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Zusammenfassung

Die Nutzung von Anwendungen über das Internet ist längst nicht mehr nur über einen
Desktop-PC, sondern auch über zahlreiche mobile Endgeräte möglich. Anwendungen
und Informationen sind damit theoretisch zu jeder Zeit, von jedem Ort und in jeder
denkbaren Situation verfügbar.
Das kontinuierlich wachsende Informationsangebot und die stetig steigende Anzahl

von Anwendungen im Internet, die diese Informationen verarbeiten oder die in Zukunft
direkt vom Nutzer nach seinen individuellen Bedürfnissen selbst erstellt werden kön-
nen, benötigen strukturierte, einfach und e�zient nutzbare Bedienungsober�ächen. Eine
allgegenwärtige Verfügbarkeit dieser Anwendungen, wie es durch die Technologie schon
heute möglich ist, erfordert Bedienungsober�ächen, die ihre Darstellung an die Situation
des Nutzers anpassen können. Auch die Bedienungsweise sollte konsistent bleiben, wenn
der Nutzer seine Bedürfnisse, das Bedienungsgerät, oder die Interaktionsform wechselt.
Bislang ist es nicht gelungen Anwendungen zu entwickeln, die sich selbstständig auf den

aktuellen Nutzungskontext anpassen können. Vielmehr werden Anwendungen mehrfach
für spezi�sche Geräte- und Nutzergruppen entwickelt oder die Anpassung der Ober-
�äche wird ohne Bezug der zugrundeliegenden Semantik der Anwendung vorgenom-
men. Die Adaption der Ober�äche gelingt demnach bislang entweder nur für Geräte,
die während des Entwicklungsprozesses einer Anwendung explizit berücksichtigt wur-
den, oder geschieht ohne Kenntnis der zugrundeliegenden Anwendung, indem z.B. Bilder
grundsätzlich verkleinert oder erweiterte Navigationsmöglichkeiten gescha�en werden.
Diese Arbeit schlägt eine strukturierte Methodik zum Entwurf und der Entwick-

lung von interaktiven Anwendungen vor, die sich selbstständig auf unterschiedliche
Nutzungskontexte adaptieren können. Dabei wird der Schwerpunkt auf der expliziten
Beteiligung des Nutzers während des Entwurfs- und Entwicklungsprozesses gelegt. Ziel
ist es, die Denkweise des späteren Nutzers zu erfassen und bei der Anwendungsentwick-
lung zu berücksichtigen.
Die Methodik beschreibt hierzu einen Prozess, in dem das Anwendungsdesign über

mehrere Modelle auf verschiedenen Abstraktionsstufen entwickelt wird. Dabei spez-
i�ziert jedes Modell deklarativ eine Sicht auf die Anwendung. Ausgehend von sehr
abstrakten Modellen, werden schrittweise konkretere Modelle abgeleitet, die am Ende
des Prozesses jeweils eine Ober�äche für eine Gerätegruppe und eine Interaktions-
form beschreiben. Durch diese schrittweise Verfeinerung wird die Konsistenz einer
Anwendungsober�äche über mehrere Interaktionsformen und Gerätegruppen hinweg
sichergestellt. Die deklarative Semantik der Modelle erlaubt die unmittelbare Interpre-
tation jedes Modells. Somit wird der häu�g auftretende Bruch zwischen Designspezi�ka-
tion und Codierung der Anwendung vermieden. Die vorgeschlagene Methodik wird durch
zahlreiche Entwicklungswerkzeuge unterstützt, die alle Phasen des Entwicklungsprozesses
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nahtlos abdecken und für jeden Entwicklungsschritt auch die unmittelbare Ableitung
eines Prototyps unterstützen. Die Prototypen werden als Beispiel zur unmittelbaren
Konfrontation des späteren Nutzers verwendet und erlauben die frühe Berücksichtigung
von Verbesserungsvorschlägen im Entwicklungsprozess.
Die in dieser Arbeit vorgeschlagene Methodik wird durch eine Laufzeitumgebung

(die �Multi-Access Service Platform�) ergänzt, die mittels Softwareagenten die in der
Methodik spezi�zierten Modelle direkt ausführen kann. Die Laufzeitumgebung verfügt
über Schnittstellen zu den Entwicklungswerkzeugen. Dadurch können Modelle auch zur
Laufzeit des Systems mittels der Werkzeuge geändert oder ergänzt werden, um neue
Funktionen zu testen oder eine Anwendung um neue Nutzungskontexte zu erweitern.
Es existieren schon jetzt zahlreiche Beschreibungssprachen mit denen eine interaktive

Anwendung auf Basis verschiedener Abstraktionsstufen spezi�ziert werden kann. Auch
wenn sich bislang keine dieser Sprachen durchsetzen konnte, beschränkt sich diese Arbeit
darauf, fehlende Modelle zu ergänzen (1), akzeptierte Modellvorschläge zu erweitern (2)
und Modellalternativen vorzuschlagen, die bislang noch unberücksichtigt geblieben sind
(3).
Zu (1) wird ein Layoutmodell sowie ein Entwicklungswerkzeug vorgeschlagen, mit

welchem sich Aussagen spezi�zieren lassen, die beschreiben, wie andere Designmodelle
bezüglich des Ober�ächenlayouts zu interpretieren sind. Zu (2) wird die ConcurTaskTree
Notation, welches eine allgemein akzeptierte Beschreibungssprache zur Aufgabenanalyse
ist, um die Möglichkeit der direkten Modellinterpretation erweitert und eine explizite
Notierung von Domänenkonzepten ergänzt. Zu (3) wird ein alternatives, abstraktes Mod-
ell zur geräteunabhängigen Spezi�kation von Bedienungsober�ächen entworfen, welches
im Gegensatz zu anderen Vorschlägen aus dem Domänenmodell anstelle eines Aufgaben-
modells abgeleitet wird.
Die Validierung der Arbeit erfolgt zum einen theoretisch durch Konfrontation der

Methodik, der Architektur und der Modellergänzungen mit den Anforderungen aus einer
Anforderungsanalyse auf Basis der Evaluation des aktuellen Stands der Technik. Zum
anderen wird auf einer praktischen Ebene die Anwendbarkeit der Methodik, Werkzeuge,
Architektur und der Modellergänzungen mittels einer Fallstudie, die während eines
Forschungsprojektes umgesetzt wurde, detailliert beschrieben.
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Abstract

Interactive applications are not bound to traditional desktop computers anymore. With
the internet pervading our everyday lifes access to information and services is theoretically
possible from any device and in every situation. The continously growing information of
the net, and the possibility to build new services based on composing already existing
services require well structured and e�cient-to-use interfaces. User interfaces need to
adapt their presentation based on the actual situation of the user and consistency of
the interface needs to be maintained when the user switches the device, modality or the
preferences changes.
Nowadays, internet access is available in nearly every situation, but applications fail

to adapt to the user's situation. Applications are still developed for a certain device and
a speci�c context-of-use and adaption happens on the user's end-devices without taking
into account the applications' semantics. This results in applications that cannot be con-
venient accessed on a device that the application's designer has not explicitly considered.
Currently most of the internet services cannot be comfortably accessed by today's mobile
device's browsers that are often only able to scale down images or o�er enhanced scrolling
capabilities. Further context-of-use adaptations or support for additional modalities have
only be realized for very speci�c applications like for instance in-car navigation systems.
This dissertation research focuses on creating a method for interactive software design

that implements a strong user-centric perspective and requires testing steps in all phases
of the development process enabling to concentrate on the end-users' requirements and
indentifying how the users' way of thinking can be considered as the basic way of control-
ling the application. The method involves the creation of various models starting by very
abstract models and continously substantiating abstract into more concrete models. All
of the models are speci�ed in a declarative manner and can be directly interpreted to form
the interactive application at run-time. Therefore all design semantics can be accessed
and manipulated to realize context-of-use adaptations at run-time. By the abstract-to-
detail modeling approach that includes deriving one model to form the basis of the next,
more concrete model, consistency can be archieved if an application needs to be designed
to support di�erent platforms and modalities. The method is supported by tools for
all steps of the development process to support the designer in specifying and deriving
the declarative models. Additionally all tools support the generation of prototypes and
examples enabling the developer testing intermediary results during the design process
and to consider users' feedback as often and early as possible.
The method is complemented by an associated run-time architecture, the Multi-Access

Service Platform that implements a model-agent concept to make all of the design models
alive to bridge the actual gap between design-time and run-time of an interactive model-
based system. Since the run-time-architecture is able to synchronize changes between
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the di�erent models it can be used on the one hand to manipulate a running system in
order to prototype and test new features and on the other hand it enables to personalize
a running system instance to a certain user's requirements. The architecture considers
the tools of the method and enables the designer to deploy changes of the models directly
into the running system.
In the past a lot of user interface description languages (UIDL) have been proposed

to specify an application on di�erent model abstraction levels. As of now, most of these
proposals have not received a broad acceptance in the research community where most
research groups implement their own UIDLs. Both, the method and the run-time archi-
tecture abstract from a specifc UIDL but pay attantion to the actual types of abstraction
levels that have been identi�ed during the state of the art analysis. Instead of proposing
yet another UIDL, the work concentrates on identifying and realizing missing aspects
of existing UIDLs (1), in enhancing well accepted approaches (2), and by introducing
alternative aproaches that have not been proposed so far (3). Regarding (1) the work
describes an approach for a layout model that speci�es the user interface layout by state-
ments containing interpretations of the other design models and can be designed and
tested by using an interactive tool. Specifying a task model has been widely accepted to
implement a user-centric development process. Thus, we enhance the ConcurTaskTree
notation to support run-time interpretation and explicit domain model annotations to
support our work (2). Finally, the work proposes a di�erent way of specifying an abstract
user interface model (3) that is based on a derivation based on a domain model instead
of using a task model as the initial derivation source.
The validation of this work is done on a theoretical level by confronting the method,

the run-time system, and the language extensions to the initial requirements and addi-
tionally on a practical level by presenting one of the several case-studies that have been
undertaken as part of a research project.
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1 Introduction

Computer systems as we know them are currently changing from single systems running
a set of applications to complex networks of connected devices heavily in�uencing the
users' everyday lifes. This development leads to new requirements for applications and
human-computer interaction. Networks of heterogeneous devices in homes and o�ces
require �exible applications that can adapt to changing environments supporting the
user in his daily life - anywhere, on any device and at anytime. This requires interactive
systems to be able to switch modalities and devices on demand of the user and to enable
user interface distribution combining several devices to control one interactive system.
Addressing various di�erent devices and modalities thus requires the possibility to

adapt the user interface to support the speci�c features of the device's software plat-
form and the provided interaction capabilities. Model-based approaches, practiced for a
long time in Human-Computer Interaction seem to be a promising approach to support
software developers, developing interactive applications. Model-based approaches aim at
modeling the di�erent aspects of the user interface on certain levels of abstraction and
o�er a declarative way of modeling such multi-platform user-interfaces. With the help
of a software engineering process that changes the focus from (manual) implementation
to the tool-driven design of models that can be directly executed by a run-time-system,
software developers can be supported to address these challenges.
After we give a motivation for our approach in section 1.1 that distinguishes between a

users' and a developers' perspective, we introduce this thesis' statements, the validations
applied and limiting the scope of this work in section 1.2. Finally in section 1.3 we
present the thesis overall structure.

1.1 Motivation

During the recent years information and communication technology are continuously
pervading our every day lifes. Whereas in early days, only specialists had access to IT
technology, nowadays most people have access to technology by the increasing prolif-
eration of �xed and mobile devices [Eisenstein et al., 2001] and demand for ubiquitous
access to information. User interfaces that mediate between the human and the machine
are required to adapt to the users' and devices' capabilities to be useable for everyone.
Realizing user interface adaptation to various kinds of users and devices accounts for
approximately 50 percent of total life cycle costs [Myers, 1989]. Costs for developing
user interfaces will increase even more when considering an aging society that starts to
accept modern IT technology to bene�t from mobile communication and internet access
but require user interfaces that adapt to their speci�c demands and disabilities.
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The explosion of e�ort to realize adaptive user interfaces for various platforms and
contexts has consequences that need to be considered and handled from two perspec-
tives: the users' as well as the developers' perspective that this thesis focuses on. Both
perspectives are described in detail in the following sections.

1.1.1 The Users' Perspective

Users' preferences and interests when using an application are manifold. Depending on
each user's individual knowledge about the application domain, the complexity of the
user interface needs to be adapted speci�cally to the user's skills. The actual �xation
on visual (graphical-oriented) user interfaces is insu�cient for blind or visual impaired
people and accessibility mechanisms for them are currently target to peripheral technical
software or hardware add-ons such as braille systems that are not directly related to
the interactive systems domain but are trying to translate the visual output to voice
or haptic feedback based on the users disabilities. Assistive systems in cars or in a
manufacture environment require hands-free interactions and therefore other modalities
like voice control for instance.
These challenges are summarized by the �Design for All� principle that is synchronous

with the �Universal Design� paradigm. The Design for All principle is applied in several
disciplines including architecture and product design. Focusing on information technol-
ogy it relates to the following aspects:

Heterogeneity of users

Whereas in earlier days the users of information and telecommunication technologies were
limited to IT professionals, nowadays information technology is available to everyone.
But access is still limited to users that have speci�c skills, including the knowledge about
how to control a computer via mouse and keyboard, the way that �les and folders are
handled and the internet can be accessed. Supporting the user with voice or gesture
based interaction access is often a matter of secondary importance. Development and
maintenance costs actually rise with each new device or access type supported whereas
the earnings shrink as the target group that can be addressed by an additional access
technology decreases. Within an aging European society new groups of users emerge
that have to be considered by addressing their disabilities, age and knowledge. Up to
now it's merely a matter of time to wait until this group becomes huge enough to be
speci�cally considered by future information technology developments on a broad basis.
Currently, products that speci�cally address people with very limited IT knowledge like
for instance the Simpleo PC from Fujitsu-Siemens are part of a niche market.

Variety of environments

Mobility becomes the big issue to consider since stationary desktop PC's have been
replaced partially by mobile PC's recently and smart phones enable ubiquitous access to
IT. Up to now, mobility is more important than easy and comfortable access to services.
This has been impressively observed by the unexpected success of the short message
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system (SMS) enabling instant, but very limited communication from everywhere to
everyone that owns a cell phone. The future worker is expected to work and collaborate
globally and instantly from everywhere and at anytime. Information technology and
speci�cally the user interface has to o�er a comfortable control and access even in noisy
and busy environments like an airport or a train station or needs to react on direct
sunlight during the way to a customer for instance. Additionally globalization and world
spanning companies can only be driven by collaborative work between employees of
di�erent education and cultures. Supporting their collaborative work via information and
telecommunication systems does not only require the localization of the user interface
but also its adaption to the individual skills and cultural background of each individual
employee.
From the users' perspective this dissertation primarily focuses on the technological

diversity, as we think that a proper way to handle and bene�t from the technological
diversity supports addressing each user individually. The second aspect of universal
design, the variety of environments is not explicitly covered in this work, as widening
the approach to handle cultural di�erences and collaborative work is actually handled
by another research community and cannot be adequately elaborated as it goes beyond
the scope of this thesis.
Nevertheless, we hope that this work will contribute to methodical and architectural

aspects to handle the technological heterogeneity as the basic foundation to promote
services to adapt to changing environments.

1.1.2 The Developers' Perspective

Changing the view from the users' demands for an interactive application to that of the
developers' who are implementing such �exible interactive systems, several challenges
can be identi�ed:
Di�erent screen sizes, input capabilities, operating systems and user interface toolkits

result in an explosion of e�ort to realize multi-device applications. User interfaces are
often implemented very speci�c to a certain domain to be generally adaptable. Broad-
ening the access for an interactive application by enhancing a web-based user interface
to be accessible additionally on mobile devices does require reducing the amount of in-
formation that can be presented on the screen and an adaptation to the speci�c input
capabilities of the device. Pen-based applications for instance allow smaller buttons than
touch-screens that require the user's �nger to control the user interface. Depending on
the user's distance and the screen size of the device the font size and graphics of the user
interface have to be adjusted.
Consistency between all platform-speci�c user interface versions of an interactive ap-

plication is hard to maintain but necessary to guarantee a seamless interaction across
multiple devices [Calvary et al., 2003]. Maintaining multi-device user interfaces results
in high development costs since each addition of functionality can require changes to the
user interface representation and has to be made for all of the user interface versions.
Often only one view exists to certain functionality. Either the view of the developer's

team that realized the application or the view of designers that have created the user
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interface presentation. An evaluation of the application is typically done by carrying out
usability tests but is generally considered as too expensive to be applied continuously
during user interface development. Additionally there exists no layer of abstraction that
can be used to gain feedback during the design phase.
Picture-based mock-ups are used to demonstrate the �nal presentation of a user inter-

face but are limited to give a non-interactive view to the end-user or voice dialogs are
tested using wizard of oz testing experiments but often abstract from the actual state
of the technology. Instead of continuous end user testing, semi-structured style guides
describing best practices or corporate guidelines are considered during development and
end user involvement often is postponed to the beta-testing of the �nal application.

Missing well structured methods

Di�erent to software engineering processes that have evolved over the last decades, a
structured process for designing and implementing multi-platform user interfaces is only
applied to a limited extend. Instead of a generally applied method, the designers' cre-
ativity and the developers' knowledge about the applications' functional backend are the
two main driving forces behind actual user interface developments. Often the process
of bringing both views together to form an interactive application is the main area of
misunderstandings and con�icts.
For most of the actually available applications a designer has not been included into

the process and the developers play the role of the user interface designer. Thus, it's upon
the decision of the developer to choose the kind of presentation and its level of verbosity
as well as the selection of suitable interface widgets. The selection of suitable widgets
is additionally limited by the user interface toolkit that is applied and the developer is
bound to programming languages the interface toolkit supports.
Compared to software engineering, in [Limbourg, 2004] several lacks of human com-

puter interaction are listed:

Lack of rigor. The level of rigor in HCI is not the same level as typically used in software
engineering [Brown, 1997]. The complexity of the HCI development life cycle has a
higher order of complexity than in software engineering [Wegner, 1997]. Currently
there are neither automated development processes available that end up with the
generation of a user interface, nor can a human alone e�ectively handle the com-
plexity of developing interactive systems. User interface design requirements are
often incomplete or ambiguous and development goals not exactly speci�ed. Fur-
ther on ill-structured problems miss well-speci�ed criteria for evaluating solutions
and have no de�nite mechanism for applying them.

Lack of systematization. Di�erent to software engineering processes that o�er sys-
tematization and reproducibility by implementing well-de�ned and progressive
[D'Souza and Wills, 1999] processes, the development life cycle in HCI remains
open, ill-de�ned and highly iterative [Sumner et al., 1997].
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Lack of a principle-based approach. Software engineering approaches de�ne system de-
velopment by progression with one stage after another. In contrast the HCI de-
velopment cycles typically advance in a more opportunistic way. As soon as an
intermediary result is `usable enough', the development proceeds to the next stage
[Puerta, 1997].

Lack of explicitness. Experienced designers conduct the development cycle of interac-
tive systems. There are no explicit processes and principles available that capture
the knowledge required to properly realize an interactive system [Paternò, 1999,
Szekely et al., 1995]. Whereas HCI pattern libraries attained a lot of attention
[Tidwell, 2005, Martijn van Welie, 2003] they are mostly limited to speci�c design
issues. Knowledge is currently maintained in the mind of experienced designers.

Missing Development Tools for Multi-Platform User Interfaces

Currently only a few tools that are speci�cally dedicated to the design of multi-platform
user interfaces exist. User Interface design currently happens using GUI builders that are
speci�cally bound to an operating system, a speci�c programming language and mostly
limited to design a graphical user interface for one speci�c platform. User Interface design
is done by sketching pictures using a graphic editor. Beneath the lack of methods for
HCI development methods for developing multi-platform user interfaces, only a limited
set of tools is available that implement and automate such processes [Florins, 2006].
General knowledge and experience for developing multi-platform user interfaces is only
few available. Instead developers are specialized to implement interactive systems for
speci�c target platforms. Each new platform that needs to be speci�cally addressed,
potentially requires a developer that knows about the speci�c limitations and options of
the target platform and ends up in a complete reimplementation of the user interface as
there is no shared abstraction between both platforms available that the developer might
gain advantage from. Usability guidelines are often not considered appropriately as they
are not directly embedded into the development cycle and result in high development
costs.
Consistency is the basic principle of user-interface design since the user expects an

adaptation to a new platform to rely on his experience of a given version of another
platform. If a shared abstraction is missing between the user interfaces for all platforms
consistency is very hard to maintain.

Technological diversity

The quickly evolving technological progress has resulted in a huge heterogeneity of devices
that people carry along or use stationary in their homes and during work in their company
to access services and manage their tasks. Various operating systems and extensive
amounts of software are available based on several user interface frameworks. Each of
this user interface toolkits has di�erent adaptation capabilities, supports a di�erent set
of operation systems and device characteristics. To realize a user interface based on a
speci�c user interface toolkit, the developer needs to be familiar with the programming
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language of the toolkit, the characteristics of the supported devices and �nally with the
methodology describing how the user interface toolkit has to be used to realize a user
interface. The same diversity can be observed by the various types of network access
technologies that have advanced over the last decade. Access technologies di�er in the
bandwidth they o�er for the interactive application, the level of mobility they support,
and the costs of energy and money to utilize them.

Missing Architectures and Frameworks

Nowadays only a very small amount of architectures have been proposed for interactive
systems supporting multi-platform interfaces. Actually utilized architectures mainly deal
with two aspects: loose coupling and modularization of components.
A loose coupling of the user interface components and the application's core func-

tionality has been only partially reached. So far only patterns have been proposed that
focus on a microscopic, implementation level of source code components. On this level
patterns proposed the separation of the application's backend from its actual view to the
user like described by the popular MVC pattern for instance. Currently an application is
often tied to one operating system and thus heavily depends on the underlying interface
technology and its application scope is limited to the included user interfaces.
Component modularization has been promoted to handle the complex eventing mech-

anisms of graphical user interfaces where a lot of elements presented simultaneously are
related in some way. As graphical user interfaces typically o�er various alternative ways
to control an interactive system, component modularization and organization helps to
keep the eventing between components in structured systems. A popular paradigm is
the Presentation Abstraction Control approach that we will discuss in detail when we
present our approach for an architecture that provides multi-platform user interfaces.
Beneath component modularization and loose coupling, the architecture of an interac-

tive system has to be �exible for changing requirements [Luo, 1994].
Those can be targeted by rede�nitions of the organizational structure of the interactive

system and by relocating tasks that are supported by the system. Further on the system
might need to be adapted to re�ect a dynamic business environment that allows tasks to
be transferred from one device to another.
Especially large interactive systems require a framework to support implementing

changes on di�erent levels of abstractions providing the developer with a comprehen-
sive overview of the system to be able to estimate the consequences arising from the
changes considered. This manipulations on a certain level of abstraction need to be
propagated back to the other levels in an automated or semi-automated way that always
ensures consistency along all levels of abstraction considered by the architecture.
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1.2 Thesis

1.2.1 Thesis Statement - Aim of this work

This work focuses on a model-based approach for developing device-independent user in-
terfaces formalizing the development of user interfaces for di�erent end-devices to address
the shortcomings outlined in the previous chapter. Therefore this dissertation provides:

1. a user interface development methodology, which extends common software en-
gineering approaches to be applicable for the development of device-independent
user interfaces. The methodology introduces a concept called �Design by Example�
enabling short user interface development iterations and is open for instant testing
in all phases of the development process.

2. a model-based architecture for user interface provision allowing the explicit de�ni-
tion of user interface models on di�erent levels of abstraction to re�ect the develop-
ment steps of the methodology. The architecture extends earlier architectures for
interactive systems by bridging the gap between design and run-time of a system.
Therefore the architecture is awaking the design models alive and making them
available for manipulations at run-time. Further on, it is open to support various
user interface description models, as it o�ers a meta-model layer allowing to �exibly
introduce new models based on the actual requirements of the interactive system.

3. three extensions to already existing user interface description languages to describe
an interactive application. First, we extend a task analysis and design notation to
enable direct interpretation at run-time and rapid prototyping to test new forms of
interactions. Second, we propose an abstract user interface model that is strictly
derived from a domain model to preserve its semantics. Third, we propose a model-
based layouting approach enabling a consistent layout derivation for various graph-
ical end-devices and a �exible adaptation to new end-devices at run-time that have
been unknown at design-time. All extensions are embedded into the proposed
development process and bene�t from the model-based run-time environment.

1.2.2 Validation

The validity of the approach described in this thesis is tested on a theoretical level by
confronting the methodology, the model-based run-time architecture, and the language
extensions to the requirements identi�ed after the state of the art analysis of already
existing approaches. Additionally a practical validation is provided by illustrating how
the methodology and the run-time architecture have been used by presenting a case study
that has been undertaken as part of a research project at the DAI-Labor.

1.2.3 Scope

The scope of this work is located in the discipline of Engineering for Human-Computer
Interaction (EHCI), which is a crossroad of two disciplines: Human Computer Interaction
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(HCI) and Software Engineering (SE). HCI can be de�ned as �a discipline concerned with
the design, evaluation and implementation of interactive computing systems for human
use and with the study of major phenomena surrounding them.� [Hewett et al., 1992].
This work targets two group of users, end-users and software developers. End-users

bene�t by using the run-time environment allowing user-interface adaptation at run-time
and therefore having a bigger chance to get the user-interface that matches best their
preferences regarding layout, language and end-device. Disabled people can bene�t from
this run-time-environment as well, as the generated user-interfaces can be adapted to
their speci�c requirements much easier as without a model-based approach.
Software developers are the main audience for the approach presented in this the-

sis. The model-based approach and the methodology bridge the gap to commonly used
software engineering methods that are well known to software developers.
In the Human-Computer Interaction discipline there is a lot of research ongoing about

the usability of user-interfaces. Usability of user interfaces is not the main focus of
this dissertation, which focuses more on the technical challenges of device-independent
user interface generation. But since model-based approaches systematically derive user
interfaces for various platforms based on a well structured model to model derivation,
this allows to make sure that consistency of the user interface can be maintained for
all adaptations of the user interface. The proposed user interface development method
concentrates on the human as the main source of feedback during the design phase.
It is a common understanding that �user interface design is an art � [Laurel, 1990]

and we share this viewpoint. During the research for this work it had become clear, that
an automated process for user-interface design has to be supported by a methodology
and coupled to a run-time environment to reduce development time and to raise product
attractiveness by generating �exible user interfaces for a broad range of devices in one
process. But up to now the proposed mechanisms are not able to automatically generate
�usable� or high-attractive user-interfaces.
Over the last decades a lot of user interface description languages have been proposed

to enable the generation of multi-platform user interfaces. We discuss these approaches in
detail in the state of the art chapter and present specialized languages to support certain
design aspects, as well as comprehensive UIDLs. Thus, it is not the focus of this work
to reinvent the wheel but instead to concentrate on gaps that occurred for realizing the
requirements. In the scope of this thesis we concentrate of three UIDL extensions. First,
an adaptive and model-based layouting of graphical user interfaces and second, a task
notation extension supports to be interpreted at run-time to enable rapid prototyping of
new platforms and modalities. Finally, we propose an abstract and therefore platform
independet user interface model that is derived based on the domain model semantics.
Multimodal user interfaces are only addressed for prototyping scenarios by this work.
Especially user interfaces that support the simultaneous usage of several modalities at
once require extensive fusion and �ssion mechanisms and are beyond the scope of this
work.
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1.3 Reading Map

This work is organized into eight chapters. After the introduction which includes present-
ing the motivations for this work, the thesis statements and a section about the scope of
this work, we introduce in chapter 2 the fundamentals that have to be known and re�ect
the actual relevant ongoing discussions in the model-based user interface development
research community. Therefore we shortly give an overview about the general motiva-
tion of model-based development of user interfaces and describe the actual advances and
shortcomings of following such an approach. Thereafter we introduce the main terms
and de�nitions that support our work.
In chapter 3 we describe the signi�cant pieces of existing work in the state of the art

section. The state of the art analysis has been undertaken by discussing related work
regarding three aspects for model-based user interface development. First the relevant
work regarding methods and tools, second actual architectures to specify interactive ap-
plications are discussed, and �nally an overview about relevant user interface description
languages is given.
Thereafter three chapters present the main contributions of this dissertation: the

method (chapter 4), the run-time architecture (chapter 5) and the UIDL extensions
(chapter 6). For each chapter the overal structure remains the same: After an introduc-
tion we derive the requirements based on the state of the art analysis of chapter 3 by
applying three systematic steps: First, the observations are presented, which are syn-
thetic and descriptive assessments (as opposed to normative assessments) and are made
regarding to the properties of the surveyed models, processes and languages that are part
of the whole user interface development process. From the observations shortcomings are
outlined. Shortcomings are normative assessments made regarding to properties of the
surveyed models, processes and languages. The identi�cation of normative assessments
is done by positioning the state of the art with respect to ideal properties. Finally the
requirements are identi�ed that are proposed as a solution to the shortcomings listed
before. After the requirements have been identi�ed, we detail our approach to tackle the
reqirements in the main section of each chapter and present validations that we did to
test and evaluate our work. We close by summarizing each chapter in the conclusions
section. Realizing this structure the three main chapters deal with the following aspects:
Chapter 4 introduces the reference methodology that is used to bridge the gap between

software engineering and user-interface development. It starts by describing the user
interface development process and presents the �Design by example approach� we propose
for a more e�cient development of device-independent user interfaces. All parts of this
user-interface development methodology are tool-supported. For some phases of the
development process already existing tools can be used, whereas others are implemented
for this work to evaluate the methodology within several research projects.
Chapter 5 introduces the Model-Agent Concept enabling to realize a modular run-time

environment for model-based interactive systems. After the actual supported models
have been presented, two aspects of the run-time environment are described in more
detail, as they are topic of extensive research in the research community for model-based
user interface development: The meta-modeling allowing to introduce new models to the
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architecture and the model-mapping required to combine the user-interface models.
In chapter 6 we present three language extensions that we require to enable a task

based prototyping in our run-time environment, an abstract user interface model that is
derived from a domain model, and a layouting model. These extensions are embedded
into both, our method as well as our run-time architecture.
Chapter 7 presents a case-study in order to validate both, the user-interface develop-

ment process and the model-based run-time environment on a practical level. Referring
to the results of a research project that have been carried out during the work on this
dissertation the whole development cycle regarding the user-interface development is
demonstrated and evaluated as a case study.
Chapter 8 concludes by discussing the appropriateness of the solution proposed in this

dissertation by validating the results against the requirements that have been formu-
lated in the previous chapters. The contributions are summarized and future works are
proposed.

10



2 Fundamentals

Before we start inspecting the related work in the next chapter, we shortly introduce
the most important terms and concepts in model-based interactive system development.
Therefore the next section describes the actual gap between software engineering and
HCI that can be seen as the inital idea behind model-based ui development. In section
2.2, we present the actual advantages of model-based approaches and confront them with
the discussion about shortcomings. The chapter ends by introducing the basic terms and
de�nitions relevant for this work in section 2.3.

2.1 Gap between Software Engineering and HCI

Whereas the Human Computer Interaction (HCI) �discipline (is) concerned with the
design, evaluation and implementation of interactive computer systems for human use and
with the study of major phenomena surrounding them� [Hewett et al., 1992], software
engineering can be de�ned as �the application of a systematic, disciplined, quanti�able
approach to development, operation, and maintenance of software; that is, the application
of engineering to software� [IEEE Computer Society, 1990]. The quality of interactive
system development mainly depends on the skills of the developers and can be often
measured after most of the development has taken place by applying user tests. Gained
experience is often stored in the developers' minds and is not considered for updating
the applied method. This is a very di�erent approach than in sciences like for instance
mathematics or physics as they apply a decent level of rigor by following a well de�ned
method resulting in a more structured, predictable, and controllable development process
[Limbourg, 2004].
Model-based approaches have been developed over the last years introducing well de-

�ned development processes to bridge the actual gap between HCI and software en-
gineering. The next section introduces the basic ideas of a model-based user interface
development approach and presents the pros' and cons' when following such an approach.
Thereafter, in subsection 2.3 some of the major terms and de�nitions in the model-based
user interface development area are brie�y presented and related to the topics of the
thesis.

2.2 The model-based user interface development approach

Abstraction is a very natural way that people usally like to do to manage too complex
entities. To manage complex problems people usually start to discover the main aspects
that should be taken into account as well as their relations. An examples for identifying
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models in our daily practice is for instance our every day planning. After waking up we
typically start the new day by thinking about the main activities that we would like to
perfom [Paternò, 2005].
The development of interactive systems is a complex problem that is continously grow-

ing with the evolving technology enabling to consider the context-of-use during interac-
tion or multi-modal access to an application. Model-based approaches, practiced since
the late 1980's in Human-Computer Interaction seem to be a promising approach to sup-
port software developers, developing interactive applications. They aim at modeling the
di�erent aspects of the user interface on certain levels of abstraction and o�er a declar-
ative way of modeling such multi-platform user-interfaces. Model-based user interface
development is concerned with two basic topics:

1. The identi�cation of suitable sets of model abstractions and their relations for
analyzing, designing and evaluating interactive systems

2. The speci�cation of software engineering processes that change the focus from
(manual) implementation to the tool-driven design of models

Over the last years several pros and cons for following a model-based development ap-
proach for user interface design have been identi�ed and intensively discussed. The
following section introduces the major advantages of following a model-based develop-
ment approach that motivated us to further explore the systematical development of user
interfaces by relying on models. Thereafter actual shortcomings are presented that this
work deals with. Initial ideas how to handle and overcome these shortcomings are brie�y
introduced and are addressed in the subsequent chapters.

2.2.1 Advantages of model-based Development

Advantages of model-based user interface development approach can be identi�ed for
three topics: methodology, re-usability, and consistency [Puerta, 1997]:

Advantages in terms of methodology Model-based approaches are driven by speci-
�cations that are subsequently derived by a prede�ned process. Starting the develop-
ment cycle with a speci�cation is a widely accepted software engineering principle as
[Ghezzi et al., 1991] notes. User-centred and user interface-centred development life cy-
cles are supported. They let designers work with tasks, users, and domain concepts
instead of thinking in engineering terms [Szekely et al., 1995]. These models encourage
to think more about artefacts that should be realized and force the designers to explicitly
represent the rationale of design decisions [Szekely et al., 1995].
Relying on declarative models is a common representation that design tools can

reason about to criticize designs and to detect questionable features [Braudes, 1990,
Byrne et al., 1994]. Declarative models enable realizing automated advisers that can
support the designer to re�ne the designs. Further on user interface construction tools
can be based on declarative models that enable automated creation of portions of the
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user interface. During run-time a declarative representation by models can be used to
generate context-sensitive help to assist the user like proposed in [Sukaviriya, 1988].
An interactive system speci�cation by using models enable executing the system before

all details of the user interface have been designed to enable early experiments with
designs by an iterative development process before considerable coding e�ort has been
spent [Szekely et al., 1995].

Advantages in terms of re-usability For multi-platform development of user interfaces
and user interface support for context dependent adaptations model-based tools can
provide the fundament for an e�cient development life cycle that o�ers an automatic
portability across di�erent devices. Furthermore the complete description of the whole
interface in a declarative form allows reusing the most interesting components.

Advantages in terms of consistency Consistency is the big issue that needs to be
guaranteed between the user interfaces that are generated for di�erent target platforms.
Model-based approaches allow some form of consistency between phases of the develop-
ment cycle and the �nal product.

2.2.2 Shortcomings of model-based Development

Several shortcomings have been identi�ed so far that need to be tackled down. Commonly
cited are [Puerta, 1996, Szekely, 1996, Myers et al., 2000]:

High threshold The high threshold of model-based approaches is one of the big issues
that need to be solved to get a broader acceptance. Up to now, developers need to learn
a new language in order to express the user interface speci�cation. Thus, model-based
approaches require models to be speci�ed in special modeling languages and therefore
require a form of programming that is not suitable for many interface developers or
designers.
Design tools that enable visual programming by abstracting from a certain user in-

terface language and are integrated in widely deployed development environments are a
solution to lower the threshold for model-based approaches.

Unpredictability Each abstraction by a certain model requires the designer to under-
stand and think in the same abstractions of the model that is utilized. The higher the
abstraction that the model o�ers compared to the �nal user interface, the harder it gets
for the designer to understand how the model speci�cations are connected to the �nal
user interface.
[Florins, 2006] proposes to rely on explicit transformation rules with a tool-based pre-

view to reduce the unpredictability of model-based approaches. [Limbourg, 2004] applied
such a graph-based transformational approach, but the pure amount of transformations
to map between the various models of abstraction �gured out hard to overview and
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maintain. Additionally, the wide range of user interface element concepts of the various
platforms that need to be covered by the model-transformations is hard to handle and
selecting the appropriate transformation between several alternatives (often there are
several ways to realize a user interface) emphasizes as a di�cult and challenging task.

Propagation of modi�cations Supporting several models of abstraction for the design
and speci�cation of an interactive system includes allowing changes to each of these
models later on. These changes need to be propagated to the other models to maintain
consistency between all models. Whereas it is consent that support for abstract-to-
concrete and concrete-to-abstract (reverse engineering) as well as various entry points
should be supported by model-based approaches, tools and approaches that realize these
options are still missing. [Florins, 2006] describes the propagation of modi�cations as
tricky, but proposes to determine the side e�ects on the other models entailed by the
application of rules.

Proprietary models Most model based approaches have been strongly tied to their
associated model-based system and cannot be exported or are not publicly available.
UsiXML [Limbourg et al., 2004b] was the �rst completely available model format de-
scription. Whereas it is currently target to standardization e�orts, there is still a gen-
erally accepted set of model abstractions missing. Further on, model syntax has been
explicitly speci�ed in the UsiXML speci�cation documents, but clear model semantics
have not been su�ciently speci�ed so far.

E�ciency and Performance E�ciency and performance of model-based systems are
rarely considered. E�ciency needs to be measured for the development cycle implement-
ing multi-platform user interfaces. Performance has to be evaluated at run-time to test
if the various supported adaptations do not restrict the user's performance.

2.3 Terms and de�nitions

Several terms and de�nitions are relevant for this thesis. In this section we present the
most important terms and de�nitions that are either frequently used in the following
chapters or are used to classify and delimit the contribution of this work.

2.3.1 Direct manipulation

Direct manipulation depends on a visual representation of the objects and actions of
interest, physical actions or pointing instead of complex syntax, and rapid incremental
reversible operations whose e�ect on the object of interest is immediately visible. This
strategy can lead to user interfaces that are comprehensible, predictable and control-
lable. Direct manipulation programming is an alternative to the agent scenarios. Agent
promoters believe that the computer can automatically ascertain the user's intentions or
take action based on a vague statement of goals [Shneiderman and Maes, 1997].
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This work will focus on generating user interfaces that implement direct manipulation
capabilities. Whereas we will follow an agent-based architectural approach, agent based
promoters as a specialized form of an user interface will not be addressed by this thesis.

2.3.2 Adaptability and Adaptivity

[Totterdell and Boyle, 1990] distinguishes two complementary properties of modeling
adaptation: adaptability and adaptivity. Whereas the former is the capacity of a system
to allow users to customize their system from a prede�ned set of parameters, the lat-
ter describes the capacity of the system to automatically perform adaptations without a
deliberate user request. Independent of whether the system or the user triggers the adap-
tation process, [Coutaz and Thevenin, 1999] have identi�ed three orthogonal additional
axes that are included into the design space of adaptation: target, means and time. By
targeting the environment, the user and the physical characteristics of interaction de-
vices are distinguished. By means of adaptation they denote the software components
of a system that are involved in an adaptation. These components are: (a) the system
task model that corresponds to the user task model and has been speci�ed by expert
on human factors. (b) Rendering techniques denoting the observable presentation and
behaviour of the system. And �nally (c) the help subsystems that include help about
the system and the user's tasks. By the temporal axes they distinguish between static
adaptations that are e�ective between sessions and dynamic adaptations that occur at
run-time.
In this thesis we concentrate our work on adaptivity mechanisms that are speci�cally

targeted to the physical characteristics of various interaction devices. Adaptability and
the user are not explicitly targeted. Thus the relevant software components that we aim
at are the system task model and rendering techniques describing the presentation and
behaviour of a multi-platform user interface. The adaptivity of an interactive system at
run-time is our main focus but as we although aim at engineering methods for modeling
of prede�ned adaptation scenarios.

2.3.3 Plasticity and Multi-targeting

The term Plasticity is inspired by the property of materials that are able to expand
and contract under natural constraints without breaking and provide continuous us-
age. The term has been �rst introduced and applied to HCI by [Calvary et al., 2001,
Calvary et al., 2004]. In HCI it describes the �capacity of an interactive application to
withstand variations of context-of-use while preserving usability�. They note that Plas-
ticity is not only about condensing and expanding information according to the context-
of-use. But it also covers the contraction and expansion of the set of tasks in order to
preserve usability.
Di�erent to Plasticity, Multi-targeting focuses on the technical aspects of adaptation

and does not express a requirement in terms of usability, but both terms address the
diversity of context-of-use adaptations.
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2.3.4 Multimodal Systems and the Fusion/Fission Problem

In general a multimodal system is characterized by supporting several ways of communi-
cation with a user by using various modalities such as voice, gesture, or typing. Literary
�multi� refers to �more than one� and the term �modal� covers both, the notation of
�mode� as well as �modality� [Nigay and Coutaz, 1993]:
�Modality refers to the type of communication channel used to convey or acquire

information. It also covers the way an idea is expressed or perceived, or the manner
an action is performed. Mode refers to a state that determines the way information is
interpreted to extract or convey meaning.�
A multimodal system can take advantage of combining modalities in a sequential or a

parallel way. Whereas the former one forces the user to use one modality after another,
the latter one allows the user to employ multiple modalities simultaneously. The parallel
utilization of modalities results in managing the Fusion/Fission problem to e�ciently
handle and combine simultaneously incoming information chunks. Whereas Fusion de-
scribes the combination of several chunks of information in order to form new chunks,
Fission refers to the decomposition phenomenon. Both are part of the abstraction and
materialization phenomena [Coutaz et al., 1995].
The fusion/�ssion problem is out of scope of this work, and so the simultaneous han-

dling of various modalities. As we are focusing on software engineering methods that
enable the speci�cation of models to derive user interface for several devices, multimodal
systems are not explicitly addressed in this thesis. However, we support developing user
interfaces for the heterogeneous landscape of end devices and are targeting our approach
to include deriving user interfaces to support several modalities like deriving voice or
pen-controlled interfaces.

2.3.5 Context-of-Use

[Calvary et al., 2001, Calvary et al., 2003] de�ne the context-of-use for an interactive sys-
tem by three classes of physical entities:

1. The users of the interactive system who are intended to use (or e�ectively use) the
system.

2. The physical environment where the interaction takes place.

3. The physical and software platform(s), that is, the computational device(s) used
for interacting with the system.

Under software engineering considerations two kinds can be distinguished
[Calvary et al., 2003]: Predictive contexts-of-use that are foreseen at design-time.
E�ective contexts-of-use that are really occur at run-time.
Since we are focusing on specifying a method for developing multi-platform user inter-

faces, we will speci�cally concern about the physical and software platforms that should
be considered by the interactive system. Both, the predictive context-of-use, we handle
at design-time, as well as the e�ective context-of-use at run-time are addressed in this
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work. Addressing the user's preferences or speci�cally addressing the user's environment
is out of scope of this thesis.

2.3.6 Graceful Degradation

The method of Graceful Degradation addresses the trade-o� between continuity and
adaptation and has been introduced �rst for safety-critical systems like for instance sys-
tems in an aerospace. There Graceful Degradation describes the ability of a system to
continue its services proportionally to its components that fail or are malfunctioning.
Thus, under bad conditions the system is not expected to fail completely but continue
providing at least its basic functions that are o�ered by all the non-defect components.
Graceful Degradation can be applied to user interfaces as well [Chu et al., 2004]. There

it consists of specifying the user interface for the least constrained platform �rst and than
it requires to apply transformation rules to the original interface to produce interfaces
to the more constrainted platforms. These transformation rules include: Splitting rules,
interactor and image transformation rules, moving and resizing rules to reshu�e the user
interface, and removal rules [Florins, 2006].
We will follow the idea of the Graceful Degradation by proposing a method that in-

cludes capturing all of the interactive systems requirements �rst. Thereafter we design
the overall interactive system's process without initially looking at the platforms con-
straints, as this might limit the level of freedom of the designer when designing the
systems tasks and concepts. Di�erent to following a sequential approach by applying
these rules depending on the level of abstraction of the source model during design-time
like proposed by IdealXML [Florins et al., 2006a], we follow a more �exible approach and
apply the transformation rules at run-time of the system and for all relevant levels of
abstraction at once. This approach will be discussed in detail in section 4.2.5.
Beneath the major terms and de�nitions that have been introduced and classi�ed in

the context of this thesis, some terms for which no ambiguous de�nition exist, will be
used as synonyms. In the following two of those terms that we will extensively use in the
next chapters will be shortly presented.

2.3.7 Platform vs. (End-) Device

Up to now, a user that needs to interact with an interactive system requires at least one
end-device that technically connects her to the system. Whereas an end-device consists
of a (physical) hardware platform and at least one software platform, the latter one
describes a system that is able to interpret a speci�c user interface description language
and to present it to the user. For this thesis we always refer to the software platform
part of a device when talking about a platform or a device.

2.3.8 Designer vs. Developer

Whereas a designer is typically the one that illustrates the layout of a user interface, the
role of a developer is to design and implement the interactive system conforming to the
design guidelines that have been identi�ed and speci�ed by the designer. For this work
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we use the developer role and the designer role as synonymous, because both should be
able to follow the proposed method for implementing multi-platform user interfaces.
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This chapter analyses releated work in the are of interactive system development and is
organized into three parts relevant for the contributions of this work. First we take a
look at methodologies and tools supporting the design and development of interactive
systems in section 3.1. Thereafter, in section 3.2 we present architectural paradigms and
patterns that are currently utilized and �nally, in section 3.3 we give an overview about
the most relevant user interface description languages to specify and design interactive
applications.

