the critical value λj,c, hydro-

dynamic escape occurs. Hydrodynamic escape is an important process in

the formation and evolution of planetary atmospheres (Bauer, 1992). An

extremely rapid flow of atomic hydrogen from a primitive atmosphere will

carry away heavy gases in what is known as “atmospheric blow-off”.

Non-thermal escape mechanisms

Besides thermal escape, which represents a lower boundary for atmospheric

escape processes, there exist also non-thermal escape mechanisms, which in

general involve ions or electrons (Chamberlain and Hunten, 1987) achieved

via:

• Excess energy during dissociation and recombination of molecules.

• Ion-neutral reactions, in which chemical energy is converted into kinetic

energy.

• Impact dissociation, where the energy comes from an incident electron

or photon.

• Charge exchange with fast H+ ions from the magnetosphere, where any

excess energy is largely retained.

• Sputtering, where a fast atom or ion collides with another atom.

• Ion escape: H+ ions can be accelerated out through open magnetic field

lines in the polar regions.

• Pick-up from solar winds, which is the dominant process in the atmo-

sphere of Mars.

• Electric fields, which accelerate ions.
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2.3.2 Escape from Titan’s atmosphere

Due to their small mass, atomic and molecular hydrogen are strongly af-

fected by vertical diffusion processes within Titan’s atmosphere. Turbulent

mixing transports atomic hydrogen from the regions of production towards

the surface and towards the exosphere, while buoyancy provided by the at-

mosphere allows hydrogen to rise and finally escape to space, only weakly

opposed by Titan’s small gravity. Atomic hydrogen has a large scale height

in the exosphere and shows a significant atmospheric loss via Jeans escape.

Cui et al. (2008) found a molecular hydrogen escape flux from INMS mea-

surements, which is about three times higher than the Jeans escape flux for

H2 from Titan. Molecular hydrogen was long thought to escape from Ti-

tan mainly due to dissociative recombination (e.g. Chamberlain and Hunten

1987). However, Cui et al. (2008) found that non-thermal escape mecha-

nisms are not required to interpret the loss of H2 from Titan. The enhanced

escape rate (relative to the Jeans value) was found using an orthogonal series

expansion in a 13-moment approximation defining a non-Maxwellian veloc-

ity distribution function that includes the effects of both thermal conduction

and viscosity. The effect of collisions between H2 and N2 below 1,600 km

was found to be significant. The 13-moment model interprets the enhanced

escape as a result of the accumulation of H2 molecules on the high-energy

portion of the velocity distribution function, primarily associated with the

conductive heat flux.

The critical value of the escape parameter for atomic hydrogen is λc,H = 1.5;

below this value hydrodynamic escape occurs. An escape parameter λc,H >

10 for atomic hydrogen results in negligibly small escape rates; values of

λc,H =4–8 indicate that a few percent of the atoms reach the escape velocity.

With an exobase temperature of Tc = 153K (averaged value from INMS

measurements de La Haye et al. 2007b) and an exobase radius of 4,000 km (as

measured from Titan’s center), one obtains for atomic hydrogen λc,H = 1.77,

which is slightly above the limit at which hydrodynamic escape occurs. The

critical temperature is reached at 181K.

With an escape parameter of λc,H = 1.77 one obtains a Jeans escape flux of

ΦJ = 1.67 · 109cm−2s−1 with an atomic hydrogen density of nc = 8 · 104 cm−3

at the exobase, as inferred from de La Haye et al. (2007b). Integrated over

the whole Titan sphere this yields an escape flux of QH = 3.49 · 1027 s−1 at

the exobase. The Jeans escape velocity vJ = ΦJ/nc for atomic hydrogen is

then vJ,H = 0.21 km s−1.
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The photo-ionization lifetime of atomic hydrogen at Saturn’s distance is

about (1− 2) · 109 s (Smyth, 1981). The charge-exchange of hydrogen atoms

with either the solar wind or planetary-magnetospheric protons is however

dominating: When the magnetopause of Saturn is compressed within the

orbit of Titan, the hydrogen lifetime along the unprotected orbit will be de-

termined by the solar wind plasma, giving a lifetime of about (3.3−5.0)·107 s

(Wolfe et al., 1980). If, however, the orbit of Titan lies within the magneto-

sphere, the hydrogen lifetime is determined by the co-rotating plasma giving a

lifetime of about (4.4−7.1)·107 s (Smyth, 1981). The characteristic timescale

for a hydrogen atom thermally emitted from Titan’s exosphere is however

much shorter: Using a Monte Carlo model which simulates the trajectories

of particles released from the exobase, one finds a characteristic timescale of

2 · 104 s for hydrogen atoms until they reach an altitude of 30,000 km above

the exobase (see chapter 5.4). Thus, for atomic hydrogen thermal escape is

the dominant escape mechanism acting in Titan’s atmosphere.

Titan is under usual solar wind conditions half of its orbital period in Sat-

urn’s magnetosphere. Due to the lack of an own significant intrinsic mag-

netic field, Lammer et al. (1998) found that sputtering by magnetospheric

ions (protons and N+ ions) becomes important during this time, heating the

thermosphere by an amount of about 30K . They conclude that Titan’s exo-

spheric temperature may then reach or even exceed the critical temperature,

at which hydrodynamic escape becomes important. However, Michael and

Johnson (2005) also investigated the energy deposition of pickup ions and

found, contrary to Lammer et al. (1998), a much lower increase in the exo-

spheric temperature of only about 4 to 7K caused by energy deposition of

N+.

2.4 Titan’s exosphere

The main focus of this work is the investigation of Titan’s exosphere. The

exosphere represents the transition region from the gravitationally bound

atmosphere to free interplantary space. Within the exosphere, the mean

free path of an atmospheric particle is greater than the scale height of the

atmosphere, hence collisions between particles become negligible. In reality,

the transition between the atmosphere and the exosphere however spreads

over a wide altitude region.

The exobase of Titan, where the mean free path equals the atmospheric scale

height, is positioned at around 1,500 km: de La Haye et al. (2007b) have de-

termined the exobase altitude of Titan during three flybys of Cassini (TA,
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TB, T5) to be at 1,442±7 km (TA flyby in October 2004 near dusk termi-

nator), 1,409±14 km (TB flyby in October 2004 near dusk terminator) and

1,401±7 km (T5 flyby in April 2005 on the night side). The main neutral

components of the exosphere are N2, CH4 and H2 (Toublanc et al., 1995; Cui

et al., 2009), which has been confirmed recently by the Cassini Ion Neutral

Mass Spectrometer (INMS) measurements, as reviewed below. See table 2.2

at the end of this section for a summary of exospheric parameters.

2.4.1 Exospheric temperatures

Exospheric temperatures have been inferred most recently from several ob-

servations by Cassini. Note that the term “temperature” is only valid at

the exobase, where particle velocities obey the Maxwell-Boltzmann distri-

bution. Above the exobase this assumption can no longer be maintained.

Nevertheless one can assume to a first order approximation that within a

certain altitude range above the exobase the velocity distribution is close to

the Maxwellian, hence a temperature can be defined. In most exospheric

models the exospheric temperature is assumed to be constant within a so-

called exobase layer of a certain thickness given by the mean free path at the

exobase.

The major energy sources for Titan’s upper atmosphere are solar radiation

and Saturn’s magnetospheric ions and electrons. Solar UV and EUV ra-

diation is absorbed in Titan’s upper atmosphere with the most important

contribution to the heating coming via absorption of Lyman-α radiation by

methane (Lellouch et al., 1990). This occurs at an altitude of about 700–

800 km where a large fraction of the heat can be removed from the atmosphere

by infrared cooling (Lellouch et al., 1990). However, the exospheric temper-

ature is primarily a function of the N2 heating at EUV wavelengths (150

– 350 Å), whereas plasma heating is less important (Michael and Johnson,

2005).

Lellouch et al. (1990) showed that solar heating of molecular nitrogen is

more important than CH4 and C2H2 in the exosphere of Titan by up to

about a factor of four.

The estimated exobase temperature during both Voyager encounters was

initially thought to be about 180K (Smith et al., 1982; Lindal et al., 1983).

However, Vervack et al. (2004) reanalyzed the Voyager 1 data and found

that the exospheric temperature of Titan is about 20 to 40K less than those

estimates, consistent with recent Cassini observations. Temperature close

to the exobase have been obtained by the INMS instrument (de La Haye
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et al., 2007b) as a result of a multi-parameter fit of a diffusion model, which

was simultaneously performed on the N2 and CH4 density data recorded

between closest approach (TA: 1,174.0 km, TB: 1,197.6 km, T5: 1,025.2 km)

and 1,500 km during these three flybys. The best fitting temperatures below

1,500 km have been determined to be 152.8 ± 4.6K (TA), 149.0 ± 9.2K (TB)

and 157.4 ± 4.9K (T5), assuming a negligibly small methane escape flux.

The error bars represent the horizontal variation traveled by the spacecraft

during the flybys. The TB error bars are assumed to be twice those of TA,

since only the egress data is available (see also table 2.2).

Above 1,500 km however, depending on the molecule fitted, exospheric tem-

peratures in the range of 149 to 205K have been found to fit the N2 data,

whereas for CH4 temperatures in the range of 149 to 223K are necessary to

fit the TA, TB, and T5 data.

2.4.2 Exospheric densities

Simultaneous to the fitting of exospheric temperatures, as described above, de

La Haye et al. (2007b) have also determined the neutral densities of Titan’s

main exospheric constituents from INMS measurements during the flybys:

the molecular nitrogen density at 1,400 km was found to be (4.85±0.21) ·107

cm−3 during the TA flyby , (3.42 ± 0.42) · 107 cm−3 during the TB flyby

and (2.83 ± 0.13) · 107 cm−3 during the T5 flyby . The methane densities

determined were: (3.82± 0.37) · 106 cm−3 (TA), (2.77± 0.74) · 106 cm−3 (TB)

and (3.16 ± 0.46) · 106 cm−3 (T5). Cui et al. (2008) found an H2 density of

(4.34 ± 0.02) · 105 cm−3 - see also table 2.2.

The density of atomic hydrogen could not be measured directly by the INMS

instrument. This is because the INMS chamber walls have a certain proba-

bility to adsorb molecules entering the instrument orifice, which may further

undergo complicated wall chemistry processes before being released with a

time delay (Vuitton et al., 2008). Atomic hydrogen is very reactive, hence

counts in this channel are not reliable (J. Cui, priv. com.).

Nevertheless, the distribution can be calculated by photochemical models or

determined indirectly from measurements of the Lyman-α emission. There-

fore up to now only very few values for the atomic hydrogen exobase density

have been published, most of them are results from photochemical models.

The values published range from 4.2 · 103 cm−3 up to 8 · 104 cm−3:

• Lyman-α observations of Voyager by Broadfoot et al. (1981) indicated

an exobase atomic hydrogen density of 4 · 104 cm−3.

• Yung et al. (1984) calculate a value of 4.2 · 103 cm−3 at the exobase
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from their photochemical model.

• Toublanc et al. (1995) use an updated photochemical model and infer

an exobase H density of 8 · 103 cm−3.

• Garnier et al. (2007) in turn use an updated version of the Toublanc

1995 model to obtain a density of 4.6 · 104 cm−3.

• de La Haye et al. (2007a) have inferred the exobase density from mod-

eling fast neutrals in the exosphere with a hot to thermal neutral ratio

of 5 · 10−5 for atomic hydrogen. A hot H exobase density of 4 cm−3 is

given, from which a hydrogen density of 8 · 104 cm−3 can be derived,

which is higher than the densities published before. The hot H exobase

density has been derived from photochemical modeling, whereas the

hot-to-thermal neutral ratio has been inferred using a method based

on the Liouville theorem, as described in de La Haye et al. (2007b).

• Most recently, Krasnopolsky (2009) found an exobase density of about

7·104 cm−3 (obtained from their Fig. 10) from photochemical modeling.

Up to now, there are no measurements of the distribution of atomic hydrogen

within the exosphere of Titan. Most authors choose the model of Chamber-

lain (1963) to represent this. Using Liouville’s equation (which is equivalent

to Boltzmann’s equation without collisions) the density distribution can be

calculated throughout the exosphere, since Liouville’s theorem states that

the density in phase space remains constant along a dynamical trajectory.

In order to calculate the density distribution, partition functions of differ-

ent particle trajectories are considered. The Chamberlain model has been

applied to the Earth’s exosphere, yielding densities comparable to satellite

measurements (Rairden et al., 1986).
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Tab. 2.2: Parameters of Titan’s exosphere.

Note that exospheric temperatures above 1,500 km are given depending

on the molecule that was fitted by the authors. The temperature range

takes into account all three flybys considered by the authors (see text for

details).

Quantity Value

1,442±7 km (TA) a)

Exobase altitude 1,409±14 km (TB) a)

1,401±7 km (T5)
a)

152.8 ± 4.6K (TA) a)

Temperature below 1,500 km 149.0 ± 9.2K (TB) a)

157.4 ± 4.9K (T5)
a)

Temperature above 1,500 km
149–205K (N2)

a)

149–223K (CH4)
a)

(4.85 ± 0.21) cm−3 (TA) a)

N2 density [·107] (3.42 ± 0.42) cm−3 (TB) a)

(2.83 ± 0.13) cm−3 (T5)
a)

(3.82 ± 0.37) cm−3 (TA) a)

CH4 density [·106] (2.77 ± 0.74) cm−3 (TB) a)

(3.16 ± 0.46) cm−3 (T5)
a)

H2 density [·105] (4.34 ± 0.02) cm−3 b)

H density [·104]

0.42 cm−3 c)

0.8 cm−3 d)

4 cm−3 e)

4.6 cm−3 f)

7 cm−3 g)

8 cm−3 h)

a)de La Haye et al. (2007b), b)Cui et al. (2008), c)Yung et al. (1984), d)Toublanc et al.

(1995), e)Broadfoot et al. (1981), f)Garnier et al. (2007), g)Krasnopolsky (2009), h)de La

Haye et al. (2007a)
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2.5 D/H ratio

2.5.1 Overview

Isotopic abundance ratios in the bodies of the Solar System yield informa-

tion on fractionation effects that occurred in space and time. Enrichment or

depletion in isotopic compositions are caused by chemical and physical pro-

cesses involved in the formation and evolution of the Solar System. Knowing

the distribution of isotopic ratios allows one to trace the history of the Solar

System.

The D/H ratio provides important information for the determination of the

origin and evolution of any body surrounded by an atmosphere in the Solar

System. Its value gives direct information about the atmospheric evolu-

tion. When forming the atmosphere, the ratio is assumed to be the same

throughout the entire Solar System. Due to atmospheric escape processes,

the lighter hydrogen atoms could escape the atmosphere, while enrichment

with the heavier deuterium atoms took place.

There are basically two ways to determine the D/H ratio: In situ mea-

surements can be accomplished by mass spectroscopy. Another approach

is to spectroscopically observe the ratio of hydrogen and deuterium bearing

molecules, like H2/HD, CH4/CH3D,H2O/HDO, and so forth. The problem

here is, that molecular ratios differ from species to species, hence the mea-

surement of the atomic ratio is more desirable.

Deuterium is a relic of the primordial nucleosynthesis that occurred shortly

after the Big Bang. It is generally believed that since the Big Bang, deu-

terium has been only destroyed and not created in nuclear reactions occurring

inside stars. Deuterium is destroyed in stars in the second step of the proton-

proton chain (2
1H+1

1H → 3
2He + γ). This process, called “astration”, depletes

the universe of deuterium as it cycles its way through star formation, astra-

tion, and interstellar injection. The current value of the D/H ratio of the

Interstellar Medium (ISM) was determined to be 1.5·10−5 (Moos et al., 2002).

Measurements of the D/H ratio in the Solar System reveal two distinct reser-

voirs of deuterium (see Table 2.3 and Figure 2.5). The first reservoir is deu-

terium enriched relative to the second one and includes the Earth, Mars,

Uranus, Neptune, Titan, and cometary material. The second reservoir con-

sists of Jupiter, Saturn, and the Sun.

The general explanation for the differences in D/H between these two reser-

voirs lies in their formation history. A general review can be found in Horner

et al. (2008). The protosolar nebula mainly consisted of hydrogen gas (D/H

of 2.5 · 10−5 Robert et al. 2000), helium and less abundant organic particle
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clusters (grains) with a higher D/H ratio of ∼ 2 · 10−4 (Geiss and Reeves,

1981). The deuterium enrichment of the grains occurs due to ion-molecule

reactions powered by UV radiation from nearby stars (see e.g. Brown and

Millar 1989). Thus, two distinct deuterium reservoirs existed already in the

protosolar nebula.

During the formation of the Solar System, the protosolar nebula formed the

Sun. In the outer cooler parts of the protoplanetary disc dust grains grew

by mutual collisions, forming the cores of the planets and other solid bodies.

After the “protosun” had reached the hydrogen burning stage, a period of

strong solar winds cleared the inner nebula from light gases out to the so-

called “snow line” at about 4AU. The planetesimals outgassed deuterium

(generally in the form of deuterated methane) in a process that preserved

the deuterium enrichment in the atmospheres (Owen, 1994), inheriting the

enriched D/H ratio of grains.

Further out beyond the snow line, the heavy cores of Jupiter and Saturn

captured gas from the solar nebula and adopted the corresponding D/H ratio:

Because Jupiter and Saturn have a low ratio of core mass to total mass of

around 0.03 to 0.06 for Jupiter and 0.11 to 0.22 for Saturn (Owen, 1994),

they are believed to be primarily built from the main reservoir of gas in the

protosolar nebula. Hence they show depleted D/H ratios of about 2 · 10−5.

Uranus, Neptune, and Pluto took much longer to accrete in the lower density

regions of the protoplanetary disk. By this time the solar nebula had been

nearly swept away far into to outer regions of the Solar System. Thus, these

planets show D/H rations inbetween the enriched and protosolar value.

41



2. TITAN

Tab. 2.3: Overview of Solar System D/H ratios

Object D/H ratio Reference

Local Interstellar Medium 1.52+0.18
−0.18 · 10−5 Moos et al. (2002)

Protosolar nebula / Sun 2.5+0.5
−0.5 · 10−5 Robert et al. (2000)

Venus 1.7+0.3
−0.3 · 10−2 de Bergh et al. (1991)

Earth 1.41+0.3
−0.3 · 10−4 Lécuyer et al. (1998)

Mars 9+4
−4 · 10−4 Owen et al. (1988)

Jupiter 2.25+0.35
−0.35 · 10−5 Lellouch et al. (2001)

Saturn 1.7+0.75
−0.45 · 10−5 Lellouch et al. (2001)

Uranus 5.5+3.5
−1.5 · 10−5 Feuchtgruber et al. (1999)

Neptune 6.5+2.5
−1.5 · 10−5 Feuchtgruber et al. (1999)

Titan 1.63+0.27
−0.27 · 10−4 Coustenis et al. (2008)

Hyakutake 3.0·10−4 Bertaux et al. (1998)

Halley 3.16+0.34
−0.34 · 10−4 Eberhardt et al. (1995)

Hale Bopp 3.0+0.04
−0.04 · 10−4 Meier et al. (1997)

Fig. 2.5: D/H ratios for different objects in the Solar System
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2.5.2 D/H ratio on Titan

Most of the measurements performed on Titan provided the ratio of CH3D

to CH4 (see table 2.4). First measurements were performed using Voyager

IRIS data and later data from the ISO satellite. Both Voyager and ISO val-

ues as well as data from ground-based observations are compatible within

their error bars. Later, during the Cassini mission, the GCMS mass spec-

trometer measured a higher value of 2.3+0.5
−0.5 · 10−4 (Niemann et al., 2005).

Bézard et al. (2007) obtained a D/H ratio of 1.32+0.15
−0.11 · 10−4 from the CH3D

band and taking additionally into account the 13CH3D isotope using CIRS

infrared spectra. Most recently, Coustenis et al. (2008) suggested a D/H

ratio of (2.09± 0.45) · 10−4 from nadir observations of C2HD using CIRS. In

limb geometry they found a ratio of (1.63 ± 0.27) · 10−4.

In total one observes a higher D/H ratio in acetylene (C2HD/C2H2) and

molecular hydrogen (DH/H2) with respect to D/H in methane (CH3D/CH4).

The photodissociation products of methane in the upper atmosphere are H2

(HD) and C2H2 (C2HD). Subsequent photolysis may then enrich molecular

hydrogen and acetylene with deuterium, compared to methane. This is be-

cause, when either CH3D or C2HD is photolyzed, there is a preference for H

atoms being removed over D atoms due to their mass difference. Therefore a

higher D/H ratio is expected for C2HD and HD than for the parent molecule

CH3D (Coustenis et al., 2007, 2008). Coustenis et al. (2007) argue that the

enhancement in the GCMS measurement of Niemann et al. (2005) can also

be due to the fragmentation of methane into H2 and other components within

the GCMS by electron impact ionization. This would produce a source ad-

ditional to the atmospheric hydrogen produced by the photolysis of methane.

All measurements of the D/H ratio in methane indicate substantially higher

values than the protosolar value, but less than the value for water in the

Earth’s ocean. There is no general agreement as to the cause of the enhance-

ment (see for instance Lunine and Tittemore 1993). Mousis et al. (2002)

argue that methane was trapped in icy grains at low temperatures in the

solar nebula and incorporated into the planetesimals which finally formed

Titan. In other words, the D/H ratio in methane is representative of the

value acquired in the solar nebula in the formation region of Saturn. Deu-

terium in methane would have then isotopically exchanged with molecular

hydrogen in the gas phase at the time entrapped in solids condensed in Sat-

urn’s formation zone (Mousis et al., 2002).
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On the other hand, Titan could have been accreted based on solids con-

densed in an initially hot and dense Saturnian subnebula. In this picture,

the methane incorporated in Titan would result from CO and CO2 gas-phase

conversions and would represent an almost solar D/H ratio at the time of its

trapping in solids ultimately accreted by the satellite. Pinto et al. (1986) and

Lunine et al. (1999) argued that the observed D/H enhancement could be the

result of photochemical enrichment of deuterium. The D/H ratio acquired

by the atmospheric methane of Titan would be progressively enriched with

time via photolysis, until it reaches the value observed today.

