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Summary

The developing sensory areas of the brain are shaped by a combination of en-
vironmental signals imposing their fingerprints on them and genetically pre-
determined factors. Experimental studies, however, have shown that they are
still surprisingly adaptive even in the adult. We investigate the representation
of visual information in the visual cortex of mammals and focus on explaining
their adaptivity in the adult. One insight from computer science is that the most
efficient algorithms depend on the structure of the underlying machine. There-
fore, we admit a “primacy of the neuronal circuits” as compared to an approach,
where first an algorithmic basis for (visual) cortical function is hypothesized and
then a corresponding neuronal correlate is searched.

We first investigate orientation tuning in the primary visual cortex (V1).
The combination of recent measurements with modeling studies allows us to
significantly constrain the actual operating regime of V1 to a recurrency-regime
characterized by a co-variation of excitation and inhibition, hence almost settling
the long-standing issue of how orientation tuning is computed in V1. This model
does not directly relate to our main theme of “adult adaptivity”. However,
it is an important step for investigating adaptivity in the early visual cortex,
because experiments have shown that orientation adaptation is stronger in V1
pinwheel regions compared to orientation domains (Dragoi et al., 2001). Our
two-dimensional model explicitly considers these different regions, and hence
could serve as an experimentally tested model for subsequent investigations.

We then re-investigate the neuronal circuitry underlying contextual effects
in V1, which can be viewed as a form of stimulus-driven adaptivity of sensory
representations. Again, integrating recent experimental data leads us to propose
a new inter-areal model, where modulatory interactions are mediated via an
inter-areal pathway, such that they could be subject to attentional modulation.
The new model’s specific predictions were recently confirmed experimentally. In
this thesis, we view attentional top-down modulations of visual representations
also as one form of adaptivity. Hence, the inter-areal model could serve as an
experimentally tested model for subsequent investigations of attentional top-
down control.

In a third study, we use an “optimal coding principle” to explain tuning func-
tion changes in area V4 after perceptual learning and due to visual attention.
Although these two phenomena give rise to different tuning function changes,
we show that they can both be understood as optimal improvements of the sen-
sory representation, but being caused by different mechanisms. The developed
approach of predicting tuning function changes for particular mechanisms is of
use to investigate the mechanisms of various adaptation phenomena, which may
be hard to address directly, based on the tuning functions as the “observable”.

Finally, using a more abstract network model, we develop a new interpre-
tation of task-dependent representations as caused by, for example, attentional
top-down control. We argue that they are best understood as top-down modu-
lations, which “tune” the computation of the sensory representations in a task-
dependent way such that they are useful for read-out neurons, which inherit
their task-dependence from the neurons in the sensory area.
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Chapter 1

Introduction to this thesis

When should an organism exploit its environment in order to benefit from its
previously acquired knowledge, and when should an organism continue to ex-
plore its environment to acquire even more knowledge for later exploitation?
This famous and well-known ezploration-exploitation tradeoff (Kaelbling et al.,
1996) is a rather high-level problem relevant for understanding the behavior of
biological organisms and for building intelligent artificial agents. If an agent
never explores its environment, it will never learn something about it. On the
other hand, too much exploration will also not pay off, because in this case the
agent seldom exploits the acquired knowledge to obtain rewards. This problem,
however, has a low-level counter part, which in turn is highly relevant for un-
derstanding biological sensory systems and, of course, for building the sensing
devices of intelligent artificial agents. The so-called plasticity-stability tradeoff
(Grossberg, 1976) refers to the problem of deciding when and how to adapt the
internal sensory representation of the outside world.

On the one hand, subsequent processing stages rely on stable and repro-
ducible sensory representations when performing their computations like, for
example, the decision between exploration and exploitation. On the other hand,
sensory representations need to be plastic in order to ensure a high fidelity rep-
resentation of sensory stimuli whose behavioral relevance may not be known be-
forehand. In other words, sensory representations need to be adaptive. Indeed,
adaptation is a widespread phenomenon in nervous systems, and it happens
on multiple time-scales. In the context of the early visual system the activity-
dependent refinement of cortical maps happens during a critical phase, which
lasts weeks, perceptual learning occurs during hours and days, light adaptation
in the retina and contrast-adaptation in the primary visual cortex (V1) works
on the order of a few seconds, and the fast dynamics of receptive field properties
on the order of a few tens or hundred milliseconds may also be viewed as an
adaptive process.

Together with the apparent general applicability of the idea of adaptation
comes a certain vagueness: For example, what exactly do contrast-adaptation
and the development of cortical maps have in common? Is it indeed justified to
think of dynamic receptive field properties or even attentional top-down modu-
lations in the visual cortex as some sort of adaptation? Clearly, understanding
adaptation only in the narrow sense of a neuronal fatigue after prolonged stim-
ulation falls too short. Therefore, from now on we use the term ’adaptivity of

1



Chapter 1

sensory representations’ when referring to the adaptation of sensory represen-
tations in a wider sense, i. e. an adaptation to changing internal or external
conditions at various time-scales. The term ’adaptation’ will be used in the
usual way as referring to the phenomenon of firing rate adaptation observed in
single neurons.

It may come as a surprise, but the visual system is indeed quite adaptive
even in the adult (Dragoi and Sur, 2003). This means, taking at first a rather
naive view, that we seldom see the world the same way twice. This should not
be confused with the phenomenon of the same visual scene being interpreted in
a different way when we see it the second time, because we acquired new knowl-
edge since we saw it first. For example, being told that the scoring of a goal
in a soccer game was from an offside position alters the way the corresponding
scene is interpreted. However, here we refer to phenomena, which change the
representation of visual information in the first place, not only the subsequent
interpretation. For example, it has been shown that practicing visual discrimina-
tion tasks alters those representations such that after this so-called perceptual
learning two very similar, but actually different stimuli can be distinguished,
which were indistinguishable before the learning phase.

Let us now consider some selected examples, which demonstrate that the
visual cortex connects an agent to the visual world in a much more complex
and “adaptive” way than simply being a mirror of the light pattern received by
the two eyes.

1.1 Examples of adaptivity in the visual cortex

In this thesis we investigate the adaptivity of sensory representations in the adult
visual cortex. In other words, we consider how the representation of visual
information is changed in the first place as compared to altered subsequent
interpretations of otherwise unchanged representations. Visual illusions have
been successfully used to demonstrate aspects of the way the visual system
processes visual information. Therefore, let us now consider a set of illusions
selected to demonstrate the visual system’s adaptivity.

Fig. 1.1a shows a variant of the so-called Zollner illusion. Here, the long hor-
izontal lines are indeed parallel but appear to tilt alternately. In other words,
the short lines change the way the long horizontal lines are perceived. In partic-
ular, this illusion is strongest when the intersecting angle of the short and long
lines is between 10° and 30°. Like almost any visual illusion, the Zollner illusion
does not reveal a malfunctioning of the visual system. Instead, using a rather
artificial stimulation they demonstrate that the visual system incorporates prior
knowledge about the structure of the visual world in order to compute repre-
sentations, which are useful for proper perception and action during natural
stimulation. For example, the Zollner illusion might be an epiphenomenon of
how depth information is computed during natural stimulation. The Zollner il-
lusion, however, builds upon very simple stimulus properties, and it can hardly
be altered by cognitive efforts like visual attention. This suggest that the corre-
sponding neuronal processes are rather ’hard-wired’ and are likely to be found
in the early stages of visual processing like area V1. Currently it is assumed that
orientation tuning in area V1 also strongly depends on genetic factors (Kaschube
et al., 2002). Thus, the Zollner illusion can be viewed as an example of how the
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Figure 1.1: Examples illustrating adaptivity of the visual system at different
time-scales. a) In the Zollner illusion the long lines are indeed parallel, but
due to the superimposed short lines they do not appear as parallel. b) In this
variant of the so-called corridor illusion the two red lines have the same size,
but due to the depth cue the right line appears to be longer. ¢) Adults identify
the image on the bottle as a couple, whereas young children only see dolphins
due the lack of prior memory associated with such scenario. d) In the Necker
cube illusion two sides of the cube can be seen as been nearer to the observer.
e) Stimuli to demonstrate the direct and indirect tilt aftereffect, where after
prolonged viewing of the middle/right image the vertical lines appear tilted to
the right/left (see text for details).
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visual system adapted to the environment, but on an evolutionary time-scale.

An illusion explicitly exploiting the way depth information is computed by
the visual system is shown in Fig. 1.1b. In this so-called corridor illusion the sets
of converging lines are easily interpreted as perspective cues. As a consequence,
the right bar is perceived as being longer than the left bar, although they are of
the same size. Note that the impression of depth is evoked also if the corridor
illusion is viewed with only one eye. In other words, the perspective cue does not
depend on integrating information from both eyes. It is not clear to what extend
visual experience is necessary to infer depth information from such monocular
clues. It is possible that the main mechanisms underlying the corridor illusion
are ’hard-wired’ as it is likely the case in the Zdllner illusion, which would
imply that the corridor illusion is an example of adaptivity on the evolutionary
time-scale, but if visual experience is essential, then it would be an example
of an adaptation to the environment at the developmental time-scale of the
ontogenesis of the animal.

One clear example demonstrating adaptivity at the developmental time-scale
is shown in Fig. 1.1c. The figure on the bottle can be identified in two different
ways, namely either as a couple or a set of dolphins. It can easily be tested that
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young children cannot identify the intimate couple. They have never seen such
a scenario. They will only see the dolphins. In other words, prior experience
can strongly influence the way a physically ambiguous stimulus is perceived.
Similar to other ambiguous figures like the famous duck-rabbit or the face-vase
illusion, both interpretations cannot be seen at the same time. By itself, of
course, this is no direct evidence for the hypothesis that the mutual exclusive
character of these illusions can be explained by assuming that the visual system
only represents one interpretation at any one time.

The Necker cube shown in Fig. 1.1d is an example of a similar illusions. Two
faces of this cube can appear to be nearer to the observer, but the two mutually
exclusive interpretations switch after prolonged viewing or can be changed by
visual attention. Assuming that visual attention can alter the way sensory
representations are computed in the visual system, Figs. 1.1c,d are examples
of adaptivity of sensory representations on a perceptual time-scale subject to
cognitive top-down modulation.

The illusion shown in Fig. 1.1e, however, is largely immune against inter-
ference with cognitive processes like visual attention. Just fixate the area sur-
rounded by the circle the middle panel of Fig. 1.1e. You can slightly move your
eyes in order to avoid strong afterimages. Then, quickly fixate the left panel
of Fig. 1.1e. The vertical lines should appear slightly tilted clockwise. This
phenomenon is called the direct tilt aftereffect. If you fixate the horizontal lines
at the right, after having fixated the area surrounded by the circle in the mid-
dle panel, then the lines should appear barely tilted counterclockwise, which is
called the indirect tilt aftereffect. The indirect effect, however, is small and not
always noticeable outside the laboratory. The stimulus property relevant for
these effects is the orientation of the lines, and in the visual pathway of mam-
mals, neurons selective for the orientation of a visual stimulus are first found
in area V1. Therefore, the corresponding neuronal processes of this perceptual
effect could be located in area V1. Interestingly, animal studies have shown that
after prolonged stimulation the orientation selectivity of neurons in area V1 is
slightly changed (Dragoi and Sur, 2003), which could account for these effects.
These effects are examples of adaptivity on a perceptual time-scale subject to
stimulus-dependent modulations.

These examples show that the visual system connects a perceiver to the world
in a rather complex way. In particular, the visual system seems to be adaptive at
different time-scales, and it is a challenge to explain these phenomena in terms
of specific computational principles. In other words, using such an explanation
one would argue, that the visual system is operating “optimal” (in a sense to be
defined), and that the illusions are a natural consequence of the visual system
operating according to the proposed principle (see (Schwabe and Obermayer,
2003) for a review of those approaches).

One very prominent hypothesis is to view the visual system as a statistical
inference engine, which aims to infer the probable “causes” of the retinal activa-
tion patterns. In general, however, this problem is ill-posed. For example, the
right bar in Fig. 1.1b could be of the same size as the left bar, if it would be
located at the same distance to the perceiver as the left bar. However, it could
also be larger, if it would be located at a larger distance to the perceiver. In such
cases, prior knowledge has to be used in order to resolve this ambiguity. Indeed,
the perspective cues suggest that the right bar is located at a larger distance
than the left bar. This prior knowledge is then used by the visual system to
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infer that the right bar is larger.

This view of the visual system is attractive, because it could explain its
adaptivity in terms of the prior knowledge used to disambiguate the visual
stimuli. The appropriate prior knowledge could vary on a case-by-case basis, but
also on different time-scales. The formalism of Bayesian inference (Cox, 1961)
is a prime candidate to serve as a basis for this “inference engine” perspective.
However, if the (visual) brain makes use of Bayesian inference, then it has make
use of proper approximate Bayesian learning and inference algorithms, because
straight-forward implementations are only possible for almost trivial statistical
models of the environment. In other words, although this perspective has gained
much interest in recent years (see, e. g., (Barlow, 2001; Pouget et al., 2003; Rao,
2004; Deneve, 2005)), the specific approximate algorithms possibly used by the
(visual) brain need to be spelled out in detail (but see (Yu and Dayan, 2005) for a
possible and neurophysiologically plausible approach). In this thesis, however,
we do not adopt this hypothesis. Instead, we will ask (see Chapter 5) as to
whether this hypothesis is justified at all.

Our approach in this thesis is to admit a “primacy of the neuronal circuits”.
We argue that instead of postulating an algorithmic basis of visual cortical
function and then searching for the corresponding neuronal correlate, focusing
on the neuronal circuits with the goal of formulating simple models may turn
out to be a more promising approach for developing a better understanding of
visual cortical functions as well as for building “intelligent machines”. Therefore,
we now give a brief introduction into the architecture of the visual system before
we formulate the specific questions we address (Sec. 1.3).

1.2 The central visual pathway

Here we briefly describe the central visual pathway of mammals. This pathway
is certainly the best investigated signal processing pathway of higher mammals,
because it is easy to access and can be stimulated in a straight forward fashion.
This introduction is far from being comprehensive. Instead, it is intended as
a minimal primer for the rest of this thesis. Much more in-depth reviews of
this pathway can be found in textbooks like the one by Kandel et al. (2000),
Zigmond et al. (2000), Palmer (1999), or Hubel (1988).

Fig. 1.2 sketches the overall anatomical structure of the early visual pathway.
When a cat or monkey fixates its environment, light that falls into the eye is
focused by the cornea and the lens to form two images on the left and right
retinae. The part of the world that contributes to the image formed on the
two retinae is called the wvisual field of the animal. Each retina transforms the
incoming light intensity distribution into spike patterns, which are transmitted
by the two optic nerves into the central nervous system. Each optic nerve
consists of roughly 10° fast conducting axons, almost all of which target two
structures within the thalamus, which are called lateral geniculate nuclei or
LGN. At the optic chiasm, each optic nerve branches such that one half of the
fibers targets the ’contralateral’ LGN at the side opposite to its origin, whereas
the rest contacts the ’ipsilateral’ LGN at the same side as the eye of origin. The
crossover of the nerve fibers occurs in a highly ordered fashion, which ensures
that each LGN receives the fibers from the ipsilateral parts of both retinae.
Thus, each LGN processes the signals from the contralateral hemisphere of the



Chapter 1

optic
radiation

optic nerve

£_ optic chiasm

light rays primary # S I

visual cortex
retina

visual field

Figure 1.2: Tlustration of the early visual pathway in higher mammals. The
light is transformed into spikes of the ganglion cells, whose axons form the optic
nerve. The signals are forwarded via the optic nerve to the optic chiasm, the
LGN, and then via the optic radiation to the V1 (adapted from Bauer (1998)).

visual field.

Proceeding from the LGN, another less concentrated bundle of fibers, which
is referred to as the optic radiation, contacts the primary visual cortex (also
referred to as area V1). In contrast to the optic nerve, the optic radiation does
not cross hemispheres. Hence, analogously to the LGN, each hemisphere of
the primary visual cortex processes visual information from the contralateral
hemisphere of the visual field. From V1, two major output streams can be
divided. The first stream projects from V1 to higher visual areas, whereas the
second stream projects back to the LGN and other deep structures.

The retina

The retina is the first step of information processing in the brain. Although
being located at the sensory periphery, it is part of the brain itself, because
it is derived during development from the neural ectoderm, which also gives
rise to the brain. The retina is a layered structure composed of many different
cell types. The cells transducing light into graded electrical potentials are the
photoreceptors. The so-called “rods” are very sensitive to light and are crucial
for vision in low-light environments like, for example, during the night, whereas
the so-called “cones” signal color information and are crucial for vision during
the day. The signals transduced by the photoreceptors are forwarded to the
ganglion cells, which are the first to use spikes instead of graded potentials for
signalling.

A single ganglion cell receives input from several photoreceptors such that
beyond light adaptation of the photoreceptors a first pre-processing of the visual
signals can take place. Per eye approx. 120 million photoreceptors converge
onto approx. 1 million ganglion cells. In other words, this first processing can
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also be characterized as a massive data compression. Fig. 1.3a show the two
types of ganglion cells termed ON- and OFF-center cells. If the center region
of ON-center cells is stimulated the firing rate of this ganglion cell increases
(top), whereas stimulation of the surrounding region leads to a decrease in the
frequency (middle) of the spike discharges. Stimulation of both the center and
the surround has no effect (bottom). The response properties of the OFF-cells
are inverse to those of the ON-cells.

Of course, these response properties are the results of dynamic interactions
in the retinal circuitry, but they can be described in a compact way using the
difference of two Gaussian functions (the so-called DoG-model). In Chapter 3
we will consider how the response properties of neurons in V1 are modulated by
the spatial context of visual stimulation, similar to the facilitatory center and
suppressive surround regions of the ON-cells. The DoG-model has also been
used to describe these contextual modulations in V1, but in Chapter 3 we show
that it is a poor model of V1 circuitry in the sense of failing to account for
contextual modulations predicted using the model we develop in Chapter 3. In
particular, it fails to account for the predicted facilitation from the far surround,
which recently has been confirmed experimentally (Ichida et al., 2005). In a
similar way, viewing the retina only as the location, where a linear filtering, as
captured by the DoG-model, is computed may also fall too short in the sense of
abstracting too much from the retinal circuits. However, so far the DoG-model
has been a very accurate description of the ganglion cell’s responses.

The lateral geniculate nucleus

The two LGN (see Fig. 1.2) are nuclei in the thalamus. They are often char-
acterized as relay stages, which forward the signals received from the retinal
ganglion cells via the optic nerve to V1. Fig. 1.3b shows a vertical slice through
the LGN of a macaque monkey. The LGN is composed of six layers, which
receive afferent input from retinal ganglion cells. The layers are innervated in
an alternating fashion by ganglion cells from either the temporal region of the
retina of the ipsilateral eye or the nasal region of the retina of the contralateral
eye (Fig. 1.3c). The two most ventral layers are innervated by the axons of
the magnocellular ganglion cells (for motion processing), whereas the four inner
layers are innervated by axons of parvocellular ganglion cells (for color/form
vision). For example, the right LGN receives parvo- and magnocellular inputs
from the nasal region of the retina of the left eye (the left visual field in the
contralateral eye), and the temporal region of the retina of the right eye (the
left visual field in the ipsilateral eye). Thus, each layer in the LGN contains a
representation of the contralateral visual hemield. The layers in the LGN form
topographic maps, which are stacked on top of each other (Hubel and Wiesel,
1977). The center of the visual field, however, has a much larger representation
in the LGN compared to the periphery, which derives from the fact that the
density of ganglion cells in the retina is higher than at the periphery. The spatial
profile of the receptive fields of a neuron in the LGN also has a circular cen-
ter and surround region, and they can also be classified as ON- and OFF-cells
similar to the retinal ganglion cells.
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Figure 1.3: Steps in the retino-geniculocortical pathway. a) Tllustration of ON-
and OFF-center receptive fields. The bars on top of the spike patterns indicate
the duration of stimulation (white area). b) Vertical slice of a macaque LGN
(adapted from Hubel and Wiesel (1977)) ¢) Projections of the ganglion cells
in two eyes to the layers in the right LGN. d) Orientation preference map of
macaque V1 with the color indicating the preferred orientation (see bars) of
neurons located at this position.

The primary visual cortex

Compared to neurons in the retina and the LGN, which have nearly circular re-
ceptive fields, cortical response characteristics show a qualitatively new feature:
Many cortical neurons respond selectively to contrast lines, bars, or gratings of
a certain orientation within the receptive field. The orientation selective cells
have classically been categorized as either simple cells or complex cells. The lat-
ter are selective for the orientation of a stimulus in their receptive field, but are
invariant to its relative position, whereas simple cells have a preferred phase. In
the macaque primary visual cortex, simple cells are found mainly in the input
layer 4C, whereas complex cells are found further away from layer 4C in the
layers 2, 3, 5 and 6. The prominent hierarchical model of complex cells, which
can explain their phase invariance, assumes a converge of the outputs of multi-
ple simple cells onto a complex cell. Although orientation selectivity has been
described the first time almost four decades ago (Hubel and Wiesel, 1962), the
way it is computed by the neuronal circuits in V1 is still not known completely.
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In the context of our investigation of orientation selectivity in Chapter 2, we
review models of orientation selectivity in much greater detail.

As the LGN, each V1 hemisphere represents the contralateral visual field
with a much larger portion of the cortical surface being allocated to the repre-
sentation of the visual field center. The projections from the LGN to V1 are
in an orderly point-to-point manner. Nearby patches of V1 represent nearby
patches of the visual field. In the macaque monkey, the area covered by the
primary visual cortex is about 1300 mm? (Hubel and Wiesel, 1977). In contrast
to the massive reduction of 120 million photoreceptors to only 1 million gan-
glion cells in the retina, the projection from the LGN to V1 is far from being
a bottleneck, because the input from 2 million LGN fibers is processes by 260
million cells in V1. This massive increase in the number of neurons processing
the visual information can partly be understood by noting that certain features
of the visual world are explicitly represented in V1 for each location in the visual
field. For example, for each location in the visual field the full range of orien-
tations is represented. Similar to the retinotopy of the cortical representations,
where nearby patches represent nearby locations in the visual field, neurons in
nearby patches have similar preferred orientations. Fig. 1.3d shows the layout
of the orientation preference map of macaque V1 as obtained by optical imaging
(Obermayer and Blasdel, 1993).

Neurons in V1, which are close to each other, communicate via short-range
lateral connections. In addition, however, excitatory pyramidal neurons in the
superficial layers 2/3 of area V1 send long-range lateral connections tangentially
to the cortical surface within the layer to other excitatory and inhibitory neurons
at distant locations. These connections are reciprocal and seem to contact
predominantly neurons with a similar preferred orientation. The same kind of
orientation-preference of synaptic connections seems to hold also for inter-areal
feedback connections between area V1 and extra-striate areas. Both the intra-
and inter-areal connections are only modulatory in the sense of only modulating,
but not driving the postsynaptic neuron. A much more detailed recent review
of the anatomy of V1 is given by Lund et al. (2003).
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1.3 Addressed questions and outline

Schwabe and Obermayer (2003) reviewed several computational approaches,
which could be used to explain adaptivity in the visual cortex. We concluded,
however, that models of the kind used in these computational approaches are
often too simple and far from incorporating relevant biological constraints. On
the other hand, more realistic models are hard to handle mathematically. As a
consequence, their (computational) properties need to be explored by means of
numerical simulations.

In this thesis we mainly use numerical simulations to study visual cortical
functions. We consider the following questions:

1. By means of which mechanisms do neuronal circuits compute experimen-
tally characterized feature selectivity such as, for example, orientation tun-
ing in the primary visual cortex?

2. Which mechanisms account for the modulation of feature selectivity such
as the so-called contextual effects found in primary visual cortex and/or
the changes of neuronal response properties due to attentional top-down
modulation?

3. Can we explain at least some adaptivity phenomena, in the visual cortex by
referring to specific computational principles while still using biologically
realistic models?

4. Which computational principle is appropriate to explain task-dependent
adaptivity in the visual cortex?

The whole thesis is structured along these four questions, where a single chapter
is devoted to each of them:

The first question is considered in Chapter 2, which is based on (Marino
et al., 2005), where we consider the mechanisms of orientation tuning in area
V1. Orientation tuning is the prime example of feature selectivity in the vi-
sual cortex. It has first been described almost four decades ago by Hubel and
Wiesel (1962), but the underlying neuronal machinery is still not completely
understood. If one assumes that cortical circuits are largely generic in terms
of the computations they perform, general properties of the circuits in area V1
may also transfer to other areas and/or modalities. Pursuing a combination
of experimental and modeling work in Chapter 2, we constrain the operating
regime of area V1 to a recurrency regime with a co-variation of excitation and
inhibition. It is conceivable that other sensory areas may work according to
the same principle. This model does not directly focus on “adult adaptivity”,
but it is an important step for investigating adaptivity in the early visual cor-
tex, because experiments suggest that orientation adaptation is stronger in V1
pinwheel regions compared to orientation domains (Dragoi et al., 2001). Our
two-dimensional model explicitly considers these different regions, and hence
could serve as an experimentally tested model for subsequent investigations.

In Chapter 3, which is based on (Schwabe et al., 2005), we re-investigate the
neuronal circuits underlying the so-called contextual effects in area V1. These
contextual effects are examples for an adaptivity of neuronal representations to
the spatial context. Previous models assumed that these effects are realized by
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computations performed solely within area V1. Recent experiments, however,
have shown that other areas than V1 may be crucial for these effects. Again,
pursuing a combination of experimental and modeling work, we set up a network
model constrained by anatomical and physiological data. Beside accounting for
a vast amount of physiological data, the model makes specific predictions for new
experiments, which have recently been confirmed experimentally (Ichida et al.,
2005). Since the model explains contextual effects via an inter-areal network, it
can also serve as the basis for future studies concerning the computational role
of inter-areal projections, which may mediate attentional top-down control of
sensory processing.

In Chapter 4, which is based on (Schwabe and Obermayer, 2005a), we con-
sider two specific phenomena of adaptivity in the adult visual system: the
changes of tuning functions due to visual attention and perceptual learning.
We seek to explain them both using the computational principle of optimally
encoding sensory stimuli by a population code. Using this principle, we de-
termine the optimal way of changing specific mechanisms in order to improve
the quality of the representation of a set of stimuli. We find that the deduced
tuning function changes depend on the mechanism, which highlights the im-
portance of considering biological constraints when interpreting physiological
data in the light of a functional principle. Moreover, the developed approach of
deducing tuning function changes is of use to infer the mechanisms underlying
other adaptation phenomena, which may be hard (or even technically not possi-
ble) to address directly. The results of this chapter are largely new explanations
of already available physiological data from attention and perceptual learning
experiments. However, yet to be tested predictions are also made for a new
experiment in the context of visual attention to specific stimulus values.

In Chapter 5, which is based on (Schwabe and Obermayer, 2005b), we fo-
cus on the computational principle underlying task-dependent top-down mod-
ulations in the visual system. Here we ask the question of which principle
is best suited to explain these modulations. We set up a simple model of a
visual area and learn task-dependent top-down modulations in a reinforcement-
learning paradigm. We propose that task-dependent top-down modulations are
best understood in terms of a “tuning of a sensory pre-processor” such that
the computed sensory representations remain useful for the very same read-out
neurons, despite changing task-demands. We compare our view with other can-
didate principles and sketch an experiment, which could distinguish between
our interpretation and the other candidate principles.