3.1 Methodologies and Tools for Developing User Interfaces

User interface development has been de�ned to conform traditional development models
for software engineering. The Waterfall model for instance connects several phases into a
pipeline where all prerequisite work for each phase is undertaken before that phase starts.
This model primary emphazizes cost estimation and control, as it requires the work to be
undertaken in a realistic order. The spiral model reduces some limitations of the Water-
fall model by enabling iterative cycling through the phases [Boehm, 1988]. An alternative
development model is the V-model, which not only relates each phase to its predecessor
and successor, but also demands for a construction and testing phase on the same level
of detail [Gram and Cockton, 1997]. The V-Model has been extended to support back-
tracking, which enables to jump back one or more phases. Each backtracking step results
in recovery work to extend or correct inadequacies of the previous phase. The basic idea
of evolutionary prototyping is to undertake all phases of the V-model for just one func-
tion at a time [Davis and Berso�, 1991]. The development of features and functions in
evolutionary prototyping is ordered by priority and starts with those functions with the
highest importance or anticipated stability. Di�erent to evolutionary prototyping, rapid
prototyping results in throw-away prototypes through quick runs through all phases of
the V-Model to evaluate ideas and to test hypotheses. Participative development has
been proposed as one way trying to 'forsee the unforseen' [Gram and Cockton, 1997] and
involves users in all design phases [Muller and Kuhn, 1993].
System development can also be analysed based on the human roles within it. The di-

vision of work into several objectives that are associated with a certain role is compatible
with the assumption to separate the development of interactive systems into a user inter-
face and the functional core [Gram and Cockton, 1997]. Roles are de�ned speci�cally to
design a particular level of abstraction. [Gram and Cockton, 1997] lists several roles that
are relevant for interactive system development, including a client, a project manager,
a user representative, a requirements specialist, a system designer, an implementor, a
validator, a user, and a system administrator.
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Nowadays development processes are required to be much more �exible as speci�ed by
the traditional methods like the V-Model or the Spiral Model to be used in organizations.
This is because of rapid changes of today's organizations and their businesses, which
need to be addessed by a development process that can manage changing requirements.
Changes include, but are not limited to task reallocation among workers, support for
rede�nition of the organizational structure, and multi-lingual user interfaces required by
world-spanning organizations. Workers demand for more usable user interfaces that sup-
port new platforms, the migration of interactive applications from stationary to mobile
devices, task transfer from one user to another one, adaptation to dynamic environments
and redesign due to obsolescence [Limbourg et al., 2004b].
Software development methods have to consider that organizations react to these

changes very di�erently. Regarding interactive applications some organizations follow
an bottom-up approach starting by recovering and redrawing existing screens and con-
tinously advancing the functional core after the customer has validated the new user
interface. Other organizations start by re�nements of the task and domain models to be
mapped further to screen design (top-down approach), whereas some apply all modi�ca-
tions simultaneously where they occur (wide spreading approach) or rely on an interme-
diate model and proceed modifying task, domain and the �nal user interface in parallel
(middle-out approach) [Limbourg et al., 2004b].
Following [Vanderdonckt and Berquin, 1999], four major approaches for a process of

user interface development can be observed:

1. The traditional approach relies on a graphical user interface editor that is used to
select interaction objects from a palette of widgets. The developer usally imple-
ments the user interface by dragging and dropping interaction objects from the
palette to the workspace surface and progressively enhances the user interface rep-
resentation in this way. In parallel to this process of evolving the graphical user
interface presentation the developer can switch to a source code view in order to
add behavior by adding semantic function calls to complete the interactive system.

2. In the programming by demonstration approach the developer uses an example of
various parts of the �nal user interface to demonstrate the look and behavior of
the resulting interactive system. For each examplary user interface part a set of
actions can be associated enabling the reproduction of the example in future user
interfaces. Examples that are implemented once can be reused over time as they
can serve for many di�erent user interfaces.

3. Model-based approaches start by modeling the concepts in a graphical model editor.
Typical models that are designed at the beginning of a model-based approach are
an application model, a domain model or a data �ow model. These models build
the foundation for the automated generation of the user interface without the need
for human intervention. In case that the developer is more involved in the user
interface generation process by for instance explicitly accepting or neglecting design
decisions the process is called computer-aided design.
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4. Task-based approaches implement a process very similar to model-based processes
except that they start by a task-analysis step. The other models can then be
speci�ed, derived or re�ned depending on the task model.

In the following sections the most important approaches for development processes of
interactive systems will be discussed. Starting with the traditional user interface devel-
opment processes in section 3.1.1, we take on the one hand a short look back to the
beginnings of the user interface development and on the other hand describe how these
traditional approaches still remain in current user interface design. Section 3.1.2 presents
the programming by example approaches that we will grasp upon later again in the de-
sign of our methodology in chapter 4. Finally we describe the foundations of model-based
and task-approaches in section 3.1.3.

3.1.1 Traditional interactive system development

Traditional user interface development decouples the user interface implementation from
the functional core development. Whereas the latter one often follows a well-structured
traditional software engineering method, the former one is most often realized separately
by iteratively designing non-functional mock-ups and only anchored in the implementa-
tion phase of the overall development process.
This separation has several advantages, as multiple user interfaces can be developed

for one application, designs can be rapidly prototyped and implemented before the appli-
cation code is written, and changes that have been discovered through user testing can
be incorporated more easily.
Over the years the advantages of strict separation �gured out to be not working out as

expected. First, the decoupling between front-end and back-end required a huge amount
of callback-operations and introduced an additional layer of complexity between both
components. Second, with the growing amount of di�erent platforms that are required
to be addressed, the user interface consistency has to be ensured on the one hand between
all these platforms and on the other hand has to be maintained not only for single screens
but for whole processes consisting of several screens.
[Myers, 1995] has identi�ed four di�erent kinds of tools that are applied for direct

graphical speci�cation of user interfaces: Prototyping tools, card sequencers, interface
builders, and editors for application speci�c graphics. All these tools have in common
that they require the developer to place the user interface objects on the screen by using
a pointing device.
Prototyping tools enable a designer to quickly mock up examples and to show how some

aspects will look. Most of these prototyping tools like for instance Director, Photoshop,
or Visio can only paint or sketch interfaces but can not produce operable interfaces as
no real widgets are used. The main advantage of prototyping tools lies in the fact that
they do not require programming skills and can be e�ciently used by designers.
Card based systems can be used to produces sequences of mostly static pages where

each page consists of a set of widgets. Usually a �xed set of widgets is supported by
a card-based system to conform the windowing systems widget set. Card-based system
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like for instance HyperCard from Apple o�er the advantage of allowing to realize a more
dynamic interface prototype that often can be executed by interpretation but are limited
to support only a �xed set of widgets.
Interface builders also rely on a �xed widget set, which enables dialogue sequencing,

and the creation of sub-dialogues. The construction of a user interface is mostly done
by following a drag-and-drop interaction style allowing the designer to easily layout user
interface screens and to specify �xed positions for all user interface elements. Since
interface builders can produce code, it is usually important that the programmer does
not edit the produced code as this will prevent the tool to be used for later modi�cations.
Popular interface builders are o�ered by VisualBasic from Microsoft and by the Netbeans
GUIBuilder from SUN Microsystems.
Finally, data visualization tools emphasize the display of dynamically changing data

and are used as front ends for simulations, process control, network management, and
data analysis. Similar to interface builders, data visualization tools like for instance
DataViews from V.I.Corp. rely on a set of widgets, which is speci�c to the visualization
domain, but does not conform to a toolkit.
By using a tool, the produced applications are expected to o�er more consistent user

interfaces. Further on, experts like for instance psychologists or human factor specialists
can be easier involved in the design process. This is because the level of programming
expertise can be lower as a tool can hide much of the complexities of creating user
interfaces.

3.1.2 Programming by Demonstration / User Interface Prototyping

Prototyping gained a lot of attention in the development of highly interactive graphical
applications. This is because the acceptance of such system depends on a large degree
on the quality of the user interface at an early stage. [Bäumer et al., 1996] notes that in
recent years a lot of projects changed from traditional life cycle or waterfall approaches
to prototyping as part of a deliberate evolutionary strategy on the operative level. They
distinguished four di�erent types of user interface prototypes: Presentation Prototypes
illustrate how an interactive system can solve given requirements and for this they are
strongly focusing on the user interface, thus they implement a horizontal prototyping
approach. Functional Prototypes are implementing strategical important parts of the user
interface. Functional prototypes are realizing a vertical prototyping approach and are not
only focusing on the user interface but implement the required application functionality as
well. Breadboards are used to concentrate on technical aspects like the system architecture
or speci�c functionality of the planned interactive application and are not intended to
be evaluated by the user. Instead they investigate certain aspects of a special risk. Pilot
systems are matured prototypes that can be practically applied.
A widely accepted approach for classifying prototyping has been proposed by Chris-

tiane Floyd [Floyd, 1984]. She suggested the distinction between exploratory, experimen-
tal and evolutionary prototypes. Exploratory Prototyping is used to clarify requirements
and potential solutions. Related to task analysis it can be used to illustrate the achieve-
ments of a task supported by a computer. Experimental Prototyping concentrates more
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on the technical aspects of selected requirements and is used to prove the feasibility and
suitability of a particular implementation. Finally Evolutionary Prototyping describes
a continuous process for enhancing an interactive system to potential changing require-
ments.

3.1.3 Model-based and task-based approaches

Models can help to drive the design and development of interactive systems as with the
help of models one can manage complexity. Each model introduces a level of abstraction
of a real world entity. Abstraction is a very natural way that people usally like to do
to manage too complex entities: They start to discover the main aspects that should be
taken into account as well as their relations.
The development of an interactive system is a complex problem that is currently con-

tinously growing with the evolving technology enabling to consider the context-of-use
during interaction or by enabling multi-modal access to an application. Model-based ap-
proaches can by helpful to manage this complexity. Models can by described on di�erent
levels of formality but o�er a structured description of relevant information.
In the model-based community there is a common understanding that a complex sys-

tem, like an interactive system can be based on a small set of clear basic concepts. Thus,
model-based approaches consider various possible viewpoints over an interactive system.
Such viewpoints can be made on di�erent levels of abstraction as well as they can have
a di�erent focus (if the user interface or a task is considered). Typical abstractions are
[Paternò, 2005]:

� The task and object model on a conceptual level. Tasks are used to describe the
logical activities to reach a user's goal. An typical approach is to structure this tasks
(for instance by using a task hierarchy) and to relate them by temporal relations.
Tasks are associated to objects that need to get manipulated to perform a task.

� An Abstract User Interface is used to describe the logical structure without target-
ing it to a speci�c modality or even a platform. An Abstract User Interface refers
to interaction objects that are described in terms of abstract interactors.

� The Concrete User Interface that replaces each abstract interactor with a concrete
interaction object that is dependent of a modality and a set of associated platforms
that implement the same modality and are similar regarding their capabilities (for
instance the screen size, and the control features).

� A Final User Interface the has been transformed from the concrete interface and
runs on a speci�c environment and language (for instance Java or HTML).

By a model-based design the developer has to introduce the complete speci�cations of the
underlying models to produce a �rst user interface that he re�nes for a speci�c context
later on. More detailed introductions and discussions about model-based development
approaches can be found in [Balbo et al., 2004], [Paternò, 2005] and [Szekely, 1996] re-
spectively.
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Other approaches: Object-oriented modeling and cognitive models Beneath the
model-based approaches that will be discussed in the next sections, other types of models
exist that can be used for the design of an interactive application.
On the one hand there exist a broad range of object-oriented modeling methods. One

of the most successful is the Uni�ed Modeling Language (UML), which shares partly the
same purposes like task-driven approaches as it contains both, the description of static
structures as well as modeling dynamic aspectes like for instance activities. Di�erences
between both approaches can be found in the focus and the notations used to describe a
system. Di�erent to task-based approaches, object-oriented techniques focus on the iden-
ti�cation of objects and their compositions �rst, whereas task-based approaches start by
identifying the activities and thereafter continue describing the manipulation of objects
associated to these activities.
[Paternò, 2005] describes task-based approaches to be more suitable to design user-

oriented interactive systems, because of their main focus to e�ectively and e�ciently
supporting the users' goals. This conforms to an important usability principle, which
postulates to focus on the user and their tasks [Paternò, 2005]. Di�erent to task-based
approaches, object-oriented software engineering techniques can be applied more pow-
erful at the software implementation level. Disregarding the di�erent focus of both
approaches and looking at the speci�c techniques used in UML there exist some simi-
larities. Especially activity diagrams have very similar purposes like task notations but
illustrate multiple levels of abstractions only in a very limited way. Use cases address
the requirements analysis phase like the output of task analysis. There have been also
some work transforming sequence diagrams into task hierarchies by removing the internal
system oriented view [Lu et al., 1999] but the main reason to support these approaches
lies in the general acceptance and knowledge of the UML notation and the pre-existence
of tools that can be considered for task analysis.
On the other hand there have been various cognitive models proposed focusing on

an integrated description of human-cognitive mechanisms, interactions between these
mechanisms, and their simulation by automatic tools. Modeling techniques can be dis-
tinguished into two di�erent types: descriptive and prescriptive models. A descriptive
model describes the history of how a particular software system was developed. Descrip-
tive models may be used as the basis for understanding and improving software develop-
ment processes, or for building empirically grounded prescriptive models [Scacchi, 2002].
A lot of cognitive models are descriptive models used for task analysis targeted to charac-
terize and identify tasks. Good examples are TKS, MAD [Rodríguez and Scapin, 1997]
or GTA [Veer et al., 1996] and GOMS [Card et al., 1983] or for performance evaluation
CPM-GOMS [Gray et al., 1992] or KLM [Card et al., 1980]. Those approaches are be-
yond the scope of these thesis, which concentrates on �nding a notation suitable to
represent tasks and their relationships more precisely. Their representation o�er record-
ing paths of user actions including both, motor steps and mental steps in performing
tasks. These approaches can be used to evaluate interface design and user performance.
In the following the relevant steps of the last decade of model-based user interface

development will be shortly reviewed focusing on the major results that are broadly used
until these times and are relevant for the derivation of our requirements in chapter 4.
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Other relevant contributions during the same period have been reduced to note their
special bene�ts and shortcomings.

3.1.3.1 First generation: Declarative Descriptions

The �rst generation started with �rst works at Jim Foley's research group in 1994.
Together with his colleagues he proposed the User Interface Development Envi-
ronment (UIDE) [Foley et al., 1988, Foley and Kovacevic, 1988, de Baar et al., 1992,
Byrne et al., 1994] at the GVU Center of Georgia Tech. UIDE enables the developer
to specify pre- and post-conditions for each interactor of an interactive system. Post-
conditions are used to modify the interactor after an operation has been performed by
the user through the user interface and therefore re�ect state changes. Pre-conditions
enable an interactor and make it active for user interaction. UIDE was able to reason
about the interactior model and can critique a given design for consistency and complete-
ness like proposed in [Braudes, 1990]. Further on a sequence of animated help can be
automatically derived using the pre- and post-conditions during run-time of the models
in case UIDE detects end-users di�culties during their interaction with the UIDE system
[Sukaviriya and Foley, 1990].
Humanoid proposed by Szekeley et all in 1992 [Szekely et al., 1992,

Szekely et al., 1993] designed a declarative modeling language that consists of �ve
independent parts: the appliction semantics, the presentation, the behavior, the dialog
sequencing and the action side e�ects. The purpose of the Humanoid approach was to
separate the design information entered by a user interface design tool from the tool
itself in a way that changing requirements for the user interface can by explored by
adding new user interface designs and by adding new code. The application semantics
de�ne the domain of discourse for the interactive system and is referenced by the other
dimensions. The presentation de�nes the visual appearence of the user interfaces,
whereas the behavior dimension combines the de�nition of the possible input commands
(gestures) that can be applied to manipulate the state of the application and the
corresponding presentations. The Dialog sequencing dimension de�nes the ordering of
how commands can be executed through constraints. Finally the action side-e�ects
dimension speci�es actions that can occur automatically if the application state changes
or the user inputs a command.
Humanoid can be characterized as an top-down approach as it lets designers express

an abstract conceptualization of an interface design based on �ve dimensions that can
be re�ned step by step. The introduction of the speci�cation of �ve independent dimen-
sions allowed designers to explore the design space in any order and without requiring a
fully concretized application model. Humanoid's methodolody (depicted in �gure 3.1) is
an iterative and sequential process. The process starts with the Application Semantics
Design that can be done in parallel with the Presentation Model Design. The Manipu-
lation Speci�cation is linked to the Application Semantics and the Presentation Model
in the next step. Finally, in the last step, the Sequencing can be de�ned that is en-
tirely dependent on the Manipulation Speci�cation whereas the action side-e�ects link
the Manipulation Speci�cation with their side-e�ects to the Presentation Model.
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Figure 3.1: Humanoid Interface Development Methodology.

Humanoid improved the UIDE by providing a richer model of command states
and therefore enabling designers a much �ner control over the dialogue sequencing.
Both, Humanoid and UIDE are targeted to support the designer by o�ering explo-
rative designs. Other early model-based approaches like APT [Mackinlay, 1986], Mike
[Olsen, 1986], SAGE [Roth and Mattis, 1990], and UofA* [Singh and Green, 1989] focus
on the automation of the interface generation. Janus [Balzert et al., 1996] and Mercano
[Puerta, 1996] concentrated on modeling the underlying application domain using a do-
main model. Such very limited views of the modeling domain have been typically used
to produce simple menu or form-based interfaces.
The Managing Interface Design via Agendas and Scenarios (MIDAS) approach by

Lou [Luo, 1994] was one of the �rst attempts that aims to �nd a adequate balance
between high-level automation approaches and o�ering designers extensive control over
design decisions. Therefore MIDAS o�ers four basic components: Humanoid's explicit
interfaces model, an interactive and iterative modeling system, a library of design goals
and a management system that maintains an agenda about the status of the design and
development process.

3.1.3.2 Second Generation: Consideration of Task Models

A task is an activity that should be performed to reach a goal. A goal is a desired
modi�cation of state or an inquiry to obtain information about the current state of
an object or system [Mori et al., 2002]. A task model allows a hierachical structure of
tasks that can be performed by the user, the system or both. The introduction of a task
based design and analysis was accepted to focus on a more user-centric design philosophy
compared to the earlier system-oriented perspecive. Thus, a task model can be seen as
the knowledge source where the user interface is described in the user's own words, not in
terms of the system or designer [Wilson and Johnson, 1995]. [Paternò et al., 1998] notes,
that task models are accepted to be highly expressive and since task modeling typically
starts during the analysis and design phase, all the derived models can be expected to
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be expressive as well.
Procedures that realize system functionality are located at the domain model. Thus,

domain model and task model are typically strongly related to each other. Beneath
the domain and task model other models have been added to support model-based user
interface development: The user model speci�es characteristics of the intended users of
the interactive system. Di�erent groups of users can be categorized and tailored with
personalized user interfaces. The user model can include user capabilities, psycho-motoric
skills, their languague and culture. A dialogue system is used to re�ne the task model
and provide richer interfaces that more closely re�ect the navigation and interaction
pricinples the designer desired. Finally a presentation model has been proposed to specify
the characteristics of the presentation in a more �ne grained way. Widgets and dynamic
facets of the interface can be more speci�caly re�ned using a presentation model.

Figure 3.2: The Adept Interface Development Methodology.

The Advanced Design Metthod for Prototyping with Taskmodels (ADEPT)
[Johnson, 1991, Johnson, 1992, Johnson et al., 1993, Johnson et al., 1995] was one of the
�rst approaches to include a task-model in the development process (like depicted in �g-
ure 3.2). The general agreement that task models have to be included in the development
process founded the second generation of user development processes relying on model-
based approaches around 1993. In the ADEPT approach an abstract architectual model
(AIM) is designed that is based on a task model (TKS). But ADEPT only o�ers a lim-
ited environment, which does not consider adding new interface styles or give designers
enough control over the interface details. [Wilson and Johnson, 1996] mention the gen-
erally missing identi�cation and description of design activities that guide the designer
from task analysis to task modeling of interactive applications and proposes initial guide-
lines and design activities to complement the ADEPT approach as well as present several
implications for an e�cient tools-support.
In the Tools for an Interactive Development Environment (TRIDENT)

project [Bodard et al., 1994, Bodart et al., 1995a, Bodart et al., 1995b,
Vanderdonckt and Bodart, 1993] the user-task modeling has been combined with
a knowledge base of interface design guidelines. This approach enabled the generation
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of high-quality user interfaces, because the knowledge base can be analyzed during the
generation process. TRIDENT relies on an Activity Chaining Graph that describes the
data �ow between the application domain functions to specify the task model. The
domain model of TRIDENT is structured using entity-relationship modeling. Di�erent
to other approaches TRIDENT focused on the generation of form-based user interfaces
only.
Mastermind [Szekely et al., 1995] combines the design-time environment with a run-

time environment that is used for the delivery of the user interface. The design-time
architecture consists of three models that can be developed independent from each oth-
ers: The application model de�ning the capabilities of the application and implemented
as an extension to the CORBA object model. A task model describes the tasks the
user can perform within the interactive system and outlines the required steps to per-
form these tasks. The task models of Mastermind are similar to those of GOMS, TAKD
and UAN but can be used to drive the user interface at run-time as well, rather than
just specifying them. Mastermind uses pre- and postconditions to model the dialogue
component of the user interface similar to UIDE. The presentation model is speci�ed
using a specialized modeling language that concentrates on spe�cication of layouts via
a constraint-based system. All three models are based on separate, specialized model-
ing languages. Mastermind supports a technique to compose these models at run-time
[Stirewalt, 1999, Stirewalt and Rugaber, 2000]. Using a language for binding the user-
interface models, inter-model relationships can be speci�ed to generate the �nal user
interface. As the models are developed separately from each others the problem of
model-to-model transformation was out of the scope of mastermind.
The Object Action Interface (OAI) Model [Shneiderman and Plaisant, 2004] has a

strong focus on building direct manipulation interfaces. It can be used at design-time to
capture an interface from an object-oriented perspective. Following the OAI approach,
the designer starts by identifying the tasks that the system has to perform. In OAI real-
world objects and actions are correlated to corresponding interface objects and actions.
Therefore tasks are re�ned into single steps, each realizing an action that has to be per-
formed by an object. In OAI temporal relations cannot be captured and especially voice
interfaces that require a sequential processing of interaction steps cannot be realized.
The MUSE method [Lim and Long, 1994] o�ers three main development phases: during
the information elicitation and analysis phase by using task analysis techniques the de-
signer collects background design information that relates to both, the system currently
in use and other related ones. The �rst phase ends with a Generalized Task Model,
which provides a device-independent task model of the existing system. Whereas the
main objective of the �rst phase is to identify problems, in the second phase, the design
synthesis phase, a Composite Task Model (CTM) is developed, which is devided into a
system and a user task model. Finally, in the design speci�cation phase, an interaction
task model is designed, which provides the device-level actions to be performed by the
user. Additional pictorial screen layouts are de�ned corresponding to the speci�cation of
the CTM.
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3.1.3.3 Third Generation: Incorporated Tools

By incorporating tools into the task-based design process some of the limitations of the
frist and second generation of user interface development have been weakened. In the
�rst generation mainly engineering-centric tools have been proposed that concentrated
on windows and widgets. In the second generation the user-centric design approach by
a methodology has been recognized as critical to design e�ective user interfaces. In the
third generation both approaches have been combined to form an integrated user-centric
and tools-supported environment.
The Model-Based Interface Designer (MOBI-D) [Puerta, 1997,

Puerta and Eisenstein, 1999] was one of the �rst proposals for an integrated model-based
interface development environment that embraces the idea of designing and developing
user interfaces by creating interface models. MOBI-D included model-editing tools,
user-task elicitation tools, and an interface building tool called Model-Based Interface
Layout Editor (MOBILE) [Puerta et al., 1999]. MOBILE includes a knowledge-based
decision support system to assist the designer. By a knowledge base of interface
guidelines an inference mechanism traverses the attributes and objects of the domain
model to propose suiteable widgets to the designer.
The Task-based Development of User Interface Software (TADEUS) approach

[Schlungbaum, 1997] proposes dialogue models as the central aspect when designing in-
teractive systems and clearly separates the task model speci�cation from the dialogue
model. Therefore TADEUS divides the user interface development approach into three
stages. First a requirements analysis is done based on three domain models (task, prob-
lem domain, and user model), second by the dialog design the static layout and the
dynamic behavior of the application is speci�ed, and �nally a prototype is automatically
generated.
The Teallach tool [Gri�ths et al., 1998b, Gri�ths et al., 1999, Gray et al., 1998] ex-

tends these approaches to include comprehensive facilities for relating the di�erent design
models and o�ers a design method in which models can be constructed and related by
designers in di�erent orders and in di�erent ways. As TADEUS for instance provides a
systematic approach to the re�nement of models, it encourages a particular sequence in
the speci�cation of interface designs, which ist not required in Teallach where it is not
necessary to start with a task model. Thus, tasks that get derived later on are not user-
centric, as [Vanderdonckt et al., 2000] notes. This problem can be avoided through the
de�nition of domain-speci�c derivation rules (for example in the domain of data-intensive
systems like described by [Barclay et al., 1999]).
The ConcurTaskTree (CTT) notation is one of the most cited approaches for tool-

based task analysis and design of interactive applications. It has been designed to o�er
a graphical syntax that is easy to interpret and designed by using a tool, the CTT
Editor. CTT can re�ect the logical structure of an interactive system in a tree-like form
based on a formal notation. Di�erent to other notations like the User Action Notation
[Hartson and Gray, 1992] the CTT notation abstracts from system-related aspects to
avoid a representation of implementation details. [Paternò, 1999] states that a compact
and understandable representation was one of the most important design aspects of CTT
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in order to enable the modeling of rather large task models for industrial applications in
a compact and easy reviewable way even by people without a formal background.

A user task illustrates important cognitive processes
performed by the user. Example task types of these

category are planniung activities to organize a sequence of
actions to perform, comparing activities by evaluating
informations like for instance comparing quantities or

problem solving activities.

An application task is completely executed by the computer
without any human intervention through internal

processing. The typical purpose of an application task is to
present results of a computation to the user. Application

tasks generate overviews by summarizing data,
comparisons assist the user by preparing a presentation
containing required data, locating tasks enable the user to
rapidly �nd things, whereas grouping clusters information

to be presented at the same time. Finally feedback
processing prepares information to the user without

requiring a speci�c request from the user.

Interaction tasks describe tasks realizing some interaction
techniques to enable the user interacting with the system.
Interaction tasks include selecting objects, editing data or
enabling the user to control some actions explicitly through

events.

Abstract tasks specify complex activities that cannot be
unambiguously speci�ed. Thus tasks who's children tasks
belong to di�erent categories have to be set to abstract as

well.

Table 3.1: Task categories of the ConcurTaskTree notation.

A CTT tree represents a hierarchy of tasks, each categorized in one of four categories
(see table 3.1). Each layer of the tree re�nes the level of abstraction of the tasks until the
task tree leaf nodes that are called basic tasks and cannot be re�ned any further. Tasks
that have the same parent task can be combined using temporal operators to indicate
their relationships.
An often mentioned dowside of CTT is, that it requires to introduce arti�cial parental

tasks to avoid ambiguities in the temporal constraints. These super tasks do not have
any value for the user and make the model harder to understand. Further on, the support
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to model conditions is very limited and not explictly available in the CTT notation and
non-temporal relations between tasks are not supported (for instance the interaction that
has to be entered to perform a task might depend on the data entered in a previous task).
Finally the support of CTT for incremental modeling is limited as often semantics cannot
be added by just editing one place but often require the addition of new tasks.

3.1.3.4 Fourth generation: Tool-supported multi-path, multi-context development

After tools have been incorporated into a user-centric design process in the third gen-
eration, addressing the various contexts-of-use and support for multi-path development
is the main target of research in the fourth generation. Whereas the former is targeted
to support user interface adaptions for combinations of a certain platform, user, and
environment, the latter is about identifying and connecting various levels of abstraction
to design an application.
The Cameleon Reference Framework de�nes several design steps for the development

of multi-context interactive applications. The basic development process is divided into
four steps and is illustrated for two contexts of use in �gure 3.3. The Cameleon Refer-
ence Framework describes every development step as a manipulation of the artefacts of
interests in form of a model or a user interface representation [Calvary et al., 2003].

Figure 3.3: Cameleon Reference Framework.

The process starts by a description of tasks that have to be carried out by the �nal
interactive system and by a description of the domain-oriented concepts that are needed
by these tasks. Concepts are represented as classes that get instantiated to objects used
to re�ect the concept manipulation.
From the task and concepts level an Abstract User Interface (AUI) is derived. The

AUI groups the subtasks of the task model into interaction spaces (presentation units)
according to a set of criteria like task model structural patterns, coginitive work load
analysis or identi�cation of the semantic relationships between tasks. Further on the
AUI de�nes a navigation scheme between the interaction spaces and selects Abstract
Interaction Objects (AIO) for each of the concepts that have to be independent of any
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modality of interaction.
The Concrete User Interface model (CUI) concretizes the AUI and de�nes the widget

layout and interface navigation through these widgets. Di�erent to the AUI, the CUI is
designed for a concrete modality but independent of a speci�c platform. The CUI is used
to present the �nal look and feel of the user interface but has to be considered as a mock-
up that only runs within a particular environment. On the lowest level of abstraction
the Final User Interface (FUI) represents the operational user interface that can be run
on a platform either by interpretation through a renderer (for instance a web-browser)
or by execution (after compilation into binary code).
Between these four levels of abstractions three types of transformations can be iden-

ti�ed: The Rei�cation transformation is used to concretise abstract artifacts to more
concrete ones, whereas Abstraction is a process of generalization of concrete artifacts.
Translation is used to transform a certain level of abstraction that is modeled for a spe-
ci�c context-of-use to a di�erent context-of-use without switching the level of abstraction.
By applying these transformations a designer can start her development activity from
any model of the reference framework.
The multi-path user interface development process based on the Cameleon Reference

Framework follows a transformal approach to map between the four levels of abstrac-
tion. The presented models enable to build modular tools that can guide the designer
through the whole or only parts of the development process. Up to now Vanderdonkt
et al. have developed a whole bunch of tools [Michotte, 2008, Collignon et al., 2008,
Coyette and Limbourg, 2006, Montero and López-Jaquero, 2006] that are based on a lan-
guage (UsiXML) making the models and their associated transformations explicit. The
downside of an transformal approach lies in the complexity of the transformations re-
quired to map between the models. This problem is known under the name �mapping
problem� and will be introduced in the next section, as it is relevant for all transforma-
tional approaches.
Regarding the Cameleon Reference Framework the introduction of arbitrary entry

points and the abstraction transformations are target of ongoing research. For instance
the abstraction from the abstract to the task model �gured out to be complicated and
understudied so far. Di�erent to typical software engineering approaches, well separated
phases and interactions were not made explicit for the reference framework so far and
some phases like for instance �testing� are still missing.

Tools Several tools have been proposed to support the design and speci�cation of the
various models required to realize multi-context and multi-path development. Since there
is no commonly accepted set of models and a widely accepted method to support model-
based development is still missing, the tools di�er in the models, notations, development
phases and grade of automation they o�er.
The Transformation-based Environment for Designing and Developing Multi-Device

Interfaces (TERESA) [Berti and Paternò, 2005, Mori et al., 2002, Mori et al., 2003] is
composed of a method consisting of four steps that is supported by a tool. First, by
high-level task modeling of a multi-context application a single task model is designed
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that addresses all possible contexts-of-use, the involved roles, as well as identi�es all
objects of the domain relevant for performing the tasks. Second, a system task model is
developed for all the di�erent platforms that should be supported. The system task model
for a certain platform is allowed to re�ne the task model of the �rst step. Third, from
the system task model an abstract user interface is derived that considers the temporal
relationships and composes a set of presentations. Each presentation is structured by
the means of interactors. Finally, by the user interface generation a �nal user interface
presentation is generated for all platforms. The TERESA tool supports all these steps
and interactively guides the developer through this top-down approach and o�ers a set
of transformations to generate voice and web-based applications.
The Dygimes system [Luyten, 2004, Coninx et al., 2003] (Dynamically Generating In-

terfaces for Mobile and Embedded Systems) follows the same approach as TERESA
and uses a task tree as the inital model to calculate the sets of enabled tasks (ETS).
Based on the ETS a dialogue model is derived that forms a state transition network
[Luyten et al., 2003a]. In Dygimes a tool supports the designer to attach XML-based
user interface descriptions to all atomic tasks of the tree. After the mappings between
the task tree and the user interface fragments have been speci�ed, Dygimes o�ers a tool
to describe spatial layout constraints helping the designer to ensure that the interface
is rendered in a visually consistent manner. Finally, a run-time library can read the
constructed UI speci�cation, which includes the task speci�cation and adapts both to
the target platform and renders the user interface based on the calculated ETS.
The Dynamic Model-based User Interface Development (DynaMo-AID) project

[Clerckx et al., 2004a] is based on an extended version of CTT task models and supports
dynamic context changes. They propose decision nodes and collect distinct sub-trees from
which one will be selected at run-time. Further on DynaMo-AID includes a concrete pre-
sentation model as well as a description of domain objects. Up to now it supports to
generate an application based on UIML [Abrams and Helms, 2002] and SEESCOA XML
[den Bergh and Coninx, 2004b]. DynaMo-AID follows a prototype-driven methodology
[Clerckx et al., 2006b] that is inspired by the spiral model. It starts from a task model,
followed by the generation of a dialogue model. Combined with the concrete presentation
model a prototype can be generated, evaluated and re�ned. [den Bergh, 2006] critizes
that no details are available on the exact notation used by the DynaMo-AID tool for the
textual description of the model.
The user interface generation process in DiaTask [Reichard et al., 2004] works simular

to DynaMo-AID. It starts with the sepci�cation of a task model, which is transformed
to a dialogue graph, which is a technique used in the TADEUS approach. It's up to the
designer to relate tasks with user interface elements that are represented using XUL1 as
the concrete user interface language. The DiaTask tool supports the animation of user
interface prototypes based on the dialogue graphs.

1The XUL project, http://www.mozilla.org/projects/xul, checked 11/29/08
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3.1.4 The Mapping Problem

The mapping problem can be seen as a direct consequence following a model-based
user interface development approach. The mapping problem has been �rstly introduced
by Angel Puerta and Jakob Eisenstein [Puerta and Eisenstein, 1999] who state: �if for
a given user interface design it is potentially meaningful to map any abstract model
element to any concrete one, then we would probably be facing a nearly insurmountable
computation problem�. Figure 3.4 illustrates the mapping problem between a set of

Figure 3.4: The Mapping Problem between models.

models. Solving the mapping problem comprises answering, which models should be
combined, at which level of abstraction, and how the models are combined. Mappings
specify which interaction objects have to be mapped and how the interaction objects can
be linked between di�erent levels of abstraction. Mappings can be maintained in both
directions (rei�cation and abstraction).
[Vanderdonckt et al., 2000, Vanderdonckt et al., 2003] describe three mechanisms that

can be used to establish mappings between the models: Model derivation, Model link-
ing/binding, and Model composition. Model derivation is a process that uses one or
many already speci�ed models to derive one or many unspeci�ed models. This process
is typically driven by transformation rules that are interactively applied by a designer
that manipulates the transformation parameters [Szekely, 1996, Schlungbaum, 1997,
Barclay et al., 1999]. Model linking and binding is a process between already spec-
i�ed models to establish or re-establish releationships between the model elements
[Barclay et al., 1999, Brown et al., 1998]. Finally, model compostion is used to rebuild
the source models (reverse-engineering) or to build new models. This is done by partially
or totally assembling already speci�ed models [Stirewalt, 1999].
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[Montero et al., 2005] de�ne a formal mapping between the domain, task and abstract
user interface elements. Therefore they have realized the IDEALXML tool, which allows
to establish a set of mappings either manually or automatically (in combination with
the TransformiXML tool [Stanciulescu et al., 2005]) based on a mapping model. Since
they utilize the UsiXML language [Limbourg and Vanderdonckt, 2004a] for specifying
the mapping model, eight di�erent types of mapping relationships can be de�ned. Be-
neath the observes, updates, and triggers relationships, that are used to de�ne mappings
between an interaction object and a domain model concept, the isRei�edBy relationship
indicates a rei�cation of an abstract to an concrete interaction object, and the is isAb-
stractedInto relationship indicates the opposite mapping direction. Finally, manipulates
maps a task to a domain concept, isExecutedIn maps a task to an interaction object and
hasContext maps any model element to one or many context-of-uses.
[Clerckx et al., 2004b] extends three mapping mechanisms proposed by

[Limbourg et al., 2000, Vanderdonckt et al., 2000, Vanderdonckt et al., 2003] to a
classi�cation of �ve mechanisms to solve the mapping problem. They distinguish
between model derivation, partial model derivation, model linking, model modi�cation,
and model update. The DynaMo-AID design process takes advantage of these �ve
mechanisms and directly embeds the model mapping speci�cation into the design
process. Whereas their approach mainly focuses on describing the abstract-to-concrete
mappings, they identi�ed consistency issues when mapping the opposite way. Especially
when deploying a user interface on a constraint device or in cases where the designer
wishes to apply changes to the generated user interface, concrete-to-abstract mappings
are required to check the consistency with the speci�ed abstract models.
The relationships between the task model and the domain model are analysed in

[Pribeanu, 2002] and extended to include the presentation model and tool support in
[Pribeanu, 2007]. They identi�ed three di�erent layers of task modeling, namely the
functional, the planning, and the operational layer. Whereas mappings on the func-
tional layer are used to map application functions onto user tasks that correspond to
business goals, they focus on mappings on the planning layer that specify how a user is
planning to accomplish the goal and on mappings de�ned on the operational layer that
show how a user is actually accomplishing a goal with a given technology. Therefore, in
[Pribeanu, 2007] three mapping rule types are proposed, two rules have been identi�ed
on the lowest layer of abstraction enabling to map horizontally between domain object
attributes and abstract interaction objects (rules 1) and between basic control tasks of
the task model to abstract interaction objects in the presentation model (rules 2). The
third rule is composed of a vertical mapping between tasks of the planning and oper-
ational layer and a horizontal mapping between domain objects of the domain model
and unit tasks of the planning layer. By using a tool they demonstrate �ve mappings
based on the third rule type that can be used to automatically detail a task tree that has
been speci�ed down to the planning layer based on the domain model information and
the actual task that should be performed on a certain object (add, edit, delete, display,
search).
[Vanderdonckt et al., 2000, Vanderdonckt et al., 2003] investigate into a task-dialogue-

presentation mapping and present an approach to derive the navigation of the dialogue
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model from the task model's temporal and structural properties. By an interactive tool
that utilizes a decision tree, derivation rules can be speci�ed and subsequently applied to
the task model to generate the initial dialogue model. The tool uses their own notation,
the windows transition notation and supports �exibly changing the generated results but
does not consider consistency checks regaring the manual manipulations of the dialogue
and presentation models to conform the task model.

3.1.5 Conclusions

The quality of the resulting user interfaces that are developed using a task-based or
model-based approach heavily depends on the quality and quantity of information cap-
tured in the models itself [Vanderdonckt and Berquin, 1999]. This requires an expressive
power of the models and their completeness and consistence. An problematic aspect
of model-based approaches is their lack of �exibility and expansibility to consider new
interaction techniques, new input and output modalities or even new widget libraries
because a user interface produced by a model-based approach is entirely based on the
prede�ned set of input/output (IO) elements supported by the development environ-
ment. [Vanderdonckt and Berquin, 1999] generalize the problem of selecting the optimal
input and output widgets for a user interface as the �io selection problem� and the decision
about their optimal placement in the user interface as an �io positioning problem�. The io
selection problem is currently tackled by using production rules (if..then..else constructs)
[Foley et al., 1988], selection trees [Bodart et al., 1995a, Szekely et al., 1992], or knowl-
edge trees [de Baar et al., 1992]. All methods end up extending their rules-set or selection
trees by re�ned or extended prede�ned IO's. As [Vanderdonckt and Berquin, 1999] note,
each extension makes these knowledge bases growing, harder to maintain and visualize
for the designer.
To consider new interaction techniques in the model-based generation the designer has

to directly manipulate the �nal user interface. If the used development environment is
not powerful enough to track and save these manual manipulation the designer is forced
to reproduce his changes each time a new version of the user interface is reproduced
through the model-based development process.
An often critizised aspect of approaches that start by a task analysis is the additional

amount of time that it needs for analyzing peoples' work and representing the most
important aspects in a structured model. But construction of models providing temporal
and sematic information is a well accepted approach as it is a suitable way to manage
complexity especially when designing interactions for very large and complex interactive
systems. Another actual problem of task modeling approaches is that they cannot be
used for creative tasks as in this special case there is no structured task model used to
express the functionality supporting a user in achieving his goals. Finally, some users
like to identify the objects �rst before they focus on the actions, which is not directly
supported by actual task analysis.
An extensive comparison of �ve model-based systems can be found in

[Gri�ths et al., 1998a]. By conducting an unifying case-study that is about a task for a
library application enabling users to search for books, they compare three main criteria:
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�rst, the support for the automatic generation of interfaces; second, the utilization of
declarative methods to specify the interface; and �nally the adoptation of a methodology
to support the development of the interface.

3.2 Architecture Models for Interactive Applications

Architecture models are intended to address the needs of interactive applications by sepa-
rating the concerns assigned to di�erent components within their respective architectures.
In this section we give an overview of the most prominent architectural patterns that
are currently implemented to support the development of interactive systems. Before
discussing the pros and cons of actual architectures, we start by brie�y introducing the
general interaction model structure. This model is driven by the idea of the highlighting
the communicative aspect to structure an interactive application by de�ning interactors in
subsection 3.2.1. Thereafter, in subsection 3.2.2 we introduce the separation-of-concerns
paradigm, which is the main driving force between all architectural proposals that we
discuss in detail in subsection 3.2.3.

3.2.1 Interaction Model

Unlike �classic� computer programs interactive systems have the role of additionally com-
municating to the user, which leads to a complexity of interactive systems that demands
the need for a structure to reduce complexity and enhance maintainability. The commu-
nicative aspect is often used as a basis for structuring an interactive system into three
domains: input/output de�nition, application and dialogue sequence, which correspond
to the lexical, semantic and syntactic levels [Foley et al., 1990] of linguistic interaction
[Shevlin and Neelamkavil, 1991].
Most architectures for interactive systems use the notation of an interactor as the basic

interaction component in which applications can be modeled. Therefore, each interactor
is dealing with di�erent subsets of human-computer interaction and implemented as a
complete information processing system. A set of interactors build a network to structure
an interactive system [Coutaz, 1989]. [Paternó and Faconti, 1993] proposed to specify the
interactor network structure using a process oriented notation, where each interactor is
viewed as an abstract �black box� that mediates between a user-side and an application-
side. The process logic is then used to specify the external behavior of an interactor (or
interaction object). [Duke and Harrison, 1993, Duke and Harrison, 1995] have proposed
a similar interactor model (PIE model) that links states, events, and renderings into
an agent-like unit that can serve as a building block for the speci�cation of interactive
systems. Di�erent to [Paternó and Faconti, 1993] they use a set-theoretic notation (Z)
to de�ne interactors. Each interactor has a presentation state that re�ects the internal
state of an application.
Beneath these logic-oriented speci�cations, interactor models can be characterized from

an object-oriented perspective since they conform to the observer pattern regarding the
communication between the interactors and the composite pattern, which describes the
hierarchy of interactors in the network [Gamma et al., 2000].
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3.2.2 Separation of Concerns

The separation of concerns principle is a widely accepted concept in the software
engineering area to improve re-usability, portability, modi�cability and integrability
[Bass et al., 1998]. In the �eld of user interface development this concept has been
adapted very early, as a tight coupling of the application logic with the presentation
in the early days was a signi�cant barrier in reusing user interfaces [Alencar et al., 1995].
The application logic component usally implements the system logic containing the func-
tional core of the application for instance by accessing external (web-)services, a �le
system or a database. The presentation component stores the informational data struc-
tures that are presented by a user interface to interact with the user. Further on the
presentation component makes assumptions about the capabilities of the end-device used
by the user to interact with the system (for instance screen resolution, input capabilities,
etc.).
[Menkhaus, 2002] notes that research on user interfaces has focused early on establish-

ing reference architectures that are intended to help the developer:

� to build on already established designs,

� to get bene�t from learning from the experience of others,

� to not have to reinvent solutions from commonly recurring problems,

� to get a head start on common problems and

� to avoid common mistakes.

Whereas the separated application logic can be executed on a server, via a proxy or on
the client device, the user interface must be executed entirely on the client device. This
leaded to the famous user interface explosion problem (�M times N problem�), which
has been transferred to web pages and devices in [Case et al., 2000]. The user interface
explosion problem states that an application exports its functionality via M interfaces
that have to be accessed with N devices. This requires the implementation of MxN user
interfaces. Looking at other domains this problem has been reduced to the amount of
M+N with the introduction of an intermediary step. It is one goal of the architectural
model proposed in this thesis to reduce the user interface development e�ort for multi-
platform user interfaces to an M+N problem.

Agent-based Models Over the last decade several models for architectures for inter-
active systems have been proposed to factor them into di�erent components. A major
milestone was the introduction of agent-based models to structure an interactive system
as a collection of specialized computational units called agents.
[Coutaz et al., 1995] lists the following bene�ts using an agent-based style:

� The functional modularity of an agent makes it possible to modify its internal
behavior without the need to change the rest of the system.
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� An agent can be associated to one thread of the user's activity. Each agent has
its own state that it is managing internally, which enables the user to suspend and
resume the interaction on the user's choice.

� Complex threads of activity can be easily distributed across a set of co-operating
agents.

� As an agent de�nes its unit for processing, it can be executed on a di�erent pro-
cessor or machine from where it was created. For the implementation of groupware
systems for example, instances of classes of agents can be run on distinct work-
spaces.

� Looking at the implementation level, agent models can be easily implemented in
terms of object-oriented languages.

3.2.3 Architectures describing Interactive Systems

The following section discusses the major contributions for models that can be used
to derive architectures to realize interactive systems. The section starts historically
with one of the �rst contributions in this area, the Seeheim model (section 3.2.3.1) and
continues describing and discussing two representative agent-based models, the MVC
(section 3.2.3.2) and the PAC-Amodeus (section 3.2.3.4) model. Chronological between
these both, the Arch/Slinky model (section 3.2.3.3) has been proposed that was one of the
�rst attempts that considers a meta-model. Finally, the Meta-Interface Model (section
3.2.3.5) will be discussed that focuses on actual problems regarding device-independence.
Since there are a lot of more models available that can't be discussed in greater detail,
section 3.2.3.6 brie�y summarizes the contributions of other important models. The
results of these discussions (section 3.2.4) will serve as a foundation for the design of the
run-time architecture that will be introduced in chapter 5.2.1.

