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Preface

This thesis arose out of a desire to understand and simulate rigid body motion in 2- and
3-dimensional spaces of constant curvature.The results are arranged in a theoretical part
and a practical part. The theoretical part first constructs necessary tools – a family of real
projective Clifford algebras – which represent the geometric relations within the above-
mentioned spaces with remarkable fidelity. These tools are then applied to represent
kinematics and rigid body dynamics in these spaces, yielding a complete description of
rigid body motion there. The practical part describes simulation and visualization results
based on this theory.

Historically, the contents of this work flow out of the stream of 19th century math-
ematics due to Chasles, Möbius, Plücker, Klein, and others, which successfully applied
new methods, mostly from projective geometry, to the problem of rigid body motion. The
excellent historical monograph [Zie85] coined the name geometric mechanics expressly
for this domain1. Its central concepts belong to the geometry of lines in three-dimensional
projective space. The theoretical part of the thesis is devoted to formulating and occa-
sionally extending these concepts in a modern, metric-neutral way using the real Clifford
algebras mentioned above.

Autobiographically, the current work builds on previous work ([Gun93]) which ex-
plored visualization of three-dimensional manifolds modeled on one of these three con-
stant curvature spaces. The dream of extending this geometric-visualization framework to
include physics in these spaces – analogous to how in the past two decades the mainstream
euclidean visualization environments have been gradually extended to include physically-
based modeling – was a personal motivation for undertaking the research which led to
this thesis.

1 although today there are other meanings for this term.
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Audience

The thesis is written with a variety of audiences in mind. In the foreground is the desire
to present a rigourous, self-contained, metric-neutral elaboration of the mathematical
results, both old and new. It is however not written for the specialist alone. For those
interested only in the euclidean theory I have attempted to make it accessible to readers
without background or interest in the non-euclidean thread. To be self-contained, many
preliminary results from projective geometry and linear and multi-linear algebra are
stated, with references to proofs in the literature. To be accessible, most of the results
are stated and proved only for the dimensions n = 2 and n = 3, even when a general proof
might present no extra difficulty. The exposition includes many examples, particularly
euclidean ones, in which the reader can familiarize himself with the content. I have
attempted at the ends of chapters to provide a guide to original literature for those
interested in exploring further. Finally, as a firm believer in the value of pictures, I have
tried to illustrate the text wherever possible.

Outline

Chapter 1 introduces the important themes of the thesis via the well-known example of
the Euler top, and shows how by generalizing the Euler top one is led to the topic of
the thesis. In addition to reviewing the key ingredients of rigid body motion, it contrasts
the historical approaches of Euler and Poinsot to the problem, and relates these to the
approach taken here. It discusses the appropriate algebraic representation for the math-
ematical problems being considered. It shows how quaternions can be used to represent
the Euler top, and specifies a set of properties which an algebraic structure should possess
in order to serve the same purpose for the extended challenge posed by the thesis.

Chapter 2 introduces the non-metric foundations of the thesis. The geometric foun-
dation is provided by real projective geometry. From this is constructed the Grassmann,
or exterior, algebra, of projective space. A distinction is drawn between the Grassmann
algebra and its dual algebra; the latter plays a more important role in this thesis than
the former. We discuss Poincaré duality, which yields an algebra isomorphism between
these two algebras, allowing access to the exterior product of the one algebra within the
dual algebra without any metric assumptions.

Chapter 3 introduces the mathematical prerequisites for metric geometry. This begins
with a discussion of quadratic forms in a real vector space V and associated quadric
surfaces in projective space P(V). A class of admissable quadric surfaces are identified
– which include non-degenerate and “slightly” degenerate quadric surfaces – which form
the focus of the the subsequent development.

Chapter 4 begins with descriptions of how to construct the elliptic, hyperbolic, and
euclidean planes using a quadric surface in RP 2 (also known as a conic section in this
case), before turning to a more general discussion of Cayley-Klein spaces and Cayley-
Klein geometries. We establish results on Cayley-Klein spaces based on the admissable
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quadric surfaces of Chapter 3 – which are amenable to the techniques described in the
rest of the thesis.

In Chapter 5 the results of the preceding chapters are applied to the construction
of real Clifford algebras, combining the outer product of the Grassmann algebra with
the inner product of the Cayley-Klein space. We show that for Cayley-Klein spaces
with admissable quadric surfaces, this combination can be successfully carried out. For
the 3 Cayley-Klein geometries in our focus, we are led to base this construction on the
dual Grassmann algebras. We discuss selected results on n−dimensional Clifford algebras
before turning to the 2- and 3-dimensional cases.

Chapter 6 investigates in detail the use of the Clifford algebra structures from Chap-
ter 5 to model the metric planes of euclidean, elliptic, and hyperbolic geometry.2 The
geometric product is exhaustively analyzed in all it variants. Following this are metric-
specific discussions for each of the three planes. The implementation of direct isometries
via conjugation operators with special algebra elements known as rotors is then discussed,
and a process for finding the logarithm of any rotor is demonstrated. A typology of these
rotors into 6 classes is introduced based on their fixed point sets.