Tab. 2.4: Overview of Titan D/H ratios

Value Method Instrument Reference

1.5+1.4
−0.5 · 10−4 CH3D/CH4 IRIS Coustenis et al. (1989)

0.78+0.23
−0.23 · 10−4 CH3D/CH4 Ground based Orton (1992)

0.87+0.32
−0.19 · 10−4 CH3D/CH4 ISO Coustenis et al. (2003)

1.25+0.25
−0.25 · 10−4 CH3D/CH4 Ground based Penteado et al. (2005)

2.3+0.5
−0.5 · 10−4 HD/H2 GCMS Niemann et al. (2005)

1.17+0.23
−0.28 · 10−4 CH3D/CH4 CIRS Coustenis et al. (2007)

1.32+0.15
−0.11 · 10−4 CH3D/CH4 CIRS Bézard et al. (2007)

2.09+0.45
−0.45 · 10−4 C2HD/C2H2 CIRS (nadir obs.) Coustenis et al. (2008)

1.63+0.27
−0.27 · 10−4 C2HD/C2H2 CIRS (limb obs.) Coustenis et al. (2008)
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In general, radiative transfer is the physical phenomenon of energy transfer in

the form of electromagnetic radiation. The propagation of radiation through

a medium is affected by absorption, emission, and scattering processes. The

equation of radiative transfer describes these interactions mathematically.

Equations of radiative transfer have application in a wide variety of subjects

including optics, astrophysics, atmospheric science, and remote sensing. An-

alytical solutions to the radiative transfer equation exist for simple cases but

for more realistic problems with complex multiple scattering effects numerical

methods are absolutely required.

3.1 Basic definitions

A detailed introduction into the basic quantities in the theory of radiative

transfer can be found in e.g. Chandrasekhar (1960) and Mihalas (1978). The

basic definitions of these works are reviewed here.

• The spectral photon density nph,ν(t,x, k̂) dV d2k̂ dν represents the num-

ber of photons within a small space volume element dV around the

position vector x at time t with energy

Eph = hν (3.1)

and momentum

pph =
hν

c
k̂ (3.2)

having a frequency in the range (ν, ν+dν) and a directional unit vector

k̂ pointing into the solid angle d2k̂ around k̂.

The vector k̂ also denotes the direction of the selected photon velocity

c = ck̂, with c being the speed of light.

• The spectral photon flux jph,ν(t,x, k̂) can be derived by multiplication

of nph,ν with the photon speed c in direction k̂:

jph,ν(t,x, k̂) = nph,ν(t,x, k̂) c = nph,ν(t,x, k̂) c k̂. (3.3)



3. RADIATIVE TRANSFER

• The spectral energy flux jrad,ν(t,x, k̂) can be immediately found from

the photon flux by multiplication with the energy of a photon hν:

jrad,ν(t,x, k̂) = jph,ν(t,x, k̂) h ν = c nph,ν(t,x, k̂) k̂h ν. (3.4)

• The right hand side of equation 3.4 is called the spectral intensity

Iν(t,x, k̂):

Iν(t,x, k̂) = c nph,ν(t,x, k̂) h ν. (3.5)

Iν(t,x, k̂) is the fundamental quantity, which describes a radiation field.

By definition, Iν(t,x, k̂) describes the propagation of energy within the

frequency interval (ν, ν + dν) through a unit surface element oriented

normal to k̂. Iν(t,x, k̂) is also defined per solid angle d2k̂, such that it

does not depend on the distance to a considered object.

• The spectral mean intensity Jν(t,x) can be obtained from the spectral

intensity Iν(t,x, k̂):

Jν(t,x) =
1

4π

∫

Ω

Iν(t,x, k̂) d2k̂. (3.6)

• The spectral radiation flux Fν(t,x) results from integrating the direc-

tional energy flux jrad,ν(t,x, k̂) over all directions:

Fν =

∫

Ω

jrad,ν d2k̂ =

∫

Ω

Iν(t,x, k̂) k̂ d2k̂. (3.7)

Fν(t,x) has a dimension of [J m−2· s · Hz]. For an isotropic radiation

field, where Iν is independent of k̂, Fν(t,x)=0 holds.

3.2 Radiative transfer equation

The radiative transfer equation describes the temporal and spatial evolution

of the specific intensity Iν(t,x, k̂), when radiation passes through matter:

1

c

∂Iν(t,x, k̂)

∂t
+ k̂i

∂Iν(t,x, k̂)

∂xi

= − [κν(t,x) + s̄ν(t,x)] Iν(t,x, k̂)

+ ηind
ν (t,x) Iν(k̂) + ηsp

ν (t,x) (3.8)

+

∫

Ω

sν(t,x, k̂
′ → k̂) Iν(t,x, k̂

′) d2k̂′,

where xi (i=1,2,3) denotes the Cartesian coordinates and the vector k̂ the

photon propagation direction.

The transport coefficients χν , κν , ην , sν describe the interaction of photons

with the medium as summarized below:
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• The loss of radiation along its trajectory of propagation is expressed

by the absorption coefficient κν , being the isotropic monochromatic

absorption coefficient at frequency ν, whereas κ̂ν = κν − ηind
ν is the net

absorption coefficient.

• The differential scattering coefficient sν can be separated into an angle-

independent part s̄ν and an angle dependent part ων ,

sν(t,x, k̂
′ → k) = s̄ν ων(k̂

′ → k̂), (3.9)

where the scattering function ων(t,x, k̂
′ → k̂) is normalized:

∫

Ω

ων(k̂
′ → k̂) d2k̂′ = 1, (3.10)

and the total scattering coefficient s̄ν is defined by

s̄ν(x, t) =

∫

Ω

sν(t,x, k̂
′ → k̂) d2k̂′. (3.11)

In the case of isotropic scattering ων = 1/(4π).

• The spectral emission coefficient is denoted by ην . It consists of the

spontaneous emission coefficient ηsp
ν and the induced emission coeffi-

cient ηind
ν

ην = ηsp
ν (t,x) + ηind

ν (t,x) Iν(t,x, k̂). (3.12)

• It is convenient to combine the total scattering coefficient s̄ν and the ab-

sorption coefficient κν into the extinction coefficient χν , which describes

the loss of radiation along the path of propagation due to absorption

and scattering of photons from direction k̂ into the new direction k̂′

χν = κν + s̄ν . (3.13)

The net extinction coefficient can be defined as χ̂ν = χν − ηind
ν .

The calculation of the radiative transfer in the thin layers of the exosphere

considered in this work (see chapter 6) provides some simplifications:

• Induced emission is considered to be negligible, since collisions are rare

in the exosphere. Furthermore, the spontaneous emission of radiation

from hydrogen atoms can be neglected at the low temperatures of the

exosphere .
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• The scattering medium considered in this work is atomic hydrogen

(see chapter 6). Hence, isotropic scattering can be assumed, thus ων =

1/(4π).

• In the radiative transfer problem considered here, the typical time re-

quired for the radiation to travel a distance s is tph = s/c, whereas the

characteristic time required for a significant change of the transport co-

efficients due to hydrodynamical, thermodynamical and chemical evo-

lution is tχ. Since in the thin layer of the exosphere the distance s for

a photon after it interacts with the exospheric medium is very large (in

the order of 104 km), the radiative transfer problem can be treated in

the stationary limit.

With the simplifications mentioned above, one obtains a simplified, time-

independent radiative transfer equation:

k̂i
∂Iν(x, k̂)

∂xi
= −χν(x) Iν(x, k̂) + s̄ν(x)

1

4π

∫

Ω

Iν(x, k̂
′) d2k̂′. (3.14)

By introducing the source function

Sν =
s̄ν

χν

1

4π

∫

Ω

Iν(x, k̂
′)d2k̂′, (3.15)

One can express equation 3.14 as

k̂i
∂Iν(x, k̂)

∂xi
= χν(x)

[

Sν(x) − Iν(x, k̂)
]

. (3.16)

When describing the photon propagation along a ray of light, one might

introduce s = s k̂, with s = k̂·x denoting the considered coordinate (position)

in the ray of light propagating in direction k̂. One can therefore rewrite

equation 3.14:
∂Iν(s, k̂)

∂s
= χν(s)

[

Sν(s) − Iν(s, k̂)
]

. (3.17)

3.3 Solution of the radiative transfer equation

Solutions to the equation of radiative transfer form an enormous body of

work (e.g. Mihalas 1978). The differences however, are essentially due to

the various forms for the emission and absorption coefficients. If scattering

is ignored, then a general solution in terms of the emission and absorption

coefficients can be obtained.

If one considers a very small area element in the radiation field, there will

be radiative energy flowing through that area element. The flow can be
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completely characterized by the amount of energy flowing per unit time per

unit solid angle, the direction of the flow, and the wavelength interval being

considered. The intensity differential along a length ds is given by:

dIν
ds

= −χνIν . (3.18)

The solution to this equation is also known as “Lambert-Beer’s law”:

Iν(s) = Iν(s0) exp(−τν(s0, s)), (3.19)

where τν(s0, s) is the optical depth of the atmosphere between s0 and s:

τν(s0, s) ≡
s

∫

s0

χ(s′)ds′ =

s
∫

s0

κ(s′) + s̄ν(s
′)ds′. (3.20)

3.4 Quantities used in this work

This work considers the scattering of ultraviolet solar radiation on hydrogen

atoms in Titan’s exosphere in detail. In particular, this work focuses on the

scattering of solar radiation at the Lyman-α wavelength

(λ0=121.56 nm). At this wavelength, hydrogen atoms resonantly scatter the

radiation, i.e. the scattering of a photon by a hydrogen atom in which the

atom first absorbs the photon by undergoing a transition from the ground

state to the first excited level, and subsequently re-emits the photon by the

exact inverse transition. Additionally, the absorption by methane molecules

in the exosphere is considered. When a Lyman-α photon interacts with

methane, methane is dissociated, and the photon is lost.

For a medium, in which scattering and absorption occurs, the total optical

depth along a path s can be expressed as

τ(s) = (σana(s) + σsns(s)) · s, (3.21)

with σs being the scattering cross section and ns the number density of scat-

tering particles, whereas σa and na are absorption cross section and number

density of the absorbing particles, respectively.

The cross section σ is used to quantify the probability of a certain particle-

particle interaction, e.g., scattering, absorption, etc. (Note that electro mag-

netic radiation is described in this context as consisting of particles, i.e.

photons) and has the dimensions of an area [m2].

For Lyman-α radiation at UV wavelengths, the methane photodissociation

cross section is independent of the temperature and the wavelength. The

cross section is obtained from Vatsa and Volpp (2001): σCH4
= 2.0 · 10−17
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cm2.

The wavelength dependent resonance scattering cross section of atomic hy-

drogen is given by

σH(λ) =
fLyαµ0e

2λ2
0

4
√
πme∆λD

exp

[

−
(

λ− λ0

∆λD

)2
]

, (3.22)

with e,me being the charge and mass of the electron, fLyα the oscillator

strength of Lyman-α (fLyα = 0.4163), µ0 the permeability of free space and

∆λD the Doppler width:

∆λD =
λ0

c
vp =

λ0

c

√

2kBT

mH
, (3.23)

with kB being the Boltzmann constant, mH the mass of a hydrogen atom,

T the exospheric temperature and c the speed of light. Note here, that vp

is the thermal velocity of atomic hydrogen (see section 2.3). Equation 3.22

assumes that the scattering is isotropic in the atom’s frame of reference.

This assumption is almost correct, if the incident radiation is completely

unpolarized; it is not expected to lead to any large error in the calculation,

because multiple scattering has a strong depolarizing effect on the radiation.

Setting vp =
√

2kBT/mH is strictly speaking only valid, if the particle ve-

locities obey the Maxwell-Boltzmann distribution of velocities, which is only

valid close to the exobase. Above the exobase, the particles have a radial

velocity component, hence the most probable velocity can no longer be ob-

tained from the Maxwell-Boltzmann distribution. However, as a first or-

der approximation one can assume a Maxwellian distribution of velocities

and obtain for an exospheric temperature of T = 150K a Doppler width

of ∆λD = 6.38 · 10−13 m, hence the scattering cross section at Lyman-α is

σ = 4.815 · 10−17 m2 (see also Figure 3.1).
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3.5 The Monte Carlo method

Fig. 3.1: Atomic hydrogen resonance scattering cross section as a function of wave-

length. The wavelength is expressed in units of Doppler width. The cross

section is shown for a temperature of 150 K

3.5 The Monte Carlo method

The Monte Carlo method does not yield closed solutions of a problem, but

solves it by computing a chain of stochastic single events. In the present

problem the path of a photon through the exosphere of Titan is simulated by

means of automatically generated random numbers, evenly distributed in the

interval (0,1), which determine the current values of the physical variables.

A general introduction to the Monte Carlo method can be found in e.g.

Cashwell and Everett (1959).

One firstly introduces the basic physics of the problem in the program code in

a probabilistic fashion. A system of coordinates and boundaries are defined

and then photons are released from the source. These photons are traced as

they diffuse through the prescribed medium following the probabilistic inter-

action laws, which are sampled by the selection on numbers from a random

sequence. The photons are followed until they escape from the medium or

are absorbed by the medium.

When a photon is emitted from the source and sent into a direction k̂, it

will travel a distance l before it is either absorbed or scattered into a new

direction. However, the distance traveled and the scattering direction can

not be uniformly chosen from all space or all angles, since there are proba-
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bility distribution functions associated with these quantities. Therefore, the

optical depth and scattering angle must be sampled, such that they obey the

probability density distribution function P (x).

At this point the fundamental principle of the Monte Carlo method is

introduced (Cashwell and Everett 1959 for details):

If E1, ..., En are n independent events with probabilities p1, ..., pn and p1 +

...+ pn = 1, the fundamental principle is, that a random variable r, with

p1 + ...+ pi−1 ≤ r < p1 + ...+ pi (3.24)

determines Ei.

When arbitrarily assigning a variable x in the interval 0 ≤ x < n to the

events E1, ..., En with i− 1 ≤ x < i representing the event Ei, then one can

construct a probability density function p(x) by the definition

p(x) ≡ pi i ≤ x < i i = 1, ..., n

Thus, p(x) will be a step function. One can now define a probability density

distribution function

P (x) =

x
∫

0

p(ξ)dξ. (3.25)

Note that p(ξ) is normalized:

x
∫

0

p(ξ)dξ = 1. (3.26)

Then, the equation

r = P (x) =

x
∫

0

p(ξ)dξ (3.27)

determines x uniquely as a function of r, in such a way, that if r is uniformly

distributed on the interval 0 ≤ r < 1, then the variable x falls with frequency

pi in the interval i− 1 ≤ x < i, thereby determining the event Ei.

3.6 Example: Radiative transfer in a plane-parallel

atmosphere

The probability that a photon travels a certain path through a homogenous

medium without interaction is exp(−τ). The probability of an interaction
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inside the medium is hence P (τ) = 1−exp(−τ). By applying the fundamental

principle, one can sample the optical depth to the first interaction from

r = P (τ) = 1 − exp(−τ), (3.28)

with r being a random number equally distributed in [0,1].

Since also 1 − r is equally distributed on 0 ≤ r ≤ 1, one finds

τ = ln(1 − r). (3.29)

Having sampled a random optical depth in this way, the physical distance l

traveled by the photon can be calculated from:

τ =

l
∫

0

nσ dl. (3.30)

In general, l can not be found analytically from equation 3.30, so one must

use numerical techniques, which can be computationally intensive and time

consuming. Nevertheless, one finds l analytically, when the quantity n · σ is

only changing slowly with dl - this allows the generation of large numbers of

photons in a fraction of the time required to solve equation 3.30 numerically.

Applying the Monte Carlo method, equation 3.30 can be solved by tracing a

statistically meaningful number of photons through the medium.

Furthermore, when considering a plane-parallel atmosphere homogenously

filled with an absorbing medium, starting a large number of photons and fol-

lowing them through the medium, one is able to sample the transmission and

vice-versa the optical depth of the atmosphere. For each photon a random

mean free path can be calculated according to

l0 = − 1

n · σ ln(ri), (3.31)

with ri being a random number equally distributed in (0,1). For every photon

started in this way, the random mean free path is compared to the height l

of the atmospheric layer. If l0 is lower than l, this particular photon will be

absorbed inside the medium.

When now starting a large number of photons and counting the number of

photons flying through the medium without any interaction, one can sample

the transmission of the medium T = exp(−τ).
As an example, the optical depth of the medium is assumed to be τ = 1.

Then, the transmission of the medium is hence T = 0.36787945. However, if

the optical depth is not known, then using a low number of photons means
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that the statistics is not sufficient in order to sample the transmission: Using

10 photons for the calculations, e.g. only 4 photons are transmitted through

the medium, hence yielding a transmission of 0.4. Increasing the number of

photons also increases the accuracy of the output: with a number of 1 · 104

photons, an average transmission of 0.36930 is obtained. When using 1·106

photons, a transmission of 0.36791610 can be obtained, which still differs

slightly from the direct calculation due to rounding errors.
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This chapter first gives a short overview about the Cassini mission. After-

wards the the HDAC instrument is described in detail, including the mea-

surement principle and the calibration of the instrument. Furthermore this

chapter describes the measurements performed by HDAC during the T9 en-

counter in 2005 as well as the data reduction.

4.1 The Cassini mission

The Cassini-Huygens mission is a joint venture mission of the European Space

Agency (ESA), National Aeronautics and Space Administration (NASA) and

the Italian Space Agency (ASI - Agenzia Spaziale Italiana). The Cassini or-

biter was developed and constructed at the Jet Propulsion Laboratory (JPL),

while the Huygens probe was supplied by the ESA. ASI provided the high-

performance antenna for the radio link between Huygens and Cassini. The

main scientific objectives for the Cassini-Huygens mission are studying Sat-

urn’s rings and its atmosphere, its satellites’ surfaces, the geological history

of each object in the Saturnian system and Titan’s atmosphere and surface

in more detail.

Cassini-Huygens is the second largest interplanetary spacecraft ever launched

with 27 scientific instruments on board. The spacecraft consists of the orbiter

itself and the attached Huygens probe which was released to enter Titan’s

atmosphere (see Figure 4.1). The spacecraft has a height of 6.8m. Its max-

imum diameter, determined by the High Gain Antenna (HGA) is 4 m, not

including the deployed magnetometer boom and antennas. The total weight

after separation from the launch vehicle is estimated to be 5,630 kg.

Cassini is three axes stabilized through reaction and momentum wheels and

small hydrazine thrusters. Large trajectory maneuvers are accomplished

by two main engines, minor corrections are realized by the use of smaller

thrusters. Reference star sensors, Sun sensors and gyroscopes allow pre-

cise attitude determination. Three radioisotope thermoelectric generators

provide power for engineering and scientific electronic devices. The orbiter
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communicates with the Earth via the High Gain Antenna (HGA) and two

low gain antennas (LGA).

Fig. 4.1: The Cassini spacecraft. The UVIS instrument is part of the “Remote

Sensing Pallet”, as indicated in the upper figure. In the lower image,

the Huygens probe has not been attached at the time of the photograph.

Image credits: NASA/JPL
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The Cassini-Huygens spacecraft was launched on October 15, 1997 from the

Cape Canaveral Air Force Station. It arrived at Saturn on July 2, 2004 af-

ter several swing-by maneuvers at Venus, Earth and Jupiter. The Cassini

orbiter was scheduled to orbit Saturn and its moons four years until June

2008. In July 2008, a two-year mission extension for the Cassini mission

begun, called the “Cassini Equinox Mission”. During the Equinox mission,

the Cassini spacecraft will continue its tour through the Saturnian system

and will perform several close targeted flybys as well as many distant flybys

of Saturn’s moons. This includes 26 Titan flybys, 7 Enceladus flybys, and

one flyby each of the icy moons Dione, Rhea and Helene.

The Huygens probe was released from Cassini on December 26, 2004 entering

Titan’s atmosphere on January 14, 2005. It collected large amounts of scien-

tific and image data during its 27 minute descent through the atmosphere,

and 60 more minutes collecting data at the surface, sending it to Earth via

the Cassini orbiter.

4.2 Description of the HDAC instrument

The Hydrogen Deuterium Absorption Cell (HDAC) is part of the Ultraviolet

Imaging Spectrograph (UVIS) aboard the Cassini orbiter. Figure 4.1 shows

UVIS as part of the “Remote Sensing Pallet”. The HDAC instrument was

designed to determine the D/H ratio of Titan’s and Saturn’s atmospheres.

HDAC measures the relative abundance of atomic deuterium and hydrogen

from their Lyman-α emission at 121.533 nm and 121.567 nm, respectively. A

general description of UVIS and HDAC can be found in Esposito et al. (2004).

HDAC consists of a baffle for suppressing scattered light, three absorption

cells and a Channel Electron Multiplier, which will be hereafter referred to as

the “photometer” (see Figure 4.2). One HDAC absorption cell consists of a

long tube, 8.5 cm in length and with a diameter of 2.5 cm, separated by Mag-

nesium fluoride (MgF2) windows. MgF2 has a transmission range between

115 nm and 7,500 nm (Heath and Sacher, 1966). A single 2.5 cm diameter

MgF2 lens attached to the front of the instrument focuses the incoming light

onto the detector, yielding a circular field of view (FOV) of 3◦ in diameter

(6.85·10−4 steradians).

The absorption cells are filled with molecular hydrogen, oxygen and deu-

terium, respectively. Oxygen acts as a broad band filter from 115 nm to

180 nm, except for a transmissive window in the Lyman-α region (Maki,

57



4. THE CASSINI /HDAC MEASUREMENTS

1993). Unfortunately, the oxygen cell had to be vented prior to flight, hence

HDAC is now sensitive to a very broad wavelength range from 115 nm to

240 nm.

The hydrogen and deuterium cells (hereafter referred to as “H cell” and “D

cell”) are heated via a hot tungsten filament to dissociate the molecules into

atoms. The atoms resonantly absorb the hydrogen and deuterium Lyman-α

radiation passing through the cells, which leads to a decreasing count rate

in the photodetector. Thus, the cells act as adjustable filters: by switching

the filaments on and off and measuring the differences in signal strength, the

instrument can measure in this ways the intensity of the incoming Lyman-α

radiation for atomic hydrogen and deuterium. Since the atomic density in

the cells depends on the filament temperature, a set of different absorption

“filters” can be attained.

Fig. 4.2: Detailed overview of the HDAC instrument (Esposito et al., 2004).

4.3 Measurement principle

The absorption cells are operated at a temperature of THDAC = 300K.