3.2.3.1 Seeheim

Early approaches focused on two primary goals: �rstly to minimize the e�ects of interface
changes on the application as a whole and secondly to promote portability among di�erent
windowing systems. The Seeheim model was the �rst model to focus on a solution to
these problems [Green, 1985]. It had been established by X/Open Technology in the
eighties when most application logics were accessed through either command line or
form �lling interfaces.
Figure 3.5 illustrates that the Seeheim model is separated into three layers: The pre-

sentation layer is the static and visual part of the interface where all input is entered and
all output to the user is performed through interface objects. In contrast to the presenta-
tion layer, the dialog layer has a state to structure the user-application dialog. It does so
by handling all events and interfaces between the static screens of the presentation layer
and the application layer. Every communication between the user and the application
layer, which implements the interface to the functional core, runs through the dialog
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Figure 3.5: The Seeheim Model.

layer. For e�ciency reasons a feedback bridge has been introduced; if an application
requires to give fast response to user input the feedback bridge can be used to bypass
the dialog layer.
[Green, 1985] lists the following advantages arising from the separation into three lay-

ers, that can be designed, implemented, tested and maintained independently from each
other: Beneath the improved re-usability and portability, implementation tasks can be
easier distributed among the interface designers and application developers. Additionally
the layered architecture supports rapid prototyping, because the interface designer can
change the presentation without having to rebuild the entire application.
The Seeheim model su�ers from two main di�culties: Firstly, by replacing a presenta-

tion component, one usually had to rewrite the dialog to accommodate the new features
of the new presentation component and secondly, since each dialog tended to need to
be presentation-based, it requires to change the presentation component each time the
dialog changes. Additionally, [Phanouriou, 2000] notes that the functional partitioning
of the interface assumes a synchronous interaction between the user and the interface and
does not support asynchronous modes of interaction such as direct manipulation where
system feedback is interleaved with user's input.

3.2.3.2 Model View Controller Pattern

Figure 3.6: The Model-View-Controller concept.

The Model View Controller (MVC) paradigm divides the responsibility for a user
interface into three components like illustrated in �gure 3.6. A standard interaction
cycle using the MVC paradigm is that the user makes some input that is received by the
Controller component. The active Controller provides the interface between its associated
Model and View and responds by invoking an appropriate action in the Model. The
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Model represents the data structures of the application back-end and provides the source
of the information to be presented by the user-interface. It carries out the requested
operation, changes it's state and broadcasts its change to all connected Views via the
implicit link. After that each View updates its display by querying the Model.
The MVC concept is used in a lot of architectures as it provides a compelling object-

oriented division at the abstract level, but concrete implementations often result in highly
coupled model, view and controller classes. [Shan, 1990] notes that even experienced
programmers require substantial learning e�ort before they can e�ectively use MVC.
This is because the postulated component division is di�cult to implement, since it often
requires every model to be associated to a special view and controller pair. Assigning a
di�erent controller to a view does not change the interaction but often breaks the code
and hinders the reuse of software components.
In MVC controllers are often involved in processing the semantics in addition to their

de�ned role as an interface object. [Coutaz, 1987a] states, that in MVC the notion of con-
trol is distributed across all three components whereas it is centralized in PAC (see section
3.2.3.4). Since in most MVC implementations each MVC component includes the code to
display itself, it is di�cult to display it in more than one way or make global changes in
the implementation. [B'far, 2004] criticizes the inherent asymmetry in treating the input
and the output from the user to the model compounds the proliferation of controllers
and view. Each new combination of interaction devices and their associated modalities
require a new pair of a controller and a view component. Additionally each controller
and its associated views must be synchronized to maintain consistency. The separation of
input- and output capabilities of MVC is often impossible to realize, because input events
are frequently �strongly related to immediate output feedback� [Coutaz, 1987a]. Further
on this separation results in increasing message passing in direct manipulation systems
where most system inputs alter the system states [Hussey and Carrington, 1996].

3.2.3.3 Arch-Slinky Model

An extension to the Seeheim model is the Arch-Slinky Model [Bass et al., 1992], which
re�nes the level of abstraction. The Arch model expands upon the approach of
[Nigay and Coutaz, 1991] that does not propose an architecture but focuses on the data
exchange between the user interface and non-user interface portions of an interactive
system.
The main goal of the arch model was tailored to minimize the future e�ects of chang-

ing technology by loosely coupling the remainder of a system from the interface toolkit
allowing them to evolve independently from each other. As depicted in �gure 3.7 the
Arch model consist of �ve basic components: The Domain-Speci�c Component controls,
manipulates and retrieves domain data from the application back-end. It communi-
cates to the Domain-Adapter Component via Domain Objects that employ domain data
end operations to provide functionality not directly associated with the user-interface.
The Domain-Adapt Component mediates between the Dialogue and the Domain Spe-
ci�c Component. It implements Domain-related tasks that are required for the human
operation of the system but are not available in the Domain Speci�c component. The
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Figure 3.7: Arch Model.

Domain-Adapter Component instantiates di�erent Domain Objects as the Domain Spe-
ci�c Component: They implement operations on the domain data related to the user
interface. For example the Domain Adapter Component extracts useful elements of a
data set of descriptions it has received from the Domain-Speci�c Component and �lters
data that isn't required to be presented on the user-interface.
The Dialog Component maps forth- and back between domain speci�c formalisms and

user-interface-speci�c formalisms and has the responsibility for task-level sequencing for
both the user and the application tasks that depend on user input. The Dialog Com-
ponent communicates with the Presentation Component via Presentation Objects that
control user-interactions by including data to be presented to the user and events to be
generated by the user. Decisions about the representation of media objects are made in
the Presentation Component that mediates to the Interaction Toolkit and provides a set
of toolkit-independent objects (for instance a selector object that can be implemented
as a radio-group or a menu). Finally, that Interaction Toolkit Component implements
the physical interaction with the end-user via hardware and software. This component
uses Interaction Objects that are specially designed instances of media-speci�c meth-
ods for interaction with the user to communicate with the Presentation Component
[Bass et al., 1992].

The Slinky Meta-model for the Arch models The Slinky Meta-model for Arch was
introduced to handle trade-o�s such as minimizing the future e�ects of changing tech-
nology and for improving system run-time performance. The Slinky meta-model can be
used to derive any number of architectures depending on speci�c developer goals and to
evaluate architectures in terms of the desired goals.
The basic idea of the Slinky Meta-model is to allow a shifting of functionaries similar

like the Slinky toy, that dynamically shift its mass when its in motion like illustrated
in �gure 3.8. Data-oriented systems with minimal dialog capabilities can instantiate
an Arch Model with functionality concentrated in the Domain-speci�c and Domain-
Adapter components, whereas dialog-oriented systems that have extensive capabilities
for mapping user-actions and are oriented towards human-computer interaction can focus
primarily on the dialogue part.
The Arch/Slinky Model is a major improvement over the Seeheim model, as it intro-

duces a layer of abstraction of the user interface from the application back-end (via the
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Figure 3.8: Derivation of the Arch Models from the Slinky Meta-model.
[Bass et al., 1992]

Domain Adapter Component) and the concrete user interface toolkit via the Presenta-
tion Component. The isolation between the toolkit and the back-end with the help of
the presentation component enables reusing the user-interface on similar platforms (like
Windows and Unix) with similar interaction capabilities. The support of platforms with
di�erent physical capabilities like for instance supporting voice interaction or devices
with small screen require a re-design of the complete application.

3.2.3.4 PAC-Amodeus

Figure 3.9: PAC-Amodeus Model.

The PAC-Amodeus model is a re�nement of the Arch/Slinky Model and reuses it's main
components (illustrated in �gure 3.9): The Functional Core component implements the
domain speci�c concepts and exchanges information with the Functional Core Interface
(FCI) via Domain Objects, which is the same approach as designed by the Domain

43



3 State Of The Art

Speci�c component and Domain Adaptor Component in the Arch model respectively.
The connection to the user is realized by the Low Level Interaction component that
implements the basic interaction techniques such as a windowing system or a spoken
dialog system. It communicates with the Presentation Techniques Component (PTC )
(in Arch/Slinky: Presentation Component) via Interaction Objects in the same way like
in the Arch/Slinky Model.
In contrast to the Arch/Slinky Model that does not de�ne the organization of the dialog

controller, PAC-Amodeus re�nes the component in terms of PAC Agents [Coutaz, 1987b].
The Dialogue Controller of PAC has the responsibility for doing the task-level sequencing
and is decomposed into a set of cooperative PAC agents. These agents have to bridge the
gap between the FCI and the PTC components of the PAC-Amodeus model regarding
two aspects [Nigay and Coutaz, 1997a]:

1. Managing data transformations between the di�erent formalisms used by FCI,
which is driven by computational considerations of the functional core and the
PTC component that re�ects the toolkit/media capabilities of the user interface.

2. Handling of state changes in the FCI that require a synchronization of the asso-
ciated PTCs (and vice versa) to achieve consistency between multiple views of a
conceptual object.

The PAC agents of the Dialogue Controller form a hierarchy to re�ect multiple levels
for task sequencing, formalism transformation and data mapping. An abstraction pro-
cess combines and transforms events coming from presentation objects to higher level
events until the FCI is reached. Conversely, the concretization process decomposes and
transforms high level data (Conceptual Objects) from the FCI into low level information.
[Nigay and Coutaz, 1997a] introduce �facets� to express the three perspectives of a PAC
agent: The Abstract Facet de�nes the competence of an agent to abstract and concretiz-
ize events from the FCI, the Control Facet controls the dialog and maintains the mapping
between the Abstract Facet and the Presentation Facet. Finally, the Presentation Facet
implements the perceivable behavior of a PAC agent and is therefore related to some
Presentation Objects.
The advantage of using a collection of cooperating agents for decomposing the Dia-

logue Controller is that each agent can be associated to a thread maintaining his own
state to re�ect the user's activity. In this way each task or goal of the user corresponds
to a thread of a dialog. This can be seen as an advantage of the PAC-Amodeus model
over the MVC, that does not describe a dialog control. Di�erent to MVC PAC-Amodeus
groups input and output channel in one presentation component that is interacting with
the user. Centralizing control for both channels in one component �reduces the total
number of objects and the communication overhead between them� [Linton et al., 1989].
[Hussey and Carrington, 1996] mention that the structure of PAC provides easier mainte-
nance than that provided by the MVC model but criticizes that the PAC model does not
acknowledge the possibility of shared abstractions. Further on the hierarchy of abstrac-
tions of PAC can introduce redundant state information between low level interactors
that are abstracted by associated high-level abstractions.
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3.2.3.5 UIML Meta-Interface Model

The Meta-Interface Model is based on the Slinky Meta-Model of Arch and extends the
level of abstraction. The model focuses on an abstraction to describe user interfaces
for multiple devices. Therefore it re�nes the dialog part of the Slinky meta-model by
separating it into four segments to describe a user interface: structure, style, content and
behavior. The structure describes the organization of the parts of an user interface by
a hierarchy and de�nes the di�erent parts that are contained in the user interface. The
style section speci�es the presentation-speci�c properties of each part of the structure
and enables to change properties like color, text, and fonts. The content section handles
the information that should be presented by the user interface like for instance a list of
items that should appear in a menu. Finally the behavior section describes the run-time
interaction like events and application method calls by de�ning rules that are triggered
when some condition is met (for instance if the user presses a button). The bundle of
these four sections is called interface in the UIML Meta-Interface Model and describes
the dialog between the user and the application (see �gure 3.10).

Figure 3.10: The Meta-Interface Model.

In the Meta-Interface Model both components, the Logic and the Presentation Com-
ponent are described as peers that de�ne mappings to external parts of the model. The
Logic peers provide a canonical way for the user interface to communicate with an appli-
cation while hiding information about the underlying mechanisms like data translations
or method names for instance. The presentation peers describe a canonical way for the
user interface to render itself while hiding information about widgets, their properties or
the event-handling.
[Luyten et al., 2006b] mentions that the UIML Meta-Interface Model enables the reuse

of large parts of the user interface across di�erent platforms but criticizes that an abstrac-
tion of the user interface layout is missing, which limits the target set of devices that can
be considered by the user interface rendering. Further on the missing layout abraction
can cause inconsistencies in the layout of the user interface. [Luyten et al., 2006b] pro-
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poses an extension (DI-UML) that uses constraints and parametrized layout templates
to raise consistency between the generated user interfaces.

3.2.3.6 Others

Beneath the architectural models presented in the previous sections a large number of
agent-based models have been proposed along these lines. Similar to the PACmodel, ALV
[Hill, 1992], CNUCE [Paternó and Faconti, 1993] and York [Duke and Harrison, 1993,
Duke et al., 1994] bene�t from the agent-based style by stressing a highly parallel mod-
ular organization and distributing the state of the interaction among a collection of
co-operating units.
[B'far, 2004] proposes an enhancement to the PAC agent model [Coutaz, 1987b] specif-

ically targeted to serve mobile applications (PAC-TG). They insert two additional layers
between the PAC control and presentation facets: A Generic Presentation Facet is re-
stricted to encapsulate information and behavior about interactions with the user that
are independent of the �nal user interface. The Generic Presentation Facet feeds a
Transformation Facet that specializes the generic presentation objects for a speci�c end-
device. Thus PAC-TG treats the concern of creating multiple user interfaces but does
not consider the user feedback that might come from another device or modality in a
multi-modal scenario.

3.2.4 Conclusions

Most of the architectual proposals to support interactive system development have been
made between 1989 and 1994. Thereafter a continous advancement of concrete patterns
and framework proposals is missing to tackle the advances of modern, model-based in-
teractive system development. Early approaches focused on describing patterns for the
modularization of an interactive system to reduce the complexity of handling the event
synchronization for graphical user interface that are able to present a whole bunch of
interaction elements simultanously to the user (PAC, ALV, CNUCE, York). Another
important aspect of early approaches includes decoupling the functional backend from
the user interface to force re-usability (MVC, Arch-Slinky).
Recent architectural advances like the UIML-Meta Interface Model or PAC-TG include

enhancements to serve mobile applications and multi-platform user interfaces, but miss
to descibe an approach to consider the user interface models of model-based system
development.

3.3 User Interface Description Languages

In the following sections an overview about the signi�cant milestones of user interface
description languages (UIDL) development will be provided. The presented UIDLs are
grouped by the level of abstraction they o�er: concrete description languages (section
3.3.1) have their focus on declaratively expressing a runnable user interface, whereas
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model level description languages (section 3.3.2) introduce one or more (abstract) mod-
els that are involved in the development process of the user interface. Meta-model level
description languages that will be discussed in section 3.3.3 add another layer of abstrac-
tion and describe how the models they contain are described.

3.3.1 Concrete Description Languages

3.3.1.1 XML User Interface Language (XUL)

Under the name XUL various approaches starting from Mozilla XUL to Microsoft's
XAML have been proposed and most of them are organized in the Open XUL Alliance.
The �rst aproach for a XUL language has been done by the Mozilla Organisation to re-
duce the time-consuming development e�ort for building cross-platform software. Thus
XUL approaches can be positioned to support cross-platform development like for in-
stance Java but concentrate on user-interface portability. XUL started as an internal
representation (the Gecko browser engine) of the Mozilla browser user interface.
XUL o�ers a separation of the application functionality, the presentation (realized as

�skins�, a combination of CSS2 with associated images), and the language-speci�c text-
labels. This approach allows altering the user interface presentation without changing the
other parts. XUL has several �sister� languages: The eXtensible Binding Language (XBL)
is used to declare the behavior of XUL widgets, the XPXOM / XPConnect Language
part describes the language binding to access modules written in other languages like
PERL, Ruby or Java, whereas XPConnect is a XPCOM module that is used to access
C++ code from Javascript.
XUL has a strong focus on windows-based graphical user interfaces. Although the

Mozilla organisation promotes XUL as a standard there exists a lot of derivations that
focuses on special applications. For instance Mozillas XUL is not directly applicable to
interfaces of small mobile devices, but Thinlets, a XUL derivat realizes a small sized XUL
motor for this class of devices. Another XUL derivation is Microsoft's XAML. As XUL
is an instance-level oriented decription language there are no abstractions of interaction
functionalities supported.

3.3.1.2 XForms

XForms, a World Wide Web Consortium (W3C) Standard [Boyer, 2006] is an XML
application targeted to form processing for the web. Beneath form-processing and form-
validation, device-independence is one design goal of XForms. Therefore XForms is used
to capture the intent behind a form processing application. It re�nes the XHTML form
handling approach by specifying three parts for form processing: The XForms model,
the user interface and the instance data.
XForms is focusing on graphical, interactive systems (web applications), for which it

re�nes the HTML form processing by introducing form-validation mechanisms. Therefore

2Cascading Style Sheets, http://www.w3.org/Style/CSS last checked on 11/29/08
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Figure 3.11: The XForms Language Model.

it requires an implementation for both, the (web-)server-side and the (web-)client. Client-
sided data validation is used to avoid round-trips in data communication with the server
side. The XForms speci�cation mainly addresses the client where it de�nes the form-
presentation, the event-handling and the validation.
As illustrated in �gure 3.11 the XForms model can be subdivided into two basic parts:

a data model and the processing model. The data model is used to structure the data
that should be manipulated by the form later on. The XForms data model subsumes the
XPath data model and therefore uses XPath expressions to reference the data. The term
data model was chosen to re�ect associations to the Model-View Controller based design
of XForms, which like in MVC collects all essential data in the data model. The form
controls of the XForms user interface re�ect the View part of MVC. There is no speci�c
component de�ned to re�ect the MVC controller part, but portions of the processing
model and the XForms events play a similar role [Dubinko, 2003].
The processing model de�nes the behaviors associated with the form. Thus, it de�nes

what happens with the data, when a form gets submitted. Each user action is associ-
ated to form processing actions of the processing model. The second component of the
XForm Language model is the XForms user interface, which represents the form-controls
independent of a particular platform. Form-controls o�er an abstraction by de�ning
widget tags like input, text area, output, and submit, and can be rendered di�erently
constrainted by the capabilities of the target platform.
Finally, the instance data is used to exchange data between the server and the user

and enables the possibility to collect the entered or manipulated data by the user (into
the form) in an XML format back to the server.
The XFoms language model can be considered as a description on an instance level as it

primarily focuses on rendering and validating forms by o�ering a declarative description
that partly follows the MVC model. Regarding the view part of the model, a basic
abstraction for widgets in the form processing domain is o�ered, but mainly intented to
be rei�cated to a graphical-oriented user interface and supplement the current XHTML
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form speci�cation.

3.3.1.3 Others

The Webservice Experience Language (WSXL) promoted by IBM in 2002
[Chamberlain et al., 2002] focuses on two goals: Firstly it enables building web ap-
plications to a wide variety of channels and secondly it allows creating web appli-
cations from other ones. Simlar to XForms WSXL separates presentation, data,
and control components to ease the reassambly of multiple alternative versions
[Souchon and Vanderdonckt, 2003]. WSXL speci�es an adaptation description that can
be associated with a WSXL base component to describe how the markup code generated
by such a component can be adapted to new channels. WSXL is designed to be the next
piece of the set of web services [Souchon and Vanderdonckt, 2003] and integrates well to
other standards like XForms and Web Services for Remote Portlets (WSRP).

3.3.2 Model Level Description Languages

3.3.2.1 UIML

The User Interface Markup Language (UIML) is an interface meta language that is based
on the Meta Interface Model introduced in section 3.2.3.5. It has been designed as a "ven-
dor neutral, canonical representation of any user interface (UI) suitable for mapping to
existing languages" [Abrams and Helms 2004]. UIML is separated into six parts that a
user interface consists of: the structure, the presentation, the content, the behavior, the
mapping to a user interface toolkit, and the binding to the application logic, which con-
forms to the Meta Interface Model. Di�erent to the concrete user interface description
languages that have been introduced in the previous section, UIML enables a designer
to de�ne or to integrate di�erent user interface vocabularies. This has the advantage
that once a UIML document that serves as a generic user interface description has been
designed, this description can be mapped to any concrete user interface description lan-
guage by using the mapping concept of UIML. UIML can be considered as one of the
founding approaches that introduced a meta level to describe device independent user
interfaces, but several major disadvantages have been identi�ed over the years.
One disadvantage of UIML is that it de�nes a one-to-one mapping of abstract interac-

tion objects into concrete interaction objects, which is not very �exible as [Luyten, 2004]
mentioned. [Puerta, 2001] adds that UIML does not consider contextual data and is
not intended to support knowledge-based system functions, nor does it target operation
and evaluation functions. Further on, it does not clearly separate the rendering of the
interface from the rest. More speci�cally, UIML relies on specifying at least one vo-
cabulary and is not able to be rendered without one. [Abrams and Helms, 2002] has
speci�ed a generic vocabulary but it is constrained to graphical user interfaces and not
modality-independent.
The Dialog and Interaction Speci�cation Language (DISL) proposed by

[Schäfer, 2007a] implements a platform and modality independent vocabulary and
extends the behavioural part of UIML to allow rendering the user interface by a DISL
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renderer that directly runs on the end devices. These renderers directly interpret the
DISL language, which de�nes modality-independent generic widgets.

3.3.2.2 AUIML

The Abstract User Interface Markup Language is an approach by IBM
[Azevedo et al., 2000] to specify abstract user interfaces to overcome that explo-
sion of transformations that are required to map from various source markup languages
to the continuously growing concrete user interface markup languages. Therefore
AUIML o�ers keeping the �intent� of the user interface separate form it's rendering.
But since AUIML is mostly concerned abstracting the user interface logic, a behaviour
model has not been speci�ed to our knowledge, which prevents allowing a modality
independent speci�cation of the user interface and in fact the currently available toolkit
is only able to produce HTML and Swing user interfaces as [Schäfer, 2007a] notes.

3.3.2.3 TERESA XML

TEREASA XML de�nes a set of XML-based model descriptions for the TERESA au-
thoring environment (Transformation Environment for inteRactivE Systems represen-
tActions) [Mori et al., 2004]. TERESA XML is composed of two main models: a task
modeling language, which is an XML-based representation of the CTT notation and an
abstract user interface model. Additionally exemplary instances for concrete user in-
terfaces, such as XHTML-based graphical user interfaces or a voice user interfaces are
supported [Berti et al., 2004]. Whereas the abstract user interface model part is used to
de�ne abstract interaction objects (AIO) during the design process, the task model part
is re�ned to a set of connectors specifying the order of processing the AIOs. Therefore
the design results in a state machine de�ning the raw dialog of the application.

3.3.2.4 Seescoa XML

SEESCOA XML [Luyten and Coninx, 2001, Luyten et al., 2002] has been developed as
a user interface description language to describe abstract interaction objects as part of
the Dygimes System [Luyten, 2004]. The language focuses on describing the presenta-
tion level on mobile devices requiring only a small footprint for rendering user interfaces.
Therefore the set of supported interactors is very close to HTML and only basic form-
based applications can be designed. A behavior model is not addressed by the language,
but a basic eventing system that can be included into the language renderer by imple-
menting �action plugins� allows an integration of custom communication protocols. Since
SEESCOA XML has been originally designed as a �serialization� language, it is in syntax
close to program objects and can be e�ciently interpreted by a machine.

3.3.2.5 UsiXML

The USerInterface eXtensible Markup Language (UsiXML) is aimed at o�ering a com-
prehensive approach for describing the various levels of details and abstractions of a user
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interface depending on the context-of-use. Therefore it is structured following the basic
abstraction levels o�ered by the Cameleon Reference Framework that has been previously
discussed in section 3.1.3.4.
At the task & concepts level of the Uni�ed Reference Framework UsiXML

[Limbourg et al., 2004b, Limbourg et al., 2004a, Limbourg, 2004] o�ers a task model that
takes advantage of Paterno's CTT notation, and a domain model that describes the ob-
jects and classes that are presented and manipulated by the user. At the abstract level,
UsiXML's abstract user interface model speci�es the groups of tasks and domain concepts
that will be presented together at the same time to the user, whereas at the concrete
level the concrete user interface model is used to give a detailed speci�cation of the user
interface appearence, that is dependent on a certain modality (for instance to generate
a graphical or a voice-based user interface).
Di�erent to earlier approaches, that mainly focus on declarative descriptions of models

on certain abstraction levels (like UIML or XUL) UsiXML explicitly considers two addi-
tional aspects: the context-of-use and support for a transformal development approach.
The context-of-use is considered by specifying three additional models: the user model

that decomposes the users of the interactive system into stereotypes and describes them
by attributes for instance to express their experience with the system or a speci�c task
or their motivation. The environment model describes the global environment where the
interaction between the user and the system takes place. Properties of the environment
can be physically to describe the level of noise or the lightning, or psychologically to
express the level of stress of the user. Finally the platform model is used to specify the
relevant attributes of the hardware and software of the device that is used to present the
user interface.

Figure 3.12: Transformation Approach in UsiXML.

The transformal development approach support of UsiXML is motivated by the ab-
stractions of the Cameleon Reference Framework and is based on graph transformations
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[Puerta and Eisenstein, 2003] between the models of the di�erent abstraction levels (il-
lustrated in �gure 3.12). The transformation system of UsiXML is organized by graph
rewriting rules equipped with negative application conditions and attribute conditions.
This transformation can be interactively constructed or manipulated using an Editor
[Stanciulescu et al., 2005] or can be processed automatically. Up to now, the transfor-
mations are used between the task&concepts and the abstract user interface level, and
between the abstract and the concrete user interface level, respectively.

3.3.2.6 GIML

The Generalized Interface Markup Language (GIML) [Kost, 2006] supports four models
of abstraction similar to the UIML approach: structure, style, content and behavior
that compose a GIML document. This document is mapped to a speci�c user interface
by using an XSLT-based mapping or a renderer that interprets the GIML language for
a speci�c target platform. As the dialog model includes navigation elements, GIML
supports rendering user interfaces to three dimensional presentations o�ering a lot of
navigational options and voice prompts (which requires a strong navigational sequencing)
as well. GIML does not consider a user-centric design, nor includes a task model, but
instead follows a functional and technological-driven approach.

3.3.2.7 XISL

The eXtensible Interaction Scenario Language (XISL) [Katsurada et al., 2003] has been
speci�ed to describe multi-modal user interfaces. It basically consists of an abstract di-
alog �ow description that is able to synchronize dialog �ows between several connected
modalities similar to SALT and XHTML+Voice. Di�erent to these approaches XISL
�abstracts� from speci�c modalities, by distinguishing between input and output modal-
ities that can be addressed in parallel, alternatively or sequentially. Each modality and
platform that should be addressed by XISL needs to be implemented separately, since
XISL does not include a transformational user interface development approach.

3.3.2.8 RIML

The main design goal of the Renderer Independent Markup Language (RIML) is an
automated pagination support [Ziegert et al., 2004, Spriestersbach et al., 2003]. RIML
mainly targets to form-based web applications as it de�nes a XHTML 2.0 language pro-
�le, which can be enhanced by a speech-based access. Therefore it separates the content
de�nition from the description of the dynamic adaptation, which can be performed by a
user interface. The layout mechanism of RIML is simple but e�ective. By supporting the
de�nition of rows, columns, and grids it is similar to AUIML but more powerful as RIML
supports specifying alternative contents for the di�erent output channels and an intelli-
gent pagination supporting to �t user interfaces to di�erent screen sizes. [Luyten, 2004]
criticizes, that RIML merges parts of XHTML, XForms and other markup languages
resulting in a fairly big speci�cation.
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3.3.2.9 Layouting Models

The user interface layout speci�cation has not been explicitly addressed in the model-
based user interface description that have been presented in the last sections. Neverthe-
less initial ideas and concepts relevant for the layout design and speci�cation should be
discussed in the next paragraphs.
Nichols et al. list in PUC [Nichols et al., 2002] a set of requirements that need to be

addressed in order to generate high-quality user interfaces. As for layout information they
propose to not include speci�c layout information into the models as this (a) tempts the
designers to include too many details into the speci�cation for each considered platform,
(b) delimits the user interface consistency and (c) might lower the chance of compatibility
to future platforms. Even though we share the idea to use a hierarchical grouping to
express the user interface organization; we are looking for a more �exible approach that
does not require a hierarchy as a key element.
The SUPPLE system [Gajos and Weld, 2004] treats interface adaptation as an op-

timization problem. Therefore SUPPLE focuses on minimizing the user e�ort when
controlling the user interface by relying on user traces to estimate the e�ort and to posi-
tion the user interface widgets on the user interface. Although they present an e�cient
algorithm to adapt the user interface it remains questionable if reliable user traces can
be generated or estimated if a user uses the same application for various tasks. While
SUPPLE also uses constraints to describe device and interactor capabilities they present
no details about the expressiveness of the constraints and the designers e�ort in specify-
ing these constraints. The layout of user interfaces can be described as a linear problem,
which can be solved using a constraint solver.
Recent research has been done by Vermeulen [Luyten et al., 2006a] implementing the

Cassowary algorithm [Badros et al., 2001], a weak constraint satisfaction algorithm to
support user interface adaptation at run-time to di�erent devices. While he demonstrates
that constraint satisfaction can be done at run-time, to our knowledge he did not focus
on automatic constraint generation. Other approaches describe the user interface layout
as a space usage optimization problem [Hosobe, 2001], and use geometric constraint
solvers, which try to minimize the unused space. Compared to linear constraint solving,
geometric constraint solvers require plenty of iterations to solve such a space optimization
problem. Beneath performance issues an e�cient area usage optimization requires a
�exible orientation of the user interface elements, which critically a�ects the user interface
consistency.
Richter [Richter, 2006] has proposed several criteria that need to be maintained when

re-layouting a user interface. Machine learning mechanisms can be used to further opti-
mize the layout by eliciting the user's preferences [Gajos and Weld, 2005]. The Interface
Designer and Evaluator (AIDE) [Sears, 1995] and Gadget [Fogarty and Hudson, 2004]
are incorporating metrics in the user interface design process to evaluate a user interface
design. Both projects focus on criticizing already existing user interface layouts by ad-
vising and interactively supporting the designer during the layout optimization process.
They follow a descriptive approach by re-evaluating already existing systems with the
help of metrics.
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3.3.2.10 Others

Beneath the user interface description languages supporting the de�nition of the user
interface on an abstract, model-level that have been presented in the previous sections
several others have been proposed over the years. AAIML [Zimmermann et al., 2002b,
Zimmermann et al., 2002a] supports an abstract de�nition of interactors, a classi�cation
of interactors by feature classes to ease the identi�cation what interactor can be ren-
dered for which devices, and attaching help texts to individual interactors. TADEUS
XML [Mueller et al., 2001] o�ers a more comprehensive approach by also refering to a
device description and including a basic mapping approach. They abstract concrete
user interfaces by the de�nition of abstract user interface objects that can be trans-
formed to speci�c user interfaces by considering the target device description in HTML,
WML and Java-AWT. The Reusable Device independent Interaction XML (RDIXML)
[Martikainen et al., 2002] provides further models within one representation, namely
task, domain, user, dialog, presentation, device, and application models. The task model
of RDIXML is the most advanced one. It's on the one hand the starting point of user
interface development and on the other hand, it relates all mappings to the task model as
the central model. As [Schäfer, 2007a] notes, the focus of RDIXML lies on reusability and
therefore other aspects such as modeling relations between tasks are not well developed.
Further on, some models are not cleanly separated, thus for instance the presentation
model includes the dialog model.

3.3.3 XIML Meta Model-level Description Language

Di�erent to model-level description languages described in the last section, meta model-
level description languages rise the abstraction to a level that enables the description of
the models the languages utilizes. A description on the meta-model level can o�er an
extension-mechanism to add or re�ne the models of the language.

Figure 3.13: Basic representation structure of XIML.

The eXtensible user Interface Markup Language (XIML) was one of the �rst model-
level user interface description languages that included an extension mechanism by of-
fering an abstraction on a meta-model level that organizes the representation structure
of the XIML language as depicted in �gure 3.13.
There are three main representation units de�ned within XIML: interface components,

relations, and attributes. Interface components are used to categorize a collection of
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interface elements. Each element can belong to more than one interface component. As
new components can be de�ned to extend the XIML language and no limit on the amount
of new components and their associated elements has been set, XIML 1.0 proposes �ve
basic interface components, three on an abstract level (task, domain and user component)
and two on an implementational and concrete level (dialog and presentation). Relations
can be de�ned to specify links between interface elements that are associated in the
same or in di�erent interface components. [Puerta and Eisenstein, 2001] note that an
explicit representation �creates a body of knowledge that can support design, operation,
and evaluation functions�. XIML distinguishes between relation de�nitions and relation
statements. The former ones specify a canonical form of relations whereas the latter
ones specify actual instances of a relation. Finally attributes are de�ned as features of
properties of elements in XIML that can be assigned a value. Beneath supporting basic
data types, instances of other existing elements can be set as an attribute value.

3.4 Conclusions

The state of the art overview revealed the long history of model-based interactive system
development. We inspected three aspects of model-based development: The method,
the development of architectures, and the most prominent user interface description
languages and notations supporting such a development approach. As there are a lot
of di�erent approaches that have been proposed especially for methods and languages
in the last two decades, we structured the analyzed proposals for development methods
corresponding to the time they have been proposed in and �gured out four important
generations (milestones) to characterize methods and tools. Each generation is motivated
by new development requirements and the availability of new technological possibilities.
When inspecting the various user interface description languages available, we have

identi�ed three di�erent layers of abstraction that languages could be characterized.
Concrete description languages have their focus on enabling a declarative description of
user interfaces. Model-level description languages describe the user interface through
a set of declarative models, each on an di�erent level of abstraction or by specifying a
certain aspect of the interactive application. Finally, meta-level languages support the
speci�cations of the various models that they are able to handle and therefore o�er the
de�nition of comprehensive and consistent sets of models. Di�erent to related work on
languages and methods that have been continously advanced by the research community,
the development of architectures and paradigms has not been signi�cally advanced after
an early development phase between 1987-1997. Thus, the progress in model-based
systems in terms of methodology and languages can not be mapped to an architectural
pattern. Since early architectural proposals mainly focus on identifying a separation of
concerns and support modularity by hierarchy, they fail to address the fact of supporting
model instantiation on all levels of abstraction but require a model compilation to a �nal
user interface to be executable.
The state of the art analysis motivates our approach to be realized in a three-folded

way. Whereas the development of a tool-supported and comprehensive method is the
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most important aspect of our work, we complement our approach by an proposal for an
agent-based architecture supporting the direct model execution to remove the actual gap
between design and run-time of an application. Finally, we do not reinvent the wheel by
proposing yet another user interface language, but propose language additions where we
experienced missing aspects, which we indenti�ed during the implementation of several
prototypes and case studies. The next three chapters address our three-folded approach
by starting with the derivation of the requirements �rst and thereafter presenting our
approach to tackle down the identi�ed problems regarding the method (chapter 4), the
architecture (chapter 5) and the language (chapter 6).
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User interface design is often considered an art and requires human intervention for all
the creative processes like specifying the layout, selecting suitable colours and widgets
for instance. Opposite to this is a business perspective that demands for deadlines, a
calculation of e�orts required to implement an interactive system, and measurements
that can give a basic indication of the project progress. Another counteracting axis can
be identi�ed by the evolving technologies o�ering new kinds of interaction principles by
the continuously advancing device and computer capabilities. Even small changes like
updates of the underlying operating system or a new display form factor can confront
a user interface developer with a big problem. End users expect applications to be
integrated seamlessly into their devices, supporting all interaction capabilities and usage
paradigms as well as the realization of homogenous usage principles enabling switching
between the device's applications without the need for learning about the position and
working modes of the basic application controls.
This is the actual area of con�ict where engineering methods can help to guide software

developers to handle con�icting requirements along the three con�icting axis and tools
can help to automate reoccurring tasks that do not require the humans' creativity. In
the following sections a method for interactive system development will be proposed that
o�ers a clear separation of concerns, a continuous tool support and the option to integrate
the targeted audience (the end user) in all steps of development process to incorporate
feedback as early and often as it makes sense to the involved parties.
The ultimate goal of a model-based development of user interface is to minimize the

implementation phase by the systematic use of �productive� models that can be pro-
cessed by a machine. This requires an engineering process that is described with explicit
models, which are linked together through mappings and transformations. The process
focuses on the analysis and design phases, where all the models are designed by applying
transformations that guide to lower level models. The subsequent implementation phase
mainly has to focus on selecting and con�guring a framework that is able to execute
these models and will be only shortly described to complete the process.

4.1 Requirements Derivation

In this section we systematically derive the requirements by presenting the observations
and shortcomings that we �gured out during the state of the art analyses of related
work in user interface development, which has been presented in section 3.1. From the
list of observations we then derive a set of requirements to support our concept for a
tool-supported method for interactive system development.
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4.1.1 Observations

We can observe three aspects when looking at related work of interactive system develop-
ment methodologies. First, we identi�ed a diversity of methods. Second, we experienced
a heterogeneity in phase coverage between the various approaches and �nally, we ob-
served that several tools have been proposed in the past to support the designer and user
during development so far. In the next paragraphs we detail these observations.

4.1.1.1 Methodological diversity

On the one end of the spectrum, processes have been proposed that put a strong focus on
the speci�cation phase. They start by investigating in the domain of discourse by analyz-
ing and designing the relationships between the involved entities. On the other end of the
spectrum, processes start by designing a user interface with the help of a user interface
construction tool enabling the design of the �nal presentation �rst, before the underlying
processes and functionalities are investigated. The former processes implement a forward
engineering whereas the latter implement a reverse engineering approach.
Up to now there does not exists a general agreement regarding the order of the pro-

cess steps in the analysis phase. Some approaches, like [Ziegert et al., 2004] start by
identifying objects �rst, whereas others propose to start by a task analysis (for exam-
ple [Paternò, 1999]) before identifying the domain objects. Some approaches like the
Cameleon Reference Framework [Calvary et al., 2003] leave it to the designer to decide
upon the initial step. UsiXML [Limbourg et al., 2004a] and the unifying reference frame-
work support di�erent entry points to the user interface development process that can
then be continued by both, forward and backward engineering.

4.1.1.2 Heterogeneity in phase coverage

One reason for the actual diversity of methods that has been proposed to support in-
teractive system development is about the heterogeneity in phase coverage. Most ap-
proaches focus on the analysis and requirements phase (like [Paternò and Mancini, 1999])
or concentrate on the design phase of the development process [Calvary et al., 2003,
Mori et al., 2003], on dialoge modeling [Vanderdonckt et al., 2000, Reichard et al., 2004,
Dittmar and Forbrig, 2004] or on designing context-of-use adaptations [Luyten, 2004,
Clerckx et al., 2007] but do not consider a comprehensive tool-supported method. Fur-
ther work has been undertaken, which focuses on the identi�cation of mappings between
various design models [Stanciulescu et al., 2005, Clerckx et al., 2004b] or notations like
for instance UsiXML have been proposed that can be utilized as a standardized ex-
change format to connect the phases of the development process [Limbourg et al., 2004b,
Limbourg and Vanderdonckt, 2004b].

4.1.1.3 Tool-support and user involvement

As tool-support is an widely accepted aspect of model-based user interface develop-
ment, various tools have been developed to support the development process. The
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task analysis is supported by tools like for instance the �Eliciting Task Models Tool�
[Paternò and Mancini, 1999], which helps the designer to derive task structures from sce-
nario descriptions. The Dygimes Framework [Coninx et al., 2003], an extended version
of Seescoa [Luyten et al., 2003c], starts by a task modeling phase using the ConcurTask-
Trees notation to derive an abstract user interface and to transform it to the �nal user
interfaces for di�erent platforms.
Whereas task analysis and modeling is done on a very abstract level to design in-

teractive systems, prototyping tools like for instance SketchiXML [Coyette et al., 2004,
Coyette and Limbourg, 2006] support Low Fidelity Prototyping by processing hand
drawn user interface sketches and automatically transforming these sketches to graphical
user interfaces. A di�erent approach is followed by high �delity prototyping tools (like
for instance Gra�XML [Florins et al., 2006b], VisiXML [Sluys, 2004] or LiquidUI1 from
Harmonia Inc.) that enable computer-aided design of user interfaces by o�ering pallets
of widgets that can be used for user interface prototyping and can be layouted by using
drag-and-drop metaphors.
Both, tools supporting task analysis and modeling as well as prototyping tools facilitate

user involvement in the user interface design process. Task models can be designed by a
tool like the CTT editor [Mori et al., 2003] and scenario-completeness can be veri�ed in
that way in cooperation with the targeted audience of the interactive system. Prototyping
processes often focus on realizing mockups of user interfaces as early as possible to enable
a quick preview of the user interface experience for the end-user in order to consider
feedback as early as possible.

4.1.2 Shortcomings

Regarding the methodological observations two basic shortcomings can be identi�ed. On
the one hand, the lack of continous tool support currently is an aspect that prevents a
greater acceptance of model-based system development. On the other hand, most ap-
proaches focus on designer tools but do not consider testing support. Both shortcomings
will be described in the next sections.

4.1.2.1 Lack of continous tool support

Tool support is limited to support the developer or designer in selected phases following
a model-based approach. The UsiXML user interface description language has been
proposed as a standard exchange format between various tools for prototyping, reverse
engineering or simulation of user interfaces. Up to now the tool support is limited
to the user interface speci�cation at design-time. The Teresa tool o�ers an integrated
development environment that starts with task analysis followed by task modeling. After
that an abstract user interface can be derived and re�ned for various platforms to end
up in a �nal user interface. Similar to the UsiXML tools the run-time support is limited
and the adaption to di�erent platforms is mainly done at design-time. The Dygimes
framework o�ers a run-time environment for the provision of user interfaces for various

1http://www.harmonia.com, last checked 07/10/08
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platforms and sets a strong focus on run-time adaptation of user interfaces, for instance
by a constraint-based layouting mechanism that is able to relayout existing user interfaces
based on templates regarding the capabilities of the targeted end-devices. Tool support
of Dygimes is limited to support task analysis and modeling based on the CTT editor of
Paterno et al. In UIML there are GUI builders available that can support the designer
in the user interface creation process, whereas XIML is supported by a tool that allows
simulations considering temporal relations between task and design decisions for the
navigation dialogue [Forbrig et al., 2004].

4.1.2.2 Lack of continous testing support

Beneath the participation of usability experts, testing support in the development process
can have signi�cant advantages for the �nal quality of the interactive system. Well-known
software engineering models like the improved V-Model for instance consider testing steps
associated with each phase of the anticipated development cycle. Recent approaches that
implement agile development claim for close involvement of the targeted audience. Re-
garding development of interactive systems prototyping and task-modeling are widely
accepted approaches that support user-involvement. The former one actually gained a
lot of attention in the model-based research community by Vanderdonckt et al. that
propose various tools to support prototyping on di�erent levels of �delity. The latter
one gots strong support by Paterno et all. proposing various tools for task analysis and
task modeling based on the CTT notation. Some kind of continous testing support is
still missing as actual approaches consider testing the user interface in certain aspects
only. Although task modeling notations like for instance CTT implement a comprehen-
sive syntax and easy accessible semantic the end-user often prefers to talk in form of
scenarios [Paternò and Mancini, 1999] and leaves the task modeling up to the designer.
The CTT tool allows to prove the modeled task-trees by enabling the user to simulate
the designed interactive application before the interactive system is �nally implemented,
whereas other approaches like IdealXML or [Reichard et al., 2004] give an abstract view
on a visualized prototype illustrating the basic user-interface structure that has been
automatically derived from a task tree.

4.1.3 Methodological Requirements

By identifying the actual shortcomings of methods to support interactive system devel-
opment, �ve requirements can be derived that should be tackled down by our work and
will be presented in the following sections.

4.1.3.1 Lifecycle coverage

The proposed methodology should cover the whole life-cycle of an interactive application.
Following a model-based approach, the methodology should cover all states of software
engineering starting from early requirements analysis to design, prototyping, implemen-
tation, deployment, maintenance and adaptation at run-time. Since an application of the
proposed methodology should guide the involved roles to an interactive system that can
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be accessed via various platforms, each step in the process has to be well de�ned and the
relevant information to be considered should be explicitly stated in order to complete a
step of the methodology.

4.1.3.2 Automated process with support for interactive development

A computer assisted approach for model-based user interface generation should provide
the participating roles the possibilities to automate repeating tasks while o�ering ongoing
control. The often mentioned critique of model-based approaches, which is about the
di�culties for the involved roles to understand how the model manipulations a�ect the
resulting user interfaces, requires an explicit involvement of the a�liated roles. This
demands for an interactive design process enabling comprehensive model manipulations
on all levels of abstrations.

4.1.3.3 Automation of repeating tasks

Repeating tasks should be stored in form of a design knowledge base, which should
gather re-appearing work in form of templates or macros. Thus a high-level automation
is required that is able to o�-load routine. The methodology should support the decom-
position of high-level tasks into simpler ones and has to keep track of the status of the
design activities.

4.1.3.4 Support for multi-path development

The methodology requires to promote some form of a �guided path� through the user
interface development process. The path has to include early requirements de�nition, the
conceptionalization and implementation. As proposed by [Luo, 1994] in the humanoid
approach, development following the methodology must be �exible to be easily adapted
to di�erent forms of organisation. This requires �exible development approaches (top-
down, bottom-up, wide-spreading, and middle-out) and additionally enables the involved
roles to �exibly shift between these approaches. Limbourg [Limbourg et al., 2004b] ex-
tends this requirement and formulates a demand for �development steps (that) can be
combined together to form a development path that is compatible with the organisation's
constrains, conventions, and context-of use� [Limbourg et al., 2004b].