Each chapter begins with an abstract and a short introduction. Summaries
are given at the end of each chapter. Details of the developed models and
methods can be found in the Appendix.
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Chapter 2

Orientation tuning in V1

Abstract. In this chapter we combine two complementary models, a single cell
model and a recurrent network model, with recent intra-cellular measurements
of orientation-selective neurons in cat primary visual cortex (V1) in order to
determine the role the local recurrency plays in orientation tuning. It has been
found experimentally that the super-threshold spike response is sharply tuned
at all locations in the orientation map, but the sub-threshold membrane po-
tential and conductance tuning depend on the map location. We demonstrate
that the visually evoked excitatory synaptic conductances need to be balanced
by inhibition at all map locations in order to keep the spike tuning invariant.
Moreover, we show that only in such a recurrent regime the assumption of an
anatomically observed isotropic local connectivity to both excitatory and in-
hibitory cells leads to model predictions consistent with the measured sub- and
super-threshold responses. Our results suggest that at least one functional role
of the local recurrency is to keep cortical computations, which are initially de-
termined by the pattern of the afferent connections, invariant across an area.
This can be realized via the mechanism of co-varying excitation and inhibition,
which for orientation tuning in V1 can be induced by a spatially isotropic local
connectivity.

2.1 Introduction

Neurons in the sensory cortices of the brain compute representations of the
environment relevant for perception and action. Although these computations
are often modulated by the spatial, temporal, and behavioral context, they are
dominated by the integration of signals received via the afferent and the local
recurrent connections. Since its discovery by Hubel and Wiesel (Hubel and
Wiesel, 1962), orientation tuning in V1 has served as a paradigmatic example
of a cortical computation, because the thalamic cells providing the afferent input
to the primary visual cortex lack orientation selectivity whereas cortical cells are
orientation-selective. In the last four decades, however, there has been a vivid
and highly polarized discussion about the underlying cortical mechanisms. The
main question is whether the recurrent connections sharpen a weakly tuned
afferent input, or the afferent input is already sharply tuned, which implies that
the recurrent circuitry has a different function.

13
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Figure 2.1: Models of orientation tuning. a) The feedforward models explain
orientation tuning as resulting from the elongated spatial pattern of aligned
ON- and OFF-inputs from the thalamus. b) The inhibition models assume only
a weakly tuned afferent input and state that lateral inhibition suppresses non-
preferred responses. ¢,d) The recurrent models models assume that an already
orientation-tuned afferent input is amplified via intra-cortical excitation and
inhibition. The operating regime of recurrent models with very strong recurrent
synapses, compared to the afferent drive, is termed the “marginal phase”, d),
where the afferent input selects predefined activation profiles determined by the
pattern of the recurrent connections. The bozes illustrate how the afferent input
(bottom box) is transformed into an output firing rate (top box; the dashed line
corresponds to the firing threshold).

Fig. 2.1 illustrates four types of models, which have been proposed to explain
orientation tuning. The feedforward model (Fig. 2.1a), originally proposed by
Hubel and Wiesel, states that orientation selectivity arises due to the elongated
spatial pattern of appropriately aligned ON- and OFF-inputs from the thalamus.
The strongest evidence for this assumption comes from experiments by Alonso
et al. (1995), where monosynaptic thalamocortical connections in the cat have
been characterized in terms of the receptive field properties of the pre- and
postsynaptic neurons. The feedforward model, however, does not account for
the invariance of the tuning with stimulus contrast (Sclar and Freeman, 1982),
because it incorrectly predicts broadening of orientation tuning with increasing
stimulus contrast. Moreover, it can be questioned as to whether the bias set
up by the elongated projection pattern is sufficient to account for the sharp
orientation selectivity of the spike response, because the aspect ratio of the
afferent projection field might be too low (Chapman et al., 1991; Pei et al.,
1994; Reid and Alonso, 1995). It also fails to predict the loss of orientation
tuning after the localized reduction of inhibition with the GABA 5 antagonist
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bicuculline (Nelson et al., 1994), because intra-cortical connections do not play
a role in this purely “afferent model”.

On the other hand, inhibition models (Fig. 2.1b) state that a strong, but
weakly tuned afferent input is sharpened by intra-cortical inhibition suppress-
ing non-preferred responses. Models of this type (Woergoetter and Koch, 1991;
Sabatini, 1996; McLaughlin et al., 2000) predict contrast-invariant orientation
tuning and are consistent with the observed loss of orientation selectivity af-
ter the bicuculline-induced reduction of inhibition. However, the strongest in-
hibitory postsynaptic potentials are observed during stimulation with the pre-
ferred orientation, and they are much weaker during stimulation with cross-
oriented stimuli. Inhibitory models are also inconsistent with the observation
that intracellular blockade of inhibition had almost no effect on the sharpness
of the orientation-tuned spike response, which itself seems to be at odd with the
finding that bicuculline-induced loss of inhibition reduces orientation selectivity.

The recurrent models (Fig. 2.1c) resolve this apparent paradox. For ex-
ample, Somers at al. (1995) explain sharp orientation-tuned spike responses
as the result of amplifying and sharpening a weakly orientation-tuned afferent
thalamocortical input via strong iso-orientation intra-cortical excitation paired
with strong iso-oriented intra-cortical inhibition. If the recurrent connections
are very strong, then the activation profile is mainly determined by the pattern
of the recurrent connections. In this so-called “marginal phase” (Ben-Yishai
et al., 1995) the afferent input selects predefined attractor states of the network
such that even a very weakly tuned afferent input can lead to a sharply tuned
spike response (Fig. 2.1d).

Out of the four types of models, the recurrent models are most compati-
ble with the currently available anatomical and physiological data. Their con-
crete instantiations, however, can be differentiated in terms of the assumed i)
orientation-specificity of the afferent input, ii) orientation-specificity of the re-
current connections, and iii) strengths of the recurrent connections compared to
the afferent inputs. Determining these characteristics experimentally is techni-
cally highly demanding, and so far no consensus has been reached. For example,
we have previously argued (Adorjan et al., 2000; Adorjan et al., 2002; Schwabe,
2002) that albeit recurrent interactions can sharpen a weakly orientation-tuned
input, very strong recurrent interactions might not be desirable from a func-
tional perspective, because in such a highly ’competitive’ operating regime only
the most salient feature of a complex stimulus would be represented. Instead,
we proposed that recurrent interactions are strong in the initial phase of a stim-
ulus presentation, during which the most salient stimulus feature dominates the
response, but become weaker in a second phase, such that the details can be
represented as well.

Here we argue that recent intra-cellular measurements of the stimulus-driven
response in cat V1 (Marino et al., 2005) can be used to further constrain its
operating regime. It was found experimentally, that the super-threshold spike
response is invariant across the cortical surface in terms of the sharpness of its
tuning, but the sub-threshold membrane potential (Schummers et al., 2002) and
conductance tuning (Marino et al., 2005) depend on the location in the orien-
tation map. The recurrent circuitry, however, can vary widely within an area
based on its functional architecture. In V1, the local neighborhood of neurons
depends on the location in the orientation map. An experimentally measured
signature of this dependence is that neurons close to pinwheel centers have more
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broadly tuned sub-threshold responses compared to neurons in orientation do-
mains.

Orientation tuning in V1 has recently been modeled mainly using simplified
one-dimensional hypercolumn models. Here, however, we use two complemen-
tary models: a single cell model and a two-dimensional network model. First,
using the single cell model, we determine the conductance tuning, which is nec-
essary to produce the observed invariant spike tuning. It will turn out that a
co-variation of excitation and inhibition with map location is necessary to pro-
duce location-independent spike tuning. Second, using the network model, we
show that unspecific isotropic recurrent connections, as observed experimentally,
are indeed sufficient to produce such a co-variation.

In addition, however, we also explicitly use the experimentally obtained data
in order to further constrain our models. We use the orientation selectivity index
(OSI, see Appendix B for a definition) of a set of super- and sub-threshold
responses as a quantification of the responses’ tuning. Then, the predictions
of both the network and the single cell model for these OSIs can be compared
with the experimentally measured values. In particular, models with very weak
recurrency will not predict any dependence of the conductance responses on the
map location, whereas models assuming a very strong recurrency will predict a
strong dependence. For the single cell model, we determine those strengths of
afferent drive, which are consistent with the data. For the network model we do
the same for the strength of the local recurrent connections. Thus, assuming a
location-independent afferent input and an isotropic local recurrency we let the
experimentally measured location-dependencies constrain the possible strengths
of the recurrency.

We now summarize the relevant experimental methods and findings.

2.2 Experimental methods and findings!

Methods

Fig. 2.2a show the experimental setup. Experiments were performed on 23 adult
cats, which were anesthetized and paralyzed. First, optical imaging was used to
obtain an orientation preference map of V1. Then, whole-cell recordings during
visual stimulation were made and currents were injected in order to measure
the evoked excitatory and inhibitory conductances during visual stimulation.
Optical imaging: Intrinsic signals were recorded in response to full field
drifting square wave gratings of eight orientations (Fig. 2.2b) using a CCD
camera. Single condition maps were computed by normalizing the response to
each orientation (average of 24-48 trials) by the mean response to all orientations
(“cocktail blank”). The orientation preference (angle) maps were computed as
the pixelwise vector average of the single condition maps. High accuracy and
reproducibility of the map was ensured as follows: First, reference images of the
surface vasculature were obtained after every five trials, and in the event of any
shift in the position of the blood vessels, the recording was aborted. Second,
angle maps were computed from independent blocks of five to seven trials and

I This section is based on Marino et al. (2005) and contains only a brief summary of the
methods and findings as the minimal background for this chapter. For details we refer to
Marino et al. (2005).
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Figure 2.2: Experimental methods. a) Illustration of the experimental setup
with intrinsic signal optical imaging and in vivo whole-cell recordings during vi-
sual stimulation. b) Visual stimuli were full field drifting square wave gratings
of eight orientations. ¢) By injecting a retrograde tracer (from the axonal termi-
nal back to the soma) the neurons projecting to the injection site were labeled.
Those labeled neurons, which also stained positive for a GABA antibody, were
identified as inhibitory neurons.

compared. Third, angle maps were computed from the two independent sets of
four orientations contained within the stimulus set.

Furthermore, the specific sites to be targeted for patch recordings or tracer
injection were chosen to be the most stable sites, assessed as above. In most
cases, we were able to find pinwheel centers that shifted by no more than 1-2
pixels (13-26 um) between maps taken from early and late trials, or from the
two sets of independent stimulus orientations. An analysis of the reliability of
pinwheel center localization, and the effect of variability in electrode localization
on the relationship between the tuning of conductance and the local orientation
distribution, is described in the Supplementary Notes of (Marino et al., 2005).

Electrophysiology: The specific sites to be targeted for the patch record-
ings were chosen to be the most stable sites. The glass microelectrodes (resis-
tance 6-12 MQ)) were carefully lowered into the cortex and directed to either
orientation domains or pinwheel centers, using an image of the surface vascu-
lature aligned to the orientation map as reference. The visual stimuli were
randomly generated drifting sine-wave gratings of eight orientations, moving in
opposite directions, plus a blank stimulus, each of which was presented 5 times
for 1 s. This protocol was repeated while injecting 3-4 different steady currents
(Iin;), ranging from —0.2 to 0.1 nA. The entire protocol was completed in 40
cells, from which 18 were chosen for further analysis based on their stable bio-
physical properties, which were monitored throughout each recording by means
of the I-V curves. The average series resistance was 70.5 £ 39.7 M) (mean +
s.d.), input resistance 27.8 £ 20.1 M2, time constant 17.4 + 8 ms, and resting
potential 50.4 + 15.1 mV. Total conductance g (t) at time t was estimated by
regression as the inverse of the slope of a line fitted to the relation between
the injected current I;,; and the membrane potential Vm. To calculate the
inhibitory g¢; () and excitatory g. () conductances we assumed

gt) = ge(t)+g:i(t)

IACYRYAGY
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where Vs (t) is the membrane potential in absence of current injection, and
E. and E; are the equilibrium potentials for g. (¢) and g; (¢) respectively. Then,
gi (t) and g, (t) can be derived as follows:

g (t) [Vrest (t) — Ee]

9 () = E, - B,
g (t) [Vrest (t) — El]
9 (1) B - E;

We used E. = 0mV and E; = —80mV.

Anatomy: In V1 of 9 cats, glass pipettes (tip diameter 10-20 pum) were
used to place three distinct injections of a retrograde (from the axonal terminal
back to the soma) tracer in pinwheels and domains at a depth of approximately
600 pum. Following 36-48 hrs, the cats were killed with an overdose of sodium
pentobarbital. V1 was removed and sectioned (40 pm) tangential to the surface.
The tissue was processed to reveal GABA positive neurons. Images of the
pattern of labeled neurons near the depth of the injection and laterally were
acquired. Inhibitory neurons were identified by positive staining for the GABA
antibody and from retrograde tracer injection. The pattern of labeled cells
was aligned to the orientation map using landmarks from three injection sites,
visible penetrations from the patch pipettes, and blood vessel patterns along the
cortical surface and through a depth of 600 ym. To ensure the most detailed
anatomical analysis of local connectivity from our sample of 27 injections, we
limited analysis to 3 pinwheel and 4 domain injections, selected because their
spread of tracer uptake was confined to a diameter less than 100 um. For
these injections, the numbers of excitatory and inhibitory neurons were counted
every 50 um from the boundary of the injection site to a radius of 450 pm.
This analysis indicated a sharp drop in the number of local excitatory inputs at
about 250 pym from the injection, representing the limit of dense, short-range
connectivity.

Findings

Fig. 2.3a-c show the average tuning curves for the membrane potential and
the excitatory and inhibitory conductances for pinwheel and orientation do-
main neurons. For each of the three quantities, the tuning, as quantified using
the OSI (see Appendix B), was less pronounced in pinwheel neurons compared
to orientation domain neurons. The mean absolute change in inhibitory con-
ductance was always larger for inhibition than for excitation, independent of
orientation or map location. The map location was quantified as the OSI of the
histogram of preferred orientations in a circular area with radius 250 pm. For
all cells, the OSI values for g; and g. co-varied, indicating that regardless of
location, inhibition always seemed to balance excitation. A three-way ANOVA
was performed to compare OSIs for the total conductance g, g; and g. between
map locations, recording depth and cell type (simple/complex), but only signif-
icant effect of orientation map location was found. Therefore, in the population
analysis, it was not differentiated between cell type or cortical depth.

Fig. 2.3d-f show this population analysis. Fig. 2.3d shows that the tuning of
the spike responses (thin line) is independent of the map location, whereas the
tuning of the membrane potential (thick line) depends of the map location. The
tuning of ¢g; and g. is also broader (low values of the OSI) close to pinwheels
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Figure 2.3: Experimental findings. a-c) Normalized tuning curves of the mem-
brane potential, a), and the excitatory and inhibitory conductances, b) and ¢),
for orientation domains (thick line) and pinwheels (thin line). d-f) Tuning of
the membrane potential (thick line) and spike responses (thin line), d), as quan-
tified by the OSI (see Appendix B) as a function of the map location as well as
the tuning for the inhibitory and excitatory, e) and f), conductances. g-i) Ex-
amples for identified excitatory (black dots) and inhibitory (white dots) neurons
projecting to the injection site in an orientation domain, g), and a pinwheel, h),
as well as the the number of cells projecting to the injection site as a function
of the distance.
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(low values of the local input OSI) compared to orientation domains (high val-
ues of the local input OSI) as shown in Fig. 2.3e,f. The loss of tuning of the
membrane potential, g; and g, close to pinwheels could potentially be explained
by an isotropic pattern of local connections, in which neurons located at or near
pinwheel centers would receive inputs from neurons with different orientation
preferences. Orientation domain cells would be primarily driven by cells shar-
ing the same orientation leading to a sharper tuning. The smooth transition
of the tuning from broad at pinwheel centers to sharp in orientation domains
suggests the existence of a single mechanism that is able to balance the dif-
ferent patterns of excitation and inhibition at different map locations, keeping
the spike response equally selective at any site. A spatially isotropic pattern of
local excitatory and inhibitory connections could provide a substrate for such a
mechanisms.

To explore this possibility, the anatomical distribution of local excitatory
and inhibitory inputs to neurons at different locations in the orientation map
was determined. Extremely small injections (uptake zone less than 100 ym in
diameter) of retrograde tracers were used to study the structure of local inputs
to different sites in the orientation map, combined with labeling for GABAergic
cells (see Methods above). This technique provides a fine-grained comparison
of the projection patterns to orientation domains and pinwheel centers. Despite
drastic differences in local orientation distributions at pinwheels and domains,
no differences in the spatial distribution of either local inhibitory or excitatory
cells labeled at these sites were found.

An example of the pattern of retrogradely labeled cells from a domain and
a pinwheel injection is depicted in Fig. 2.3g,h. Independent of the location,
the pattern of labeled cells around the injection site was always roughly cir-
cular, ignoring the distribution of orientation preferences. This distribution
of cells, as shown for the two individual cases (Fig. 2.3g,h), and the popula-
tion (Fig. 2.3i), indicated a local isotropic radius of influence of about 250 pm.
Thus, the anatomical data provide a potential substrate for the electrophysiolog-
ical measurements, suggesting that broader excitatory and inhibitory synaptic
conductances at pinwheel centers arise naturally from spatially isotropic local
projections. This finding of an apparently isotropic local connectivity will now
serve as an assumption in the models used to explain the physiological data.

2.3 Single cell model of invariant tuning

We used the one compartment, Hodgkin-Huxley type neuron model with Na-,
K- and M-currents and balanced background noise inputs given in the Ap-
pendix A. Our approach was as follows: First, the probabilities of intracortical
synaptic connections with presynaptic excitatory neurons were estimated based
on optically imaged orientation maps. Second, the total excitatory input con-
ductance, given as a function of stimulus orientation, was computed for local
neighborhoods of varying OSI under the assumption that the spike tuning of
all excitatory neurons is the same and independent of location in the orien-
tation map. Third, the tuning curve of the total inhibitory conductance that
was necessary to obtain the observed sharp tuning curve of the firing rates was
calculated.
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Connection probabilities in orientation space

Using optically imaged orientation maps of cat V1 (see also the electronic ma-
terial to this thesis), we first estimated the probability P (A6; ) of a neuron at
location = with preferred orientation § making a synaptic connection to a neuron
with preferred orientation 6’ with Af being the distance between 6 and ¢’ on
the half-circle. We assumed that the connection probability is rotationally sym-
metric in cortical space and depends on the distance via an alpha-function (see
text Fig. 4d). Depending on the preferred orientation of the neuron at x and
the orientation distribution of the local network neighborhood, this induces the
orientation distribution P (Af; ). We then computed the local input OSI as
the OSI of the orientation histogram compiled from all pixels with distances not
larger than 250 um and averaged P (Af; ) over all locations x with the same
local input OSI (bin size 0.1) to obtain the connection probability P (A8; OSI).

Deducing the inhibition

The presynaptic activity (independent Poisson spike trains) was separated into
background, feedforward, and recurrent components, which describe the ongoing
activity not dependent on the stimulus (balanced noise), the afferent stimulus-
driven input, and the inputs due to the activation of the local network neigh-
borhood. The strength of the afferent drive relative to the strength of the local
recurrency was parameterized with a parameter 0 < p < 1. The model predic-
tions were used to let the experimental data constrain the possible values of this
parameter.

Since we used non-saturating “exponential synapses” (see Appendix A) the
conductances induced scale linearly with the presynaptic firing rate. We ad-
justed the maximal conductances of the individual synapses such that mean
excitatory and inhibitory synaptic conductances of size g; and 2g;, are induced
by presynaptic Poisson spike trains of 7000sp/s and 3000sp/s. Here, g is
the leak conductance of the cell (see Appendix A). Then, we calculated the
membrane potential of the model cell by means of numerical integration of the
membrane potential equation using the simulation software NEURON (fixed
step size of At = 0.25ms). For every combination of input firing rates we calcu-
lated membrane potential traces of 10 s simulated time. The spike response was
then characterized by the time-averaged firing rate; the sub-threshold response
was characterized by the mean membrane potential with the action potentials
being removed, i.e., removing the membrane potential from 2 ms before to 3 ms
after each crossing of the threshold (—54mV).

The tuning curve of the mean excitatory conductance for a given position
in the map (as characterized by its local input OSI) was then calculated using
the equations

(g% 0; 0Py = WDh,. - [fle+Dfass (0; 6°) + (1 = D) frec (65 677)]
+90

Free (05 67) = P(AG=¢ — 67 OSI) - f£_(6; 67" = 0') de’
—-90

Here, 67" = 0° is the preferred orientation of the model neuron, 6 is the stimu-
lus orientation, P (Af = 6’ — 6P"; OSI) is the estimated connection probability,
and determines the excitatory conductance in the absence of visual stimulation.

WsEyn is a “weight”, which relates the presynaptic firing rates to a postsynaptic
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conductance (see Appendix B.2). We chose fbb; = 6000sp/s. The feedforward

input was described by
6 — orr)?
0.1+0.9 exp *% 5
20‘Aff

with o47f = 25°. For the recurrent excitatory input induced by a stimulus of
orientation 6, we assumed

2
rec(e 9}77")735 fbg eXp( w):

fagg (6;67") =35l

20”%6(;
with ... = 15°. The parameter p was set to 0.35, i. e. 65% of the stimulus
induced excitation were due to local recurrence. For a pinwheel neuron this
leads to an excitation induced by the stimulus of approximately 1.5¢g;, for the
preferred orientation. For orientation domain neurons this leads to an excitation
of approximately 2.5¢;,, also for the preferred orientation.

Given the mean excitatory conductance and our characterization of the
model neuron’s response, we determined for each stimulus orientation 6 the
smallest synaptic inhibitory conductance (g’ (6; P = 0)) necessary to obtain
an orientation tuned spike response given by

f(0; 0°") =20sp/s - exp (M) .

20’%6(;

In other words, we enforce self-consistency by requiring that the shape of the
tuning curve for the spike output matches the firing rate tuning curve fZ_
assumed for computing the excitatory conductance. For the fit we used the
mean-squared error between the desired output firing rate and the firing rate
given by our characterization of the model neuron. Note that the much higher
absolute value of the fZ_ is due to integration over multiple presynaptic neurons
in the local neighborhood, which may also fire with individual peak responses
of around 20sp/s.

We then calculated the total inhibitory conductance by taking the sum of
the synaptic inhibitory conductance and the time-averaged conductance gy =
gun for the adaptation current for the corresponding output firing rate. We
did this, because the latter also hyperpolarizes the neuron and - due to its
reversal potential of Fx = —90mV - is likely to contribute to the experimentally
measured inhibitory conductances. The resulting total mean excitatory and
inhibitory conductances were normalized as follows:

gEff (9) + 91E26c (9)

ge () =

max (957 (0) + 9F.. (0) gk (0) + gh. (0)
gi () = 91 (0) + Ghee (0)

max (9% (0) + 9. 0, 9l (0) + g, (9))

Here, the g4 (0), 95e. (0), 9k, (0), and gj, (0) are the time-averaged conduc-
tances for the afferent and recurrent excitation, the recurrent inhibition and the
non-inactivating K-current during stimulation with orientation 6.
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Gi 0.44 (0.19)
Ge 0.50 (0.2)
Vm 0.27 (0.22)
Sp —0.026 (0.24)
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Figure 2.4: Predicted slopes for the dependence of the tuning of g., g;, the
membrane potential and the spike responses on the map location for different
values of the free model parameter p. Shown are also the slopes and 95%
confidence intervals for the linear fit of the experimental data, as well as the
values of p (see bars), which lead to predicted slopes inside these confidence
interval (numbers in brackets).

Model predictions and comparison with experimental data

By convolving the experimentally obtained spatial excitatory input profiles with
experimentally obtained orientation maps, we calculated the tuning of the ex-
citatory conductance g. at locations ranging from pinwheels to domains. Then,
given these g. curves, we determined the g; tuning curves which yield sharp
spike tuning for each location. The obtained tuning curves for both g., g; and
the membrane potential were always broader for locations close to a pinwheel
(for low values of the local input OSI) compared to orientation domains (high
values of the local input OSI). In the model, this dependence of these tunings
on the location was always linear, but the slope of this linear dependence was
strongly affected by the value of the parameter p, which determined the strength
of the afferent excitatory drive relative to the local recurrency. Therefore, we
computed the slope for these dependences for different values of p and compared
the predicted slopes with the slope of the linear regression of the experimental
data.

Fig. 2.4 shows the predicted slopes for g., g;, the membrane potential and
the spike responses for different values of p. For all quantities, the slope de-
creases with increasing values of p. This reflects the fact that the local network
neighborhood does not affect the tuning if the neuron is driven predominantly
via the afferent synapses. Fig. 2.4 also shows that a range of values for p (from
p = 0.25 for the lowest value compatible with the g; tuning to p = 0.5 for the
highest value compatible with the tuning of the excitatory conductance) is con-
sistent with the experimental data in the sense of predicting slopes inside the
95% confidence interval for the slope of the linear regression of the experimental
data. In principle, every value 0.25 < p < 0.5 would result in models, which
are a proper description of the data in terms of the location-dependence of the
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Figure 2.5: Model predictions for synaptic conductances, membrane potentials,
and spike responses underlying orientation selectivity across the orientation
map. a,b) Inhibitory and excitatory conductance tuning for a pinwheel cell
and an orientation domain cell derived from the single cell model. The afferent
input in orientation space is described by a Gaussian function, o = 25°, added
to an offset of 10% of the maximum value. ¢) V'm tuning at a pinwheel center
and in an orientation domain with the input conductances from a,b). d) Spike
response tuning at a pinwheel center (0SI<0.3) and in an orientation domain
(OSI>0.7); the two are nearly identical but have different V'm tuning as shown
in b), created by different g; and g. tuning as shown in a,b).

tuning. For the following simulations we used the value p = 0.35.

Fig. 2.5a,b shows the deduced tuning curves of g. and g; for neurons near
pinwheel centers and in orientation domains. The shapes of these tuning curves
are similar to the experimentally measured g. and g; tuning curves (Fig. 2.3b,c).
As with the experimental data (Fig. 2.3a), the difference between pinwheel lo-
cations and orientation domains is reflected in the subthreshold membrane po-
tential (Fig. 2.5¢), but due to the appropriate inhibitory balance at orthogonal
orientations, which keeps the membrane potential below threshold, not in the
spike responses (Fig. 2.5d). These model results indicate that given the con-
straints imposed by the anatomical location within an orientation map, the
inhibitory tuning that was measured resembles the tuning that is necessary, as
predicted by the model, to balance excitation and yield sharp spike tuning at
all locations. Fig. 2.6 shows the the predicted dependence for all map locations
for the value p = 0.35.