When no power is applied to the filaments, the absorption cells contain only
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molecules, and the cells are transparent with respect to incoming Lyman-α

radiation. When power is applied to the filament in the cell, the molecules

dissociate into atoms, which weaken the incoming Lyman-α radiation by

absorption. The wavelength-dependent transmission

T (λ) = exp [−nσ(λ, THDAC)L] = exp [−τ(λ)] (4.1)

of the cells is a function of the length of the cell (L = 8.5 cm), the wavelength

and temperature dependent resonance scattering cross section σ(λ, THDAC),

and the atomic number density n, which in turn depends on the filament

power.

The wavelength dependent resonance scattering cross section of atomic hy-

drogen is given by

σ(λ, THDAC) = σ0(THDAC) exp

(

λ− λ0

∆λ

)

, (4.2)

with σ0 being the cross section at the line center (λ0 = 121.567 nm) and ∆λ

the Doppler width. At a cell temperature of THDAC = 300K, the cross section

for atomic hydrogen at the line center is σ0 = 3.4 ·10−13 cm2. See chapter 3.8

for a detailed derivation of the optical depth and the resonance scattering

cross section.

HDAC is sensitive to radiation over a wide spectral range, hence the signal

measured is directly proportional to the integrated intensity of the incoming

radiation over this range. The total signal can be expressed as

I =

∞
∫

0

S(λ)H(λ)T (λ)dλ, (4.3)

where I is the measured signal by the photodetector, H(λ) is the intensity of

the radiation, S(λ) is the sensitivity of the whole instrument (including the

sensitivity of the detector and the transmission of the MgF2 windows), and

T (λ) is the transmission of the filter provided by the absorption cells. The

ratio of the modulated intensity I to the unmodulated intensity I0 (assuming

no background) is given by the factor

R =
I

I0
=

∫

∞

0
S(λ)H(λ)T (λ)dλ

∫

∞

0
S(λ)H(λ)dλ

. (4.4)

Because the background level is unknown, it can be eliminated from the

measurement by taking the difference of modulated and unmodulated signals,
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giving an effective filter

I0 − I =

∞
∫

0

S(λ)H(λ)[1 − T (λ)]dλ. (4.5)

Due to the movement of the spacecraft with respect to Titan (resulting in

a Doppler shift of the measured Lyman-α lines), HDAC is able to measure

the line shape of the Lyman-α line: during ingress, the relative speed of the

approaching spacecraft with respect to Titan is negative, hence the emitted

Lyman-α radiation is shifted with respect to the HDAC absorption, allowing

HDAC to absorb radiation redwards of the emitted radiation. Close to the

closest approach the Doppler shift is zero, hence HDAC absorbs radiation

exactly at the line center and during egress the blueward side of the Lyman-

α radiation emitted by Titan is absorbed.

4.4 HDAC Calibration

Pre- and inflight cell calibrations have been summarized in Maki (1993),

Warlich (1997) and Regehly (2003). Here the important points of these

works are reviewed.

4.4.1 Sensitivity

The sensitivity SLyα of the instrument is the count rate per input flux:

SLyα =
106

4π
· QE · Ω · T 3

W · TL, (4.6)

where SLyα is in units of counts per second and Rayleigh (cts s−1 R−1), QE

is the quantum efficiency of the CEM detector in units of counts per photon

(cts ph−1), Ω is the solid angle of the FOV of HDAC in units of steradians,

T 3
W · TL is the transmission of the three MgF2 windows and the single lens.

SLyα was calibrated using measurements of the local interstellar medium

(LISM) and comparing them with a model, being SLyα = 29 ± 3 cts s−1 R−1

(R. Reulke, priv. com.) during the time of the flyby considered in this work,

with a detector quantum efficiency of QE = 0.78 cts ph−1. In general, the

sensitivity of an instrument decreases with time, with the highest sensitiv-

ity at the beginning of the mission and then slowly decreasing to a stable

value. See Figure 4.3 for the sensitivity change during 2005 (R. Reulke,

priv. com.). The sensitivity of HDAC over the FOV is shown in Figure 4.4.

Note that recent measurements of the HDAC sensitivity indicate a value of
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SLyα = 14 cts s−1 R−1 for the year 2009 (R. Reulke, priv. com.).

The photodetector is able to detect radiation within two pre-defined inte-

gration times of 0.125 s and 4 s. From the calibration measurements, the

CEM integration time was chosen to be 0.125 s to avoid so-called rollover

events. Rollover events mainly occur because the detector accuracy is lim-

ited to 16 bit, hence the maximum number of counts is 65,536. If an overflow

is detected, then its value is reset, leading to a spike in intensity. Mainly

rollover events appear when observing with an integration time of 4 s.

Fig. 4.3: HDAC sensitivity change during 2005. The sensitivity has been fitted by

a linear fit (solid red line). During the T9 flyby (vertical long-dotted line)

the instrument sensitivity was 29 ± 3 cts s−1 R−1. Data provided by R.

Reulke (priv. com.).

Fig. 4.4: Off-axis response of HDAC’s circular FOV. Image obtained from Esposito

et al. (2004).
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4.4.2 Cell optical depths

During the preflight calibrations, the optical depths of both absorption cells

were measured as displayed in table 4.1, showing a significant contamination

of the deuterium cell with hydrogen: τHD is the atomic deuterium optical

depth in the H cell and τDH the atomic hydrogen optical depth in the deu-

terium cell. The H cell, however, was not contaminated by deuterium.

Prior to the T9 flyby considered in this work, HDAC was again calibrated by

measuring the local interstellar medium as well as performing photometry on

bright stars. The measured modulation, as inferred from LISM (local inter-

stellar medium) and Jupiter measurements, was much lower than expected

with optical depths as shown in table 4.2. The D cell showed a strong signal

excess. Moreover, it was not possible to infer the deuterium optical depth

because the objects observed exhibited themselves a very faint D-Lyman-α

line due to very low D/H ratios. Nevertheless the atomic hydrogen optical

depth in both cells could be determined.

Tab. 4.1: Preflight calibration of optical depth versus filament power step in the H

and D cell, respectively.

Filament voltage H cell D cell

step τH τHD τD τDH

0 0.0 0.0 0.0 0.0

1 0.0796 0.0 0.3 0.02

2 0.668 0.0 1.5 0.16

3 1.062 0.0 2.8 0.25

4 1.533 0.0 4.5 0.37

5 3.193 0.0 6.2 0.87

6 3.855 0.0 7.5 1.06

7 4.555 0.0 10.0 1.28
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Tab. 4.2: Inflight calibration of the optical depth versus filament step in the H and

D cell. It was not possible to determine the deuterium optical depth in

the deuterium cells (indicated by “-”).

Filament voltage H cell D cell

step τH τHD τD τDH

0 0.0 0.0 - 0.0

1 0.0024 0.0 - 0.0336

2 0.0468 0.0 - 0.0

3 0.085 0.0 - 0.01639

4 0.1073 0.0 - 0.1118

5 0.4081 0.0 - 0.2401

6 0.6553 0.0 - 0.2241

7 0.8655 0.0 - 0.2239

4.5 Titan T9 flyby

HDAC measurements have so far only performed once due to the above men-

tioned problems. Therefore this work focuses on measurements performed

during the T9 flyby on December 26, 2005. This work provides for the first

time a data analysis of the T9 flyby measurements.

4.5.1 Overview

The T9 encounter lasted from 17:53:34 h (UTC, timestep 0 in Figure 4.5) until

19:59:33 h (UTC, timestep 840), reaching its closest approach at 18:59:25 h

(timestep 439). Note that one timestep corresponds to a time span of 9 s,

starting at the beginning of the observations (see next section for details).

HDAC measurement started at a distance of 25,468.9 km to Titan’s center,

decreasing to a lowest distance of 12,985.0 km (closest approach) and then

again increasing to 23,855.9 km at the end of the encounter (see Figure 4.5,

top panel).

At the beginning of the encounter, the spacecraft had a relative speed of

-4.70 km s−1 with respect to Titan becoming zero at timestep 402. At the

end of the encounter, the relative speed of the departing spacecraft with

respect to Titan was 4.94 km s−1 relative to Titan. Note that the relative

speed became zero at timestep 402 and not during the closest approach. The

corresponding Doppler shift of the emitted Lyman-α radiation with respect

to the absorption of HDAC is shown in the center panel of Figure 4.5.
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Fig. 4.5: Parameters during the T9 encounter of Cassini with Titan:

Uppermost plot showing the distance to Titan, the second plot showing

the Doppler speed, and the third plot the diameter of Titan’s disc and the

FOV projected onto Titan’s disc (red lines). One time step corresponds

to 9 s integration time, starting at 17:53:34 h UTC.

The four drops at timesteps 50, 320, 440 and 720 in the Doppler speed

and in the FOV data indicate an adjustment of the Cassini orbiter in

order to track Titan. The fourth drop is only visible in the FOV data.

The angular diameter of Titan changed between 8 to 12◦ (black lines in

lowermost plot of Figure 4.5). The HDAC observations started near the

sub-solar point, moving over Titan’s disc to the terminator (central red line

in lowermost plot of Figure 4.5). The latitude at closest approach was 0◦

(equator).

Approximately 1.4 hours after the beginning of the observations, the Visual

and Infrared Mapping Spectrometer (VIMS) performed observations of Ti-
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tan’s surface (parallel to the HDAC observations) with several slow scans

across Titan’s visible hemisphere to obtain spectral images (timestep 560),

with a limb scan of Titan at the end of the encounter. This is visible in the

lowermost plot of Figure 4.5 after timestep 500.

The solar zenith angle (SZA), i.e. the angle between the viewing direction

and the solar direction changed from 20◦ at the beginning of the encounter

to 130◦ at the end (see Figure 4.6). Close to closest encounter, the viewing

direction was perpendicular to the solar direction.

Fig. 4.6: Change of solar zenith angle during the flyby. The solar zenith angle is

the angle between the viewing direction of HDAC and the solar direction.

4.5.2 Measurements

Prior to the T9 flyby, HDAC was calibrated on the LISM as well as on

Jupiter. The optical depths determined during these “inflight” calibrations

were lower than in preflight calibrations (see section 4.4). The deuterium and

hydrogen absorption cells of HDAC were therefore operated using a sequence

of filament steps, defined by the maximum voltage level (voltage step “7”)

and cells off (voltage step “0”) during the flyby.

One sequence was made of 16 voltage steps, where during the first step

both cells were switched off. Afterwards the H cell was switched on for

the rest of the sequence and the D cell was switched on every second step,

hence the whole voltage sequence pattern is [0777777777777777] for the H

cell and [0707070707070707] for the D cell. At a filament step of “7” the

atomic hydrogen optical depth in the H cell is τHH=0.865 and τHD=0.224 in

the D cell, whereas the deuterium optical depth in the D cell could not be

determined (see table 4.2).
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During the flyby, 53 sequences were performed, with a total detector inte-

gration time of 9 s per step. The count rate was measured using 72 single

integrations for each step, with a duration of 0.125 s (72·0.125 s=9 s).

Figure 4.7 shows the measured signal during the T9 flyby. Black diamonds

represent measurements in photometer mode (both cells switched off), whereas

red diamonds show the measurement performed with only the H cell switched

on, and blue diamonds are measurements where both cells are switched

on. The intensity drops in the measurement arise from FOV changes (at

timesteps 50, 320, 440, and 720).

The measurements performed in photometer mode provide a measured in-

tensity of 1.61 · 104 cts s−1 at the beginning of the observations (timestep 0),

decreasing to 1.41 · 104 cts s−1 50 minutes after the beginning of the observa-

tions (timestep 400). The closest approach altitude was reached at timestep

439, where a change in the pointing direction causes the signal to decrease to

its lowest value of 1.32 · 104 cts s−1. The signal was then increasing rapidly,

even exceeding the signal at the beginning of the encounter: The maxi-

mum count rate of HDAC was measured at timestep 700, with a value of

1.92 cts s−1. During the limb scans, Titan no longer filled the FOV of the

instrument. Although looking at the night side of Titan, Saturn was in the

field of view during the limb scans, causing the count rate to exceed the value

at the beginning of the observations.

When the H cell was switched on, the signal decreased to 1.58 · 104 cts s−1 at

the beginning of the encounter, compared to 1.61 · 104 cts s−1 in photometer

mode (both cells off). The Doppler shift was very large, which would suggest

that absorption by the H cell at Lyman-α wavelengths should be small. Since

the instrument looked at the sunlit side of Titan one might interpret this

absorption, as that the H cell has either already absorbed a small part of

the H Lyman-α emission line or the background was very high due to the

missing broad band filter provided by the oxygen cell.

At timestep 402, when the Doppler speed was zero (cf. Figure 4.5), the signal

decreased to 1.31 · 104 cts s−1 - compared to 1.41 · 104 cts s−1 in photometer

mode this is a signal decrease of 7.1%.

When both cells were switched on, the above mentioned effect is also visible:

At the start of the encounter, the count rate was 1.57 · 104 cts s−1. Note that

both measurements have a comparable countrate, although the transmission

at the line center decreased by 21% when both cells were switched on. The

absorption in the wings is nevertheless comparable. The count rate then de-
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creased to a minimum value of 1.24 ·104 cts s−1. Compared to the photometer

measurement, this means a decrease of 12.1% and a decrease of 5% compared

to the H cell measurements.

Fig. 4.7: HDAC measurements during the T9 encounter with Titan. One timestep

corresponds to 9 s of observations, starting at 17:53:34h UTC. Black

diamonds are measurements performed in photometer mode (both cells

switched off), whereas red and blue diamonds are measurements with only

the H cell switched on and both cells switched on, respectively. Clearly vis-

ible is the undersampling of photometer measurements (every 16th step),

when compared to measurements where one or both cells are switched on.

4.5.3 Difference signal and background removal

Background signals need to be removed in order to investigate the radiation

emitted from Titan. The background signal is an additional signal which can

be excluded by taking the difference between measurements performed in

photometer mode and when the cells are switched on (I0 and I, respectively,

as given by the equations in section 4.3).

Background sources are the radiation from the LISM, the solar radiation and

especially at the end of the encounter Saturn, which was in the FOV. The

main reason for background signals is the missing oxygen cell, allowing the

detection of radiation by the photodetector in a broad wavelength range from

115 nm to 240 nm. Below 115 nm radiation is blocked by the MgF2 windows.

The sensitivity of the instrument above 140 nm is of main importance, since

beyond this wavelength the UV output of the sun begins to increase rapidly

with increasing wavelength: Data from the Solar Radiation and Climate

Experiment (SORCE, Pankratz et al. 2005) show the solar spectrum in the

wavelength range, HDAC is sensitive for (see Figure 4.8).
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Undersampling is a significant problem when determining the difference sig-

nal directly: Only few measurements in photometer mode where performed

among a large set of measurements where either the H cell or both cells were

switched on. This causes the differential signal to result in spikes, especially

during FOV changes. Figure 4.9 shows the differential signal I0 − I after

applying a spline fit to the data, in order to adjust the different number of

data points. Clearly visible is a frequent noise pattern, whose origin is so

far unknown (R. Reulke, priv. com.). In order to avoid the spikes caused by

undersampling, the average of measurements one step before and after each

measurement in photometer mode is taken to calculate the difference signal.

This decreases the number of data points to 52 points throughout the ob-

servation, which are still noisy but without spikes caused by undersampling

(see Figure 4.10).

Fig. 4.8: Solar spectrum in the wavelength range, HDAC is sensitive for. Note that

the irradiance is measured for a solar distance of 1AU.

Data obtained from SORCE (http://lasp.colorado.edu/sorce).

The difference signal in Figure 4.10 gives a direct measurement of the Lyman-

α radiation emitted from Titan. At the beginning of the encounter, when

Cassini was approaching Titan, the negative Doppler speed allowed HDAC

to absorb radiation in the line wings of the emitted Lyman-α line (redwards

of the line center): Clearly visible is a signal exceed in both data sets of

about 500 cts s−1 at the beginning of the observations. As the instrument was

pointing towards the sunlit hemisphere of Titan and since any background

sources have been excluded by taking the difference signal, HDAC thus has

already absorbed Lyman-α radiation scattered in Titan’s exosphere.

As the Cassini orbiter passes Titan, the Doppler speed increases and the

HDAC absorption shifts to the line center of the emitted Lyman-α line. At
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timestep 402 the Doppler speed was zero, allowing HDAC to absorb radi-

ation exactly in the line center. The difference signal is about 800 cts s−1

when only the H cell was switched on, and about 1,700 cts s−1 when both

cells were switched on. However, at this time HDAC already pointed to the

terminator region. The closest approach altitude was reached at timestep

439. At the end of the encounter, HDAC was looking on the night side

of Titan and performed limb scans. As the spacecraft departs from Titan,

the Doppler speed is increasing furthermore, hence HDAC was absorbing

again radiation in the line wings (now bluewards of the emitted line). Still

visible is a small signal exceed of about 10 cts s−1 at the end of the encounter.

The HDAC measurement thus provides information not only about the Lyman-

α line strength across Titan’s disc but also on the line shape. For future fly-

bys it would be therefore desirable to observe Titan under different observing

conditions in order to determine e.g. the line center Lyman-α line strength

of the day side of Titan, which could be achieved when the closest approach

coordinates are located above the sunlit hemisphere of Titan.

The following chapters of this work will focus on the simulation of the HDAC

measurement during the T9 flyby. Due to the unknown amount of deuterium

in the absorption cell, this work takes only into account the measurements

performed in photometer mode and using the H cell. The signal when both

absorption cells were operated is not considered. In chapter 9 the difference

signal of the measurements will be compared to radiative transfer model

calculations and thus the exospheric parameters will be determined.
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Fig. 4.9: Difference signals between measurements performed in photometer mode

(I0) and cell on measurements (I). The red line shows the difference

signal using the H cell measurements, whereas the blue line shows the

difference signal using the measurements where both cells were switched

on. A spline fit has been applied to all data sets in order to adjust for

the different number of data points. The signal is very noisy and shows

strong peaks caused by undersampling.

Fig. 4.10: Difference signals between measurements in photometer mode (I0) and

cell on measurements (I) after reprocessing, as described in the text.

The red diamonds show the difference signal using only the H cell mea-

surements, whereas the blue diamonds show the difference signal using

both cells.
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Direct measurements of densities in the atmosphere of Titan are limited to

altitudes below 2,000 km. Especially in the upper atmosphere only the heav-

ier species can be measured, like nitrogen and methane. Lighter species, such

as molecular and atomic hydrogen, are inferred from appropriate fitting of

the distributions of the heavier species and by photochemical models. Hence,

there exist no direct measurement of the atomic hydrogen distribution in the

atmosphere of Titan. Upper atmospheric atomic hydrogen density distri-

butions inferred from photochemical models are limited to altitudes below

about 1,500 km (see review of articles in section 2.4.2). The investigation

of the radiative transfer in Titan’s exosphere therefore requires the devel-

opment of an exospheric density distribution model, so as to evaluate the

altitude density profile. Above the exobase, where the hydrogen atoms no

longer follow a Maxwellian distribution of velocities (since collisions are neg-

ligible), two different exospheric models are applied, briefly described in the

following sections.

5.1 Chamberlain model

As a first approach an exospheric model by Chamberlain (1963) (furthermore

referred to as the “Chamberlain model”) is applied to Titan’s exosphere,

which has been developed for Earth’s atmosphere and verified by Lyman-α

observations from the DE1 satellite (Rairden et al., 1986).

The Chamberlain model takes into account neutral particles whose orbits

are controlled only by gravity. It assumes spherical symmetry and requires

the altitude and temperature of the exobase. The spatial and momentum

distribution above this critical level is governed by Liouville’s equation (see

chapter B in the Appendix for an introduction into the Liouville theorem).

The Liouville theorem states that the density in phase space remains constant

along a dynamical trajectory. Any particle in the exosphere naturally falls

into one of four categories, based on orbital characteristics, i.e., ballistic,

bound, escaping, and incoming hyperbolic particles (see Figure 5.1). At any

given point in the exosphere, each of the above types occupies an isolated
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region in the phase space.

Ballistic and escaping particles intersect the exobase, with velocities either

smaller or greater than the escape velocity. These two categories represent

particles which are directly injected from the thermosphere. On the other

hand, particles in bound (satellite) orbits have perigees above the exobase,

and therefore have a purely exospheric origin. The existence of bound orbits

depends on the balance of the rare collisions that do occur within the exo-

sphere with the rare destructive processes, such as photo-ionization. Because

in any collision-less model there is no mechanism to establish a steady-state

population of bound particles, this category is excluded from the density

calculations. Incoming particles on hyperbolic orbits are also excluded since

they obviously require an external origin.

Fig. 5.1: Particle orbits populating the exosphere. The black circle represents Ti-

tan’s exobase. The red line indicates the trajectory of a ballistic particle,

the green line an escaping particle, the blue line a bound orbit and the

violet line a hyperbolic orbit.

Assuming a Maxwellian distribution of velocities f(v) at the exobase and

applying Liouville’s theorem, implies that the velocity distribution function

above the exobase is also Maxwellian, truncated to include only regions in

the momentum space occupied by either ballistic or escaping particles with

trajectories intersecting the exobase. Particle densities can be directly cal-

culated by integrating over the appropriate regions of the momentum space

at any height yielding the distribution of density throughout the exosphere:

N(r) = nc exp−(λc−λ(r)) ζ(λ(r)), (5.1)

where nc is the density at the critical level rc (i.e. the exobase). λ is the
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5.1 Chamberlain model

potential energy in units of kBT :

λ(r) ≡ GMm

kBTcr
, (5.2)

whereM is the mass of Titan, m is the particle’s mass and Tc the temperature

at the exobase, whereas λc is the energy at the exobase level rc.

The right hand side of equation 5.1 represents the hydrostatic equation mul-

tiplied by ζ , a partition function, which describes the orbits of the particles

released at the exobase, with ζ = ζbal + ζesc (see below). At the exobase the

partition function is unity. Above the exobase the density departs from the

barometric law only as orbits in certain directions and energy ranges become

depleted.

The partition function for ballistic orbits is given by

ζbal =
2

π1/2

[

γ

(

3

2
, λ

)

− (λ2
c − λ2)

1/2

λc
e−Ψ1 · γ

(

3

2
, λ− Ψ1

)

]

, (5.3)

where

Ψ1 =
λ2

λ+ λc
(5.4)

and γ is the incomplete gamma function function:

γ(α, x) =

x
∫

0

yα−1e−ydy. (5.5)

Escaping orbits are parameterized as:

ζesc =
1

π1/2

{

Γ

(

3

2

)

− γ

(

3

2
, λ

)

− (λ2
c − λ2)

1/2

λc
e−Ψ1

[

Γ

(

3

2

)

− γ

(

3

2
, λ− Ψ1

)]

}

,

(5.6)

where Γ(α) = γ(α,∞) is the complete gamma function. See Chamberlain

(1963) for a detailed derivation of the partition functions used above.