4.1.3.5 Support for explicit involvement of the targeted audience

Supporting continous involvement of the target audience can improve the quality of the
interactive applications measured against what the targeted user-goup expects. Similar
to already established software engineering models, like the enhanced V-Model that con-
siders tests for each phase of the development process, usability-tests and acceptance-tests
associated to every step of the methodology can help to catch potential shortcomings.
Intermediate results might be re�ned by considering user's feedback and explicit goal-
and-process management is required to prevent try and error trashing as Carroll notes
in [Carroll, 1992].
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4.2 The MASP User Interface Development Process

Depending on the type of the interactive system that has to be developed, user interface
development processes can look very di�erent. For example processes for interactive
systems that are specially designed to run on a desktop often have a strong focus on user
interface developement using GUI builders, allowing to construct user interface mockups
relying on the platform speci�c widgets o�ered for example by Microsoft Windows or
Java Swing. Results of the (process) analysis are used for a basic dialog design of screens,
windows and messages to the user.
Di�erent to user interface development for desktop applications, the development of

web applications is not limited to utilize a special widget set, because interaction de-
sign using the basic form elements of XHTML is restricted to form design. Thus, web
application design often considers picture-based mockups, already including a corporate
design and specialized widgets, like horizontal or vertical menu bars and a propritary
dialog navigation not conforming to the browser back-and-forward navigation principles.
All of these approaches have in common that they are able to realize prototypes quickly
and can test the user's requirements early.
Model-based approaches are targeted to multi-platform user interface development and

therefore o�er principles of abstraction via the usage of models to broaden the view of
the target platforms that can be considered as the �nal user interface. As the level of
abstraction has been continuously increased by introducing various models that bridge
the gap between abstract modeling of concepts and tasks and the �nal user interface
design, the temporary distance between the design of the abstract models until the �rst
prototype re�ecting the �nal user interface has been increased simultaneously. To deal
with the increasing distance between analysis and previewing �rst results, a method
is required that enables a set of testing steps for each phase of the process. Di�erent
to traditional software engineering processes that spend a lot of attention to functional
testing by using unit testing for instance, a user interface design process interprets testing
as involvement of an additional (external) role like a domain expert, the targeted audience
of the application or usability specialists.
In the following sections of this chapter our method for model-based interactive system

development will be presented. The method covers the analyis, design, and implemen-
tation phase of a software engineering approach and is complemented by a run-time
architecture that enables the direct deployment of the results of the design and impele-
mentation phase in a run-time system. The overal goal of a method for interactive system
design is to replace ill-structured and add-hoc approaches for user interface development
with a structured and user-centric process that guides the user interface developer from
early requirements analysis to a �nal running interactive system. Compared to ad-hoc
interactive system development by pictures or GUI mockups that are designed decoupled
from system design and often after the systems functionalities have been developed, a
structured model based process has several advantages:

� The development process is transparent for all participating actors. At any time
of the development process it can be clearly stated, which steps have been done so
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far and more important: what parts and costs remain to �nish the system.

� The process starts by analysing the requirements of the user for both, the system's
functionality and its expected interaction behavior. This prevents the development
from undesired funcional features without considering how they can be e�ciently
controlled and accessed by the user.

� By supporting an abstract-to-concrete modeling the design of large and complex
systems can be developed. Abstraction is a human ability that is generally utilized
to understand complex problems and big systems. The utilization of abstract design
models in the process ensures that there is at least one level of abstraction to
describe the complete system in one model enabling to survey the overal system
design. Since all of the models are connected or derived from each other, even
modeling details on a lower abstraction can be done with regard to the other parts
of the system.

� The development of multi-platform, multi-context and multi-modal interactive sys-
tems ends up with an explosion of user interfaces for a single application that can
only be reduced by introducing abstract design models that capture general aspects
of the user interface to be considered on all platforms but are realized di�erently
for each platform.

� User interface consistency is an important aspect that needs to be maintained for
multi-platform, multi-context and multi-modal interactve systems to remain usable
after a context-change has been occured. By a process that derives abstract models
to more concrete ones, the designer can be guided to maintain the consistency.

Figure 4.1: Basic structure of the development process creating run-time models and
transient models.

Figure 4.1 illustrates our development process that comprises �ve phases: analysis, de-
sign, implementation, deployment and maintainance at run-time. Compared to other
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approaches for model-based system development our method o�ers the following bene-
�ts:

� The complete coverage of all phases of a software engineering process by a model-
based interactive system development method.

� The gap between design and implementation of an interactive system is bridged,
since most of the design models are designed to be directly deployed, interpreted
and maintained as part of a user interface runtime system.

� Continous tool support in all phases of the development process to ease the speci-
�cation of the design models by interactive tools.

� Continous testing support in all phases of the process to reduce the risk of misunder-
standings and misconceptualizations as early as possible and keep design iteration
cycles short.

� The method introduces a new model for specifying the layout of a graphical user in-
terface that has not been considered by other approaches and additionally proposes
a di�erent abstract user interface model based on explicitly considering domain
model information.

The design and development of our models is done by using a transformational approach
that is illustrated in �gure 4.1. Each horizontal arrow depicts a model-to-model trans-
formation. In the following description of the method we focus on forward-enginering
and only describe unidirectional transformations from abstract to more concrete models
or bidirectional transformations between models of the same level of abstraction. But
reverse-engineering can be supported as well by introducing model-to-model transfor-
mations that work in the opposite direction and are transforming low-level models to
high-level models. The vertical arrows illustrate that most of the design models can be
deployed to get directly interpreted into our run-time environment. Therefore an inter-
active application consists of a set of model agents, each specialized to execute one of the
design models. On the one hand the direct deployment bridges the gap between design
and implementation and reduces the additional introduction of low level source code to
a minimum. On the other hand it enables instant testing of the design models since the
model agents can be executed independently from each other and each agent supports a
visualization that can be used for end-user testing.
In the recent years tools have been proposed, most supporting certain phases of de-

velopment. Especially task-based analysis and design are widely accepted as a suitable
abstraction level and starting point for a user-centered method within the model-based
user interface research community [Vanderdonckt and Berquin, 1999, Paternò, 2005].
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Figure 4.2: All phases and steps of the MASP methodology are supported by interactive
tools. Additionally continous testing is possible in all steps of the process
by deriving exemplary objects, task or user interface simulations and model
checking.

65



4 The MASP Methodology

Figure 4.2 illustrates the sequence of tools that support the method and will be in-
troduced in the following sections. Whereas in the early analysis phase and the domain
modeling we rely on already existing tools (the EL-Tool [Paternò and Mancini, 1999] and
the JIAC ontology builder [Tuguldur et al., 2008] respectively) we introduce several new
tools to support the designer in all other steps of the method. The method has a strong
focus on testing supports to uncover misunderstandings and misinterpretations as early
and often as possible. Therefore all tools support generating previews (illustrated by the
solid-bordered boxes in the bottom layer of �gure 4.2), enable model checking or o�er to
run simulations enabling testing in all phases of the development process.
In the following we describe all phases of the method in detail. Each phase consists of

sub-phases. Thus for instance the design phase is concerned with task modeling, domain
modeling, abstract user interface (AUI) modeling, layout modeling, and concrete user
interface design. A sub-phase can be subdivided into a set of subsequent steps that
enable the manipulation of the models. Each step produces an intermediate result that
serves as the input for the next step. Like the models, this intermediate result de�nes a
state that can be saved and continued later on or even shared within the development
team. We distinguish between di�erent types of steps: Automatic steps identify steps
describing activities that can be automated and do not require human intervention,
whereas interactive steps specify steps that require decisions by a human. Testing steps
enable the production of intermediary results that can be used to test the actual state
or a part of the interactive application to be developed. Such testing steps produce for
instance a prototype enabling the simulation of certain parts of the functionality or the
�nal look-and-feel of the interactive system that has to be developed. Unlike functional
testing that often gives some sort of positive or negative feedback or some kind of a
measurement referring to a metric, in our method testing is done by an interactive process
and ends up with an improved prototype.
The next sections describe all the steps of all the sub-phases in greater detail. For a

better understanding each sub-phase will be illustrated by a schematic �gure. There we
use boxes with a doted border to illustrate results of a successful development step. Solid
lined boxes notate interactive processes requiring the developer, which can be supported
by a tool and orange boxes identify testing steps to test the results of a development
step. Arrows specify the sequence of steps that produce the results. The link relationship
describes results that are referencing each other, di�erent to nested boxes, which illustrate
result composition.

4.2.1 Analysis Phase

We consider scenarios to provide an informal initial input to the development process
to derive the requirements for the interactive system. They are written together with
involvement of the user of the interactive system. Scenarios are stories about people and
their activities [Carroll, 1999] and include a starting state, a setting [Potts, 1995] and at
least one actor (to answer the question: �who is the story about?�) that owns a role in
the scenario. Further on each scenario has to contain at least one goal for an involved
actor that will be achieved in the scenario and therefore is considered as the de�ning
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goal for a scenario and answers the question �why did this story happen?�. The plot of
a scenario follows a set of activities that the actors are doing and events that happened
to them in order to reach the de�ned goal.

Figure 4.3: The task elicitation step of the analysis phase resulting in a set of tasks,
which are linked to object names.

4.2.1.1 Process: Examining scenarios

The analysis phase starts by examining the scenario descriptions for all actors relevant
for reaching the overall goal. After all relevant actors have been identi�ed, we collect
all activities (usually verbs) that are relevant for reaching the de�ning goal. We call all
activities that are relevant for reaching the overall goal tasks. During the task analysis,
four di�erent types of tasks can be identi�ed: User tasks describe cognitive processes
of the user and application tasks specify internal processing actions of the computer.
Interaction tasks describe activities that are required to be done by both, the user and the
system through interacting with each other and �nally abstract tasks describe activities
that are not completely speci�ed so far. Tasks are structured by identifying sub-goals
combining a set of logical related tasks together. After all relevant tasks have been
identi�ed and structured to form a hierarchy of tasks, we continue by selecting the objects
relevant for each task's performance. One object can be associated to several tasks and
one task can manipulate multiple objects.
Like depicted by �gure 4.3 a set of scenarios is used during the task elicitation step.

Each scenario describes only one possible sequence through the set of identi�ed tasks
and objects. During the analysis phase all tasks and the associated objects are described
by a unique and self-describing name and a small description. An example of such an
scenario is presented in the case study of chapter 7.

4.2.1.2 Notation

Beneath a pure textual and therefore informal analysis based on scenarios, other ap-
proaches exist that can be utilized during the analysis phase. An approach that ad-
dresses similar problems is the Use Case Model mainly used during the requirements
analysis phase by Jacobson et. al. [Jacobson, 1992]. One advantage of use-case-based
analysis is the explicit distinction of what exists outside the system and what should
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be handled by the system. The former is identi�ed using actors whereas the latter one
describes a use-case, which is de�ned as a sequence of interactions in form of a dialog
between the actor(s) and the system. UML o�ers a notation that allows a developer
to express some aspects of a use case in a more formal way. Both, the scenario and
the use-case-based analysis share the problem in the lack of formalities of their de�ni-
tions. Cockburn [Cockburn, 1997] for instance has identi�ed 18 di�erent de�nitions for
use-cases but agrees with the de�nition by Jacobson [Jacobson, 1992] (section 6.4.1.):

�A use case is a complete description of a system (or subsystem) function
from its start to the end to o�er some results of value to an actor. It is ex-
pressed as a sequence of messages one or more actors send to the system and
its responses. A use case includes the normal mainline behavior as well as
possible variants of the normal sequence, such as alternate sequences, excep-
tional behavior, and error handling. A speci�c execution case of a use case is
called a scenario; each use case contains many scenarios in general. An actor
is a role that is played by a user or neighboring system that exists outside of
the target system and communicates with it. When a user plays more than
one role, we regard that there are as many actors as the roles. A set of all
use cases regarding a system speci�es its complete functionality.�

In recent years the UML speci�cation of a use-case received a lot of critique, for instance
[Isoda, 2003] discusses the use-case class and its instance de�nition that does not conform
to UMLs de�nition of a class as well as the execution control of a use-case instance in
UML 1.3. Paterno [Paternò, 1999] mentions the di�culty of identifying use-cases for very
large and complex projects and the problems in �nding the correct granularity of use-
cases for a given application. During our case-studies it �gured out that task modeling
enables a compact and comprehensible view at di�erent abstraction levels even when
analyzing large and complex interactive systems. This is an advantage compared to use-
case modeling as the typical concretization happens by using a new use-case that details
a more abstract use-case.

4.2.1.3 Testing step

The result of the analysis phase, the task and concepts model can be tested for consis-
tency. This is done by checking the following aspects of the model:

Object propagation Each object of the task and concepts model has to be identi�ed
by using a unique name. Objects with the same name that are reoccuringly used
by di�erent tasks identify the same object. To ensure a basic object �ow, objects
that are used by two child tasks and share the same parent task, have to be linked
to this parent task as well. Although this can be done by an automated process,
the resulting basic task and concepts tree gives a good overview about the kind
of information that is required at each level of abstraction. Similar to deciding
between which information has to be considered as global or local information for
reaching the overall goal, the amount of objects that need to be propagated to
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the highest tree levels to ensure an object �ow, give a good impression about the
actual separation of concerns of the interactive system. Thus, if a lot of objects
are annotated near the root node that describes the overall goal of the interactive
system, the developer should think about the object assembly and might decide
about subdividing the objects into several parts to prevent an object �ow over
the whole system. The more the object �ow within the interactive system can
be reduced to parts of the task hierarchy, the more the interactive system can be
considered as � loosely coupled � regarding the utilized information structures.

Object utilization Each task identi�ed during the analysis phase has to link to at least
one object that the task produces, manipulates or requires to perform. If no object
is attached to a task, the task is not able to produce something that is considered
relevant for the interactive system. In the analysis phase, this should not happen.
The only exceptions are tasks that have been marked as abstract and therefore will
be re�ned later on.

4.2.1.4 Tool support

One of the �rst tools for task eliciting has been proposed by Tam et. al.
[Tam et al., 1998]. They implemented and evaluated a tool called User-Task Elicita-
tion Tool (U-Tel) that has been designed based on experiences gained by Wizard-of-Oz
experiments [Hix et al., 1993]. Using U-Tel a domain expert recounts several usage ex-
amples and transcribes them into a textual description. After that the expert identi�es
the task terminology consisting of actions, objects and actors. An outline editor is used
to segment the original scenario text to form a structure of tasks and sub-tasks. A basic
task-grouping functionality can be used to indicate �is-a� and �part-whole� relationships.
Finally, sequencing information can be speci�ed by indicating for each sub-task if it has
to be performed in a sequence, may be done in parallel or can be repeatedly used. Most
of U-Tel's functionality relies on structuring outlined text, which emphasized out as a
fundamental limitation of U-Tel [Tam et al., 1998].
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Figure 4.4: A tool for tasks and concepts identi�cation from [Paternò and Mancini, 1999].

Another tool, which addresses the limitation of U-Tel has been proposed by
[Paternò and Mancini, 1999]. They describe the EL-TaskModels tool, which is depicted
in �gure 4.4. Similar to the U-Tel tool the EL-TaskModels tool loads textual descriptions
(scenarios) that are examined for verbs indentifying activities, words identifying objects
and subjects identifying actors. Each word that is marked as relevant in the textual
scenario description can be added to one of the lists, collecting the activities as tasks,
the objects associated with each task, and the actors that get abstracted and described
as roles. Compared to U-Tel the EL-TaskModels tool enhances the options to further
categorize the tasks enabling to specify who has to perform each task: the user, solely the
system or an interaction between both, the system and the user. Unlike the U-Tel tool it
enables a user interface to graphically structure all identi�ed tasks to form a hierarchy.
Both tools are suitable to support the analysis phase of our methodology as they both

end up with a set of structured activities (tasks) that are linked to roles performing these
tasks and objects that are required for task performance. In our case studies we utilized
the EL-TaskModels tool as it is freely available and has the bene�t of more advanced
graphical editing functionalities compared to the U-Tel tool.

4.2.2 Design Phase: Task Modeling

The design phase takes advantage of the analysis results and consists of six sequential
sub-phases: task modeling, domain modeling, AUI modeling, CUI modeling, Layout
modeling and Service modeling.
Since a user-centered design approach requires detailing tasks before objects, we will

continue this section by describing the task modeling step �rst. Although there is
an increased evidence that task models are e�ective in driving user-centered design
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[Tam et al., 1998, Wilson et al., 1993], not all developers are feeling comfortable with
the idea to think in tasks instead of objects (mostly this involve developers with a strong
background in object-oriented modeling). Thus the method does not explicitly require a
task-�rst approach (both the object-perspective and the task-perspective are used within
the design phase), but it recommends to start with the task-perspective, in order to im-
plement a user-centered design approach.

4.2.2.1 Process

The Task modeling sub-phase that is illustrated by �gure 4.5 requires the result of the
preceding analysis phase, the task and concepts structure. During task modeling, tasks
get further detailed into sub-tasks and end up in a comprehensive task tree structure.
During task modeling three basic activities are done to re�ne the initial basic task tree:
Further introduction of sub-tasks to detail the task tree until basic tasks have been
indenti�ed, speci�cation of temporal relationships between all tasks on the same level
of abstraction, and further re�nement of the object �ow by detailing the required input
objects and corresponding output objects for each task.
Hierarchical task decomposition is a very intuitive process and very similar to what

people are doing in order to solve complex problems by decomposing them into smaller
problems. But unlike problem decomposition that usually stops as soon as a problem is
small enough to be examined and understandable by a single person, task decomposition
targeted to design an interactive application has not a de�ned �nal state as it merely
depends on the interaction capabilities of the supposed end-devices to be utilized for
interaction with the user. Thus, tasks have to be decomposed until they are primitive
enough to be even utilized on the most constrained platform. If for instance voice-based
platforms are considered as a target platforms, the tasks have to be decomposed until
they can be used by a strictly sequential interaction. In the case that only graphical
platforms are considered as target platform for presenting the interactive application,
task decomposition might end up describing complete forms or even dialogs. Each new
introduced task has to be categorized either as an application task (that is performed
solely by the system or as an interactive task that includes interaction with the user.
Tasks are set to abstract tasks if they are composed of sub-tasks belonging to di�erent
categories or if they aren't basic tasks, but require further speci�cations to be detailed.

Temporal relationships between tasks In addition to the task re�nement, temporal
relationships between the tasks have to be identi�ed to form sequences of tasks that have
to be done in order to reach the overal goal. Temporal task relationships are identi�ed
by following a top down approach and are inherited by the sub-tasks. This approach
enables a modeling starting from very abstract task de�nitions to more concrete ones
and therefore is well suited even for modeling large interactive systems. Abstract-to-
concrete modeling ensures that the designers will not loose their general view of the
whole system. Temporal relationships have to be speci�ed between two tasks of the
same abstraction level that share the same parent task. Tasks on the same abstraction
level have to be associated with at least one other task by a temporal relationship. The
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range of available temporal operators and the permitted task connections depend on the
utilized notation and the supporting technologies. Its up to the designer to decide about
the level of detail the task model is speci�ed. Table 4.1 lists the temporal operators of
the ConcurTaskTree notation [Paternò, 1999].

Temporal relationship
types

CTT/LOTUS

unordered-lists/variable
sequences

Concurrency with
information exchange

Choices Choice

Concurrent operations Independent Concurrency

Fixed sequence Enabling/ Deactivation

Constraint linear sequence Suspend-resume

Cycles Iteration/Recursion

Optional completion Optional

Table 4.1: Overview about temporal relations of the ConcurTaskTree notation.

Object �ow re�nement Together with the task decomposition all objects that are
associated with the decomposed tasks have to be decomposed or re�ned in order to
re�ect the level of detail that is required for each sub-task. Two di�erent activities of
re�nement can be done:

1. Re�nement of objects happens if a sub-task refers to an object of its parent task
but requires more detailed information that has not been captured re�ecting the
abstraction level of the parent task. Re�nement is often done by introducing an
inheritance relantionship for the object that needs to be detailed.

2. Splitting of objects is done if a sub-task requires only some part of the original
object of the parent task. Object splitting is done for the related object associated
with the parent task. A precisely applied object splitting can reduce the amount
of objects and the object size especially for the higher abstraction levels and can
therefore reduce the complexity of the object �ow of the resulting interactive system
signi�cantly (especially when designing large interactive systems consisting of a lot
of tasks and objects).

During decomposition the object propagation has to be re�ned as well. Therefore we
utilize the concept of port semantics like suggested in [Klug and Kangasharju, 2005].
They distinguish between input ports and output ports that are speci�ed in form of an
interface for each task and are inherited through the task hierarchy. Input ports de�ne
the objects a task has to consume in order to perform successfully. The speci�cation of
input and output ports has to conform to the temporal relationships between the tasks
to ensure a working object �ow.
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Figure 4.5: The task modeling step of the design phase constructs a task tree that can be
simulated to check the compliance with the initial scenarios described during
the analysis phase.

Like illustrated in �gure 4.5 the result of the task modeling sub-phase, the designed
task tree, can be simulated to check for compliance to the original scenario descriptions
that have been used as initial input to the task modeling.

4.2.2.2 Notation

The ConcurTaskTree notation has gained a lot of attention in recent years, because it
o�ers a very compact notation and includes well de�ned temporal LOTUS operators and
is already supported by a comprehensive tool that is public available. We have described
and evaluated this notation in paragraph 3.1.3.3. Other task-based notations can be
utilized for task modeling in order to re�ect speci�c requirements like for instance con-
sidering cognitive processes in more detail (which the CTT notation is not designed for).
The GTA notation focuses more on modeling collaborative tasks relevant for designing
groupware systems. GOMS introduces notation elements to detail cognitve processes. In
section 6.2.1 we will propose our own task notation, which is based on the concepts of the
CTT notation but is designed to be directly interpreted instead of focusing on tasks anal-
ysis and interactive system evaluation support the CTT notation was originally targeted
to.

4.2.2.3 Testing step

Testing during the task modeling phase can be done by following two di�erent approaches:
First, by doing model checking of the task hierarchy and second by doing a task sim-
ulation. The former can be applied to test the consistency and correctness of the task
hierarchy, whereas the latter compares the original scenarios with the scenarios that can
be simulated by the modeled task tree.
Model checking of the task hierarchy helps to deal with the complexity of the temporal

relationships that constraint the object �ow between the tasks. Thus, a model is only
complete and correct if all tasks that have an associated input port are guaranteed
to receive the desired objects through a corresponding output port of a related task
[Klug and Kangasharju, 2005]. Depending on the size of the task tree, ensuring the
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correctness can result in extensive calculations to prove that every possible activation
path between two composite tasks includes at least one task with an appropriate output
port.
During the task modeling testing step the user can be involved since testing of a

task model is about checking all of the scenarios that served as an initial input to the
task analysis against the task tree. Task simulation helps to ensure consistency of the
modeled task tree compared to the original textual scenario descriptions. In the case
that the interactive system includes a lot of scenarios that have been written by di�erent
users or domain experts, inconsistencies between the textual scenarios and impreciseness
of the informal format are discovered at the latest during task modeling. The simulation
of the modeling state together with the authors of the textual scenarios helps to solve
these inconsistencies.

4.2.2.4 Tool support

Since task analysis has a long history in analysis, design and evaluation of operations,
processes and interactive applications, a lot of tools are available to support task model-
ing. The ConcurTaskTree Editor (CTTE) [Paternò et al., 1997] supports the modeling
of task trees to form a hierarchy of tasks, where tasks on the same tree level are related
by using temporal LOTUS operators. LOTUS is a speci�cation language developed by
the International Organization for Standardization (ISO) and was originally developed
for the speci�cation of open system interconnection (OSI) services and protocols.

Figure 4.6: The CTTE editor supports interpreting a ConcurTaskTree by o�ering a
simulaton tool that allows to check if the temporal relationships between the
tasks are correctly set to re�ect the original scenarios.

Figure 4.6 depicts a screenshot showing a sub-tree of an interactive application's Con-
curTaskTree that is simulated to check if it re�ects the initial informal scenarios correctly.
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Since a task tree usually unites several scenarios, the simulation has to be done repeat-
edly for each scenario. Successful simulation can be saved, whereas discovered errors can
be directly changed by using the integrated modeling environment of the CTT editor.
The CTT editor does not o�er an integrated view during task simulation that include
the presentation of the initial textual scenarios and the actual task tree, which might
ease the comparison of the modeled task tree with the informal scenarios. Further on the
CTT editor o�ers only limited model checking functionalities, which includes a reach-
ability analysis that can be applied to test if a process exists that allows the user to
reach a speci�c task A from a given initial task B. As far as we �gured out the CTT
editor supports to model an object �ow by enabling the designer to specify output and
corresponding input actions for each task. But a model checking regarding this object
�ow, as proposed by [Klug and Kangasharju, 2005] is not supported.
To overcome these disadvantages we implemented both, a Task Tree Editor that sup-

ports task analysis and design of interactive systems as well as a model checking of the
object �ow and a task simulator that is able to generate interactive screen masks by
executing our task model notation.
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Figure 4.7: The screen for the object re�nement in the MASP Task Tree Editor.
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Figure 4.7 shows a screenshot of the task simulator tool that has been taken during
testing the task model of the cooking application that will be presented in detail in chapter
7. For each state of the application the simulator displays all enabled tasks and lays them
out conforming to the parental relationships of the task tree. For a better overview and
space usage for each containment level, the simulator switches the orientation of the
containers from vertical to horizontal and vice versa.
Each atomic task is depicted as a box and supports three operations: By pressing the

�done� button a task can be marked as done, which signals the simulator to layout the
next enabled task set. All corresponding objects that a task is able to manipulate can
be inspected by the �objects� button� and �nally, by pressing the �details� button, more
detailed task information containing the textual description, the task type and attributes
are visualized.
Beneath the possibility to check the consistency of the task �ow against the original

scenarios, the task simulator helps to identify deadlocks of the task �ow and missing
tasks. Deadlocks of the task �ow can occur if there is no input interaction task left in
a certain enabled task set, which results in an output interaction-only presentation that
the user is unable to interact with. Such �output only� situations should only happen if
the overall goal of the application has been successfully reached or an error has occurred
that can only be solved by restarting the complete application. Like depicted in �gure
4.7, listRequiredIngredients, showRecipeOverview and nextStepPreview are realized as
interaction out tasks that only o�er information to the user. For these tasks the done
button is disabled and therefore no interaction with the user is possible. The only option
to �nish these tasks is to succeed by an interaction in task that disables the interaction
out tasks. In �gure 4.7 the restart task disables all other tasks (which has been de�ned
by using the disabling operator in the task model - like depicted by �gure 8.6 in the
annex).
By model checking we ensure a consistent object-to-task de�nition in the task model.

The model checking helps on the one hand to discover objects (and the concepts they
implement) that are re-used over certain tasks. On the other hand the object operations
(declare, create, read, and modify) can be automatically checked for consistency.
All objects that are annotated to the tasks of a task tree must include an object oper-

ation. The object operation for each object can be checked to follow the basic sequence
(1) declare, (2) create, (3) read or modify by an automated model checking. Additionally
these operations are veri�ed concerning the type of a task. Whereas interaction in tasks
can create, read and modify domain objects, interaction out tasks are only permitted
to read domain objects. Further on, the declare operation limits the scope of a domain
object to a certain sub-tree. When modeling complex applications, concepts that are
spread over the whole application can be easily identi�ed since they are declared close
to the most abstract root task (like for instance the selectedRecipe object in �gure 8.6).
In general, objects that are spread over the whole application should be broken down

or disassembled to reduce the information �ow along the whole application and the task
sequence should be re-thought in cases where one concept is used several times but not
subsequently. Whereas the former leads to interactive systems requiring a lot of initial
domain knowledge to be utilized the latter ends requiring the user to switch between
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di�erent concepts.
By proceeding the task modeling sub-phase and entering the domain modeling sub-

phase, a change of the development perspective is required to combine both, 'traditional
software-engineering' approaches concentrating on identifying the objects �rst and a user-
centred perspective identifying tasks before the objects. The method therefore starts with
the user perspective and changes during the domain modeling sub-phase to a system view
in order to consider an object-oriented view over the interactive application.

4.2.3 Domain modeling

Di�erent to the task modeling that is used to identify the general processes of an interac-
tive system, the domain modeling concentrates to model the static data structures that
are required for a successful task performance.
The domain model is taking into account the application tasks and the domain objects

and o�ers an object-oriented perspective about the interactive application. Since at that
state of the development process these objects are only known by their names and a short
description telling what they are expected to specify and contain, the next thing to do is
to look for already existing concepts that can be re-used. In this case all the services and
functionalities that are based on these concepts are potential candidates to be re-used
as well. Specialized concepts of the developed application have to be modeled using a
modeling editor that supports modeling of static structures such as entity-relationship
models or class models.

Figure 4.8: The domain modeling step of the design inspects the application tasks and
objects for re-use and designs missing concepts.

4.2.3.1 Notation

All new or proprietary domain concepts that cannot be derived by re-using already exist-
ing concepts have to be modeled from scratch. This includes selecting a suitable modeling
notation and deciding about a technology to implement these concepts later on. For both,
notation and technology, a lot of di�erent options exist. Regarding modeling notations
UML and entity-relationship diagrams are actually two of the most prominent and widely
accepted options to design static data structures. There already exist a lot of alternative
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technologies to implement the designed domain concepts. Technological options include
various programming languages that o�er data structuring types, databases or ontology
repositories.
Independently of the notations and technologies utilized, we switch the modeling per-

spective from a user-centric perspective by identifying the tasks before the objects during
the task analysis to a system and service-oriented perspective by modeling the application
objects before the interaction objects.

4.2.3.2 Process: Modeling application objects

To generate a system-oriented perspective, we collect all application objects that have
been indenti�ed during analysis and task modeling. For each application object we look
up all associated application tasks where an application object serves as input or output
or both. Every application task is checked if it has been already implemented or should
be provided by an external party. Existing application tasks and application objects have
to be evaluated to be re-used. If no services or concepts can be re-used or re-usablity is
not important, the designer has to model the concepts for each application object and
check their suitability to serve as an input object (parameter) or output object (return
value) for an application functionality.

Mapping between task model and domain model Since the domain model has to be
constructed based on the information o�ered by the task model, the mapping between
both models is constructed by linking the object names that have been speci�ed in the
task model for every application task with the application object names that are modeled
in the domain model. Looking from the direction of the task model to the domain model,
the mapping has to ensure, that every application object that is considered in the task
tree as an input or output object can be read from and written to the domain model.
Looking from the domain model to the task model, the domain model should ensure that
only application objects are stored within the domain model that are referenced at least
by one task of the task model. If a task is active during interpretation of the task model,
the domain model has to ensure via the mapping that the active tasks are always aware
of changes to the domain model's application objects.

4.2.3.3 Testing step

Testing during the domain modeling phase involves model checking and derivation of
example objects to check the completeness of the domain model. To preserve consistency
between task and domain model during the design-time, model checking includes verifying
that every object that has been speci�ed as relevant for performing the application tasks
has been modeled in the domain model.
Depending on the technologies that the domain model is based on, the consistency

checking between task and domain model can get very complex. If for instance the
domain model supports inheritance relationships the objects can be detailed by utilizing
the inheritance relationship through the levels of the task tree, the model checker has to

79



4 The MASP Methodology

support introspection of the domain object structure to check the inheritance relationship
as well.
Beneath testing domain-model and task-model consistency, the scenario completeness

can be checked by deriving example objects that are created by instantiating the appli-
cation objects. Thus, for every task all the information that has been identi�ed by the
associated application objects and that is required for the task performance is entered
based on the informal scenarios. As in the domain modeling phase only application ob-
jects are taken into account that re�ect more or less the data structure from the viewpoint
of the systems back-end functionality, tool support is required that is able to handle the
user input of complex or decoded data types (like for instance hex values).

4.2.3.4 Tool support

Depending on the chosen technologies and functionality that is o�ered by external service
providers there exists a more or less comprehensive tool support for domain modeling.
During our case-studies that we did to evaluate the methodology, we often had to consider
more than one technology for domain modeling, since often already existing services that
provide their own data models have to be integrated. Thus, often not only one tool is
used for modeling the domain model, but a set of tools supporting di�erent notations.
For instance if a database should be connected to serve as a data source for the domain
model, entity-relationship models can be used to model the structure of the domain
model and already existing tools include model-editors and tools to �ll the database
with content.
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Figure 4.9: The Protégé editor can be used to model various data structures like for
instance ontologies or class diagrams. The screenshot depicts an automati-
cally derived form that has ben generated by inspecting the semantics of the
underlying ontology.

Recently ontology notations like OntoWeb [Hartmann and Sure, 2004] and OWL2 re-
ceive a lot of attention as they o�er mechanisms supporting the semantic web by enabling
to specify rich semantics describing data in a way that is can be processed by a computer.
Figure 4.9 depicts the user interface of the Protégé editor [Noy et al., 2001] that can not
only be used for data modeling, but automatically generates forms that can be used
to create the example objects to check the scenario completeness of the domain model.
Depending on the expressiveness of the language utilized for modeling the data struc-
ture the Protégé editor generates more or less advanced user interfaces. This includes
considering constraints and relationships between classes.
Like illustrated by �gure 4.1 after the task model and domain model have been designed

and tested, the abstract user interface can be derived. This involves a transformation
that considers both, the task model as well as the domain model.

4.2.4 Abstract User Interface Modeling

Following the abstract user interface model de�nition of [Limbourg, 2004], �an Abstract
User Interface (AUI) model is a user interface model that represents a canonical expres-
sion of the renderings and manipulation of the domain concepts and functions in a way

2OWL Web Ontology Language Semantics and Abstract Syntax, W3C Recommendation; Online at
http://www.w3.org/TR/owl-semantics/, last checked 12/08/08

81



4 The MASP Methodology

that is as independent as possible from modalities and computing platform speci�cities�.
We derive the abstract user interface by considering the information gathered so far from
the domain modeling and additionally utilize the task model's structure and application
object �ow to derive the abstract user interface.

4.2.4.1 Process

Figure 4.10: The AUI modeling step of the design creates an AUI based on selection and
enrichment techniques.

Figure 4.10 illustrates the AUI modeling sub-phase, which requires the interaction tasks
of the task model together with all application objects that are marked as input or
output to an interaction task and have been modeled by the domain model. Both, the
task tree and the associated objects are subject to a transformation that constructs a
basic AUI for each interaction task and only considers the application object attributes
that have been previously marked as relevant for the user interaction to form an abstract
interaction object (AIO). All AIOs that are relevant for an interaction task are grouped
together to compose the basic AUI. We then enrich the basic AUI by transforming data
types that might have been encoded within the source application object (for instance
by hexadecimal values that are often used to represent color values) or that are too �ne
grained for user perception (for instance values expressing durations in milliseconds).
By adding contextual information such as labels and help texts to the basic AUI we
can support the user in understanding the AUI of an interaction task. By re�ning the
basic AUI structure and by grouping related AIOs, the run-time system is supported to
decide about what AIOs must be presented together and which groups of the AUI can be
migrated independently from the remaining parts to other platforms. Since we derive the
AIOs from the application objects, it simpli�es matters to retain the mapping between
both types of objects.
The task model structure and application object �ow that have been speci�ed during

the task modeling step are used to generate the foundations of the AUI structure and
should not be manipulated during AUI modeling to preserve the consistency of the AUI
to the task model. In case that the automatically generated basic AUI structure �gured
out to be not as expected, this usually points out a modeling mistake in the task level
model and can be �xed by going back and reconsider the results of the task modeling
step. Based on the automatically derived basic AUI structure the designer has to re�ne
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the AUI by applying two di�erent activities to the basic AUI structure: selection and
enrichment. The former one is the general mechanism to derive the AIOs from the
application objects, whereas the latter concerns the complete AUI structure and all of
the AIOs that are referenced by the AUI speci�cation. The next paragraph introduces
both activities in greater detail.

Activities used for AUI derivation

1. Selection activity : The domain model is designed from a system perspective that
is considered to describe a domain on a level of abstraction that is suitable for
computational processing. Thus, the domain model structures all data that is
relevant for the domain of interest of the application, for the internal processing, and
for storing all relevant states. These structures are designed to ensure consistent
application states and are optimized for an e�cient access like for instance done by
data table normalization that subdivides tables and introduces internal index keys
to relate subdivided tables. A selection activity �rst has to separate internal data
structures from the data structures relevant for user interaction and second has to
segment these data into portions that can be handled by the user interacting with
the system.

2. Enrichment activity : The structured information of the domain model that has
been selected and portioned into portions that can be managed by the user
during interaction with the system is typically not self-evident so that the user
can handle it without further information. This has several reasons: First, the
result of applying a selection activity takes the data out of a context that is
important to handle it. Second, most of the actual technologies to implement a
domain model miss a way to add a meta-description of concepts. Therefore often a
separate documentation is maintained that describes the domain model semantics
that cannot be expressed by the domain model itself. Third, not only the data
structure but also the actual task is required to understand the context of an AIO.
Finally, data types considered in the domain model cannot generally be used for
user interaction because they are encoded and need to be interpreted (like for
instance color values that are often modeled as hexadecimal values) or have a very
�ne graded resolution that is beyond the human's capabilities to handle (like for
instance deciding about intervals that happen in micro-seconds).

There exist three ways of enrichment:

a) Type mapping : transforms typed data into human understandable types,
which is mostly a reduction of complexity like boolean to string or long to
integer type conversion and enables type checking in the user interface engine
(additionally to the error handling in the application's functional core).

b) Context enrichment : Most of the structured information from the domain
model is data only and does not include information how the data is processed
and misses explicit semantics. Therefore context enrichment is required to
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inform the user about how to interpret the presented data. This involves the
distinction between input/output information, as well as adding labels to the
data or adding text that explains what needs to be done by the user. Beneath
adding information that is relevant for the user, design patterns as well as
further information about, which interactors are most useful for presenting
the domain data can be added by the context enrichment.

c) A structuring concept: domain model data is often already structured com-
pliant to a concept like tables, classes or ontologies. This structural semantics
can be used to generate user interfaces that implement this structure. As
ontologies provide a lot of semantics like concepts to express di�erent kinds of
relationships or constraints, most of these concepts are helpful for automated
user interface generation. But often these structures are de�ned on a very �ne
grained level. On a higher level of abstraction the user interface needs concepts
for grouping related data (that it receives from initial unrelated ontologies like
for instance provided by di�erent backend services). In the concrete user in-
terface these structuring concepts are often used for layouting the interface
based on the capabilities of the end device (like for instance to adapt the user
interface to the screen size of small-sized devices).

In the following sections we describe one possible approach for AUI modeling consisting
of a notation and a tool to realize the selection, transformation and enrichment steps.
The AUI model is derived from a domain model that is structured by using an ontology
language to specify its application objects and a task model that is modeled using the
CTT notation. Di�erent to other approaches that derive the AUI from a task model,
the derivation from the domain model enables preserving already existing semantics of
the domain model to be considered for generating the user interface. In this way the
presentation of domain concepts can be done once and reused consistently.

Abstract Interaction Object derivation Interaction objects are derived from applica-
tion objects since all interaction between the user and the system usually ends up with
the systems computation (via application tasks) of the user's inputs and often includes
to communicate the computation results back to the user (via interaction tasks). Thus,
the application objects are required as input and output for performing the application
tasks and further on form the foundation for modeling the interaction objects, which
describe what part of the data is relevant for the user to be presented and manipulated
via a user interface.
As a result from the analysis phase only the object's names and short textual descrip-

tions are available for each interaction task. To model the interaction objects based on
these descriptions we identify for each interaction task all relevant input application ob-
jects as they should cover every possible data that might be relevant to the user. Next,
we collect all application objects that are marked as output objects as they specify the
data that the system is required to capture in order to perform its computations. Further
data structures that cannot end up in an application object should not be modeled, since
this data is not required to succeed the user's goals. If however interaction objects are
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modeled that contain data that cannot be completely mapped to corresponding appli-
cation objects, this has to be considered as an indication that some application objects
and corresponding application tasks should be re-designed to include these information.
Di�erent to [Paternò and Mancini, 1999] we derive interaction objects during the AUI

modeling, since this approach eases generating and handling the connection between
both types of objects and helps to simplify the mapping between application objects and
interaction objects, since the latter ones are based on the former ones.
To derive interaction objects based on the data structure of application objects, the

following steps have to be done by the developer: Firstly, by an attribute selection all
attributes that are relevant for the user interaction are marked. Secondly, all marked
attributes have to be restructured as they might be:

� selected from di�erent application objects and should be merged together into one
object or

� selected from a complex application object structure that contains for instance
internal composition and inheritance relationships and does not re�ect a structure
that is suitable for presentation.

Finally, the resulting interaction object structure has to be enriched with additional
information helping the user to understand the original application object context by
o�ering help texts, and attribute labels describing the attributes to the user.

4.2.4.2 Notation

The notation for modeling the AUI model by specifying the selection and context-
enrichment is separatly described in detail in the MASP language section 6.2.2.

4.2.4.3 Testing step

Testing of the AUI can be done in parallel to the AUI modeling process by simulating the
AUI of the interactive system. As illustrated in �gure 4.10, the simulation can be done
directly after the basic AUI has been modeled or by simulating the �nal AUI model. At
this state it is possible to present the targeted audience of the interactive application a
�rst impression how the described processes will be supported by the interactive system.
As far as we know, no tool is available to simulate the behavior of the user interface
based on the abstract user interface. IdealXML [Montero and López-Jaquero, 2006] is a
tool that supports user interface derivation based on a task model and a domain model,
but does not focus on AUI simulation. Klug [Klug and Kangasharju, 2005] interprets
the task tree similar to our approach to derive an interactive application but does not
address a domain model.

4.2.4.4 Tool support

To support the AUI modeling step, we developed the MASP Builder tool, which enables
an interactive selection, enrichment, and structuring of the AUI model based on the
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domain model. Further on, during the AUI modeling process, the actual state of modeling
can be tested by rendering and previewing the user interface.

Figure 4.11: The MASP-Builder tool supporting AUI modeling.

Figure 4.11 shows a screenshot of the MASP Builder tool. By the two lists on the left
side the concepts of the domain model can be selected and inserted to the main view in
the center, that displays the AUI model in form of a tree view. This tree can be enriched
by dragging and dropping AUI elements into the tree that are listed in the boxes to the
right. At the bottom a context sensitive help is presented to support the designer.
By following the AUI modeling process depicted in �gure 4.10, we start by using the

MASP Builder to collect all objects that the backend services produce and that should
be considered for the presentation of the user interface. This also includes loading their
associated data structures (in our case we use ontologies) in the MASP Builder tool.
The data structures are listed by the �Categories� list view in the upper left corner of
the MASP Builder tool in �gure 4.11.
The developer can browse through the attributes of all data structures and can select

the attributes that should be presented to the user (the selection activity). Therefore the
developer marks relevant attributes in the �include� column of the list view in the middle-
left of the MASP Builder. For each selected attribute a type mapping can be set that
includes marking the attribute as manipulable by the user (the �input?� column) or the
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de�nition of value to string mappings (for instance linking values to a more descriptive
text). For attributes that should only be entered by the user but that should not display
their actual stored data to the user, the �replace� column �eld of the attribute can be
unchecked. After the developer has selected the relevant attributes the AIO statements
can be generated and added to the AUI tree by pressing the �Add To Tree� button. The
resulting tree of the selected attributes is depicted in the main area of the tool.
In case that the developer has selected a complex attribute (for instance containing

a composition), the corresponding AUI selection statement that the tool generates in
the tree view can be selected to be further detailed. Therefore, by pressing the �Alter�
button the MASP builder looks up the structure that the composed attribute consists of
and presents all these attributes to the developer to detail the selection for the complex
attribute.
Di�erent to the selection activity that is based on the domain model structure, the

enrichment activity concentrates on adding further information to the AUI that is not
available in the domain model (except for the type mapping). The MASP Builder tool
supports the enrichment activity by listing relevant AUI enrichment statements by three
list view boxes that are depicted in the screenshot of �gure 4.11 at the right. To support
the developer, only those enrichment statements are listed that are relevant in a cer-
tain situation. Enrichment statements can add textual information, introduce labels for
attributes and can be used to restructure the data representation in the user interface.
For each statement that the developer selects, a context-sensitive help is given at the
bottom of the MASP Builder tool. New enrichment statements can be added to the AUI
by draging and dropping them into the AUI tree. By implementing the restructuring
activity and introducing further containers to specify the relations between the di�erent
domain model structures, a data presentation structure can be de�ned that can be e�-
ciently adapted to di�erently sized end devices and interaction sequences later on. The
AUI model statements will be described in greater detail in the corresponding language
model in section 6.2.2.

4.2.5 Layout modeling

Interactive applications must be able to support di�erent context-of-use scenarios. This
includes adapting their user interface seamlessly to various interaction devices or dis-
tributing the user interface to a set of devices that the user feels comfortable with in a
speci�c situation. Such adaptations require �exible and robust (re-) layouting mecha-
nisms of the user interface and need to consider the underlying tasks and concepts of the
application to generate a consistent layout presentation for all states and distributions
of the user interface.
The broad range of possible user interface distributions and the diversity of avail-

able interaction devices make a complete speci�cation of each potential context-of use
scenario during the application design impossible. Specifying the interdependencies be-
tween the user interface components using constraints is a common approach to address
these issues and nowadays constraint solvers can calculate hundreds of constraints in a
reasonable amount of time. To our knowledge there is still an approach missing that
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supports designers of a user interface in generating these constraints based on the design
speci�cations. A manual constraint setup has two disadvantages: �rst the pure amount
of constraints that is required even to address small interactive systems is hard to handle
and second the fault tolerance of the constraint setup is complex to attain. Even one sin-
gle constraint that is not properly speci�ed can destroy the complete layout in a speci�c
situation that has not been considered by the designer during the development process.
The layout of graphical user interfaces comprises two aspects. On the one hand it

structures components of the user interfaces and on the other hand it follows aesthetic
aspects. We will focus on the former aspect, whereas the latter can be addressed by
manual manipulations of the pre-generated layout later on.
We introduce a concept for a model-based user interface layouting that di�ers from

previous approaches in two general aspects:

1. We interpret the information from already existing user interface design models,
such as the task tree, the AUI, the concrete user interface model, the domain model
and the context model for deriving the user interface layout. Therefore we propose
an interactive, tool-supported process that reduces the amount of information that
needs to be speci�ed for the layout. The tool enables designers to comfortably
generate these interpretations by de�ning statements and subsequently apply them
consistently to the design models for all screens of the user interface.

2. We shift the decision about which of the statements are applied to generate the �nal
user interface layout from design-time to run-time to enable �exible context-of-use
adaptations of the user interface layout. This allows us to describe new context-of-
use adaptations of the layout without the need to change the application itself just
by describing the layout characteristics of a new platform or a new user pro�le.

4.2.5.1 Process: The Layout Model Derivation

To derive a layout model the designer has to specify interpretations of the other design
models, such as the task tree, the AUI, the concrete user interface model, the domain
model and the context model. In general two di�erent interpretations are possible: First,
layout interpretations that are explicitly speci�ed for one user interface and second, lay-
out interpretations that are de�ned independent of the user interface by interpreting
pre-de�ned context information like for instance addressing layout adaptations for spe-
ci�c devices and users or that are only valid in a speci�c environment. For each new
interpretation that is written into the layout model in form of a layout statement the
designer can initiate a simulation to preview the result. The simulation positions the
individual user interface elements based on the speci�ed layout model statements for all
screens and context-of-use scenarios that are known at design-time.
Based on the task, abstract and concrete user interface models a layouting model can

be designed. Since the design models o�er a lot of semantics about what the application
is about and what needs to be presented to the user for interacting with the system,
a layout model can be created based on interpretations of the design models. Whereas
a model-based layout derivation cannot substitute a manual design (which we consider
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as an art), it has two main advantages: First well de�ned model interpretations can
generate a consistent layout, if they are generally applied for the complete application
and second, for context-of-use situations that have not been explicitly addressed by the
application design, such as new interaction device or user interface distributions.