The mechanism of co-varying the inhibition with the excitation is a general
mechanism to account for the location-independent spike tuning independent
of the absolute strength of the overall excitation. Fig. 2.7a shows two tuning
curves for g. and g; for a pinwheel location corresponding to a low and a high
value of the absolute strength of excitation. For very strong excitation (approx.
2g1, at the preferred orientation for a pinwheel location, OSI<0.3, solid line)
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Figure 2.6: Results from the single cell model, demonstrating that inhibition
balances excitation and produces sharp tuning across the orientation map. a,b)
Predicted tuning of g; and g. as a function of the local input OSI. ¢,d) Tuning
of the spike and Vm response as a function of the local input OSI. The Vm
OSI increases as the local input OSI becomes larger, i. e. as cell locations move
from a pinwheel center to an orientation domain. The OSI of the spike response,
however, remains constant. e,f) Average OSIs for g, gi, g, Vm, and the spike
response for pinwheels (0SI<0.3) and orientation domains (OSI>0.7).

the inhibition needs to be increased (approx. 4g; at the preferred orientation)
in order to balance the excitation. However, the shape of the tuning functions
remains the same. Fig. 2.7b shows the ratio of the conductance tunings for
a pinwheel and an orientation domain location for different absolute strength
of the excitation. The almost constant ratio indicates that above a certain
strength of the recurrent excitation, a corresponding balancing by inhibition
can ensure a location-independent spike tuning. However, in the orientation
domain (thick line) the ratio of the g; to the g. tuning is approx. 1, whereas it
is smaller in pinwheel locations (thin line). This means that close to pinwheels
the inhibition is predicted to be slightly less tuned compared to the excitation
in order to suppress non-preferred responses at orthogonal orientations. Such a
difference in the deduced tuning, however, is still compatible with an isotropic
local connectivity to inhibitory neurons being identical with the connectivity to
excitatory neurons, as long as the inhibitory neurons have a broader orientation
tuning.

We now address the issue of how the inhibitory tuning is generated within
a recurrent network.

2.4 Network model of invariant tuning

In the last section we combined the pattern of the anatomical connections with
the resulting strength of the excitatory synaptic drive in order to deduce the in-
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Figure 2.7: Co-varying inhibition and excitation for location-independent spike
tuning for different absolute strengths of the excitation. a) Tuning of the exci-
tatory conductance (g, blue curves) and the matched inhibition (g;, red curves)
for increasing levels of excitation (dashed and continuous lines) for a pinwheel
neuron (0OSI<0.3). The tuning curve for inhibition must be scaled in order to
balance an increase in total excitation, but its shape remains similar. b) Ratio
of the OSIs of g; and g, for an orientation domain (OSI>0.7, thick line) and a
pinwheel location (OSI<0.3, thin line) as a function of the strength of excitation
(peak conductance at the preferred orientation for an orientation domain neu-
ron). Spike tuning remains constant for a broad range of excitatory strengths
if it is properly balanced by inhibition. This is shown by the almost constant
ratio of OSIs for the conductances.

hibition, which is necessary to yield the experimentally observed invariant spike
tuning. Both the excitatory and the inhibitory conductance tuning curves were
similar to the experimentally measures tuning curves. However, it is not clear
a priori as to whether these tuning curves, i. e. the location-dependent con-
ductance tuning and the location-independent spike tuning, would also emerge
as the result of the recurrent interactions in a network model. Interestingly,
McLaughlin et al. (2000) use a network model of a patch of V1 including pin-
wheels and orientation domains, but they report a dependence of the sharpness
of the spike tuning on the map location. In particular, they predict that spike
tuning is sharper closer to pinwheel locations. We also investigate this discrep-
ancy between the experimental measurements of Marino et al. (2005) and the
model predictions by McLaughlin et al. (2000). We set up a recurrent network
model of a small patch of V1, simulate its responses to oriented visual stimuli,
and characterize the resulting conductance and spike tuning curves as a function
of model parameters determining the strength of the recurrent interactions.

Fig. 2.8 shows the architecture of the model (see Appendix B for a detailed
description of the model). In short, the model represents a small patch of
V1 with the preferred orientations of the neurons being arranged in an artifi-
cial orientation map, which contains pinwheels as well as orientation domains
(Fig. 2.8a). In agreement with the anatomical findings (Fig. 2.3g-1), the spatial
scale of the local recurrency was the same for excitatory and inhibitory connec-
tions (Fig. 2.8b). As in the experiments and the single cell model, for each pixel
in the map, the preferred orientations of all pixels in circular region around
this pixel were used to compile a histogram of preferred orientations. The OSI
of this histogram was then used as a graded quantification of map location.
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Small values correspond to locations close to a pinwheel, whereas large values
correspond to orientation domains (Fig. 2.8¢,d).
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Figure 2.8: Architecture of the map model. a) Small patch of primary visual
cortex with color-coded preferred orientations for each pair of excitatory and
inhibitory neurons. The black circle (radius 0.4) denotes the region based on
which the local input OSI was computed. The white circle indicates the spatial
scale of the local recurrent connections (g = o7 = 0.1, see Appendix B for
details). Those values were determined, in order to match the statistics of real
orientation maps (O. Beck, personal communication). b) Spatial scale of all
local synaptic connections. Shown is the spatial profile of the connections made
by a neuron close to the pinwheel at (—0.5, —0.5). ¢, d) Local input OSIs for
the map shown in a) for all map locations, ¢), and for the neurons in the row,
d), indicated by the arrow.

We then simulated the responses of the neurons in the network to oriented
stimuli (see Appendix B) for different values of the maximal synaptic conduc-
tances Ggp and Ggy, which determine the strength of the recurrent excitation
and inhibition, respectively. For every simulation, the tuning of the spike re-
sponses and the excitatory and inhibitory postsynaptic conductances for each
map location was recorded. The OSIs of these tuning functions can be plotted
against the local input OSI to reveal the dependence of the tuning on the map
location (see also Figs. 2.3 and 2.6). The slope of the linear regression of this
dependence is a single number, which here we used as one characterization of a
network parameterization.

Fig. 2.9a shows these slopes for the tuning of the excitatory conductances.
Model networks with strong recurrent excitation (large values of Ggg) pre-
dict steeper slopes than networks with less recurrent excitation. If, however,
the recurrent excitation is too strong, then the network becomes unstable, but
stronger recurrent inhibition (larger values of Ggy) can prevent this loss of
stability. The model also makes predictions for the slopes of the inhibitory con-
ductances (Fig. 2.9b) as well as for the spike tuning (Fig. 2.9¢c). Those can be
compared with the experimental findings in order to constrain the operating
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regime of V1. Similar to the comparison done for the single cell model, here
we determine those parameterizations, which predict slopes falling in the 95%
confidence interval of the experimentally obtained slopes. Fig. 2.9d shows those
parameterizations. Interestingly, only a few parameterizations are consistent
with the data in this sense.

a) b)
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Figure 2.9: Exploration of the network model. a) Shown are the slopes of the
linear regression for of the dependence of the excitatory conductance tuning
on the map location. The regimes Fxc, Inh, and Hat are defined w. r. t. the
tuning of the currents received via the local recurrent connections (see Appendix
B.4). b,c) Same as a), but for the inhibitory conductance and the spike tuning,
respectively. d) For each parameterization it was determined, as to whether
the slopes shown in a-c) are in the 95% confidence interval of the data. Only if
this is the case for all three quantities, the corresponding parameterization was
labeled as “consistent”. The red dots correspond to the representative models
shown in Fig. 2.10.
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The different models may not only be distinguished in terms of their param-
eter values, but also in terms of more general quantitative properties. For exam-
ple, Kang et al. (2003) distinguished between four different operating regimes,
which were defined in terms of the effective recurrency. We also use a simple
classification of our model parameterizations into a Hat-, Exc-, and Inh-regimes
in order to structure the parameter space we explored. The regimes are defined
and shortly discussed in Appendix B.4. In short, the Hat-regime corresponds
to a regime, where both recurrent excitation and inhibition drive the neuron.
In the Ezc-regime, only the recurrent (and afferent) excitation drive the neu-
rons while the recurrent inhibition is weak, and in the Inh-regime the recurrent
excitation is weak, but the inhibition is rather strong. In the Aff-regime, the
strength of all recurrent connections is zero.

Let us now consider in greater detail the responses of models representative
for each regime. The first row in Fig. 2.10 corresponds to the model without
any local recurrency. The excitatory conductance shown in the second column
is due to the afferent input, which was the same for all map locations. As a
consequence, the spike tuning is independent of the map location (fourth col-
umn). However, since no location-dependence of the conductances is predicted,
this model fails to explain the experimental data.

The second row corresponds to the Hat-regime, where local recurrent exci-
tation and inhibition are strong. For example, for this regime the excitatory
postsynaptic conductance at the preferred orientation of an orientation domain
neuron due to local recurrent excitation was twice as much as the excitation
due to the afferent connections. However, due to the local inhibition, the effec-
tive current received via the recurrent connections is smaller than the current
received via the afferent connections (Fig. 2.10, first column). In this regime,
however, the spike tuning is almost independent of the map location, and the
tuning of the excitatory and inhibitory conductances co-vary with map location
(Fig. 2.10, last column), as observed in the experimental data.

The predictions of the Inh-regime are shown in the third row. The local
recurrent excitation is weak, and the excitatory conductance is dominated by
the afferent connections. Interestingly, in this regime a sharper spike tuning
is predicted for locations close to a pinwheel (2.10, fourth and last column).
Since with this parameterization the local recurrent excitation is weak at all
map locations, local recurrent inhibition can sharpen a more broadly tuned
afferent input. This, however, occurs only at locations close to a pinwheel,
because only at those locations cross-orientation interaction takes place. Note
that this regime comes closest to the network model proposed by McLaughlin
et al. (2000) both in terms of the predicted sharper tuning close to pinwheels
and the parameter settings they used (McLaughlin et al., 2000).

The predictions of the Ezc-regime are shown in the last row. Recurrent
excitation is strong and inhibition is weak. Still, however, the network operates
in a stable regime (see corresponding red dot in Fig. 2.9d). This model predicts
that the spike tuning depends on the map location with broader tuning close
to pinwheel locations (2.10, fourth and last column). The model also predicts
a co-variation of excitation and inhibition, but the recurrent inhibition is too
weak to balance the recurrent excitation at orthogonal orientations, which leads
to super-threshold responses close to pinwheel locations. In other words, the
models in the Ezc-regime are not consistent with the data, because they would
always predict a broader spike tuning close to pinwheel locations.
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Figure 2.10: Responses of models representative for each regime. Each row cor-
responds to one regime. The solid lines in the first column show the sum of
the input currents received via the local recurrent connections for a pinwheel
(OSI=0.3, thin line) and orientation domain neuron (OSI=0.9, thick line). The
dashed line shows the input current received via the afferent connections. The
second and third column show the tuning of the excitatory and inhibitory con-
ductances. The fourth column shows the spike tuning normalized to the maxi-
mum, and the last column shows how the tuning of the excitatory (cyan) and
inhibitory (red) conductances and the spike responses (black) depend on the
map location in the different parameter regimes. The regimes correspond to
the following values of the connection strengths: Ggrg = Ggr = 0nS (Aff),
Gprg =0.4nS and Ggyr = 1.10S (Hat), Ggg = 0.03nS and Ggr = 1.3nS (Inh),
and Ggg = 0.2nS and Ggr = 0.1nS (FEzc).
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2.5 Discussion

The experimental results have shown that visual stimulation evokes a different
pattern of synaptic inputs at orientation domains compared to pinwheel cen-
ters. We demonstrated that these response patterns result from a diversity of
synaptic inputs impinging on different locations in the orientation map, act-
ing through a locally isotropic and recurrent anatomical architecture. That is,
the spatial distribution of excitatory and inhibitory neurons provides the nec-
essary anatomical inputs, and their synaptic drive provides sufficient functional
balance to preserve sharp spike tuning, particularly at pinwheel centers.

We modeled these findings using a single cell and a network model. For
the single cell model we constrained the free parameter p, which determines
the contribution of the afferent relative to the recurrent excitation, to those
values compatible with the experimentally measured data. The network model
was explored by means of systematic numerical simulations. Different parameter
regime were defined and characterized, and the model predictions were compared
with the experimental data.

In our models, we always assumed that the orientation preference is initially
set up by the pattern of the afferent connections. This is consistent with the
recent experimental evidence indicating that the preferred orientation of a V1
neuron arises from the feedforward bias of its afferent inputs (Chapman et al.,
1991; Reid and Alonso, 1995; Mooser et al., 2004). Orientation selectivity of
the spike responses, however, appears to be narrower than afferent spread, and
likely requires intracortical mechanisms for its generation as assumed by the
recurrent models of orientation selectivity (Fig. 2.1c,d).

Our modeling results and the experimental data, however, suggest that the
computation of orientation selectivity is best characterized as taking place in a
regime, where the recurrency significantly contributes to driving the neurons?.
For the single cell model, the smallest value of p compatible with the experimen-
tal data was p = 0.25. Assuming less than 25% of the average excitatory drive as
originating from the afferent connections, for example, leads to predicted slopes
of the g; tuning too sttep for being compatible with the experimental data. On
the other hand, assuming that the dominant part of the excitation comes from
the afferent connections leads to predicted slopes of the g., g; and membrane
potential tuning too low for being compatible with the data.

These conclusions can be questioned, because we deduced the inhibitory
tuning instead of explaining it in terms of the underlying neuronal circuits.
However, our network model addressed this question. We have shown that a
co-variation of excitation and inhibition indeed emerges due to the layout of the
orientation map, which is most strongly in the Hat-regime (see Fig. B.1), and
only the parameterizations in the Hat-regime are consistent with the data (see
Fig. 2.94d).

Our model exploration is also suitable to resolve the apparent discrepancy
between the experimental measurements of Marino et al. (2005) and the model
by McLaughlin et al. (2000), which predicts sharper spike tuning close to pin-
wheel locations. We can reproduce their findings, as long as we operate our
model in the Inh-regime. In this case, only the recurrent inhibition is strong,

2Here we have not elaborated on this point, but we have shown elsewhere (Wiesing et al.,
2005) that the recurrency should not be as strong as assumed for recurrent models operating
in the so-called “marginal phase” (Fig. 2.1c).
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and it can sharpen a more broadly tuned afferent input close to pinwheel loca-
tions, because only at those locations cross-orientation interactions take place.

McLaughlin et al. (2000), however, did not assume the same spatial scale
for the local excitation and inhibition. In contrast, our experimental results,
consistent with a previous report by Anderson et al. (2000), demonstrate a
close relationship between the spread of excitation and inhibition, which are
similarly tuned regardless of map location. However, we have also shown else-
where (Wiesing et al., 2005) that the assumption of the same spatial scales is
not crucial for our conclusions. The source of most of these synaptic inputs is
likely to be the local neighborhood of a neuron, though it cannot ruled out that
at least excitatory inputs from iso-oriented sites that are located more distantly
(Bringuier et al., 1999; Angelucci et al., 2002b) contribute some additional ex-
citation.

In addition to location invariance, the orientation selectivity of V1 responses
is also invariant with stimulus contrast. So far we have not explored as to
whether the orientation tuning predicted by the models is also independent of
the stimulus contrast. Given the crucial role of the threshold effect in our model
to keep the spike response equally tuned at all map locations, it can be expected
that the due to an iceberg-effect the tuning will not be contrast-invariant. How-
ever, it has been argued that when considering noise contrast-invariant tuning of
the spike responses can be explained using a simple feedforward-model (Hansel
and van Vreeswijk, 2002). Thus, the question of contrast-invariance in our
models needs to be addressed in future studies.

Interestingly, a simple rule of spatial integration turns out to ensure a balance
of excitation and inhibition, which produces sharp orientation tuning at all
positions in the orientation map. Our results demonstrate the fundamental role
of such a balance for a key emergent computation in the adult visual cortex. A
similar mechanism based on the balance provided by local inputs may account
for the tuning of other functional properties in visual cortex, and may be a
general mechanism for generating and preserving response selectivity in sensory
cortex (Wehr and Zador, 2003).
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Recapitulation

The mechanism by which orientation selectivity in the primary visual cortex
is computed has been discussed since it discovery by Hubel and Wiesel. One
characteristic property, which is useful to categorize models of orientation se-
lectivity, is the extend to which processing is attributed to the afferents or to
the recurrency. Here we argued that the conductance measurements obtained
recently (Marino et al., 2005) can greatly constrain the mechanisms by which
orientation selectivity is computed. The tuning functions for the spike, mem-
brane potential, and conductances responses were obtained as a function of the
location in the orientation map, which has different local functional neighbor-
hoods at different positions.

Assuming an isotropy of the local recurrent interactions we first determined
the functional connectivity of the local recurrency for different locations in the
orientation map. Using a single compartment Hodgkin-Huxley model neuron
and the obtained orientation-dependent interactions we deduced the excitatory
and inhibitory conductance tunings, which lead to the experimentally found
location-independence of the spike tuning and are consistent with the measured
dependence of the sub-threshold tunings on the map location. Furthermore,
using a network model, we found that only a recurrent regime is compatible
with the data.

Our findings support the following conclusions: i) Primary visual cortex is
likely to operate in a regime, where local recurrent excitation and inhibition are
balanced and almost cancel out each other, such that the non-uniformity of the
local neighborhood due to the layout of the orientation map does not affect the
spike tuning. ii) The origin of orientation selectivity is the pattern of afferent
projections, but the local recurrency ensures that this tuning is preserved.

How does this study relate to our main theme of “adult adaptivity”? It has
been shown (Dragoi et al., 2001) that orientation adaptation is most prominent
close to pinwheel locations. Thus, our two-dimensional model is an important
step for modeling those phenomena at a biological realistic level.
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Contextual modulation of
orientation tuning in V1

Abstract. The responses of neurons in the primary visual cortex (V1) depend
on the spatial context within which visual stimuli are embedded. Orientation-
selective responses to stimuli in the receptive field (RF) center are suppressed
by similarly oriented stimuli in the RF surround. The spatial scale and tim-
ing of surround suppression are consistent with a role for top-down feedback
connections in its generation. We use an anatomically-based recurrent network
model of macaque V1 to show how excitatory inter-areal feedback connections,
contacting predominantly excitatory neurons, can generate suppression from the
far surround. The basic mechanism involves feedback connections targeting ex-
citatory neurons in the near surround, which then send horizontal connections
to excitatory and inhibitory neurons in the RF center. A novel prediction of our
model is that stimulation of the far surround does not always suppress, but can
also facilitate the RF center’s response, depending on the amount of excitatory
input driving the local inhibitors.

3.1 Introduction

The responses of neurons in sensory cortices are not determined solely by the
physical properties of the afferent stimulus, but are also modulated by the spatial
context within which sensory stimuli are embedded (Moore et al., 1999; Albright
and Stoner, 2002; Nelken, 2004). For example, in the primary visual cortex (V1,
or striate cortex) the responses of neurons to optimally oriented stimuli within
their receptive field (RF) center are usually suppressed by similarly oriented
stimuli outside their RF, in the RF surround (Blakemore and Tobin, 1972;
Nelson and Frost, 1978; Allman et al., 1985; Gilbert and Wiesel, 1990; DeAngelis
et al., 1994; Sengpiel et al., 1997; Sceniak et al., 2001; Cavanaugh et al., 2002;
Levitt and Lund, 2002). Contextual modulation from the extra-classical RF may
represent the neural correlate of perceptual figure-ground segregation (Knierim
and van Essen, 1992; Sillito et al., 1995; Bradley and Andersen, 1998; Nothdurft
et al., 1999). Thus, identifying its anatomical substrates and mechanisms is
crucial for our understanding of visual cortical processing.

35
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Figure 3.1: Schematic diagram comparing the spatial scale of the RF center and
surround of a V1 neuron with the spatial scales of V1 horizontal connections and
feedback (FB) connections to V1 from extrastriate cortex. The central circular
area represents the various components of the RF center and surround of an
example V1 neuron; this is surrounded by four identical size-tuning curves for
this neuron, over which an icon and arrow indicate the size of the respective
RF component. Black and gray curves are size-tuning curves measured at high
and low stimulus contrast, respectively. White square area: minimum response
field (mRF) or RF center; this is the RF region over which presentation of
optimally oriented stimuli evokes spikes from the cell. Experimentally the mRF
is measured using small, high contrast moving stimuli (icon on the top-left size-
tuning curve) and delimiting the area where spikes are evoked from the cell; the
arrow under the mRF icon indicates the size of the mRF relative to the peak
of the high contrast size-tuning curve. Dashed ring: high contrast summation
RF (hsRF); this is measured by presenting high contrast gratings of increasing
radius (icon on the center-left size-tuning curve), and defined as the stimulus
radius at the neuron’s peak response (arrow under the hsRF icon). The region
between the mRF and the hsRF is the region over which presentation of high
contrast gratings at the same orientation as the center grating facilitates the
cell’s response to optimally oriented gratings in the center. Continuous ring:
low contrast summation RF (ISRF); this is measured and defined as the hsRF
size, but using low contrast gratings of increasing radius (icon on the center-
right size-tuning curve). The region between the hsRF and the IsRF is the
region over which presentation of gratings at the same orientation as the center
grating suppresses or facilitates the cell’s response to optimally oriented gratings
in the center, depending on the grating’s contrast. Note the shift to the right of
the peak response at low contrast. Gray area: RF surround. We consider two
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separate regions of the surround depending on their proximity to the RF center:
1) the near surround is the region between the mRF and the IsRF, 2) the far
surround is the region outside the IsRF over which presentation of stimuli at the
same orientation as the center stimulus usually suppress the cell’s response to
optimally oriented gratings in the center. Intra-areal V1 horizontal connections
(red) are commensurate with the IsRF size of their V1 neurons of origin, while
extrastriate FB (blue) connections to V1 are commensurate with the full spatial
scale of the center and surround field of V1 neurons.

V1 cells are tuned to the size of a visual stimulus (DeAngelis et al., 1994;
Sceniak et al., 2001; Cavanaugh et al., 2002; Levitt and Lund, 2002), i. e. they
respond best to oriented stimuli of optimal size, with smaller and larger stimuli
evoking smaller responses (Fig. 3.1). The size tuning of V1 cells is contrast-
dependent (Kapadia et al., 1999; Sceniak et al., 1999), i. e. the RF region
over which the cell’s response increases with increasing stimulus size is larger
at low stimulus contrast than when measured using high contrast stimuli (e. g.
compare the peak response of black and gray size-tuning curves in Fig. 3.1).
We refer to the radius of a high or low contrast stimulus evoking the largest
response from the cell as the cell’s high or low contrast summation RF (hsRF
or IsRF) size, respectively. The summation RF (hsRF plus IsRF), to which here
we refer as the near surround, is a high threshold depolarizing field immediately
surrounding the minimum response field (mRF; or classical RF, cRF) of the
V1 neuron (Fig. 3.1). The mRF is the low threshold spiking region of the
RF center, usually mapped using small moving stimuli (Fig. 3.1) (Hubel and
Wiesel, 1962; Barlow et al., 1967). Beyond the IsRF lies the suppressive region
of the surround, to which we refer here as the far surround (Fig. 3.1).

Iso-orientation surround suppression in V1 has traditionally been attributed
to long range intra-areal horizontal (or lateral) connections (Gilbert et al., 1996;
Dragoi and Sur, 2000; Fitzpatrick, 2000; Somers et al., 2002; Stettler et al., 2002)
made by excitatory neurons in layers 2/3 (Gilbert and Wiesel, 1983; Rockland
and Lund, 1983), and linking neurons with similar stimulus specificity (Gilbert
and Wiesel, 1989; Malach et al., 1993; Yoshioka et al., 1996; Bosking et al.,
1997). As these connections terminate on both excitatory (80%) and inhibitory
(20%) neurons (Martin and Whitteridge, 1984; Kisvarday et al., 1986; McGuire
et al., 1991), surround suppression of the center response has been proposed to
be mediated by lateral excitation of local inhibition (Lund et al., 1995; Somers
et al., 1998).

Recent anatomical and physiological studies have challenged this notion that
surround suppression in V1 is mediated solely by horizontal connections, and
has suggested an involvement of top-down feedback (FB) signals in these effects.
These studies have demonstrated that surround suppression in V1 can be evoked
by stimuli at locations in the visual field far beyond the monosynaptic range
of V1 horizontal connections (Sceniak et al., 2001; Angelucci et al., 2002b;
Cavanaugh et al., 2002; Levitt and Lund, 2002). The spatial scale of these
connections has been shown to match the spatial dimensions of V1 cells’ IsSRF
(Fig. 3.1); this suggests that horizontal connections may, instead, play a role
in shaping V1 neurons spatial summation properties at low stimulus contrast
(Sceniak et al., 1999), and in the modulation of RF center responses arising
from the near, but not the far, surround (Kapadia et al., 1995; Polat et al.,
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1998; Chen et al., 2001). Moreover, the short temporal latency of suppression
arising from the far surround (Bair et al., 2003; Muller et al., 2003) cannot be
accounted for by polysynaptic chains of horizontal connections, due to the slow
conduction velocity of horizontal axons (Grinvald et al., 1994; Bringuier et al.,
1999; Girard et al., 2001; Slovin et al., 2002; Angelucci and Bullier, 2003). In
contrast, the spatial scale and fast conduction velocity of FB projections from
extrastriate cortex to V1 are commensurate with these large-scale suppressive
effects (Girard et al., 2001; Angelucci et al., 2002b; Bair et al., 2003), suggesting
that FB connections could represent the associated anatomical substrate (Fig.
3.1).

While reversible inactivation of extrastriate cortex had previously revealed
a facilitatory influence of FB connections on the RF center response of V1 neu-
rons (Sandell and Schiller, 1982; Mignard and Malpeli, 1991; Hupe et al., 1998;
Hupe et al., 2001), recent inactivation studies have also demonstrated a role
for FB connections in mediating surround suppression. Specifically, cooling of
extrastriate area MT was shown to reduce the suppressive effect of surround
motion stimulation in V3, V2 and V1 neurons (Hupe et al., 1998; Bullier et al.,
2001). A role for FB connections in iso-orientation surround suppression is
also consistent with recent evidence that FB connections are parcellated into
discrete patches in V1 (Angelucci et al., 2002a; Angelucci et al., 2002b), and
link cortical territories of like-orientation preference (Gilbert and Wiesel, 1989;
Angelucci and Bullier, 2003; Shmuel et al., 2005). FB connections to V1 arise
from excitatory neurons in layers 2/3A and 5/6 of extrastriate cortical areas
V2, V3 and MT and, at least in rat area 17, target almost exclusively (97-98%)
excitatory neurons (Johnson and Burkhalter, 1996). Accordingly, intracellular
recordings in slices of rat visual cortex have indicated that FB pathways modu-
late V1 responses via synaptic mechanisms in which excitation dominates (Shao
and Shao, 1996). In contrast, stimulation of horizontal connections evokes EP-
SPs followed by strong IPSPs (Hirsch and Gilbert, 1991; Shao and Shao, 1996).
Such synaptic organization of FB connections may appear to be inconsistent
with a role for this pathway in surround suppression.