The principle of the Chamberlain formalism does not take into account the

particles coming into the atmosphere from infinity. These constitute the

fourth possible type of population, which must be as important as the es-

caping population to maintain a hydrostatic equilibrium. Disregarding the

population of entering particles from the infinity, Garnier et al. (2007) found

a discontinuity of about 20% for the H density at the exobase: below the

exobase hydrostatic equilibrium is maintained, with Maxwellian distribu-

tions of velocities, and above without the population of entering particles

from the infinity.

73



5. EXOSPHERIC DENSITY DISTRIBUTION MODELS

5.2 Particle model

As another approach, a dynamic particle model from Wurz and Lammer

(2003) is applied (furthermore referred to as the “Particle model”), which has

been applied to Mercury’s exosphere in order to derive the atomic hydrogen

exobase density using measurements performed by Mariner 10, as well as

on Mars’s exosphere using the ASPERA-3 instrument aboard Mars Express

(Galli et al., 2006). Using the Monte Carlo method and assuming angular and

velocity distributions at the exobase in three dimensions (as prescribed by

the release process), it follows the individual trajectories of particles released

from the exobase through the exosphere until the particles cross the exobase

layer again or cross the upper model boundary.

In this work, only thermal particle release is considered, hence particles are

released from the exobase from a Maxwellian distribution of velocities. Other

escape mechanisms, like photo-ionization and charge exchange were found to

be insignificant compared to thermal escape (cf. section 2.3.2). A particle

falling back to the exobase level is considered lost. In the model no assump-

tions are made for the exosphere itself, for example barometric scaling or

non-barometric scaling; everything follows from the trajectory calculations.

Trajectory modifications due to radiation pressure are not considered in the

model (see chapter C in the Appendix).

McDonough and Brice (1973) first proposed the possibility that particles es-

caping from Titan may be captured by Saturn’s strong gravitational field and

form into a toroidal cloud near Titan’s orbit (see also Smyth 1981; Hilton

and Hunten 1988). Molecules with trajectories reaching above the Hill sphere

(roughly at 20 Titan radii) are able to escape from the satellite, since these

particles would be progressively perturbed by Saturn’s gravity and eventu-

ally end up orbiting either the planet or the satellite. The exospheric model

extends to only 12 Titan radii, hence this effect is also not taken into account.

In order to determine the velocities of the exospheric particles, the velocity

distribution at the exobase is created using Gaussian deviates. A set of

three Gaussian deviates is needed to determine the components of a velocity

vector for the thermal particle release at the exobase. The Gaussian deviates,

denoted Gi, are calculated by using the relation given in Zelen and Severo

(1965) and Hodges (1973):

Gi = [−2 ln(pi)]
1/2 cos(2πqi), (5.7)

where pi and qi are uniform deviates between 0 and 1. The variance of each

Gaussian deviate is σ2
i =1 (for i = 1, 2, 3). The initial velocity vector, v0 =

74



5.3 Application to this work

(vx, vy, vz), at the start of the particle trajectory is

v0 =

(

m

kBTc

)1/2

G + r ×Ω (5.8)

with particle mass m, the Boltzmann constant kB, Tc the exobase tempera-

ture, r the release location on the exobase, and Ω the rotational velocity of

Titan.

The particles released from Titan’s exobase are moving mainly on ballistic

trajectories. The elevation angle αj can be calculated from the particle ve-

locity vj and the vertical velocity component vzj (with j=0,...,n), and n the

number of altitude steps considered in the simulation):

αj = arcsin

(

vzj

(vj · vj)1/2

)

(5.9)

where vz,j is the velocity component in z-direction, pointing away from the

planetary surface and α0 is the ejection angle.

The flight time tj for a particle traveling an altitude step of ∆z can be

calculated assuming straight paths for one altitude step:

tj =
vj sin(αj)

g(r)
−

√

[

vj sin(αj)

g(r)

]2

−
(

2∆z

g(r)

)

(5.10)

where g is Titan’s gravitational acceleration as a function of planetocen-

tric distance r. After knowing the flight time for an altitude step the new

vz,j+1,vj+1, and αj+1 corresponding to the new altitude zj+1 is calculated.

The density profile of species k can be finally calculated via the height de-

pendent density

nk(r) = ñ

(

RExo

r

)2
∑

j

tj (5.11)

where the sum extends over all particles j that cross the layer located at

height r = RM + k∆z The scaling factor ñ is established either by prescrib-

ing a column density or an exobase density that has to reproduced by nk(r)

.

5.3 Application to this work

In the radiative transfer model described in the following chapter two particle

species are considered: atomic hydrogen is treated as the resonance scattering

species of Lyman-α radiation, whereas methane is treated as an absorber
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absorbing Lyman-α photons (being photo-dissociated). At the lower model

boundary (780 km) it is assumed that the whole solar Lyman-α radiation has

been absorbed by methane.

For the distribution of atomic hydrogen in the upper atmosphere from 780 km

up to the exobase (which is in the exospheric model located at 1,500 km)

model data obtained from Yung et al. (1984) is used. The distribution of

atomic hydrogen above this level up to the upper model boundary is calcu-

lated by the afore mentioned models.

The methane profile used in the radiative transfer model is taken from INMS

data from de La Haye et al. (2008) in the altitude range from 780 km to

2,000 km. The distribution of the methane number density up to the upper

model boundary at an altitude of 30,000 km has been extrapolated (see Figure

5.2).

5.4 Density distribution calculations

Note that the Chamberlain model density profile has been calculated in the

context of this work, whereas the density distribution of the Particle model

has been provided by the authors of the model.

Using the Particle model, a statistically meaningful quantity of hydrogen

atoms and methane molecules are released from the exobase with an ejection

angle randomly equally chosen within (0,π). Below the exobase the parti-

cle velocities obeys the Maxwell-Boltzmann-distribution of velocities, hence

there will be no preferred direction. Above the exobase, the distribution of

velocities is asymmetric since in the exosphere collisions become negligible.

Comparison with calculations performed using the Chamberlain model with a

fixed exobase temperature of T = 150K and an exobase density of

nH = 1 · 104 cm−3 (as shown in figure 5.2) yields higher densities in the up-

per exosphere for the Chamberlain model; the density decreases much faster

using the Particle model. At the exobase the Chamberlain model shows a

strong change of the density gradient: below the exobase the density de-

creases strongly with increasing altitude and above the decrease it is much

slower. This is also observed when using the Particle model, however, the

transition is much smoother. The different density gradients below and above

the exobase occur since below the exobase hydrostatic equilibrium is main-

tained, whereas above particle are flowing away from Titan.

Using the Particle model, the timescales for hydrogen atoms released at the
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exobase can be determined until they reach an exobase altitude of 30,000 km,

being about tTh = 2·104 s (see Figure 5.3). Thus, the characteristic time scale

for thermal escape is much lower than that for non-thermal escape mecha-

nisms, like photo-ionization (tIon = (1 − 2) · 109 s, Smyth 1981) or charge

exchange (tCE ≈ 3 · 107 s; Wolfe et al. 1980; Smyth 1981). Omitting these

processes in the calculations is hence justified.

Fig. 5.2: Density profiles used in this work. The plot is showing the den-

sity distribution of atomic hydrogen, calculated by the Particle model

(solid black line) and compared to the Chamberlain model (dotted black

line). The atomic hydrogen exobase density chosen for both models was

nH = 1 · 104 cm−3, whereas the exobase temperature chosen was

Tc = 150 K. Additionally the methane density distribution is shown (red

line). The shaded area indicates the altitude range of HDAC during the

T9 flyby.
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Fig. 5.3: Time scales for H atoms released from the exobase to reach an exospheric

altitude of 30,000 km. Image credit: A. Schaufelberger (priv. com.).
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In this chapter a detailed description of the radiative transfer model to cal-

culate the transfer of Lyman-α radiation within Titan’s exosphere is given.

The description also includes the simulation of the measurement performed

by HDAC. Since HDAC is moving with time during the encounter, the radia-

tive transfer calculations are split into two parts. The first part considers the

transfer of radiation within the exosphere, and the second part then takes

into account the amount of radiation scattered into the instrument at cer-

tain spacecraft positions during the encounter. The second part is hereafter

referred to as the “Data Sampling model”. However in this work the en-

tire radiative transfer model (including both parts) will be referred to as the

“Monte Carlo radiative transfer model”.

For the radiative transfer calculations performed here, the Monte Carlo

method is used (as introduced in chapter 3) in order to easily solve the

radiative transfer for multiple scattering. Especially in the lower exosphere,

where the density is high compared to the outer regions, photons might be

multiply scattered.

As this work focuses on the simulating of measurements performed by the

HDAC instrument (described in chapter 4), the radiative transfer of solar

Lyman-α radiation under changing observing angles must be taken into ac-

count. Using the first part of the Monte Carlo radiative transfer model, the

scattering and absorption positions within the model exosphere are deter-

mined. Afterwards the Data Sampling model is applied to the output of the

radiative transfer calculations in order to investigate the quantity of radia-

tion scattered into the instrument during the flyby. See Appendix E for flow

charts of the radiative transfer model part which calculates the distribution

of scattering points (Figure E.1), as well as for the Data Sampling model,

which simulates the flyby of HDAC (Figure E.2).

A certain number of Lyman-α photons is traced from the point of emission

(or at the beginning from the source) to the point of absorption (or the point,

where the photon leaves the model without any interaction). Random num-

bers are applied in determining the position and the wavelength of photons
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started at the upper model boundary, the scattering angle, the path lengths

between interactions and in the angle-dependent emission wavelength gener-

ation after scattering.

6.1 General assumptions

In the exospheric model atomic hydrogen acts as the scattering medium and

methane as the absorber medium. The scattering medium is assumed to

consist of only two-level atoms. Furthermore it is assumed that the particle

velocities obey the Maxwell-Boltzmann distribution of speeds.

Note that the assumption of a Maxwellian distribution of velocities is per

definition not valid in the thin layers of the exosphere. E.g. Thomas (1963)

have investigated the effect on the absorption cross section and found from

detailed modeling of Öpik and Singer (1961) that there will be a deficiency of

low-velocity components along the radial direction and a deficiency of high-

velocity components along the tangential direction. The absorption cross

section, therefore, is anisotropic: a uniform beam of radiation in the radial

direction is absorbed (relative to the Doppler absorption) less in the center

of the line than in the wings. On the other hand, a similar beam in a

perpendicular direction is absorbed less in the wings than in the center of

the line, again relative to the Doppler width.

Nevertheless one can assume in a first order approximation that in a certain

range above the exobase the velocity distribution is close to being Maxwellian,

hence a “single exospheric temperature” may be defined, as is used e.g. for

the calculation of Doppler widths (equation 3.23). The assumption of a

Maxwellian distribution of velocities throughout the exosphere furthermore

allows a simple treatment of the scattering process, as will be shown below.

See the next section 6.1.1 for a detailed discussion of this assumption.

The scattering is assumed to be isotropic. This assumption holds for atomic

hydrogen as long as it is not treated relativistic. Polarization of the scattered

radiation is ignored. Photons are lost either by escape through the upper or

lower model boundaries or via absorption by methane molecules. The Sun

is treated as the only source of photons, which are released from the sunlit

hemisphere of Titan at the upper model boundary. Other photon sources,

like the interstellar medium and Saturn are excluded.

The x-axis is defined as the axis connecting Titan’s center and the Sun’s

position via the subsolar point on Titan’s exobase. The y- and z-axis is
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chosen to be perpendicular, spanning a right handed coordinate system. The

orientation of both the y- and z-axis is chosen arbitrarily and is not aligned

with e.g. the spin axis of Titan. See figure 6.1 for the coordinate system

used in this work.

Fig. 6.1: Coordinate system used in this work: Titan is centered at x=y=z=0. The

x-axis is pointing towards the sun and the y and z axes are chosen to be

perpendicular, spanning a right handed coordinate system

The rotation of Titan is not considered within the radiative transfer model.

The rotational velocity of Titan is given by

Ω = ω · rExo = 18.58 m s−1 (6.1)

with ω = 4.56 · 10−6 rad s−1 and rExo = 4, 075 km being Titan’s rotation

rate and exobase altitude, respectively. The most probable velocity at the

exobase using a temperature of 150K is vp=1573.56m s−1, hence much larger

compared to the rotational velocity.

Photons coming from the Sun are assumed due to its large distance to enter

the model in a parallel beam, being perpendicular to the y-z-plane. Hence

the transfer of photons in the model exosphere is axially symmetric along

the x-axis. At the end of the calculation this symmetry is used to mirror

the scattering coordinates on the (a) x-y-plane, (b) x-z-plane and (c) x-y-

and x-z-plane subsequently. All other quantities describing the scattering

position remain unchanged.

In the radiative transfer model using the Monte Carlo method, single pho-

tons leaving the source in a given direction represent a large set of N actual
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particles. Since a number fraction of Ni photons will be absorbed on the

way to the detector within the model, the photon parameter W = Ni/N ,

called its weight, is introduced which is initially unity at the source. Within

the Monte Carlo radiative transfer model the weight of the photons does not

change, since the scattering process is calculated randomly. In order to check

the statistical significance for a given amount of photons that are considered

in the calculations, section 7.1 investigates the response of the signal with

different amounts of photons.

In the Data Sampling model described in section 6.3, the “splitting” tech-

nique (Hammersley and Handscomb, 1964) is applied in order to force pho-

tons to be scattered into the direction of the detector. In order to compensate

this forced direction, the weight of the photon need to be corrected so as not

to change the physics of event. In the problem considered in this work, the

detector (HDAC) is moving with time, hence the “splitting” technique can-

not be applied within the Monte Carlo calculations described here. However,

the technique is applied afterwards to the whole Monte Carlo output for

every spacecraft position during the flyby within the Data Sampling model

described in section 6.3.

6.1.1 Discussion

At this point one might thus argue about the assumption of an isother-

mal exosphere with particles obeying the Maxwell-Boltzmann distribution of

speeds.

Particles are released from the exobase with a Maxwellian distribution of

velocities. Depending on the release angle and the velocity of a single particle,

it will either fall back to the exobase (if its velocity is lower than the escape

velocity of Titan) or it will escape from Titan. In the case of a ballistic orbit,

the particle velocity will first decrease, being zero at the apex of its trajectory

and then increase. For an escaping particle, the velocity will decrease with

altitude due to the gravitational deceleration.

Considering the average velocity distribution at a given height for a huge

amount of particles released in different directions with different velocities,

ballistic orbits will dominate the velocity distribution in the lower exosphere.

With increasing altitude, ballistic orbits become depleted. Also the low ve-

locity component of the distribution becomes depleted. Furthermore, the

maximum of the distribution will shift to lower velocities. At high altitudes

above the exobase only high velocity particles on nearly radial trajectories

can be found, with the maximum of the velocity distribution shifted to lower
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velocities furthermore.

Since the particles do not collide with each other, the exosphere is not in

thermodynamic equilibrium. Strictly, no temperature can be defined because

the velocity distribution is asymmetric: tangential velocities become depleted

with increasing altitude, and only radial velocities can be found. However,

one can identify the velocities of the particles with a kinetic temperature,

which is now dependent on the direction.

For the radiative transfer calculations, the photon travel direction with re-

spect to the travel direction of hydrogen atoms needs to be taken into ac-

count. For a photon traveling exactly in the direction of Titan’s center, the

velocity component of the hydrogen atoms is maximal. Thus, the Doppler

shift and hence the optical depth can be simply calculated by using the radial

velocity component. In the case of the photon being scattered, the velocity

component in the scattering direction needs to be taken into account and the

Doppler shift of the wavelength of the emitted photon can be determined.

For a photon tangentially flying through Titan’s exosphere, the velocity com-

ponent with respect to the travel direction of the photon has to be taken into

account for each layer the photon crosses. If the tangential height is located

at high altitudes in the exosphere, only hydrogen atoms can be found on es-

caping orbits. Thus, the velocity component in the photon travel direction is

nearly zero since this direction is perpendicular to the escape direction of the

hydrogen atoms. Hence the scattering cross section is small and the photon

will only be scattered when its wavelength is close to the Lyman-α wave-

length. However at lower altitudes, where ballistic orbits need to be taken

into account, a non-zero velocity component in the photon’s travel direction

might be found.

Since the distribution of velocities in the tangential as well as in the radial

direction at any height is not available for this work, radiative transfer is

performed assuming that the exosphere is in thermodynamic equilibrium,

hence a single temperature can be defined.

The scattering cross section is directly proportional to the velocity (or pro-

portional to the square-root of the temperature, cf. equation 3.23). Since

with increasing altitude the particle velocities decrease, this would result in

a decreasing scattering cross section and the optical depth of the upper ex-

osphere would decrease and fewer photons would be scattered in the outer

layers of the exosphere. However, the amount of scattering in the outer layers

is very low. Also the temperature has only a minor effect on the Lyman-α

emission, as will be shown later in chapter 7. Even at much higher temper-
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atures the resulting emission is affected only weakly, with the main effect

visible in the line wings.

The assumption of a Maxwellian distribution of velocities and the assumption

of a temperature isoprofile is thus probably justified for the context of this

work, allowing for an easy treatment of the non-coherent scattering process

as will be shown in section 6.2.4. However, for future measurements of HDAC

with a much lower noise level, this effect needs to be treated carefully. This

is however beyond the scope of this present work.

6.1.2 Model boundary conditions

In the radiative transfer model methane is treated as an absorber. The

lower model boundary represents the altitude, at which methane is effectively

photolyzed by Lyman-α radiation (see section 2.2.3) and hence absorbs the

whole Lyman-α radiation penetrating Titan’s upper atmosphere. See also

Figure 6 in Krasnopolsky (2009) for an overview of solar UV absorption

with height in Titan’s atmosphere. The upper model boundary is chosen

to be well above the altitude of the Cassini spacecraft during the T9 flyby

measurements, hence at an altitude of 30,000 km (the distance to Titan’s

center is 32,575 km).

The effect of radiation pressure on the hydrogen atoms is not taken into ac-

count, since radiation pressure becomes important only above 314,709 km or

122.21RTitan (see chapter C in the Appendix) which is far outside the model

boundaries of this work.

6.2 Calculation procedure

Following Avery and House (1968), the basic steps in the computation, which

will be described in detail below are as follows:

1. Select the direction, in which the photon is released from the source or

from the scattering atom.

2. Select the wavelength, at which the photon is released or scattered.

3. Determine the distance, that the photon travels before it undergoes a

subsequent interaction.

4. Store all required parameters and repeat the process until the photon

escapes or is absorbed.
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Note that in the following text all random numbers are denoted ri and rj

throughout this work. They are independently chosen from a distribution

equally distributed in (0,1). The random number generator is taken from

Park and Miller (1988). To remove low-order serial correlations, a Bays-

Durham shuffle is added (see Section 7.1 of Press et al. 1992).

6.2.1 Source photon generation

Initial position

The incident solar radiation is assumed to enter the model atmosphere in a

parallel beam at the upper model boundary at x > 0 (sunlit hemisphere).

Photons created uniformly distributed on a sphere with coordinates (x, y, z) ∈
M, with M ∈ x, |x| = R, and R being the upper model boundary radius,

would result in an enhanced creation at the poles of the sphere. In order to

solve this, the cartesian coordinates need to be transformed into spherical

coordinates. Instead of choosing three uniformly distributed random vari-

ables Ai ∈ (0, 1), Bi ∈ (0, 1), Ci ∈ (0, 1) in cartesian coordinates (x, y, z),

one is looking for the distribution in spherical coordinates (R, φ, θ), where

φ ∈ (−π, π), and θ ∈ (0, π). The transformation reads:

x0 = R cosφ sin θ

y0 = R sin φ sin θ (6.2)

z0 = R cos θ,

with R being the upper model boundary radius and x0 representing the initial

position of the photons started in the radiative transfer model.

The standard spherical coordinates are given by

φ = π(ri − 1/2) (6.3)

θ = arccos(1 − 2rj). (6.4)

A detailed derivation can be found in Cashwell and Everett (1959) or in the

Appendix D. Note that here φ is chosen contrary to Cashwell and Everett

(1959) (φ = π(2ri − 1)), since in this work, the photons are released only

on the sunlit hemisphere of Titan. Using the transformation given above,

the initial coordinates (x0, y0, z0) are equally distributed on the sunlit upper

model boundary.
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Initial direction

The incident direction is chosen to point towards the anti-sunward direction:

kx,i = −1

ky,i = 0 (6.5)

kz,i = 0.

(6.6)

Initial wavelength

The solar Lyman-α profile has a width of about 1 Å and a central depression.

Only this central depression is considered in this work, since the scattering

cross section rapidly decreases away from the center (see eq. 3.22 and figure

3.1). The wavelength λ of the incident photons is chosen from a rectangular

source distribution centered at 1215.67 Å since the profile is approximately

constant close to the line center. The H cell of HDAC absorbs Lyman-α radi-

ation from 1215.6509 Å at the beginning of the observations (Doppler veloc-

ity of -4.7 km/s) to 1215.6900 Å at the end (Doppler velocity of 4.94 km/s).

Hence, HDAC scans over the Lyman-α radiation from Titan with a total

width of 0.0391 Å, or 4.333 units of Doppler width (with a cell temperature

of 300K, ∆λD = 9.024 · 10−13 m, see equation 3.23). The width of the dis-

tribution function is hence chosen to be five times the Doppler width at the

respective temperature (this amounts to a width of 0.0451 Å). The photons

are created with a random wavelength lying within this range:

λ = λ0 + 5 · ∆λD(300K) · (ri − 0.5) (6.7)

6.2.2 Tracing procedure

Knowing the direction of a photon from its starting point xS (either the point

of insertion or the last scattering point), a given photon suffers an interaction

(either scattering or absorption) after traveling a random optical distance

lr(λ) = −l0(λ) ln(ri), (6.8)

where l0(λ) is the wavelength dependent local mean free photon path,

l0(λ) =
1

n(r) · σ(λ)
, (6.9)

with n(r) being the radius dependent number density and σ the cross section

of the medium (Cashwell and Everett, 1959; Avery and House, 1968; House

and Avery, 1969; Hansen and Travis, 1974).