Taking advantage of the results of Chapter 6 wherever it can, Chapter 7 sets its focus
on the role of non-simple bivectors, a phenomenon not present in 2D, and one which plays
a pervasive role in the 3D theory. This is introduced with a review of the line geometry
of RP 3, translated into the language of Clifford algebras used here. Classical results on
line complexes and null polarities – both equivalent to bivectors – are included. The
geometric products involving bivectors are exhaustively analyzed. Then, the important
2-dimensional subalgebra consisting of scalars and pseudoscalars is discussed and function
analysis based on it is discussed. Finally, the axis of a rotor is introduced and explored
in detail. These tools are then applied to solve for the logarithm of a rotor in the 3D
case also. We discuss the exceptional isometries of Clifford translations (in elliptic space)
and euclidean translations in detail. Finally, we close with a discussion of the continuous
interpolation of a metric polarity. We demonstrate a solution which illustrates the power
and flexibility of these Clifford algebra to deal with challenging geometric problems.

Having established and explored the basic tools for metric geometry provided by these
algebras, Chapter 8 turns to kinematics. The basic object is an isometric motion: a
continuous path in the rotor group beginning at the identity. Taking derivatives in this
Lie group leads us to the Lie algebra of bivectors. The results of Chapter 7 allow us to
translate familiar results of Lie theory into this setting with a minimum of machinery.
We analyse the vector field associated to a bivector, considered as an instantaneous
velocity state. In deriving a transformation law for different coordinate systems we are
led to the Lie bracket, in the form of the commutator product of bivectors. Finally, for
noneuclidean metrics, we discuss the dual formulation of kinematics in which the role of
point and plane, and of rotation and translation, are reversed.

The final theoretical chapter, Chapter 9, treats rigid body dynamics in the 3D setting.
This begins with a metric-neutral treatment of statics. Movement appears via newtonian
particles, whose velocity and impulse are defined in a metric-neutral way purely in terms

2 The decision to begin with the 2D case rather directly with the 3D was based on the conviction
that this path offers significant pedagogical advantages due to the unfamiliarity of many of the
underlying concepts.
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of bivectors and the metric quadric. Rigid bodies are introduced as collections of such
particles. The inertia tensor is defined and shown to be a symmetric bilinear form on
the space of bivectors. We introduce a second Clifford algebra, on the space of bivectors,
whose inner product is derived from this inertia tensor. We derive Euler equations for
rigid body motion, and indicate how to solve them. Finally, we discuss the role of external
forces and discuss work and power in this context.

Chapter 10 provides a brief introduction to dual euclidean geometry and its associated
Clifford algebra. It begins by showing that the set of four geometries: euclidean, dual
euclidean, elliptic and hyperbolic, form an unified family closed under dualization. It
compares the dual euclidean plane to the euclidean plane via some elementary examples,
and indicates some interesting research possibilities for this geometry.

Once these theoretical results have been established, experimental results based on
this theory are presented in Chapter 11. The focus is on the non-euclidean spaces, with
the euclidean results being mainly useful as quality control. First the two-dimensional
case is handled. A variety of qualitative behaviors are presented and discussed with
reference to the theoretical results already presented. Then the three-dimensional case
is handled, and some behaviors not seen in the 2D case are shown and discussed. The
presentation of these results is accompanied by a description of visualization strategies
and tools developed to assist in the presentation and analysis of the results, in both 2D
and 3D.

The concluding chapter, Chapter 12, reflects on the results presented and provides an
overview of innovative aspects, ranging from concrete to methodological.
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Chapter 1

Preview: the Euler Top

One of the main goals of this thesis, as sketched in the Forward, is to provide a modern
understanding of rigid body motion in the 3-dimensional non-euclidean spaces of elliptic
and hyperbolic geometry. A natural starting point for this investigation is provided by
the well-known example of the Euler top, one of the simplest non-trivial examples of rigid
body motion. This is a rigid body in three-dimensional euclidean space, constrained to
move around its center of mass, and not subject to any external forces. Not only does this
example serve to identify the key components of the analysis of rigid body motion; we will
show below (Sect. 9.5.2) that the content of this thesis is a natural extension of the Euler
top when one removes the constraint that the motion has a fixed point. Furthermore,
the differing approaches to the Euler top represented by Euler and Poinsot, also throws
an important light on the choice of methods adopted in this thesis.

The discussion here is not intended to be mathematically rigorous. Readers for which
the material is unfamiliar are encouraged to consult standard literature on rigid body
mechanics such as [Arn78], Ch. 2. Proofs for all the results presented here can also be
obtained from the thesis itself by re-introducing the constraint that the center of mass
is fixed by the motion. See Section Sect. 9.5.2 for details. A much fuller account of the
historical details presented here can be found in [Zie85].

1.1 Euler and the analytic approach

The question of rigid body mechanics entered the mathematical literature with the inves-
tigations of Euler and d’Alembert (working separately around 1760) [Zie85]. The problem
which they solved was: given the mass distribution of the rigid body and its initial ve-
locity, to find a path in the isometry group SO(3) of rotations of R3, which describes
the position of the body at each subsequent moment of time. Each obtained a complete
description of the motion of an Euler top as the solution of a set of ordinary differential
equations. The differential equations for the instantaneous velocity of the object became
known as Euler equations of the motion. Lagrange (1788) introduced a more abstract
setting in which the motion of the Euler top could be solved.

1



2 1 Preview: the Euler Top

The key feature of all the analytic approach is that attention is focused on the isometry
group of the rigid body rather than on the ambient space of the rigid body.1 This is easy
to overlook since the dimension of both spaces in the case of the Euler top is 3. As a
result, the analytic solution does not immediately provide any detailed description of
how the motion proceeds within the ambient space of the body.