In order to pinpoint the neuronal circuitry and mechanisms underlying re-
sponses within and outside the RF of macaque V1 neurons, in this study we have
set up a recurrent neuronal network model whose architecture is constrained to
fit the recent anatomical and physiological studies described above. We provide
a solution to how excitatory extrastriate FB connections, activated by stimuli
in the far surround, could exert their suppressive influence on V1 neurons, by
targeting excitatory neurons in the near surround, which in turn send horizon-
tal connections to local inhibitory neurons in the RF center. Our model can
account for a wide range of physiological data regarding the static and dynamic
effects of surround suppression. This includes the variation of the degree of near
surround facilitation and suppression with the size and contrast of the stimulus
(Sceniak et al., 1999; Cavanaugh et al., 2002; Levitt and Lund, 2002), the re-
duction of surround suppression following inactivation of FB from extrastriate
cortex (Hupe et al., 1998; Bullier et al., 2001), and the latency of surround sup-
pression (Bair et al., 2003). Furthermore, our model predicts that stimulation
of the far surround can suppress or facilitate the RF center response, depending
on the total amount of excitatory drive to the local inhibitors. This prediction is
consistent with our recent physiological data (Ichida et al., 2005) demonstrating
that the “suppressive surround” of V1 neurons is not always suppressive.
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In order to elucidate the role of horizontal and feedback (FB) connections in
generating the RF center and surround of V1 neurons, we construct a simplified
recurrent network model of two interconnected visual areas, one corresponding
to V1 and the other to an extrastriate area such as MT. Each area is idealized
as a single layer of cells, namely, layer 2/3 of V1 and layer 6 of MT. Parameters
of the model are fitted to known anatomical and physiological data, as specified
below and in the Appendix C. Numerical simulations are performed for stimuli
of varying size and contrast. In the figures, we represent such stimuli as gratings,
in order to facilitate the link with experiments. However, in our network model,
the size of a stimulus is simply taken to be the spatial extent (in degrees) of the
feedforward afferents carrying nonzero currents to the V1 layer, and the contrast
of the stimulus is taken to be the strength of these currents (see Appendix
C). We do not model other stimulus features such as orientation and spatial
frequency, since in this paper we focus on size-tuning and contrast effects.

A schematic diagram illustrating the basic network architecture is shown
in Fig. 3.2a. Neurons in V1 and extrastriate cortex are identified according
to the visual field position of their RF centers. Suppose that a particular V1
excitatory neuron is identified as the target neuron whose response properties
we wish to determine. V1 neurons are then labeled according to the location (in
degrees) of their RF centers relative to the RF of the target neuron. Thus, the
center consists of neurons whose RF centers lie within the minimum response
field (mRF) of the target neuron, the near surround consists of neurons whose
RF centers fall within either the high (hsRF) or low (IsRF) contrast summation
RF, and the far surround consists of neurons whose RF centers lie beyond the
IsRF (see also Fig. 3.1). In the model, we assume that excitatory neurons in
V1 receive feedforward afferent excitation from other V1 layers, local recurrent
excitation and inhibition, long-range excitation via slow intra-areal horizon-
tal connections, and FB excitation via fast inter-areal connections. Horizontal
connections also target local interneurons, whereas FB connections only target
excitatory neurons. This is motivated by the anatomical finding that FB axons
contact predominantly excitatory neurons (Johnson and Burkhalter, 1996). The
spatial extent of inter-areal FB connections is taken to be larger than that of
intra-areal horizontal connections (Fig. 3.2b), following the anatomical data of
Angelucci et al. (2002b). In particular, horizontal connections from the near
surround, but not the far surround, connect to the RF center monosynaptically,
and extend as far as the IsRF of their neurons of origin, while extrastriate FB
connections extend as far as the far surround of V1 neurons.

Following previous recurrent network models (Somers et al., 1998; Dragoi
and Sur, 2000), we assume that stimulation of the near surround modulates the
response to a center stimulus via horizontal connections targeting both excita-
tory and inhibitory neurons in the center. The interneurons are assumed to have
higher threshold and gain than the local excitatory neurons whose output they
control ((Lund et al., 1995); Fig. 3.2¢), and thus only generate suppression un-
der sufficiently high levels of excitation, for example, when the contrast and/or
size of a grating stimulus is sufficiently large. At low levels of excitation, such
as for small or low contrast stimuli, the inhibitors are inactive and stimulation
of the near surround facilitates the center response.
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Figure 3.2: Basic architecture of the recurrent network model. a) Schematic
diagram of the connections used in the network model. Different connection
types are indicated as color-coded arrows. Purple and black boxes represent
populations of excitatory (E) or inhibitory (I) V1 neurons, respectively, labeled
according to the position of their RF center relative to that of the center neurons.
Accordingly, ctr are the neurons in the RF center or minimum response field
(mRF); nr are the neurons in the near surround, of which those closer to the
center fall within the center neurons’ high contrast summation RF (hsRF),
while those located farther from the center fall within the center neurons’ low
contrast summation RF (IsRF'); far are the neurons in the far surround. Epp:
excitatory neurons in other V1 layers sending feedforward afferents to the F
neurons in V1 layers 2/3. Epp: excitatory neurons in extrastriate cortex sending
feedback projections to the E neuronsin V1. FB connections are spatially highly
divergent and convergent. Note the absence of direct FB inputs to I neurons.
The latter receive monosynaptic inputs only from V1 horizontal connections
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(red arrows) and from local FE neurons via local recurrent connections (purple
arrows). Icons at the bottom of a) represent the different regions of the RF
center and surround (same conventions as in Figure 1), with red areas indicating
the RF regions that are activated by each respective submodule. b) Different
spatial scale used in the model for the feedback (FB, blue) and the lateral
(or horizontal, red) connection. Plotted is the normalized strength of lateral
and FB connections to a postsynaptic neuron as a function of the distance of
the presynaptic neurons’ RF centers from the RF center of the postsynaptic
neuron. Note the different scales on the z-axes (the upper one applies to the
FB connections, and the lower to the lateral connections). ¢) Firing rate of the
V1 local excitatory (E, purple) and inhibitory (I, black) neurons in the model,
plotted against the input current.

3.2 Minimal model

The recurrent network model shown in Fig. 3.2a illustrates the basic principles
of our proposed circuit. It will serve as a guideline throughout this chapter.
However, we first focus on a simplified instantiation of the model shown in
Fig. 3.2a, because the basic mechanism of modulating the response of a center
neuron via an excitatory inter-areal pathway can already be illustrated using
such a minimal model. In the next section, we will use only the full recurrent
network model, which explicitly takes into account the spatial extent of visual
stimulation and activation in the cortex.

Model definition

The minimal model has three pairs of an excitatory and an inhibitory neuron
corresponding to the RF centre, the near and far surround, and an excitatory
neuron in the extrastriate area (Fig. 3.3a). Denoting with
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Figure 3.3: Suppression mediated via feedback excitation in the minimal model.
a) Minimal circuit model to illustrate how stimulation of the far surround can
lead to a suppression of the centre response. Excitatory feedback can mediate
this suppression either indirectly via lateral excitation of a local inhibitory neu-
ron, wyx = 0, or directly via monosynaptic excitation of this inhibitory neuron,
wrx > 0. b) Responses of the centre excitatory neuron as the stimulation I
of the far surround is increased without feedback to the inhibitory neurons,
wrx = 0, for weak (thin line, wyn = 0.25) and strong (thick line, w;n = 0)
lateral excitation of the inhibitory neuron. c¢) Suppression/facilitation of the
centre response as a function of the weights w;x and wyy. The suppression
is computed as — (Rc — Rcs) /Rc, where Re is the response to the central
stimulus alone, and R¢g is the response with stimulation in the far surround.
Negative values correspond to a suppression.

the neuronal rates and the weight matrix, we define the dynamics of the minimal
model as

dr
d—tl = —r; + max (0, ; WimTm + I — Tl> , (3.1)

where T} = 1 for ] = E, I, N, F and T; = 0 for [ = X. Feedback to the
inhibitory neurons in the far surround was excluded, because we assumed it to
be weak anyway. The I; was set to 1.25 for [ = C, N and changed between 0
and 5 for [ = F. All other afferent inputs were set to 0. The values for w;y
and wrx were varied and are given in the Caption to Fig. 3.3. The values for
the other weights are wgr = wrg = 0.25, wgr = —1, wxe = wxy = 0.5,
wxr = 0.2wxc, wgy = 0.25wgg. All responses shown in Fig. 3.3 are the
steady-states of Eq. 3.1.

Results

Previous models of suppressive contextual effects in V1 assumed the long-
range lateral projections as the sole neuronal substrate of surround suppression
(Somers et al., 1998; Dragoi and Sur, 2000). These projections, however, are
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made only by excitatory neurons. Hence, by themselves they cannot have a
suppressive effect. Therefore, it was postulated that they target local inhibitory
neurons, which mediate the suppression. We hypothesize (see Introduction)
that this strategy of decomposing a suppressive pathway into a cascade of mul-
tiple steps solves the puzzle of how the exclusively excitatory inter-areal feed-
back, which targets predominantly excitatory neurons (Johnson and Burkhalter,
1996), can mediate the fast suppression from the far surround.

Let us consider the minimal circuit model shown in Fig. 3.3a. The cen-
tre excitatory neuron receives feedback excitation from an extrastriate neuron,
inhibition from a local interneuron, and afferent excitation. Excitation due to
afferent stimulation of the far surround is relayed via the extrastiate neuron to
another excitatory neuron in the near surround, which in turn excites the local
inhibitory neuron. However, as to whether this feedback excitation leads to fa-
cilitation or suppression of the centre excitatory neuron depends on the strength
wrpn of the lateral excitation of the interneuron, which itself does not receive any
feedback excitation. Fig. 3.3b shows how the response of the centre excitatory
neuron changes as the afferent stimulation of the far surround increases. For
weak lateral excitation (thin line), the response increases, whereas it decreases
for strong lateral excitation (thick line). In other words, with strong lateral
excitation of the inhibitory neuron the local inhibition dominates over the ex-
citation received via the feedback and lateral connections. Thus, suppression
from the far surround, which is relayed via an extrastriate area, can be explained
with solely excitatory inter-areal feedback to excitatory neurons. However, if
the local interneuron also receives feedback excitation, response suppression can
be evoked with weaker lateral excitation (see Fig. 3.3c).
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3.3 Recurrent network model

In this section we use the recurrent network model described in detail in Ap-
pendix C. In this model, there is no monosynaptic feedback excitation of in-
hibitory neurons, because using the minimal model we have shown that sup-
pression from the far surround can be evoked without monosynaptic feedback
excitation of inhibitory neurons. This, however, depends on the lateral excita-
tion of the inhibitory neurons being strong (see Fig. 3.3c).

The same dependence is also observed in the recurrent network model. Fig.
3.4 shows the suppression from the far surround analog to Fig. 3.3c for the
minimal model. As in the minimal model (see Fig. 3.3c), the same amount of
suppression from the far surround can be evoked with weaker lateral excitation
of inhibitory neurons (G75) if the feedback connections target the inhibitory
neurons (G755 > 0). In the rest of this section, however, we use the network
parameterization, which evokes the strongest suppression from the far surround
without any feedback excitation of the inhibitory neurons (Fig. 3.4, bottom
right parameterization).

SX
[xG)

SX
GIE

Gy [x0.0525 ns]

Figure 3.4: Surround suppression in the network model with different strengths
of monosynaptic feedback excitation of inhibitory neurons. Shown is the facil-
itation/suppression (same definition as in Fig. 3.3c) as computed for a central
stimulus with 0.5 deg radius and an “annulus” with inner radius of 3.2 deg and
outer radius of 8 deg.
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Contrast-dependent spatial summation

We now use this model to simulate experiments in which the RF size is measured
as the stimulus radius at the peak response of an area-summation curve (the
summation RF), using high or low contrast gratings. The summation RF size is
known to depend on the stimulus contrast, with lower contrasts yielding larger
summation RF sizes ((Sceniak et al., 1999); see Fig. 3.1). The results of these
simulations are shown in Fig. 3.5a-c. Increasing the size of the stimulus leads to
an increased response of the center excitatory neurons. This facilitation turns
into suppression as the stimulus size is further increased, due to the fact that
the local interneurons, now sufficiently stimulated, start firing (Fig. 3.5a). The
stimulus size at which the interneurons are activated, however, depends on the
stimulus contrast. At lower contrast, the firing rates of all excitatory neurons
are also lower, and so the interneuron has to integrate over a larger area to reach
its firing threshold. This accounts for the contrast-dependence of the RF size
measured via the area-summation curves. In order for the above mechanism
to be effective, in the model the center interneurons must be strongly driven
by horizontal connections, while the latter provide only weak excitation to the
center excitatory neurons (Fig. 3.5b,c). Fig. 3.5b,c additionally shows how, in
the model, the various input currents to the excitatory and inhibitory neurons
vary with stimulus size. Another interesting feature of the curves shown in
Fig. 3.5a is that there is an oscillatory component to the variation in response
as a function of stimulus size. This occurs when there is disinhibition of the
center excitatory neurons, due to suppression of the excitatory neurons in the
near surround driving the center inhibitory neuron. Such suppression in turn
depends on the level of excitation of horizontal connections to near surround
neurons arising from the center and far surround.

In Fig. 3.5d-f we show a sequence of diagrams for increasing stimulus size,
highlighting the network components that are active and the major afferent
pathways from the active regions to the center neurons. A stimulus fitted to the
size of the hsRF activates the center and part of the near surround (Fig. 3.5d).
The center receives excitatory inputs via feedforward afferents, via horizontal
connections from the active region of the near surround, and via FB connections
from extrastriate cortex. At high contrast, the local inhibitors are assumed to
be close to threshold, so that a further increase in stimulus size beyond the
hsRF size, as in Fig. 3.5e, leads to suppression of the center response. On the
other hand, expansion of a low contrast stimulus beyond the hsRF size results
in facilitation, until the full extent of the near surround is active (Fig. 3.5e).
Finally, high or low contrast stimuli that extend well beyond the IsRF activate
the far surround (Fig. 3.5f). This suppresses the center via FB connections
exciting neurons in the near surround, which then excite local interneurons in
the center. In principle, it could be possible for the far surround to suppress the
center via a cascade of horizontal connections from the far, to the near surround,
to the center (see Fig. 3.2a). Although such a cascade is too slow to account
for the fast onset of suppression (Girard et al., 2001; Angelucci and Bullier,
2003; Bair et al., 2003), it could contribute to late suppression. However, in our
simulations we find that such a contribution is negligible (see Discussion).
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Figure 3.5: Contrast-dependent spatial summation in the network model. a)
Response (spikes/sec) of the center excitatory (Ect,, purple) and inhibitory (I.t,,
black) neurons as a function of the size of the afferent stimulus (in degrees), for
two different stimulus contrasts (85% and 15%, solid and dashed lines, respec-
tively). Icons at the top represent the different regions of the RF center and
surround, with red areas indicating the RF regions that are activated at specific
points in the size-tuning curve. The same icons are shown in d)-f) to indicate
the respective active network components and pathways. b,c) Input currents
to the center excitatory neurons b) and to the center inhibitory neurons c) as a
function of the afferent stimulus size (in degrees). The different input types are
color coded according to the legend in f). Icons in ¢): stimulus used, and valid
for a)-c). d,f) A sequence of diagrams highlighting, for increasing stimulus size,
the network components that are active and the major afferent pathways from
the active regions to the center neurons. Conventions are as in Fig. 3.2a.
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Contrast-dependent suppression and facilitation from the
far surround: a model prediction

To investigate more directly the contribution of FB connections to the far sur-
round of V1 neurons, we simulate an experiment in which afferent stimulation
of the region between the hsRF and IsRF is withdrawn. This allows us to min-
imize the afferent drive of horizontal connections in the near surround, so as to
unmask the effect of FB connections from the far surround. In order to achieve
this, a stimulus analogous to a high contrast annular grating is presented in the
far surround together with a central high contrast stimulus fitted to the size of
the hsRF (stimulus shown in Fig. 3.6b). The inner radius of the “annulus” is
systematically decreased from the far surround to a size no smaller than that
of the IsRF, so that near surround neurons in the IsRF but beyond the hsRF
never receive afferent stimulation. As the inner radius is decreased, more neu-
rons in the far surround receive afferent stimulation. This leads to suppression
of the excitatory neurons in the center (Fig. 3.6a), as observed experimentally
(Levitt and Lund, 2002). The active components in the network, and the main
pathways relaying information to the center neurons in response to this stim-
ulus configuration are illustrated in Fig. 3.6c. The mechanism leading to the
response suppression is the same as that illustrated in Fig. 3.5. Specifically, as
more neurons in the far surround are activated, excitatory neurons in the near
surround increase their firing rate (Fig. 3.6b); this is due to increased excita-
tion received via FB connections activated by stimulation of the far surround.
The near surround neurons then activate the center interneurons via horizontal
connections (Fig. 3.6a,c), resulting in suppression. However, our model also
demonstrates that, when a low contrast central stimulus is presented together
with a high contrast annulus in the far surround (stimulus shown in Fig. 3.6b,
right panel), decreasing the inner radius of the “annulus”, i.e. stimulating an
increasingly larger number of neurons in the far surround, can lead to initial
facilitation of the center excitatory neurons followed by suppression (Fig. 3.6a,
right panel). This is due to the fact that the low contrast central stimulus is
too weak to activate the center interneurons by itself (Fig. 3.6b); thus, stimula-
tion of the far surround initially facilitates the response of the center neurons,
because FB inputs to the center sum with afferent and horizontal inputs, until
a critical “annulus” size is reached, beyond which the interneurons are activated
(Fig. 3.6a, right panel), and suppression occurs.

One of the advantages of using a recurrent network model is that it allows us
to make predictions regarding the population activity profile of neurons across
V1 in response to visual stimuli. Fig. 3.7a shows the predicted activity profile
of excitatory neurons as a function of position relative to the center neuron
population, in the case of a small high contrast stimulus (0.4° radius, i.e. the
size of the hsRF as derived from Fig. 3.5a) and a large high contrast stimulus
(1.5° radius, i.e. extending into the far surround; see Fig. 3.5a). The responses
of the neurons in the center and near surround decrease with increasing stim-
ulus size (thin vs. thick line), as expected from the simulated area summation
experiments (Fig. 3.5a). However, the responses of neurons with their RF
centers located at the border of the large stimulus, in the far surround, are
not suppressed. Fig. 3.7b shows the predicted activity profile for a small high
contrast central stimulus (0.5° radius, i.e. just larger than the neurons’ hsRF,
but smaller than the IsSRF- see Fig. 3.5a) presented with and without a high
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contrast “annular” stimulus (3.2° inner radius and 8° outer radius) in the far
surround. When the “annulus” is presented together with the central stimulus,
the responses of the center excitatory neurons are suppressed, whereas the re-
sponses of the excitatory neurons in the near surround are facilitated. This can
be explained by the same mechanism illustrated in Fig. 3.6. Namely, that acti-
vation of FB, due to stimulation of the far surround, enhances the response of
excitatory neurons in both the center and near surround, which in turn activate
the center inhibitors (Fig. 3.6¢). It is worth emphasizing that the excitatory
neurons in the near surround are not suppressed, but are facilitated, by the far
surround stimulus; this occurs because their local inhibitors, in contrast to the
local inhibitors in the center, do not receive sufficiently high afferent drive, due
to the small size of the central stimulus.
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Figure 3.6: Contrast-dependent suppression and facilitation from the far sur-
round in the model. a) Left panel: Response (spikes/sec) of the center excitatory
(Ecyr, purple) and inhibitory (Icy.., black) neurons to a high contrast (85%) cen-
tral stimulus of 0.5 deg radius (i.e. just larger than the neuron’s hsRF) plotted
against the inner radius of a high contrast (85%) annular stimulus of 8 deg outer
radius presented together with the central stimulus. Right panel: Same as in the
left panel, but the configuration of the stimulus used consisted of a low contrast
(15%) central stimulus (0.5 deg radius) presented together with a high contrast
(85%) annular stimulus in the far surround. b) Left panel: Same as in a), but
for excitatory neurons in the near surround (E,,). Right panel: Same as in the
left panel, but for excitatory neurons in the near surround (E,,). ¢) Diagram
highlighting, for the RF regions activated by the stimulus (red areas in the icon
at the bottom), the network components that are active and the major afferent
pathways from the active regions to the center neurons. Conventions are as in
Fig. 3.2a, 3.5d-f.
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Figure 3.7: Population activity profile of the excitatory neurons across V1. a)
Activity profile for a small (0.4 deg radius, thick line) and a large (1.5 deg
radius, thin line) high contrast (85%) stimulus. Plotted are the firing rates
of the excitatory neurons against their location in V1. b) Activity profile for
a small (0.5 deg radius) high contrast (85%) central stimulus presented alone
(thick line) or together (think line) with a high contrast (85%) annular stimulus
(3.2 deg and 8 deg inner and outer radius, respectively). The cortical location
of the neurons were computed by converting the distance in degrees between
their RF centers into cortical distance, using a cortical magnification factor of
2.3 mm/deg.

Inactivation of the feedback pathway

The question of how inter-areal FB connections contribute to suppressive con-
textual effects was directly addressed in a series of experiments by Bullier and
coworkers, using reversible inactivation of extrastriate cortex (Hupe et al., 1998;
Bullier et al., 2001). Inactivation of FB connections arising from area MT
greatly reduced the suppressive effect of surround stimulation (sometimes even
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causing facilitation) onto the center responses of neurons in areas V1, V2 and
V3. The largest reduction in surround suppression was observed for low-saliency
stimuli.

In our network model, we can mimic the effect of FB inactivation simply by
setting the values for the weights of the inter-areal FB connections to zero. To
determine the contribution of FB connections to the center and surround of V1
neurons, we consider the change in response of the center excitatory neurons to a
central stimulus presented alone or together with a surround stimulus, with and
without active FB connections, and for center-surround stimuli with different
saliencies. As in the experimental studies (e.g. Hupe et al., (1998)), here we
define the response change” as

Rc — Res
Re

where Rc and R¢s are the responses of a neuron to the presentation of the cen-
tral stimulus alone and of the central stimulus shown together with a surround
stimulus, respectively. Stimulus saliency here is defined as Ceenter/Csurrounds
where Ceenter and Csyrround are the contrasts of the central and surround stimu-
lus, respectively. To obtain stimuli with different saliency, the surround stimulus
is always presented at low contrast (15%), while the contrast of the central stim-
ulus (>15%) is changed. Note that the central stimulus is fit to the optimal RF
size of the neurons whose response we wish to determine; this is defined as the
stimulus size at peak response, derived from the neurons size tuning curve, and
varies with the contrast of the stimulus (Fig. 3.5a). Thus, for stimuli of dif-
ferent saliency, the central stimulus ranges in size from the hsRF to the IsRF,
and therefore also includes part of, or all the near surround. Fig. 3.8a,b shows
the response of the center neurons to a central stimulus presented either alone
or together with a surround stimulus. The response with and without FB is
compared under low- (Fig. 3.8a) and high-saliency (Fig. 3.8b) conditions. In
the case of the central stimulus alone, removal of FB leads to a reduction in
the response of the center neurons, as in the experimental findings (Sandell and
Schiller, 1982; Mignard and Malpeli, 1991; Hupe et al., 1998; Bullier et al., 2001;
Hupe et al., 2001). In our model this follows from the fact that, under normal
conditions, FB excites excitatory neurons in the center (see Fig. 3.2a,b). In the
presence of FB connections, the response of the center neurons to the central
+ surround stimulus is suppressed relative to the response to the central stim-
ulus alone, and the degree of suppression is greater for high-saliency stimuli.
In the latter case, the amount of suppression is similar with and without FB
(Fig. 3.8b). On the other hand, for low saliency stimuli, there is a significant
reduction in the suppression when FB is removed (Fig. 3.8a). Fig. 3.8c shows
the response change (as defined above) as a function of the stimulus saliency,
with and without FB connections. The reduction in surround suppression when
inactivating the FB is clearly strongest for low saliency stimuli. In our model,
the reduction in suppression is due to the fact that the suppressive effect of
the far surround is mediated by FB connections targeting excitatory neurons in
the near surround (Fig. 3.2a). Removal of FB reduces excitation of the near
surround, and consequently lowers the excitation of the center local inhibitors
targeted by excitatory neurons in the near surround. Qur results are consistent
with the experimental findings (Hupe et al., 1998; Bullier et al., 2001), and sug-
gest a crucial role for inter-areal FB connections in surround suppression and
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Figure 3.8: Center-surround interactions with and without feedback. a) Re-
sponse (spikes/sec) of the center excitatory neurons (FEc¢y,) to the central stim-
ulus alone (small grating; 0.68 deg radius), and to the central stimulus presented
together with a surround stimulus (large grating; surround stimulus of 0.68 deg
inner radius and 8 deg outer radius), in the presence of feedback (FB; gray bars)
or with the FB connections inactivated (white bars). The center + surround
stimulus was presented at low saliency (38% vs 15% contrast; see Results for
definition of saliency). b) same as in a), but for a high saliency center + sur-
round stimulus (77% vs 15 % contrast). The size of the central stimulus was
always fitted to the stimulus size at the peak response of the size-tuning curve
(i.e. the optimal size), which varies with the stimulus contrast; thus in b) the
central stimulus had a radius of 0.49 deg, which is the optimal stimulus size at
77% contrast. ¢) Response change (see text for definition) of the center excita-
tory neurons as a function of stimulus saliency, with and without FB. For each
contrast, the central stimulus was presented at the optimal size.

Dynamics of contextual effects

Recently, the short-term dynamics of suppressive contextual effects has been
investigated in macaque V1 (Bair et al., 2003). The latency of suppression
induced by stimuli in the far surround was found to be almost as short as the
latency of suppression induced by stimuli in the near surround. The short delay
in the onset of suppression induced by far surround stimulation is not consistent
with polysynaptic chains of horizontal connections mediating this effect, due to
their slow conduction velocity. These results suggest a role for FB connections
in the generation of suppression from the far surround.
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We simulate these experiments and investigate the model’s predictions for
these delays. Fig. 3.9a shows the response, and Fig. 3.9b its suppression
strength, of the center excitatory neurons to a stimulus protocol where first
only a central stimulus, the size of the hsRF, is presented, and then a high con-
trast “annular stimulus” is flashed in the far surround, after the center response
reaches its steady state (>200 ms). The response suppression is strongest for
“annuli” with smaller inner radius, i.e. involving larger regions of the surround
(Fig. 3.9d). In our model, the suppression from the far surround is mediated
via relaying excitation from V1 neurons in the far surround to the extrastriate
area (via feedforward connections), and from there to the excitatory neurons
in the near surround (via FB connections), which in turn excite the center in-
hibitory neurons (via horizontal connections), as in Fig. 3.6c. The predicted
responses of excitatory neurons in the near surround and of the local inhibitory
neurons in the center are shown in Fig. 3.9c. The dynamics of the response
of the inhibitory neurons in the center follows the response dynamics of the
excitatory neurons in the near surround, which drive these inhibitory neurons.
Importantly, the latency of suppression onset in the center neurons’ response is
almost independent of the inner radius of the annulus, i.e. it is only weakly de-
pendent on the location of stimulation in the surround (Fig. 3.9¢), as observed
experimentally (Bair et al., 2003). In the model, this is due to the suppression
being mediated via the fast inter-areal FB connections, which introduce a delay
of only a few milliseconds.
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Figure 3.9: Dynamics and latency of surround suppression. a) Response
(spikes/sec) of the center excitatory neurons to a high contrast (85%) central
stimulus (0.5 deg radius) first presented alone and, after 200 ms, together with a
high contrast “annular stimulus” in the far surround of varying inner radius (2.5-
7 deg), plotted against the time from the onset of the central stimulus. Here,
and in b) and c), the arrow points in the direction of decreasing inner radius
of the annulus, as indicated by the stimulus icon. b) Suppression strength of
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the center neurons’ response induced by a stimulus in the far surround, plotted
against the time from the onset of the suppression. Suppression strength is de-
fined as 100 (R¢c — Res) /Rc, where Re and Regs are the neurons’ response to
the presentation of the central stimulus alone and of the central stimulus shown
together with the surround stimulus, respectively. ¢) Responses (spikes/sec)
of inhibitory neurons in the center (black) and excitatory neurons in the near
surround (purple) for annuli of varying inner radius. d) Suppression strength of
the steady state response of the center excitatory neurons as a function of the
surround annulus’ inner radius. e) Latency of suppression onset (defined as the
time from the onset of the annulus at which suppression strength reached 3%)
as a function of the surround annulus’ inner radius.