In the spherical model of this work, the photons cross different density layers

86



6.2 Calculation procedure

along their path, hence lr is calculated for each layer the particular photon

crosses on its way from the last scattering point/inital point on its path.

The path is a sequence of distances Li (i=1,...,n) towards the next layer on

the path, with L1 = x1 − x0 and Ln = xn − xn−1 (x0 = (x0, y0, z0) and

xn = (xn, yn, zn): model boundary). The total distance from the injection

point to the model boundary at the end is L =
∑

i

Li. The density within a

layer is assumed to be homogeneous. The total mean free path is given by

l0(λ) =
1

nH(r) · σH(λ) + nCH4
(r) · σCH4

, (6.10)

with nH(r) and nCH4
(r) being the atomic hydrogen and methane number den-

sity at a radius r of the current layer the photon crosses on its path, σH(λ)

being the wavelength-dependent resonant scattering cross section of atomic

hydrogen and σCH4
the wavelength and temperature independent photodis-

sociation cross section of methane (see section 3.4). For every layer crossed,

lr is then compared to the distance Li between two consecutive grid points

along the path.

The following cases are considered:

• If lr(λ) < Li is fulfilled for a certain layer i, the distance d from the

last scattering point or insertion point to the current scattering point is

calculated, and the exact position in the exosphere is determined from

x′ = x0 + kx · d
y′ = y0 + ky · d, (6.11)

z′ = z0 + kz · d
It is necessary to determine the nature of the interaction, since the

photon may be either scattered by an hydrogen atom or destroyed by

absorption of a methane molecule. The photon’s destiny is determined

by the scattering albedo ̟ which is the probability that the photon is

scattered.

̟ =
nH(r)σH(λ)

nH(r)σH(λ) + nCH4
(r)σCH4

. (6.12)

A random number ri ∈ (0, 1) is chosen and compared to ̟. If ri < ̟,

the photon is scattered. Otherwise, it is absorbed and a new photon is

released from the source.

• If lr > Li applies for all layers crossed, the photon is assumed to leave

the exosphere without being scattered or absorbed. Hence, the photon

is no longer considered in the calculations and a new photon is released

from the source.
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6.2.3 New scattering direction

The new direction of the photon after scattering is assumed to be isotropic,

hence can be calculated by

k′x = cos φ̃ sin θ

k′y = sin φ̃ sin θ, (6.13)

k′z = cos θ

with the spherical coordinates being θ = arccos(2ri − 1) and φ̃ = π(2rj − 1).

Note here, that φ̃ has been chosen different to φ in equation 6.3.

The scattering angle α is determined by the scalar product between the

photon’s incoming direction k and the scattering direction k′:

α = arccos (k · k′) (6.14)

The scattering phase angle γ is given by

γ = π − α. (6.15)

γ = 0◦ is equivalent to forward scattering and γ = 180◦ to backward scatter-

ing.

6.2.4 Generation of emission wavelength

In order to determine the wavelength of the scattered photon, it is very im-

portant to choose an appropriate redistribution function. In the rest frame

of the atom, in the case of coherent scattering, there is no wavelength shift

before and after the scattering. This case applies for atmospheres with low

densities, where collisions are negligible. When the excited atom undergoes

collisions with other atoms, the emitted photon will have a different energy

than the incident photon. This case is called non-coherent or complete fre-

quency redistribution (CFR).

In the external frame, however, the wavelength of the scattered photons is

redistributed due to the Doppler effect, even if the scattering process is coher-

ent in the rest frame of the atom. The wavelength of the scattered photon

is hence independent of the wavelength prior to the scattering and it will

be furthermore referred to as partial frequency redistribution (PFR), which

has been extensively used by Lee (1977); Meier and Lee (1978) and Lee and

Meier (1980) after it was introduced by Avery and House (1968), who have

investigated the scattering process for the case of CFR and PFR in detail.
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In the case of the low densities in Titan’s exosphere considered here, collisions

of excited atoms can be neglected and hence coherence in the atom’s rest

frame be assumed. For the exospheric temperatures considered here, the

Doppler broadening needs to be taken into account. Therefore, the angle-

dependent PFR function from Hummer (1962) (case II in his paper) is used.

It was at first derived by Henyey (1940) and presented in a recast form

by Hummer (1962). Assuming a Maxwellian distribution of velocities, the

redistribution function is a distribution of wavelength as a function of incident

wavelength and scattering phase angle γ:

RII(d, d
′, γ) =

g(γ)√
π sin γ

exp

[

−
(

d− d′

2
csc

γ

2

)2
]

×ψ

(

α sec
γ

2
,
d+ d′

2
sec

γ

2

)

(6.16)

where d′ and d are the initial and final wavelengths relative to the line center

in units of Doppler width, g(γ) is the scattering phase function, γ the afore-

mentioned scattering phase angle and ψ is the Voigt function:

ψ(α, ν) =
a

π

∫ +∞

−∞

exp(−y2)dy

(ν − y)2 + α2
(6.17)

α is the natural linewidth of the line in Doppler units. Since isotropic scat-

tering is assumed, g(γ) = 1/(4π) applies.

The natural linewidth ∆λnat is calculated using Heisenberg’s uncertainty

relation ∆E∆t = ~

2
. Here, ∆t is the lifetime of an hydrogen atom in the

second level, ∆t = 2 · 10−9s. Using ∆νnat = ∆E/h, in units of wavelength

one obtains a natural linewidth of ∆λnat = 1.961 · 10−15 m. Hence, α =

∆λnat/∆λD = 0.003 at T = 150K.

Figure 6.2 shows for different incident wavelengths d′ the distribution

RII(d, d
′, γ) of emitted wavelengths d at certain scattering phase angles γ.

In the case of forward scattering (γ=0) the resulting distribution is a δ-

function, i.e. there will be no wavelength shift and the scattering is coherent.

Increasing the scattering phase angle, the distribution gets broader and the

maximum of the distribution shifts towards the line center. At a scatter-

ing phase angle of γ = 90◦, independent of the incident wavelength d′, the

distribution is centered at d = 0, i.e. most photons will be emitted in the

line center. At higher scattering phase angles the distribution is furthermore

shifted.
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Fig. 6.2: The redistribution function RII as a function of scattering phase angle γ

and scaled input wavelength d′. The division by the Voigt function gives

equal areas under the curves. The black line illustrates the wavelength

distribution using an incident wavelength in Doppler units being zero,

the red line is d′ = 1 and the blue line is d′ = 2.

For the calculation of emitted wavelengths, first a random wavelength in

Doppler units d is calculated, being uniformly distributed in the wavelength

range considered in this work. Then, RII(d, d
′, γ) is calculated and compared

with a second random number yr uniformly chosen in (0,max(RII)), where

max(RII) denotes the maximum of the function. If yR < RII the emitted

wavelength of the photon is set to λout = d · ∆λ + λ0. Otherwise a new set

of values for d and yr is generated.

6.2.5 Subsequent path of the photon

Using the new direction and wavelength of the emitted photon, the probabil-

ity for the photon to be scattered or absorbed on this new path is calculated.

The photon is followed until it leaves the model boundaries or is absorbed.

Each photon is hence treated in a single way on its travel through the atmo-
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sphere until it is absorbed or leaves the atmosphere.

6.2.6 Storage of the relevant parameters

After each scattering, the relevant parameters describing the photon are

stored into an array: For each scattering point the position xS, the wave-

length λ prior to and after the scattering, the direction of the photon prior

to and after scattering (k and k′), the number of scattering events Nscat a

particular photon has suffered yet, as well as the weight W ′ of the scat-

tered photon is stored. If the particular photon is being absorbed or leaves

the model boundaries at the end of its way, the whole array is written to a

summary file and the next photon is initiated.

6.3 Data Sampling model

6.3.1 Overview

During the flyby of Cassini the altitude and position of the orbiter changed

rapidly, scanning over the whole Titan disc. In order to calculate the Lyman-

α emission intensity measured by HDAC during the flyby, every scattering

point within the instruments’ FOV is assumed to emit a photon towards the

detector. This assumption is based on the “splitting” technique described by

Hammersley and Handscomb (1964): After each scattering event, the photon

having weight W traveling into the new random direction k̂′ (as described

by equation 6.11) is split into two, one of which travels into the direction of

the detector k̂′

D
with weight WD, the other into the direction k̂′ with weight

W ′. Then the weight W of the photon before the scattering can be split:

W = W ′ +WD, where WD is given by WD = W · PD where PD is the prob-

ability that the photon will be scattered to the detector. The other photon

flying into direction k′ hence continues its flight with a reduced weight of

W ′ = W −WD. This technique is applied to every scattering position in the

FOV of the instrument during the flyby. Because a single photon leaving the

source in a given direction represent a large set of N actual particles and the

scattering point is chosen randomly, the weight W of each photon scattered

in the Monte Carlo model is unity. However, using the splitting technique

and forcing photons to be scattered into the detector requires to adjust the

photon weights appropriately.
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6.3.2 Calculation procedure

The calculation procedure is as follows:

1. Select the scattering points, that are in the FOV at a certain spacecraft

position

2. Calculate the probability, that photons from this scattering point reach

the detector

3. Determine the cell transmission pattern for photons propagating through

the absorption cells

4. Calculate the photon detection probability

5. Consider the subsequent path of a given photon

Position of scattering point

Whether or not a scattering point is positioned within the FOV of HDAC at

a certain spacecraft position is controlled by calculating the angle β between

the viewing direction of HDAC k̂LOS and the unit vector connecting the

spacecraft and the scattering point, k̂sp:

β = arccos(k̂LOS · k̂sp) (6.18)

From the instrument description in chapter 4, a FOV diameter of 3◦ is ob-

tained. Hence, if β ≤ 1.5◦ applies, the scattering point is within the FOV.

Transmission to the detector

Here the “splitting method” is applied:

The photon i (having weight Wi) is assumed to be scattered into the direction

of the detector k̂′

D,i. By doing this, a new wavelength for the photon needs to

be calculated, depending on the new scattering angle αD,i = arccos(k̂i · k̂′

D,i),

with k̂i being the photon travel direction before the scattering event and

k̂′

D,i the direction from the scattering point towards the detector. The new

wavelength λ is obtained by again using the redistribution function (equa-

tion 6.16). Using the new wavelength, the optical depth between scattering

point and detector τD,i can be determined and the transmission Ti(λ) can be

calculated:

Ti(λ) = exp(−τD,i(λ)), (6.19)

with τD,i being the optical depth for photon i between the point of scattering

and the detector, including both scattering and absorption. Photons with an
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optical depth of τD > 100 are ignored, in order to exclude photons coming

from scattering points lying behind Titan, as seen from the detector.

Furthermore the solid angle probability of the photon to enter the detector

needs to be considered

PΩ,i =
ωi

4π
, (6.20)

with the solid angle

ωi =
AHDAC

r2
HDAC,i

, (6.21)

under which the photon enters the detector, where AHDAC is the area of the

MgF2 lens in front of HDAC and rHDAC,i is the distance from the scattering

point to the detector.

Finally one obtains the probability pD,i that a photon coming from a certain

scattering point within the FOV will be entering the detector:

pD,i(λi) = PΩ,i · Ti(λ) · SFOV, (6.22)

with SFOV being the FOV sensitivity of HDAC.

Instrument absorption pattern

Now the HDAC instrument needs to be taken into account: The photon

propagates through three absorption cells, where the empty oxygen cell does

not need to be taken into account. The optical depth within the hydrogen cell

at the maximum filament step was determined using LISM measurements:

τHDAC,H = 0.8655 (Regehly, 2003). Note that only the measurements are

considered, where the H cell was switched on.

The spacecraft was moving with respect to Titan hence the emission line

is Doppler-shifted with respect to the Lyman-α line center. The cell trans-

mission function THDAC(λ) is calculated using the cell parameters and the

Doppler speed:

THDAC(λ) = exp

[

−τHDAC,H · exp

(

(λ+ z) − λ0

∆λHDAC

)]

, (6.23)

where z is the doppler shift z = λ0/c · vD with vD being the Doppler speed

and ∆λHDAC being the doppler width:

∆λHDAC =
λ0

c

√

2kBTHDAC

mH

, (6.24)

with THDAC being the cell temperature (THDAC = 300K).
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Photon detection probability

Finally, the detection probability PD,i for a photon started at the upper model

boundary in the Monte Carlo model is calculated, by simply multiplying all

probabilities:

PD,i(λ) = Wi · pD,i(λ) · THDAC(λ) (6.25)

Taking the sum of PD,i(λ) for all photons arriving at the detector at a certain

spacecraft position xCas yields the measured count rate:

n(xCas) =

j
∑

i=0

PD,i(λ), (6.26)

where the sum extends over all photons that are scattered within the FOV.

Subsequent path

When applying the “splitting” technique, the photon that is being scattered

within the FOV, will continue its way into the direction k′, but now with a

reduced weight:

W ′

i = Wi − PD, i. (6.27)

This is of importance in the case, where a given photon undergoes two or

more scattering events, that lie within the FOV at a given spacecraft position.

The weight for the subsequent scattering is hence reduced.

6.3.3 Spacecraft trajectory

The spacecraft coordinates during the flybys were obtained using the NASA

routine “SPICE”. Using SPICE, one obtains the spacecraft position, velocity

and viewing direction at a specific time. In order to simulate the flyby in the

reference frame considered in this work, a coordinate transformation needs

to be performed:

In this work the reference frame is centered at Titan’s center with the x-axis

pointing towards the Sun. From Spice one obtains the spacecraft coordinates

and viewing direction in the so called “IAU Titan” frame. The “IAU Titan”

frame is a body-fixed, planetocentric frame (here: Titan), with the z-axis

aligned with the spin axis. The positive z-axis points toward the north side

of the invariable plane of the Solar System. The invariable plane is normal to

the Solar System’s angular momentum vector. The x-axis defines the prime

meridian, whereas the y-axis completes the right-handed frame.

Since the new x-axis is defined by the coordinates of the subsolar point on

Titan’s surface, SPICE is used to calculate the coordinates of the subsolar

point during the flybys. By normalization one obtains a unit vector êx, which
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is defined as the new x-axis. Using the SPICE routine CSPICE FRAME, a

right handed orthonormal frame is calculated where all additional vectors

(êy, êz) are also normalized. Since Titan’s exosphere model is symmetric

along the x-axis, the y- and z-axis can be chosen arbitrarily and do not need

to be aligned with e.g. the spin axis of Titan. These vectors are fed into a

matrix, which rotates the “IAU Titan” frame into the reference frame chosen

in this work. The conversion is simply performed by multiplying the rotation

matrix with the initial vector in the “IAU Titan” frame. This is done with

the spacecraft coordinates as well as with the instrument viewing direction.

6.4 Simulating the HDAC measurement

The radiative transfer model calculates a certain number of photons, which is

statistically representative. The actual number of photons arriving at Titan

is of course much larger. Hence, one must multiply the number of photons

from the radiative transfer model with a factor N in order to compare the

simulated signal with the HDAC measurements. In other words, a single

photon in the Monte Carlo radiative transfer calculations represents N real

photons.

In the radiative transfer model the scattering of a statistical relevant number

of NModel photons is treated, started at the uppermost layer of the sunlit side

of the model exosphere. From SORCE a spectral irradiance at the position

of Earth at Lyman-α Itot,⊕ = 6.5 ·10−7 J cm−2 s−1 can be retrieved during the

flyby date. See figure 6.3 for the time variability of the spectral irradiance of

solar Lyman-α radiation from May 2003 to June 2009.

With the energy of a Lyman-α photon ELyα = 1.63 · 10−18 J, one obtains

a total Lyman-α photon irradiance of Ftotal = 3.98 · 1011 ph cm−2 s−1 at a

distance to Sun of 1AU.

Emerich et al. (2005) found a relation between the total solar Lyman-α pho-

ton irradiance Ftotal and the line center irradiance fLyα. With the relation

fLyα

1011s−1cm−2Å
−1 = 0.64

(

Ftotal

1011s−1cm−2

)1.21

(6.28)

a line center photon irradiance of fLyα = 3.41 · 1011 ph cm−2 s−1 Å
−1

at 1AU

can be obtained.

At the position of Titan during the T9 flyby (9.09 AU) this translates into

fLyα,Titan = 4.13 · 109 ph cm−2 s−1 Å
−1

.
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6. RADIATIVE TRANSFER MODEL DESCRIPTION

In the Monte Carlo model, photons enter the exosphere within an area

A = π · R2 = π · (32575 · 105cm)2 = 3.33 · 1019cm2, (6.29)

with R being the radius of the upper boundary. Hence, a Lyman-α intensity

of ITitan,model = 1.37 · 1029 ph s−1 Å
−1

needs to be considered.

Furthermore, the wavelength range needs to be taken into account, in which

the calculation has been performed. For the Monte Carlo radiative transfer

calculations only a tiny part of ∆λLyα = 0.0451 Å of the total solar Lyman-α

line (see section 6.2) is considered which in turn has a total width of ∼1 Å.

In total, one obtains within an integration time of t = 1s:

Nincoming = ITitan,model · ∆λLyα · t = 6.17 · 1027 ph. (6.30)

Hence, taking into account e.g. NModel = 4 · 107 photons in the calcu-

lations, the Data Sampling results need to be multiplied by a factor of

N = Nincoming/NModel = 1.55 · 1020 in order to compare model and mea-

surements.

Fig. 6.3: Solar spectral irradiation time series for Lyman-α

radiation from May 2003 to June 2009.

Image credits: SORCE (http://lasp.colorado.edu/sorce)
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CALCULATIONS

In the following section, the Monte Carlo radiative transfer calculations per-

formed in this work will be discussed. Thereby, a parameter variation is

performed in order to investigate the effects of the model input parameters

as for one example fixed number of photons started on the sunlit side of the

upper model boundary. Furthermore the results of the Monte Carlo radiative

transfer model are reviewed for their statistical significance.

Note that in chapter 8 the Monte Carlo radiative transfer model is validated

with a simple analytical model. In chapter 9 the calculations performed are

compared to the measurements of HDAC during the T9 flyby and the best

fitting exospheric parameters are determined. Using these parameters, the

expected signal during two future Titan flybys are calculated, where HDAC

will be switched on again.

In order to determine the response of the Lyman-α emission on the model

parameters considered in this work, a parameter variation is performed prior

to the comparison of the calculated data with the measurements. The pa-

rameter variations include the following points:

• The Lyman-α line center photon irradiance during the T9 flyby was

fTitan = 4.13 · 109 ph cm−2 s−1 Å
−1

. Thus, the radiative transfer model

needs to treat a total number of 6.17 · 1027 photons (see section 6.4).

Due to limited computation capacities, only a low number of photons

can be treated in the model. In order to find a statistically relevant

number of photons that yield a converged result, the number of photons

is varied and the statistical output of each calculation is discussed.

• Using the two exospheric density models described in chapter 5, calcu-

lations with varying atomic hydrogen number densities at the exobase

are performed, which enter into both exospheric density models. The

exobase number density of atomic hydrogen inferred from photochem-

ical modeling or indirect measurements is presently uncertain within a

factor of 20 (see overview in section 2.4.2). For each of the two den-
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sity models, calculations are therefore performed with exobase atomic

hydrogen densities in the range of literature values. Furthermore the

statistical output for each calculation as well as the simulated signal

during the T9 flyby is discussed.

• The last parameter variation involves the effect of varying exospheric

temperatures on the results. The temperatures are varied within the

range of value suggested by de La Haye et al. (2007b). They find a

temperature below 1,500 km from 147K up to 158K (depending on the

Titan flyby considered). Above 1,500 km the inferred temperatures are

in the range 149K to 205K from fitting the N2 data or in the range

149K to 223K from fitting of the CH4 data during the flybys. Mea-

surements by the UVIS instrument also indicate temperatures in the

range of 150–200K (D. Shemansky, priv. com.). The temperatures are

therefore varied in the range from 147K up to 250K and the response

of the Lyman-α signal is investigated in detail.

7.1 Statistical significance and stability of the results against

the number of model photons

In order to determine, which amount of photons must be treated in the radia-

tive transfer calculations yield a converged result, the calculations are per-

formed with 4·105 photons, 4·106 photons, 2·107 photons and 4·107 photons.

For the radiative transfer calculations, an atomic hydrogen profile calculated

using the Particle model with an exobase density of 8 ·104 cm−3 as well as an

exospheric temperature of 150K is used. Five independent radiative transfer

calculations are performed for each amount of photons considered.

The ratio of scattered to injected photons (fScat), as well as the fraction of

single scattering events fSS, i.e. the photon has been scattered only once and

then either leaves the model at the upper or lower boundary or is absorbed,

is shown in table 7.1. Although the number of scattered photons as well as

the fraction of single scattering events does not change significantly when

varying the amount of photons, it is nevertheless clearly visible, that when

increasing the number of photons for the calculations the errors decrease.
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7.1 Statistical significance and stability of the results

Tab. 7.1: Statistics: Variation of the number of photons considered for the radia-

tive transfer calculations. fScats denotes the ratio of scattered to injected

photons, whereas fSS indicates the fraction of single scattered photons.

Number of photons fScat [%] fSS [%]

4·105 8.267±0.052 72.179±0.494

4·106 8.266±0.031 72.465±0.165

2·107 8.265±0.010 72.950±0.125

4·107 8.261±0.004 72.916±0.094

The most critical part however are the number of photons that will enter

the detector, since the FOV is very narrow. The Data Sampling model is

thus applied to the model output and the difference signal of calculations

performed in photometer mode (both cells switched off) and calculations

performed taking into account the absorption by the H cell is taken. Fur-

thermore the median of the five independent calculations performed is used

to calculate the difference signal.

Since only a minor fraction of photons are considered, that would enter Ti-

tan’s exosphere in reality, the simulated signal needs to multiplied by the

factor N , which has been introduced section 6.4. The factors the signal need

to be multiplied with are N = 1.55 · 1022 when using 4·105 photons for the

calculations, N = 1.55 · 1021 for 4·106 photons, N = 3.10 · 1020 for 2·107

photons and N = 1.55 · 1020 for 4·107 photons.

Figure 7.1 shows the difference signal for the four different amounts of pho-

tons mentioned above. It is clearly visible, that with a very low number

of 4·105 photons for the calculations the number of photons scattered into

the detector is insufficient in order to determine the difference signal (blue

diamonds in the figure). With an increased amount of 4·106 photons (green

diamonds in the figure), the signal is much more stable, however still shows

a strong noise pattern due to statistical errors. Furthermore increasing the

amount of photons to 2·107 and even to 4·107 shows that the resulting signal

that will be measured by the detector is converged and statistical errors are

reduced.