1.1.1 Poinsot and the geometric approach

This unsatisfactory state of affairs was addressed and remedied by Poinsot in [Poi51]
(English translation [Poi84]), based on a work first presented in 1834. This work, made
possible by the dramatic developments in geometry at the turn of the 19th century notably
in the school led by Monge (1746-1818), is based on a geometric approach, in contrast
to the analytic approach pioneered by Euler and Lagrange. Poinsot first describes his
dissatisfaction with the results of the analytic approach:

...it must be allowed, that in all these solutions [of Euler, d’Alembert, and Lagrange], we
see nothing but calculations, without having any clear idea of the rotation of the body. We
may be able by calculations, more or less long and complicated, to determine the place of
the body at the end of a given time; but we do not see at all how it arrives there. [[Poi84],
p. 2]

and goes on to describe his alternative approach and its advantages:

Therefore to furnish a clear idea of this rotatory motion, hitherto unrepresented, has been
the object of my endeavors. The result is an entirely new solution to the problem of [the
Euler top]: a genuine solution, inasmuch as it is palpable, and enables us to follow the motion
of the body as clearly as the motion of a point. And if we would pass from this geometrical
representation to calculation ... the formulae required for the purpose are direct and simple,
each of them expressing a dynamical theorem of which we have a clear idea, and which
proceeds at once to its object. [[Poi84], p. 3]

Finally, Poinsot reflects on the success of his method as being a result of a particular
penetration of the phenomena with exactly the correct mathematical concepts:

For we may remark generally of our mathematical researches, that these auxiliary quantities,
these long and difficult calculations into which we are often drawn, are almost always proofs
that we have not in the beginning considered the objects themselves so thoroughly and
directly as their nature requires, since all is abridged and simplified, as soon as we place
ourselves in a right point of view. [[Poi84], p. 4]

From this we can infer that the distinction between his method and that of his prede-
cessors is not only geometric vs. analytic; it is just as much concrete vs. abstract. Poinsot’s
achievement is based on his focusing on the concrete conditions of the Euler top, and out
of these concrete conditions, deriving a description that avoids the complexities inherent
in the more abstract approach of Euler and Lagrange. His method is more comprehensive
than the analytic one, since using it he was able to derive all the results obtained by Euler
and Lagrange for the Euler top, but the opposite is not true.

1 This is a modern formulation; the group concept had not yet been introduced in the 18th century.
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1.2 Ingredients of the motion of the Euler top

Before proceeding further we provide a quick review of the ingredients of these solutions of
the Euler top. Fig. 1.1 shows a diagramatic representation of an Euler top at a particular
instant of its motion. In this case the rigid body is represented by the yellow wireframe
box, and consists of 8 particles positioned at the corners of the box. That it is a rigid
body means that the distances of all particle pairs remains fixed under the motion. The
other elements in the figure will be discussed in the subsequent discussion of Poinsot’s
contributions.

V

Ri

Ri
.

Fig. 1.1 The angular velocity V determines the linear velocity Ṙi of the particle of the rigid
body located at position Ri.

The instantaneous motion of an Euler top is a rotation around an axis passing through
the fixed point. Such an element is called an angular velocity and is represented by the
bronze axis labeled V. This angular velocity imparts to each particle Ri a direction and
intensity of motion represented by the vector Ṙi := V×Ri. The angular momentum of
the particle is then obtained by Mi := miR × Ṙi where mi is the mass of the particle
at Ri. One also defines the kinetic energy of the particle as Ei := m

2 ‖Ṙi‖2. The absence
of external forces implies that both Mi as well as Ei is a conserved quantity.
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When one sums over all the particles in the body, one obtains aggregate momentum
and kinetic energy for the body:

M =
∑
i

Mi, E :=
∑
i

Ei

These are naturally also conserved quantities.
Expanding out the summation for the energy yields an expression which depends

quadratically on the angular velocity V. One can express this dependence in a symmetric
bilinear form A, the inertia tensor of the body, and arrive at the formula E = A(V,V).
This in turn provides a similar form for the momentum: M = A(V). Here, the occurrence
of A represents the polarizing operator associated to a symmetric bilinear form. This
shows that the momentum is a dual vector with respect to the angular velocity.

By considering the fact that the momentum is conserved, one can derive the Euler
equations for the angular velocity in the body:

V̇c = A−1(Vc ×Mc) (1.1)

To obtain the motion of the rigid body as a path g in the Lie group SO(3), the rotations
of R3, one can then integrate ġ using the relation ġ = gVc.

1.2.1 Poinsot description

The description above essentially reflects the thought-process of the Euler approach to
the Euler top. [Poi51] provides a much fuller geometric description of this motion. The
elements of this description are shown in Fig. 1.2. The angular velocity is assumed to be
given. Then the angular momentum, defined as above by M = A(V) is an element of the
dual space, hence a plane; it is traditionally represented by the normal direction of this
plane, in this case, the red vertical axis. For a given choice of M, the set of all angular
velocity V which yield the same kinetic energy E is a quadric surface called by Poinsot
the inertia ellipsoid. It is shown as a white wireframe ellipsoid in the figure.

Poinsot provides a geometric understanding of how the angular velocity and angular
momentum evolve in R3. The path of the angular velocity vector, as the rigid body
moves, is called by Poinsot the polhode of the motion. Since the energy E is conserved,
the polhode is constrained to lie on the surface of the inertia ellipsoid. On the other hand,
conservation of the momentum vector in space implies conservation of its length in body
coordinate system: ‖A(V)‖ = k, which represents another, confocal ellipsoid. Hence the
polhode is the intersection of these two ellipsoids, a closed quartic curve on the inertia
ellipsoid. It is the cyan curve in the figure.