3.4 Discussion

We have developed an anatomically and physiologically-based recurrent neu-
ronal network model of center-surround interactions in macaque V1. In addition
to V1 horizontal connections, traditionally thought to represent the anatomical
substrate for V1 cells’ extra-classical RF (e.g. (Gilbert et al., 1996; Fitzpatrick,
2000; Somers et al., 2002)), we have incorporated into our model inter-areal
FB projections to V1, based on recent experimental findings implicating these
connections in center-surround interactions (Angelucci et al., 2002b; Angelucci
et al., 2002a; Levitt and Lund, 2002; Bair et al., 2003; Angelucci and Bullier,
2003; Shapley, 2004). The model incorporates realistic spatial scales and conduc-
tion velocities for each connection type, taken from anatomical and physiological
data in macaque. We have used our model to elucidate the relative roles of hori-
zontal and FB connections in generating the spatial summation properties of V1
neurons and their dependence on stimulus contrast, as well as the timing and
dynamics of center-surround interactions. Our results are consistent with the
hypothesis that extrastriate FB connections underlie the modulation of V1 neu-
rons’ responses arising from the far RF surround. We propose a solution to how
excitatory FB connections, targeting almost exclusively excitatory neurons in
V1 (Johnson and Burkhalter, 1996), can generate surround suppression; namely
by targeting excitatory neurons in the near surround sending monosynaptic hor-
izontal connections to inhibitory neurons in the RF center. This hypothesis is
also consistent with recent evidence in primates that FB connections link cor-
tical territories of broadly similar orientation preference in V1 and extrastriate
cortex (Angelucci and Bullier, 2003; Shmuel et al., 2005). Finally, our model
suggests that both horizontal and FB connections contribute to the modulation
arising from the near surround of V1 neurons, and both facilitate responses to
stimuli within the RF center.

As in previous recurrent network models of center-surround interactions
(Somers et al., 1998; Dragoi and Sur, 2000), in our model stimulation of the
near surround modulates the response to a center stimulus via horizontal axons
targeting both excitatory and inhibitory neurons in the center, the latter having
higher threshold and gain than the local excitatory neurons whose output they
control (Lund et al., 1995; Somers et al., 1998; Angelucci et al., 2002b). The spe-
cific sign of the modulatory effect, i.e. facilitation or suppression, thus depends
on the overall level of excitation reaching the local inhibitory and excitatory
neurons, with facilitation predominating for low levels of excitation and sup-
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pression taking place for high levels of excitation. Our model, however, extends
the “lateral model” (Somers et al., 1998), by adding FB inputs from extrastriate
cortex as an additional source of excitation to excitatory neurons in the center
and in the near surround. While the “lateral model” can account for many con-
textual effects, it cannot account for the experimentally observed suppression
arising from locations beyond the scale of monosynaptic V1 horizontal connec-
tions (Sceniak et al., 2001; Angelucci et al., 2002b; Cavanaugh et al., 2002; Levitt
and Lund, 2002). It has been argued that cascades of horizontal connections
cannot account for the fast onset of suppression arising from the far surround,
due to the slow conduction velocity of horizontal axons (Angelucci and Bullier,
2003; Bair et al., 2003). Instead, the spatial scale (Angelucci et al., 2002b) and
conduction velocity (Girard et al., 2001) of extrastriate FB connections to V1
are commensurate with the spatial scale and fast onset of suppression from the
far surround. Thus in our model, to account for far surround suppression, we
have incorporated FB connections. Whereas polysynaptic chains of horizontal
connections cannot account for the fast onset of suppression from the far sur-
round, they could in principle contribute to the late phase of the suppression.
In our simulations we find such a contribution to be negligible, due to surround
suppression of excitatory V1 neurons at each step in the chain, which prevents
horizontal propagation of signals. However, while our model excitatory neurons
all show surround suppression, in real V1 some neurons do not i.e. their size
tuning curves show a plateau at the peak response, or an increase in response
for increasing stimulus sizes (e.g. (Levitt and Lund, 2002)). The latter kinds of
neurons in our model are assumed to be the local inhibitory neurons controlling
the output of local excitatory neurons (see Fig. 3a). While this assumption is
supported by experimental evidence that at least some inhibitory neurons in V1
indeed do not show surround suppression (Hirsch and Gilbert, 1991), it is pos-
sible that also some excitatory neurons in V1 are not suppressed by stimuli in
their RF surround. The latter neurons could in principle propagate horizontal
signals from the far surround to the RF center, and thus contribute to the late
phase of the suppression. Note, however, that cascading lateral connections are
unlikely to contribute to the modulatory effects of the far surround in the case
of the “annular grating” experiments illustrated in Fig. 3.6. In this case, exci-
tatory neurons whose RFs lie in the visual field location of the blank stimulus
do not receive afferent drive, and thus cannot effectively relay signals to their
postsynaptic V1 neurons.

A novel prediction of our model is that the far surround of V1 neurons is not
always suppressive, but can facilitate the RF center response under conditions
in which the amount of excitatory input to the local inhibitors is relatively low,
such as when the center neurons are stimulated with a low contrast stimulus in
the presence of a stimulus in the far surround. Facilitation of the center response
by similarly oriented stimuli in the surround has typically been reported when
the surround region near the RF center is stimulated (Kapadia et al., 1995; Polat
et al., 1998; Chisum et al., 2003). Iso-oriented stimuli in the RF center and far
surround, instead, have typically been shown to be suppressive (DeAngelis et al.,
1994; Levitt and Lund, 1997; Sengpiel et al., 1998; Sceniak et al., 2001; Levitt
and Lund, 2002; Cavanaugh et al., 2002). This behavior of RF center-surround
interactions has been modeled as a difference of Gaussians (DOG), i.e. as the
summation of two spatially overlapping mechanisms having Gaussian sensitivity
profiles: a center excitatory mechanism, corresponding to the RF center, and
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a spatially larger inhibitory mechanism, corresponding to the extraclassical RF
surround (reviewed in (Shapley, 2004)). Iso-orientation facilitation from the
far surround of V1 neurons, as predicted by our model, has not been reported
previously, and is inconsistent with traditional DOG descriptions of contextual
effects in V1. However, our recent physiological studies in macaque V1 seem
to confirm such prediction of our model (Ichida et al., 2005). Thus, in order
to account for facilitation from the far surround, the DOG model needs to be
extended.

Our model can account for several extra-classical RF phenomena previously
observed experimentally. These include: 1) the expansion of the summation RF
at low stimulus contrast (Kapadia et al., 1999; Sceniak et al., 1999); 2) the size
tuning curves of V1 neurons (Sceniak et al., 2001; Cavanaugh et al., 2002; Levitt
and Lund, 2002); 3) far surround suppression, as shown in experiments in which
the afferent drive to near surround neurons sending horizontal connections to
the center was partially withdrawn by interposing a blank stimulus between a
grating in the RF center and a grating in the far surround (Levitt and Lund,
2002); 4) FB-mediated facilitation of responses to stimuli in the RF center, and
FB mediated suppression of responses to stimuli in the RF center by stimuli in
the surround, as demonstrated by experiments in which FB connections were
inactivated (Hupe et al., 1998; Bullier et al., 2001); 5) the latency and dynamics
of surround suppression (Bair et al., 2003). The same model can also be easily
extended to account for the effects of spatial attention in V1.

Our model nicely captures the experimental observation of Bair et al. (2003)
that the onset latency of surround suppression is almost independent of the dis-
tance of the surround stimulus from the RF center (Fig. 3.9e¢). However, it
cannot account for the finding, from the same study, that suppression from the
far, but not the near, surround is predominantly transient. Our model may
be too simplistic to account for this transient response; however, further explo-
ration, or an extension of the model to include mechanisms affecting the short-
term dynamics of center-surround interactions, such as firing rate adaptation,
could reveal transient suppression emerging as a consequence of the network
dynamics.

A central assumption of our model, without which reproduction of many of
the physiological observations would not occur, is that local inhibitory neurons
are strongly driven by horizontal connections. This assumption is consistent
with experimental observations in slices of cat and rat visual cortex (Hirsch and
Gilbert, 1991; Shao and Shao, 1996). If, for example, local excitatory neurons
were to be the predominant drivers of inhibitory neurons, the latter would follow
the responses of the former. Strong inhibition from within the RF center would
dominate, and thus mask any additional suppression arising from the surround.

One possible limitation of our model is that the extrastriate area is repre-
sented only as a one-dimensional line of neurons without intra-areal interactions,
thus serving purely as a relay station. While inclusion of interactions within ex-
trastriate cortex would certainly enrich the repertoire of response properties
predictable by the model, it is remarkable that such a simple circuit model can
account for a broad spectrum of V1 neuron responses.

While a role for FB connections in top-down, global-to-local processing of
visual information has been previously suggested to explain phenomena, such
as the responses of V1 and V2 neurons to illusory (Lee and Nguyen, 2001) or
occluded (Sugita, 1999; Bakin et al., 2000) contours, and spatial attention, we
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are proposing a more fundamental role for FB connections. Namely, that FB
inputs from outside area V1 directly contribute to the response properties of V1
neurons, and thus V1 and extrastriate cortex act in unison to generate responses
to simple visual patterns.
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Recapitulation

Here we have proposed a new pathway for suppressive contextual effects in
the primary visual cortex (V1). It explains suppression evoked from the far
surround, which is beyond the spatial scale of the lateral connection within
V1. The model is consistent with the currently available physiological and
anatomical data. The key idea is that excitation from the far surround is relayed
via the extra-striate cortex to excitatory neurons in the near surround, which
in turn send horizontal connections to local inhibitory neurons mediating the
suppression. The developed model predicts that stimulation of the far surround
could also have a facilitatory effect on the centre, as long as the horizontal
connections are inactive, so that the local inhibitory neurons are below their
firing threshold. This prediction has recently been confirmed in physiological
experiments (Ichida et al., 2005).

Our modeling results as well as corresponding experiments (Ichida et al.,
2005) lead to the following conclusions: i) It is possible to mediate suppression
from distal locations in the visual field, even if the mediating connections are
excitatory with the only exception being the last step in this pathway, where
inhibition is mediated by a local inhibitory neuron. ii) Lateral excitation of
inhibitory neurons is likely to be rather strong, because this is a necessary pre-
requisite for explaining the observed suppression with this circuit. Our results
suggest that during centre-surround interactions in V1 a near and a far excita-
tory mechanism are operative, which are interacting and could both turn into
inhibitory mechanisms, depending on the stimulus configuration and contrast.

Assuming that our model captures the essential properties of inter-areal
signaling between the striate and the extrastriate areas, then attentional top-
down modulations (see, e. g., (Sharma et al., 2003)) have to use these circuits.
Future modeling studies can now investigate these modulations based on an
experimentally tested model.
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Adaptivity of tuning functions
in hypercolumn models

Abstract. The representation of orientation information in the adult visual
cortex is plastic as exemplified by phenomena like perceptual learning or at-
tention. Although these phenomena operate on different time-scales and give
rise to different changes in the response properties of neurons, both lead to an
improvement in visual discrimination or detection tasks. If, however, optimal
performance is indeed the goal, the question arises, why the changes in neuronal
response properties are so different. Here we hypothesize, that these differences
arise naturally if optimal performance is achieved by means of different mecha-
nisms. In order to evaluate this hypothesis we set up a recurrent network model
of a visual cortical hypercolumn and asked, how each of four different parameter
sets (strength of afferent and recurrent synapses, neuronal gains, and additive
background inputs) must be changed in order to optimally improve the encod-
ing accuracy of a particular set of visual stimuli. We find that the predicted
changes of the population responses and the tuning functions were different for
each set of parameters, hence were strongly dependent on the plasticity mech-
anism which was operative. An optimal change of the strength of the recurrent
connections, for example, led to changes in the response properties which are
similar to the changes observed in perceptual learning experiments. An optimal
change of the neuronal gains led to changes mimicking neural effects of atten-
tion. Assuming the validity of the optimal encoding hypothesis, these model
predictions can be used to disentangle the mechanisms of perceptual learning,
attention, and other adaptation phenomena.

4.1 Introduction

The representation of orientation information in the adult visual cortex is plastic
as exemplified by phenomena like perceptual learning or attention. Although
these phenomena operate on different time-scales and give rise to different
changes in the response properties of neurons, both lead to an improvement
in visual discrimination or detection tasks. If, however, optimal performance
is indeed the goal, the question arises, why the changes in neuronal response
properties are so different. Here we hypothesize, that these differences arise
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naturally if optimal performance is achieved by means of different mechanisms.
In order to evaluate this hypothesis we set up a recurrent network model of
a visual cortical hypercolumn and asked, how each of four different parameter
sets (strength of afferent and recurrent synapses, neuronal gains, and additive
background inputs) must be changed in order to optimally improve the encod-
ing accuracy of a particular set of visual stimuli. We find that the predicted
changes of the population responses and the tuning functions were different for
each set of parameters, hence were strongly dependent on the plasticity mech-
anism which was operative. An optimal change of the strength of the recurrent
connections, for example, led to changes in the response properties which are
similar to the changes observed in perceptual learning experiments. An optimal
change of the neuronal gains led to changes mimicking neural effects of atten-
tion. Assuming the validity of the optimal encoding hypothesis, these model
predictions can be used to disentangle the mechanisms of perceptual learning,
attention, and other adaptation phenomena.

Orientation tuning is the paradigmatic example of stimulus selectivity in the
visual cortex. It first arises in the primary visual cortex (V1), and it is preserved
in higher visual areas like V2 and V4. The typically bell-shaped orientation tun-
ing functions, however, have been shown experimentally to be highly adaptive.
They depend on the temporal context of the stimulation (Muller et al., 1999;
Dragoi et al., 2002), the current behavioral demands (Moran and Desimone,
1985; Treue and Trujillo, 1999; McAdams, 1999), and they also change during
the course of training a perceptual task (Schoups, 2001; Ghose et al., 2002;
Yang, 2004). This raises the question of why the representations of physically
unchanged stimuli in the adult visual cortex are so adaptive. Wouldn’t it be
sufficient for an animal to act successfully if one proper representation of the
environment’s current ’state’ were computed in the visual cortex and then for-
warded to neuronal structures responsible for planning and initiating actions?

Many previous theoretical works are based on optimal coding hypotheses in
order to explain the observed changes. Paradiso (1988), Seung and Sompolinsky
(1993), Clifford et al. (2000), Nakahara et al. (2002; 2001), and Bethge et al.
(2003), for example, used descriptive models of tuning functions and assessed
the quality of the sensory representation as a function of the tuning functions’
parameters. In reality, however, neuronal response properties are computed in
a recurrent cortical network where architecture and plasticity mechanisms con-
strain the set of available tuning functions and their possible changes. Hence,
the changes predicted by descriptive models may not be realizable. Teich and
Qian (2003) set up a physiologically plausible model in order to explain the
changes of orientation tuning functions in V1 during adaptation and percep-
tual learning. In this study, however, the synaptic changes were not derived
from a functional principle, rather they were determined ad hoc in order to fit
experimental data.

This motivated us to combine both approaches and to evaluate an optimal
coding principle for a physiologically realistic model of a visual cortical hyper-
column. A recurrent neuronal network encodes a stimulus, for example the
orientation 0 of an oriented grating, by the activity of its output neurons. The
quality of this representation can then be assessed using a hypothetical ideal
observer (decoder or read-out). Within such a setting (Fig. 4.1) we address
the following two questions: (i) How do the tuning functions and population
responses change if the quality of representation is optimally improved for a rel-
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evant set of stimuli? (ii) How are these changes affected, if plasticity is restricted
to one of the four sites of plasticity: maximum conductance of the afferent or
recurrent synapses, gain of the excitatory neurons, and strength of an additive
(feedback) input current?

We find that optimal changes of response properties are different for different
sites of plasticity and that specific changes can even go into opposite directions
and still improve coding quality. This finding stresses how important it is to
consider physiological constraints when interpreting data in the light of a func-
tional principle. We also find that published experimental data on perceptual
learning and on attentional modulations of tuning functions in the visual cortex
are broadly consistent with the model’s predictions if the recurrency (for per-
ceptual learning) or the values of the neuronal gain (for attentional modulation)
are changed. This motivates the hypothesis that seemingly unrelated phenom-
ena may be explained by one functional principle, and that diversity emerges
because different routes are taken to calibrate cortical representations according
to the same goal.

In the next section we briefly motive the Fisher information objective func-
tion. The detailed description of the model (Fig. 4.1b) can be found in the
Appendix D.1.

4.2 The Fisher information objective function

The average output activity of the mean-field (rate) model is then converted
into a noisy spike output activity with Poisson statistics with the spikes being
conditionally independent given the stimulus. The probability to count n spikes
fired by neuron 7 in a time-interval of duration 7 is given by

n
P 0) = TIOL e (5 pito)),
where 6 is the presented stimulus, and f; (0) is the steady-state response f; of
neuron ¢ to the stimulus 0. We always used 7 = 1.

In order to quantify the quality of the representation of the stimulus 0, we
consider a hypothetical ideal observer whose task is to provide the best possible
estimate 0 of the stimulus given a set of spike counts and knowledge of the
probability distribution P; (n; 6). In an estimation task the Fisher information
is a useful quantity to measure the quality of a representation, because (for
a one-dimensional continuous stimulus #) the Fisher information provides, via
1/J (), a lower bound for the variance of any unbiased estimator of 6 (Kay,
1993). If P, (n; 0) is the probabilistic description of how the spike count n of
neuron 7 relates to the stimulus value 6, then no unbiased estimate of 8 based
on the spike count n can have a lower variance than 1/.J ().

For a population of N neurons with their 'noise’ being statistically indepen-
dent given the stimulus, the population Fisher information is J (0) = ", J; (),

where
d 2
= log P; (n;
(d@ og P; (n; 9)) 1

The Fisher information is also monotonically related to the mutual informa-
tion between the stimulus 6 and the whole vector n = (nq, na, ..., ny) of the

Ji(0) = E

P;(n; 0)
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Figure 4.1: The hypercolumn model and the encoder/decoder framework for
assessing the quality of sensory representations. a) The encoder/decoder frame-
work. An ideal observer computes a point estimate of the stimulus 6 based on
the neuronal responses of the cortical hypercolumn. The variance of this esti-
mate should be minimal, therefore the Fisher information should be maximized.
b) Recurrent network model of a cortical hypercolumn of excitatory (filled cir-
cles) and inhibitory (open circles) neurons. The thick arrows point to the “sites
of plasticity” (dashed lines) considered in this paper.

spike counts (Brunel and Nadal, 1998) as well as to the measure d’ often used
is the psychophysics literature (Seung and Sompolinsky, 1993). For Poisson
statistics of the spike response one gets

Ji<9>r<8ﬁ”) /5:(6).

Fig. 4.2b shows J; (§ = 0.5) as a function of neuron i (normalized to the maxi-
mum) for the initial network parameterization.

Note that here the Fisher information of a single neuron i, J; (), is propor-
tional to [f/ (0)]° /f; (9), where f; (9) and f/ (6) are the tuning function of that
neuron and its derivative. In order to determine how much changes in the abso-
lute values of f; (6) and the changes in the slopes f/ (f) contributed to the total
improvement of the Fisher information, we calculated the quantities Juqq4 (6)
and Jgp (0). For Juqq (0) we used the amplitudes f; (0) after we changed the
model parameters and the derivatives f/ (6) before the re-parameterization. For
Jsip (0) we used the derivatives f/ (6) after but the amplitudes f; (6) before the
re-parameterization. Thus, an increase/decrease of the encoding accuracy only
due to changes of the slope is reflected by a large change of Jg, (), whereas an
increase/decrease only due to changes of the response magnitude is reflected by
a large change of J,44 (6).

Objective functions: A full optimization of the network is only a reason-
able approach if additional constraints on the plausible range of values of the
network parameters are imposed. Since we want our results to depend as little
as possible on other constraints than the chosen network architecture and the
chosen site of plasticity we consider how the objective functions change as a
function of an optimal but small change of the values of the model parameters.
Therefore, we slightly vary the relevant model parameters along the gradient of



4.3 Optimal changes of four selected mechanisms

63

a) b) c)

Response [spls]
&
[
x
o
J(6=0.5) (norm.
Input [nA]

PS PS

Figure 4.2: Response properties and quality of representation of the model
hypercolumn for the choice of parameters given in the Methods section. a)
Responses of excitatory (solid line) and inhibitory (dotted line) neurons to a
stimulus with = 0.5. b) Contribution of the excitatory neurons to the net-
work’s Fisher information for 6 = 0.5 normalized to the maximal value. ¢)
Input currents at the steady state for an excitatory neuron with PS=0.5 as a
function of the PO of the presynaptic neuron.

the objective function, similar to (Nakahara and Amari, 2002; Nakahara et al.,
2001), but without further constraints.

In the following we consider the two objective functions J (6 = 0.5) and
J J (0) do. The first objective function quantifies how well the stimulus 6 = 0.5 is
encoded. It is an example for the task to improve coding accuracy for a small set
of relevant orientations, which may happen, e. g., during a perceptual learning
experiment. The second objective function quantifies how well all stimuli are
encoded. It is an example for the task to overall improve coding accuracy, which
may happen in a spatial attention experiment. The derivatives of J; (§) w. r. t.
the conductance G7¢° at the recurrent synapses, the conductance G/ of the
afferent synapses, the gain a” of an excitatory neuron 7, and the additive input
1294 are given in the Appendix.

4.3 Optimal changes of four selected mechanisms

In this section we report the changes of the four sets of network parameters
and the resulting changes of the neuronal responses for an optimal increase of
the quality of the representation. As a measure of quality we use the Fisher
information for a particular stimulus value as well as the integral of the Fisher
information terms over all stimulus values. The first case corresponds, for ex-
ample, to the the task of improving the ability to judge orientations close to a
reference orientation (e. g. vertical). The second case corresponds, for example,
to the task of improving this ability for all oriented stimuli like at a particu-
lar visual field location. We choose the initial parameterization of our network
such that it reproduced the “control” responses in area V4 of the macaque as
reported by Yang and Maunsell (2004). We checked whether the reported re-
sponse changes were different when the initial parameters were chosen differently
("Mexican-hat’-like recurrent connections with weaker and stronger values for
the maximum conductances), but we found no qualitative differences.
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Plasticity at the afferent synapses

We first asked how to change the maximum conductances G¢// of the afferent
synapses to excitatory and inhibitory neurons in order to increase the network’s
Fisher information specifically for § = 0.5. We computed the gradient of the
corresponding objective function w. r. t. the maximum conductances of the af-
ferent synapses and changed their values by a small amount AG?f ! proportional
to this gradient (see Methods). Fig. 4.3a shows the AG?f ! normalized by the
“unadapted” initial values AGZ{NJ; as a function of the preferred stimulus (PS)
of the postsynaptic neuron i. The changes were strongest for neurons with PS
differing approx. £0.16 from 6 = 0.5. For excitatory neurons with these PS the
afferent synapses became stronger (thick solid line) whereas the synapses to in-
hibitory neurons with these PS became weaker (thick dashed line). The afferent
synapses to excitatory neurons with PS very close to § = 0.5 do not change, but
inhibitory neurons with these PS receive slightly more excitation via their affer-
ents after the adjustment. We also asked how to change the afferent synapses in
order to increase the Fisher information for all stimuli. The resulting changes
were uniform. All synapses to excitatory neurons became stronger (thin solid
line), and all synapses to inhibitory neurons became weaker (thin dashed line).
Fig. 4.3b compares the population Fisher information before and after the ad-
justments and demonstrates that for the stimulus-specific changes the strongest
increase was for the stimulus # = 0.5 (solid line). However, the performance also
increased for stimuli close to # = 0.5, because the neurons which increase their
contribution to the encoding of this stimulus also contribute to the encoding
of the nearby stimuli. For the uniform change the Fisher information was also
increased in a uniform manner (dotted line).
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Figure 4.3: Adjusting the afferent synapses. a) Predicted changes of the affer-
ent synapses to excitatory (solid line) and inhibitory (dashed line) neurons to
optimally increase the objective functions J (¢ = 0.5) (thick lines) and [ .J (0) df
(thin lines), see Methods. These changes were computed by following the gradi-
ent with a step size n = 10~%. b) Relative change of the Fisher information after
having adjusted the afferent synapses for the J (6 = 0.5) and [ J () d6 objective
functions (solid and dotted lines). ¢) Population response before and after (thin
and thick lines) having made the adjustment in order to increase [ J (6)df. In
this case, the shape of the population response after the adjustment is the same
as the shape of the individual neurons’ tuning functions. The inset shows the
ratio of the responses after the adjustment to the responses with the initial
parameterization (solid line, dotted line marks a ratio of 1). d) Tuning func-
tions for two neurons with PSs 0.25 and 0.5 (dashed and solid lines) before and
after (thin and thick lines) optimizing J (§ = 0.5). e) Population response to
the same two stimuli § = 0.25 and 0 = 0.5 (thin and thick lines) for the same
adjustment. f) Fisher information of the individual neurons for # = 0.5 before
and after (thin solid and thick dotted lines) optimizing J (§ = 0.5). The solid
lines shows the Fisher information of the re-parameterized network if it were
only due to the changes of the response magnitude (J,4q4 (6 = 0.5), thick dashed
line) and tuning function slopes (Jsi, (6 = 0.5), thick solid line) at § = 0.5 (see
text for details). The normalization is w. r. t. the maximal Fisher information
before the re-parameterization.
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For both the stimulus-specific and the uniform changes of the afferent synapses
the Fisher information increased, because the tuning functions were changed.
If the adjustment was uniform, then the initially “symmetric” network param-
eterization (all neurons and associated connections have equal values of their
model parameters) remained symmetric. For symmetric parameterizations the
population response to a stimulus has the same shape as the neurons? tuning
functions. However, for stimulus-specific adjustments this is no longer the case.
Therefore, here as well as for the other three mechanisms we report only the
population responses for uniform adjustments, but for stimulus-specific adjust-
ments we show both the population response and the tuning functions.