Figure 4.12: In the layout modeling step layout statements are speci�ed and selected
that interpret the tasks, AUI, dialog and context models to derive a layout
model for graphical conrete user interfaces.

Following our method the layout modeling has to happen after the concrete user in-
terface models have been designed. Since layout modeling is done for the graphic user
interfaces only, merely the concrete user interface models describing graphic user inter-
faces are relevant for the layout model generation. Figure 4.12 illustrates the activities
that have to be done to derive a layout model.
The layout modeling ends up in a domain independent layout model that speci�es the

containment, the size, the orientation and the order relationships of all individual user
interface elements. Therefore we do not want to specify the layout manually for each
targeted platform and do not rely on a set of standard elements (like a set of widgets for
instance) that have been prede�ned for each platform.

Layouting Statements The main activity that has to be done for deriving the layout
model is the speci�cation and selection of suitable design model interpretations.
Like depicted by �gure 4.13, we classify the properties of the layouting statements by

six axes: (1) the characteristic of the resulting layout primary addressed (containment,
orientation, and size), (2) the design models used for the constraint generation, (3) the
context-of-use information, (4) the addressed scope, (5) the type of condition and �nally
(6) the priority value.
The following paragraphs discuss these axes in greater detail.

Layout characteristics We identi�ed four of these characteristics that can be used to
specify the layout of a graphical user interface: The containment, the order, the orienta-
tion and the size of the user interface elements.
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Figure 4.13: The six axes of the space of properties of the layout statements.

Figure 4.14: Exemplary sketch of a user interface layout.

Like illustrated by �gure 4.14, the containment describes the relation between two basic
types of entities: Containers (like c1) consist of a set of nested containers (c2+c3) and
nested elements (c2 contains e1 and e2). Elements can present information to the user or
enable the user to enter data to the application and cannot be decomposed any further.
Additionally a layout describes an order of elements (for instance from left to right and
from top to bottom: e1 before e2 and c2 before c3). The orientation distinguishes between
elements that are oriented horizontal or vertical to each other (for instance e1 vertical
to e2). Finally the size speci�es the width and height of containers and elements (for
instance the width of e3 is ½ of the width of e4).
Like illustrated by �gure 4.13, these characteristics can be described at di�erent levels

of abstraction that are speci�ed by the design model axis. Thus, containers can represent
tasks that are decomposed (by nesting of containers) until atomic tasks have been iden-
ti�ed, which are modeled as elements. By the same way on the AUI level, an interaction
object that speci�es a list of selectable elements can be described by modeling the list as
a container consisting of a set of elements.
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Design Models Interpretation Design models are used to specify the interactive system
on di�erent levels of abstraction. We interpret the information of these models to derive
the user interface layout. A task model, a domain model, an AUI, and the concrete
user interface model are typically part of a model-based user interface design. Beneath
the task model's hierarchical structure that can be used to derive a basic containment
structure for the layout [Gajos and Weld, 2004] several other information can be derived:
For example, the sum of all atomic tasks related to the task tree depth or related to its
width can be used to balance the presentation size of the tasks. The CTT notation
[Paternò, 1999] categorizes interaction tasks into �edit�, �control� and �selection� tasks.
These task information can be addressed di�erently related to the context-of-use, for
instance by priorizing those tasks that require user input. Looking at the abstract user
interface model, the interaction object type can be used by a layouting statement to
derive an orientation. In this way for instance navigational elements can be set vertically
or horizontally depending on the menu level, whereas selection elements can be oriented
vertical for a large amount of elements and horizontal for small amounts by a layouting
statement.

Condition Type Each statement describes either an absolute condition (minimum,
maximum, or �xed) or a relative condition that relates two or more elements. A relative
condition targeted to the orientation characteristic is for instance: �e1 over e2�, regarding
the size a relative condition can specify for instance �e4 double the width of e3� and �nally
regarding the containment it has the form of �c3 contains e4�. A maximum statement
specifying an absolute condition can be used to specify a column layout where elements
are wrapped to the next row after a speci�ed amount of elements is exceeded. Further
on, a maximum statement can restrict the maximum size of an element (regarding its
height or width) or can limit the maximum number of elements that a container can
consist of, which results in generation of new containers if the limit gets exceeded.

Application Scope Each statement has a �xed scope to address every application (ap-
plication independent statements), the whole application, a set of reoccurring elements
or a speci�c screen to handle very �ne grained design requirements. Application inde-
pendent statements are used to characterize context-of-use adaptations that are required
to be considered when layouting for a speci�c device (such as specifying the screen size
limitation, or the minimum size of control buttons for a touch screen). Application wide
statements help the designer to generalize design decisions and maintain consistency as
layouting decisions can be modeled just once and are automatically applied for each re-
occurring situation. The more global than local statements have been de�ned the better
is the robustness for contexts-of-use changes and the better layout consistency can be
expected. Finally a statement can be limited to address a single screen to �ne tune the
layout for aesthetical reasons or to re�ne an application wide layout statement.

Context-of-Use Scope Context models describe the user, who has preferences and
demands for the actual situation, and a set of devices that the user likes to use. A layout
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statement can be speci�ed to be relevant for a speci�c context-of-use situation only. For
instance in an environment that supports location tracking the distance of the user to
a device can be used to scale the control tasks of the user interface. In the former case
the control tasks are sized small if the user has no way to control because of his distance
to the display, whereas in the latter case the control tasks are sized to meet a pen or a
�nger print respectively.

Strict order by Priority The priority is required on the one hand to support a general-
to-speci�c layouting approach and on the other hand to prevent the generation of con-
�icting layout constraints. Thus, general layouting principles, such as described in style-
guidelines or given by a corporate design can be generally de�ned and overwritten to
address more speci�c situations later on. We address these aspects by specifying a strict
order in that the layout statements are evaluated to generate the constraints that we
indicate by the priority property.
We can conclude that deriving a layout model from the other design models of a

model-based approach can be a big bene�t, because it allows the layout model to design
decisions of the other models in a consistent manner. Furthermore a model-based layout
reduces the information that has to be speci�ed speci�cally for the layout model as
a lot of information is already available. Finally a layout derivation can enhance the
robustness of the user interface to unknown context-of-use changes the more global model
derivations for the layout generation can be identi�ed. To realize such a model-based
layout generation that is based on model interpretation we require (1) an e�cient way
for the designer to select suitable model interpretations for generating a layout, (2)
a process that eases the identi�cation of global interpretations to enforce the layout's
consistency and robustness against context-of-use changes and �nally, (3) a model-based
run-time system that can evaluate these interpretations in an e�cient manner so that
layout adaptation of a user interface is possible at run-time. We introduce our model-
based layout editor in the next section that we implemented to address requirements (1)
and (2), and describe how we realized the layouting in our run-time environment, by
introducing the Multi-Access Service Platform (MASP) to adapt to context-changes (3)
in the next chapter.

4.2.5.2 Tool and Testing Support: Layout Model Generator

Using the layout model generator the designer has to initially load all existing design
models of an interactive application such as the task tree, the domain model and the AUI
as well the concrete user interface and the context model that contains device capability
descriptions and the preferences of the user.
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Figure 4.15: The MASP Layout Model Generator.

Figure 4.15 shows a screenshot of the editor: Using the pull down menu button in
the upper left corner, the designer selects an application con�guration consisting of all
design models for that she wants to derive a layout model. As the AUI model contains
a set of dialogs, where each dialog consists of a set of elements that should be presented
simultaneously, the generator enables the designer to browse through all the screens of
the application. Each screen consists of a set of individual user interface elements that
should be presented to the user on a single device. User interface distributions can
be de�ned as a set of separate screens where each screen represents a part of the user
interface for a speci�c device.
As the result of the layouting process, the layout model is visualized by a box-based

preview that represents each individual user interface element as a box. By the box-
based preview the designer gets an impression of the resulting user interface concerning
the individual element sizes, containment-, order- and orientation-relationships. The
simulator scales the preview in order to comfortably support layout modeling for large
displays but considers the aspect ratio of the targeted device.
Whereas the designer de�nes all of the model interpretations by using a context menu

that is related to the box-based simulation area, she can set the application scope (global,
application or screen speci�c) and select the context-of-use for that the statement should
be addressed by the two pull down menus above the simulation area.
The interactive and tool-supported process follows a sequence of steps:

1. The designer decides about the layout characterization that the statement should
address: the containment structure, the element order, the orientation or the size.
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2. The designer interprets

a) design model information (such as the AUI type: input, output, control, or
selection task or the CUI type)

b) context model information that requires a layout adaptation.

3. The designer can visually weight a relational statement. for instance relate the
size-ratio between input and output elements in general or specify size relations
between two speci�c boxes.

4. The Model Generator automatically applies the new statement consistent to the
design models to all screens of the applications (limited by the scope of the state-
ment).

5. The Model Generator updates the boxed simulation area to re�ect the new lay-
out for all screens and all actually supported context-of-use scenarios of the user
interface layout.

6. The designer checks the result and manipulates the order of the statements.

In order to ease the identi�cation of global interpretations and to enforce the layout's
consistency and robustness against context-of-use changes (requirement 2), we imple-
mented an abstract-to-detail slider, which is depicted to the right in �gure 4.15. The
slider allows the designer to browse through the nested boxes by moving the slider up and
down starting from the box that contains the whole application, to the atomic elements
that describe individual user interface widgets. Following such an abstract-to-detail lay-
out modeling, the designer is supported to start specifying statements on the highest
abstraction level possible. The editor visualizes atomic elements blue and boxes that
contain nested elements through a yellow overlay like depicted in �gure 4.15.
To prevent specifying con�icting statements the designer can only specify relational

statements between elements on the same nesting level (which corresponds to the abstrac-
tion level of the task tree if the task model has been used to derive the containment).
In the editor we use the red corners to illustrate elements that are located on the same
nesting level and thus can be target of a relational statement. For instance in �gure
4.15 two boxes are visualized for an exemplary application by the red corners that are
not directly related: The upper one signals the two boxes �showCurrentStepDetails� and
�Help� whereas the lower one consists of one box �stepNavigation� and one individual
element �stepSelection�. In this case the designer has the option to de�ne an interpreta-
tion for the relation between �showCurrentStepDetails� and �Help� but not the option to
specify a direct relation containing elements of the upper and the lower box (since such
a relation has to be set on a higher level of abstraction which contains both boxes).
Each statement that has been de�ned is written into the layout model and gets in-

stantly evaluated to a set of constraints that is solved to update the box-based preview.
This process happens without any remarkable delay so that we can recalculate the con-
straints on the �y to give an instant visual feedback.
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Figure 4.16: The actual layout model consisting of a set of statements that are grouped
by the layout characteristic they are targeting to.

Figure 4.16 presents a screenshot of the editor's view of the layout model. The layout
statements are grouped by the layout characteristic they are primarily addressing. In
case of con�icting constraint sets, the last statement that the designer has entered and
that caused the con�ict is highlighted red.
Since the four layout characteristics cannot be handled independently from each other

(for instance the containment constraints the order, orientation and size and the order
constraints the orientation and the element size), we de�ne a general order in which the
statements are processed based on the layout characteristic they are mainly addressing:
Like depicted by the screenshot in �gure 4.16 the containment-related then the order-
related, after that the orientation-related and �nally the size related statements are
processed.
After a suitable set of constraint-generating functions have been identi�ed, the designer

can check the resulting layout for its adaptivity to manage certain context-of-use scenar-
ios by browsing through a set of prede�ned contexts-of-use. Prede�ned contexts-of-use
contain further context-speci�c layout statements that have been speci�ed independently
from a certain application and are re�ecting the capabilities of a device or the preferences
of a user. Like illustrated in �gure 4.12 the layout statements of prede�ned contexts-of-
use are merged to the layout statements of the application to simulate the user interface
layout.
In parallel to the layout model derivation the concrete user interface modeling can be

done. The following section describes the activities of this design step in detail.
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4.2.6 Concrete User Interface Modeling

The concrete user interface (CUI) modeling sub-phase is about the derivation of platform
speci�c presentations based on the task, AUI and domain model speci�cations and con-
sists of two main activites: First, the execution of a set of generic transformations that
construct at least one basic CUI transformation for each platform that should be sup-
ported. Second, the design activity, in which the basic CUI transformations are enhanced
to form �nal CUI transformations. The �nal CUI transformation is stored within the
CUI model and is executed at run-time for each interaction task that should be presented
as part of a user interface on a certain platform.
During the CUI design process previews can be generated based on the basic CUI

as well as the �nal CUI transformations. Therefore the exemplary application objects
generated during domain modeling as well as the presentation tasks that have been gen-
erated during the task modeling can be utilized to support a realistic �nal user interface
preview. Figure 4.17 illustrates the process of the CUI modeling sub-phase.

Figure 4.17: The CUI modeling step transforms the AUI to UI by applying transforma-
tions.

In the next sub-sections we describe the process for the automated multi-level trans-
formation in greater detail, present the CUI model notation that utilizes the extensible
stylesheet language transformations (XSLT), discuss the testing opportunities of this sub-
phase and �nally present the tool support for the CUI modeling in the MASP Builder.

4.2.6.1 Process: Automated multi-level transformation

Similar to approaches like UsiXML and TERESA we rely on transformations to pro-
duce the �nal user interface. But instead of producing all �nal user interfaces for all
platforms during design-time, we shift the �nal user interface generation to run-time,
which o�ers the advantage that we can more �exibly adapt the user interface to meet
the actual context-of-use. The main drawback of the run-time generation is the perfor-
mance of the transformation. Therefore we follow a multi-level transformation approach,
which starts with a generic transformation that interprets the task, domain, and AUI
models at design-time to produce a more speci�c transformation that is suitable to be
processed at run-time. The generic transformation implements a general and automated
interpretation of the other design models for a speci�c platform. Target platforms in-
clude an HTML-based web-browser, a VoiceXML-based speech recognition and synthesis
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system, and even technologies like for instance templating engines or a XUL interpreter.
The generic transformation produces a speci�c transformation that can be targeted to
(manual) improvements and implementation of certain design decisions.
Since the generic transformation is prede�ned and automatically applied at design-

time, it can be designed in a way, that the resulting speci�c transformations:

� all follow the same structure so that the designer does not need to spend time
getting used to additional transformations for new platforms.

� already contain most of the �nal user interface source code, so that the designer
has not to be a specialist knowing all the technical details for implementing a user
interface on a certain platform, but can concentrate on the actual look and feel
instead of spending time on �getting things to work�.

� are optimized to be e�ciently interpreted at run-time. Di�erent to humans, which
like to produce clear and human-readable source code, automated transformations
can be optimized to be e�ciently machine-processable.

� ensure a separation of concerns and therefore support re-usability.

4.2.6.2 Notation

We implemented the multi-level transformation approach by using XSL transfomations,
which o�er the bene�t that both the generic as well as the speci�c transformations can
be implemented in the same declarative XML-based language.
Each speci�c template follows a �xed structure, starting with a prologue containing

the production of platform speci�c initializations. For instance when generating a HTML
presentation, the prologue includes the page header including page title, the cascading
style sheets paths, java script functionalities realizing form checks or presentation e�ects
and variables to store the user session. After the prologue the presentation structure is
produced, which implements the structure as speci�ed in the AUI model. The last section
contains the production statements for each AIO consisting of the selected domain object
data and the additional information as added during the AUI enrichment activity. By
following a separation of concerns into this three sections, the manual design activity
is typically only required to be done once for each platform. Firstly for implementing
the applications' look and feel by adding a cascading style sheet, and secondly for each
AIO that can be often reused if the same application object is re-ocurrently presented in
several screens (or applications).
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Listing 1 Excerpt of an speci�c AIO to CUI transformation.
1 <xsl:template match="frame[@type='de.dailab.shs.ctrl.ontology.
2 SHS_Device:DAI_1.Clock']">
3 <div id="de.dailab.shs.ctrl.ontology.SHS_Device:DAI_1.Clock">
4 <tr>
5 <td><img src="{$staticPath}/images/clock.gif"/></td>
6 <td style="font-weight:bold; font-size:11; padding-left:25px">
7 <xsl:value-of select="attribute[@select='hour']"/> :
8 <xsl:value-of select="attribute[@select='minute']"/>
9 </td>

10 </tr>
11 </div>
12 </xsl:template>

Listing 1 shows an exemplary AIO production statement that has been generated by a
generic HTML transformation to produce a presentation of a clock with the actual time
as part of the user interface. The automatically generated part includes the matching
condition of line 1, which states, that an application object that instantiates the clock
category of the �SHS_Device� ontology should be rendered to HTML as part of a con-
tainer (the �div� tag of line 3). From the clock category the attributes hour and minute
should be selected and presented to the user separated by a colon. The speci�c part that
has been added by the designer is shown in line 4-6 and 9-10. In this lines styling and
design information are added consisting of a static clock picture (line 5) and font styling
information (line 6).
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Listing 2 Excerpt of an generic AIO to CUI transformation for generating a speci�c
transformation for a HTML platform.

1 <aidlnew:template match="attribute">
2 <aidlnew:choose>
3 <aidlnew:when test="not(@input='true')">
4 <xsl:value-of>
5 <aidlnew:attribute name="select">attribute[@select='
6 <aidlnew:value-of select="@select"/>']/label[@lang=$language]/.
7 </aidlnew:attribute>
8 </xsl:value-of>
9 <xsl:value-of>

10 <aidlnew:attribute name="select">attribute[@select='
11 <aidlnew:value-of select="@select"/>'].
12 </aidlnew:attribute>
13 </xsl:value-of>
14 </aidlnew:when>
15 <aidlnew:when test="@input='true' and @type='multichoice'">
16 <br/>
17 <input type="checkbox">
18 <aidlnew:attribute name="name">{attribute[@select='
19 <aidlnew:value-of select="@select"/>']/@id}
20 </aidlnew:attribute>
21 <aidlnew:attribute name="value">true</aidlnew:attribute>
22 </input>
23 <xsl:value-of>
24 <aidlnew:attribute name="select">attribute[@select='
25 <aidlnew:value-of select="@name"/>'].
26 </aidlnew:attribute>
27 </xsl:value-of>
28 </aidlnew:when>
29 </aidlnew:choose>
30 </aidlnew:template>

Listing 2 presents a condensed extract of a generic AIO to CUI transformation. The
excerpt shows two production rules for handling the AIO selection of an attribute (line
1). The �rst one (line 3-14) handles the basic attribute selection that should result in
a AUI-to-CUI transformation that extracts the attribute values for presenting it in the
user interface together with an enriched label text. An example of the resulting AUI-
to-CUI fragment of the speci�c transformation has been shown in listing 1. The second
production rule (line 15-28) is used to generate a transformation that selects attributes
of a set to form a multi-choice list that will be rendered as a list of check-boxes in HTML
(line 17). This production rule is called for each element of the list.
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Listing 3 Excerpt of an generic AUI to CUI transformation prologue for a HTML plat-
form.

1 <xsl:stylesheet version="1.0">
2 <xsl:output method="html"/>
3 <xsl:param name="language" select="'de'"/>
4 <xsl:template match="scenario">
5 <aidlnew:choose>
6 <aidlnew:when test="//list[@input='true']|//attribute[@input='true'] ">
7 <form method="POST">
8 <aidlnew:attribute name="action">{$locationParameter}</aidlnew:attribute>
9 <input name="sessionid" type="HIDDEN">

10 <aidlnew:attribute name="value">{$sessionId}</aidlnew:attribute>
11 </input>
12 <aidlnew:apply-templates select="./container" mode="include"/>
13 <br/><br/>
14 <input type="submit"></input>
15 </form>
16 </aidlnew:when>
17 <aidlnew:otherwise>
18 <aidlnew:apply-templates select="./container" mode="include"/>
19 </aidlnew:otherwise>
20 </aidlnew:choose>
21 </xsl:template>

Listing 3 presents an excerpt of the prologue of a generic AUI to CUI transformation.
Beneath de�ning the default language (line 3) the HTML transformation prologue checks
for AIO elements that have been speci�ed as input elements (line 6). If input elements
are part of the user interface, the generic transformation produces a form as part of
the prologue (line 7) before traversing through the AUI container hierarchy (line 12
and line 18). The AUI containment structure forms the CUI structure. Therefore the
generic transformation ensures that all AUI containers are traversed as speci�ed in the
AUI model hierarchy. For each container design decisions can be added in the speci�c
transformation similar to the AIO production statements that have been presented in
listing 1.

4.2.6.3 Testing Step

Like illustrated in �gure 4.17 the CUI model testing step is about producing instant
previews of the �nal user interface for all platforms that should be considered for the
interactive application. The previews can be generated on the one hand by the generic
transformation, which produces a technical, but well structured user interface without
considering any speci�c user interface design. On the other hand, as soon as the speci�c
transformation has been enhanced, it can be applied iteratively to check the �nal user
interface design. Both previews take advantage of the exemplary application objects
that have been de�ned during domain modeling and the presentation task sets (PTS)
that have been speci�ed during task modeling. Despite the fact that the FUI previews

100



4 The MASP Methodology

only o�er user interface presentations that are based on static content, the exemplary
objects enable the designer to get a clue about the amount and type of information that
is presented as part of the user interfaces. By using the exemplary objects all parts of
the user interface that strongly depend on data that is created during run-time can be
previewed in a realistic situation of the �nal application. With the help of the PTS not
only �nal user interface fragments can be previewed but also complete screens involving
several tasks can be checked for a consistent screen layout design.

4.2.6.4 Tool-support

To support the CUI modeling process, we have implemented an editing and previewing
functionality as part of the MASP Builder tool.

Figure 4.18: Final user interface previews for HTML using a webbrowser (left) and WML
using a cell phone emulator (right) based on exemplary application objects
for a certain PTS.

Figure 4.18 presents two previews of a work-out support application, which can be
accessed before and after the work-out via a web-browser on a desktop pc, and during
the workout by using a smart phone (WML) or a headset by using a speech command
interface. Both previews have been generated just by applying generic transformations
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for all platforms and consider exemplary application objects containing the actual sensor
data, the training advices, and a certain PTS. Thus the user interface does not include
aesthetical design improvements but still gives an impression about the user interface
controls and data for all platforms.

Figure 4.19: Screenshot of the XSL transformation editor of the MASP Builder. On the
left side, the actual abstract user interface is presented in an XML-based
format. On the left, the designer can switch between several XSL editors to
manipulate the AUI-to-CUI transformations.

Figure 4.19 illustrates the XSL editing functionality of the MASP Builder. The tool
uses a two-column layout which presents the complete AUI for a certain PTS with the
included exemplary application objects (which we call a �scenario�). Several of such
scenarios can be con�gured in the MASP-Builder and can be easily browsed by using
the pull down box under the left column. In the right column a platform speci�c XSL
transformation is visualized. Initially this transformation can be automatically generated
by using the generic AUI-to-CUI transformation (which can be accessed by a pull-down
menu that includes additional options to automatically ident and validate the speci�c
XSL transformations). At the bottom of the right column, the designer can switch
between several speci�c transformations (currently we support WML, HTML, VoiceXML,
and Thinlets) by using the tabs as well as applying the transformation to generate an
instant preview. The previews are presented by using end device emulators (for instance
to preview the �nal user interface on a cell phones or on a web-browser).
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Figure 4.20: The con�guration dialog of the MASP builder tool supports con�guring sev-
eral device emulators as well as connecting to a Voice Server and a running
MASP environement to directly manipulate a running system.

Figure 4.20 present the con�guration dialogue of the MASP Builder, wich allows to
con�gure the generic AUI-to-CUI transformations and to specify the browsers and end
device emulators that should be used to display the preview. The MASP Builder can be
directly connected to a VoiceXML-based voice synthesis and recognition server. Therefore
the server location as well as a phone number can be con�gured by the designer. In this
way a user interface preview can be generated for the voice command interface as well.
As soon as the designer presses the generate preview button for presenting the voice
interface, he receives a call for the con�gured telephone number and can preview the
speech interface.
Although the user interface is already technically usable after the speci�c transforma-

tion has been generated, the design often requires some re-work (user interface design
is still an art!), which includes adding a speci�c style (we use CSS style sheets) and
must be manually done by enhancing the speci�c transformations. Each modi�cation
can instantly be checked by requesting a preview of the user interface based on the given
example objects and the selected PTS. The result of the CUI modeling is a platform spe-
ci�c transformation (that works on the abstract user interface description) and includes
speci�c design de�nitions.
As we used our tool successfully in numerous projects we experienced the need for
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supporting reusability mechanisms that allow the extraction of templates from speci�c
transformations. At present this has to be done manually in the user interface construc-
tion process. Each template that is extracted can be described by a new reference and is
stored in a library that is used by the automated generic transformation. The developer
can refer to these types in the context enrichment during the AUI modeling.

Performance considerations The structure of the speci�c transformations is optimized
regarding typical performance issues since it takes special care of the matching conditions
that can signi�cantly reduce performance if the internal transforming functionality is un-
known to the developer. In listing 1 one can observe that we always use a direct template
selection in the xpath-based matching condition, as this kind of selection provides the
best performance.

4.2.6.5 Service Model

Figure 4.21: The Service creation step of the implementation phase creates service sig-
natures based on the application task's information.

Finally the last sub-phase creates the service model by applying a transformation to all
application tasks and their corresponding application objects to create service signatures
containing the input application objects as parameters and the output application objects
as service results.

4.2.7 Deployment and Implementation phase

The deployment phase requires a run-time system as it will be described in chapter
5.2.1, which o�ers Model-Agents conforming to the same meta-model that is used to
describe the models designed by the methodology. Each non-transient model that has
been developed during the development process is deployed together with the mappings
between the models into a run-time environment that executes the application. The
deployment phase therefore is mainly concerned with con�guring each Model Agent with
the model it needs to process at run-time. Deploying all developed models and starting
the system creates an instance of all the models in the run-time environment that de�nes
complete the state of the application.
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4.3 Conclusions

We presented a tool-supported method for interactive system development that explic-
itly considers testing support in all other phases and steps of the development process.
Di�erent to other approaches the method covers all phases of the development lifecycle
and is directly related to a run-time architecture that will be presented in the next chap-
ter. Whereas the concepts and tools of the method can be used independently from the
run-time architecture, coupling both enables to bridge the gap between design-time and
run-time of interactive system development. Most of the design-time models that are
modeled as part of the method can be directly executed in the run-time environment.
Figure 4.2 illustrates the sequence of tools that support the method. Whereas in the

early analysis phase and the domain modeling step of the design phase we rely on al-
ready existing tools (the EL-Tool [Paternò and Mancini, 1999] and the JIAC ontology
builder [Tuguldur et al., 2008] respectively) we introduce several new tools to support
the designer in all phases of the method. The method has a strong focus on testing
support to uncover misunderstandings and misinterpretations as early and often as pos-
sible. Therefore all tools support generating previews, enable model checking or o�er to
run simulations enabling the developer to test intermediary results of the development
process. We described the method by following a �xed structure for each step of the
development process: After an introduction we explained the activities required to per-
form each individual step of the method. Thereafter we introduced possible notations
that can be considered for specifying the models. Then we described the testing and tool
support for an e�cient development.
Di�erent to other approaches the application can be comfortably maintained and ex-

tended even after the initial development has been undertaken. This is possible since all
design models are kept alive in the run-time environment and can be targeted to manip-
ulations on all levels of abstractions that are supported by the models. Both the MASP
Builder that supports the AUI and CUI modeling as well as the Layout Generator can
be directly connected to the MASP run-time environment in order to manipulate and
update the models to consider changing requirements. Bugs can be uncovered by the
MASP debugger enabling the designer to inspect concrete model instances and manipu-
late states.
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Interactive Systems

Whereas model-based approaches introduce various abstractions to design interactive
systems, each enabling a comprehensive view of the whole application, they are currently
focused on analysis- and design support. Thus, these approaches require the developer
to consider all combinations of devices, which the interactive system should be able
to adapt to during the development process. Each new mix of devices and modalities
requires going through most of these design models again to compile a new user interface.
Realizing such an approach requires two problems to be solved:

� A notation that is comprehensive enough to be interpreted at run-time while also
providing the application designer with an overview of the whole application, be-
cause adding new multimodal interactions often a�ects the complete interaction
�ow of the application. The notation should support prototyping of new interac-
tions without changing the original application and should be supported by tools.

� The run-time environment must re�ect commonly used design-time models de-
scribing several abstract views of an interactive application and has to support
mappings to the run-time environment to eliminate the gap between design and
run-time. Every modi�cation to the models that is done during prototyping has to
be instantly propagated to be synchronized with all other models.

In the next section we systematically derive the requirements for an model-based archi-
tecture for an interactive system and then present our approach for a MASP software
model for interactive systems in section 5.2.

5.1 Requirements Derivation

5.1.1 Architectural Observations

Run-time environment vs. Development environment

Actual approaches either focus on implementing a run-time environment or an inte-
grated development environment. Run-time environments are proposed to o�er adapta-
tion mechanisms to the actual context-of-use. Therefore these approaches consider the
capabilities of the target platforms, the user's preferences, and the surrounding environ-
ment where the interaction takes place. Calvary et al. [Coutaz and Thevenin, 1999] sug-
gested the plasticity property to describe an adaptation to di�erent contexts of use while
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preserving the user's needs and abilities. To support plasticity they introduced comets
[Calvary et al., 2004], a special kind of widgets that publish their guranteed quality in
use, the tasks they support and the domain concepts they consider, and can self-adapt
to di�erent contexts-of-use.
Coninx et al. [Coninx et al., 2003] introduced the Dygimes framework, a model-based

approach that is able to combine several models at run-time to generate user interfaces.
They use task speci�cations that are associated with user interface building blocks to
generate interfaces that can adapt to the context-of-use. [Klug and Kangasharju, 2005]
directly execute a task model at run-time and support the generation of interactive
systems that are able to adapt to the actions of the users by allowing manipulation of
the task structure at run-time.
Integrated development environments assist the user interface designer specifying the

di�erent models re�ecting di�erent views of an interactive system and various levels
of abstraction. In TERESA [Mori et al., 2003], the designer has to start with a task
analysis to identify the basic processes that should be supported by the �nal applica-
tion. In the task modeling phase temporal operators are used to relate tasks to each
others and objects are associated to task that are required for sucessfull task perfor-
mance. Internal heuristics of TERESA help the designer to derive a dialog model that
is basically constructed of enabled task sets building the foundation for the genera-
tion of the �nal presentation. Vanderdonckt et al. have implemented a lot of di�erent
tools, all loosely coupled together using UsiXML [Limbourg et al., 2004a] as the mod-
eling language to describe the diverse models of abstractions that can be constructed
or manipulated by the designer. They propose specialized tools for speci�c audiences
to cover various development approaches. For prototyping approaches di�erent levels
of �delity are supported: SketchiXML [Coyette and Limbourg, 2006], a sketching editor
is targeted to low-�delity prototyping and replaces paper sketching of user interfaces,
the VisiXML tool [Vanderdonckt, 2005] supports vector drawing, whereas Gra�XML
[Limbourg et al., 2004b] is an advanced user interface editor supporting high-�delity pro-
totyping.

5.1.2 Architectural Shortcomings

Limited support for run-time adaptation to user and platform

Di�erent to early approaches like Mastermind [Szekely et al., 1995], actual approaches
concentrate on architectures implementing tool-driven environments to support the user
interface designer. Run-time environments are faced with the additional challenge to
support platforms or devices that are unknown to the designer during the analysis
and design phase. Further challenges include performance considerations to guaran-
tee response times that do not restrict the user during his task performance. UIML
is a prominent representive where user interface generation often happens at run-
time. Therefore user interface renderers are deployed on the user's end-device that
are able to interpret the user interface language and dynamically generate a presen-
tation [Schaefer et al., 2004, Schaefer and Bleul, 2006]. Unlike earlier works that dis-
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cussed transcoding mechanisms to dynamically adapt a user interface to di�erent plat-
forms, actual reasearch concentrates on layouting mechanisms as one suitable option
for realizing user interface adaptation at run-time. Early works by Alan Borning
[Borning et al., 1987] are have been continued by [Myers et al., 1997] and recently by
[Luyten et al., 2003b, Luyten et al., 2006b] to support multi-device layouting based on
the cassowary algorithm proposed by [Badros et al., 2001].
In actual model-based approaches, domain models are generally accepted to serve as an

input for the automated user interface generation on a conceptual level. The upcoming
semantic web o�ers standardized and machine readable descriptions like for instance RDF
and OWL that can complement the domain model information by automated extraction
at system run-time, which currently has to be speci�ed manually at design-time. A �rst
attempt to consider the information o�ered by semantic services during the user interface
generation process at run-time has been proposed by [Kaltz et al., 2005].
On the task model level that abstracts from any modality or platform, adaptations

of the task structure to support di�erent platform and device capabilities at run-time
have actualy rarely beeing considered. Although di�erent approaches exists that execute
the task model to run an interactive system, so far only [Klug and Kangasharju, 2005]
describes an approach that allows task manipulation at run-time to support adaptation
to di�erent users, but did not consider to adress device capabilities.

5.1.3 Architectural Requirements

5.1.3.1 Conceptual simplicity

In recent years technology has advanced the development of new kinds of devices useful
to enable new interaction passibilities and is moving rapidly towards the vision of the
disappering computer. To support mechnisms o�ering modularity and extensibility of the
architecture and enabling a seamless integration of new interaction capabilities as soon
as they get available, an architecture based on a straight-forward design is required. In
order to do so, previous architectures for model-based approaches have to be reconsidered
to support a run-time architecture, and a meta-model has to be developed describing the
general concepts of a model-based architecture and the required layers to support a
straight-forward derivation of a model-based architecture.

5.1.3.2 Separation of concerns

Following the concepts of the reference architectures that have been discussed in chapter
3, a reference model has to be designed that pays attention to a model-based run-time
architecture. Based on early and already well accepted models like Arch/Slinky or PAC-
Amodeus that propose general reference models for interactive systems, actual require-
ments regarding device independence by supporting various levels of abstraction have to
be taken into account and a re�ned reference model has to be designed.
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5.1.3.3 Performance considerations

Di�erent to model-based proposals that utilize various models to derive a �nal user
interface via a process of model transformation, a run-time architecture has to do all these
model-transformation steps instantly during the interaction with the user. Beneath the
de-facto standard of measuring the average response time that the archictecture requires
for the propagation through the models considered in one interaction-cycle with the user,
scalability and caching options should be addressed required to serve user interfaces for
big audiences accessing an application that is based on the proposed architecture using
the internet.

5.1.3.4 Consideration of a methodology

The design and development of an interactive system that is based on a model-based
run-time architecture has to be conducted by a methodology guiding the involved
roles e�ciently. Since a transformal development approach like described recently by
[Limbourg et al., 2004b] is an established process to develop multi-platform user inter-
faces [Paternò, 2005, Calvary et al., 2003, Luyten et al., 2003c], the designed architec-
ture has to explicitly expose the various models re�ecting the actual status within the
development process. Each model considered by the architecture may be subject to
analysis and manipulation during the development steps [Puerta and Eisenstein, 2003].

5.1.3.5 Prototyping support

Recent proposals in model-based development implement multi-step development en-
abling development into various directions (bottom-up, top-down, wide spreading, etc.)
[Calvary et al., 2003]. Entrypoints are used to indicate the potential initial models where
development can be started. To support early prototyping the architecture must be �ex-
ible enough to rely on the models in the sequence they are used by the developers and
designers of the interactive system. Thus, the architecture has to run with every model
that is supported to be an initial model (entry point) to development.

5.1.3.6 Support for adaptation at run-time

Only limited support for adaptation mechanisms can be considered at design and de-
velopment time. As soon as the �nal user interface is produced, further adaptations
are limited to apply transcoding mechanisms or doing a re-iteration through parts of
the development cycle. Beneath consideration and adaptation to evolving technologies
that have been previously unknown in the development process, dynamically changing
situations of the users that are captured by context-of-use models require a more �exible
adaptation mechanism that can be done instantly at run-time.

5.1.3.7 Tool support

The productivity of multi-platform development heaviliy depends on the tools available
to support the development process. The architecture has to consider connection points
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enabling easy model-manipulation at run-time to support maintenance and debugging,
as well as instant testing of changes of a running application.

5.2 The Multi-Access Service Platform

The requirements that need to be considered by user interfaces are manifold. Beneath
the interactive application's domain the user interface has to consider multi-modal in-
teraction, needs to be adapted to several contexts-of-use, should be able to migrate
to follow the user or even might be distributed to enable situated computing. Two
decades of model-based user interface development have resulted in several promising
approaches to address these requirements. Most approaches have been developed iso-
lated from each others or have been focused on a speci�c problem domain. Only little
work has been done so far to concentrate the e�orts to a standardized approach like
proposed by the Camelon Framework [Balme et al., 2004] or by specifying the UsiXML
format [Limbourg et al., 2004b]. These approaches end up with a very-large model-based
development process for developing user interfaces [Vanderdonckt and Berquin, 1999] re-
quiring a tool-chain and a set of models considering all the requirements that have been
listed above. With each model specifying a certain abstract view on an interactive ap-
plication or describing a speci�c requirement like for instance the supported context-of-
use adaptations, the development complexity gets increased: Each user interface model
needs to be comprehensively understood by the designer to be utilized accurately. More-
over, with each introduction of an additional model new model-to-model mappings and
transformations need to get included into the model-based development process. These
mappings are very hard to observe and to maintain by a designer especially if one model
is connected to several other models.
Because of this and the big initial learning e�orts to identify and capture e�ective

abstractions into models, so far the model-based development of interactive systems has
been applied by the industry to a very limited extend. Applications are still implemented
following very basic design patterns such as the model-view-controller (MVC) pattern
that is an integral aspect of actual modern frameworks like for instance Ruby on Rails and
Java Server Faces1. Whereas MVC o�ers a separation of the application's model from the
presentation, MVC-based application designs results in some models, each accessed by
several controllers and each controller accessed by multiple views. Thus, implementing
large interactive applications ends up with a modularization of model/view/controller
modules making a comprehensive view on the entire application at implementation time
impossible. Task and Concepts modeling are often considered as paper-work and are not
directly connected to the actual implementation, which complicates later enhancements of
the application to support new contexts-of-use. To overcome these problems we propose
the Multi-Access Service Platform (MASP), which implements a modular agent-based
architecture and can be �exibly composed of those user interface models that the designer
feels most comfortable with and considers as most e�ective to support his work.

1JSR 252: JavaServer Faces 1.2; SUN Microsystems; Online at:
http://jcp.org/aboutJava/communityprocess/ �nal/jsr252/index.html; Last Checked: 02/01/08
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This chapter introduces our approach to utilize user interface models as basis for a run-
time system allowing the derivation of �exible user interfaces from the de�ned models.
Both, the run-time system as well as the models are described by a meta-model, ensuring
consistency across all models at run-time and design-time. The approach aims for the
integration of the run-time and design-time view of the user interface to achieve greater
�exibility and adaptability of user interfaces for smart environments. The adaptation
of user interfaces to various environments unknown at design-time as well as context
information and usage situations is supported. This integration is achieved through the
combination of a run-time system capable of interpreting user interface models with a
methodology allowing the step by step creation of the required models.
We start with an introduction of the relationships between models and instances and

point out how this view to run-time models can be utilized to generate user interfaces
through the interpretation of a user interface model at run-time in the next section.

5.2.1 Run-time Interpretation of User Interface Models

Figure 5.1: (Meta-) Levels of UI Models.

Figure 5.1 llustrates the relations between the di�erent levels of abstraction underlying
our approach to create models that allow the derivation of user interfaces at run-time.
Each level of abstraction comprises a model composed of a number of sub-models as
well as relations between the sub-models. Each sub-model describes part of the model to
provide a consistent, self-contained view to an aspect of the user interface and instantiates
the sub-meta-model of the corresponding higher level. In addition, mappings describe
the relations between the di�erent sub-models and the mappings between the sub-meta-
models. The relations between di�erent levels of abstraction allow the clear separation
of system design-time - working on the meta-level, application design-time - working on
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the model-level and run-time - working on the instance-level.
At system design-time the developer de�nes the meta-model and also adopts or creates

a meta-meta-model. While the meta-meta-model de�nes the concepts of the meta-model,
the meta-model itself speci�es the user interface description language used to describe
the models. The CTT notation or an abstract user interface description language are
sub-meta-models on this level. Meta-mappings de�ne that Abstract Interaction Objects
(AIOs) of the Abstract User Interface (AUI) are related to Concrete Interaction Objects
(CIOs) of the Concrete User Interface (CUI) for instance. At application design-time,
the user interface model, instantiating the meta-model is composed from di�erent sub-
models, instantiating the sub-meta-models. A Concurrent Task Tree de�ning an inter-
active application is a sub-model instantiating the CTT notation for example. Mapping
an AIO (of type fooClass) to a CIO (of type barClass) is a model-mapping at this level.
At run-time, the created models are instantiated to describe the state of a model at a
speci�c moment in time. An Enabled Task Set (ETS) declaring several tasks as active is
an instance of the CTT sub-model de�ning the state of the interactive application. The
fact that a speci�c instance of an AIO (object 'foo' of type fooClass) is related to an
instance of a CIO (object 'bar' of type barClass) is an instance-mapping. At the instance
level this results in the CIO being updated as soon as the AIO changes.
Looking at the level of instances of models at run-time requires a concept of loading

and instantiating the models that also de�nes how the instances can be manipulated at
run-time while preserving consistency. Our approach to interpret models at run-time -
introduced in the next section - is based on the concept of Model-Agents, instantiating
the model to provide access to the instance.

5.2.2 The Model Agent Concept (MAC)

PAC and MVC are prominent implementation models for interactive applications. Both
decouple business logic from the presentation. But whereas in MVC the controller is
designed to handle only user input, in PAC the controller uses interactive objects to
map both, user input and output between the abstraction and presentation to shorten
the user feedback loop. Both, MVC and PAC require a functional decomposition of the
interactive system to be realized: Whereas in MVC a functional decomposition is not
explicitly de�ned, PAC is structured according to layers. It composes interactive objects
by PAC agents on a lower granularity. On a macroscopic level there is a chief agent that
controls the entire application whereas on the lower levels there are �ne-grained agents
handling speci�c services that the user interacts with [Avgeriou and Zdun, 2005].
Although the functional decomposition into a hierarchy of simultaneously running en-

tities is elementary to manage large interactive systems [Hirsch et al., 2008], the overview
about the entire application is only possible on the highest level of abstraction. Di�er-
ent to a functional decomposition, a model-based architectural approach o�ers several
models, each implementing a di�erent perspective on the application abstraction while
preserving the comprehensive view on the entire application. Therefore we propose the
Model-Agent concept that brings these design-time models alive, allowing the developer
to decide about suitable abstractions to implement and to manipulate a running appli-
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cation on these levels of abstractions later on.

Figure 5.2: Model-Agents are comprised of an Abstraction that de�nes the agent's be-
havior (Control) and the structure of the encapsulated Instance. Inter-agent
communication is done by the subscribe/notify pattern that is triggered by
the controller part of an agent.

Figure 5.2 depicts the basic structure of a Model-Agent that is comprised of three
components: The Abstraction that is basically a view (a user interface model) describing
both, the concrete interactive application's structure and semantic on a certain level of
abstraction. The latter is realized by the Control part that de�nes the agent's behavior
and the latter by the Instance part that contains the agent's knowledge structure for
instance about a speci�c state. The communication between agents is initiated by the
observer pattern and always triggered by the Control part that subscribes to another
agent's Instance to get noti�ed about updates.

Figure 5.3: At least 4 di�erent types of agents are required to realize an interactive sys-
tem.

In our reference model, an interactive application is described by at least four di�erent
kinds of agents like illustrated by �gure 5.3: A Task Model-Agent controls the overall
process. Depending whether the task �ow contains a system task or an interaction
task, the agent delegates the execution to the Service or the Presentation Model-Agent.
Results of a service call from the Service Model-Agent get sent to the Domain Model-
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Agent whereas the information about a succeeded service call gets propagated back to
the Task Model-Agent to continue the task �ow. Finally the Presentation Agent registers
itself for updates of the Domain Model to be able to update the presentation if domain
objects that are part of a presentation get updated.
Following the idea of the Slinky meta-model [Bass et al., 1992] these four agents can

be weighted by decomposing them based on the requirements of the interactive appli-
cation's domain. Thus, a home automation system implementation to integrate several
home automation technologies; each represented by a specialized service agent and might
include only a basic presentation that is suited for a single touch screen. Whereas a in-
car assistive system might include several multimodal-interaction models specifying the
various interaction modalities that are supported by the system via a �ne grained chain
consisting of task, domain, context, concrete user interface Model-Agents as well as an
service Model-Agent.

Figure 5.4: Each Model-Agent has a comprehensive view on the entire application on a
certain level of abstraction.

Following the Model-Agent concept we identi�ed several advantages:

� Comprehensive View ; Enhancements can be done easily by modifying just one
agent as each agent contains a comprehensive view about the entire application
on a certain level of abstraction (�gure 5.4). PAC-Amadeus only describes the
functional decomposition of the dialog part of an application, and MVC does not
o�er a guideline on how to relate several MVC parts of a complex application.

� Minimization of the future e�ects of changing technology. New principles and tech-
nologies can be introduced by a new Model-Agent containing the additional infor-
mation or a new interpretation of already available information.

� Better learning curve; A developer can start with those abstractions she feels most
comfortable with and continuously enhance the application by instantiating new
Model-Agents integrating new models to support for instance interface migration
and distribution or address the capabilities of new platforms.
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� Integration into a model-based development approach. Agents can be directly de-
rived from user interface models that have been speci�ed following a model based
user interface development process. The agents' communication can be systemati-
cally derived from the transformations and mappings between these models.

� Integration of di�erent user interface description languages. Each agent acts au-
tonomously on behalf of one model; Only model mappings have to be de�ned
between the interacting agents stating the relations between both models.

� No gap between design- and run-time of a system. Model-Agents are directly de-
rived from the design model and each designed model is kept alive and can be
manipulated at run-time.