In the world coordinate system, where the momentum is fixed, the condition that
〈V,M〉 = E represents a plane perpendicular to the angular momentum, called by
Poinsot the invariant plane, which appears in gray at the bottom of the figure. The
green curve in the invariant plane is the path of the angular velocity in the world coordi-
nate system, and was called by Poinsot the herpolhode. As the body moves, the angular
velocity vector traces out the polhode on the inertia ellipsoid and the herpolhode on the
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Angular Momentum Angular Velocity

Herpolhode

Polhode

Inertial Ellipsoid

Invariant Plane

Fig. 1.2 The Poinsot description of the motion provides geometric interpretation to the elements
of the analytic description of the motion.

invariant plane. This means that the inertia ellipsoid rolls on the invariant plane during
the motion, its point of contact being the current angular velocity. The herpolhode is
a quasi-periodic curve that, generically, fills in an annulus of the invariant plane, where
the inner (outer) boundary circle of the annulus corresponds to angular velocities with
minimum (maximum) speed.

1.2.2 Generalizing the Euler top

One obtains the theme of this thesis if one replaces the condition that the body has a
fixed point, with the condition that the body is free to move in a (3-dimensional) space of
constant curvature. The details of this claim are established in the introductory chapters
of the thesis, where it is shown that there are three such spaces – euclidean, elliptic, and
hyperbolic space. Furthermore, the isometry groups of these spaces are all 6-dimensional
Lie groups which contain SO(3) as a subgroup.

[Arn78], Appendix 2, provides a methodology to deduce and solve the Euler equations
for rigid body motion in an abstract setting which includes the three spaces above.
Arnold’s approach works with any Lie group; the role of the inertia tensor is taken over
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by a left-invariant metric on the corresponding Lie algebra. That is, if one has an inertia
tensor, one obtains such a left-invariant metric; but one can in fact work with the wider
class of left-invariant metrics and obtain and solve ODE’s. This is a useful approach for
a first solution.

However, all the objections raised by Poinsot to the analytic approach apply here to
the Arnold approach. All the calculations take place in the 6-dimensional spaces of the
Lie group and the Lie algebra. There is, a priori, no geometric insight into how the motion
unfolds in the underlying 3-dimensional space where the rigid body and the observer are
at home. Due to this limitation, the current thesis adopts the attitude of Poinsot, and
sets the goal of providing a geometric description of the rigid body motion which as much
as possible refers to geometric entities in the underlying 3-dimensional space where the
motion occurs.

1.3 Algebraic representation

The goal of providing a Poinsot description of rigid body motion brings with it the
question of what mathematical representation is best-fitted to achieve that goal. The
historical work of Euler and Poinsot preceded the development of modern algebra. The
majority of the current literature on rigid body motion employs linear algebra to represent
the isometry groups and their action on the points of the ambient space of the body. The
current work departs from that trend in its use of geometric (or Clifford) algebra for
that purpose. The best way to motivate this choice is to return to the example of the
Euler top and show how quaternions can be profitably used to model the rigid body
motion. Then, after this excursion, we discuss the ways this algebraic structure needs to
be extended to handle the spaces considered by this thesis.

1.3.1 Quaternions

William Rowan Hamilton discovered quaternions in 1843. Our aim here is not to provide
an exhaustive account of quaternions, but just to present enough results to indicate the
direction followed in the sequel.

Recall some facts about quaternions. Begin with R4 with basis {1, i, j,k}. Introduce
a product structure on the basis elements:

12 = 1; i2 = j2 = k2 = −1
1 commutes with i, j, and k.
ij = −ji, jk = −kj, ki = −ik

Extend this product by linearity to all of R4. This yields an associative, non-commutative
algebra called the quaternions, written H. 1 is the identity element.

Definition 1. For a quaternion a := a01 + a1i + a2j + a3k:

• as := a01 is the scalar part of a.
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• av := a1i + a2j + a3k is the vector part of a.
• If a = av, a is an imaginary quaternion; the set of imaginary quaternions is denoted

IH.
• For a = as + av, a := as − av is called the conjugate of a.
• a · b = ab is the inner product of a and b.

• For non-zero a, a−1 :=
a

a · a
is the inverse of a.

• ‖a‖ :=
√

aa is the norm of a.
• If ‖a‖ = 1, a is a unit quaternion.

Remark 2. Verify that the definitions make sense. a ·b ∈ R1. The inverse satisfies a−1a =
aa−1 = 1.

The set of unit quaternions can be identified with the 3-dimensional sphere S3. We
identify IH with R3 in the obvious way.

Let · and × be the inner and cross products, resp., on R3. Then for g,h ∈ IH one can
verify directly that:

gh = −g · h + g × h

Thus, the quaternion product combines the inner product with the cross product of R3.
A unit quaternion g can be written as cos θ + sin θ(u) where u is a unit imaginary

quaternion satisfying u2 = −1. Then evaluate the exponential function as a power series
to obtain:

g = eθu

For θ ∈ [0, 2π), this is a bijective mapping IH↔ S3.
Consider the product g(x) := gxg−1 = gxg for unit quaternion g and imaginary

quaternion x. Write g = cos θ + sin θ(u). Then one can show that g is a rotation of R3

around the axis u of an angle 2θ. Under this mapping, g and −g give the same rotation.
Hence, one obtains a map:

IH e (1:1)−−−−→ S3
g (2:1)
−−−−→ SO(3)

We review the prominent features of the configuration described above:

I. The quaternion product gh combines a symmetric and an anti-symmetric part.
II. IH is a vector subspace of H, and S3 is a sub-group of H such the exponential map

e : IH → S3 is locally a bijection and globally a covering map. The nice properties
of this map depend on the fact that the elements of IH have scalar square.