In Figure 7.2 the error bars for calculations performed with a number of 2·107

and 4·107 photons are shown. During the flyby, the errors increase, reaching

a maximum at timestep ∼ 402. Here, the spacecraft was near to the closest

encounter altitude, hence the number of scattering points within the FOV

was reduced. Data points with a large error bar indicate statistical errors
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of the computation, due to the limited number of Monte Carlo calculations.

As is already visible from table 7.1, the statistical uncertainties for the lower

amount of photons (shown as red error bars) are much higher compared to

the calculation performed with 4·107 photons. Note that the error bars have

been calculated using the median absolute deviation as the initial estimate,

and then the points have been weighted using “Tukey’s Biweight” (see, for

example, Hoaglin et al. 1983). Note also, that in the following plots the error

bars are omitted for clarity.

Henceforward, calculations are performed with a number of 4·107 photons in

order to keep the computational time at a reasonable level: A single radiative

transfer calculation takes about 22 hours on a 64 bit AMD Opteron dual

core processor. Performing calculations with 2·107 photons decreases the

computational time to about 11 hours. Hence the number of photons will

not be increased any further in order to improve the statistics. However, five

radiative transfer calculations for each parameter varied are performed using

a computer cluster and the median value of the signal computed by the Data

Sampling model is used furthermore.

In total, for each of both density distributions a set of 22 parameter combi-

nations as input to the Monte Carlo radiative transfer model are used for the

parameter variation shown in this chapter. Additionally three calculations

were performed in order to check the stability of the signal, as was discussed

above. As the signal of every parameter combination is determined using the

median value of five independent calculations, this results in a total number

of 125 independent radiative transfer calculations. In order to fit the data

measured by HDAC, a much bigger set of parameters is required, thus choos-

ing the amount of photons in a way that keeps the computational time at a

reasonable level is strongly required.

The difference signal in Figure 7.1, is about 300 cts s−1 at the beginning of

the T9 encounter. Note that due to the Doppler speed of the instrument with

respect to Titan, the H cell absorbs radiation in the wings of the Lyman-α

line scattered in Titan’s exosphere. Furthermore, the instrument is looking

onto the sunlit hemisphere of Titan, hence the emitted radiation is very

strong.

When the spacecraft was approaching Titan, the Doppler speed increased to

zero and the H cell absorbed radiation in the line center of the emitted radi-

ation. At timestep 402, the Doppler velocity was exactly zero. The Doppler

shift is not necessarily zero during closest approach (hereafter denoted C/A),
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7.1 Statistical significance and stability of the results

as HDAC was not exactly pointing towards Titan’s center. However, during

C/A (timestep 439) the Doppler speed was still low (0.9 km s−1).

At timestep 402, the maximum signal is about 900 cts s−1 (see Figure 7.1).

The signal then decreased to about 50 cts s−1 at the end of the encounter

when the Cassini orbiter was departing from Titan and the Doppler speed

of the spacecraft with respect to Titan increased. Thus, the H cell absorbed

radiation in the blueward line wings of the Lyman-α line emitted from the

night-side of Titan.

Fig. 7.1: Variation of the number of photons considered in the calculations. Dif-

ference signal of simulations performed in photometer mode (both cells

off) and when the H cell was switched on during the T9 flyby, using the

Particle model with an exospheric temperature of 150 K and an exobase

atomic hydrogen density of nH = 8 · 104 cm−3.

Fig. 7.2: Variation of the number of photons considered in the calculations. Same

as Figure 7.1, but here only calculations performed with 2 ·107 and 4 ·107

photons are shown with the respective error bars. Data points with large

error bars indicate statistical errors of the Monte Carlo method.
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7.2 Hydrogen density variation

For the wide range of atomic hydrogen number densities found in the liter-

ature, calculations are performed using the exospheric models described in

chapter 5. In the calculations shown here, exobase densities in the range from

nH = 2 · 103 cm−3 to nH = 1.0 · 105 cm−3 cover the whole range of exobase

values reported in the literature.

In Figure 7.3 the distribution of scattering points as calculated by the Monte

Carlo radiative transfer model is shown for an exobase density of nH =

1.0 · 104 cm−3. The calculations are performed using an atomic hydrogen

profile calculated by the Chamberlain model (left column in Figure 7.3) and

by the Particle model (right column in the figure). In the following plots, the

Sun is located at (x → ∞,y=0,z=0), Titan is centered at x=y=z=0. Blue

circles indicate Titan’s surface, whereas the model boundaries are indicated

by green circles. The top row shows the three-dimensional distribution of

scattering positions in the model exosphere. Black dots correspond to first

scattering (n = 1) positions, whereas red dots are positions of multiple scat-

tering events (n ≥ 2). For clarity, slices 200 km thick along the x-y-plane

and the x-z-plane are shown. The distribution in the x-y-plane is shown in

the lower row. Furthermore, Figure 7.4 shows intersecting histogram plots

through Titan’s disc, hence the y-axes range from -2,575 km to 2,575 km as

marked by black horizontal lines in the lower plots of Figure 7.3, indicating

the distribution of single and multiple scattering positions along the x-axis.

Clearly visible in both calculations is the absence of single scattering points

behind Titan (when seen from Sun) - this region can only be reached by

photons being multiply scattered.

Increasing the atomic hydrogen density, the number of photon scattering

events increases for both exospheric density models used, as expected. Also

the fraction of multiple scattering events increases. However, this increase

does not follow a linear trend, as can be inferred from Figure 7.5. In the

figure the effect of different density distributions is clearly visible: Black

diamonds in the upper plot indicate the total fraction of photons scattered

by using the Chamberlain model. Compared to the density profile using

the Particle model (as indicated by red diamonds) the amount of scattering

is increased simply due to the different density gradients (cf. Figure 5.2),

causing more photons to be scattered. Also the density gradient is much

steeper as compared to the Particle model, resulting in an increased amount
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7.2 Hydrogen density variation

of multiple scattering events in the lower exosphere.

Fig. 7.3: Radiative transfer output for varying the atomic hydrogen distribution.

Left diagrams: Distribution of scattering points when using the Chamber-

lain density distribution. Right diagrams of using the Particle model. The

upper row shows the 3D distribution of first scattering positions (black)

and multiple scattering positions (red). The bottom row shows the dis-

tribution in the x-y-plane. Black horizontal lines indicate the position of

the intersecting histogram plot shown in Figure 7.4. Green circles indi-

cate the model boundaries, the blue circle is Titan’s surface. The Sun is

located at (x → ∞,y=0,z=0).
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Fig. 7.4: Intersecting histogram plots in the range indicated by the black horizontal

lines of the x−y-plots in Figure 7.3. Upper plot: Distribution of scattering

points using the Chamberlain model; lower plot using the Particle model.

The Sun is located at (x → ∞,y=0,z=0).
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7.2 Hydrogen density variation

Fig. 7.5: Statistical output for the variation of the atomic hydrogen exobase densi-

ties. In the upper plot, the fraction of photons being scattered within the

exosphere model (compared to the number of photons started) is shown

(fScat), using the Chamberlain model (black diamonds) and using the

Particle model (red diamonds). For the calculations an exospheric tem-

perature of 150 K was assumed. The lower plot shows the fraction of

multiple scattering events fMS = 1 − fSS, if the density of the exosphere

is increased.

After applying the Data Sampling model the difference signal I0 − I of pho-

tometer mode (I0), as well as when the H cell is switched on (I) is calculated.

Contrary to the increase in the fraction of scattered photons by increasing

the exospheric density, the difference signals (I0 − I) in Figure 7.6 show a

rather complex behavior:

The measured signal first increases with increasing exospheric density. This

is especially visible at timestep 402, where the difference signal reaches its

maximal value using an exobase density of about nH = 1.0 · 104 cm−3 for the

Chamberlain model and about nH = 2.0 · 104 cm−3 for the Particle model.

The difference signal then furthermore decreases rapidly. Since the Doppler
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shift at timestep 402 is zero, the instruments absorbs radiation exactly in the

line center. Figure 7.7 shows the value of the difference signals by varying the

density at the beginning of the encounter (timestep 0), at closest encounter

(timestep 419), and at the end of the encounter (timestep 840).

The behavior of measured signal can be explained, considering of which al-

titudes the detector is sensitive, hence where the optical depth in the line

center as seen from the detector becomes unity. At low exospheric densities

this level is reached at altitudes of about 1,750 km (depending on the space-

craft altitude). At these altitudes the absorption by methane is dominating

the extinction in the exosphere (compared to the extinction caused by scat-

tering of atomic hydrogen). Increasing the atomic hydrogen density allows

radiation to be scattered effectively above this level.

However, above a certain density the extinction of the exosphere is dominated

by scattering of atomic hydrogen, thus the exosphere becomes opaque at

low altitudes, balancing the increased amount of scattering events. At even

higher densities the optical depth of the exosphere becomes high enough

such that radiation scattered into the direction of the detector is effectively

attenuated in the line center, which is also known as “self-absorption”.

The optical depth caused by scattering events along the photon flying di-

rection thus becomes important by using exospheric densities as identified

above. At higher densities the Lyman-α radiation is increasingly attenuated,

as is indicated by the decreasing difference signal by increasing the densi-

ties. As the density gradient of the Chamberlain model distribution is much

steeper than for the Particle model distribution, the decrease of Lyman-α ra-

diation with increasing density takes place at even lower densities and much

faster.

The signal excess at the beginning of the encounter, as measured by HDAC

(see section 4.5.1) is also visible in the simulations, it therefore has no external

source, as it was proposed in section 4.5.1 as a possible explanation. The

difference signal at the end of the encounter shows also a weak excess, however

with a much lower signal (see lowermost plot in Figure 7.7). The signal

excess is due to the strong Lyman-α emission from the day side of Titan,

at which HDAC looked at the beginning of the encounter. The absorption

cell has therefore already absorbed the Lyman-α radiation in the line wings,

although the Doppler shift was very high at the beginning of the encounter.
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7.2 Hydrogen density variation

Fig. 7.6: Exobase hydrogen density variation: Difference signal of simulations per-

formed in photometer mode (both cells off) and when the H cell was

switched on during the T9 flyby, using the Chamberlain model (upper

plot) and using the Particle model (lower plot) for the calculation of ex-

ospheric H densities. For the calculations an exospheric temperature of

150 K was chosen.
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Fig. 7.7: Difference signals during the beginning (upper plot), during closest ap-

proach (center plot) and at the end of the encounter (lower plot), at

timesteps of 0, 439 and 840, respectively, caused by varying the exobase

densities (cf. Figure 7.6). Black diamonds indicate the difference signal

when using the Particle model for the calculation of the atomic hydro-

gen distribution, whereas for the red diamonds the Chamberlain model

was used. For the calculations an exospheric temperature of 150 K was

chosen.

The amount of multiple scattering events in Titan’s exosphere is low as can

be already seen from Figure 7.5. In the difference signal this is also visible:

Figure 7.8 shows the difference signal caused by single scattering events only,

compared to the total difference signal. The radiative transfer calculations

have been performing with exobase densities of 2.0 ·103 (upper plot) and 8.0 ·
104 cm−3 (lower plot) using the Particle model. For low exospheric densities,

multiple scattering events are negligible, constituting only a fraction of about

1 to 2% of the signal, as can be seen in Figure 7.9 (black diamonds).

However, at the increased exospheric density (red diamonds in Figure 7.9),

multiple scattering cannot be neglected: at the beginning of the encounter
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about 85% of the signal is caused by single scattering, decreasing to about

70% during closest encounter and then increasing again when Cassini is de-

parting from Titan. The amount of multiple scattering events is increased

in the line center, which is measured when the spacecraft has a low Doppler

shift, i.e. close to the closest approach. This is due to the higher optical

depth in the line center and hence the shorter mean free path for photons

having this wavelength.

Fig. 7.8: Amount of single scattering events in the difference signal using the Par-

ticle model with an exobase density of nH = 2.0 · 103 cm−3 (upper plot)

and nH = 8.0 · 104 cm−3 (lower plot). In the plots, black diamonds show

the total difference signal whereas red diamonds show the difference signal

caused by only single scattering events. For the calculations an exospheric

temperature of 150 K was chosen.
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Fig. 7.9: Fraction of single scattering events in the difference signal. The fraction

of single scattering events from Figure 7.8 is shown for exobase densities

of nH = 2.0 · 103 cm−3 (black diamonds) and nH = 8.0 · 104 cm−3 (red

diamonds). For the calculations an exospheric temperature of 150 K was

chosen.

7.3 Exospheric temperature variation

The temperatures below Titan’s exobase were recently inferred from INMS

measurements (de La Haye et al., 2007b) yielding values from 149K to 158K.

Above 1,500 km those authors find that a temperature of 149K to 223K is

necessary to fit their data (cf. section 2.4). Also measurements performed by

the UVIS instrument indicate temperatures of 150 to 200K (D. Shemansky,

priv. com.). Calculations are therefore performed with the Particle model

density distribution and an exobase atomic hydrogen density of nH = 8.0 ·
104 cm−3, using an temperature isoprofile with temperatures in the range

measured (147K, 150K, and 158K), as well as using increased temperatures

of 175K, 200K and 250K.

For clarity the difference signals are first shown for the temperature range

from 147 to 158K in Figure 7.10 and thereafter in an increased range with

temperatures of 150 to 250K in Figure 7.11.

Since the wavelength dependent resonance scattering cross section is propor-

tional to the square root of the temperature, the cross section increases in the

line wings with increasing temperatures. This is especially visible at the be-

ginning and end of the encounter, because here HDAC is absorbing radiation

in the line wings: With increasing exospheric temperature, the mean free

path in the line wings becomes shorter (due to the increased optical depth)

and hence the probability of an interaction is increased. Thus, the Lyman-α

radiation emitted is increased in the line wings.
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The exobase temperature variation within the range of literature values found

has only a minor effect on the Lyman-α signal, when compared to the density

variations mentioned above.

Fig. 7.10: Exospheric temperature variation in the temperature range from 147 K

to 158K: Difference signal of simulations performed in photometer mode

(both cells off) and by the H cell was switched on during the T9 flyby,

using the Particle model with an exobase density of nH = 8.0 · 104 cm−3.

Fig. 7.11: Exospheric temperature variation in the temperature range from 150 K

to 250K: Difference signal of simulations performed in photometer mode

(both cells off) and by the H cell was switched on during the T9 flyby,

using the Particle model with an exobase density of nH = 8.0 · 104 cm−3.
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VALIDATION

In order to validate the Monte Carlo radiative transfer model described in

chapter 6, a simple analytical model is constructed which includes only single

scattering. The parameter variations performed in the last chapter are car-

ried out again with this simple model and resulting differences are discussed.

8.1 Analytical approach

In the analytical model, a simplified approach of the radiative transfer equa-

tion is solved. Multiple scattering is neglected, hence only the resonant

scattering of solar light into the line of sight of HDAC needs to be taken into

account. This is justified for the outer exospheric regions, where the optical

depth is low. However, since HDAC always points towards Titan, the lower

exospheric layers are also sensed and multiple scattering can no longer be

neglected. Nevertheless Monte Carlo radiative transfer calculations assum-

ing a very low exospheric density (i.e. exobase densities of 2 · 103 cm−3) have

shown that the total contribution of multiple scattering events to the signal

is negligible (see Figure 7.9). At higher densities, multiple scattering events

contributes significantly to the signal. Thus, in the limit of low exospheric

densities, the Monte Carlo model can be validated with the assumption of

single scattering. For higher densities, only a qualitative comparison can

performed. It will be shown in the next chapter, that the HDAC measure-

ments can only be fitted taking multiple scattering into account. Thus, this

simple approach cannot be applied to simulate the measurements, but it is

very important to validate the required Monte Carlo model.

A further assumption is that the scattering is coherent, i.e. contrary to the

Monte Carlo model, the wavelength of the photon does not change after scat-

tering. This assumption is based on the fixed wavelength grid that is used

for the analytical model calculations. Taking into account non-coherence ef-

fects, with changing wavelengths is thus demanding and beyond the aim of

this model validation.
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The radiative transfer (equation 3.14) can be expressed as

dIν(s, k̂)

ds
= −χνIν(s, k̂) + s̄ν(s)

1

4π

∫

Ω

Iν(s, k̂
′)d2k̂′, (8.1)

with s being the line of sight of HDAC, Iν the spectral intensity, k̂ the direc-

tion, s̄ν the total scattering coefficient, and χν the extinction coefficient, as

introduced in chapter 3.

By defining the source function

Sν(s) =
s̄ν(s)

χν(s)

1

4π

∫

Ω

Iν(s, k̂
′)d2k̂′, (8.2)

equation 8.1 results in

dIν(s)

ds
= −χν(Iν(s) − Sν(s)). (8.3)

Division by −χν and introducing −χνds = dτν yields

dIν
dτν

= (Iν − Sν). (8.4)

Multiplying with the integrating factor exp(−τν) and rearranging the above

equation yields

− d

dτν
(Iν exp(−τν)) = Sν exp(−τν). (8.5)

Integrating with respect to τν and solving the left hand side of equation 8.5

results in

Iν(0) − Iν(τν) exp(−τν) =

τν
∫

0

Sν(τ
′

ν) exp(−τ ′ν)dτ ′ν . (8.6)

Finally, one obtains

Iν(0) = Iν(τν) exp(−τν) +

τν
∫

0

Sν(τ
′

ν) exp(−τ ′ν)dτ ′ν . (8.7)

Inserting the source function Sν(τ
′

ν) yields

Iν(0) = Iν(τν) exp(−τν) +

τν
∫

0

s̄ν(τ
′

ν)

χν(τ ′ν)

1

4π

∫

Ω

Iν(τ
′

ν , k̂
′) exp(−τ ′ν)d2k̂′dτ ′ν . (8.8)

The optical depth τ ′ν has been chosen in the viewing direction of the detector,

being zero at the detector and τν at the end of the line of sight (LOS).
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Hence, Iν(0) expresses the intensity measured by the detector. In equation

8.8, Iν(τν) is the direct radiation along the LOS of the instrument, weakened

by the transmission exp(−τ ′ν) along the LOS. Iν thus includes both the solar

radiation and the radiation emitted from Titan. As the instrument (HDAC)

is not looking at the Sun but rather at Titan’s surface, this term becomes zero

since Titan is not emitting radiation in the UV: Since multiple scattering is

neglected and the solar position remains unchanged in the chosen coordinate

system, the dependence on the viewing direction k̂ can be separated:

Iν(τν , k̂) = Īν(τν) · ωIν
(k̂) = Īν(τν) · δ(k̂ − k̂⊙), (8.9)

with Īν(τν) being the total spectral intensity emitted by the Sun and ωIν

describing the angular dependence. k̂⊙ is the direction towards Sun, which

in this work is given by

k̂⊙,x = 1

k̂⊙,y = 0 (8.10)

k̂⊙,z = 0.

The remaining part of equation 8.8 describes the scattering of solar radiation

into the LOS of the detector, also weakened by the absorption along the LOS.

Equation 8.8 hence becomes

Iν(0) =

τν
∫

0

s̄ν

χν

1

4π
Īν(τ

′

ν) exp(−τ ′ν)dτ ′ν , (8.11)

which can be solved using numerical integration schemes.

The total solar Lyman-α intensity entering the model boundaries Īν is ob-

tained from SORCE (see section 6.4). Since the intensity does not change

in the small wavelength range considered, the wavelength dependence of Ī is

omitted. At a solar distance of Titan of 9.09AU during the T9 flyby a total

solar Lyman-α intensity of Ī = 7.8665 · 10−9 J cm−2 s−1 is obtained. The

radiative transfer calculations are then performed without the absorption

pattern of the HDAC absorption cells. Since HDAC acts as photodetector

and measures the signal in counts per second, the line center Lyman-α pho-

ton flux needs to be calculated: Using the relation between the total solar

Lyman-α irradiance and the line center irradiance from Emerich et al. (2005),

Ī is converted into a photon flux and the HDAC absorption pattern is finally

considered.
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8. MONTE CARLO RADIATIVE TRANSFER MODEL VALIDATION

8.2 Analytical model compared with Monte Carlo calculations

First the atomic hydrogen exobase density is varied in the range from nH =

2 · 103 cm−3 to nH = 1 · 105 cm−3, using both exospheric density models.

In the analytical approach the difference signals between calculations where

both cells are switched off (photometer mode: I0) and where the H cell is

switched on (I), shows a similar behavior as found from calculations using the

Monte Carlo radiative transfer model (see Figure 8.1): The emitted Lyman-α

radiation first increases with increasing exospheric density and then falls off

rapidly. The decrease of the difference signal at high densities during closest

approach is mainly caused by the low altitude of the spacecraft and the higher

optical depth of the exosphere: As the optical depth increases, the absorption

along the LOS exceeds the effect of scattering and the Lyman-α line is at-

tenuated in the line center. This self-absorption effect becomes important at

lower exospheric densities in the analytical model calculations as compared

to the Monte Carlo calculations: Using the Chamberlain atomic hydrogen

profile, there is no maximum visible - however it is predicted to occur at

slightly lower densities. Considering the Particle model profile, the maximal

difference signal forms at an exobase density of nH = 1·104 cm−3, compared to

nH = 2 · 104 cm−3 in the Monte Carlo calculations.

The reason for this is the assumption of a coherent scattering process. At

timestep 403, where HDAC absorbs in the line center, the angle between

the LOS direction and the solar direction (i.e. the scattering phase angle γ)

is about 90◦ (cf. Figure 4.6; note that the scattering phase angle is given

by γ = π-SZA). In the Monte Carlo calculations the non-coherence of the

scattering event due to the Doppler shift in the external frame causes a

wavelength shift of the emitted photon compared to the wavelength of the

incident photon. At a scattering phase angle of about 90◦, the non-coherence

favors the emission of photons with wavelengths close to the line center (cf.

section 6.2.4 and Figure 6.2). Thus, taking into account this effect would

cause the difference signal close to closest encounter to be increased in the

line center, covering the self-absorption effect.

The effects caused by FOV changes due to pointing corrections of the space-

craft are clearly visible - the statistical noise of the Monte Carlo radiative

transfer calculations cover this effect.
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Fig. 8.1: Exospheric density variation: Calculated difference signal using a simpli-

fied analytical radiative transfer model.