� No single point of control. Di�erent to PAC-Amodeus there is no hierarchy. Dif-
ferent views about an interactive application are realized by separate autonomous
agents. Each agent can initiate the control of the application based on the internal
model information of the agent.

A Model-Agent encapsulates a sub-model and provides access to the current instance
of this model. It also encapsulates a processing unit allowing calculations based on the
current instance.

Figure 5.5: For each user interface model one Model-Agent is derived and instantiated
through a model-based development process by the MASP.
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Figure 5.5 illustrates the components of a Model-Agent and also shows the relations
between the system design-time, the application design-time and the run-time of the
system. As one can see in the top section of the picture, the Model-Agent as well
as the model is de�ned by the sub-meta-model and the meta-mappings relating the
di�erent sub-meta-models. This refers to the fact that the implementation of the agent
has to be compliant to the meta-model to ensure that it is able to process all correct
instances of the meta-model. The meta-mappings, de�ning the relations between di�erent
sub-meta-models, in�uence the implementation of the communication capabilities of the
agent as they de�ne the set of related agents. This means the developer of the Model-
Agent implements the relationships between di�erent Model-Agents based on the meta-
mappings, de�ning i.e. which agents need to communicate and thus have to agree on a
communication mechanism and be aware of each other. In addition to the communication
capabilities each agent also provides processing capabilities allowing to instantiate and
process a model, which puts the agent in the situation of being able to autonomously
perform calculations based on the current state of the model - the instance - and the
implemented processing rules.
Using the processing and communication capabilities provided, the agent is able to in-

stantiate the sub-model and the related model-mappings. While the model de�nes the in-
stances the agent is working on at run-time, the mappings de�ne additional, application-
speci�c relations between models, i.e. which objects are related to each other. After
loading and instantiating the UI model the agent is initialized and capable of receiving
input events from other Model-Agents, encapsulating related models. Received events
are processed and can change the model instance, which also triggers new outgoing
events. We distinguish between asymmetric and symmetric communication capabilities
of a Model-Agent. The former is realized using event-based communication to allow one
agent to inform another agent about changes of the model; whereas the latter uses read
requests to allow the processing part of one agent to explicitly request state informa-
tion from a related agent. Events are issued by the noti�cation component, monitoring
changes to the instance. Whenever a related mapping is found for a change event the
occurred event is propagated to the concerned agents and received by their observer
components as de�ned by the mapping. Read requests are issued through the connector
component to the control component of a related agent, when the processing unit re-
quires additional information from a related model. Using only events and read request
ensures that each agent can autonomously decide which information is incorporated in
the managed model, meaning no agent can write to a model of another agent.
The various agents managing the de�ned models form an interactive system. With

respect to speci�c requirements of this interactive system, a setting of model-agents has
to be identi�ed and mappings to connect these agents have to be speci�ed. One possible
setting of an interactive system allowing the distribution of user interfaces to di�erent
platforms and modalities is described in the next section.
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5.2.3 A Model-based Run-time System

This section describes an approach to realize a Run-time System (RTS) allowing the
interpretation of user interface models based on the concepts introduced above. The
run-time system loads and interprets the model, manages instances and guarantees that
only valid instances are created. It further ensures that mappings between instances are
maintained; meaning that updating one instance also a�ects related instances. The run-
time system is structured by the meta-model as the meta-model de�nes the set of models
that can be processed by the RTS. Realizing the run-time system based on loosely coupled
Model-Agents provides a �exible and extensible infrastructure that can be adapted to
changing requirements or new changes of the underlying models.
Following the idea of using software agents to coordinate the user interface manage-

ment system [Calvary et al., 2003] we are using an agent-based run-time environment,
the Multi-Access Service Platform (MASP) to generate and adapt user interfaces. But
instead of requiring a hierarchical organization to several agents like proposed by PAC-
Amodeus [Nigay and Coutaz, 1997a], the communication �ow between the agents in our
environment can be �exibly con�gured based on the requirements of the interactive ap-
plication.
As illustrated by �gure 5.6 the environment is driven by several Model-Agents

where each interprets one user interface model. Di�erent to other approaches
[Calvary et al., 2003, Vanderdonckt and Berquin, 1999] that re�ne a user interface model
at design-time to end up with a compiled version of the user interface, we keep all of the
models alive at run-time. This allows us to more �exibly react to context-of-use changes
that have not been desired at design-time by specifying the required adaptation on an
abstract model-level. Each agent is comprised of two parts: a tuple space to store the
instantiated model information and a manager containing the semantics and function-
ality to manipulate the model information. Whereas the manager has complete access
to its own tuple space it is not aware of the other agents connected to the system. We
connect the agents by using tuple space operations (atomic read/manipulate/write) and
the eventing system of a tuple space. The eventing system allows a manager to register
for changes of another tuple space. Each agent, handling one user interface model is
instantiated once to run a single application but is able to handle several sessions for
di�erent users that are accessing the same application. The communication processes
between all agents are not hard wired but instead con�gured for each application based
on the user interface models that are relevant for the applications domain. Therefore we
can add the layouting Model-Agent as an additional component to the system without
making any changes to the other agents.
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Figure 5.6: MASP Agents Overview.

Figure 5.6 illustrates a possible system of models, allowing the creation of multi-
platform user interfaces and brie�y sketches the communication between the di�erent
Model-Agents. To be able to consistently implement the concept of Model-Agents
throughout the whole system, we separated two classes of Model-Agents: Application
Model-Agents processing application dependent models developed at design-time by the
user interface developer and System Model-Agents processing system dependent models
prede�ned at system development time to de�ne run-time speci�c behaviour.
During the startup phase of the run-time system each Model-Agent subscribes itself to

receive events of the other Model-Agents based on the sytem con�guration. Thus, in the
system illustrated by �gure 5.6, initially the Service Model Agent registeres for changes
about the curently active tasks (the enabled tasks set - ETS) with the Task Model-Agent
(1a). The Task Model-Agent registeres to get noti�ed about on the one hand �nished
service calls (1b) from the Service Model-Agent and on the other hand to get noti�ed
about �nished interaction tasks (7) from the CUI Model-Agent. The Layout Model-Agent
registeres to get noti�ed about each newly calculated ETS from the Task Model Agent
(2) and to receive information about context changes from the Context Model-Agent (3).
Finally the CUI Model-Agent subscribes to receive new user interface layouts (4) from
the Layout Model Agent and to receive changes from the Domain Model-Agent (5) if a
service call from the Service Model Agent has resulted in new domain model information
(1c) for that the Domain Modal agents subscribes itself to the Service Model- Agent.
Each updated presentation of the user interface gets delivered by from the CUI Model-
Agent by using channels (6) to the di�erent plattforms to end up as a �nal user interface
(FUI).
As soon as the run-time system has been successfully started, the generation of the user

interface presentation is initiated by the Task Model-Agent that initially loads the task
tree that de�nes the work�ow of the application and extracts the initial ETS, de�ning the
current state of the application on the task level. Each task of the tree on the lowest level
of abstraction can be either an interaction or an application task. Since the Service Model
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Agent has been initally subscribed to receive noti�cations about each newly activated
application task (1a), it starts the relevant services for all enabled services and stores the
services' results. For each �nished service both, the Task Model-Agent (1b) as well as
the Domain Model-Agent (1c) receive a noti�cation. This noti�cation trigger the former
one to calculate a new ETS and the latter to stores the service result.
All newly enabled interaction tasks of the Task Model-Agent result in the Layout

Model-Agent generating a new layout that includes all currently enabled interaction tasks
in one presentation and considers the actual context-of-use, since the Layout Model-Agent
is also subscribed to receive noti�ctions about context-of-use changes from the Context
Model-Agent. All changes to the domain model (5) or the layout model (4) trigger the
CUI Model Agent regenerating the user interface presentation. In case of changes to
the domain model the data that is presented in the user interface is updated, whereas
changes to the ETS result in adding or removing tasks from the user interface and a new
layout respectively. Finally, if the user enters data (6) the domain model will by updated
(5) and if she �nishes a tasks (7) a new ETS will be calculated by the Task Model-Agent.
Interpreting user interface models at run-time using the described structure allows the

�exible distribution of user interfaces to various plattforms. Thus, if a new device is
connected via a channel to the run-time system by the user, the actual ETS is requested
again from the Task Model-Agent and processed as described above to include the new
device to present the user interface as well.

5.2.4 Layout Constraint Generation at Run-time

Figure 5.7: Each Model-Agent is comprised of a manager that encapsulates the agent's
functionality and a tuple space to store it's data.

Figure 5.7 depicts the internal setup of a Layout Model-Agent and its internal as well as
its external communication. The agent senses for two external events to happen: First,
for a new distribution of the user interface, which has resulted in a new combination of
user interface elements to be presented and second a change of the context-of-use. Both
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stimulate the agent to select and assemble the layouting statements. The selection of
suitable statements is done by the following process:

1. Retrieve layouting statements for the actual context-of-use that have been speci�ed
independently from the application and that specify layout requirements to address
a certain user or a speci�c device.

2. Retrieve and select from the ordered statement list of the application layout model
the statements for a screen s that:

a) address application wide layout interpretation

b) address reoccurring elements that are used by s

c) directly address the screen s

d) are de�ned for this application and the actual relevant context-of-use scenario.

The statements that have been selected and ordered by priority like listed above are
then evaluated to a set of constraints (by the statement evaluator). Thereafter the lay-
out agent �nally solves the new constraint setup using the cassowary constraint solver
[Badros et al., 2001]. Solving the constraints results in absolute positions for each ele-
ment of the user interface that are stored within the layouting agent's own tuple space.
The CUI Model-Agent is registered for updates to the absolute positions and therefore
receives updates for each change of these coordinates that the CUI Model-Agent will use
to re-position the user interface elements.
Di�erent to other approaches that use a constraint solver to calculate the user interface

layout, we introduced an additional layer of abstraction for de�ning the user interface
layout by a separate layout model that includes statements that are derived using an in-
teractive and tool-supported process and are consistent to the other user-interface models.
Since we decide about which statements to evaluate to generate constraints at run-time
we can �exibly address layout adaptations to new context-of-use scenarios that can even
be independently speci�ed from an application but have been introduced together with
a new device or a new kind of user type.

5.3 Conclusions

Realizing the run-time system based on loosely coupled agents enables us to inspect and
modify running applications including all instantiated tasks and concepts. Since each
agent o�ers a separate view on the application, tasks, domain objects and service calls
they can be changed independently (for instance by removing or detailing tasks) as the
agents synchronize these changes automatically making prototyping possible at run-time.
Combining the task model with additional user interface models and mapping these

models to a tuple space based run-time system allows the execution of the models sup-
porting prototyping as well as the synchronization of multiple user interfaces distributed
across devices and modalities. The notation explicitly includes the annotation of domain
concepts to make the task designer aware of concept distribution and allows modeling
actions triggered by context changes through the use of application tasks.
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The MAC architecture is open for the inclusion of further models depending on the
interaction requirements of the application. By adding another Model-Agent to the
system that is responsible for layouting of user interfaces based on context-of-use changes
at run-time, we demonstrated the extensibility of the architecture.
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Description Language

Over the last 15 years a lot of User Interface Description Languages have been proposed
in a race for the �ultimate� language to describe user interfaces. Such a language consists
of a de�ning syntax to express the characteristics of an interactive system by the terms
of the language and a semantic describing the meanings of the terms in the real world.
Through the years the goals of such an ultimate user interface description language
(UIDL) changed together with the technologies that should be adressed.
The �rst UIDL's have been speci�ed in order to modularize an interactive application,

separating the user interface from the rest of the application and describing the user
interface in a declarative language instead of weaving it into the source code. The sepa-
ration of the description of the interactive part of an application by a language helped to
communicate the speci�cation of the user interface across all involved stakeholders and
inversely enabled a user interface construction approach based on a speci�cation of the
user interface model [Souchon and Vanderdonckt, 2003].
Together with the the introduction and market penetration of mobile phones and per-

sonal digital assistants the requirements for UIDLs have been extended to support a
wider range of di�erent computing platforms. A lot of new platforms running on appli-
ances introduced their own markup language: WML and cHTML are widely used for
cell phones, HTML, DHTML (the interaction of CSS, XSL style sheets, CSS and the
Document Object Model, and scripting), XUL, and SwingML are used on traditional
desktop PCs. Voice-enabled devices introduced SpeechML, VoiceXML, VoxML and the
Java Speech Markup Language. Voice-enabled devices with a display use XHTML+Voice
or SALT to realize client-sided multi-modality, which limits the multimodal synchroniza-
tion to happen on one platform only. With this new markup languages the demand of
the users for user interfaces that can be (automatically) adapted to their new end-devices
raised. As [Abrams et al., 1999] notes, the explosion in the variety of devices and their
associated user interface markup languages has created a Tower of Babel for user interface
designers and software developers. This is because interface designers must be familar
with multiple languages, they have to maintain multiple bodies of source code for an
application running on di�erent platforms, each requires its user-interface implemented
in its own markup language. This situation is very similar to what happened with PCs
three decades ago, where many di�erent hardware platforms were developed, each with
its own application programming interface.
Its a common practice thoughout history to raise the level of abstraction with which

people interact with computers. People start with programming computers through
mnemonics in assembler after they used strings of zeros and ones. After that their
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were compilers that hide the assembler part and enable to programm in more abstract
constructs with the help of programming languages and additionally enables awide range
of people to programm. With the invention of the web and the introduction of the HTML
markup language the abstraction level raised again as well as the audience that are now
able to implement user interfaces. Thus, ist a common understanding that custom,
platform-independent markup languages can help to solve the problem of the Tower of
Babel.
In the following section we derive the requirements that should be supported by our

approach. Thereafter, in section 6.2 we present language additions to already existing
approaches, namely an extended task model (section 6.2.1), a new form of an abstract
user interface model (section 6.2.2), and �nally a layout model (section 6.2.3).

6.1 Requirements Derivation

6.1.1 Language Observations

6.1.1.1 Diversity of supported abstraction levels and heterogeneity of models

So far a lot of user interface description languages have been proposed, each lan-
guage considers di�erent aspects or focuses on certain aspects of models. UsiXML
[Limbourg et al., 2004a] is a language speci�cation that covers most of the models that
are currently discussed to be included into a model-based user interface development
approach. On the task and concept levels UsiXML speci�es the task and domain model.
The former model is used to derive an abstract user interface model, which is consid-
ered as a modality-independent interface speci�cation. For the concrete description level,
various models have been proposed to support di�erent platforms like haptic, speech or
virtual 3D environments.
Although actual publications in the model-based community seem to agree with this

kind of model distribution, they di�er in the components that these models contain.
Regarding the task model, the CTT approach has been widely accepted as one suit-
able starting point of a model-based development approach, but the level of granular-
ity that has to be considered to derive an abstact user interface is still an open ques-
tion. Some approaches like TERESA [Mori et al., 2003] enable a very detailed task tree
modeling that allows re�nements until the widget level of presentations whereas oth-
ers switch from a task model to a view on the abstract user interface like IdealXML
[Stanciulescu et al., 2005] or derive a dialog model that can be manipulated through
dialog graphs like proposed by [Reichard et al., 2004].
The dialog model that is responsible for task-sequencing and navigation has been

considered in PAC-Amodeus [Coutaz, 1987b] in the form of the Dialogue Controller,
as a central component connecting the functional backend with the presentation of an
interactive system. In UsiXML the dialog model is speci�ed as a component of the CUI
model [Florins, 2006]. In UIML the dialog part is separately modeled as the behavior
part on a more abstract level, wheras XIML speci�es the dialogue model separately on
a concrete model level.
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The models that describe the context-of-use, in accordance with [Calvary et al., 2003]
the environment model, the user model, and the platform model, are considered di�er-
ently in several approaches. Van den Bergh and Coninx [den Bergh and Coninx, 2004a]
propose the notation of Contextual ConcurTaskTrees that introduces a new task type
called �context task� and therefore consider context information during task modeling.
Unlike this approach, [Demeure et al., 2006] propose �comets� to model context adap-
tation on a widgets level. Comets are �context mouldable widgets that publish their
guaranteed quality of use for a set of context-of-uses they are aple to self-adapt to�
[Demeure et al., 2006]. In UsiXML transformations are used to consider the context-of
use. Transformations can be explicitly de�ned on each level of abstraction to adapt an
interactive system to a di�erent context-of-use.

6.1.1.2 Conceptual closeness

The di�erent proposed UIDLs di�er on the one hand in their coverage of the levels of ab-
straction and on the other hand in the type of models they are able to describe. UsiXML
proposed the broadest coverage of concepts and abstractions of all user interface descrip-
tion languages, as it includes concepts to explicitly describe mappings, transformations
between the abstractions, and also includes a context model. Thus, the extensive and
publicly available UsiXML speci�cation can be a good candidate for a standardized and
widely accepted UIDL. Another candidate for a standardize UIDL might be XIML that
is currently the only UIDL known to the author that considers a meta-model describing
the components of the XIML UIDL. Even though the speci�cation of the concepts of the
XIML meta-model are very limited and only consider the speci�cation of a component,
an attribute and a relation the XIML meta-model might be a good starting point for an
integrated language extension mechnanism that is missing in UsiXML. Although UIML
allows the de�nition of new vocabularies to support additional platforms, this approach
�gured out to be too restrictive and several approaches for �generic UIML vocabularies�
have been proposed [Plomp and Mayora-Ibarra, 2002, Schaefer and Bleul, 2006].

6.1.1.3 Focus on graphical modality

The generation of various graphical user interfaces for di�erent platforms is the driv-
ing force of actual model-based approaches. Early approaches focused on declarative
graphical user interface descriptions that are loosly coupled to the rest of the applica-
tion to o�er better modularity and adaptation of the user interface to new platforms.
Nowadays a technological focus on web-based user interfaces can be observed that are
targeted to extensions by various technologies like Javascript, DHTML, Java or Ajax.
As these technologies are available for all modern web browsers they o�er new challanges
for model-based user interface generation.
Research on speech-driven user interfaces is often done in delimited research com-

munities. UsiXML o�ers a set of auditory interaction objects on the concrete (modal-
dependent) user interface abstaction level [Limbourg, 2004]. Audio containers represent
a logical grouping of other containers or auditory interaction objects (AIO). AIO's in-

124



6 The MASP Abstract Interaction Description Language

clude auditory outputs like music, voice or simple earcon or auditory input, which is a
timeslot for the user to speak something that is recorded and recognized by the interac-
tive system. Despite the fact that UsiXML o�ers support for voice-based user interfaces,
actual tools that are based on UsiXML focus on prototyping or reverse engineering of
graphical user interfaces.
First versions of UIML concentrated on a device-independent user interface de-

scription of graphical user interfaces. Targets included the user interface gener-
ation for WML, HTML and Java platforms through o�ering di�erent vocabular-
ies. Actual approaches like DISL [Schaefer et al., 2004, Schaefer and Bleul, 2006] or
[Plomp and Mayora-Ibarra, 2002] re�ne the vocabulary de�nition to support a generic
vocabulary consisting of device and modality independent widgets that can be rendered
directly on the target device. TERESA [Mori et al., 2003] considers vocal platforms in
the task modeling phase and o�ers transformations from a a logical interface composed
of interactors for output, interaction and composition to vocal platforms.

6.1.2 Language Shortcomings

6.1.2.1 Lack of generally accepted language

The wide range of di�erent user interface description languages and the absence of a gen-
eral agreement about the ingredients of such a language exampli�es the range of di�erent
aspects that need to be considered when desiging a user interface language. Recently
UsiXML gets a lot of attention in the research community as it contains several models
useful for user interface generation discussed so far. And as it is up to now the only
comprehensive language speci�cation that is publicly available, it has all prequisites to
be promoted as a future standardized language. Unlike UIML, UsiXML is more compre-
hensive by considering the context-of-use and explicitly modeling transformations and
mappings. The approaches to combine a language with a basic understanding of the
structure of an interactive system, proposed by the cameleon unifying reference frame-
work [Calvary et al., 2003, Calvary et al., 2002] might be a good starting point to guide
the ongoing discussion towards a generally agreed language and model of an interactive
system. Unlike XIML and UIML, which have an industrial background, the UsiXML
speci�cation is orginated in the research community.

6.1.2.2 Missing extension mechanisms

Another aspect that restricts the progress in �nding an agreement about a user interface
description language is the absence of clearly de�ned extension points to enhance a UIDL
to consider new technologies, new possibilities and new usage scenarios. Whereas in the
software engineering discipline the UML language gained a lot of attention and is widely
accepted in recent years one reason for the continous evolvement of the notation to new
technologies and requirements can be found in the detailed description of a comprehensive
extension mechanism through a meta-model speci�cation. UsiXML actually misses such
a cleanly de�ned extension mechnism, that XIML in a rudimentary form provides through
specifying a minimalistic meta-model. UIML o�ers a vocabulary as it de�nes itself as
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a meta-language that can be enhanced to support new platforms by the de�nition of
additional vocabularies.
Without a well-de�ned extension mechanism that is consistent with the underlying

models and able to describe all prede�ned models, each language re�nement includes
extensive work in the tools that support the language.

6.1.3 Language Requirements

6.1.3.1 Comprehensive lifecycle support

As alreaded stated by Puerta et al. [Puerta, 2001] a user interface description language
must enable support functionality throughout the whole lifecycle of a user interface. This
includes the representation of language segments for each supported level of abstraction,
o�ering structured storage mechanisms [Puerta, 2001], supporting context models, en-
abling run-time adaptation and a templating mechanism to enable reusability. Beneath
supporting a set of models the language must be able to e�ectively relate the various
elements of various models by supporting mapping and transformation mechanisms like
proposed by UsiXML [Limbourg et al., 2004a, Limbourg, 2004].

6.1.3.2 Support for run-time execution

The language has to be able to express user interfaces at a given instant of usage so as
to capture relevant information to ensure run-time execution.

6.1.3.3 Adherence to standards

With respect to its compatibility with other systems the language has to consider the use
of an underlying technology that is compatible with an industry-based computing model.
This requirement is related to the connection to the functional back-end that consists
of connecting to various service-based technologies like web-services, messaging systems
or special protocols like Jini or Universal Plug and Play. Regarding the design and
development the language has to be �exible enough to enable the usage of already existing
tools for task analysis and modeling as well as prototyping and reverse engineering, but
must not impose any particular methodologies or tools on the design, operation, and
evaluation of user interfaces [Puerta, 2001].

6.1.3.4 Well-de�ned extension mechanisms

As technology continously evolves and enables new interaction mechnisms between the
human and the computer, a user interface description language has to o�er an extension
mechanism to bene�t from new developments. There are already �rst approaches in
recent UIDL's like UIML that o�ers the de�nition of vocabularies, or UsiXML that
o�ers model structures that can be extended via sub-typing and its modular ontological
framework. Unlike this approaches an explicity de�ned meta-model enables compatibility
with existing tools if they utilize the language meta-model.
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6.1.3.5 Consideration of semantic data

The emerging semantic web o�ers new opportunities to support the automated generation
of multi-platform user interfaces. Since data is described by various kinds of meta-data
and refers to ontologies like OWL or Ontoweb, reasoning mechanisms can be used to
bene�t from these sematic information. A UIDL can integrate semantic descriptions
to support the user interface rendering by resolving the internal types of relationships
between the data structures that have to be presented or manipulated by the user.

6.2 The MASP Abstract Interaction Description Language

During the design and development of the method and the associated MASP run-time
environment we experimented with several user interface description languages. Since it is
not our focus to reinvent another user interface description language, we are concentrating
on enhancing already existing ones and are only introducing new language models where
we missed aspects to complete the language support in order to cover all phases of the
method.
We start in the next section by discussing our task model in section 6.2.1, which we

identi�ed as the central aspect to realize a user-centered development process. Di�erent
to the other language models, a task model, and more speci�cally the ConcurTaskTree
(CTT) notation has gained a lot of attention in the research community. Whereas early
approaches focused on the task-based evaluation of interactive applications, more recent
research identi�ed the task model as the initial entry for a user-centric interactive ap-
plication design. Thus, we start the section with identifying actual shortcomings of the
CTT notation and continue the section with describing our language additions to realize
our requirements listed previously in subsection 6.1.3.
Thereafter in section 6.2.2, we introduce our model to contain the abstract interac-

tion object speci�cations, which is similar to the UsiXML AUI description, but tightly
related to the domain model and the task model from which we directly derive the ab-
stract interaction objects. Finally, we present a completely new model for specifying the
layout of a graphical user interface in section 6.2.3. Whereas our abstract user interface
model is speci�ed independently from a speci�c device and modality, the layout model
concentrates on deriving graphical user interfaces. Beneath these models further models
have been proposed supporting a detailed dialog [Dittmar and Forbrig, 2004], detailed
context-of-use [Demeure et al., 2006] adaptations or concrete user interface (UsiXML)
modeling, which is out of focus of this work. Compared to other UIDLs, all our models
are designed to be directly interpreted at run-time by our MASP environment to close
the gap between design and implementation of an interactive application.

6.2.1 Task Tree Model

The run-time interpretation of task models requires a task model notation that speci�es
the interactive system detailed enough to be executed without further information. Thus
it requires integrating static concepts with a temporal description. We found the CTT
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notation a good starting point as it allows a user-centric design enabling an abstract to
concrete modeling using task trees. The notation also allows focusing on the users' goals
by de�ning sequences of tasks using a LOTUS-based temporal speci�cation. However, for
directly interpreting CTT-based task trees at run-time for the creation of user interfaces,
we identi�ed several drawbacks of the notation:

� CTT abstracts from the functional core of the system, as for analyzing interactive
systems it is focused to the interaction with the user. Further on, the notation
does not provide methods to connect sensors and physical control of appliances
that should trigger or disable user interaction tasks. Therefore it is not possible to
model service backend calls continuously updating the domain model.

� CTT allows specifying objects that are required for task performance but does not
provide the possibility to explicitly model the object usage by including it into
its graphical notation. From a designer's perspective an explicitly modeled object
usage enables consistency and feasibility checks of the concept distribution.

� The notation is mainly targeted to model interactions that are independent from
any modality. Modeling modality speci�c interactions is limited to hide tasks for
devices with limited capabilities. Whereas CTT abstracts from how a tasks is per-
formed by a speci�c device, decision nodes [Clerckx et al., 2006a] can be used to
design device-speci�c task realizations. To our knowledge, modeling interactions
involving the simultaneous usage of more than one device using the task model is
not possible by using decision nodes, since decision nodes describe a choice and are
not addressing simultaneous usage of more than one modality. Further on inter-
dependencies between the used devices to implement complementary or redundant
relations [Nigay and Coutaz, 1997b] between the modalities cannot be addressed.

� The notation also lacks mechanisms to support the reuse of modeled concepts and
their provisioning as external trees, which prevents the designer from modularizing
interaction patterns for modalities or combinations of modalities.

With a focus on the usage of the de�ned task tree at run-time, we introduce several
changes to the CTT notation. First we describe the four di�erent types of tasks we
consider in the notation, after that we discuss the tasks properties that can be used
to further specify a task. Then we explain how we connect to the domain model by
annotating the concrete objects and their properties to each task that are relevant for the
task performance and �nally we introduce the temporal operations to specify temporal
relations between two tasks.

6.2.1.1 Task Types

Task modeling implements an abstract to concrete design approach. Thus, the designer
starts by identifying the overal goal of the user that should by supported by an interactive
system. This overall goal is both, complex as it involves several tasks to be reached, and
abstract as it needs further re�nement to be unambigiously speci�ed and detailed in order
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to serve as an interactive application design. Therefore the overall goal is considered as
an abstract task and describes the root node of a task tree that needs to be detailed
by specifying its children task nodes. Beneath an abstract task we distinguish two basic
tasks: application and interaction tasks. An application task is solely executed by the
system and does not require any user involvement and does not generate a presentation
to the user whereas interaction tasks depend on the user interacting with the system.
Compared to the CTT approach that allows application tasks to include a presentation
we explicitly separate the functional core from the presentation to the user as modeling
the information exchange with the backend system is crucial to be able to use the task
tree de�nition for the user interface creation at run-time. This enables a loose coupling
of the functional backend to the user interface and an easier inclusion and manipulation
of backend services.
Di�erent to CTT we distinguish two types of interaction tasks: output interaction tasks

(OIT) and input interaction tasks (IIT). While OITs require no human intervention but
present information to the user until they become disabled by another task, IITs require
human intervention like data input, control or selection. Table 6.1 lists the four di�erent
task types. Each task type is described by a symbol in the graphical notation of the task
tree.
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Abstract tasks specify complex activities that cannot be
unambiguously speci�ed.

An application task is completely executed by the computer
without any human intervention through it's internal

processing. An application task can generate or manipulate
domain objects through it's internal processing. The
application task is used to model service calls to the

functional core of the application or it can enable other
tasks if it is used to model sensor information.

Output Interaction tasks present information to the user.
This could be raw structured data like documents or tables

or multimedia output such as video or sound. Output
interaction tasks read the objects that are associated with
the task once if the are marked as synchronous or until

they get disabled by another application tasks or an input
interaction task if they are marked as asynchronous.

Input Interaction tasks describe tasks realizing some
interaction techniques to enable the user interacting with
the system. Interaction tasks include selecting objects,
editing data or enabling the user to control some actions
explicitly through events. If an input interaction task is
marked as synchronous it has to contain at least one

control object that the user can issue to proceed the task.

Table 6.1: Task categories of the AIDL task tree notation.

6.2.1.2 Task properties

Beneath the task type, a task can be further speci�ed by assigning several general prop-
erties to the task that are listed in table 6.2. Each of these properties can be speci�ed
for each task type: abstract, interaction in and out as well as application tasks.

130



6 The MASP Abstract Interaction Description Language

Iteration Iterated task. The task is continously reactivated after it
has been successfully performed. The iteration cycle can

only be stopped by a disabling task.

Identi�er Each task has an unique identi�er that should be speci�ed
in a human-readable format containing at least one verb

describing the main action of the task.

Description A detailed textual description of what the task is about.

Domain Objects To perform a task, information might be required that is
encapsulated into domain objects. Domain objects can be
accessed, modi�ed or created by a task. Only those domain
objects should be speci�ed (a) that contain the information
that are required for successfully performing the task and

written (b) that might be required by other tasks.

Connected tasks allow to connect tasks of di�erent trees
together. A task connection can only be speci�ed between
tasks that describe the same problem to solve and therefore
are named by the same identi�er. The task type of each
connected task can be considered as irrelevant for the

connection since it only speci�es who is in charge for the
tasks: solely the application or the user by interacting with

the system.

Asynchronous tasks are running as long as they get
explicitly disabled by another task. Until they are running
they have access to the domain objects that are associated

to the task.

Table 6.2: Task properties

Each task has to have an unique identi�er that unambiguously identi�es one way
of performing a task, which usally consists of at least one verb that gives an impression
about the main action that has to be executed to perform the task. A more comprehensive
textual descripion can be added as another task property, which is most important for
abstract tasks that have not been detailed any further. A tasks de�nes, reads, modi�es
or creates a set of domain objects containing the actual state of the task performance.
The information is required while performing the task as well as to describe the result
of the task's performance that might be relevant for subsequent tasks. The iteration
task property allows to specify continous reactivations of a single task respectively the
contained task sequence of all of its children tasks. We do not specify the concrete
number of iterations, because this depends on the user. To disable the iteration the user
has to explicitly perform another task that is connected by a disabling operator to the
iteration tasks on the same level of abstraction.
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For modeling parallel �ows of control we distinguish between connected and uncon-
nected tasks. A task connection allows to connect all tasks with the same identi�er to be
executed or presented to the user just as one task. As soon as a connected task has been
performed all connected tasks are marked as done as well. We use this way of synchroniz-
ing task performance within tasks of a single task tree to enable parallel lines of control,
between two or more trees that run in parallel to synchronize simultaneously running
applications, or to prototype new forms of interactions (see section 6.2.1.4). The task
synchronization does not behave like the principle of a semaphore that waits for all other
connected tasks with the same identi�er. Instead it works related to the actual state of
the application, which is basically compromised of all those tasks that are enabled at the
same time. Therefore only in the case that two or more tasks with the same identi�er
are part of the same state, then all of those tasks that have the connection property set
are combined into one task and performed together.
Usually the actions that a task comprises of are speci�ed to happen synchronously,

which means that a task's life cycle starts by collecting all the information required to
perform, then the task does some internal calculations (application task) or requires the
user to enter some information (input interaction task) and �nally returns the results
that might be relevant for the subsequent tasks or doesn't return any results if it gots
interrupted (by a disabling task). Asynchronous tasks behave di�erently since they do
not contain a de�ned point of return. There is no de�ned state for asynchronous tasks
that can be used to identify the task as successfully performed. Asynchronous application
tasks for instance can describe ongoing discovery mechanisms that are continously looking
for newly attached devices, or in case of an output interaction task continously update
their presentation to include new or updated information like for instance to display
continously updated charts. For input interaction tasks, the asynchronous property states
that for example each keystroke that is used to enter information in a form �eld is directly
send as an intermediate result to its associated domain objects and therefore can be
accessed by any other asynchronous task.

Input Interaction Task's properties Input Interaction Tasks (IIT) can be further de-
tailed by three di�erent properties which are listed in table 6.3. The edit property details
an IIT to be comprised of an editing action that enables the user to manipulate the ac-
cociated domain object information. Control IIT are awaiting a command from the user
to be successfully performed. Finally selection IITs require the user to select elements
of a list to be performed successully. In our understanding the selection contains a way
to con�rm the selection by the user at least when multiple selections can be stated and
does not require an additional control task to con�rm the selection.
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Edit Edit speci�es that the tasks consists of a set of elements
that the user has to manipulate, to enter and to con�rm to

accomplish the task.

Control A control task awaits a command from the user to succeed.

Selection A selection input interaction tasks requires the user to
select elements from a list of elements. We distinguish
between two di�erent types of selection: single-choice or

multi-choice. The former one requires the user to select one
of a set of elements to perform the tasks, whereas the latter
one requires selecting at least one element from a list and a

con�rmation of the user that the selection is �nished.

Table 6.3: Task properties that can be associated to a task tree.

Supported domain object properties For each domain object that has been associated
to a task the following properties that have been listed in table 6.4 can be speci�ed:

Identi�er An unique identi�er for an object, usually a noun, that
gives the designer a clue about what is stored within the

object.

Concept For each object a concept can be de�ned and further
detailed along with the abstractions o�ered by the task

tree.

Operation Four types of operations can be set for an object. Declare
(D) de�nes the scope for a new object that can be created

(C), modi�ed (M) or read (R) by a task.

Description A textual description of what the object is considered to
contain and what it is used for.

Iteration If a task is marked as iterative, one object, which contains
a list or set of objects can be marked as iterative. In this
case the tasks is iterated once for each object in the list.

Connected The object is synchronized with all other tasks that are
performing on the same object. If more than one tree is
processed by the user the objects with the same identi�er
in both trees are synchronized as long as their tasks are

enabled.

Query A query is used to identify the relevant information of a
domain object that are required for performing the task.

Table 6.4: Domain object properties that can be associated to a task tree.

For all objects at least the identi�er property has to be set in order that it can be
identi�ed unambigiously. Further on, for each object a concept like a type or a class
has to be set. Additional a textual description can be attached that describes what the
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domain object is targeted to contain. Similar to connected tasks, the connect property
of a domain object can be set to synchronizes it's contents to all objects with the same
object identi�er of the same or any other task tree that runs in parallel. In general all
domain objects that are associated to asynchronous tasks are set to connected objects
as default.
To detail domain objects of a task that is speci�ed as an iterative task, objects can be

set to be iterated together with the task's iteration. In this case the amount of iterations
is bound to the number of elements in the domain object. Usually only one object is set
to iteration but if more objects are set to be part of the iteration the number of iterations
depends on the number of elements in the domain object.

6.2.1.3 Annotating domain concepts and modeling the object �ow

Utilizing task trees as the work�ow de�nition of a user interface at run-time also requires a
stronger and more detailed connection of task and domain concepts. Such a connection on
the one hand allows the identi�cation of inaccurate domain abstractions not conforming
to the task abstraction as well as the review of the distribution of concepts over the whole
task tree and on the other hand provides the basis to derive meaningful user interfaces
based on the task tree de�nition. While CTT already allows the annotation of objects
and the marking of an LOTUS operator as 'information passing' [Mori et al., 2004], this
approach is limited to the object synchronization between two tasks. Complex systems
require modeling of the object �ow throughout the complete task tree, which considers
the object synchronization between all tasks that are enabled and are using the same
domain concepts. Following the approach of [Klug and Kangasharju, 2005] we annotate
the required objects as well as the access type directly to each task of the task tree
allowing a �ne grained modeling of the object �ow.
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Figure 6.1: Abridged task tree of the SHEA application.
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An abridged version of the task model of an application to support measuring the
energy consumption (SHEA) is depicted in �gure 6.1. The application discovers all
appliances, which we have installed in an environment and presents an overview of all
appliances to the user. By selecting an appliance the user can control and inspect past
energy consumptions as well as extrapolations of future consumptions by issuing voice
commands or using a wall-mounted touch display. Like depicted in �gure 6.1, the access
type is limited to read (R), modify (M) or create (C) operations. By specifying the
declaration (D) of each object before the �rst usage we support the de�nition of a scope for
each object. Similar to a programming language, each object has to be declared before it
can be created and created before it can be modi�ed or read. Under each task's name, we
annotate the domain object type in square brackets (by referencing a class name) together
with the domain object name, whose attributes can be accessed by using a dot followed
by the attribute name. During interpretation of the task tree at run-time the domain
object annotations are used to synchronize the enabled tasks objects, which are actually
performing. Thus, if one task modi�es a domain object and another task that is enabled
concurrently has read access to the same domain object, the task receives the object's
modi�cations instantly. Further on, the declaration of objects enables the run-time
environment to keep track of objects and to remove objects that are no longer required as
the user continues the interaction. Inaccurate domain abstractions that do not conform
to the task abstraction can by identi�ed easily by checking the cluttering and granularity
of the object annotations. Furthermore basic automatic consistency checks (i.e. create
before modify and read) across multiple subtasks are possible, because declarations as
well as all de�ned operations are also summarized by the next higher level of abstraction
in the task tree. The designer can further partition and detail domain concepts in sub-
trees together with the tasks performing on the concepts. This ensures that the resulting
interactive application is not switching between several concepts too often, which make
the application complicated to use, since it raises the cognitive workload of the user.
If the same concepts are spread over the whole tree re-modeling the task tree should
be considered, regarding two aspects. On the one hand the conceptual abstractions
should be reviewed and it should be checked, whether these concepts can be detailed
conforming to the associated task abstractions. On the other hand the domain object
distribution should be solved by moving tasks that are performing on the same domain
objects together into the same sub-tree.

6.2.1.4 Interconnecting Task Trees at run-time

To support the �exible addition of new modalities at run-time, we allow tree concate-
nation by using abstract tasks as leaf nodes of a task tree. During interpretation of the
tree, the referenced node is added at the location of the original abstract task.
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Figure 6.2: A modality speci�c task tree that describes a remote control.
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Figure 6.2 depicts a modality speci�c task tree we have prototyped for the SHEA
application that describes a remote control that is aware of the direction it points to
and is able to detect gestures that are interpreted as appliance control commands. The
remote requires the user to point to an appliance �rst, and then waits for the user to
press the remote's button, which starts the gesture detection and initiates a command
for the selected appliance that is issued after the button has been released by the user.
The modality-speci�c tree can be interconnected by the designer with the application

tree using two synchronization methods: On the one hand domain objects of the applica-
tion task tree can be synchronized with the modality speci�c task tree. This is speci�ed
by annotating the same domain objects names to the modality speci�c task tree. For
the task tree describing the remote control the object that the remote is pointing to
(see �gure 6.2: focusedAppliance) gets synchronized with a presentation of the focus in
the SHEA task tree (the selectAppliance task of �gure 6.1). Further on, all discovered
appliances (stored by the appliances domain object) as well as the actual selected ap-
pliance (selectedAppliance object) get synchronized between the remote and the SHEA
application.
On the other hand tasks of the modality-speci�c tree can be connected to tasks of

the application task tree. In our example we use task synchronization when the user
has to choose the application she wants to control (in the selectAppliance task). Since
both trees are started simultaneously the �rst task that the user is required to perform
in the SHEA application is to select an appliance to monitor its energy consumption
history. Following the design of the application task tree this has to be done by choosing
one appliance of a list of appliances. Using the remote the user just needs to point to
the appliance (handleCompass) and press the remote's button to select it to perform
the selectAppliance task. We interconnect both selectAppliance tasks using a directional
connection, which is only enabled if the connected application task tree's task is enabled
and does not require changes to the application task tree. The remote can be used
independently but if both trees are in the same state, requiring the user to select an
appliance both selectAppliance tasks can be either performed by using the remote or the
touch display originally supported by the application task tree.
In our current implementation we have implemented support for interconnecting IIT

and support every temporal operator of the CTT notation for interconnected tasks.
Interconnecting application tasks is supported as well (see controlAppliance task in both
�gures) but only describes that a call to the functional core has to be done once only.
The modality-speci�c tree should follow the basic interaction �ow of the application task
tree since this eases the complete integration of the prototyped interaction with the new
modality into the application later on. Following a prototyping approach, not the whole
application is required to be supported by the modality-speci�c task tree. Thus, in the
beginning only parts can be covered by the new modality and can be continuously evolved
during the prototyping process.
The order of all interconnected tasks must remain the same for both, the application

task tree and the modality-speci�c task tree. In our actual implementation the remote of
�gure 6.2 cannot be designed to support initiating the control command before selecting
an appliance, since this will break the design of the SHEA application. But requiring

138



6 The MASP Abstract Interaction Description Language

the same �xed sequence of interconnected tasks for all modality-speci�c trees has the
bene�t, that the modality speci�c task tree can be merged with the application task tree
after the prototyping process has been �nished.

6.2.2 Abstract User Interface Model

A domain model is often mentioned as a basic model for a model-based approach
[Limbourg and Vanderdonckt, 2004a, Puerta, 1997, Calvary et al., 2003] on the concep-
tual level. Since the domain model is developed by software engineers and given �as-is�
[Limbourg, 2004], most model-based user interface development approaches are not fo-
cusing on the characteristics of a domain model explicitly but concentrate on the mapping
of a domain model to the other models like for instance done by [Pribeanu, 2002]. Fol-
lowing such an approach requires to de�ne a concrete conceptual model for the domain
model for which the mappings can be explicitly de�ned, such like UML diagramms or Ex-
tended Entity Relationship Models [Teorey et al., 1986] as done for instance in UsiXML
[Limbourg et al., 2004b].

Figure 6.3: The abstract user interface model is realized as a �ltering view over the
domain model. In the task model application tasks refer to application objects
(AOs) of the domain model and interaction tasks link to abstract interaction
objects (AIOs).

We follow a di�erent approach that does not de�ne mappings between concrete at-
tributes of the conceptual domain model, but between application objects (AOs) of a
domain models like illustrated in �gure 6.3. We understand an AO as a discrete object
that can be of any complexitiy and can be associated via various relationships to other
AOs. Di�erent technologies and languages can be utilized for the realization of the do-
main model. Only application tasks of the task model can be linked to the entities of the
domain model, whereas interaction tasks can only be connected to abstract interaction
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objects (AIOs). AIOs map one or more AOs similar to a �ltering view, which is gained
by applying the selection activity (and are enriched later on).
We use ontologies to describe the domain model mainly because of three reasons:

1. An ontology can be understood as a general description of concepts and relation-
ships of a data model and are well suited as a basis for knowledge representation
as they usally are able to describe individuals, classes attributes and relations in
one language.

2. Common ontology languages are declarative and every concept or relationship is
explicitly stated. This makes an implementation of a domain model that is based
on ontologies easy to realize, as there is no e�ort required to extract the concepts
and relationships from a source code, which might be required if we choose a
programming language.

3. Most ontology languages are very expressive compared to other data models like
database structures or static models described by object-oriented proramming lan-
guages, since they do not limit or restrict for instance relationships like done in some
programming languages for instance regarding support for multiple-inheritance re-
lationships.

Beneath using ontologies other technologies can be used for a domain model. For instance
in the cooking assistant case-study that we present in chapter 7, we use Universal Plug
and Play pro�les as part of the domain model for controling home appliances.
As illustrated by �gure 4.10 depicting the abstract user interface derivation process,

the �rst step to derive the abstract interaction objects from the application objects is
to apply the selection activity to mark relevant classes and attributes of the application
objects. For doing this, we use a �lter de�nition that can be applied simmilar to a
template mask, separating the data structures relevant for interaction from the rest of
the data structures of the domain model.

Structure Application Object Basic Interaction Object

Internal Inheritance Attribute with namespace
Frame with namespace
List with namespace

Composition Frame, list
Attribute

external Association List
Aggregation Frame, list

Table 6.5: The table lists mappings between concepts of application objects and interac-
tion objects.

We distinguish between two types of structural mappings. External mappings consider
the relationships between objects, whereas internal mappings focus on the mapping of
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concepts that are internal to an object. As we realize the selection activity by applying
statements describing how to extract the relevant data from the application objects, the
basic statements for interaction object derivation are listed in table 6.5. We propose
three general types of selection statements: The attribute statement selects a primitive
of an entity, the frame statement is used to select a complex entity containing internal
relations and attributes, and the list statement is used to select sets and lists of primitive
or complex entities.
Depending on the types of relations and what types of entities are related, we choose

the selection statements:

Composition describes a containment releationship, where an application object con-
tains one or more other application objects. For the composition of primitive
elements, the attribute statement, for composed collections the list statement, and
for complex elements the frame statement is used.

Inheritance describes a relationship where one or more application objects are detailed
and re�ned by another application object type. Thus, the inherited object contains
the information of its parental application objects as well as additional ones. The
inherited information can be selected by adding a namespace de�nition to the
selection statement. A namespace can be attached to an attribute to refer to a
primitive of a parental entity.

Aggregation describes a weak part-of relationship between entities. The entitiy that
aggregates the other entities usually contains more complex functionalities that it
delegates to the aggregated entities. Thus the aggregation has to be mapped using
an external mapping, since the aggregating entity does not have direct access to
the aggregated entities but delegates operations.

Association Di�erent to UML that de�nes an composition and aggregation as specialized
variants of an association, we address the association separately by considering all
associations between entities that are not describing a composition or an aggrega-
tion relationship. In this reduced category of associations all structural mappings
to be de�ned are external, which means that they are speci�ed about a relation-
ship that relates two or more entities without having explicit access to the related
entities internals.
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Figure 6.4: The XML Schema de�nition of the abstract user interface model.
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Figure 6.4 presents a compressed view of all relevant elements and attributes of our
abstract user interface model.
In the following, a small example is discussed to demonstrate the derivation process

and to introduce our notation to select relevant AO information and enrich the basic
AIOs with further information.