III. The map S3 → SO(3) : g→ g is a 2:1 covering of the rotation group of R3.

1.3.2 The Euler top via quaternions

One can represent elements of SO(3) and its Lie algebra via quaternions. The motion g
becomes a path in S3; the angular velocity and momentum become elements of IH. The
Euler equations become:



8 1 Preview: the Euler Top

ġ = gVc

Ṁc =
1
2

(VcMc −McVc)

Here all products are the quaternion product. We mention two advantages of the quater-
nion approach:

1. The representation of isometries is geometric: the axis of a rotation r ∈ S3 is the
imaginary part of r.

2. The representation is compact : an isometry is represented by 4 real numbers. Compare
this to the matrix approach, where 9 real numbers are required. This compactness has
significant advantages in numerical applications, for example, in solving differential
equations, since one has many fewer directions of moving away from the correct
solution.

1.3.3 Quaternion-like algebras for spaces of constant curvature

Motivated by these advantages, the current thesis incorporates algebras, analogous to
the quaternions, corresponding to the larger isometry groups of the spaces under inves-
tigation. It turns out to be possible to find algebras which not only fulfill properties
analogous to I, II, and III above, but which possess further attractive properties.

These algebras are obtained by introducing a graded algebraic structure in which
different grades represent different-dimensional subspaces. Such a graded algebra is called
a Grassmann algebra. The next step involves adding an inner product, which reflects the
underlying metric properties of the space, to yield a Clifford algebra. The full power of
this approach to represent a variety of interesting spaces is only enabled when one works
within projective space rather than vector space. These are the mathematical foundations
which form the next four chapters of this study. There follow two chapters showing how to
use these algebras to do geometry in 2- and 3-dimensional spaces of constant curvature.
These tools then provide the basis for investigating kinematics and rigid body mechanics
in these spaces (Chapter 8 and Chapter 9).



Chapter 2

Projective foundations

This chapter reviews the non-metric mathematical structures – projective space and
exterior algebra – required for the rest of the thesis. The choice of results presented here
is conditioned by the requirements of later chapters. Consequently, particular attention
is paid to establishing the principle of duality.

2.1 Projective geometry

Real projective n-space Let V be a real vector space of dimension (n + 1), and V∗

its dual space. Let 〈u,x〉 = u(x) represent the scalar product on V ⊗ V∗ given by the
evaluation map of a dual vector (linear functional) applied to a vector.

Then the n-dimensional projective space P(V) is obtained from V by introducing an
equivalence relation on vectors x,y ∈ V \ {0} defined by: x ∼ y ⇐⇒ x = λy for some
λ 6= 0. That is, points in P(V) correspond to lines through the origin in V. We sometimes
write this equivalence relation x ≡ y if two vectors represent the same projective point.
See also Sect. 2.4 below.

Remark 3. For most of this work, V = Rn+1 (or (Rn+1)∗) and P(V) = RPn (or (RPn)∗),
real projective space of dimensions n (or its dual). However, note that in many contexts
it is not considered as an inner product space, that is, we do not assume it is equipped
with an inner product. This differentiation will become more clear in Chapter 3 where
metrics are introduced.

2.1.1 Projectivities

We review some facts about projective transformations which will be important in Chap-
ter 5 since they provide the basis of the theory of isometries for the metric spaces under
consideration.

9



10 2 Projective foundations

Definition 4. Given four points a,b, c,d ∈ RP 1 with homogeneous coordinates a =

(a0, a1), etc.. The cross ratio of the four points, written (a,b; c,d) :=
|a, c||a,d|
|b, c||b,d|

, where

.|a, c| denotes the determinant a0c1 − a1c0, etc.

Definition 5. A projectivity of RP 1 is a bijective map RP 1 → RP 1 which preserves the
cross ratio.

To obtain a similar notion for higher dimensions, we introduce an alternative definition:

Definition 6. For n > 1, a projectivity is a bijective map RPn → RPn or RPn →
(RPn)∗ which preserves linear dependence, and linear independence, of sets. The former
is called a collineation, the latter, a correlation.

From this definition it is possible to deduce the following two theorems.

Theorem 7. A projectivity is uniquely determined by its action on a linearly independent
set of n+ 2 points.

Remark 8. Typically, these points are provided by n+1 basis vectors ei and the so-called
unit point u. For our purposes, we choose the unit point to be u :=

∑
i ei.

Theorem 9. A projectivity preserves the cross ratio of 4 collinear points.

For a proof, see [Spe63], §21.
The collineations form a group. This group is generated by a set of involutions de-

scribed as follows.

Definition 10. Let Z be a point and m be a hyperplane in RPn such that Z is not inci-
dent with m. Then the harmonic homology with center Z and axis m is the collineation
HZ,m defined by:

HZ,m(P) = −〈Z,m〉P + 2〈P,m〉Z (2.1)

A harmonic homology fixes the center (linewise) and the axis (pointwise), and its
action on a point P is as follows: find the intersection S of the line k joining Z with
P, with the axis m. Then P′ := HZ,m(P) is the unique point of k such that the point
pairs (Z,S), (P,P′) separate each other harmonically. See Fig. 2.1. For a proof see the
discussion below of centered collineations.