The temperature variation was performed using an atomic hydrogen distribu-

tion calculated by the Particle model with an exobase density of 8 ·104 cm−3.

The analytical approach much more clearly indicates the temperature depen-

dence of the Lyman-α emission (see Figure 8.2), which was also suggested by

the Monte Carlo radiative transfer calculations in section 7.3. The increas-

ing temperature causes the difference signal to increase in the line wings

(especially visible at the beginning of the encounter) due to the temperature

dependence of the scattering cross section. However, an increased scatter-

ing cross section also causes the line center to be more strongly absorbed

due to the afore-mentioned self-absorption effect. This effect is particularly

apparent above 200K, where the signal decreases.
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Fig. 8.2: Exospheric temperature variation: Difference signal using a simplified an-

alytical radiative transfer model. The calculations were performed using

an atomic hydrogen density profile calculated by the Particle model with

an exobase hydrogen density of nH = 8 · 104 cm−3.

In total, with the simplified analytical model presented here, the transfer of

solar radiation through Titan’s exosphere can be easily investigated quali-

tatively. However, a qualitative validation of the model is only possible in

the exospheric regions where multiple scattering can be neglected. Also the

amount of single scattering has to be low, in order to compensate for the

disregarding of non-coherence scattering in the analytical solution.

Therefore, an exobase density of nH = 2 · 103 cm−3 is chosen as input for

both exospheric density models, i.e. where the fraction of multiple scattering

events is negligible (cf. Figure 7.9). The comparison is performed using the

difference signal in the single scattering limit of the Monte Carlo radiative

transfer model.
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Figure 8.3 shows the output of both radiative transfer models. Using the

Particle model distribution model, the analytical solution of the radiative

transfer calculation yields a comparable signal to the Monte Carlo calcula-

tions. However, by applying the Chamberlain density profile, the difference

is much bigger. As was seen before, the assumption of a coherent scattering

is mainly responsible for the main differences between both radiative transfer

models. The difference using the Chamberlain distribution is much higher

since the scattering is increased with respect to the Particle model profile.

Hence non-coherence scattering plays a decisive role.

A quantitative comparison is thus only partly possible in the outer parts of

the exosphere, where single scattering dominates. Since the measurements

performed by HDAC also sense the lower exosphere, a comparison can be

only made assuming very low exospheric densities where the amount of single

scattering is high. However, calculations performed by both radiative transfer

models differ slightly due the assumption of a coherent scattering process in

the analytical approach.

Fig. 8.3: Comparison of calculations performed using the analytical radiative trans-

fer model (solid lines) and using the Monte Carlo approach (diamonds).

The calculations were performed with a fixed exobase density of nH =

2 · 103 cm−3 for the Chamberlain model (red) and for the Particle model

(black). The calculations have been performed with an exospheric tem-

perature 0f 150 K.
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9. COMPARISON WITH MEASURED DATA

In this chapter the Monte Carlo radiative transfer calculations are compared

with data measured by HDAC during the T9 flyby. Since the background

level in the HDAC data is a priori unknown, first the difference signals are

compared in order to find the best fit and then the contribution by back-

ground sources to the signal is determined.

9.1 Results

In chapter 7 a parameter study was performed in order to infer the response

of the difference signal. It could be shown that the exospheric density has

the strongest effect on the signal detected, whereas the temperature variation

had only a minor effect.

In order to fit the measured HDAC data and to save computation time1,

first the difference signals computed by the set of parameters used for the

parameter study in chapter 7 are compared to the HDAC data. This involves

exobase densities of 2 · 103 cm−3, 4 · 103 cm−3, 1 · 104 cm−3, 2 · 104 cm−3, 3 ·
104 cm−3, 5·104 cm−3, 8·104 cm−3 ,1·105 cm−3 and an exospheric temperature

of 150K for each of both density models. The best fitting density from this

data set is found by determining the minimum of the least squares value

χ2 =

n
∑

i=0

[yi − f(xi)]
2, (9.1)

where n denotes the total number of measured data points y and f(x) denotes

the respective value obtained from the simulation. At a fixed temperature of

150K, the best fit within the above mentioned parameter set was achieved by

using the Chamberlain model distribution with nH = 2 · 103 cm−3, whereas

for the Particle model, the best fit was achieved with nH = 8 · 104 cm−3.

This approach is justified since the density variation has the strongest ef-

fect on the signal near the closest encounter, and only a minor effect at the

beginning and at the end of the flyby. The temperature variation however,

1 One calculation takes about 25 hours. Note that for every parameter set the median

of five independent calculations was used to calculate the resulting signal.
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showed only a slight impact on the difference signal at the beginning of the

encounter, whereas during the closest approach and at the end of the en-

counter it shows only a negligible effect.

Having identified the best fitting parameters from the variation, the param-

eter range that is used for the final fit is thus increased for a more precise

determination of the values. Additional calculations are performed using the

Chamberlain model with densities of 1 · 104 cm−3, 2 · 104 cm−3, 3 · 104 cm−3

and temperatures of 175K, 200K and 250K. Using the Particle model, addi-

tional calculations with densities of 7 ·104 cm−3, 8 ·104 cm−3, 9 ·104 cm−3 and

1 ·105 cm−3 and temperatures of 175K, 200K and 250K are performed. This

parameter grid was chosen due to the strong noise in the measured HDAC

signal, which do not allow for calculations on a much finer grid. On this

grid, finally the best fitting parameters are determined by using the above

mentioned least squares method.

Using the density profile calculated by the Particle model, the best fit is

achieved with an exospheric temperature of 175K and an density distribution

with an exobase atomic hydrogen density of nH = 9 ·104 cm−3 (see Figure 9.1

for a comparison, as well as for the residual signal). The residual signal of

the fit indicates a high-frequency noise pattern caused by the HDAC signal,

which was already identified in section 4.5.3. Due to this noise pattern the

measurement can also be fitted with an exobase density of nH = 8 · 104 cm−3

with a temperature of 150K or with nH = 1 ·105 cm−3 and 200K. Taking into

account this uncertainty, the best fit is thus given by nH = (9± 1) · 104 cm−3

and T = (175 ± 25)K.

Using the Chamberlain density profile, one obtains the best fit with a density

profile with a much lower exobase density of nH = 2·104 cm−3 (see Figure 9.2)

and an exospheric temperature of T = 175K. As for the Particle profile, the

signal can also be fitted with exospheric temperatures of 150K and 200K.

However, the uncertainty in the density determination is much lower, since

in this density range the difference signal decreases rapidly with increasing

exospheric density (see Figure 7.7). The best result is hence achieved with

an exobase density of nH = (2 ± 0.5) · 104 cm−3 and T = (175 ± 25)K.

Both difference signals are comparable within the error bars of both calcula-

tions, (cf. Figure 9.3). Here also the residual signal is shown. Only near to

the closest encounter of the flyby both difference signals differ slightly mainly

due to statistical errors in the computations.
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The resulting exobase atomic hydrogen densities found are comparable to

literature values, with an exobase density using profile computed by the

Particle model being comparable to the value inferred by (de La Haye et al.,

2007a). Using the density distribution calculated by the Chamberlain model,

the best fitting exobase value found is lower than the value from recent

publications (Garnier et al., 2007; Krasnopolsky, 2009; de La Haye et al.,

2007a), but still within the range of values published (cf. table 2.2).

The best fitting exospheric temperature determined lies within the range

suggested by INMS measurements of de La Haye et al. (2007b), indicating

a temperature in the range of (147–228)K, as well as comparable to mea-

surement by the UVIS instrument, indicating an exospheric temperature of

(150–200)K (D. Shemansky, priv. com.). However, due to the noise pat-

tern in the HDAC measurements, an exact temperature determination is not

possible. However, with more accurate measurements HDAC could have pro-

vided useful information on the exospheric temperature.

A good indicator, for the altitude range to which HDAC is sensitive is the

optical depth in the Lyman-α line center. The altitude seen by HDAC, at

which the optical depth along the LOS becomes unity indicates that the

transmission is of about 37% to the detector. As the spacecraft approaches

Titan during ingress and departs during egress, the instrument detects radia-

tion from different altitudes, allowing the determination of atomic hydrogen

densities at different altitudes. The resulting values of these altitudes dif-

fer whether the Chamberlain or the Particle model density profile is used.

The corresponding values for the Chamberlain model will thus be given in

brackets in the following:

At the beginning of the encounter, the optical depth becomes unity in the

line center at an altitude of about 4,334 km (4,014 km). During the closest

encounter the altitude decreases to 3,716 km (3,090 km) and then increases to

4,402 km (4,076 km), as the spacecraft departs from Titan. These altitudes

are considerably higher than the exobase altitude of 1,500 km. However,

independently of the density model used, the atomic hydrogen density is

about 7 · 103 cm−3 in this altitude range (see Figure 9.4).

Figure 9.4 shows both atomic hydrogen profiles which fit the measured data

at best, as well as the altitudes, at which the optical depth becomes unity in

the line center. The HDAC measurement thus allows the estimation of the

atomic hydrogen distribution in the altitude range above about 3,500 km, up

to the spacecraft altitude (see Figure 4.5).

The average density profile of both exospheric density models in the altitude
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range, to which HDAC is sensitive, is shown in Figure 9.5. The error of this fit

has been estimated from the deviation of both profiles from the average value

at the lowest altitudes, at which the optical depth becomes unity as seen by

HDAC. Due to the noise pattern of the HDAC measurements as well as due

to statistical errors of the Monte Carlo radiative transfer calculations, the

error in the exospheric densities is estimated to be about 25% (indicated by

the blue long-dashed lines in Figure 9.5). The decision, whether one density

distribution model fits the distribution of atomic hydrogen better than the

other can therefore not be made from the HDAC observations during the T9

encounter alone, especially not for the lower exosphere, where both density

distribution models have their largest differences. More accurate measure-

ments in a lower altitude range are thus required in order to determine the

parameters at the exobase. Two reasonable Titan flyby’s of the Cassini or-

biter in 2010, where HDAC is due to this work planned to be used again

are T66 and T67 in 2010. The trajectories and estimated signals during both

flybys are discussed below in section 9.2.
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9.1 Results

Fig. 9.1: Best fitting simulated signal (black diamonds) as compared to measure-

ments during the T9 encounter (red diamonds) using the Particle model

for the calculation of exospheric atomic hydrogen densities. The top fig-

ure shows the best fitting difference signal, simulated using the Particle

model with an exobase density of nH = 9 · 104 cm−3 and an exospheric

temperature of 175 K, whereas the bottom figure shows the residuals signal

of the fit.
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Fig. 9.2: Best fitting simulated signal (black diamonds) as compared to the mea-

surement during the T9 encounter (red diamonds) using the Chamber-

lain model for the calculation of exospheric atomic hydrogen densities.

The top figure shows the best fitting difference signal, simulated using the

Chamberlain model with an exobase density of nH = 2 · 104 cm−3 and

an exospheric temperature of 175 K, whereas the bottom figure shows the

residuals signal of the fit.
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Fig. 9.3: Comparison of the best fitting difference signals using the Particle model

(black diamonds) and using the Chamberlain model (red diamonds). In

the lower figure the residual is shown.
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Fig. 9.4: Best fitting atomic hydrogen profile using the Particle model (black line)

as compared to the best fitting profile using the Chamberlain model (red

line). In the figure, blue lines indicate at which altitudes the optical depth

between the detector and the emission altitude become unity, hence the

exosphere becomes opaque for radiation in the line center. The shaded

area indicates the altitude range of HDAC during the T9 flyby.
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9.1 Results

Fig. 9.5: Average density profile of both best fitting profiles (blue solid line). As a

comparison also the Particle model distribution (black solid line) as well

as the Chamberlain distribution (red solid line) is shown The error bar of

this fit is indicated by long-dashed blue lines. The shaded area indicates

the altitude range of HDAC during the T9 flyby.

The simulated signals in photometer mode as well as when the H cell was

switched on, yield a difference to the measured data of about (12, 000 ±
1, 000) cts s−1 (see Figures 9.6 and 9.7). Considering the sensitivity of the

detector (SLyA = (29±3) cts s−1 R−1, see chapter 4), one obtains a difference

of about 413+90
−70 R. The background signal in the HDAC measurements is not

reduced as planned by the oxygen cell, allowing radiation to be detected in

a broad wavelength range. The wavelength range from 175 nm to 240 nm

is of main importance, since at this wavelength the UV output of the sun

begins to increase rapidly with increasing wavelength (see Figure 4.8). The

oxygen cell was originally included to act as a filter, absorbing radiation

redwards of 175 nm. Also, Lyman-α radiation from the local interstellar
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medium contributes to the background signal. At the end of the encounter,

Saturn was within the FOV of Titan, becoming the main contributor to the

background signal.

Correcting the HDAC observations for the additional background signal yields

a comparable behavior for measurement and simulation at the beginning of

the encounter until closest approach (see Figure 9.8). Afterwards, the mea-

sured signal increases rapidly, whereas the simulated signal remains constant

at about 1,400 cts s−1 (about 50R). The increase in the measurement origi-

nates from limb measurements, with background radiation from Saturn being

detected by HDAC. These background sources have not been considered in

the simulations.

The simulated signal yields a count rate of about 5,000 cts s−1 at the begin-

ning of the encounter, which corresponds to a Lyman-α brightness in the

FOV of about 172+20
−16 R, when HDAC was looking at the sunlit side of Titan

under a zenith angle of about 20◦ (cf. Figure 4.6). At the end of the en-

counter, the night side of Titan was in HDAC’s FOV, yielding a brightness

of about 43 ± 5R.

From UVIS measurements using the FUV spectrometer during the TB flyby

in December 2004, Ajello et al. (2008) found a day side Lyman-α brightness of

208R and a night side brightness of 80R. These values have been determined

during ingress observations from a distance of 1.63 ·105 km and during egress

from a distance of 5.05 · 104 km (see Ajello et al. 2007 for a description of the

observations).

The brightness of both the day and night side as inferred from the radia-

tive transfer model, is comparable to measurements of Ajello et al. (2008)

taking into account the different altitudes of both measurements: The FOV

of HDAC covered only about 14% of Titan’s disc at the beginning of the

encounter (the HDAC FOV is 3◦, whereas at the angle diameter of Titan

was about 8◦) and at the end HDAC performed limb scans. Furthermore,

HDAC was not aligned with the Sun and Titan, but instead looked at Titan

with a zenith angle of about 20◦ at the beginning of the encounter.
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Fig. 9.6: Comparison of the HDAC measurements (black diamonds) with the simu-

lation performed with the best fitting exobase parameters (red diamonds).

Filled diamonds indicate data measured in photometer mode, whereas

open diamonds are data measured when the H cell was taken into ac-

count.

Fig. 9.7: Difference between measurement and simulation. The HDAC measure-

ment has been interpolated with a spline fit, in order to compare measure-

ment and simulation. As in Figure 9.6, filled diamonds indicate signals

measured in photometer mode, whereas open diamonds indicate signals

measured taking into account the H cell.
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Fig. 9.8: Comparison of the signals as measured by HDAC (black diamonds, now

corrected for background signal) and from the simulations (red diamonds).

For clarity reasons, only the photometer measurements are shown.

9.2 Future Titan flybys

Based on this work, the HDAC instrument will be used again during two

future flybys at Titan: The T66 will take place on January 28, 2010 whereas

the T67 flyby will take place in May 04, 2010, respectively. This section hence

focuses on these Titan flybys of the Cassini spacecraft. With the best fitting

atomic hydrogen profiles obtained from the last section, the signal pattern

for future flybys is estimated.

9.2.1 Flyby trajectories

Figure 9.9 shows the spacecraft trajectories during the three flybys. Here, the

T9 flyby trajectory is shown as the blue line, T66 by the green line and T67

by the red line. For calculations performed here it is assumed that HDAC

will always look towards the center of Titan’s disk since the exact viewing

direction during the flybys has not yet been defined.

During the T66 encounter, Cassini will pass Titan on January 28, 2010 with

a closest approach (C/A) distance of 10,065.4 km at 22:28:50 h (UTC; see

Figure 9.9, green line as well as Figure 9.10). During the closest encounter

Cassini will cross Titan at a latitude of -52.75◦ and a longitude of 297.1◦.

The second flyby (T67 in the year 2010 is scheduled for May, 04 with a

C/A distance to Titan’s center of 10,036.9 km at 15:50:39 h (see Figure 9.9,

blue line). Note that the orbital parameters (altitude and Doppler shift) are

almost identical to the T66 and thus are not shown in an additional figure.
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During C/A, Cassini will cross Titan at a latitude of 0◦ and a longitude of

240.4◦. Cassini will start observations on the night side of Titan and end up

with observations of the day side, contrary to T9 and T66.

Fig. 9.9: Spacecraft trajectories during T9 (blue), T66 (green) and T67 (red). The

Sun is always centered at (x → ∞, y=0, z=0. The left plot shows a 3D

illustration with the blue globes representing the upper model boundary

and the lower model boundary, whereas Titan is shown as the red sphere

in the center of the plot. The right plot illustrates the trajectories as

seen from top (x-y-plane). Note that during the T67 flyby, Cassini will

approach Titan from the night side, contrary to T9 and T66

.

Fig. 9.10: Precalculated parameters for the T66 encounter of Cassini with Titan,

assuming that HDAC looks always towards the center of Titan’s disc:

Uppermost plot shows the distance to Titan, the second plot shows the

Doppler velocity. One timestep corresponds to 9 s, starting at 21:28:50 h

UTC with the beginning of the observations.

Note that the orbital parameters of the T67 flyby are almost identical to

T66 and thus are not shown in an additional figure.
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9.2.2 Related radiative transfer calculations

Radiative transfer calculations are performed for both planned flybys us-

ing the best fitting model parameters obtained in section 9 using the Par-

ticle model. During the T66 and T67 flybys, Titan will have a heliocentric

distance of 9.46 and 9.48AU, respectively. For the radiative transfer cal-

culations presented hereafter, the solar Lyman-α flux is assumed to be the

same as during the T9 encounter in 2005. This assumption is justified by

extrapolating the solar spectral irradiation time series for Lyman-α radia-

tion as shown in Figure 6.3. The corresponding factors, the output of the

radiative transfer calculations has to be multiplied with (cf. section 6.4),

are N = Nincoming/NModel = 1.43 · 1020 and 1.42 · 1020 for T66 and T67, re-

spectively. For the calculations it is assumed that HDAC will always look in

the direction of Titan’s center. The calculations are performed in the time

interval one hour before the closest encounter until one hour afterwards. The

spacecraft trajectory is obtained using SPICE (see section 6.3.3).

The measured signal during the T66 flyby (see figure 9.11, green diamonds) at

the beginning of the encounter (here: one hour before the closest approach)

will be about 4,000 cts within an HDAC integration time of 1 s. The sig-

nal will then decrease to a value of about 500 cts during closest approach

(timestep 400) and remain constant during the departure of HDAC.

The signal that will be measured during the T67 flyby is rather different to the

earlier encounters (see figure 9.11, red diamonds), since Cassini approaches

Titan from the night side. The signal at the beginning of the encounter

will be around 400 cts s−1. After timestep 350, HDAC begins to look on the

terminator of Titan and furthermore it will observe the sunlit side of Titan.

The signal will then increase to about 4,000 cts s−1.

Note that the closest encounter altitudes of the both future flybys are consid-

erably lower than during the T9 flyby, with an altitude of about 7,500 km for

T66 and T67 compared to 10,411 km. Thus, the day and night side brightness

is not comparable, but will be much lower than estimated during the T9 flyby

due to the afore mentioned geometric reasons.
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Fig. 9.11: Estimated signal measured by HDAC during the three encounters consid-

ered in the text, using the best fitting exospheric parameters for the radia-

tive transfer calculation. For the calculations it is assumed that HDAC

always points towards the center of Titan’s disc. Note that Cassini will

approach Titan from the night side during the T67 encounter.

Due to the lower flyby altitude, the difference signals in Figure 9.12 show a

lower Lyman-α emission compared to the T9 encounter (blue diamonds in

the figure): During T66, the signal is predicted to remain constant at a level

of about 200 cts and decreases to zero after the closest encounter (timestep

400). The difference signal during the T67 will be zero at the beginning of

the observations due to the afore mentioned flyby geometry, increasing to

about 300 cts when HDAC crosses the terminator and looks onto the sunlit

side of Titan.

Since the closest approach altitudes of both future flybys are considerably

lower compared to the T9 flyby, the HDAC instrument will be more sensitive

to emissions from lower altitudes: The optical depth in the line center be-

comes unity in the altitude range from (3,100–3,900) km in both flybys, when

the Particle model density distribution is applied or in the altitude range from

(2,500–3,800) km, in case of application of the Chamberlain model distribu-

tion.

From the analysis of the HDAC data measured during the T9 encounter,

a potential undersampling problem was identified (see section 4.5.3) which

should be considered for both future flybys: The H cell will be modulated

by a voltage pattern of [0707070707070707] (cf. 4.5.2), i.e. the cell will

be switched on and off alternately, contrary to the T9 flyby where the H

cell was switched on for the whole sequence except for one measurement in
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photometer mode at the beginning of the sequence. This will presumably

avoid the undersampling problem discovered and specified by this work and

the noise in the signal will be decreased. Due to the known problems with

the afore-mentioned D cell, this cell will not be used for those flybys.

The combined effect of a lower flyby altitude and a lower error in the mea-

surements, the density and temperature structure of Titan’s exosphere can

be determined much more precisely. Together with the results of this work,

providing the density structure above about 3,500 km, a realistic density

distribution can be determined. Thus, judging which density distribution

model describes the atomic hydrogen in Titan’s exosphere the best can be

performed, and the exobase density can be determined much more accurately.

Since the exobase density was so far determined only by photochemical mod-

els (except for one measurement in 1981), this in turn will provide useful

information also for such models and in addition to models about the loss of

atomic hydrogen from Titan’s atmosphere, thus the evolution of Titan.