Fig. 4.3c shows how the population response of the excitatory neurons to the
stimulus # = 0.5 (and hence the shape of all tuning functions) changed after the
uniform adjustment of the afferent synapses. All excitatory neurons received
more afferent excitation, and all inhibitory neurons received less afferent exci-
tation. Without recurrent connections this would have caused a multiplicative
effect on all stimulus-driven activations, but due to the recurrent interactions
shaping the activation profile, the activity increase is stronger for neurons with
already high activity. The inset of Fig. 4.3c (thick line) shows the ratio of the
population response after the adjustment to the initial response. The changes
are not strictly multiplicative, because a multiplicative change would correspond
to a horizontal line.

Figs. 4.3d,e show examples of tuning functions and population responses
after the stimulus-specific adjustments. Fig. 4.3d shows the tuning functions for
two neurons with PS 0.5 and 0.25 (solid and dashed lines) before and after the re-
parameterization (thick and thin lines). The peak activation of the neuron with
PS=0.5 increased only very little, but it showed a much stronger increase for the
neuron with PS=0.25. The tuning functions gave rise to population activations
shown in Fig. 4.3e. Here, two stimuli with § = 0.5 and 6 = 0.25 were used (solid
and dashed lines). With the initial parameterization (thin lines) the population
activations for every stimulus had the same shape, only the location of the peak
activity was dependent on the stimulus. However, after the re-parameterization
the shape of the population activation depends on the stimulus. For example,
the activation profile for § = 0.5 became bimodal, because the tuning functions
for neurons with PS close to 0.5 were not changed whereas the peak amplitudes
of neurons with PS differing by +0.16 from 6 = 0.5 increased. For 6 = 0.25
the profile was again unimodal. The peak activity increased and was slightly
shifted towards 6 = 0.5.

Let us now analyze, how the re-parameterized network achieved its increase
of the quality of the representation around 6 = 0.5. Fig. 4.3f (thin line) shows
the contribution of every neuron to the population’s Fisher information for the
initial parameterization (normalized to the maximal contribution, cf. Fig. 4.2b)
as well as the contribution after the re-parameterization (dotted line, relative to
the normalization). Neurons with an initially high contribution increased their
Fisher information even more whereas the contribution of neurons with initially
low Fisher information for 6 remained low.

For conditionally independent Poisson spike trains the Fisher information of
a single neuron i for a stimulus 6, .J; (), is proportional to [f/ (9)]* / f; (#), where
fi(0) and f! () are the tuning function of that neuron and its derivative (see
Methods). Fig. 3f shows how much of the overall improvement is due to changes
of the response magnitudes and the slopes. For neurons with a high contribution
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to the population Fisher information the value J,4q (6 = 0.5) after is below the
value J (0) before the change (thick dashed vs. thin solid line) whereas the
value Jyg,, (6 = 0.5) after is above the value J (6 = 0.5) before the change (thick
solid vs. dotted lines). The increased response magnitudes would have caused
a decrease of the encoding accuracy, but this effect was compensated by the
increase of the slopes at # = 0.5, and overall the encoding accuracy for 6§ = 0.5
was increased.

Plasticity at the recurrent synapses

Let us now consider the consequences of only adjusting the conductances at the
recurrent synapses. We first adjusted the synapses in order to increase the pop-
ulation Fisher information specifically for the stimulus § = 0.5 (see Methods).
Fig. 4.4a shows the values AG[:” by which we changed the synapses at the
recurrent connections between excitatory neurons as a function of the pre- and
postsynaptic initial PS. For neurons with PS different from 6 = 0.5, synaptic
changes depend on the postsynaptic neuron’s PS. The excitation from presy-
naptic neurons with PS similar to the PS of the postsynaptic neuron increased,
and the increase was strongest for postsynaptic neurons with PS differing ap-
prox. +0.16 from § = 0.5 (Fig. 4.4a, inset). The excitation from presynaptic
neurons with PS different from the PS of the postsynaptic neuron decreased,
and the decrease was also strongest for postsynaptic neurons with PS differing
approx. £0.16 from 6 = 0.5. The changes for the other three types of recurrent
connections (EI, IE and II) are complementary to the changes shown in Fig.
4.4a. Where the excitation of excitatory neurons increased, the inhibition of
excitatory neurons decreased, the excitation of inhibitory neurons decreased,
and the inhibition of inhibitory neurons increased.

These adjustments caused changes of the tuning functions which in turn gave
rise to the population Fisher information shown in Fig. 4.4b. For the objec-
tive function J (# = 0.5) the strongest increase was around 6 = 0.5 (solid line)
whereas the increase was “uniform” for the uniform objective function [ .J (6) df
(dotted line). For the latter the population response to a stimulus with § = 0.5
is shown in Fig. 4.4c. The responses of all neurons in the re-parameterized
network were lower compared to the responses with the initial parameterization
(thick vs. thin line). The shape of the population activation (and hence of the
individual tuning functions) changed as well, and overall the change was not
strictly multiplicative (see inset). The reduced activity and the shape change
resulted in an increased encoding accuracy for all stimuli.
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Figure 4.4: Adjusting the recurrent synapses. a) Predicted changes of the
recurrent excitatory synapses to excitatory neurons for optimizing J (6 = 0.5).
The inset shows the change of the self-excitation (the horizontal indicates no
change). These changes were computed by following the gradient of the objective
function with a step size n = 3- 1076, b-f) Same as in Fig. 4.3b-f.

Figs. 4.4d,e show examples of tuning functions and population responses
after improving J (# = 0.5). Fig. 4.4d shows the tuning functions for two neu-
rons with PS 0.5 and 0.25 (solid and dashed lines) before and after the re-
parameterization (thin and thick lines). The peak activity of the first neuron
decreased, but the shape of its tuning function remained unchanged, whereas
the tuning function of the second neuron became sharper and its peak activity
increased. These tuning functions explain the population responses of the re-
parameterized network to the two stimuli § = 0.5 and § = 0.25 shown in Fig.
4.4e. The profile of the response to § = 0.5 was bimodal and below the initial
responses, whereas the response profile for # = 0.25 became sharper and its peak
activity increased. Fig. 4.4f shows the two “hypothetical” Fisher information
terms Jqqq (0 = 0.5) and Jg, (6 = 0.5) (see Methods) before as well as the Fisher
information J (6 = 0.5) after the re-parameterization. In contrast to the simula-
tions where only the afferent synapses were adjusted, the re-parameterization of
the recurrency changed the tuning functions so that now the J,q4q (6 = 0.5) are
above the initial J (6 = 0.5) (thick dashed vs. thin solid line). The J (6 = 0.5)
for the re-parameterized network are above the Jg, (§ = 0.5) (thick dotted vs.
thick solid line), because now both the decreased response magnitudes and the
changes of the slopes contributed to increasing the encoding accuracy for 6 = 0.5.
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Fig. 4.5a compares the shape of the tuning functions averaged over all
excitatory neurons before (thin line) and after (thick line) the recurrency was
adjusted. In addition to this sharpening, the peak responses were modulated
depending on the PS of the neurons (see Fig. 4.5b), and the PS themselves
were also changed (see Fig. 4.5c¢). The underlying synaptic mechanisms for
the shifts of the PS are shown in Fig. 4.5d for the two neurons with maximal
shifts of their PS towards and away from 6 = 0.5 (solid and dotted lines). After
the adjustment the neuron which shifted its PS towards 6 = 0.5 received more
excitation from neurons with PS closer to § = 0.5 (left arrow). The neuron which
shifted its PS away from 6 = 0.5 received more excitation from neurons with PS
differing even more from 6 = 0.5 (right arrow) after the re-parameterization.
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Figure 4.5: Differential changes of tuning functions after having adjusted the
recurrent synapses to increase the Fisher information specifically for 6 = 0.5. a)
All tuning functions, normalized to their peak value and aligned so that their
POs coincide, were pooled and are shown before (thin line) and after (thick line)
the adjustment of the recurrent synapses. b) Change of the peak response after
the adjustment. Positive values correspond to an increase of the response. c)
Changes of the PS of the excitatory neurons. Positive values correspond to a
shift away from 0.5. d) Strength of the recurrent excitation of two excitatory
neurons before (thin lines) and after (thick lines) the adjustment. The first
neuron (solid lines) had the maximal shift of its PS towards 0.5, the second
neuron (dashed lines) had the maximal shift of its PS away from 0.5. Note that
after the adjustments to the recurrency the PS also changed. Here we refer with
PS to the optimal stimulus and not to the initially “afferent” PS (see Methods)
used to determine the afferent input.
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Changing the gain of excitatory neurons

Another mechanism we considered is the adjustment of the gain for the exci-
tatory neurons. We first asked how to change the gains af (see Methods) in
order to increase the network’s Fisher information specifically for the stimulus
6 = 0.5 (see Fig. 4.6a, solid line). One possible realization of this gain modula-
tion is to change the variance of the balanced background inputs (Chance et al.,
2002), which could be realized rapidly by, e. g., adjusting top-down feedback
inputs. Similar to the case of changing the strength of afferent inputs to the
excitatory neurons, the gains were increased mainly for neurons with PS differ-
ing approx. +0.16 from # = 0.5. The encoding accuracy is enhanced around
0 = 0.5. The changes Aa” necessary to increase the network’s Fisher infor-
mation for all stimuli were again uniform (see Fig. 4.6a, dotted line, and Fig.
4.6b).

In contrast to the previous two mechanisms, the uniform increase of the
gains for the objective function [ J(6)df resulted in a strictly multiplicative
modulation of the population response to a stimulus (f = 0.5, see Fig. 4.6¢ and
inset). If J (§ = 0.5) is optimized the individual tuning functions and population
responses are similar, but not identical, to the changes induced when adjust-
ing the strength of the afferent synapses. The responses for the neuron with
PS=0.25 (Fig. 4.6d, dashed lines) increased for all stimuli, but the tuning func-
tion for the neuron with PS=0.5 was unaffected (solid lines). The population
responses to a stimulus with § = 0.5 were also bimodal, and the peak activation
of the responses to a stimulus with § = 0.25 was increased and slightly shifted
towards 6 = 0.5 (see Fig. 4.6e). Fig. 4.6f also parallels the two-fold effects
of the changed tuning functions on the encoding accuracy (cf. Fig. 4.3f). For
neurons with an already high contribution to the population Fisher information
the values of J,q44 (6 = 0.5) are below the values of J (6 = 0.5) for the initial
parameterization whereas the values of Jg;, (6 = 0.5) are higher than the initial
values of J (6 = 0.5). Thus, the increased slopes at § = 0.5 compensated the re-
duced Fisher information due to the increase in activity, and encoding accuracy
was enhanced for § = 0.5.
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Figure 4.6: Adjusting the gain of the excitatory neurons. a) Predicted changes
of the gains of the excitatory neurons for optimizing J (6 = 0.5) (solid line) and
J J (0)do (dotted line). The changes were computed by following the gradient
of the objective function with a step size n = 5. b-f) Same as b-f in Fig. 4.3.

Changing an additive feedback input

The last mechanism we consider is the adjustment of the additive input currents
I#44 for both the excitatory and inhibitory neurons, as given by the gradient
of the objective function w. r. t. 899 Fig. 4.7a shows how the input to
the excitatory (solid lines) and inhibitory (dashed lines) neurons were changed
in order to increase the population Fisher information specifically for 6 = 0.5
(thick lines) as well as for all stimuli (thin lines), respectively. The additive input
currents to all excitatory neurons were decreased, whereas they were increased
for inhibitory neurons. For the objective function J (6 = 0.5) the strongest
reductions of the inputs to excitatory neurons were for neurons with PS differing
approx. £0.16 from # = 0.5. Inhibitory neurons with those PS had the strongest
increase of their additive inputs. To increase the Fisher information for all
stimuli, the additive inputs had to be changed in a uniform manner (thin lines).
These changes resulted in an increase of the encoding accuracy around 6 and
for all stimuli (Fig. 4.7b).
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Figure 4.7: Adjusting the additive feedback input. a) Predicted changes of the
additive feedback input to excitatory and inhibitory neurons (solid and dashed
lines) to increase the objective functions J (§ = 0.5) and [ (6) d6 (thick and thin
lines). These changes were computed by following the gradient of the objective
function with a step size n = 2 - 10~*. b-f) Same as b-f in Fig. 4.3.

Due to the reduced excitation and increased inhibition the population re-
sponse (and the tuning functions) shown in Fig. 4.7c was reduced. This re-
duction for the case of the objective function [ .J (0) df was strictly subtractive.
For the case of the objective function J (6 = 0.5) the tuning functions were also
shifted towards lower activation levels. These stimulus-specific changes gave rise
to the population responses to the two stimuli § = 0.5 and 8 = 0.25 as shown
in Fig. 4.7e. Since the reduction of excitation and the increased inhibition
were strongest for neurons with PS differing approx. £0.16 from 6 = 0.5, the
strongest reduction of the responses were observed for those stimuli. Changing
the values of 129 led to a change of the value of J,4q (0), but not of Jg, (6).
Fig. 4.7f shows that the Jg, (6 = 0.5) (after the re-parameterization) and the
J (0 =0.5) (before the re-parameterization) are identical (the thin and thick
solid lines are superimposed). In other words, when adjusting only the additive
inputs the improvement of the encoding accuracy around 6 = 0.5 is only due to
the subtractive shifts of the tuning functions.
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4.4 Discussion

In this section we first discuss the main finding of this paper: that an increased
encoding accuracy for a continuous stimulus variable can be achieved via dif-
ferent mechanisms which then result in different changes of the stimulus tuning
functions. Then we relate our predicted changes of neuronal responses to ex-
perimentally observed changes during attentional modulations and perceptual
learning. These two phenomena happen on distinct time-scales, and they lead
to different kinds of tuning function changes. We will show, however, that the
observed changes are broadly consistent with the hypotheses that visual at-
tention and perceptual learning can be explained by the common principle of
optimally encoding sensory information, and that the differences observed are
a result of different plasticity mechanisms being operative. Finally, we discuss
the limitations of our modeling approach.

Tuning function changes and adaptation mechanisms

The Fisher information J () can be increased by an increase of the slopes f/ ()
of the tuning functions and by a decrease of the activities f; (9) for these stimuli,
because the contribution of the i-th neuron is proportional to [f (8)]* /f; ().
Multiple strategies exist to adjust their values. For example, the slope for a
particular value of 6 could be increased by a multiplicative scaling of the tuning
function or by shifting it towards lower or higher stimulus values.

Interestingly, our model predicted that not all mechanisms lead to optimal
changes of both the slopes and the activation levels simultaneously, as summa-
rized in Fig. 4.8. In two cases, the physiological constraints (the model archi-
tecture) resulted in a “compromise”. When changing the gain of the excitatory
neurons or the strength of the afferent synapses the increase of activity, which
resulted in a decreased encoding accuracy, was compensated by an increase of
the slopes (cf. Fig. 4.3f and Fig. 4.6f). However, when adjusting the recur-
rent connections both increase of the slopes and decrease of the activation levels
contributed to the improvement of the Fisher information (Fig. 4.4f). In this
case, the changes of the slopes were achieved via shifting the PS, sharpening of
the tuning functions, or differentially adjusting the response amplitudes. When
the additive feedback inputs were changed, the slopes remained unaffected, but
the activations of all neurons were reduced (Figs. 4.7c¢-f) in order to increase
performance.
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Figure 4.8: Summary of tuning function changes. The green arrows indicate,
that the corresponding response change increased the encoding accuracy. The
red arrows indicate that the accuracy decreased.

Model predictions and perceptual learning

Schoups et al. (2001) investigated the physiological correlate of perceptual learn-
ing in V1. They found that after monkeys were trained on an orientation dis-
crimination task, the perceptual improvements were specific for location and
orientation. The physiological correlate was an activity reduction for cells with
preferred orientations (POs) around the learned orientation (Schoups et al.,
1998), and an increase of the slopes of the tuning function at the learned orien-
tation for neurons with POs differing approx. 20° from that orientation. When
optimizing performance as measured by the objective function J (#), our model
predicts an activity reduction for neurons with PS close to the learned stimulus
when assuming the recurrent connections or the additive (“feedback”) inputs as
the location of plasticity, but not when adjusting the afferent synapses or the
neuronal gains. Furthermore, our model predicts an increase of the slopes of the
tuning function for the learned stimulus when the afferent synapses, the recur-
rent synapses, or the single neuron gains were modified, but not when adjusting
the additive inputs.

Another group performed a similar experiment (Ghose et al., 2002) and
found that the perceptual improvements were orientation-specific, but transfered
between retinotopic locations. Similar to Schoups et al. (2001), Ghose et al.
(2002) report an activity reduction for neurons with POs close to the learned
orientation. However, no increase of the tuning function slopes was found, but
shifts of the POs were reported as predicted by our model when adjusting the
recurrent connections. The reason for the discrepancy between the findings of
the two groups in not clear.

The same group performed a similar experiment while recording neurons in
area V4 (Yang, 2004). They report a sharpening of orientation tuning func-
tions and an orientation-dependent change of the response amplitude with the
largest increase of the responses for neurons with POs differing from the learned
orientation, but almost no increase for neurons with a PO close to the learned
orientation. When adjusting the recurrent connections, our model predicts a
stimulus-dependent increase of the response amplitude for neurons with PS dif-
fering from the learned stimulus, and an increase of the slopes of the tuning
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functions both of which are consistent with the data. However, model results
are not fully consistent with the observed lack of change in activity at the learned
orientation and better fit with the V1 data of Shoups et al. (1998) and Ghose et
al. (2002). Additionally, optimally changing the recurrent connections predicts
shifts of the PS. Unfortunately, shifts of the tuning functions can be addressed
experimentally only indirectly, e. g., by investigating the histograms of the POs,
because the time-scale of perceptual learning is too long for tracking an individ-
ual neuron’s response properties. The histograms of POs shown by Yang and
Maunsell (2004) are not uniform after learning, but as to whether this change
is statistically significant needs to be tested.

In summary, the reported physiological correlates of perceptual learning in
the visual cortex are by themselves diverse and seem to depend on the visual
area. They are, however, mostly (but not completely) consistent with the model
predictions, if the recurrent connections are changed in order to improve per-
formance.

Model predictions and attentional modulations

One of the most frequently reported physiological correlates of attention in
the visual cortex is an increase of the stimulus-driven neuronal activity com-
pared to control trials. In (Treue and Trujillo, 1999) the effects of spatial and
feature-based attention in area MT were disentangled and shown to contribute
independently to the observed increase in activity. The effects of attention on
the direction tuning curves of neurons in area MT were reported to be approx-
imately multiplicative. Such a separation into a spatial and a feature-based
component was also found in area V4 (McAdams, 2000), as well as an ap-
proximately multiplicative modulation of the whole orientation tuning function
presumably mainly due to spatial attention (McAdams, 1999). In none of these
studies a sharpening of stimulus tuning curves was reported.

Our model predicted that, in order to increase the encoding accuracy for all
stimuli, strictly multiplicative changes of the tuning functions and the popula-
tion responses are to be expected only when adjusting the neuronal gain (see
inset in Fig. 4.6c). However, an approximately multiplicative change would
also be compatible with the changes predicted when adjusting the afferents (see
inset in Fig. 4.3c). Of course, adjusting the afferent synapses during attentional
modulation via mechanisms like LTP/LTD is out of question, but a possible
mechanism could be an effective increase of the impact of feedforward inputs
due to synchronous activity in a lower area. Adjusting the recurrent connections
or the additive (“feedback”) inputs disqualify as possible mechanisms, because
they lead to a decrease of neuronal activity.

So far, no study has directly tested for how attention to particular stim-
ulus values, which would correspond to optimizing an objective function like
J (6 = 0.5), changes stimulus tuning functions. The study which comes closest
is the study by Treue and Martinez Trujillo (1999). There, the monkey attended
to a particular stimulus direction during a direction discrimination task. The
authors report an increased activity, when attention is allocated to the presented
stimulus. When the afferent synapses or the gains of the excitatory neurons are
assumed as the site of plasticity, our model predicts that activity increases,
but that this increase is small compared to the strongest changes, which are
predicted for neurons with PS differing approx. +0.16 from the currently rele-
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vant stimulus 0.5 (see dashed lines in Figs. 4.3d, 4.4d, 4.6d, and 4.7d). Those
changes, however, were not investigated by Treue and Martinez Trujillo (1999).
One reason for the discrepancy could be that in our model the parameters were
changed for an increase of the Fisher information for only a single value. It
is conceivable that such a very specific modulation is not achievable with the
neuronal circuits in the visual cortex or that the range of stimuli actually se-
lected to be represented more accurately is broader. Changes in the recurrent
connections and the additive inputs lead to a decrease of neuronal activity and
are, therefore, inconsistent with the data.

In summary, one prominent physiological correlate of attentional modula-
tions is an increase in activity for neurons responding to the attended stimu-
lus. Approximately multiplicative modulations of tuning functions are consis-
tent with our model predictions derived from optimizing the objective function
J J(0)dh, if the gain of the excitatory neurons or afferent synapses are ad-
justed in order to improve performance. When optimizing the objective func-
tion J (6 = 0.5), for all the mechanisms we investigated we predict the strongest
changes for neurons with PS different from 0.5, which so far has not been tested
directly in experiments. However, for this stimulus-specific attention only chang-
ing the afferent synapses or the neuronal gains are compatible with an increase
in activity for the attended stimulus.

Model limitations

In our contribution we have considered changes in activity only for the mech-
anisms at the “different sites of plasticity” being operative individually. Since
different mechanisms can lead to opposing changes in activity, but still improve
performance, it is conceivable that when considering the combined action of
multiple mechanisms, some of the discrepancies between model predictions and
experimental data, which were mentioned in the last sections, can be resolved.

One limitation of the encoder /decoder framework used here could be the fact,
that Fisher information is not always the proper quality measure of a neuronal
representation. Bethge et al. (2003), for example, demonstrated that the Fisher
information as a quality measure fails if the time window for decoding is very
short. For very short decoding time-windows, however, the dynamics of the
encoding process must be considered and our model — which was not intended
to describe the activity dynamics — is no longer applicable. Xie (2002) showed
that an optimal Maximum-likelihood decoding cannot be achieved if only a few
neurons are available for representation. However, given that within the visual
cortex larger populations of neurons are believed to encode visual information,
this may not be a severe limitation (Feldman, 1984). Finally, a neural system
may not be able to make optimal use of the information in its activity patterns,
and neuronal structures may not be able to implement every conceivable type
of optimal decoding. However, it has been shown that recurrent networks can
implement Maximum-likelihood decoding procedures (Deneve et al., 1999) for
the case of continuous variables and several types of statistical models.

Our modeling framework applies to the case, where the relevant property of
the environment is a continuous variable and where its value has to be deter-
mined or to be discriminated from another one. Assuming the validity of the
optimal encoding hypothesis, the model can then be used to disentangle the
mechanisms of perceptual learning, attention, and possibly other adaptation
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phenomena in the visual areas. Since the model is a generic cortex model, our
predictions may transfer to other continuous stimulus domains or even to the
motor cortex, which is also highly adaptive in the adult (Paz and Vaadia, 2004).
When discrete stimuli are considered for the perceptual tasks, however, other
optimality criteria, for example the classification error for particular classifiers
or the mutual information between the stimuli and the neuronal responses, need
to be considered.
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Recapitulation

We set up a recurrent network model of a visual cortical hypercolumn and
asked, how each of four different parameter sets (strength of afferent and recur-
rent synapses, neuronal gains, and additive background inputs) must be changed
in order to optimally improve the encoding accuracy of a particular set of visual
stimuli, where encoding accuracy was quantified using the Fisher information.
We found that the predicted changes of the population responses and the tun-
ing functions were different for each set of parameters, hence were strongly
dependent on the plasticity mechanism which was operative. We compared the
predicted tuning function changes with those reported in perceptual learning
and attention experiments. Assuming the validity of the optimal encoding hy-
pothesis, such a comparison can be used to infer the mechanisms underlying
perceptual learning, attention, and other adaptation phenomena, which would
technically be almost impossible to measure directly.

Our results lead to the following conclusions: i) An increased encoding accu-
racy for a continuous stimulus variable can be achieved via different mechanisms,
which then result in different changes of the stimulus tuning functions. ii) Relat-
ing the predicted tuning function changes to experimental findings suggests that
changing the strength of the recurrent synapses leads to changes in the response
properties similar to the those observed in perceptual learning experiments,
whereas optimal changes of the neuronal gains leads to changes mimicking neu-
ral effects of attention. iii) The two seemingly unrelated phenomena, *perceptual
learning’ and ’attention’ operate on different time-scales and give rise to differ-
ent changes in the response properties of neurons. They can both be explained
by the common principle of ‘optimal encoding’. The observed diversity in the
changes of the neuronal responses, however, might be a natural consequence,
because different routes are taken to calibrate cortical representations according
to the same goal.
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Task-dependent sensory
representations

Abstract. Here we propose that the effects of attentional top-down modula-
tions observed in the visual cortex reflect the simple strategy of strengthening
currently relevant pathways in a task-dependent manner. To exemplify this
idea, we set up a network model of a visual area and simulate the learning of
a context-dependent ’go/no-go’-task. The model learns top-down gain mod-
ulations of sensory representations based on reinforcements received from the
environment. We also discuss how this idea relates to alternative interpretations
like optimal coding hypotheses.

5.1 Introduction

When animals act in an environment of which they have previously acquired
some knowledge, they can select appropriate actions in order to exploit this
knowledge. If it turns out that the available knowledge is not sufficient for
acting successfully, then an animal may further explore the environment to
learn more about it. In both cases the animal perceives its environment via
its sensory system which in most approaches to agent learning is assumed to
be fixed and (except for sensor noise) reliable. Physiological evidence from the
visual system, however, reveal that it is adaptive on a multitude of time-scales.
Theoretical studies of this adaptivity are often restricted to the sensory system
itself without asking, how changes in the representation affect the initiation
of behavioral responses, which relies on a stable representation of an animal’s
environment,.

It has been observed experimentally that sensory representations are adapt-
ing to an animal’s internal state with attentional top-down modulations being
a prime example. Here we hypothesize that these modulations are due to what
we call ’architectural constraints’. More concrete, with architectural constraints
we mean the ’fixed wiring’ between sensory systems and their read-out struc-
tures which calls for activation-dependent processes to produce flexible behavior
beyond a mere reflexive association of stimuli and behavioral responses.

The Stroop task is a well known example of a context-dependent mapping
of visual information onto actions. In this task, subjects are instructed to name

79



80

Chapter 5

the color of a word for that color (like “green”, “red”, etc) that is printed in
congruent or incongruent color ink. The naming of the same visual stimulus,
however, depends on a pre-defined context. For example, the word “green”
written with red ink has to be named as “green” in the context “word”, whereas
it has to be named as “red” in the context “color”. In their neural network
model of the Stroop task (Cohen et al., 1990) proposed that ’attentional units’
selectively strengthen particular processing pathways by disinhibiting read-out
neurons of currently relevant sensory representations, so that they can determine
the behavioral response. Here we propose that a similar principle can serve as
a functional explanation for task- and context-dependent representations in the
visual system itself.