6.2.2.1 Selection of Basic AIOs

Figure 6.5: UML class diagramm of an example application object structure (left). The
basic task tree for the project browser interactive system that consists of an
application task that sends application objects to an interactive task (right).

Figure 6.5 depicts an examplary application object structure that should be mapped to
a set of interaction objects. For this example we only consider a very basic task tree,
describing an interactive system that enables to browse all project managers, their co-
workers with names and positions and the projecs the project manager has started so far.
During the analysis phase we have identi�ed the application objects Project Manager,
Co-Worker and Project as relevant for the presentation in the user interface. After that
we found an already existing service in the task modeling step of the design phase that is
able to provide the required application objects in form of a data structure like depicted
in �gure 6.5. We decide to reuse the service and integrate it in our interactive system
using an application task. The downside of reusing the service is that it is implemented
to return just a set of Project Managers. Every information about the Projects of the
ProjectManager has been considered as a composition that is private to the Project
Manager and the relationship to his Co-Workers has been implemented using a reference.
Therefore we speci�y the collectProjectManagers tasks to produce one output application
object �ProjectManager�, which is a set of objects from the type ProjectManager. The
interaction task browseProjectInformation is set to receive the set of ProjectManager as
an input application object.
Now the ProjectManager objects application objects are used to derive suitable inter-

action objects for the user interface of the interactive task. We start by selecting the
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relevant attributes that are required to be presented in the user interface. The selection
process works by constructing a �lter that hides every information not relevant from the
original application object but preseveres the original structural relationships.

Listing 4 Selecting objects using our abstract interaction language.
1 <list name="project_manager_ao">
2 <frame type="Project:DAI_1.ProjectManager" name="project_manager_ao">
3 <attribute select="leads"/>
4 <attribute select="Project:DAI_1.Person.family"/>
5 <attribute select="Project:DAI_1.Person.given"/>
6 <list select="projects">
7 <frame type="Project:DAI_1.Project=" name="projects">
8 <attribute select="name"></frame>
9 </list>

10 <list select="coworkers">
11 <frame type="Projects:DAI_1.Co-Worker" name="coworkers">
12 <attribute select="family"/>
13 <attribute select="position"/>
14 </frame>
15 <list>
16 </frame></list>

Listing 4 shows an exemplary de�nition of a selection �lter suitable for marking the
relevant attributes that should be considered for the presentation of the user interface
for the BrowseProjectInformation interaction task. We use the frame language element
to select the objects associated by aggregation and composition relationships. The �at-
tribute� element is used to select attributes that are contained in an application object.
The list element is able to iterate through attributes or objects consisting of a set or a
list structure. Like shown in the examplary source code fragment of the �lter de�nition
the original basic structure of the abstract interaction object is preserved since attributes
and lists can only be selected in their corresponding frames and the frame nesting re�ects
the original aggregation and composition releationships of the original application object.

6.2.2.2 Enrichment of Basic AIOs

After all attributes have been selected, the �lter de�nition can be re-structured within
the limits de�ned by the frame statements for instance by changing the attribute order.
Additional containers can be used in order to sub-group complex frame statements or
merge various frames that are speci�ed on the same level. Listing 5 presents the �nal
abstract user interface source code after the restructuring and enrichment steps.
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Listing 5 Structured and enriched abstract user interface.
1 <list name="project_manager_ao">
2 <frame type="Project:DAI_1.ProjectManager" name="project_manager_ao">
3 <container name="manager">
4 <label lang="en">Project Manager:
5 <attribute select="Project:DAI_1.Person.given" replace="true"/>
6 <attribute select="Project:DAI_1.Person.family" replace="true"/>
7 </label>
8 </container>
9 <container name="projects">

10 <label lang="en">Manages the following projects:
11 <attribute select="leads"/>
12 <list select="projects" replace="true">
13 <frame type="Project:DAI_1.Project=" name="projects">
14 <attribute select="name" replace="true"></frame>
15 </list>
16 </label>
17 </container>
18 <container name="team">
19 <label lang="en">The team of the Project Manager:
20 <list select="coworkers" replace="true">
21 <frame type="Projects:DAI_1.Co-Worker" name="coworkers">
22 <label>Name:<attribute select="family" replace="true"/></label>
23 <label>Position:<attribute select="position" replace="true"/></label>
24 </frame>
25 <list>
26 </label>
27 <container>
28 </frame></list>

Beneath attribute re-ordering, two new languages elements have been utilized. The
�ltered attributes have been structured in greater detail using a container statement. Us-
ing this statement, the data has been segmented into three groups: �manager�, �projects�
and �team�. Each group combines all attribute and frames that should be considered as
strongly connected together and should not be presented separately to the user. Di�er-
ent to container statement the label element groups and links contextual information to
attributes, frames or a set of frames and attributes in order to support the user in un-
derstanding the presented information. Everytime attributes or frames will be presented
to the user, all enclosing contextual information that are expressed by label statements
are considered.

6.2.3 Layout Model

A basic source of information for layout constraint generation is the task model since its
structure allows deriving containers consisting of tasks that can be performed in parallel
- a presentation task set (PTS), which is derived based on temporal relationships of the
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tasks that are simultaneously enabled.

Figure 6.6: The recipe �nder part of our cooking assistant.

Figure 6.6 illustrates one part of a cooking assistant, the recipe �nder, which describes
how the user can search for recipes and calculate the required amounts of ingredients for
a given number of persons afterwards. De�nition (1) speci�es one possible PTS of the
cooking assistant task tree:

(1) PTSRecipeFinder = (listRecipes, selectCuisine, selectDishType, se-
lectCalories, selectRecipe, Restart)

We use the task hierarchy to derive the container's nesting structure by iterating through
the levels of the tree and generating constraints, which specify a container for each non-
atomic task to contain all its children by the function:

(2) Containment = iterateTaskTree (TaskModelCook, PTSRecipeFinder)

A function to generate an initial sizing of the containers and their corresponding elements
is:

(3) Size = weightByAtomicTaskNodes (TaskModelCook, PT-
SRecipeFinder, priority);
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This function iterates along the abstraction levels of the task tree, counts for each abstrac-
tion level the amount of atomic tasks that are part of the PTS and divides this amount
from the total amount of tasks in the PTS. This way it calculates the weight for each
container and element. Like illustrated in �gure 6.6, CookingApplication task contains
�ve atomic tasks that are in the PTS, of which four are children of RecipeList and the
remaining one is selectRecipe. Thus the container size is calculated as 4/5 for RecipeList
and 1/5 for the selectRecipe task. Whereas functions (2) and (3) describe exemplary
general model-based layout derivations, we generate constraints for the orientation of
the elements based on context-of-use by:

(4) Orientation = alternateOrientation (TaskModelCook, PT-
SRecipeFinder, Platform Model:AspectRatio)

Function (4) reads the actual PTS from the task model and switches the orientation of
the elements by toggling horizontal to vertical and vice-versa, for each abstraction level
of the task tree. While changing the orientation for each container produces elements
with a balanced width to height relation, function (4) additionally considers the platform
model and sets as much tasks horizontal or vertical during alternating the orientation
to optimize the layout for a speci�c aspect ratio at run-time. As for the recipe �nder
an optimization for vertical orientation (to optimize for a 4:3 screen aspect ratio) results
in layouting CookingApplication over Restart (vertically oriented) and RecipeList left
of selectRecipe within the CookingApplication container. While functions like (2)-(4)
can be used to generate an initial layout setup that is consistent to the design models
or can be used as fallback to layout user interface distributions that have not been
speci�cally addressed during design-time, a model-based layout generation can only o�er
an interpretation of these models. Thus, we implemented a layouting model generator
that a designer can use on the one hand to simulate the �nal user interface layout and
possible context-of-use scenarios and on the other hand to select and manipulate suitable
constraint generation functions that should be part of the application layout model.
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The design of the method, the MASP architecture, and the language additions that
we have presented in the last chapters have been conducted as part of several research
projects. All research projects involved industrial partners and have been partly or
completely sponsored by industry and the German government. We started the initial
reseach during the design of the JIAC IV software agent environment. JIAC IV in-
cludes a method to design software agent systems but missed a sound approach to design
interactive applications. We presented the initial concept for enabling access to agent-
based services in [Boese and Feuerstack, 2003] and implemented a �rst prototype that
was named the Multi-Access Point as part of the JIAC IV project, which was sponsored
by the Deutsche Telekom. Based on the initial prototype two research projects, the
BerlinTainment [Rieger et al., 2005] project, which was sponsored by the German fed-
eral ministry of research and education and the Personal Information Assistant that was
initially sponsored by the Deutsche Telekom utilized the MASP to implement graphical
user interfaces. In both projects services were o�ered to be run on a desktop PC as well
as on several mobile devices. Further on, we conducted early experiments to generate
speech-based interfaces, which have been developed as part of the BerlinTainment and
its followup project, the Smart Entertainment Assistant. Most of the feedback we re-
ceived from these projects was about the complexity of developing multi-platform user
interfaces, which forced us to further develop the method to systematically design and
implement user interfaces based on a model-driven approach.
During the Seamless Home Services project [Feuerstack et al., 2006], sponsored by the

Deutsche Telekom, we created several interactive applications that can all be accessed
via voice and graphical user interfaces. By following the MASP method a personal video
recorder (PVR), a personal newsletter service, and a home automation system have been
successfuly realized. As part of the Seamless Home Project we extended the MASP
Builder tool and improved the models of the MASP to better support the generation of
multi-platform user interfaces.
As the space is limited for describing all these projects, we will instead describe in

the following sections one complete application of the MASP methodology in greater
detail. We apply our method to develop a cooking assistant service, an application that
has been developed as part of the Service-Centric Home (SerCHo) project. SerCHo is a
research project that has been sponsored by the German federal ministry of economics
and technology. The SerCHo consortium involved seven partners from the industry
working together with the Technische Universität Berlin.
The initial idea of the cooking assistant service is to motivate consumers watching

cooking shows on television to learn and improve their cooking skills based on following
the recipes and advices they have watched in the cooking show. As the cooking assistant
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is targeted to support the users during cooking, it was important that it can be controlled
intuitively using voice and several graphical displays.
In the following sections we will run trough all the steps of the MASP methodology

that have been described in chapter 4. Our method starts with writing textual scenarios
compromising the inital input for the method (section 7.1). Thereafter, we are extracting
relevant tasks and concepts from the scenarios in the analysis phase in section 7.2. In the
next section 7.3 we describe the design phase by modeling the designated task �ow of the
cooking assistant with the help of the MASP Task Tree editor and simulate the cooking
assistant usage through our Task Simulator to test if the modeled task �ow meets the
user demands and check if all scenarios have been su�ciently considered. In section 7.4
we model the domain objects that have been identi�ed during the analysis phase using
the JIAC ontology editor and generate some exemplary objects like for instance recipes
to check if all required data can be captured by the domain model using the fact editor of
Protégé. Domain objects are derived into abstract interaction objects to be represented
or manipulated by the user interface in the abstract user interface design in section 7.5.
A tool, the MASP Builder supports the designer in selecting the relevant objects as well
as arranging and enriching the abstract interaction objects. Section 7.6 describes how
we derive the layout model for the cooking assistant based on the other design models
to adapt the assistant to several di�erent display sizes allowing to access it from any
computer and touch display in the apartment. In section 7.7 we describe the derivation
process of user interfaces for various platforms like web browsers or voice browsers by
using a multi-level transformation process to derive the concrete user interface. Finally,
we describe how we can connect the user interface to the environment, using the service
model in section 7.8, deploy the models into Model-Agents in section 7.9 and conclude
by summarizing the results and lessons that we learned by the case study in section 7.10.
During the description of the development process of the cooking assistant we refer to
screenshots and small source code excerpts to explain the details. Further information is
collected in the annex chapter where we collected all the screenshots of the main screens
of the cooking assistant. Further on the complete task model is attached to get an
impression about the whole cooking assistant application.

7.1 Analysis Phase: Writing scenarios

We start the development process by collecting and writing scenarios describing the basic
features of our cooking assistant. The cooking assistant includes a recipe �nder to search
for recipes based on various querying options. Further on, a cooking aid that guides the
user through the cooking steps, advises him about the required amounts of ingredients,
gives context sensitive cooking hints in form of video presentations, and allows controlling
the kitchen appliances to ease the cooking process.

The cooking scenario
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Actor: Ann

Start state: Ann in living room.

De�ning goal: Cook a recipe that has been watched in a television show.

Ann likes to watch her favorite cooking show in television and often thought about
preparing one of the meals on her own. Until now she always is discouraged by the
complexity of the recipes. Further on it often happens that Ann forgets during shopping
about some of the recipe ingredients and the required amounts. But now she has installed
the Multi Access Service Platform, which she has connected to her home infrastructure
and her television. On the platform she has installed the cooking assistant that is acces-
sible via a wall-mounted touch screen in her kitchen, on a television, her cell phone and
can be controlled via voice as well.
When Ann presses the �red button� of her remote, she can directly switch to her

cooking assistant and gets presented an overview allowing her to choose between cooking
support for the recipe that she has just seen on television, a daily recommended healthy
meal or to search for a recipe on her own.
Ann selects to search for a recipe on her own. She can browse through her personal

recipe database and �lter the recipes by three main criteria: First, the dish type sup-
porting to choose between main dish, dessert, starter, and a snack. Second, she can
select between four di�erent nationalities: German, Indian, Chinese and Italian food
and �nally, she can search for diet, healthy and normal meals. Ann searches for a normal
German main dish and decides for �lamp chops�, which she likes most from the resulting
list of recommendations.
After Ann has decided for the �lamp chops� to cook, her cooking assistant asks her

for the number of persons she wants to cook for and calculates the required amounts
of ingredients. Ann selects to cook for three persons and answers the question of the
cooking assistant if she wants to generate a shopping list with �yes�.
Now the cooking assistant goes through the lists of required ingredients and asks Ann

for each ingredient if she has enough of it available in her kitchen. Ann is not sure if she
has everything available, so she leaves the living room and goes into the kitchen. The
cooking assistant notices the room change of Ann and adapts the user interface to the
kitchen's touch screen.
Ann goes around in the kitchen and looks for each ingredient. For ingredients that she

has available she just answers �is available� whereas for ingredients Annd needs to buy,
she just answers �not available� or �only half a liter available�.
From Ann's answers that she can give via voice prompts or by using the touch screen,

the cooking assistant generates a shopping list and o�ers Ann to sent the list to her cell
phone. On Ann's command the cooking assistant distributes the shopping list to her cell
phone, on which the migrated user interface part still remains interactive and allows Ann
to mark each ingredient as available as soon as she bought it at the local mall.
Ann has only a few experiences in cooking meals but she owns a well equipped kitchen,

which includes an oven, a chimney and a stove. Every kitchen appliance can be controlled
via IP, but she often fails to get advantage of this equipment as she doesn't like spending
her time reading huge and complex manuals just before preparing a meal.
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After Ann arrives back from shopping she continues to use the cooking assistant that
now presents the expected preparation time and the cooking advices in a step-by-step
format. Each step includes a detailed description, links to the relevant part of the cooking
show video and enables a one-click control and the automatic programming of the relevant
cooking appliances. For her convenience the cooking assistant further highlights the
ingredients to ensure that she does not miss one. If Ann is unsure if she has �nished
all required actions to succeed a step, she can ask for the ingredients by speaking �list
ingredients�, the required ingredients amounts by �amount of lamp chops�, ask the cook
to re-read the detailed step description again by �read description�, or let the cook play
the relevant part of the cooking show by asking the cooking assistant for help by �play
video�.

7.2 Analysis Phase: Identifying tasks and concepts

For each scenario we used the informal-to-formal task analysis approach to identify the
relevant tasks and objects. For the main scenario that has been described in the last
section we identi�ed the following user tasks and objects that are listed in listing 6 and
have been highlighted in the scenario description.

Listing 6 Identi�ed tasks for the cooking assistant.

Watching television show
Shopping recipe amounts of ingredients
Controlling kitchen appliances (oven, stove and chimney)
Browsing recipes
Searching for nationality, dish type, and amount of calories
Writing down required ingredients
Recalculating amounts of ingredients for number of persons
Checking for missing ingredients
Stroking out available ingredients
Cooking step-by-step
Highlighting ingredient amounts for each step

Using the Eliciting tasks tool [Paternò and Mancini, 1999] we can now identify the
cooking assistance process structure by ordering the tasks by the time they usually occur
and grouping tasks that belong together or can be done alternatively or in parallel:
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Listing 7 Grouped Tasks.

Television
Watching television show
Recipe Finder
Searching for recipes with the following criterias: nationality, dish type, and amount of
calories
Browsing recipes
Shopping List
Writing down required ingredients
Recalculating amounts of ingredients for number of persons
Checking for missing ingredients
Stroking out available ingredients
Shopping recipe amounts of ingredients
Cooking Aid
Cooking step-by-step
Controlling kitchen appliances (oven, stove and chimney)
Highlighting ingredient amounts for each step

Further on, we collect all relevant domain objects:

Object Property

Recipe Ingredients and amounts

Nationality

Dish Type

Calories

Number of persons

Steps Required ingredients + amounts

Recipe Database Recipes

Search criteria Nationalities

Dish types

Number of calories

Appliances Oven

Chimney

Stove

Shopping list Required ingredients and amounts

Available ingredients and amounts

Table 7.1: Relevant Domain Objects.

Now we combine the tasks (each tasks has to have a unique name) with the identi�ed
objects (each object has to have a unique name). All tasks must also include at least one
object to perform and one object can be utilized by several tasks.
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Figure 7.1: Screenshot of the eliciting task tool during the analysis phase.

Figure 7.1 presents a screenshot of the Eliciting tasks tool [Paternò and Mancini, 1999]
that has been used to identify the basic tasks and objects during the task analysis phase.
The tool requires loading textual scenario descriptions, which it show on the left side
of the tool in �gure 7.1. Tasks, roles, and objects can be extracted from the scenario
descriptions by marking the relevant words of the textual description and pressing the
proper �add� button to store the marked text in a list of roles, tasks or objects. Tasks,
objects and roles can be renamed to re�ect shorter names. To link a task to a role or
an object to a task, the corresponding role or tasks has to be selected before the marked
text can be added. In �gure 7.1 such a link is depicted where the role �Ann� has to
perform the �selectRecipeProvider� task, which requires the �recipe� object to perform
successfully.
After all relevant tasks, objects and roles have been identi�ed all scenarios are re-

checked during the testing step of the tasks analysis. Therefore each scenario is read
again and the tasks list is checked for completeness. Typically those objects that have
been identi�ed and linked to tasks in the end of the �rst iteration need a second iteration
to be considered for the tasks that already have been identi�ed in the beginning of the
analysis as well.
The analysis phase ends up with a set of roles, each performing a set of tasks where

each task requires to read or to manipulate one or several objects. With this information
we switch to the design phase. Di�erent to the results of the analysis phase, the results
of each step in the design phase can be directly interpreted in our run-time environment
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to be tested, and forms one aspect of the �nal interactive system that is realized by a
certain Model-Agent.

7.3 Design Phase: Modeling the task tree

We continue modeling the task tree by using our MASP Task Tree Editor (MTTE). Figure
7.2 shows a screenshot of the MTTE tool, which presents parts of the cook application's
task model. The MTTE supports all three basic steps of the task design phase: (1)
task and object re�nement, (2) identi�cation of temporal relationships, and (3) object
re�nement and speci�cation.

Figure 7.2: The MASP Task Tree Editor during the design of the recipe search process.

For task and object re�nement (1), the MTTE is able to load the results of the analysis
phase, which includes all tasks and their corresponding objects that have been identi�ed
so far. The MTTE presents all tasks using symbols specifying the tasks' types and
annotates the corresponding objects' names directly under the task's name. By following
the task design using the MTTE tool all tasks have to form a strict hierarchy, which
requires modeling parent tasks describing more abstract tasks as well as detailing tasks
that are too abstract to be directly executed within the application. In �gure 7.2 such a
task hierarchy is depicted: cloud symbols are used to specify abstract tasks that require
a more detailed speci�cation on a lower level of abstraction. This can be modeled by
using the toolbar that is presented at the right of �gure 7.2, allowing the designer to
model abstract, application, interaction in, and interaction out tasks.
Temporal relationships (2) need to be de�ned for all tasks that share the same level of

abstraction as well as the same parent task. Like depicted in �gure 7.2 the MTTE sup-
ports modeling the �enabling�, �disabling�, �concurrent�, �choice�, �order independence�,
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and �suspend� relationships. By using the temporal relationships, basic task sequences
are de�ned that describe how the overall goal can be reached. Thus, for the RecipeFinder
part of the task tree depicted in �gure 7.2, the task sequence requires the user to enter
the search criteria �rst and then allows him to initiate the search, which results in a list
of recipes that the cook presents to the user. Finally the RecipeFinder part of the task
model is successfully performed as soon as the user decides for one recipe to cook.

Figure 7.3: The screen for the object re�nement in the MASP Task Tree Editor.

The objects that are required for performing the tasks (3) are re�ned corresponding to
the task re�nement. This is done on the one hand by following a top-bottom approach and
by continuously detailing the objects and their attributes. For instance the �recipeFilter�
object is de�ned locally for the �setSearchCriterias� task.
On the other hand by traversing bottom-up we ensure that all objects that are required

by two tasks are referred by all parental tasks until a task abstraction level is reached
where both tasks referring the same objects share the same parental tasks relationship.
This top-most task then de�nes the scope of the object. For example in the RecipeFinder
task tree the �foundRecipes� object is referred by several tasks requiring a global de�-
nition of the task object on the highest level of abstraction � the �RecipeFinder� task.
During the object re�nement all referred objects require an operation type, which can
be set to �read�, �modify�, �create�, and �de�ne�, as well as an object type, which is
annotated for each object by using the square brackets.
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Testing the task model

During the design of the task model, automatic model checking and interactive task
simulation can be done to improve and evaluate the task model status. The former one
is applied to reveal inconsistencies of the annotated domain objects' access operations
and helps to identify re-usable domain objects. The latter allows simulating all of the
task �ows that have been speci�ed so far and enables to check whether all task processes
are designed consistent to the textual scenario descriptions.
For the cooking assistant case study we used the task simulator to present and discuss

how the cooking process should be supported. By simulating several di�erent possibilities
we ended up separating the complete recipe into a sequence of steps, which was the most
comfortable process for the users. Further on, it �gured out that the video-based help,
as well as the appliance control functionality should be o�ered context-sensitive to the
actually active recipe step. This context-sensitivity has several bene�ts: The complexity
of the user interface could be reduced as only those appliances and help is o�ered that
is relevant for a certain preparation step. Additionally the appliance control could be
reduced to a one-click action, as each step already includes all relevant information (for
instance the heating temperature of the oven) to directly control each appliance on behalf
of the user.
During the cooking assistant case study we reduced the amount of enabled tasks for

certain scenarios by using the abstract user interface preview that is generated by the
task simulator. For instance, the video-based help functionality required a lot of the
screen space to be useful even if a person is not directly in front of the display. Thus we
simulated several scenarios to identify those tasks, which can be suspended during the
video-based help is accessed by the user.
Whereas the cooking assistant task tree is a rather straight-forward example (please

refer to the complete cook task tree model depicted in �gure 8.7), the object inheritance
annotation helps to identify concepts that are spread over the whole application (like
for instance the selectRecipe object) when modeling complex applications, as well as to
identify local concepts (like the recipeList and the appliance objects). During the task
and object design of the cooking assistant we were able to carefully separate the di�erent
levels of abstractions describing a recipe. The recipe is �rst introduced in the cooking
application as part of a database (recipeList) in the �ndRecipe sub-tree. The �ndRecipe
sub-tree results in a selected recipe (selectedRecipe) in the searchRecipe sub-tree and then
is further detailed in the Cooking Aid sub-tree conforming to the tasks to include the
description of the preparation steps (in the Directions task). When accessing the prepa-
ration steps for the user only the active (currentStep) and the corresponding next step
(nextStep) are modeled as relevant. The currentStep is required for retrieving the step
description and ingredients, as well as the associated appliances and help functionality.

7.4 Domain modeling

We start the domain modeling by collecting all objects that have been identi�ed during
the analysis and task modeling phase. For the domain modeling we switch from a user's
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perspective to a system perspective and concentrate on those objects �rst, that are
annotated to all application tasks. Often development is based on pre-existing backend
services and therefore application objects already exist that describe the domain data
required or produced by pre-exsisting services. For domain modeling, we identi�ed the
following application objects that are listed in listing 7.2:

application object corresponding tasks

recipeList loadRecipes(C), �lterRecipes (R)

recipeFilter �lterRecipes (R)

SHAsuggestion loadRecipes (C)

TVsuggestion loadRecipes (C)

�lteredRecipes �lterRecipes (C)

selectedRecipe manipulateShoppingList (M)

currentStep manipulateIngredientsAmounts (M), retrieveAppliance (R)

persons manipulateIngredientsAmounts (R)

applianceList retrieveAppliance (C)

selectedAppliance powerOn (M), powerO� (M), waitForCountdownFinished
(R), noti�cationAskForPowerO�(R)

Table 7.2: Application objects and corresponding tasks.

For the cooking assistant application pre-existing services included the appliance con-
trol as well as the video-based help that could be accessed by using the Universal Plug and
Play (UPnP) protocol. Thus, we re-used already existing services for the retrieveAppli-
ances, powerOn, powerO�, waitForCountdownFinished, and not�cationAskForPowerO�
application tasks. Therefore the application objects of these tasks have to be re-used as
part of the domain model too.
Since no recipe database existed that structures the recipe content based on certain

steps that contain references to useful appliances, we implemented the recipe database
on our own. For the cooking assistant case study the recipe database has been realized
by using ontologies and JIAC IV services to �exibly choose and plan the order of the
preparation steps of a recipe. The planning of the preparation steps was based on the
actual appliances that have been connected in the kitchen. Therefore a preperation step
contained a pre-condition specifying for instance which appliances are required to support
the preparation, and an e�ect that speci�ed the outcome after a certain step has been
performed sucessfully.
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Figure 7.4: An excerpt of the ontology for the cooking assistant.

Figure 7.4 presents parts of the ontology for the cooking assistant including a recipe,
which consists of an ordered list of steps, each associated with a list of ingredients, a
set of appliances, and a video presentation. Since the recipe structure has been realized
in form of an JIAC ontology [Sesseler and Albayrak, 2001], we could use the JIAC IV
Ontology Editor [Tuguldur et al., 2008] for domain modeling. Looking at the applica-
tion object list in table 7.2, this required us to implement the loadRecipes, �lterRecipes,
manipulateShoppingList, and manipulateIngredientsAmounts on our own as part of the
service modeling that is described in section 7.8.

Domain modeling test step

The testing step during the domain modeling requires deriving exemplary objects based
on the scenario description to test the completeness of the domain model structure. Since
we re-used parts of the domain model for the UPnP services, for the cooking assistant only
the domain model part describing a recipe has to be tested for completeness. Therefore
we entered a set of exemplary recipes based on the structure of our recipe database
domain model to check, if all information that are relevant for describing a recipe can
be captured by our model. We useed the Protégé editor [Gennari et al., 2002], which is
able to derive a fact editor from our recipe ontology to enter a recipe conforming to our
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domain model structure more comfortably.

Listing 8 An excerpt from the lamp chops recipe.
1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <recipe>
3 <calories>500</calories>
4 <category> <name>Hauptgericht</name> </category>
5 <cookTime>40</cookTime>
6 <preparationTime>25</preparationTime>
7 <shortDescription>Lammkoteletts mit Knödeln und Gemüse</shortDescription>
8 <land>Deutsch</land>
9 <name>Lammkoteletts</name>

10 <persons>4</persons>
11 <preparationSteps>
12 <preparationSteps>
13 <description>Fetten Sie eine Pfanne mit Öl ein. Würzen Sie dann das Fleisch
14 mit Salz und Pfeffer und reiben Sie es mit zerdrücktem Knoblauch ein.</description>
15 <requiredIngredients>
16 <reqIngredients> <amount>4</amount> <name>Lammkoteletts</name>
17 <unit><name>Stück</name></unit>
18 </reqIngredients>
19 <reqIngredients><amount>2</amount> <name>Olivenöl</name>
20 <unit> <name>tl</name> </unit> </reqIngredients>
21 <reqIngredients> ... </reqIngredients>
22 </requiredIngredients>
23 <picture>Lammkoteletts_0.png</picture>
24 <stepID>FleischVorbereitung</stepID>
25 <title>Pfanne und Fleisch vorbereiten</title>
26 </preparationSteps>
27 ...

Listing 8 shows an excerpt of an exemplary lamp chops recipe that we described based
on the recipe ontology to test the domain model completeness. The exemplary recipes will
be used later on again when rendering exemplary user interfaces based on the abstract
and concrete user interface models that are described in the following sections.

7.5 Abstract User Interface Modeling

Complementary to the domain modeling, during the abstract user interface modeling,
not the application objects, but the interaction objects are collected from the task model
annotations. All abstract interaction objects (AIO) are derived from the application
objects of the domain model. The derivation involves two major activities: First, the
selection activity to identify the application object data that is relevant for the user and
second, the context enrichment activity to help the user to indentify the meaning of the
selected data.
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Application object Abstract interaction object Corresponding tasks

Recipe�lter Recipe�lter.category selectPastry (M),
selectDessert (M),
selectMainDish (M),
selectStarter (M),
selectLowFat (M),
selectMedium (M),
disableCaloriesFiltering
(M)

Recipe�lter.ingredients.name removeIngredient (M),
addIngredient (M)

�lteredRecipes �lteredRecipes.name listRecipes (R)

SHASuggestion SHASuggestion.name listRecipes (R)

selectedRecipe selectedRecipe chooseRecipe (C),
presentRecipeDetails (R),
ingredientIsAvailable (M),
IngredientIsNotAvailable
(M)

currentStep currentStep.Title listRequiredIngredients
(R),

currentstep.description stepDescription (R),...

applianceList applianceList.name selectAppliance (R)

selectedAppliance selectedAppliance.power selectAppliance (C),
switchOn(R),
switchO�(R),
presentCountDown(R),
noti�cationAskFor-
PowerO�(R)

... ...

Table 7.3: An excerpt of the list of application objects that are selected as relevant for the
user (to form abstact interaction objects) and their corresponding interaction
tasks that perfom on these objects. After each tasks the the object operation
is annotated: (R)-Read, (M)-Modify, (C)-Create.

Before the selection activity we require a list of all interaction tasks and their corre-
sponding application objects, which is depicted in the �rst column of table 7.2. For all
these objects we require to derive abstract interaction objects, which we describe in the
following two sub-sections.

7.5.1 Selection activity

After all interaction tasks and corresponding application objects have been collected,
relevant parts of the objects' data structures for the user interface have to be identi�ed,
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separated and structured into those portions that can be handled by the user interface
by performing the selection activity. For the cooking assistant, we use the MASP Builder
to derive abstract interaction objects from the collected application objects.

Figure 7.5: A screenshot of the MASP Builder with loaded recipe ontology.

Like depicted in �gure 7.5, using the MASP Builder we can load the complete recipe
ontology and start the selection activity by choosing relevant data from the ontology. For
the cooking aid presentation (see �gure 8.4) this includes the basic recipe information
like the recipe name or the amount of calories and a picture, the sequence of preparation
steps including the ingredients and useful appliances to support the cooking step.
The selection of the relevant attributes of a recipe is supported by the left column of the

MASP Builder (see �gure 7.5) and can be done by the following subsequent steps: First,
we select the recipe from the categories list containing all loaded ontologies that have
been designed or reused for the domain model. Next, we select all relevant attributes,
and decide if the attribute's data should be initially read from the domain object and
presented in the user interface (by the replace �ag) and select which of these attributes
should be the destination for a user input (by the input �ag). Depending whether the
selected attribute type is primitive (like for instance strings or number) or complex (for
instance an aggregation of another category or a list of aggregated objects) the MASP
Builder generates an attribute respectively a frame statement for the AUI model. The
AUI model with all selected attributes is vizualized in a hierarchy and depicted in the
middle row of the MASP Builder user interface like shown by �gure 7.5.
In case the designer selects a complex attribute in the MASP Builder, the tool directly

adds a new frame to the frame that corresponds to the attribute's category in the AUI
model. An example is the selected �category� attribute of the recipe. If the complex
attribute contains a list of objects the list element is used, which points to a container.
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An example is the recipe's �preperationSteps� attribute which we select using the list
element that points to the �steps� container. Whereas in our case the container �steps�
stores only one possible set of selection statements describing the data to be presented
for each preparation step, it can also contain various compatible selections for a frame.
For the cooking assistant we were able to specify the AUI selection to consider the
inheritance relationships of the domain model. Since in the domain model all appliances
are inherited from a PowerSwitch category conforming to the standardized UPnP service,
inherited categories can be selected di�erently by the AUI selection. Thus, for instance
by specifying a basic AUI selection for a PowerOnO� category ensures that the �nal user
interface always supports switching appliances on and o�. As long as a new appliance is
inherited from the PowerOnO� category the �nal user interface will support it. Further
appliances can be easily considered by adding more specifc selections for instance to
support an oven, a stove or the airing, each containing further attributes to observe and
control appliance speci�c functionalities.
Beneath the automatic grouping of selected attributes into frames that correspond

to the originating category (like for instance the recipe group containing attribute se-
lections for instance the recipe's name, category, cookTime, di�culty, calories, picture,
and preperationSteps), containers can be introduced to organize sets of selections into a
library. In this way frame-based selections for a single application object can be distin-
guished for several contexts. In the cooking assistant, a recipe is used in various contexts,
for instance during the recipe search, we require just the recipe name, its duration and a
short description, whereas the cooking aid presentation o�ers a detailed presentation of
the recipe's data. Therefore the detailed selection is organized into a �cooking aid� group
whereas the brief recipe description is grouped under a �recipe search� group. All these
AUI selections describe the derivation of application objects into interaction objects in
several contexts and are collected in a hierarchical AUI model that can be referenced and
re-used for various presentations.

7.5.2 Context enrichment activity

After selecting the application object attributes to form interaction objects they have to
be put in a context that is understandable by the user. On the interaction object level
adding labels to all of the attributes in a language that is understandable by the user is the
most important context enrichment action. Without a label for instance the preparation
times as well as the calories amount of a recipe are just numbers. Therefore by adding
a label statement such as for the �cookTime� attribute in �gure 7.5, which states the
meaning of the integer: �Zeitaufwand� (engl.: �Duration:�) and the measurement unit
�min� for minutes adds a context of the attribute's data that is understandable by the
user.
Beneath adding textual descriptions and labels, a basic order of the selected attributes

can be set. Thus in �gure 7.5 for the cooking assistant, we start by stating the recipe
name, followed by the category, preparation time, di�culty, calories, and a picture and
thus stating the most relevant information �rst. If more complex and nested application
objects are used within the domain model by applying the container-based grouping,
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several frame-based selections can be combined together and organized in an order that
is suitable for presenting the interaction objects to the user.
Finally type mappings can be speci�ed for every selected attribute. Type mappings

are required to transform attribute values to application objects that are optimized for
e�ciently being processed by a machine in a human readable format. For the cooking
assistant, we required such a type mapping for presenting the level of di�culty to the
user. Since the application object attribute uses numbers to store the level of di�culty,
we de�ned a type mapping for instance for the �di�culty� attribute of a recipe stating
that a di�culty value of �1� should be mapped to �einfach� (engl. �easy�). Within a
mapping for an attribute a set of labels can be de�ned. In each label element the �select�
attribute speci�es the source value.
The interaction object modeling ends up with a set of interaction objects that are

linked to the corresponding object annotations of the tasks in the task model.

Abstract Interaction Objects modeling Testing Step

With the help of the exemplary objects that have been de�ned within the testing step
of the domain model generation, the abstract user interface can be tested to contain all
relevant information in its presentation as well as clearly expressed context enrichments
to be easily understandable. Therefore the MASP Builder can load the exemplary objects
and generates a generic user interface presentation of the abstract user interface fragments
considering all selection and enrichment activities.
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Listing 9 Excerpt of the exemplary lamp chops recipe interaction object in an XML-
based presentation format.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <container name="CookingAid">
3 <frame name="Recipe" type="de.dailab.VCook.ontology.Recipe:DAI_1.Recipe">
4 <attribute replace="true" select="name"/>
5 <frame name="category" type="de.dailab...Recipe:DAI_1.RecipeCategory">
6 <attribute replace="true" select="name">
7 <value>Lammkoteletts</value>
8 </attribute>
9 </frame>

10 <label lang="de">Zeitaufwand:<attribute replace="true" select="cookTime"/>
11 <value>40</value>min</label>
12 <attribute replace="true" select="difficulty">
13 <value>mittel</value>
14 </attribute>
15 ...
16 <list contains="steps" replace="true" select="preparationSteps">
17 <frame name="PreparationStep" type="de...Recipe:DAI_1.PreparationStep">
18 <attribute replace="true" select="title">
19 <value>Pfanne und Fleisch vorbereiten</value></attribute>
20 <label lang="de">Gerätesteuerung<list contains="appliances"
21 replace="true" select="ReqEquipment">
22 <frame name="PowerControl" type="de...SHS_Device:DAI_1.PowerControl">
23 <attribute replace="true" select="Power">
24 <value>off</value></attribute>
25 <attribute replace="true" select="description">
26 <value>Oven</value></attribute>
27 </frame>
28 </list>
29 </label>
30 <label lang="de">Zutaten<list contains="ingredients"
31 replace="true" select="ReqIngredients">
32 <frame name="Ingredient" type="de...Recipe:DAI_1.Ingredient">
33 <attribute replace="true" select="amount">
34 <value>4</value></attribute>
35 <frame name="unit" type="de...Recipe:DAI_1.IngUnit">
36 <attribute replace="true" select="name">
37 <value>Stück</value></attribute>
38 </frame>
39 <attribute replace="true" select="name">
40 <value>Lammkoteletts</value></attribute>
41 </frame>
42 </list>
43 </label>
44 <attribute replace="true" select="description">
45 <value>Fetten Sie eine Pfanne mit Öl ein. Würzen Sie dann das Fleisch
46 mit Salz und Pfeffer und reiben Sie es mit zerdrücktem Knoblauch ein.
47 </value></attribute>
48 ...
49 </frame>
50 </list>
51 </frame>
52 </container> 164
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Listing 9 presents the XML presentation of the exemplary lamp chops recipe interaction
object. Based on this XML presentation of the exemplary interaction object, by using the
MASP Builder, we can generated generic user interface renderings for a visual (HTML)
and a textual (voice) representation.

Figure 7.6: The HTML presentation of the lamp chops interaction object in a browser.

The screenshot in �gure 7.6 depicts such a generic display using the example lamp chop
object. The presentations of the abstract user interface objects based on the exemplary
objects can be generated as a visual (HTML) and a textual (voice) representation by
the MASP builder. Whereas testing the visual representation typically results in shorter
texts to reduce the presentation space, or more detailed descriptions to support the user
in complex tasks, testing the speech presentation of the user interface helps to improve
the wording and reducing the complexity of longer texts.
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7.6 Layout modeling

After the abstract user interface objects have been derived, the graphical user interface
layout can be derived for the cooking assistant by following a model-based layout genera-
tion. For the cooking assistant a �exible user interface layout should be realized allowing
to adapt the user interface to several di�erent screen sizes starting from mobile devices
enabling the user to transfer the cooking assistant to his mobile device, to wall mounted
touch screens up to a huge LCD-television that is installed in the user's home environ-
ment. Further on, based on contextual information like for instance the user's distance
to a device the user interface layout shoud be adapted at run-time.
The MASP layout model generator helped us to systematically derive user interface

layouts that are consistent to the other design models. Therefore we can load all de-
sign models into the layout model generator and de�ne layouting statements that specify
model interpretations resulting in layout decisions for the concrete user interface. As
layout statements can be de�ned context sensitively, the speci�cation of layout adapta-
tions to support a speci�c platform (for instance a touch screen) or the environment (for
instance the user's distance to a display) is possible.
As described in section 4.2.5, we distinguish four di�erent kinds of statements in the

model-based layouting, each addressing a speci�c layout characteristic: The containment,
the order, the orientation, and the size of the user interface elements. For the cooking
assistant we started by de�ning the containment structure.
The Layout Generator gets initiated with default statements. First, by a containment-

related statement we derive the initial containment structure from the task model. There-
fore the statement traverses the task tree and generates a container for each abstract task
and container elements for atomic tasks. Next, by an orientation-related default state-
ment we toggle the orientation from horizontal to vertical and vice versa traversing the
containment structure from the overall container to the atomic elements. Finally a size-
related statement de�nes an initial height-to-width size relation for individual elements
to meet the factor 1:2. All statements can be replaced during the layout modeling process
but ensure that an initial layout can be generated.
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Figure 7.7: The initial layout of the recipe �nder screen as it is generated by the layout
model generator.

Figure 7.7 depicts a screenshot of the box-based layout preview for the Recipe Finder
screen of the cooking assistant (�gure 8.2). By the containment slider we can browse
through the nesting levels. Like depicted in �gure 7.8, we de�ned a new container
�dishtype0� and two containment statements that state that the elements �selectStarter�
and �selectPastry� have to be children of this container. Because of the initial orienta-
tion toggling statement, both elements get instantly orientated vertically to each others.
As all four elements that can be used to �lter the recipe database regarding the dish
type have been originally de�ned to share the same parent task, the de�nition of a new
container inserts a new element grouping to be relevant only for the user interface layout.
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Figure 7.8: We change the containment structure that has been derived by the task model
and introduce a new container �dishtype0� that contains the �selectStarter�
and �selectPastry� elements.

After the containment-related statements have been de�ned, order-related statements
are used to de�ne the element order for elements in the same container. By using the
containment slider in the Layout generator we can easily check the containment rela-
tionship and identify those atomic elements and containers that share the same parent
container. For the cooking assistant we want the restart element to be always the �rst
element to navigate to. Thus we can use the containment slider to navigate to a contain-
ment level in that both the restart element and the container that contains the rest of
the user interface (the �cooking application� container) share the same parent container
(�StarCook�). By using a context-popup menu over the �CookingAppliction� box we can
de�ne a new order related statement that describes, that �Restart� has to come before
�CookingApplication�. De�ning such an order related statement results in an updated
presentation that is depicted in �gure 7.9.
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Figure 7.9: The layout of the recipe �nder screen after the addition of an order-related
statement.

Now the Restart element is the �rst element to be displayed respectively the �rst
element that would be read when using a speech-based user interface. Whereas the
containment and the order statements are relevant for both, visual and speech-based
user interfaces, the orientation and size criteria are only relevant for visual interface
layouts. Both orientation and size statements help to optimize the usage of the display
space on a graphical output device.
An example for an orientation-related statement that we used for the recipe �nder

screen is the decision for a two column layout that we used to visually separate the
criteria search form (�re�neSearch�) from the list containing all recipes that matched
the search criteria (�browseRecipes�). By using the containment slider and browsing
to the parent container (�RecipeFinder�) that contains both elements, we can de�ne
horizontal orientation statements for all elements of this container and therefore overwrite
the default orientation toggling for these elements. Figure 7.10 depicts the resulting
layout after the de�nition of the orientation statement.
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Figure 7.10: The layout of the recipe �nder screen after the addition of an orientation-
related statement.

Finally size-related statements can be speci�ed to manipulate individual elements' or
containers' sizes to adapt to individual display sizes of the supported target devices.
Beneath linearly scaling all elements to match a speci�c display, the element scaling can
be de�ned separately for di�erent contexts-of-use. For the cook case study, we required a
layout adaptation to a wall-mounted touch screen. For this platform we speci�ed separate
size-related statements de�ning that all elements that will be de�ned as a button in the
concrete user interface model need to be presented with at least 50x50 pixels to be easily
controllable with a touch screen. Additionally, we can specify a size-related statement
considering the distance from the user to the display. For the cooking assistant on the
touch screen we con�gured that all elements that have been modeled as output elements
in the abstract user interface model should be magni�ed as the user moves away from
the display. Since all statements addressing a speci�c layouting characteristic are set up
in a strict order that re�ects there evaluation priority, we ensure for instance that both
the minimal button size (a button corresponds to an input element in the abstract user
interface) and the distance adaptations do not restrict each others.
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Figure 7.11: The �nal layout of the recipe screen after all statements have been de�ned.

Figure 7.11 illustrates the �nal layout preview of the layout model generator for the
recipe �nder screen, which required us to de�ne 9 containment, 3 orientation, 3 order
and 4 size-related statements.

Layout modeling testing step

By using the boxed-based layouting preview in the layout model generator tool, the
designer receives instant feedback for every new statement that she adds to the layout
model. Instead of just previewing boxes, each box can be replaced by a picture that
depicts the content of the user interface fragment to give the designer a better impres-
sion, about the consequences when resizing a box. These pictures can be cutted out from
picture-based user interface mockups or can be retrieved from a library that stores pic-
tures for common user interface widgets. During working with the picture-based preview
of the tool, we �gured out that expecially for de�ning size-related statements the pictures
support specifying correct aspect ratios (the tool can automatically de�ne a statement
corresponding to the aspect ratio of a picture). Additionally if boxes contain textual
descriptions, a picture illustrating the text helps to identify the minimum size of a box
and ensures that the text remains readable after layout adaptations.
Statements can be de�ned on an global application level as well as for a speci�c screen
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or a certain platform or environment condition. Therefore the tool enables the designer
to browse through all the screens of the application as well as to the various contexts-of-
use that should be considered by the applications in order to check if the layout model
modi�cations have been considered correctly.
Further on, the tool can be directly connected to a running MASP environment, which

has all the cooking assistant models loaded and instantiated. In this case the designer can
commit his changes to the layout model directly to the running application to prototype
layout adaptations by real world scenarios. This makes especially sense if context-of-use
adaptation to changes in the environment (like the distance-based adaptation) should be
tested.
For the cooking assistant case study we also tested the design e�ciency of our model-

based layouting approach, which will be presented in the next sub-section before we
continue describing the �nal user interface generation.