Fig. 2.1 A harmonic
homology with center Z
and axis m acting on
a point P. In gray, a
harmonic quadrilateral
determined by P,Z, and
S, which determines P′ as
“hamonic fourth point”
to other three points.
Other choices of this cross
ratio λ lead a centered
collineation with factor λ. Z

SP

P‘

m
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Remark 11. The harmonic homology is a special case of a centered collineation, a
collineation of the form:

PZ,m,λ(P) = λ〈Z,m〉P + (1− λ)〈P,m〉Z (2.2)

A centered collineation has center Z and axis m as in the harmonic homology. We say λ is
the factor of the centered collineation. For λ = −1, one obtains the harmonic homology;
λ = 1 yields the identity; λ = 0, the projection onto Z; λ =∞, projection onto m. Notice
that PZ,m,0 is not defined for P ∈m, and PZ,m,∞ is not defined for P = Z.

Theorem 12. For P′ = PZ,m,λ(P), (S,Z; P,P′) = λ.

Proof. WLOG we can assume Z is chosen so that 〈Z,m〉 = 1. Define x := 〈P,m〉. Setting
S = αP + βZ and solving 〈S,m〉 = 0 leads to S = P − xZ. Assigning homogeneous
coordinates (0, 1) to S and (1, 0) to Z leads then to coordinates (x, 1) for P and (x, λ)
for P′. Evaluating the cross ratio (S,Z; P,P′) using Def. 4 yields the desired result. ut

Remark 13. There are various ways to parametrize the family PZ,m,λ; the one given
above is chosen since it behaves nicely with respect to orientation of fixed points. For
example, for positive λ, the point-pairs (P,P′) and (Z,S) do not separate each other, so
the collineation preserves order along each invariant line. Correspondingly, fixed points
P ∈m are mapped to positive multiples of themselves; the opposite is true for negative
λ. For λ = 0, P′ is not defined, and for λ = ±∞, the freedom to choose the sign shows
that it is impossible to define an orientation in this case also.

Similar remarks apply for RP 2n; in odd dimensions there is no way to consistently
assign orientation to the fixed points using the formula, since all fixed points are reversed
by the centered collineation. A similar analysis shows that Z is always mapped to a
positive multiple of itself; this reflects the fact that for all λ, a small neighborhood of Z
is mapped to a small neighborhood of itself with the same orientation.

Remark 14. Like any collineation, the harmonic homology has an induced action on the
dual space of hyperplanes. Viewed as a collineation of the dual space, this is also a
harmonic homology, with center m and axis Z. Thus, the concept of harmonic homology
is a self-dual one. One obtains the dual formula by dualizing (2.1):

HZ,m(l) = −〈Z,m〉l + 2〈Z, l〉m (2.3)

This dual version will be important when we take up this theme again in Sect. 4.6.

2.2 Exterior algebra

Let V be a real vector space of dimension n. The exterior, or Grassmann, algebra
∧

(V),
is generated by the exterior product1 ∧ applied to the vectors of V. The exterior product

1 Also called the outer or wedge product
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is an alternating, bilinear operation. The algebra has a graded structure. The elements
of grade-1 are defined to be the vectors of V; the exterior product of a k- and m-vector
is a (k +m)-vector, when the operands are linearly independent subspaces. An element
that can be represented as a wedge product of k 1-vectors is called a simple k-vector, or
k-blade. The k-blades generate the vector subspace

∧k(V), whose elements are said to
have grade k. This subspace has dimension

(
n
k

)
, hence the total dimension of the exterior

algebra is 2n.
Simple and non-simple vectors. A k-blade represents the subspace of V spanned

by the k vectors which define it. Hence, the exterior algebra contains within it a represen-
tation of the subspace lattice of V. For n > 3 there are also k-vectors which are not blades
and do not represent a subspace of V. Such vectors occur as bivectors when V = R4 and
play an important role in the discussion of kinematics and dynamics in Chapter 8 and
Chapter 9.

Dual Grassmann algebra. The same construction can be applied to construct
∧

V∗,
the exterior algebra of the dual vector space V∗. This is the algebra of alternating k-
multilinear forms.

2.2.1 Determinant function∧n(V) is a one-dimensional vector space. Let I be a basis element. Given a basis {vi} for
V, v1 ∧ v2... ∧ vn ∈

∧n(V), hence v1 ∧ v2... ∧ vn = αI for some non-zero α ∈ R. Define
a function

4 : ⊗nV→ R by 4 ({vi}) := α

Then 4 is called the determinant function of
∧

(V). It lets us define a canonical isomor-
phism between V and

∧n−1(V∗).

Theorem 15. V ∼=
∧n−1(V∗)

Proof. Given v ∈ V, then define ω ∈
∧n−1(V∗) by

ω(v1,v2, ...vn−1) := 4(v,v1,v2, ...,vn−1)

Conversely, given such an ω, there is a unique v such that the above equation is satisfied.
Hence V ∼=

∧n−1(V∗). ut

Remark 16. By abstract nonsense, this implies V∗ ∼=
∧n−1(V).