Fig. 9.12: Calculated difference signal between photometer mode measurements and

H cell on measurements signal during the T66 (green diamonds) and

T67 (red diamonds) encounters in 2010. As a comparison the difference

signal during the T9 flyby is shown in blue diamonds. Note that Cassini

will approach Titan from the night side during the T67 encounter.
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10. SUMMARY AND CONCLUSIONS

This work provides for the first time information on the distribution of atomic

hydrogen in the upper exosphere of Titan. Based on measurements by

the Hydrogen Deuterium Absorption Cell (HDAC) instrument aboard the

Cassini orbiter, Monte Carlo radiative transfer calculations were performed

in order to simulate the measurements. HDAC was originally designed to

directly determine the D/H ratio of the atmospheres of Saturn and Titan by

measuring the relative abundance of atomic deuterium and hydrogen from

their Lyman-α emission at 121.533 nm and 121.567 nm, respectively. Fur-

thermore the response of Titan’s exosphere on varying exospheric densities

of atomic hydrogen as well as on the exospheric temperature was investigated

in detail.

Although HDAC’s original purpose could not be achieved by the mission,

data measured during the T9 encounter in December 2005 was used to infer

the distribution of atomic hydrogen in Titan’s upper exosphere. Furthermore

the exospheric temperature could be determined.

Based on the results of this work, HDAC will be used again during the T66

and T67 flybys in 2010, presumably providing more accurate measurements

for the determination of densities and temperatures in Titan’s exosphere.

10.1 Summary

Based on measurements performed by the HDAC instrument aboard the

Cassini orbiter during the 9th encounter with Titan (“T9”) in December 2005,

this work aimed at simulating the measured signal. Exospheric densities and

temperatures in the range of literature value were found, as summarized be-

low. Atomic hydrogen exobase densities so far have only been obtained from

photochemical models, except for one measurement from Voyager 1. This

work thus provides additional information on Titan’s exosphere using satel-

lite measurements.

Since the distribution of atomic hydrogen is unknown in Titan’s exosphere,

two different exospheric density models have been applied to a spherical
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model of Titan’s exosphere in order to calculate the distribution throughout

the model boundaries considered in this work. A static approach from Cham-

berlain (1963) was used (hereafter referred to as the “Chamberlain model”),

which applies the Liouville theorem and takes into account different particle

trajectories. The second model used (hereafter referred to as the “Particle

model”) is a dynamic approach from Wurz and Lammer (2003), which uses

the Monte Carlo method to follow single particles released from the exobase

with velocities obeying the Maxwell-Boltzmann distribution. Both models

require the exobase density and temperature as input parameters.

For the purpose of this work the radiative transfer through the exospheric

model including multiple scattering was solved using the Monte Carlo method.

The radiative transfer model considers atomic hydrogen as the scattering

medium, whereas methane acts as an effective absorber of Lyman-α radia-

tion especially in the lower exosphere. The scattering direction was assumed

to be isotropic and non-coherent scattering was treated. An isothermal tem-

perature profile was assumed for the radiative transfer calculations. The

Monte Carlo radiative transfer model has been validated in the single scat-

tering limit against a simple analytical radiative transfer model, in which

only single scattering was assumed and the scattering was treated coherently.

In order to fit the data measured by HDAC, a parameter study was performed

using the atomic hydrogen exobase densities as well as exospheric temper-

atures found in the literature. Furthermore the statistical significance and

stability of the results against the number of model photons was investigated.

The parameter variation has shown that the emitted Lyman-α radiation

strongly depends on the atomic hydrogen density in the exosphere. Vary-

ing the exospheric temperature, the simulated signal however shows only a

minor effect (compared to the effect of the density variation). This effect is

predominantly visible at the beginning of the encounter as a signal increase,

when increasing the temperature.

A least-squares fit to the data measured by HDAC was applied using radia-

tive transfer calculations performed with different parameter combinations

of exobase density and temperature.

Comparison with the HDAC data showed that radiative transfer calculations

using both density distribution models are able to fit the measured data: Us-

ing the Chamberlain model for the calculation of exospheric densities, a best

fitting exobase atomic hydrogen density of nH = (2 ± 0.5) · 104 cm−3 and
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an exospheric temperature of (175±25)K is needed in order to fit the mea-

surement. However, when using the Particle model, a much higher exobase

density of nH = (9 ± 1) · 104 cm−3 and again an exospheric temperature of

(175±25)K is necessary to fit the measured data. Note that the best fitting

profiles of both models differ mainly close to the exobase: The density de-

creased much faster with height for the Particle model profile when compared

to the Chamberlain profile. At high altitudes above about 3,500 km never-

theless both models feature comparable densities. The uncertainty of the

inferred values arise from a strong noise pattern in the HDAC measurement,

which is caused by an undersampled signal.

Detailed calculations have shown that the HDAC measurements are sensi-

tive only to altitudes from 3,500 km up to the spacecraft altitude. This is

well above the exobase altitude of 1,500 km. The simulated signal calculated

using the best fitting parameters for both exospheric density models do not

differ. Thus, any distinct judgement is anticipated, as to whether one density

distribution model fits the data better than the other one - the atomic hydro-

gen density close to the exobase could not be inferred by the measurement

during the T9 flyby.

However, since both best fitting atomic hydrogen density profiles are com-

parable within about 25% above altitudes of 3,500 km. Thus, for the first

time, the distribution of atomic hydrogen in the upper exosphere could be

determined within the measurement uncertainties.

However, the afore mentioned best fitting exobase parameters that are re-

quired as input parameter for both exospheric distribution models are in

the range of values published in the literature. The exospheric temperatures

found are comparable to measurements from de La Haye et al. (2007a), which

used the Ion Neutral Mass Spectrometer (INMS) aboard the Cassini space-

craft as well as to measurements performed by D. Shemansky (priv. com.),

who used the “Ultraviolet Imaging Spectrograph” (UVIS) aboard Cassini.

The exospheric density found using the Chamberlain model density distri-

bution is lower than measurements performed by Voyager 1 and also lower

than recent photochemical model results. When using the Particle model the

inferred density is mostly comparable with recent model results.

Based on the results of this work, HDAC will be used again during two flybys

in 2010. Having identified the undersampling as the main source of uncer-

tainties in the measurements of the T9 encounter, a different measurement

strategy will be used during these future flybys. Thus, these flybys will per-

haps provide a more accurate determination of exospheric atomic hydrogen
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densities and exospheric temperatures.

Radiative transfer calculation for these two flybys have also been performed

in this work. These flybys take place at lower altitudes, compared to the T9

encounter, allowing to sense the exosphere at lower altitudes. Together with

the results found from this work, the exospheric density structure can thus be

determined more accurately, providing useful information for photochemical,

as well as for evolutionary Titan models.

10.2 Conclusions

• HDAC T9 measurements can be described with two different density

distribution models applied to Titan.

• Lyman-α radiation scattered in Titan’s exosphere strongly depends on

the density, which might change during high solar activity.

• Exospheric temperatures have only a minor effect on the emitted radi-

ation, compared to the response on density variations.

• HDAC measurements can be used in order to determine the distribu-

tion of atomic hydrogen in Titan’s exosphere, as well as the exospheric

temperature.

• The HDAC measurement features strong undersampling problems.

• Densities provided by both exospheric models differ by about 25% in

the altitude range HDAC is sensitive for, due to the undersampling

problem.

• Exobase densities inferred are comparable to values determined by re-

cent photochemical models

• Best fitting exospheric temperatures are consistent with recent mea-

surements by other instruments aboard the Cassini spacecraft.

• There is a need for more accurate measurements during future flybys in

order to help in judging which density profile better fits the data. Fur-

thermore the exospheric temperatures can be determined much more

precisely. The undersampling problems during the T9 measurement

can be avoided in future measurements.

• Based on this work, HDAC will be used again during the T66 and T67

flyby in 2010.
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This work has focussed on measurements performed with the modulated

hydrogen cell aboard HDAC only. Although the amount of deuterium in

the D cell is not known, the amount of hydrogen contaminating the D cell

is well determined. So far, calculations with an increased optical depth in

order to take into account the absorption of both cells (with the additional

optical depth provided by atomic hydrogen in the D cell) cannot reproduce

the signal measured, when both cells are switched on.

For this reason, the radiative transfer model presented in this work might be

expanded in order to include the resonance scattering of deuterium. With

literature values of D/H determined from other instruments, the inferred at-

mospheric amount of deuterium might be used as an initial parameter for

the radiative transfer calculations in order to calibrate the D cell. Due to

undersampling problems during the T9 encounter this will be a challenging

task though. If however this is successfully done and the amount of Deu-

terium can be determined in the D cell, HDAC might be used again during

the “Solstice Mission” of Cassini beginning in 2010 in order to determine the

D/H ratio of the bodies observed.

However, the radiative transfer model will be enhanced in order to drop the

assumption of an isothermal exosphere with a Maxwellian distribution of

velocities. For this purpose, the velocities obtained from the Particle model

could be used in the calculations and the direction of the photons with respect

to the the direction of the escaping hydrogen atoms will be taken into account.

Furthermore, the number of photons might be increased significantly in order

to lower the statistical errors. Together with the analysis of the HDAC

measurements performed in this work, the future flybys in 2010 will provide

much more accurate data and the radiative transfer model should hence be

improved in this respect.

Since HDAC continuously measures in photometer mode, these measure-

ments might be used for the analysis of other bodies, Cassini has passed and

that were in the FOV of HDAC. Although doing this, the Lyman-α line shape

cannot be investigated in detail, however other useful information might be
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inferred. The removal of the background is at this point the most challenging

task, which might be solved by proper modeling of the contributing back-

ground signals.

Beyond the comparisons with HDAC data, the exospheric and radiative

transfer model might be easily modified to calculate the transfer of radia-

tion through the exospheres of other bodies in the Solar System. For close-in

planets, like Mercury, as well as for comets, the radiative transfer calcula-

tions require the proper treatment of radiation pressure. However with the

model improvements indicated above this should be a relatively straightfor-

ward task.

Also the application to extrasolar planets is possible. Emissions of Lyman-α

radiation from extrasolar giant planets have already been detected. Unfor-

tunately, the planets where the Lyman-α line has been observed orbit their

central star in a very close orbit (closer than that of Mercury) and therefore

they feature a strong hydrodynamic blow-off of hydrogen. The assumption of

a spherical corona thus needs to be dropped and the radiation pressure must

be taken into account properly. Also the exospheric density models must be

improved in order to take into account the effect of hydrodynamic blow-off.

The measurement principle of the HDAC instrument, however, can only be

applied in the Solar System since the Doppler shift of the absorption com-

pared to the emission from the body observed is only useable during close

flybys. Applying this principle to extrasolar planet research is hence impos-

sible. Furthermore, this kind of absorption cells might be used for close in

flybys around comets. The determination of the D/H ratio of these objects

would help in understanding the evolution of the Solar System.
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A. GLOSSARY

Clathrate - clathrates are a chemical substance consisting of a lattice of

one type of molecule trapping and containing a second type of molecule. An

example of a clathrate is a clathrate hydrate, a special type of gas hydrate

in which a lattice of water molecules encloses molecules of a trapped gas.

Exosphere - transition region of the gravitationally bound atmosphere to

free space. Within the exosphere, the mean free path of a particle is greater

than its scale height. Thus, collisions between particles become negligible in

this region.

Heterosphere - in the heterosphere (above the homopause) molecular dif-

fusion is more important than eddy diffusion, hence each species has an

individual scale height.

Hill sphere - the Hill sphere is the volume around an astronomical body

(such as a planet) in which the gravitational attraction dominates over the

gravitation of a larger body which it orbits.

Homosphere - within the homosphere the vertical transport is independent

of molecular mass - one single scale height can be applied to characterize

the vertical structure of the atmosphere. The homopause is the altitude at

which molecular diffusion replaces eddy diffusion as the dominant vertical

transport mechanism.

Hydrocarbon - hydrocarbons are organic compounds consisting entirely of

hydrogen and carbon (CxHy).

Ionosphere - the ionosphere is the part of the atmosphere that is ionized by

solar radiation. The ionosphere is coupled to both the magnetosphere and

the neutral atmosphere.

Nitrile - nitriles are any organic compound, where the carbon atom and the
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nitrogen atom are triple bonded together (CxNyHz).

Mesosphere - the mesosphere is the layer of the atmosphere that is directly

located above the stratosphere and directly below the thermosphere. The

mesosphere is predominantly characterized by its thermal structure.

Polycyclic aromatic hydrocarbon - polycyclic aromatic hydrocarbons

(PAHs) are chemical compounds that consist of fused aromatic rings and do

not contain heteroatoms or carry substituents.

Polyyne - polyynes are a group of organic compounds with alternating sin-

gle and triple bonds, for example diacetylene C4H2.

Rayleigh - One rayleigh (1R) is defined as a column emission rate of 1010

photons per square meter per column per second. Note that a rayleigh is an

apparent emission rate, as no allowances have been made for scattering or

absorption. The relationship between radiance, L, (in units of photons per

square meter per second per steradian) and I (in units of rayleighs) is simply

L = I · 1010/(4π).

Stratosphere - the stratosphere is a region of intense interactions among

radiative, dynamical, and chemical processes, in which horizontal mixing of

gaseous components proceeds much more rapidly than vertical mixing.

Thermosphere - the thermosphere is the part of the atmosphere which

absorbs the Sun’s extreme ultraviolet radiation and hence the temperatures

increases steadily with altitude.

Tholin - tholins are nitrogen-rich organic substances produced by the irra-

diation of gaseous mixtures of nitrogen and methane.

Troposphere - the troposphere is the lowest layer of the atmosphere and is

characterized by vertical mixing. The temperature of the troposphere gener-

ally decreases as altitude increases.
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B. LIOUVILLE’S EQUATION

A detailed introduction in obtaining the distribution of particles within the

exosphere from Liouville’s equation can be found in (Chamberlain, 1963).

The important points of his work are reviewed here.

In the exospheric layers, where collisions are by definition rare, the spatial

and momentum distribution is governed by Liouville’s equation, which is

equivalent to Boltzmann’s equation without collisions. Using the continuity

equation
∂N

∂t
+ ∇ · (Nv) = 0, (B.1)

with N being the particle density and v the mean velocity. A large group of

particles distributed over spatial (qi) and momentum (pi) coordinates in 6-

dimensional phase space according to some function f(qi, pi) have a “density”

in phase space of f(qi, pi). Replacing the velocity component by q̇i and ṗi

Liouville’s equation is then

∂f

∂t
+

3
∑

i=1

[

∂

∂qi
(f q̇i) +

∂

∂pi

(fṗi)

]

= 0 (B.2)

The particles are subject to the equations of motion, in this case the particles

are under the influence of gravitation. In Hamiltonian form, one has

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

, (B.3)

where H = H(qi, pi) is the Hamiltonian function which expresses the total

energy in terms of qi and pi. Expanding the derivatives and using equation

B.3 to eliminate ∂q̇/∂q = −∂ṗ/∂p gives

df

dt
≡ ∂f

∂t
+

3
∑

i=1

[

∂f

∂qi
q̇i +

∂f

∂pi
ṗi

]

= 0 (B.4)

The term on the left is the total derivative to be taken along the path in phase

space followed by a closed element of “volume” as it “moves” according to

the equations of motion. Liouville’s theorem thus states that the density in

phase space remains constant along a dynamical trajectory.

As an example, Liouville’s theorem is applied to the density and velocity dis-

tribution in an exosphere. An isotropic Maxwellian distribution of velocities
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for temperature Te is assumed just below the critical level, which is at radial

distance re from the center of the planet, and a total density N(rc) = Nc.

For spherical symmetry and time independence (∂f/∂t = 0), equation B.4 is

∂f

∂r

dr

dt
= − ∂f

∂pr

dpr

dt
, (B.5)

where pr is the radial component of momentum and r is measured from the

center of the planet. Adopting a Maxwellian motion at the exobase and

considering the Hamiltonian in spherical coordinates as well as the equa-

tions of motion, one finally finds the radius dependent by integration over all

momentum space

N(r) =

∫

f(qi, pi)d
3pi = Nc exp(−(λc − λ)), (B.6)

with the absolute value of the potential energy in units of kBTc

λ(r) ≡ GMm

kBTcr
=
v2
esc

U2
, (B.7)

where v2
esc = 2GM/r is the parabolic escape velocity and U2 = 2kBTc/M is

the most probable Maxwellian velocity.

The derivation of equation B.6 from Liouville’s equation is a direct con-

sequence of the Maxwellian distribution holding even in the region free of

collisions, provided the momenta do extend over all possible values. Hence

the mean energy per atom is unchanged and the barometric law naturally

emerges.

All this depends, however, on having the entire range of molecular momenta

allowed. At substantial distances above the critical level this is not the case

and the barometric law breaks down. If strictly true, equation B.6 would

predict a finite density and pressure is achieved as r → ∞ (and λ → 0).

To treat the density distribution accurately it is necessary to examine the

individual particle orbits in the corona with the kinetic theory. Chamberlain

(1963) therefore introduces an partition function ζ , describing the orbits of

the particles released at the exobase and equation B.6 is then

N(r) = Nc exp(−(λc − λ)) · ζ(λ). (B.8)
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C. RADIATION PRESSURE

Radiation pressure can be treated as an uniform anti-solar acceleration a,

represented by a potential m · a · r · cos(χ) superposed on the planetary

gravitational potential GMm/r. Here G is the gravitational constant, M

the mass of Titan, m the hydrogen atom mass, r the planetocentric distance,

and χ the solar zenith angle. Radiation pressure occurs via the resonant

scattering of solar Lyman-α photons, which impart a momentum hν/c per

photon into the antisolar direction. The radiation pressure acceleration is

then given by

p = gν′ν′′

hν

mc
, (C.1)

where g is the photon scattering coefficient (Chamberlain and Hunten, 1987).

The photon scattering coefficient is expressed by Shefov (1984) as:

gν′ν′′ = w
λ3

ν′,0

2hc2
FλAν′,0

Aν′ν′′

∑

ν′

Aν′ν′′

, (C.2)

where λ is the wavelength of the transition (ν ′, 0), A the probability of

the spontaneous transition, and Fλ the radiation flux at the solar surface.

Note that Shefov (1984) uses a similar equation as Chamberlain and Hunten

(1987), (p.291). w is the dilution factor, defined by

w =
1

2

[

1 −
√

1 − (r⊙/R)2
]

, (C.3)

where r⊙ is the solar radius and R is the heliocentric distance. For Titan w =

5.03 ·10−8 and for solar Lyman-α radiation at the position of Titan (9.09AU

during the T9 encounter), gν′ν′′ = 2.78 · 10−5 photon s−1 (Chamberlain and

Hunten, 1987). One obtains a radiation pressure acceleration of p = 9.062 ·
10−5 ms−2.

Setting this equal to the gravitational acceleration g

g = −MG

r2
RP

, (C.4)

and solving for the planetocentric distance rRP one obtains rRP=314,709 km

or 122.21 RTitan, which is far outside the exospheric model boundaries of this

work (upper boundary is set to a distance to Titan’s center of 32,575 km).

Thus, the effect of radiation pressure on the hydrogen atoms in Titan’s exo-

sphere can be neglected within the model boundaries considered here.
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D. SOURCE PHOTON GENERATION

In the Monte Carlo model presented here, the photons are injected at the up-

per boundary of a sphere. When creating photons with coordinates (x, y, z) ∈
[rmin, rmax] uniformly distributed on a sphere, one would obtain an enhanced

creation at the poles of the sphere. Since the photons should be created

uniformly over the sphere, the cartesian coordinates need to be transformed

to spherical coordinates. Thus, choosing three uniformly distributed vari-

ables Ai ∈ [0, 1], Bi ∈ [0, 1], Ci ∈ [0, 1] in cartesian coordinates (x, y, z),

one is looking for the distribution in spherical coordinates (r, φ, θ), where

ri ∈ [rmin, rmax], φi ∈ [0, 2π], and θi ∈ [0, π]. The transformation reads:

x = r cosφ sin θ

y = r sin φ sin θ (D.1)

z = r cos θ

The Jacobian then reads:

∂(x, y, z)

∂(r, φ, θ)
= r2sinθ (D.2)

Since

1 =

∫

shell

w(x, y, z) dx dy dz ⇒ w(x, y, z) =
3

4π

[

r3
max − r3

min

]−1
, (D.3)

and

w(x, y, z) dx dy dz = Q(r, φ, θ) dr dφ dθ, (D.4)

one can write

Q(r, φ, θ) = Q1(r)Q2(φ)Q3(θ) = r2 sin θ
3

4π

[

r3
max − r3

min

]−1
. (D.5)

Then,

Q1(r) = q1 · r2 → q1 =

[
∫ rmax

rmin

r2dr

]−1

=

[

1

3
(r3

max − r3
min

]−1

(D.6)

Q2(φ) = q2 · 1 → q2 =

[
∫ 2π

0

1dφ

]−1

=
1

2π
(D.7)

Q3(θ) = q3 · sin θ → q3 =

[
∫ π

0

sin θdθ

]−1

=
1

2
. (D.8)
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Hence,

A =

∫ A

0

1da =

∫ F (A)

rmin

Q1(r)dr =
[

r3
max − r3

min

]−1 ·
(

[F (A)]3 − r3
min

)

→ F (A) = 3

√

A (r3
max − r3

min) + r3
min (D.9)

B =

∫ B

0

1db =

∫ F (B)

0

Q2(φ)dφ =
1

2π
F (B)

→ F (B) = 2πB (D.10)

C =

∫ C

0

1dc =

∫ F (C)

0

Q3(θ)dθ =
1

2
(1 − cos[F (C)])

→ F (C) = arccos[1 − 2C]. (D.11)

The desired transformation then reads

Ai, Bi, Ci ∈ [0, 1]



















ri = 3

√

Ci (r3
max − r3

min) + r3
min

φi = 2πBi

θi = arccos[1 − 2Ci].

(D.12)

In case of releasing photons form the surface of a sphere, ri = const. = R,

with R being the radius of the sphere. By using the above given transfor-

mation D.1 one gets equally distributed values for the initial coordinates on

top of the sphere (x, y, z).
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E. FLOW CHARTS OF THE MONTE CARLO RADIATIVE TRANSFER PROGRAMS

Fig. E.1: Flow chart of Monte Carlo radiative transfer algorithm used for this

work. Using this algorithm, the scattering positions within the exosphere

are determined.
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Fig. E.2: Flow chart of Data Sampling algorithm used for this work. Using the

output of the Monte Carlo algorithm shown above, the Data Sampling

model calculates the amount of photons that enter the detector.
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sure profile of Titan’s observations of the PPI/HASI instrument. Planetary

& Space Sciences, 54:1117–1123, October 2006.

D. F. Heath and P. A. Sacher. Effects of a simulated high-energy space

environment on the ultraviolet transmittance of optical materials between
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