Evaluation of the design and run-time e�ciency

We tested our approach regarding two aspects: First, the e�ciency at design-time for
the designer to generate the layout model by using the layout model generator. Second,
we tested the e�ciency of the implementation to generate and solve the constraints in
our run-time system.
To test the design e�ciency of the approach, we asked a designer to realize a layout for

an interactive cooking assistant application based on a textual description of a scenario of
how the cooking assistant should support the user. The designer created three screens and
one user interface distribution scenario where one screen is split to two di�erent devices:
The initial screen asks the user to search for a recipe based on several search options.
The second screen is about assisting the user to generate a shopping list by asking the
user which of the required ingredients are available and which are not available. This
screen could be split into two parts where one part gets distributed onto a PDA that
could be taken along during shopping and the other part remains on a touch screen
in the kitchen. The last screen assists the user during cooking by o�ering video-based
help, controlling the kitchen appliances and by splitting each recipe into a list of steps
containing the required ingredients as well as a detailed description about what to do
in each step. Figure 7.12 presents the initial screen for the recipe search as it has been
realized by the designer and the result of the model-based layouting using the box-based
layout of the editor.
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Figure 7.12: The screen for the recipe search and the �nal box-based layout result of the
layout-model generator

Independently from the designer we asked a developer to follow a model-based devel-
opment approach. Initially both, the designer and the developer shared the same textual
description of a scenario for the cooking assistant. Based on the results of the model-
based development approach including a �ne grained task model, a domain model and an
AUI model, we then derived a model based layout that should correspond to the screens
of the designer as close as possible. Finally, we measured the number of statements that
have been required to end up with the same layout as the designer has proposed for the
cooking assistant.
Each screen has a di�erent layout complexity consisting of a number of elements that

are nested based on the abstraction levels of the task model.

Screen 1) 2) 3) 4) 5) 6) 7)

1. Recipe Search 19 7 9 3 3 4 19

2. Shopping List 13 8 0 6 1 2 12

3. Distribution: PDA, Touch 4,9 8 0 1,2 0 0 0

4. Cooking Aid 15 10 0 2 2 4 8

Table 7.4: Complexity of the screens that we sequentially layouted one after another and
the number of statements required. 1) Elements to layout, 2) Abstraction
levels, Number of 3) containment-, 4) orientation-, 5) order-, 6) size-related
statements. 7) Total number of statements (additionally statements required
to layout a certain screen only - statements of previously layouted screen are
reused).

Table 7.4 lists the level of complexity (number of elements, and the maximum nesting
level utilized) for the three screens that have been sequentially layouted and the number
of statements that were required to realize the layout of the designer. After the �rst screen
has been layouted the derived statements have been re-applied to the second screen and
�nally to the third screen. The second column of table 7.4 lists the di�erent levels of
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complexities that we have considered by the three screens: Whereas the RecipeFinder
screen has a lot of elements (19) and a less nested structure of 7 levels, the Cooking
Aid screen has 15 elements on 10 nesting levels as it is composed of various parts that
are not directly related (for instance the multi-medial help and the appliance control).
For the ShoppingList screen two further layouts have been designed that are re�ecting
a distribution scenario where parts of the screen get distributed to a PDA (4 elements)
and some parts (9 elements) remain on the wall-mounted touch screen in the kitchen. By
analyzing the amount and type of statements that were required to layout the screens in
the same way like the designer did, several observations have been made:

� Containment and order related statements can be derived from a task tree e�-
ciently.

� If the task model is used to derive the containment and atomic tasks are identical
to individual widgets, the introduction of further containment-related statements
is required (for our application we required 8 containment statements for grouping
checkboxes for the recipe search screen).

� Size-related statements can be de�ned very e�ciently on an application wide, global
level based on the information of the design models (such as weighting input to
output tasks, or by giving control tasks that usually end up presented as buttons
a global minimum /maximum size restriction).

� The aspect ratio has to be de�ned for each individual picture that should be pre-
sented within a task (using a size relational statement) which can be automatically
derived at run-time when loading the picture.

� The orientation-related statements can only be speci�ed on a global level but have
to be re-applied for most of the individual screens. This is because the user interface
models have no information that can be used to derive an initial orientation. So
we applied a heuristic approach that produces elements with a balanced width-to-
height relation by switching the orientation of the elements. Therefore we toggle
the orientation horizontal to vertical and vice-versa, for each nesting level that has
been derived from the task model.

� The container, order- and size-related statements of the layout model helped to
assemble layouts for user interface distributions that have not been explicitly ad-
dressed at design-time. Orientation-related statements caused problems as after a
distribution has been initiated by the user the re-orientation of the remaining user
interface parts were not expected by the users.

In order to check if the performance of generating and solving the constraints can be
done at run-time like presented in section 5.2.4, we measured the performance of both,
the statement evaluation and the constraint solving separately.
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Screen 1 2 3 4

1.Recipe Search 25 142 <1ms 14 ms

2.Shopping List 20 107 <1ms 8ms

3. Distribution: PDA, Touch 8,10 56,81 <1ms 8,10ms

4.Cooking Aid 23 130 <1ms 13ms

Table 7.5: Complexity of the screens the need to be layouted and the amount of state-
ments required.1) Number of statements to evaluate, 2) Number of evaluated
constraints, 3) Measurement for statement evaluation (ms),4) Duration for
constraint solving (ms).

Table 7.5 shows the results of the performance evaluation for our cooking assistant
application. For each screen we have measured the amount of statements that have
been selected as relevant for layouting each screen (second column) and the amount of
constraints that have been generated by evaluating the selected statements. It could be
observed that currently in the average 5 to 7 constraints are generated by one statement.
In the last two columns the measured average calculation time (of three runs using an
Intel Core Duo L2400 processor with 1,8 GHz) for selecting the required statements
and the duration for solving the generated constraints are listed: We could observe
that the time to choose between the statements that are relevant for a speci�c situation
was always under 1ms. The amount of constraints that are generated by the selected
relevant statements in�uences the solving time. Thus, the bigger the di�erence between
the overall number of layouting statements and the number of selected statements, the
shorter constraint solving times can be expected.

7.7 Concrete user interface modeling

By the concrete user interface modeling the abstract user interface, which is designed
modality independent, is transformed to a set of modality speci�c user interfaces. In our
approach we experimented with concrete user interface generation for HTML, WML, and
Thinlets to support desktop PCs, small-sized and mobile devices, and voice in/output
generation relying on VoiceXML.
Similar to approaches like UsiXML [Limbourg and Vanderdonckt, 2004a], TERESA

[Mori et al., 2004] or Dygimes [Coninx et al., 2003], we utilize XSL transformations to
generate the �nal user interface, but instead of directly applying transformations to derive
the CUI from the AUI, we follow a multi-level transformation approach.
For the cook case study we used multi-level XSL transformations. Therefore three

di�erent kinds of transformations are required to derive a concrete user interface: For
each modality that should be considered, a generic transformation generates a speci�c
transformation that is able to transform the abstract user interface into a concrete user
interface model for a speci�c device. The speci�c transformation can be extended to
include design-related information considering design-guidelines or speci�c style guides.
The multi level transformation approach ensures that each transformation follows a basic
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structure and eases the extensibility to include new user interface elements. Further
on it reduces the e�ort for the developer to produce a new user interface since the
initial speci�c transformation to include a new platform can be automatically generated
and is ready to produce an initial user interface that can be subsequently improved by
the developer instead of requiring the developer to start from scratch. The automatic
generation additionally constructs a performance-optimized transformation structure,
which is often neglected by the developer because of the initial programming e�orts.
The MASP Builder tool includes general transformations to generate speci�c trans-

formations for VoiceXML, static HTML, Velocity HTML, WML, and Thinlets. Based
on the abstract user interface description fragments the tool automatically generates a
template for a speci�c transformation that can be directly applied to the abstract user
interface fragment to preview the �nal user interface.

Figure 7.13: Screenshot of the MASP Builder with the speci�c transformation for the
cooking assistant.

Figure 7.13 shows a screenshot of the speci�c HTML transformation. As it has been
automatically generated by the tool, it follows a basic structure: In the �rst part of the
transformation the element order of the abstract interaction object is speci�ed, whereas
in the second part the data selection and context enrichment statements have been placed
for all interaction object separately. Modularizing the interaction objects and assembling
them separately improves the layouting possibilities later on. By deriving the speci�c
transformation the application can be further extended to include speci�c fonts, button
layouts and additional graphics. Additionally interaction object templates of the speci�c
transformation can be overwritten to implement a speci�c design or a widget for instance.
Using multi-level transformations helped us to reduce the often mentioned critique

about the complexity of XSLT by introducing a new level of abstraction, a generic trans-
formation that is used to generate platform speci�c XSL transformations implementing
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strategies to increase the performance of the transformation. The concept of multi-level
transformation is based on the idea that XSL transformations are written in XML and
can therefore be generated using another more abstract XSL transformation.
For the cooking assistant we implemented a generic transformation to generate speci�c

templates that produce Velocity Templates. A Velocity template is a mixture of HTML
or VoiceXML text, which can be can embedded with java code and directly compiled
within the webserver to produce HTML or VoiceXML code that can be interpreted by a
Webbrowser or a Voicebrowser, respectively.

Listing 10 Velocity HTML template for the selectDishType user interface fragment.
1 <div id="selectDishType">
2 <div id="selctDishTypeBody">
3 <div class="refineSearchParametersTitel">
4 Welche Nationale Küche wählen Sie?
5 </div>
6 <div class="refineSearchParametersItem">
7 <input id="#arabic" name="kitchen1"
8 #if($recipe.arabic)checked="checked"#end
9 type="checkbox" value="Arabisch"/>Arabisch

10 </div>
11 <div class="refineSearchParametersItem">
12 <input id="#german" name="kitchen2"
13 #if($recipe.german)checked="checked"#end
14 type="checkbox" value="Deutsch"/>Deutsch
15 </div>
16 <div class="refineSearchParametersItem">
17 <input id="#italian" name="kitchen3"
18 #if($recipe.italian)checked="checked"#end
19 type="checkbox" value="Italienisch"/>Italienisch
20 </div>
21 <div class="refineSearchParametersItem">
22 <input id="#chinese" name="kitchen4"
23 #if($recipe.chinese)checked="checked"#end
24 type="checkbox" value="Chinesisch"/>Chinesisch
25 </div>
26 <div class="clearboth"></div>
27 </div>
28 </div>

Listing 10 presents such a velocity template for the selectDishType user interface frag-
ment that we use to generate HTML code. In the velocity template, each interaction
object is embedded into a div-tag with a unique name so that the interaction object can
be addressed by the user interface layouting that can set the presentation coordinates as
well as the size for each interaction object separately. For each concrete UI interaction ob-
ject type the transformation generates the corresponding widget for the target platform.
Like depicted in Listing 10, we transform the interaction object dishType which has been
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de�ned as a muli-selection list in the corresponding abstract user interface object to a
HTML-checkbox widget.

Concrete User Interface modeling testing step

During the derivation and design of the speci�c transformations for all the modalities and
devices that should be supported by the cooking assistant, by using the MASP Builder,
we are able to generate instant static previews of the �nal user interface for all platforms
that we want to support. Therefore the tool can connect to several web browsers for
previewing the HTML-based designs, WAP and Thinlets simulators as well as connect
to a remote voice server that can initiate a telephone call to a phone number that has
been con�gured in the preferences of the MASP builder.
Beneath previewing static designs of certain presentations, the tool is able to connect

to a running MASP environment that has been started with all the models of the cooking
assistant application. By connecting the tool with the running application that tool can
directly update the concrete user interface transformations model of the cooking assistant
in the MASP. Through such a model update the presentation of the running cooking
application gets instantly updated. Therefore the modi�ed concrete user interface models
can be directly previewed and tested in a consistent dynamic and interactive situation
that is composed out of several user interface fragments.

7.8 Service Model

The service model is generated based on the information of the task and domain models
and connects the functional core to the user interface of an interactive application. Two
di�erent types of services must be considered by the service model. On the one hand,
already existing or proprietary services and on the other hand new functionalities that
have been speci�cally implemented for the application should be easily integrated by the
service model.
Since the cooking assistant should be tightly integrated in a smart home environment,

we extensively integrated and implemented both kinds of service types. For the appliance
control functionality we were required to integrate an already existing vendor speci�c
API, based on web services. The context sensitive, video-based help in each step of the
cooking process was o�ered by a media center PC with recording capabilities that was
able to stream its multi media content via the standardized Universal Plug and Play
(UPnP) Media A/V protocol. Finally the recipe database has been set up based on the
recipe ontology that has been developed during the case study. All the small functions
to calculate the amounts of ingredients based on the number of persons or the generation
of the shopping list have been implemented in Java.
Following the basic requirement for separation of concerns that we formulated in section

5.1.3.2, the functional core is required to be loosely coupled to the user interface enabling
the developer to easily exchange parts of the functional core to consider a change in
technology like for instance connecting appliance from another vendor without requiring
the developer to know about the interns of the other models.
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Looking at the task tree of the cooking assistant we require service calls to the func-
tional core for all application tasks. By using the Task Model Editor, we are supported in
specifying for an application task the underlying technology that should be considered by
selecting a suitable service adapter (we have implemented service adapters for UPnP and
Java calls). Since for each application task all domain model objects as well as their ac-
cess operations (read, manipulate) have been already annotated during the task modeling
phase, the service model can be automatically generated using a transformation.

Listing 11 An excerpt from the service model of the cooking assistant.
1 <bean id="RecipeSearch" class="org.sercho.masp.meta.service.ServiceCallDescription">
2 <constructor-arg><value>RecipeSearch</value></constructor-arg>
3 <constructor-arg><ref local="JavaServiceType"/></constructor-arg>
4 <property name="instruction">
5 <value>finder.getRecipeSet(recipeFilter)</value>
6 </property>
7 <property name="parameterIDs">
8 <set><value>finder</value> <value>recipeFilter</value></set>
9 </property>

10 </bean>
11 <bean id="PowerSwitch" class="org.sercho.masp.meta.service.ServiceCallDescription">
12 <constructor-arg><value>PowerSwitch</value></constructor-arg>
13 <constructor-arg><ref local="CFServiceType"/></constructor-arg>
14 <property name="instruction">
15 <value> PowerSwitchUDN=PowerSwitchUDN ResultName=resultName
16 Observers=org.sercho.controller.bsh.BSHObserver </value>
17 </property>
18 <property name="parameterIDs">
19 <set><value>PowerSwitchUDN</value></set>
20 </property>
21 </bean>

Listing 11 shows an excerpt of the service model of the cooking assistant for two
services, the recipe search functionality that has been realized in java and the Pow-
erSwitch to switch an appliance on or o� by using the UPnP protocol. Whereas the
former requests for a list of recipes that matches the criteria that the user speci�ed in
the recipeFilter object, the latter identi�es an appliance based on the appliance identi�er
(PowerSwitchUDN) and then switches the power of the appliance.

7.9 Deployment phase

All these Velocity pages are then deployed to the FUI model, together with the task
model, the domain model and the service model to generate the �nal user interface during
system run-time. The service signatures of the service model are generated by referring
to annotations of the application tasks that are used to specify the service technologies
(in our implementation web-services, native Java calls, and UPnP calls) together with
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the application objects to transform them into code fragments (via XSLT) that will be
called during task execution.

7.10 Conclusions of Case Study

The cooking assistant has been implemented as an exemplary application as part of the
SerCHo project, which has been running over three years and involved seven partners
from the industry. After each year, an acceptance study has been undertaken by an
external company that is specialized on market research [Schäfer, 2007b]. A systematic
usability testing approach was beyond the scope of the project, since the studies have
been focused on testing the market acceptance of all the prototypic applications of the
SerCHo project.
During the user study we evaluated early prototypes of the cooking assistant based on

the presented method, the underlying MASP architecture and the cooking assistant demo
application. The basis for providing a realistic environment was an Ambient Assisted
Living Testbed we set up in close cooperation with the Deutsche Telekom Laboratories
at the Technical University of Berlin. Consisting of a living room, an o�ce and a kitchen,
the Testbed provides the ideal environment to evaluate smart home applications like the
cooking assistant under realistic circumstances.
Based on the results of the acceptance study we iterated the complete method again

and continuously improved the cooking assistant based on the users' feedback, which
has been gained by a structured questionnaire with 20 persons from di�erent potential
target groups and a moderated group discussion with 10 persons afterwards. We have
published results of these interviews in [Blumendorf et al., 2007].
Most of the initial feedback we gained by the user study was targeted to the complexity

of the graphical user interface, which included too much information especially in the
cooking assistant screen. Whereas the �rst cooking aid screen included a presentation
of all steps and a list of all ingredients for a certain recipe, we continuously reduced
the cooking aid screen ending up with just presenting one step and give a summary of
the next step as well as presenting the ingredients list, the video-based help, and the
appliance control context-sensitive to the current step. We improved the method and
developed the task simulator based on the lessons learned by the case study. By the
task simulator an early feedback can be gained by testing the number of simultaneous
presented tasks as well as checking the designed task �ow in advance with the targeted
audience.
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8.1 Context of this Work

Model-based transformational development of interactive systems has been continuously
undertaken over more than two decades. By applying the concept of transformational
development, which has its roots in traditional software engineering, to human computer
interaction structured methods based on the speci�cation of models have been success-
fully developed. Whereas a lot of approaches for methods, tools, and models for the
development of user interfaces have been proposed, few of them concentrate on certain
aspects like the identi�cation and speci�cation of models, the classi�cation of relevant
architectures or the application of model-based user interface development to several ap-
plication domains like mission critical interactive systems or multi-modal interaction in
cockpits of aircrafts or even in cars.
The identi�cation and speci�cation of models is currently focusing on the further for-

malization of task-models and its relation to the domain and concepts models, the iden-
ti�cation of more general process-�ow-oriented model descriptions, the speci�cation of
dialog models and the development of concrete models describing user interface elements
for certain modalities to support or instance haptic interaction or the generation of 3D
user interfaces. Up to now a generally accepted description language for the speci�-
cation of all these models is still missing. Over the last decades UsiXML, UIML, and
CTT/TeresaXML are the only languages that have been targeted to continuous further
improvements from the research community. UsiXML has been designed as a proposal
for a standardized language and currently includes speci�cation for most of the actual
identi�ed abstraction models but actually missed a detailed formalization of its semantics
and is mostly applied as an exchange format to exchange models between all the tools.
The evolvement of general architectures to describe interactive systems has been most

active in the 90s. Nowadays the further evolvement has been replaced by a discussion
about frameworks to classify all the architectures that are currently being produced in the
various application areas. Only limited e�ort is currently ongoing to address architectural
challenges of model-based application. Architectural challenges include to support all the
various abstraction models, allowing to add further models to address speci�c application
domains, as well as propagating changes of individual models to all other connected ones
enabling evolutionary prototyping and multi-modal fusion.
There are a lot of application areas that motivate the need for model-based devel-

opment. Already the overall complexity of actual interactive application demands for
a structured development process to ensure the consistency of the user interface for the
whole interactive application. This complexity even raises with the development of multi-
modal, multi-platform, multi-user user interfaces, as well as user interfaces that can adapt
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to various contexts-of-use.

8.2 Content of this Dissertation

The work on this dissertation started with the initial idea of implementing an interactive
application by following a model-based user interface development process. During the
process of development the developer should be supported to test the actual state of the
design as early and often as possible.
The state of the art analysis in chapter 2 revealed several shortcomings and the in-

spection of the requirements lead us to three main areas of interests that this work is
concentrating on:

1. We required a method that is e�ciently tool-driven, supports all phases of the
development process and supports testing support in all phases to consider feedback
as early and often as possible.

2. The need for an architecture arose, enabling us implementing an interactive system
based on assembling those abstraction models that we �gured out to work best for
a certain problem domain. The architecture should allow changes to the already
running application such as required to prototype several usage-scenarios, enabling
adaptations to various contexts-of-use or even testing the utilization of additional
modalities for interacting with the system.

3. The improvement of existing models as well as the addition of further models to
support the adaptation of an application to several contexts-of-use and to enable
directly executing these models to eliminate the actual gap between design-time
and run-time in interactive system development.

Regarding (1), we derived in chapter 4, based on the observations (subsec. 4.1.1) of actual
design methods in the Start Of The Art analysis (chapter 3), the requirements (subsec.
4.1.3) that forced our work realizing the MASP Methodology. The basic idea of the
method is to structure the phases of a software engineering process into subsequent steps
specifying the user activities, which have to be done with support of a tool either in an
interactive or an automated way. Di�erent to other methods in model-based development,
we enable the developer to test intermediate results in each step of the methodology
to check as early as possible for inconsistencies and discrepancies regarding the initial
scenarios and system requirements. Therefore exemplary views, simulations or early
prototypes can be derived in every step enabling the developer to incoorporate user
feedback even in the very early states of development to prevent defective developments
caused by misunderstandings with the targeted end-users.
Chapter 5 dealt with the development of an architecture to address the issues of (2).

We started by deriving the requirements (subsec. 5.1.3) based on the observations (sub-
sec. 5.1.1) of the State of The Art (chapter 3) and proposed the Model-Agent Concept
(MAC), which is based on the concept of software agents making the design models alive.
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Di�erent to other architectural proposals, by implementing the MAC, an application re-
mains aware of its design model semantics and thus enables the continuous evolvement
of the applications to support evolutionary prototyping allowing to change the models
even at run-time. The MAC bene�ts from the advantages of software agents regarding its
capabilities to coordinate and to act autonomously. The former enables the synchroniza-
tion of information upon changes between the various models whereas the latter enables
to �exibly con�gure the set of utilized interactive system models based on the actual
requirements of the application domain.
Finally, in chapter 6 we started by presenting the observations and deriving the re-

quirements in the same way we did for the previous chapters and ended up detailing the
task-model to directly connect to the domain and service model, which allowed us to
directly execute the task model at run-time and prototype the addition of further modal-
ities by specifying modality-speci�c task trees that synchronize with the application task
trees in subsection 6.2.1.4.
Further on, we introduced another model, which focuses speci�cally on the layout

generation of user interfaces (section 6.2.3), which has not been addressed by actually
model-based development approaches. The layout model consists of layouting state-
ments, which are interpretations of the other design models and therefore enabling a
layout de�nition that is consistent to all the other design models. Since these layouting
statements can be even de�ned for certain contexts-of-use independently of a certain
application support for new contexts of already existing applications is possible with our
approach.
Finally, in subsection 6.2.2 we discuss our abstract user interface (AUI) model, which

is directly derived and connected to the domain model. Di�erent to other approaches
that specify the AUI independently from the other design models, we select and enrich
relevant domain model information (application objects) for the presentation of the user
interface (to form abstract interaction objects). These AIOs are realized like a facade
bound to a certain application object and are assembled to form an abstract user interface
based on the actual set of relevant application objects at run-time. Compared to previous
approaches our approach is more �exible as it can consider even sets of elements only
known at run-time (for instance a list of all connected appliances) and supports reuse since
existing AIO facades for a certain domain concept can be automatically considered by
the system for generating a presentation in another application that reuses this concept.

8.3 Validation

8.3.1 External Validation

The external validation has been realized by application of the MASP method, the MAC
architecture and all of the proposed models in the form of several case studies as part of
di�erent research projects together with the industry. A condensed but complete walk-
though of the MASP methodology and the relevant tools to support the developer that
have been implemented to complement our approach have been described in chapter 7.
The main goal of these case studies was to show the feasibility of developing an interactive
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application in a user-centered way rigorously following the process of the methodology.
Earlier case studies we did, in that only parts of the methodology have been applied,

motivated the design by example approach and most of the tools. It �gured out that
without a tool-support the extensive abstractions via specifying the various models were
very complex to understand and the learning curve for developers was very low.
End-user involvement in early phases of the design phase �gured out to be too com-

plex when directly working with the models. Instead the approach to derive examples
increased the understanding of the developer about the actual status of the development
process.

8.3.2 Internal Validation

For the internal validation of the method, the architecture, and the proposed model
additions, we pick up the requirements as identi�ed in sec 4.1.3, sec 5.1.3, and section
6.1.3 respectively and discuss the outcome regarding each requirement after the results
of this thesis have been applied.

8.3.2.1 Methodological Requirements

Requirement 1: Life-Cycle Coverage � states that the proposed method should cover all
phases of a software engineering process, which includes early requirements analysis,
design, prototyping, implementation, deployment, maintenance and adaptation at
run-time.

Discussion: The MASP methodology covers all phases of development to realize an
interactive application. Requirement analysis involves eliciting the requirements based
on scenario descriptions. The design phase consists of the subsequent speci�cation of
various models; each model describes a di�erent aspect of the application, which reduces
the design complexity together with the subsequent derivation of design models from
abstract to more concrete ones. The method supports the exemplary instantiation of
the design models in the early phases as well as the derivation of prototypes in the later
phases of the development process, which reduces the complexity of testing a model-
based application design. Designers are not required to think in abstractions but instead
are directly confronted with parts of the �nal application. Most of the method is driven
by transformations of one design model to the next more concrete one and ends in a
Model-Agent-driven runtime-system that loads and instantiate the design models. The
only two aspects that are not covered by the design models of this methods are on the
one hand realizing the backend functionality (which can be developed following well
known software engineering processes) and on the other hand adding aesthetical design
aspects that are not covered by the design models. This includes adding pictures and user
interface designs to the user interface presentation. Deployment is done by instantiating
Model-Agents; each contains a design model instance and is connected to the other agents
based on the model relations. Each Model-Agent can be inspected at run-time by using
a debugger tool, allowing to directly modifying the instance data, like modifying the
domain, task as well as the layouting model, which directly results in a modi�cation of

184



8 Conclusions

the actual user interface presentation. The adaptation of the user interface for certain
contexts-of-use can be speci�ed on the task-level to support di�erent tasks with di�erent
modalities, on the abstract user interface level to present di�erent domain model data for
di�erent platforms, and �nally on the layout model level based on the actual context-of-
use of the user, which includes his actual environment and the capabilities of the platform
the user is using.

Requirement 2: Automated process with support for interactive development � stating
that tool support is required to be considered by the method to reduce the complex-
ity for the developer in specifying the models and supporting how his modi�cations
manipulate the resulting user interface.

Discussion: The MASP method includes tool support for all phases of the development
process. Since it was not the goal of this work to re-invent the wheel, already existing
tools have been considered, such as the Eliciting Tasks Tool in the analysis phase or
various tools to support the domain modeling like the Portege or the JIAC IV Ontology-
Builder. In cases where limitations prevent the utilization of already existing tools, we
implemented additions concentrating on certain aspects like done by the realization of the
MASP Task Tree Editor, which complements the already existing ConcurTaskTree editor.
Unique additions of our approach like the way to derive the abstract user interface model
from the domain model (1), the proposal for a layouting model (2), and the approach
to enable exemplary instance and prototype derivation (2) are supplemented by tools we
build on our own.

Requirement 3: Automation of repeating tasks � is about the prevention of repeating
work in the various phases of the methodology.

Discussion: The automation of repeating tasks has been considered in the design of the
tools that have been developed to support the method. Looking at the task level, the
highest level of abstraction, already existing task trees can be included. Existing task
trees can be re-used on the one hand on an application design level and on the other hand
for describing the application control with speci�c modalities. With the former concept,
task trees can serve as patterns to address re-occurring tasks like for instance a user login
or the functionality of a typically basic command set like often realized as a ��le� and
an �edit� menu. Re-using tasks results in preserving all the mappings to the domain-,
abstract-, and concrete user interface level for the included task tree. The latter relies
on specifying task trees to describe usage patterns for the control of an application via a
certain modality or platform.
When specifying the abstract user interface, already existing domain objects can be re-

used and therefore the entire abstract object de�nitions that have been speci�ed for these
domain objects. Re-using domain objects initially ends-up re-using the presentations for
these objects in the user interface, as long as no modi�cations have been done to the
referring abstract interaction object de�nitions.
Finally on the layout model level, layouting statements are de�ned independently of a

certain application, by only specifying meta-model level interpretations that are targeting
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to certain contexts-of-use. These kinds of statements can be included in the layout-model
to be re-used on the one hand during the design process and on the other hand during the
execution of the application at run-time. During the design-time process, meta-model
statements specify for instance the derivation of the containment structure from the task
tree, or toggle the orientation of elements to realize an element distribution conforming
to a certain screen aspect ratio. By using layouting statements to describe individual
platform capabilities the layout adaptation to these platform can be de�ned to be re-used
as well.

Requirement 4: Support for multi-path development � refers to the �exible adaptation
of the method to be implemented in di�erent forms of organization.

Discussion: There have been a lot of di�erent aspects identi�ed that can be considered
to support methodological �exibility. Flexibility can be de�ned regarding the develop-
ment direction like for instance by following top-down, bottom-up or even middle-out and
wide-spreading approaches . Di�erent to these approaches, the MASP method has been
designed as a top-down approach supporting an abstract to detail modeling and there-
fore does not explicitly consider reverse-engineering or di�erent entry-points. Instead the
method supports �exibility to the application domain of the interactive application. Thus
the developer is free to select those steps in the design phase that she feels most comfort-
able with. After the task analysis and task and domain design, which is mandatory for a
user-centered development the developer is free to choose if he requires modeling an ab-
stract user interface when the application should support various modalities or de�ning
a layout model if context-of-use adaptations have been identi�ed as relevant for the �nal
application.

Requirement 5: Support for explicit testing - states to keep the iteration cycles short
and to check design results against the requirements as early and often as possible.

Discussion: The development of interactive applications that should be run on several
platforms and are able to adapt to several contexts-of-use requires a lot of development
e�ort. End-users' feedback should be considered early and often to prevent tray and
error trashing. Model-based development su�ers from the fact, that models are set-up to
serve as abstractions that support the developer keeping an overview even for the design
of complex applications. But these model-based abstractions are not suitable to be
discussed with end-users to identify problems and misunderstandings. The main reason
for this is because of the notations and abstractions that an end-user is not familiar with.
The MASP methodology is designed with at least one testing activity in each step of

the development process and enables the developer to test the state of the application
design by deriving examples, prototypes and simulations. This forces the designer to
re-think the models and keeps the iteration cycles short. Testing steps of the method
include the consistency checks during the analysis phase (subsection 4.2.1.3), the task
process simulation (subsection 4.2.2.3), the derivation of exemplary objects to check the
domain model (subsection 4.2.3.3), the abstract user interface simulation (subsection
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4.2.4.3), the boxed-based layout simulation (subsection 4.2.5.2), as well as �nally the
�nal user interface preview (subsection 4.2.6.4).

Requirement 6: Clear distinction of concerns � means the suitability to implement the
method for development teams were di�erent specialists are working together.

Discussion: The development process in the MASP method is happening by the subse-
quent de�nition of abstract models into more concrete ones. Since models are related
and in most cases get directly derived from the more abstract ones, a speci�cation of all
the models in parallel is not supported by the method. But since each model implements
speci�c aspects a clear distinction of concerns is supported. Beneath considering domain
experts to de�ne the domain model as well as working in close cooperation with a system
analyst to identify the tasks that should be supported by the application, it is up to
the designers and domain expert's to decide which data is relevant for presentation in
the user interface. The layout model, as well as the derivation of the concrete model is
supposed to be the work of a user interface designer, where more speci�cally, experts to
implement speci�c platforms can be considered for the concrete user interface derivation
as well.

8.3.2.2 Architectural Requirements

Requirement 7: Conceptual Simplicity � demands for an architecture that o�ers modu-
larity to be easy understandable and extensible.

Discussion: An application following the MAC concept can be extended in two ways:
First by adding another view by introducing an additional Model-Agent, for instance to
support describing user interface distributions or layout adaptations or second by modi-
fying the speci�cation of a model to add for instance another task or another presentation
for a speci�c platform. Whereas the former enables a �exible con�guration of a set of
models and corresponding Model-Agents based on the requirements of the application
domain, the latter ensures that the developer always is confronted with a comprehensive
view of the whole application, which reduces the possibility of introducing inconsistent
manipulations.

Requirement 8: Separation of Concerns � requires the architecture to consider a model-
based run-time system and clearly de�nes the assignment of each component.

Discussion: The MAC agent concept has been designed based on the ideas of earlier
architectures and extends them by the idea of preserving the design models to drive the
interactive application even at run-time. Following the MAC concept, the architecture
is not modularized based on a functional decomposition like realized by the PAC-agents
hierarchy or organized into loosely coupled autonomic modules like proposed in MVC, but
separated into several aspects. Each aspect speci�es a complete view on the application
on a certain level of abstraction. Each Model-Agent is comprised of three components:
the abstraction which is realized by a model, the control part which contains the mapping
to the other agents, and the instance, which stores the actual data at run-time.
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Requirement 9: Performance Considerations � means that all calculations that the
MASP architecture is required to perform at run-time do not a�ect the interaction
with the user.

Discussion: During our work several performance measurements have been done to en-
sure that those parts of the architecture that require a lot of calculations can be performed
in a reasonable time and do not bother the interaction with the user. Relevant parts
of the overall MASP architecture that require a lot of calculations at run-time are the
multi-level transformations (1), the layout statement evaluation and constraint solving
(2), and the coordination e�ort through messages between the Model-Agents (3). The
performance of the multi-level transformation (1) has been optimized and evaluated to
work e�ciently for a huge amount of parallel interaction requests, such as it usually hap-
pens on web-servers, where a lot of users request web-sites in parallel. It �gured out that
around 100 requests can be responded by a presentation, where we can ensure a response
time from max 3,5s. Calculating the layout of a graphical presentation (2) has been
measured for selecting the relevant statements based on the actual context-of-use and
for solving the generated constraint network (section 7.6). Since we select the relevant
statements to produce the constraint network (which required <1ms) �rst and thereafter
construct and solve the constraint network (between 8-20ms) , we could e�ciently reduce
the constraint solving time for layouting one screen mask. For our reference implemen-
tation of the MAC concept, we use tuple spaces to synchronize the information between
the agents (3) (section 5.2.2).

Requirement 10: Consideration of a methodology � refers to the relation of the method
to the architecture. Stating that all parts of the architecture have to be subject to
analysis and design in the methodology.

Discussion: An architecture based on the MAC concept requires at least four Model-
Agents, namely a task-, a domain, a service-, and a concrete user interface Model-Agent.
All four models are subject to analysis and design of the MASP methodology. After
the models have been designed, they get directly deployed into a Model-Agent. Thus a
run-time system requires the instantiation of at least four agents. The MASP method
further supports designing a layout and an abstract user interface model, which can
be instantiated as additional Model-Agents. The layout Model-Agent further requires
contextual information to select relevant layouting statements which are stored in a
context Model-Agent.

Requirement 11: Support for adaptation at run-time � refers to missing self-awareness
of interactive systems. Possible adaptations of the user interface are de�ned during
design-time and get implemented based on a set of pre-known contexts-of-use.

Discussion: The Model-Agents are constructed using three basic components. In the
abstraction layer, the behavior and static structure of an agent is declaratively modeled
and open to be accessed at run-time (section 5.2.2) This is di�erent to other model-
based approaches that concentrate on applying model-to-code transformations at design-
time and therefore irreversibly loose the model-to-code bindings. By keeping the design
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model speci�cations alive more �exible adaptations of the user interface are possible
since adaptations can be addressed to the di�erent abstraction levels (for instance by
delimiting or modifying the set of tasks to be performed based on the actually used
device, or changing the information amount selected by the AIOs based on the actual
situation of the user. In section 5.2.4 we presented how we can adapt the layout even to
platforms that have been unconsidered during design-time, which takes advantage of the
fact that we keep models alive.

Requirement 12: Tool-support � states that the architecture should support connection
points enabling tools on that a model-based development heavily depends on, direct
model manipulations.

Discussion: After an interactive application has been implemented and is running main-
tenance work is required to �x issues like for instance adding new contexts-of-use that
have not been considered at design-time. The tools that we have realized to support the
MASP method support a direct synchronization and manipulation with already running
applications. The MASP Builder (section 4.2.4.4) can load the domain and abstract user
interface model as well as the current instance data of a running system that should be
target to a modi�cation. This data can then be manipulated o�ine by the designer and
the resulting changes to the AIOs and the multi-level transformations can be transferred
back to the run-time environment that serves the actual application. In the same way
the Layout Model Generator supports retrieving the layout- and the context model to
introduce new layout adaptations by introducing or manipulating layouting statements.
Finally the MASP Debugger directly connects to a running application and enables access
and manipulation options to all of the models' instance information.

8.3.2.3 Language Requirements

Requirement 13: Comprehensive Lifecycle support � demands for a model-based user
interface speci�cation that is comprehensible as it covers all levels of abstraction
and all phases of the software-engineering lifecycle.

Discussion: We focused with the MASP on language extensions to already existing
language models (like we did for the task and abstract model in section 6.2.1 and section
6.2.2 respectively) and to add model speci�cations where they are missing (section 6.2.3).
Especially on the concrete user interface level a lot of promising work has be done as
part of the UsiXML speci�cation. By following the multi-level transformation approach
(section 4.2.6) our approach is not bound to a certain concrete user interface model.
Thus the concrete user interface models from UsiXML or any other representation like
XUL, GIML, or UIML can be utilized.

Requirement 14: Run-time support � requires the language to be designed to be directly
interpreted.
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Discussion: To support run-time interpretation two aspects had to be considered: First,
redundancies between all the di�erent model abstractions have to be avoided. Redundan-
cies can result in con�icting designs that will require the run-time system to decide for
one interpretation or will prevent the direct execution if the run-time environment is not
able to select one option. Second, mappings of individual model elements between the
various levels of abstraction have to be clearly stated. We ensured the former by further
restricting the task model temporal operators, clearly de�ning the various task types and
by de�ning an abstract user interface model that does not contain ambigous de�nitions
in relation to the task model like done in the UsiXML speci�cation. The latter has been
ensured by explicitly annotating the application domain objects to the task tree (section
6.2.1), deriving the abstract user interface based on the speci�ed domain objects (section
6.2.2), and by clearly distinguishing between application and interaction tasks that are
mapped to services of the service model and the concrete user interface presentations
respectively.

Requirement 15: Adherence to standards � refers to a language model that is compatible
to already existing languages and standards.

Discussion: Adherence to standards has been realized by supporting on the one hand
import and export of our MASP Task Tree Editor (MTTE) to support the �le format
of the Eliciting Tasks Tool and the ConcurTaskTree editor, which enabled us to set up
a tool chain that includes these tools. On the other hand, our language models have
been designed to consider already existing standards as well as to be �exibly applied
to support new standards. Thus, the abstract user interface model can be utilized for
several di�erent formats. Whereas the MASP Builder utilized ontologies for the domain
model, UPnP Pro�les, Java classes as well as data based on class structures or database
tables can be utilized for deriving the AUI model as well. Finally the service model
is currently realized to support Java as well as Universal Plug and Play calls, but web
services and remote procedure calls could be applied as well.

Requirement 16: Consideration of semantic data � requires considering the increasing
amount of content that is structured in a way that the data's semantics can be
captured by a machine.

Discussion: In section 6.2.2 we presented the derivation of abstract interaction objects
based on a domain model that is structured by using ontologies. Since the selection and
enrichment activities are directly bound to the underlying domain objects structure, the
processing of the abstract user interface can bene�t from the domain model semantics.
For instance we bene�t from the aggregation, composition, and inheritance relationships
and are able to automatically select the correct abstract interaction objects based on
these relationships. Further on we can refer to di�erent AIO's for a certain domain
object, depending whether it is part of an aggregation, or an inheritance relationship.
The former one could for instance result in a condensed representation, whereas the latter
scales the level of detail of the representation based on the inheritance level.
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8.4 Summary of Contributions

The contribution of this work consists of three aspects: a method, an architecture and
language model additions. Whereas the method is the main driving force and motivation
for this thesis, the proposal for an architecture awaking the design-models alive at run-
time as well as several language additions supplement this work.

1. A method for a model-based development of interactive applications that:

� Is comprehensive in the term that it covers the complete software engineering
process

� Is tool-supported for each step of the development process to reduce the often
mentioned complexity of model-based user interface design.

� Follows a strict user-centered development approach, which includes to derive
exemplary results and prototypes in each step of the development process
(�design by example�) to test the model-based designs as often and early as
possible. These prototypes can be used by a developer to retrieve feedback
from the users and prevent misunderstandings and tray and error trashing.

2. An architecture for realizing model-based run-time environments based on software
agents. The architecture is designed to:

� Separate a system based on the design and implementation of aspects, each
containing a comprehensive view to ensure that additions and manipulations
can be applied consistently with the complete system view in mind.

� Keep the design-time models alive in a declarative way and derives the model
synchronization based on the model mappings, which enables ad-hoc context-
of-use adaptations based on reasoning about the models at run-time.

� Be easily con�gurable and extensible by supporting the �exible con�guration
and addition of new Model-Agents based on the requirements of the interactive
application and the language models that should be utilized for implementa-
tion.

3. Extension and de�nition of further models, which enable:

� Direct execution of the involved models to reduce the gap between design-time
and run-time.

� Introduction of explicit mappings to the other models as part of the model
de�nition supporting the designer to think about the model-to-model relations
during the design and enable the automatic derivation to the agent-based run-
time environment.

� A speci�cation of the layout by interpreting the other design models' infor-
mation for layout generation. The layout model can be easily enhanced to
support adaptations to new contexts-of-use independently from a speci�c ap-
plication and is e�ciently processable at run-time.

� The speci�cation of an abstract user interface that considers the domain model
semantics and maintains the relation to the domain model at run-time.
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8.5 Future Work

Several things still remain to be done around the method, the tools and the language
models that have been proposed in this work. The vision of model-based development is
to completely remove the gap between design-time and run-time, which means that all
the design-time models, can be de�ned in a way that they all can be directly executable
without the need for an implementation phase. If tools became intuitive and easy to use
that even the end-user can be involved in designing an application, in the future each
end user is able to manipulate and adapt applications to ful�ll exactly his personal needs
to be e�ciently accessed on devices and modalities he is feeling most comfortable with.
Whereas realizing this vision still involves a lot of research e�orts, this work enables

several options to be further investigated:

User interface migration and distribution: User interface migration enables the realiza-
tion of follow-me services and requires the user interface layout to be adapted to
every platform that is located close to the user. Whereas the calculation and adap-
tation of all possible user interface migration scenarios might be done as part of
the design-process, user interface distribution requires access to the model seman-
tics at run-time. Since it is up to the user or to the environment to decide which
part of the user interface should be presented by which platform or modalities and
therefore all possible distributions can't be handled during design process.

Fusion and �ssion in multi-modal user interfaces: Fusion and Fission of multiple
modalities is a complex problem. The famous �put that there� example [Bolt, 1980]
demonstrates that fusion algorithms require a lot of semantics to merge inputs from
the user via various modalities. In [Blumendorf et al., 2006] we already proposed
an initial concept for managing the fusion and �ssion by bene�ting from the run-
time semantics and relying on a multi-level propagation of input and output events.
The basic idea of this approach is to handle the fusion and �ssion separately for
each level of abstraction. In case a fusion is not possible information are propagated
to a higher level until merging is possible.

Usability testing: Since by our approach all semantics are declaratively stated and can
be manipulated at run-time, wizard-of-oz testing can be easily applied. For instance
the debugging tool can be used to directly manipulate a running application based
on what the user inputs. Since these manipulations can be done for every model
not only primitive user inputs can be entered to the system but certain tasks can
be marked as done or domain concepts can be changed to re�ect what the user
means.

Rapid prototyping: By evolving the application at run-time and adding or changing the
models prototyping can be performed e�ciently in two ways. First, the applica-
tion's presentation or functionality (like for instance the task �ow) can be manipu-
lated instantly to consider the user's feedback. Second, new platforms and modali-
ties can be tested directly with a running application. Especially if the application
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requires a speci�c setup to be run, like for instance a smart environment, prototyp-
ing can become time-consuming, if each change of the prototype requires another
design, implementation and deployment cycle to be tested. An initial approach by
specifying modality speci�c task trees that can be �exible added to an already run-
ning application has been described in subsection 6.2.1 and [Feuerstack et al., 2007]
respectively.

Automatic usability evaluation: Interactive applications that are able to adapt to sev-
eral contexts-of-use including platforms, modalities, users, as well as certain envi-
ronment conditions can only tested to a limited extend by a traditional usability
evaluation. The pure amount of possible representations of the user interface de-
mand for approaches that can automate at least parts of the testing process. A
way to evaluate the usability of a system is to compare the system interaction
model with the mental model of a user. Mismatches of both models can indicate
usability issues. Since when following the MAC concept, the system interaction
model is already explicitly and declaratively existent in each Model-Agent, auto-
mated usability evaluation can bene�t from this information. A �rst prototype
that follows such an automated usability evaluation approach has been described
in [Feuerstack et al., 2008], where we connected the MASP run-time environment
to the MeMo workbench.
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Annex

Screenshots of the Final User Interfaces of the Cooking Assistant

Figure 8.1: Welcome screen of the cooking assistant application. The user can choose
either to cook the recipe that he has watched in the cooking show, a recipe
recommendation of his health assistant, or search for a recipe in his recipe
database.
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Figure 8.2: Screenshot of the recipe �nder graphical user interface. The user can search
for recipes by specifying several search criterias (left column). The right
column displays the �ltered recipe list and the actually selected recipe details
(left-bottom).
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Figure 8.3: Screenshot of the shopping list generation. After the user has choosen a recipe
to cook, she is asked to enter the number of persons to calculate the required
ingredients amounts, which can be manipulated by the user using the right
column.
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Figure 8.4: Screenshot of the cooking aid user interface that supports the user during
the cooking process. The layout is inspired by a typical recipe book, but is
enhanced by interactive and multimedial features. Therefore the cooking aid
separates a recipe into a list of recipe steps that contain a detailed description
(at the bottom of the screenshot) what the user has to do. In the left column
of the screen the required ingredients are highlighted based on the actual
active step and the related part of the cooking show can be reviewed in a
video window at the top-right part of the screen. Finally, kitchen appliances
that are required for a certain step can be controled at the bottom-right part
of the screen.
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Figure 8.5: The cooking assistant has been installed in the kitchen of the ambient living
testbed, a moden four room apartment at the Technische Universität Berlin.
The user is able to control the cooking assistant by using a touch screen that
is embedded into the kitchen cubicle. All appliances that are relevant during
the cooking process (like the oven and the chimney) can be controled by the
cooking assitant.
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The complete Task Model of the Cooking Assistant

Figure 8.6: The abstract basic task tree of the cooking assistant. The task is detailed by
the following �gures.
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Figure 8.7: The recipe �nder task tree part of the cooking assistant application.
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Figure 8.8: The part of the task tree that describes the calculation of the amount of
ingredients.
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Figure 8.9: The part of the task tree that describes the cooking aid of the cooking assis-
tant application.
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