2.2.2 Projectivized exterior algebra

The exterior algebra can be projectivized using the same process defined above for the
construction of P (V) from V, but applied to the vector spaces

∧k(V). This yields the
projectivized exterior algebra W := P(

∧
(V)). The operations of

∧
(V) carry over to

P(
∧

V), since, roughly speaking: “Projectivization commutes with outer product”. That
is, for two elements X,Y ∈

∧
(V):
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P(X) ∧P(Y ) = P(X ∧ Y )

The difference lies in how the elements and operations are projectively interpreted. The
k-blades of P(

∧
V) correspond to (k − 1)-dimensional subspaces of P(V ). All multiples

of the same k-blade represent the same projective subspace, and differ only by intensity
([Whi98], §16-17). 1-blades correspond to points; 2-blades to lines; 3-blades to planes,
etc.

2.2.2.1 Dual exterior algebra The algebra P(
∧

V∗) is formed by projectivizing the
dual algebra

∧
(V∗). P(

∧
V∗) is the alternating algebra of k-multilinear forms. By ab-

stract nonsence, P(
∧

V∗) = (P(
∧

V))∗: projectivization commutes with dualization.
P(
∧

V∗) is naturally isomorphic to P(
∧

V); again, the difference lies in how the elements
and operations are interpreted. Like P(

∧
V), P(

∧
V∗) represents the subspace structure

of P(V), but turned on its head: 1-vectors represent projective hyperplanes, while simple
(n-1)-vectors represent projective points. The outer product a ∧ b corresponds to the
meet rather than join operator. See also Fig. 2.4.

2.2.2.2 Notation alert In order to distinguish the two outer products of P(
∧

V) and
P(
∧

V∗), we write the outer product in P(
∧

V) as ∨, and leave the outer product in
P(
∧

V∗) as ∧. These symbols match closely the affiliated operations of join (union ∪)
and meet (intersection ∩), resp. Note, however, they are reversed from some modern
literature ([HZ91]).

2.2.3 Exterior power of a map

Given a linear map f : V→ V, there is an induced grade-preserving map
∧

(f) :
∧

(V)→∧
(V) called the exterior power of f . Its action on a simple k-vector a = ei1 ∧ ... ∧ eik is

defined by
∧k(f) = f(ei1) ∧ ... ∧ f(eik (2.4)

For f : V→ V∗, one defines a map
∧

(f) :
∧

(V)→
∧

(V∗) by using the wedge in the dual
algebra in the RHS of (2.4).

Remark 17. ∧n(f) gives the determinant of the matrix of f when f is expressed in terms
of a basis {vi} satisfying 4({vi}) = 1.

2.2.3.1 The adjoint map Given f : V → V∗, construct the exterior power
∧n−1(f) :∧

(V)→
∧

(V∗). By Sect. 2.2.1,
∧n−1(f) can be considered as a map V∗ → V. It is called

the adjoint of f . We write f∗ :=
∧n−1(f). With respect to a basis, the matrix of f∗ is

the “matrix of cofactors” of the matrix of f , which isn’t surprising considering the role
played in its definition by the 4 function. For invertible f , f∗ is the unique linear map
satisfying 〈u,x〉 = 〈f(x), f∗(u)〉.

Remark 18. The adjoint is sometimes defined by identifying V and V∗ using a metric. See
for example [DFM07], Sec. 4.3.2. We prefer to avoid the use of metrics where they are
not required. See related discussion in Sect. 5.10.
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2.2.4 Equal rights for P(
∧

V) and P(
∧

V∗)

From the point of view of representing V, P(
∧

V) and P(
∧

V∗) are equivalent. There is
no a priori reason to prefer one to the other. Every geometric element in one algebra
occurs in the other, and any configuration in one algebra has a dual configuration in the
other obtained by applying the Principle of Duality [Cox87], to the configuration. We
refer to P(

∧
V) as a point-based, and P(

∧
V∗) as a plane-based, algebra.2

Depending on the context, one or the other of the two algebras may be more useful.
Here are some examples:

1. Joins and meets. P(
∧

V) is the natural choice to calculate subspace joins, and
P(
∧

V∗), to calculate subspace meets. See Sect. 2.3.1.4.
2. Spears and axes. Lines appear in two aspects: as spears (bivectors in P(

∧
V)) and

axes (bivectors in P(
∧

V∗)). See Sect. 2.2.4.1.
3. Euclidean geometry. P(

∧
V∗) is the correct choice to use for modeling euclidean

geometry. See Sect. 5.3.
4. Reflections in planes. P(

∧
V∗) has advantages for kinematics, since it naturally

allows building up rotations as products of reflections in planes. See Sect. 5.6.1.

We turn now to item 2 above, highlighting the importance of maintaining P(
∧

V) and
P(
∧

V∗) as equal citizens.

2.2.4.1 There are no lines, only spears and axes! Most of this work is focused on
the case V = R4. In this case, bivectors are self-dual. This has interesting consequences
for how they are interpreted.

Given two points x and y ∈ P(
∧

V), the condition that a third point z lies in the
subspace spanned by the 2-blade l := x ∨ y is that x ∨ y ∨ z = 0, which implies that
z = αx + βy for some α, β not both zero. In projective geometry, such a set is called a
point range. We prefer the more colorful term spear. Dually, given two planes x and y
∈ W ∗, the condition that a third plane z passes through the subspace spanned by the
2-blade l := x ∧ y is that z = αx + βy. In projective geometry, such a set is called a
plane pencil. We prefer the more colorful term axis.