In order to illustrate this idea, we set up a network model of a visual cortical
area, where a context-dependent feedback amplifies selected, currently relevant
stimulus dimensions so that they can dominate the responses of neurons ini-
tiating actions. If the context-dependent initiation of actions is realized by
top-down modulation of the sensory representations themselves, then the initi-
ations of actions can be more rapid compared to the case of having an inter-
mediate processing stage performing an explicit read-out. Moreover, having for
each possible context a separate read-out would also lead to a combinatorial
explosion. We hypothesize that evolution initially may have favored such direct
strategies over a strict separation between a pure sensory representation and
the subsequent action initiation.

5.2 Firing rate model and learning rules

Fig. 5.1a illustrates three types of adaptivity observable in sensory systems.
An animal is perceiving its environment via its sensors. If those are static and
do not adapt at all, learning is restricted to the selection of appropriate actions
depending on the estimated state of the environment. This is the setting usually
considered in the reinforcement learning literature, where the sensory system is
assumed to be fixed. If the sensors adapt without a read-out having explicitly
initiated this change, then these changes may be called autonomous. This is the
paradigm usually considered in most theoretical approaches to sensory adapta-
tion, where changes in the statistics of environmental signals drive the sensory
adaptation (see, e. g., (Fairhall et al., 2001; Wainwright, 1999; Adorjan et al.,
1999)). Here we consider the case where the read-out can control the state of
its sensory system and utilizes reinforcements from the environment in order to
learn how to control it.

We model the learning of a context-dependent ’go/no-go’-task shown in Fig.
5.1b. Here, the association between a simple two-dimensional stimulus and
the behavioral response depends on the context. In context 1, the selection
between the ’go’- and 'no-go’-response has to be made based on the first stimulus
dimension, whereas in context 2 it has to be based on the second dimension. In
our simulated learning scenario the currently active context is known before each
trial. The challenge, however, is to learn how to perform this task successfully
despite the architectural constraint of not having available a separate read-out
and action selection mechanism for each condition.

Independent of the concrete network architecture assumed for this task, two
ways of actually selecting the proper action a for a stimulus z in a given context
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Figure 5.1: Types of adaptivity of sensory systems, task-design and model ar-
chitecture. a) Three types of sensors: static sensors do not adapt, autonomous
sensors adapt in a ’bottom-up’-way to, e. g., the statistics of the stimuli, and
controlled sensors adapt according to the feedback received from the read-out.
b) The simulated go/no-go task with the desired association between a two-
dimensional stimulus being dependent on the currently active context. ¢) An
example for a neuronal circuit, which controls the automatic initiation of actions
depending on the feedforward input u and the context. The firing rates r® of
read-out neurons depend directly on the firing rates r™ of map neurons, which
are interconnected by recurrent connections funneled through control neurons.
The control neurons are subject to top-down gain modulation of their firing
rates r°. This allows to control the effective recurrent connectivity without
re-learning synaptic weights.

¢ are conceivable. First, a sensory representation r = f(x) of a stimulus z
can be computed in a context-independent way, and then the proper action
a = g(r=f(z),c) is computed depending on the representation r and the
context c¢. Second, the proper action a can be computed solely based on the
representation r, which itself is modulated by the context ¢, i. e. the action
selection is best described as a = g (r = f («, ¢)).

The linear firing rate model

In order to illustrate the above distinction between the two ways of computing
context-dependent action selections, we set up a recurrent network model of a
visual cortical area. The activation of neurons in this area constitute the rep-
resentation of a two-dimensional stimulus z. The representation of a particular
stimulus, however, depends on the recurrent connectivity as well. The network
is set up such that the gain of a selected set of neurons in the sensory area can
be modulated via top-down gain control, which in our model changes the effec-
tive recurrent connectivity. Hence, by modulating the gain of selected neurons
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in a context-dependent way the computations of sensory representations can be
modulated via changing the effective recurrent connectivity.

The model architecture is shown in Fig. 5.1c. The two ideas of modulating
the effective recurrent connectivity and using top-down gain modulation to do
this combined in our model have been proposed separately before by (Hahn-
loser et al., 1999) and (Zhang and Abbott, 2000). Each of these ideas is itself
speculative, and until now it is not clear as to whether any of the proposed mech-
anisms is actually realized in the visual cortex. However, we chose this concrete
model setup, because it reflects some prominent features of attention in sen-
sory systems like, e. g., the gain modulation of the stimulus-driven response as
reported by (Treue and Trujillo, 1999; McAdams, 1999) and the emergence of
feature selectivity only during attention as reported by (McAdams, 1999) for
some neurons in macaque area V4. The model is deterministic, only the action
selection is modeled probabilistically. The role of this randomness is to allow
for learning the read-out and the gain control in a reinforcement-based setting
using the REINFORCE algorithm developed by (Williams, 1992).

The N neurons in the sensory network (the 'map neurons’) receive a feed-
forward input u = (uy, ug, ..., uy) given by u = W Fx, where x is the
two-dimensional stimulus, and W¢f/ is a matrix for the afferent weights. If
the recurrent connections between these neurons are described by a N x N
weight matrix W with eigenvectors v* and eigenvalues \,, u = 1... N, then
the dynamics of the firing rates r"* and the steady-state are given by

d 1
TEI‘W =" +Wr" +u and rit = Z . fz/\# (u,v*),  (5.1)

o

where 7 is a time-constant, and (-, -) is the scalar product. In the proposed archi-
tecture, however, only the effective coupling is described by W. The ’physical’
connections between two neurons ¢ and j with firing rates r;" and r7" are disy-
naptic, because they are funneled through other neurons (the ’control neurons’)
with their firing rates r¢ being subject to top-down gain control. If the weight
of the symmetric connection between the i-th map neuron and the u-th control
neuron is v{', and the gain of the u-th control neuron is g, then the firing rate
ri" of the i-th map neuron is given by
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which leads for weight vectors v,, to the effective weight matrix W =3~ | GuVuvy
with eigenvectors v, and eigenvalues g,,.

The important property of this model we utilize for context-dependent action
selections has been pointed out by (Zhang and Abbott, 2000), and is shown in
Eq. 5.1. The population activity r"* of the map neurons, which serve as the rep-
resentation of the stimulus x, is dominated by eigenvectors v* if the ), are near
to (but smaller as) 1. Thus, controlling the values of the g,, which correspond
to the eigenvalues A, of the effective recurrency W, allows to select particular
v, to dominate the population activity r™. A possible robust mechanism for
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adjusting the values of the g, could be changing the level balanced feedback
inputs (Chance et al., 2002). Now, if each dimension of the input stimulus leads
to an excitation of one particular v,, then the population activity can be se-
lected to be dominated by one particular stimulus dimension by controlling the
values of the g,. We will demonstrate that although the read-out neurons are
connected with fixed weights to the map neurons, but the gains g, are adjusted
in a context-dependent way, then the selectivity of the read-out neurons can be
changed as needed for solving the context-dependent 'go/no-go’-task.

The final selection of actions is modeled probabilistically. Given the firing
rates r'", the probability to select action a; is given by

exp (Bw! ™)
>, exp (ﬂijrm) ’

where the w; are the weights from the map neurons to the neurons associated
with the initiation of the i-th action. The parameter § determines the ran-
domness in the action selection with low [ corresponding to a more exploratory
behavior. We always used 3 = 2.

P(a=a;|r™) = (5.3)

Update rules based on a REINFORCE algorithm

Successfully performing the simulated ’go/no-go’-task means to select the action
which, given the context and the sensory stimulus, yields maximal reward. In
other words, we seek to adjust the free model parameters (the weights of the
read-out and the feedback gain control) so that the expectation

E [RC (av X)]P(a|x,c)P(x,c)

is maximized, where ¢ denotes the context and « is an action selected proba-
bilistically. Optimizing this expectation directly is only tractable for very simple
models, but update rules for a stochastic approximation procedure can be de-
rived by using a REINFORCE algorithm (Williams, 1992). Given that in a trial
with stimulus x within context ¢ the action a4 has been selected, and the reward
r has been received, then with

0
wr; InP(a=as|r™) = pri"[dis—Pa=a;[r™)]
aac InP(a=as|r™) = Bl v,) <u,v#>2
i (1 -g5)
> v, Wj)exp (Bijrm)
<VM7WS> - . T.m
Zj exp (ﬂwj r )
we obtain the update rules
wyj  — wij+nw~rawulnP(a:as|rm) (5.4)
ij
: 0 m
9 < 9ﬁ+77u'7"6—gclnp(a:as|r ) (5.5)
o

where the g, are the gain factors depending on the condition ¢, and n,, = 0.1 and
1, = 0.001 are learning rates. For each simulated training sequence we randomly
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selected stimuli with —1 < z7,22 < 1 and a context ¢ with equal probability.
For the network with the context-dependent gain-modulations the gain-factors
for the corresponding context were used when computing the network responses.
Then, Eq. 5.3 was used to select an action. Correct 'go’-responses were rewarded
with a reward of 1 for stimuli with z; > 0 (in context 1) and x5 > 0 (in context
2), respectively. Moreover, for each training sequence we randomly selected

orthonormal basis vectors v,, and set W/f = (WT)™" so that each stimulus
dimension excites one particular v,. After each update step we enforced 0.1 <
g5, < 0.95 and ensured that ||w]|| = 1. The w; were initialized randomly, and all
gains were set to g, = 0.3 before each training sequence.

5.3 Simulations of the firing rate model

We now apply the update equations 5.4 and 5.5 for simulating the learning of
the context-dependent 'go/no-go’-task. We compare the performance of the net-
work model, which learns context-independent weights wy and ws (for the ’go’
and ’'no-go’ response) of the action initiation and context-dependent feedback
controls g{ and g5 with two other variants of the model. First, we compare
it with a network without context-dependent feedback control (all g, = 0.3),
but a separate action initiation for each context. Second, we compare it with
a network without context-dependent feedback control (all g5, = 0.3), but also
with only a single action initiation used in both contexts.

Fig. 5.2a shows the probabilities after learning for making a ’go’- and ’'no-
go’-response as a function of the two-dimensional stimulus in each of the two
contexts for the three variants of the network. The probabilities for making 'go’-
and 'no-go’-responses learned by the network with context-dependent feedback
control (“Gain-modulated”) correspond to the context-dependent classification,
i. e. a’go’-response only has a high probability if 7 > 0 in context 1 and zo > 0
in context 2. Complementary to this, a 'no-go’-response has a high probability
if z1 < 0in context 1 and x5 < 0 in context 2. The variant of the network with
a separate read-out for each task (“Separate read-outs”) learns similar response
probabilities like the network with the context-dependent feedback gain control.
However, the response probabilities learned by the network with only a single
read-out for both contexts (“Single read-out”) neither correspond to context
1 nor context 2. In contrast, they correspond to a mixture between the two
contexts, because the best performance in terms of the average reward with a
single action initiation is achieved if the context-independent decision for a ’go’
or 'no-go’ response is made for a separation line, which lies between the two
context-dependent ones.

Fig. 5.2b shows how the average reward changes during the learning. If
context-dependent feedback can be utilized, then the average reward is highest.
This network is even superior to the network with a separate read-out for each
context, because close to the mid-lines the finally learned action initiation is less
random compared to the network with separate read-outs. If for the latter we
increase 3 after having learned the weights for the read-outs, then these borders
become sharper and the average reward approaches the maximum value 1 as
well. The boxes in Fig. 5.2b show the learned gain control g;; after one training
sequence for the two contexts reflecting that different stimulus dimensions are
amplified in order to dominate the action initiation. However, the mechanism of
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Figure 5.2: Results of model optimization for two-dimensional stimuli and two-
dimensional networks. a) Probabilities to select a ’go’ and 'no-go’ response,
respectively, depending on the currently active context for the three network
variants: a single read-out for both contexts without gain-modulation, separate
read-outs for each context without gain-modulation, and a single read-out with
gain-modulation. b) Average reward during learning with the separation be-
tween ’go’ and 'no-go’ stimuli (see Fig. 5.1b) parallel to the the basis vectors
v#. ¢) Same as in b), but with the separation rotated by 45°, i. e. not parallel
to the basis vectors v#. The boxes in b) and d) show the learned feedback
gain-modulation for context 1 (upper box) and context 2 (lower box). Rewards
were averaged over 250 simulations.

amplifying a relevant stimulus dimension so that it can dominate the response
of read-out neurons is restricted to cases, where stimuli along these ’relevant’
stimulus dimensions excite selected eigenvectors v, of the sensory network. Fig.
5.2c shows the average reward during learning, where we rotated the separation
between the ’go’- and 'no-go’-regions in the input space by 45°. Now, stimuli
in the ’go’- and ’no-go’-regions equally excite both eigenvectors v,, so that
distinguishing between ’go’- and ’no-go’-stimuli on the basis of a single stimulus
dimension is no longer possible. The results for the networks without feedback
control do not differ compared to Fig. 5.2b, but the usefulness of the feedback
gain control is diminished. The learned feedback control also does not differ
between the two contexts (see right boxes).

The mechanism underlying the context-dependent selection of ’go’- and no-
go’-responses in the network with feedback gain control is further illustrated in
Fig. 5.3. In context 1 (upper row) only the response 7" of the first map neuron,
which changes its firing rate orthogonal to the separation between the 'go’- and
‘no-go’-regions in context 1, has a high response amplitude. It dominates the
responses of the two read-out neurons, so that the first read-out neuron has high
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Figure 5.3: Responses of the map and read-out neurons for a two-dimensional
stimulus space, where the separation between the ’go’ and 'no-go’ stimuli is par-
allel to the basis vectors v*. The responses r{* and r5* of the two map neurons
are independent of the context in terms of their tuning, but their response am-
plitudes are modulated in a context-dependent way. In contrast, the responses
r¢ and r§ of the two read-out neurons change their tuning depending on the
context.

response r{ for stimuli in ’go’-region of the input space, and the second neuron
has a high response for stimuli in the 'no-go’-region. In context 2 (lower row)
only the response 5" of the second map neuron has a high amplitude. Since the
second map neuron changes its firing rate orthogonal to the separation between
the 'go’- and 'no-go’-regions in context 2, and it dominates the responses of the
two read-out neurons, they are still selective for the correct ’go’- and ’'no-go’-
responses. The stimulus selectivity of the map neurons does not differ between
the two contexts, only their response amplitude is modulated. In contrast, the
selectivity of the read-out neurons w. r. t. the two-dimensional input stimuli
changes, but it remains invariant in terms of the context-dependent 'go’- and
'no-go’-responses.

Certainly, the situation that both the afferent and the recurrent weights are
set such that feedback gain control can lead to an amplification of currently
relevant stimulus dimensions is highly idealized and speculative. Therefore, we
also explored as to whether the idea of amplifying relevant stimulus dimensions
carries over to a more realistic scenario. We considered the case, where a two-
dimensional stimulus is embedded into a high-dimensional space. Here, the
afferent weights are not matched to the recurrent weights in the sense that an
afferent stimulus excites selected eigenvectors (see the definition of W4/f in
Sec. 5.2). Now, each afferent input w; is computed as the value a corresponding
Gaussian basis function yields for a particular two-dimensional stimulus. The
basis function centers were equally spaced between —1 and 1 on each axis, and
amplitudes and widths were set to 1 and ¢ = 0.3 corresponding to an idealized
afferent input in a two-dimensional retinotopic map. The separation between
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Figure 5.4: Results of model optimization for an embedding of the two-
dimensional stimulus space into a 64-dimensional space. a) The gain-
modulation (right boxes) is learned in a way which amplifies the 'relevant’ di-
rections in the 64-dimensional representation space. b,c) Distances between the
population vector representations of the two prototypical ’go’ and 'no-go’ stim-
uli of context 1 and context 2 during the learned gain-modulation for context 1
and context 2.

the ’go’- and 'no-go’-regions was rotated by 45° . Again, we randomly selected
a set of now N = 64 orthonormal eigenvectors v/ and simulated the learning
of the three network variants. Since it is not known beforehand, which of the
64 randomly selected eigenvectors v* will be the relevant ones, we learned the
gain factors g, for all 64 dimensions.

Fig. 5.4a shows the average reward during learning as well as an example of
the finally learned gain modulations for each context (right boxes). Similar to
the two-dimensional case (cf. Fig 5.2b) the performance of the network with the
context-dependent gain modulation is higher than the one with a single read-
out and no gain modulation. However, is this improvement indeed achieved
via selectively amplifying the ’'relevant’ eigenvectors v#? We tested this by
investigating the distance between the population vector representations of the
prototypical ’go’- and 'no-go’ stimuli, i. e. the mean stimulus of each class, of
each context.

Fig. 5.4b shows that the distance between the population vector represen-
tations of the prototypical 'go’- and 'no-go’-stimuli of context 1 is larger than
the distance between the population vector representations of the prototypical
’go’- and 'no-go’-stimuli of context 2 when the gain modulation learned for the
first context is used. Complementary to this, Fig. 5.4c shows that the distance
between the two representations of the ’go’- and ’no-go’-stimuli of context 2 is
larger when the learned gain modulation for the second context is used. In other
words, the gain modulations were always learned such that the distance between
the representations of the currently relevant prototypical stimuli was increased.
If the learned selective amplifications were not along the ’'relevant’ directions,
which are those connecting the centers of the two stimulus classes, then we
would have obtained a change in the distances independent of the context. In
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other words, the feedback gain-modulation increased the distance between the
population vector representations of the currently relevant prototypical ’go’ and
no-go’ stimuli. Also note, that we have not optimized the embedding of the
low-dimensional stimulus, but it is conceivable that biological systems may have
learned those embeddings which are suitable for a number of these classification
tasks.

5.4 Discussion

In summary, we proposed as an explanation of task-dependent representations
in the visual system the selective strengthening of sensory pathways so that cur-
rently relevant stimulus properties can dominate the responses of downstream
neurons. In order to exemplify this idea, we set up a network model and learned
a context-dependent top-down gain control using reinforcements received from
the environment.

Relation to optimal coding hypotheses

Our explanation of task-dependent representations via cortical feedback is mainly
‘mechanistic’. This rather simple-minded approach, however, has the distinct
advantage of making explicit the problem for the need for a co-adapting read-
out of adaptive representations in the sensory systems. If representations in
sensory systems are adapting to either external or internal conditions like, e. g.,
changing statistics of environmental signals or changing task demands, then the
corresponding read-out structures have to adapt as well.

As long as the statistics of environmental signals change on a slow time-
scale, it is conceivable that the corresponding read-out structures can track
these changes. In this case, the changes of the sensory representations are in-
duced in a ’bottom-up’ manner (cf. adaptation of “autonomous sensors” in Fig.
5.1a). However, if rapidly changing task demands call for an adaptation of sen-
sory representations, then they could only be induced in a ’top-down’ manner.
The prominent optimal coding hypothesis (Atick, 1992) would explain these
task-dependent changes as a reallocation of limited representational resources
in order to ensure a high fidelity representation of the currently relevant stim-
ulus aspects. As a consequence of such an altered neuronal code, however, the
read-out structures would have to adapt as well. In our model the need for task-
dependent representations derives from the need to adjust them so that they
become useful for the very same read-out structures without assuming limited
representational resources.

Sensory representations as probabilities

Another possible approach to explain task-dependent representations in sensory
systems is to interpret them as the signatures of probabilistic computations per-
formed on previously learned statistical models of the sensory data. Although
the involved models of the sensory data are usually probabilistic, learning and
inference are in principle deterministic. This makes them attractive as a pure
computational approach, which is not spoiled by the additional problems in-
duced when computations are done with unreliable 'noisy’ neurons leading to
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limited representational resources. For example, in (Rao and Ballard, 1999) the
feedback within the visual cortex can be viewed as part of a hierarchical model of
the sensory data which explains the afferent input by predicting it. A related in-
terpretation is to view sensory systems as performing Bayesian inference, where
the activations represent probabilities (see (Pouget et al., 2003; Barlow, 2001)
for an introduction and (Rao, 2004; Deneve, 2005; Sahani and Dayan, 2003)
for particular approaches). A possibility to explain task-dependence within this
framework could be to assume that different tasks correspond to different com-
putations with the represented probabilities. For example, the operation of
"integrating out’ currently irrelevant variables could be reflected in the neuronal
activity (Sahani, personal communication).

The basic assumption of these probabilistic interpretations, however, can
easily be tested experimentally. By varying independently the qualities *proba-
bility” and ’value’ of stimuli in different contexts, one can examine as to whether
responses in the visual cortex are related only to the subjectively estimated prob-
abilities of stimuli, or also to their subjective value. If the latter is the case,
then this interpretation disqualifies as the sole interpretations of activations in
sensory cortices, whereas our interpretation would still be applicable.

Context-dependent sensory-motor transformations

Our work is certainly not the first to address the problem of how to transform
sensory information in a context-dependent way into motor outputs. For ex-
ample, in (Cohen et al., 1990; Gilbert and Shallice, 2002) this issue has been
addressed within a ’parallel distributed processing model’, and recently circuit
models for context-dependent sensory-motor transformations have been sug-
gested (Salinas, 2004b; Salinas, 2004a). Our approach differs from these pre-
vious ones in two ways. First, we used a different model architecture, where
an effective context-dependent recurrent connectivity was modulated by top-
down gain control. Second, we motivated our approach by comparing it with
alternative interpretations for adaptivity in the visual system. We proposed
that top-down modulations of sensory representations are best understood as
the signature of a transformation of sensory signals into currently appropriate
behavioral responses. In other words, we hypothesize that parts of those (of-
ten context-dependent) transformations are already realized within the visual
cortex an not exclusively in downstream frontal areas.

In this paper we suggested that the functional role of feedback into a sensory
system, for example from prefrontal regions into the ventral visual pathway, is
to ’tune’ the sensory processing in a context-dependent way. Of course, for each
possible context the proper top-down modulations have to be memorized, and
storing those comes with a cost. It remains to be determined as to whether the
particular top-down modulation scheme we suggest is robust in the sense that
storing only a few gain-factors is sufficient, because otherwise the controlling
network would be more complex than the controlled sensory network. However,
our results indicate that when sensory representations are embedded into a high-
dimensional representation space, selectively amplifying only a few directions is
indeed sufficient to significantly improve the performance. Finally, it remains
to be determined as to whether our functional interpretation of feedback signals
carries over to feedback within the visual system, for example between the striate
and extra-striate cortex.
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Recapitulation

We proposed as an explanation of task-dependent representations in the vi-
sual system the selective strengthening of sensory pathways so that currently
relevant stimulus properties can dominate the responses of downstream neu-
rons. In order to exemplify this idea, we set up a network model and learned
a context-dependent top-down gain control using reinforcements received from
the environment. We also discussed how our interpretation of task-dependent
representations relates to alternative views.

Compared to the other studies of this thesis, which were related in a close
way to particular experimental findings, the work presented in this chapter is
more speculative. However, although we focused on functional “interpretations”
of neuronal activity in the visual cortex, we suggested a new line of experiments,
which could distinguish between our interpretation and other alternatives like,
for example, the view of visual cortex as being a Bayesian inference engine (see
Sec. 1.1). In particular, we suggested to selectively manipulate the two variables
“probability” and “value” in experimental settings. Thus, future experimental
studies could determine, which interpretation is most appropriate.



Appendix A

Hodgkin-Huxley and synapse
model

A.1 Single cell model

The single cell model is the Hodgkin-Huxley-type neuron given in (Destexhe
et al., 2001). The dynamics of the membrane potential of a neuron 7 is described
by

ndVi
Ci ar —97 (Vi*Ez'L) ;Iint -1
in

where the [;; denote the intrinsic voltage-dependent currents, gF and EL are
the leak conductances (g~ = gk = 22.74nS for excitatory and g* = gF =2 ¢&
for inhibitory neurons) and reversal potentials (Ef = E% = Ef = —80mV),
C™ denotes the membrane capacitance (C" = C? = C7* = 0.5nF), and ¢ is
the time. Each current I;; is described by a Hodgkin-Huxley equation
Ling (t) = g-m™ () - BN (1) - (V () - B),

where g is the peak conductance, E is the reversal potential, and m (¢) and
h(t) are the activation and inactivation variables. Three voltage dependent
currents are included: a fast Na™ current and a delayed-rectifier K* current
for the generation of action potentials, and a slow non-inactivating K current
responsible for spike frequency adaptation.

A.2 Tonic currents
For the Na™ current we used
INa = gNamgh (V - ENa)
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with
dm
W= (V)= m) G (V)m
dh
= V) h) (V)
B —0.32(V — Vi — 13)
anV) = TV -Vr—13)/0) =1
B 0.28 (V — Vi — 40)
B (V) o= (v = Ve =40y J5) =1
ap (V) = 0.128exp(— (V= Vpr — Vs —17)/18)
Br (V) = !

1+exp(—(V —Vp — Vs —40)/5)

with parameter values Vp = =58 mV, Vg = —10mV, and gy, = 17.87 uS and
ENg = 50mV.

For the “delayed-rectifier” K™ current we used

Ixa = gran' (V — Ek)
with
dn
il an (V)1 =n)=B.(V)n
—0.032 (V — Vi — 15)
on (V) op (= (V- Vi —15)/5) — 1
Bn (V) = 05exp(—(V —Vr—10)/40)

with parameter values Fx = —90mV, gxq = 3.46 uS.
For the non-inactivating K™ current we used

Ing = gun (V — Exg)

with
dn
= = (V)1 =, (V)n
B 0.0001 (V + 30)
an (V) = 1—exp (— (V +30) /9)
) —0.0001 (V + 30)

1—exp((V +30)/9)

with gy = 0.28 uS for excitatory and g = 0.028 uS for inhibitory neurons.

A.3 Noise model

The model neurons additionally receive balanced excitatory and inhibitory synap-
tic background inputs. The corresponding conductances are described by a
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stochastic process similar to an Ornstein-Uhlenbeck process with the following
update rule (Destexhe et al., 2001):

by (t+ AL) = gp, + [gbg (t) — ghy] exp (—At/7) + A- N (0,1),

where gl?g is the average conductance, 7 is a synaptic time constant, A is the
amplitude coefficient, and N (0,1) is a normally distributed random number
with zero mean and unit standard deviation. The amplitude coefficient has the
following analytic expression

1= e ()]

1

where D = 202771 is the diffusion coefficient. Numerical values for the back-
ground conductances are ¢ = 3nS and ¢ = 6.6 nS for the variances of the excita-
tory and inhibitory conductance, 7 = 2.7 ms for the excitatory and 7 = 10.5ms
for the inhibitory time constant, and ggg = 12.1nS for the mean excitatory and
g,?g = 57.3nS for the mean inhibitory conductance. The reversal potentials were
0mV and —75mV for the excitatory and inhibitory conductances.

A.4 Firing rate functions

We simulated the spike responses of this model neuron to current injections
for different values of the leak conductance in the presence of the fluctuating
background conductance. We considered only the already adapted responses,
which were then best fitted with thresholded polynomials. These fits were done
by minimizing the mean squared error between the simulated firing rate and the
one predicted by the thresholded polynomials. We obtained

FF(I) = max(0,a] (I —AI(gL)))
FI(I) = max (0, al (I —AI(gy))+b (I — AT (gL))2)

with af = af = 71.9, I, = 0.13nA, and VS = 15.2 for excitatory and a! =
133, b1 = —28, I¢ = —0.02nA, VF = 14.6mV for inhibitory neurons. These
firing rate functions are then used in the mean-field network models in the
Chapters 2, 3, and 4 (see Appendix B.2). The parameters Vf and I are the
parameters of the linear function AI, which determines the shift of the firing
rate function depending as a function of the leak conductance (see Appendix
B.2 for a definition of AT).

A.5 Synapse model

A synaptic current Iy, (t) due to activity of AMPA- and GABA 5 -synapses was
computed as

Lo (1) = D2 G395 () (V (1) = ),

where g; and Ej; are the time-dependent conductance for the j-th synapse and
the corresponding reversal potential, and g; scales the strength of the synaptic
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connection. We always used E; = Er = 0mV for the excitatory AMPA- and
E; = E; = —80mV for the inhibitory GABA 4 -synapses. The dynamics of the
conductance variable g; is given by

d . !]j(t) k
29 (1) = —T—j+zk:5(t—tj)=

where 7; is the time-constant of the j-th synapse, and t? denotes the time of
the k-th spike of neuron j. Note that only in Section 2.3 we explicitly simulated
individual synapses. However, this synapse model is also the basis for the mean-
field network model we used in the Chapters 2, 3, and 4.
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The V1 map model

B.1 The orientation selectivity index (OSI)

The orientation selectivity index (OSI) for a set of N values {x;}_, with cor-
responding orientations 6; is given by:

\/(X:z Z; COS (29i))2 + (>, xisin (29i))2
> i Ti

In Chapter 2 we use this index to quantify the degree of tuning for the con-
ductances, the membrane potential, and the spike responses. High values of
the OSI correspond to well tuned responses, whereas low values correspond to
weakly tuned responses.

We also use the OSI as a graded measure for the location in an orientation
map. Considering a pixel in an orientation map, the preferred orientations of all
pixels in a circular region around this pixel can be used to compile a histogram
of preferred orientations. The OSI of this histogram quantifies the map location.
Small values correspond to locations close to a pinwheel, whereas large values
correspond to orientation domains.

0SI ({mi}jvzl) - (B.1)

B.2 Firing rate model of coupled neurons

The network models we use in the Chapters 2, 3, and 4 are based on the single
cell model described in Appendix A. They are simplified rate models for the
dynamics of neural populations, which can be derived from a more detailed
biophysical model, as described elsewhere (Shriki et al., 2003).

However, let us briefly summarize the main ideas developed by Shriki et
al. (2003): Consider a large network of synaptically coupled neurons which is
in an asynchronous state, that is, there is a low probability that neurons fire
synchronously. Let r; = F; (I;) denote the firing-rate response of neuron ¢ to
a total input current [I;, where r; is a state-variable denoting the firing rate of
neuron 4, and F; is the current-frequency function of neuron i. It can be shown
that asynchronous synaptic inputs generate a stationary additive contribution to
applied currents, and increase the passive leak conductance of the postsynaptic
cell. In many cortical cells, increasing the leak conductance does not alter the
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current-frequency function, rather it increases the threshold current. Under
these conditions, the steady-state firing rate takes the form (Shriki et al., 2003)

ro=F [ Y+ 194y Wiyry — AL (g))

J

for all i where W;; = G; (E; — EF — V) is the "synaptic weight” of the connec-
tion between postsynaptic neuron i and presynaptic neuron j with associated
synaptic conductance G;;. In addition, I 7T is an afferent input current, If g
is an additional additive background input, E; is the reversal potential for the
synaptic connections of neuron j (see Appendix A.5), and gF and EF are the
leak conductance and reversal potential of neuron i, respectively. The shift of
the firing rate function is given by AI; (9r) = If + V%9, where the voltage
V¢ determines the rate of increase in the shift with the increase of the leak
conductance.

Having determined the steady-state firing-rates (see Appendix A.4), one can
incorporate the effects of synaptic dynamics by considering the first-order rate
equation

d
Tj g (8) = =1 (8) + Fj (I (¢))

where 7; is an effective synaptic time constant.

B.3 Model architecture

Here we describe the specificities of the map model. The parameters are given
in Tab. B.1.

Spatial layout

For the map model we used a two-dimensional grid with N = 32 - 32 = 1024
locations spaced equally between —1 and 1 on both x- and y-axis. With each
two-dimensional location x; a preferred orientation was associated as given by
the artificial orientation map shown in Fig. 2.8a.

Recurrent connectivity

The maximal conductance Gf‘jﬂ for the connection between the presynaptic neu-
ron j of type B € {E, I} and the postsynaptic neuron i of type o € {F, I} was
given by

- 1 d(x;, x;)°
af a3 iy Xj
Gij Gij . Z; P ( 20[23 ’

where og determines the spatial scale of the connections made by neurons of
type 3, and Z is a normalization constant such that Zjvzl G?jﬁ = G‘f}ﬁ for all
neurons i. The distance d (x;, x;) between the locations of neuron ¢ and neuron
j is defined to implement circular boundary conditions.
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| Parameter Description Value
Network architecture
Ng =Ny Number of exc. and inh. neurons 32-32=1024
Connectivity
Op =071 Spatial scale of local connections 0.1
M Scaling of afferent input 2000sp/s
K Tuning of afferent input 1.7
Strengths
G‘};f f Strength of afferent input to all exc. neurons 0.0044nS
G?f ! Strength of afferent input to all inh. neurons 0nS
GEE Exc. of exc. neurons 0..0.43nS
GEgr Inh. of exc. neurons 0..1.3nS
Gre Exc. of inh. neurons 0.15nS
Grr Inh. of inh. neurons 0nS
Background inputs
Iy Background input to exc. neurons 0.38nA
I?g Background input to inh. neurons 0.74nA

Table B.1: Parameters specific for the map model.

Afferent input

In the model, only the excitatory neurons receive an afferent input. The input
was a function only of the circular distance Af between the preferred orientation
of the postsynaptic neuron and the stimulus orientation €, but not of the location
x; of neuron i. When a visual stimulus of orientation 6 is presented to the
network, it leads to the afferent input current

1975 (9) = M- W [0.1 0.9 exp (n [cos (% d; (9)) . 1m
with

N )

d; (0) = min(|0 —6;],180— |0 —6;]).

B.4 Regimes of the map model

Kang et al. (2003) distinguished in their analysis between four different oper-
ating regimes, which were defined in terms of the effective recurrency, and in
(Wiesing et al., 2005) we adopted these definitions. For technical reasons, how-
ever, their definitions are not applicable in our case. In particular, the model
used by Kang et al. (2003) assumes i) linear firing rate functions and ii) all
neurons above threshold. In our model, the firing rate function of the inhibitory
neurons is non-linear. Moreover, due to the thresholding, which in our model
accounts for the location-independent spike tuning, not all excitatory neurons
are above threshold.



98

Chapter B

Therefore, we use the following definitions: If the sum of the input currents
received (by a neuron in an orientation domain) via the local recurrent excitatory
and inhibitory connections has a positive maximum and a negative minimum,
we refer to those models as models in the Hat-regime. If both maximum and
minimum are non-negative, the local recurrency of the corresponding models
is dominated by excitation (Ezc-regime), and if both maximum and minimum
are negative, the recurrency is dominated by inhibition (Inh-regime). Those
are the regimes indicated in Fig. 2.9. Finally, with Aff we refer to the single
model parameterization without any local recurrency (Ggr = Ggr = 0), which
corresponds to the lower left pixel in Fig. 2.9a-d.

The definitions we use are not intended to correspond one-to-one to particu-
lar properties of the corresponding model networks. They are intended only as
a simple classification of the parameter space we explore. However, one could
also ask, as to whether the classification we use is specific to neurons in the
orientation domain. Therefore, we applied the same definition to neurons close
to a pinwheel. In this case, the classification borders indeed change, but not
completely (Fig. B.1a).

For pinwheel neurons, the Hat-regime becomes smaller while the Ezc-regime
becomes larger. In particular, some parameterizations classified as belonging to
the Hat-regime using the original definition are now labeled as belonging to the
Exc-regime. One property, however, seems to correlate well with our definition
of the Hat-regime defined either for an orientation domain or pinwheel location.
The highest values of the co-variation between excitation and inhibition are
found in the Hat-regime (see Fig. B.1b).

a) Exc Hat Inh b)
0.43
OD_ m u l
7y
=
o
" ﬂ u
1.3

G, [nS]

Figure B.1: Regimes of the map model. a) Comparison of applying the defini-
tion for the regimes (see text) to orientation domain and pinwheel neurons. The
white lines in the top and bottom row indicate the classification as obtained for
an orientation domain neuron. The red regions mark the corresponding regime.
b) The co-variation of excitation and inhibition as quantified by the ration of
the slopes for g. to g;. A value of 1 would correspond to a “perfect” co-variation.



Appendix C

The 1inter-areal network model

We describe here the construction of our cortical network model and how the
parameters of the model are fitted to anatomical and physiological data. The

values of all model parameters are summarized in Tab. C.1.

| Parameter | Description Value
Network architecture
Ng = N7 | No. of exc. and inh. neurons in striate cortex 161
N No. of exc. neurons in extrastriate cortex 33
Size of simulated visual field representation 16 deg
Connectivity
ASS Scale of lateral connections 2.3deg™!
XS = \SX | Scale of inter-areal connections 0.3deg™!
VS8 Conduction velocity of lateral connections 200mm/s
VS X Conduction velocity of inter-areal connections | 4000 mm/s
TS X Distance between V1 and extrastriate area MT 7 mm
Oaff Spatial spread of aff. input 0.1deg
Strengths
G253 Lateral excitation of exc. neurons 0.005nS
G732 Lateral excitation of inh. neurons 0.053nS
Gx2 = GEX | Inter-areal excitation 0.007nS
Gip Local excitation of excitatory neurons 0.13nS
G?p Local excitation of inhibitory neurons 0.05nS
G2 Local inhibition of exc. neurons 0.79nS
G%, Local inhibition of inh. neurons 0.08nS

Table C.1: Parameter values specific for the inter-areal model.

C.1 Cortical network model

In our recurrent network model we consider two areas of an idealized cortex with
each area being composed of a single layer of cells. The neurons in the model
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cortex are identified with the visual field position of their receptive field (RF)
centers, and the patterns of the intra-areal lateral (or horizontal) and inter-
areal feedback (FB) connections are defined as translation-invariant in visual
field coordinates.

For simplicity, we do not model stimulus features such as orientation and
spatial frequency, since we focus on size-tuning and contrast effects in this paper.
Thus, we model experimental paradigms in which two-dimensional gratings are
presented at the optimal spatial frequency and orientation of the center target
neuron. In real life, such stimuli activate discrete patches across cortex corre-
sponding to those cortical columns that have sufficiently similar orientations and
spatial frequencies to that of the stimulus. We idealize this patchwork structure
as a one-dimensional network of cells along the collinear axis of the preferred
orientation, in agreement with recent data showing that horizontal (Bosking
et al., 1997; Sincich and Blasdel, 2001) and FB (Angelucci and Bullier, 2003;
Shmuel et al., 2005) connections in V1 link regions of similar orientation pref-
erence along an axis collinear with the preferred orientation of their neurons of
origin.

Let r* (z;, t) denote the local activity of excitatory (I = E) and inhibitory
(I = I) neurons with their RF center at in striate (¢« = S) and extrastriate
(o = X)) cortex. The RF centers were equally spaced between —8° and +8°. For
the striate and extrastriate area we used 161 and 33 model neurons, respectively.
The activity r* evolves according to the rate equation (see also Appendix B.2)

dr® (x;, t)
LT

where F (I) is the current-frequency function as given in Appendix A.4 and
I (x;, t) is the total synaptic current into the neuron. In the striate cortex, the
synaptic current is given by

m=FE,I
s s
+ 0 W @ilwy) g (w5, t — AP (ay])))
B=8,X j
+h (i, t) 01,p
where the first term corresponds to the local inputs, the second corresponds to

the lateral and feedback inputs from the extrastriate cortex, and the last term
denotes the afferent inputs. For the extrastriate cortex it has the form

= _rla ('ri’ t) + Fla (Ila ('ria t))

IlX ('ri’ t) = Z Wl)r(nré ('ri’ t)
m=FT
> WS (wilay) - rE (g, t — A (i]ay))
J

where the first term corresponds to local inputs, and the second corresponds to
afferent excitation from the striate cortex. Lateral interactions in the extras-
triate area were not part of the model. The weights for the non-local intra-
(lateral) and inter-areal (FB) connections depend on the distance between the
pre- and postsynaptic neurons’ RF centers x; and x; and are given by

Wi (ila;) = W - exp (=3 o — 25))
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where A\*? determines the spatial scale of the connections. Lateral connections in
V1 were made only between neurons with the distance between RF centers larger
than 0.1° (equivalent to 230 pum in cortical distance, at 5° retinal eccentricity-
see below). For example, self-excitation via lateral connections was excluded.
The absolute values for the conductances associated with the weight coefficients
Wﬁf for the modulatory connections and for conductances for the coefficients
W;> for the local connections are given in the Tab. C.1.

For simplicity, all recurrent connections in extrastriate cortex were set to
zero (WEX = WX = 0) so that it effectively served as a relay station without
further processing.

The time-delays are given by

AP (1 ) % for lateral connections in striate cortex
Ti|Tj) = o . .
! % for inter-areal connections

where vg_, s and vg_,x are the conduction velocities for signaling within the
striate cortex and between the striate and the extrastriate area, respectively,
and Azg_ x is the distance between the two areas. The values for the A\*? and
the conduction velocities are given in Tab. C.1.

C.2 Afferent input

The model neurons in the recurrent network correspond to neurons in layer 2/3
of area V1. Therefore, the afferent input to these neurons arises from layer 4C.
Here we model the input to the i-th neuron in the network with RF center at
x; as a current /%7f (z;). Let c(y) denote the contrast of the stimulus at the
visual field location y, then the input current is given as

1945 (2;) = / G (y: ) -1 (c(v)) dy,

where G (y; z;) and I (c) account for the spatial summation over the afferent
inputs and the contrast-dependence of the input, respectively. These functions
are defined as

-1
ot 1 = (o) oo (s )
0 for0 < ¢ < ¢th
I(C) = ﬂi (C _ Cth) for Cth <c< clow (Cl)

clow _gth
high _ ylow
I I (C _ clow) + Ilow for Clow <ec

Chigh —clow

Here, the parameter values for the contrast-dependence of the input currents
were set to c'? = 0.1, ¢'°¥ = 0.15, 9" = 0.85, I'°" = 0.58nA, I"9" = 0.71nA,
and o4¢5 = 0.1 (Angelucci et al., 2002a; Bauer et al., 1999).

C.3 Parameterization of spatial scales and delays
The parameters \*? determine the spatial scale of the connections between

the areas o and 3. We used A% = 2.3deg™! and A\¥X5 = A\5X = 0.3 deg™".
These values were computed as follows. Defining the scale of the connections
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between the areas o and 3 as the value Az at which exp (—A*?Az) = 0.05, we

have \*# = — (Aa:)_l In 0.05. For the lateral connections we used Az = 0.5 -
D(mm) - MF~! = 1.3deg and obtained A% = 2.3deg™!, where D,,,,) = 6 mm
is the average length of the lateral connections in macaque V1 (Angelucci et al.,
2002b), and M F = 2.3mm/° is the cortical magnification factor in macaque V1
at 5deg eccentricity along the iso-polar lines of the visual field representation
(Essen et al., 1984).

In a previous study (Angelucci et al., 2002b), we found that the average
visuotopic extent of the lateral connections closely matches the low contrast
summation field (IsRF). For example, at 5deg eccentricity the physiologically
determined average size of the IsRF is approx. 2.6deg in diameter, which is
compatible with 2Ax = 2.6 deg. For the inter-areal connections we used Az =
0.5+ Dy - MF~1 = 9.89deg, and obtained X% = A5 = (.3deg, where
D(pm) = 8.9mm is the average cortical extent of the neuronal fields of FB
connections to V1 within area MT in the macaque (Angelucci et al., 2002b),
and M F = 0.45mm/deg is the cortical magnification factor in macaque MT at
5 deg eccentricity (Albright and Desimone, 1987).

For the conduction velocities used to compute the time-delays At*? we used
vs—x = 4000mm/s for the conduction velocity of the inter-areal connections
between V1 and MT in the macaque, and Axs_.x = 7mm for the distance be-
tween the areas V1 and MT (Hupe et al., 1998). For the intra-areal connections
in the striate cortex we used vs_,x = 200mm/s- M F~! = 86.9 deg/s (Bringuier
et al., 1999), where M F = 2.3mm/deg is the cortical magnification factor for
the striate cortex at 5 deg eccentricity. These values lead, e. g., to time-delays of
At =5°/(86.9°/s) = 57.5ms for signals traveling a distance of 5 deg within the
model V1 compared to a delay of only At = (2-7mm) / (4000mm/s) = 3.5 ms.



Appendix D

(Generic hypercolumn model
and Fisher information

D.1 The generic hypercolumn model

Here we describe in detail the network model we used in Chapter 4. The ar-
chitecture of the recurrent network model is shown in Fig. 4.2b. Excitatory
and inhibitory neurons receive already tuned afferent inputs from a lower visual
area as well as additive and background (feedback) inputs. The latter are not
described explicitly, but their overall effects are summarized by a fluctuating
background conductance and an additive input current ("feedback"). Parame-
terizations were chosen such that the model reproduced the "average response"
of a V4 cell in the control trial of a perceptual learning experiment (Yang, 2004).
Here, we also used the firing rate functions from Appendix A.4. The parameters
for this model are summarized in Tab.

We separate the overall input, current I; = [/ 4 [7¢¢ 41994 into an afferent, a
recurrent, and an additive background component. A large fraction of the latter
is assumed to be a result of direct feedback received from a downstream area.
For excitatory and inhibitory neurons, we initially set 72 to 0.6 and 0.64 nA,
respectively. This gives rise to a background activity of 3.6 spikes/s (sp/s) for
the excitatory and inhibitory neurons. When a stimulus 6 is presented to the
network, it leads to an afferent input to neuron 4, which is calculated using a
bell-shaped input tuning function with a peak at 67", which is the preferred
stimulus of neuron i:

I970) = WM exp (|cos (2nd; (0)) — 1])  with
Wiaff — G;lff (EE _ EzL _ ‘/;C) ,
where
d; () = min (|0 — 67"|, 1 — |0 — 67"

is the circular distance between stimulus 6 and the “afferent” preferred stimulus
6" = i/N of neuron i, N is the number of excitatory or inhibitory neurons,
depending on the type of neuron i, and M = 2000sp/s. For convenience, we
consider dimensionless one-dimensional "circular" stimuli with 0 < § < 1. To
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obtain numerical values for stimulus domains such as “orientation” or “direction”,
0 needs to be multiplied by 180° and 360°, respectively.

The recurrent input is a weighted sum of the output activities of the neuron
and is given by the following equations:

rec  __ rec,, .
I; = E W™ r;
J

Wige = Gy (B — Bf - VY)
Gii® = Ziexp (Iii cos (27Tdi (9;”))) )

where x; (k; = k7 = 1 for inhibitory neurons and k; = kg = 4 for excitatory
neurons) and Z; determine the specificity and the strength of the recurrent con-
nections. r; denotes the firing rate of the presynaptic neuron j. The strengths
Z; are set so that 3, G7¢° = 0.135nS for the excitatory and 0.2813nS for the
inhibitory neurons j.

| Parameter |Descripti0n | Value

Network architecture
Ng = N7 | No. of exc. and inh. neurons in striate cortex 32

Afferent input

M Scaling of afferent drive 2000sp/s
G = @47 | Strength of afferent input to exc. neurons 9.3 -107*nS
GHT = G477 | Strength of afferent input to inh. neurons 5.8 -107*nS
Background inputs
109 = 1% Background input to exc. neurons 0.6nA
109 = 1% Background input to inh. neurons 0.64nA

Recurrent connections

KE Specificity of recurrent exc. connections 4

KI Specificity of recurrent inh. connections 1
> Gise Sum of all presynaptic exc. weights 0.135nS
> ; Gie Sum of all presynaptic exc. weights 0.2813nS

Table D.1: Parameter values specific for the generic hypercolumn model.

D.2 The Cramer-Rao bound

The Fisher information used in Chapter 4 is rooted in statistics, where it de-
termines, via the so-called Cramer-Rao bound, a lower bound on the variance
of any possible unbiased estimator. Here we give some background on how this
quantity is derived.

Consider the problem of estimating a single scalar parameter ¢ from the
knowledge of some measurements yi,ys2,...,yn = y. (Note that the mea-
surements are scalar values. They are referred to as the components of a
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vector only to shorten the notation.) The corresponding system of N mea-
surements of the underlying parameter 6 is described by the liklihood p(y|6).
The observed datapoints are subject to some (un)known additive noise: y =
(04 1,0+ x9,...,0 + xx). The Cramer-Rao bound gives a lower bound for the
expected squared error assuming an unbiased estimator:

B|(m-0)] 1@ 21,
where

10 = [ (Zmoin) viveriy

is the Fisher information with respect to . The Cramer-Rao bound can be
derived as follows: Since an unbiased estimator assumes

E[é(Y)—H} Z/(é(Y)—G)p(.VIG)dyZO,

the goal is to fulfill this constraint. This is performed by deriving with respect
to 6:

0 = a/(é() 0)p(y|0)dy
0 = /89 (¥)p(y10) — 0p(y|0))dy
0

0 = [ 5516 5500) +0(3) 5p(316) ~ p(316) 550 ~0p(v10)dy
v by

0 = /é(y)%p(ylé’)—p(yl9)—9%p(3’|9)dy

[66) - 0505100y~ [ piviosy

o
I

Using the identity %p = p% In p and the fact that p(y|0) is normalized gives

[ (66)-6)p510) 55516y dy = 1.

Factorizing the integrand and then squaring the equation yields

/[(9 ) — 6)v/p( Y|9} {\/p yl0) - 1HP(Y|9)]

@ b

fiow] -

Here, [ (ab)dy should be realized as representing the scalar product (a,b) be-
tween two functions in a function space. This is used when applying the Schwarz
inequality

lall - 1811 = | (@, b) [ = llal® - 1b* = | {a, ) |* = (a,a) - (b,b) = | {a,b) %,

1
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to give
[ L)~ orvam] oy [ [Vismgmpe] ay = 1
[ - ooy [ | mpyw] pyiay = 1

which is the Cramer-Rao inequality.

D.3 Gradients of the Fisher information

Let f; (§; w) be the tuning function of a neuron i, where w is a parameter of
this tuning function. Then, the derivative 9.J;/0w of the Fisher information J;
for a given value of the stimulus @ w. r. t . the parameter w is given by

0J; 3fz O*fi  0fi 0f;
ow < T gwon ~ o0 6w) /)"

In order to determine how small changes of the network parameters (recur-
rency and gain of excitatory neurons) change the objective function, one needs
the derivatives of the tuning functions. But how to compute these derivatives for
tuning functions given only implicitly as the attractors of the recurrent network?
First, note that at a steady-state

i (97 (_;aff7 C_}Tec7 aE, Iadd) = F, (Iz (97 (_;aff7 C_}Tec7 aE, Iadd)) (Dl)
N

7 (97 (_;aff7 Gree, aE, Iadd) _ szlff + ZWiTjecrj + Igdd (D2)
j=1

must hold for all . We calculated the derivatives necessary to evaluate the
gradient of the objective function w. r. t. the network parameters by first
simulating the network until a steady-state is reached. Then, we derived both
sides of Eq. D.1 and re-arranged the resulting set of equations using a matrix
notation.

Sensitivity to the stimulus parameter: In order to obtain an expression
for Or; /00 we derive both sides of Eq. D.1 w. r. t. § and obtain

or; OF, 01! OF, & oy
— ? rec : h D‘
oo~ oL o0 oL e M (D:3)
oret ad -

0 = ﬁkz exp (k [cos (2nd (0,60;")) — 1)), (D.4)
where k; = —2xxW Msin (27d (0;,60°7)), 0d/00 = sgn (6 —6°") for 0 <
|6 — 6| < 0.5, and 9d/00 = —sgn (0§ — 0Y") for 0.5 < |§ — 67"|. Here, sgn (x)
is a signum function with sgn (z) = 1 for u > 0, sgn (z) = —1 for < 0, and

sgn (z) = 0 for z = 0. Let h; = dI*7 /00, r? = dr;/00 and F;; = 6,;0F; /I,
and be the components of h, g’ and F. Then, we can write the Eqns. D.3 as

r’ = Fh + FW™r? = [1 - FW"*]"' Fh. (D.5)



D.3 Gradients of the Fisher information

107

Recurrent connections: In order to obtain an expression for §%r; /G <¢00
we derive both sides of Eq. D.3 w. r. t. G7.¢¢ and get

s

N

827’1' 82E alzaff rec (97"j
0Grecod . aGreal, | o6 +;WU 0
OF; 0ry  OF; . ... 0%1;

5”' rS ot i 7
ToriVes 5120 T o, 227 5Grga0

(D.6)

Let F}® = 8;;0%F;/0GT<°dI; and hf’” = 0,;VysOF;/0I; - Ors /06 be the compo-
nents of h?"* and F"* with V,., = F, — E, — V.°. Then, we can write

rG,rs _ [1 - FWTGC]*l [Frsh+ FrsWrecrO + he,rs] (D7)

and get 7" = 927, /OGT°06. To obtain 17 = r; /OGS we derive both sides

%

of Eq. D.1 w. r. t. G5¢ and get

s

N

ari aE rec 87’]-
aG?SC = aIZ 6ri‘/;‘srs + J:Zl Wij aG:gc and hence (DS)
VU= L-FWOTUERT with =00 (DY)

Gain-modulation of excitatory neurons: In order to obtain mf’r =
0%r;/0a¥ 00 we derive both sides of Eq. D.3 w. r. t. af. Denoting with
Afjfr = §;;0%F;/0aF I, the elements of A%", we get

m’" = [1 - FW"| " A% [h+ Weer?] (D.10)
To obtain m! = dr;/0al’ we derive both sides of Eq. D.1 w. r. t. a and get

N

67&1 rec a’r
r = r

Ori I I al rec OT

5aE = o' =20 (L= Ali(g1))] - > W, 5al (D.12)
T j:l T

for excitatory and inhibitory neurons i, respectively. Let I” = 6,; [I; — AL (g1.)],
A7 = 6i;af and I =0, A}, = d04]al — 2b] (I; — Al (g))] for excitatory and
inhibitory neurons i, respectively, then we get

m’l‘ — IT + ATWTC(}mT — [1 _ ATWTCC]71 IT-

Derivatives of gain functions: For the gain functions the derivatives
below the threshold are 0, above they are dFF/dl; = af and dF}/dl; =

3

al +2b! (I; — AI(g1)), and due to the discontinuity they are not defined at
the threshold. However, for all computations we never needed to evaluate the
derivative at the threshold 0. For 0?F/0G"¢°0I we get 0°FF /0G¢01; = 0 and

s

O2F] 0G0l = 201 [8,:V,rs + L, Wie0r; /0G<c], or in the shorthand

s

notation F/"¢ = 2b! [h"* + Wre¢r™s]. For the gain-modulation of the excitatory

neurons we get 9°FF /0aF0I; = §,; and 0*F! /0aFOI; = 2b! Z;VZI Wieeor; [0af.
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