Within the context of P(
∧

V) and P(
∧

V∗), lines exist only in one of these two aspects:
of spear – as bivector in P(

∧
V) – and axis – as bivector in P(

∧
V∗). This naturally

generalizes to non-simple bivectors: there are point-wise bivectors (in P(
∧

V)), and plane-
wise bivectors (in P(

∧
V∗).) Many of the important operators of geometry and dynamics

we will meet below, such as the polarity on the metric quadric (Sect. 4.4), and the inertia
tensor of a rigid body (Sect. 9.3), map 〈P(

∧
V)〉2 to 〈P(

∧
V∗)〉2 and hence map spears

to axes and vice-versa. Having both algebras on hand preserves the qualitative difference
between these dual aspects of the generic term “line”.

Remark 19. It is possible to build up projective geometry by beginning with the line as
the primitive element and constructing points and planes from this primitive element.

2 We prefer the dimension-dependent formulation plane-based to the more precise hyperplane-
based. We also prefer not to refer to the plane-based algebra as the dual algebra, since this formu-
lation depends on the accident that the original algebra is interpreted as point-based.
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Spear Line Axis

Fig. 2.2 Three aspects of line: spear (all incident points); line qua line; and axis (all incident
planes).

This would then provide a third way to view a line, so to speak, in its own right rather
than built out of points or planes. This approach for example can be found in [Sto09].
But this approach does not lend itself to representing the subspace structure of RP 3 with
Grassmann algebras.

2.3 Poincaré Duality

Our treatment differs from other approaches (for example, Grassmann-Cayley algebras)
in explicitly maintaining both algebras on an equal footing rather than expressing the
wedge product in one in terms of the wedge product of the other (as in the Grassman-
Cayley shuffle product) ([Sel05], [Per09]). To switch back and forth between the two
algebras, we construct an algebra isomorphism that, given an element of one algebra,
produces the element of the second algebra which corresponds to the same geometric
entity of V∗.

This algebra isomorphism can be stated and proved in a coordinate-free way using ad-
vanced techniques of modern multilinear algebra ([Gre67b], Ch. 6, §2). In this form the
isomorphism is called the Poincaré isomorphism, and the resulting equivalence, Poincaré
duality. We derive it here using a particular coordinate system which simplifies the ex-
position. We first show how this works for the case of interest V = R4.
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2.3.1 The isomorphism J

Each weighted subspace S of RP 3 corresponds to a unique element SW of P(
∧

V) and to
a unique element SW∗ of P(

∧
V∗). We seek a bijection J : P(

∧
V)↔ P(

∧
V∗) such that

J(SW ) = SW∗ . If we have found J for the basis k-blades, then it extends by linearity to
multivectors. This will be the desired Poincaré isomorphism. To that end, we introduce a
basis for R4 and extend it to a basis for P(

∧
V) and P(

∧
V∗) so that J takes a particularly

simple form. Refer to Fig. 2.3.

2.3.1.1 The canonical basis A basis {e0, e1, e2, e3} of R4 corresponds to a coordinate
tetrahedron for RP 3, with corners occupied by the basis elements3. Use the same names to
identify the elements of P (

∧1(R4)) which correspond to these projective points. Further,
let I0 := e0∧e1∧e2∧e3 be the basis element of P (

∧4(R4)), and 10 be the basis element
for P (

∧0(R4)). Let the basis for P (
∧2(R4)) be given by the six edges of the tetrahedron:

{e01, e02, e03, e12, e31, e23}

where eij := ei ∧ ej represents the oriented line joining ei and ej .4 Finally, choose a
basis {E0,E1,E2,E3} for P (

∧3(R4)) satisfying the condition that ei ∨ Ei = I0. This
corresponds to choosing the ith basis 3-vector to be the plane opposite the ith basis
1-vector in the fundamental tetrahedron, oriented in a consistent way.

We repeat the process for the algebra P(
∧

V∗), writing indices as subscripts. Choose
the basis 1-vector ei of P(

∧
V∗) to represent the same plane as Ei. That is, J(Ei) = ei.

Let I0 := e0∧e1∧e2∧e3 be the pseudoscalar of the algebra. Construct bases for grade-0,

Fig. 2.3 Fundamental
tetrahedron with dual
labeling. Entities in W
have superscripts; entities
in W∗ have subscripts.
Planes are identified by
labeled angles of two
spanning lines. A rep-
resentative sampling of
equivalent elements is
shown.

23 01e e=

02

31
e

e
=

12
03

e
e=

31

02

e
e

=
03

12

e
=

e

e3

e1

e0 e2

e1 E1=01 23e e=

e3 E3=

e0 E0=

e2 E2=

3 We use superscripts for P(
V

V) and subscripts for P(
V

V∗) since P(
V

V∗) will be the more
important algebra for our purposes.
4 Note that the orientation of e31 is reversed; this is traditional since Plücker introduced these
line coordinates.
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feature P(
∧

V) P(
∧

V∗)

0-vector scalar 10 scalar 10

vector point {ei} plane {ei}
bivector “spear” {eij} “axis” {eij}
trivector plane {Ei} point {Ei}
4-vector I0 I0

outer product join ∨ meet ∧

Table 2.1 Comparison of P(
V

V) and P(
V

V∗) for V = R4.

grade-2, and grade-3 using the same rules as above for P(
∧

V) (i. e., replacing subscripts
by superscripts). The results are represented in Table 2.1.

Given this choice of bases for P(
∧

V) and P(
∧

V∗), examination of Fig. 2.3 makes
clear that, on the basis elements, J takes the following simple form:

J(ei) := Ei, J(Ei) := ei, J(eij) := ekl (2.5)

where in the last equation, (ijkl) an even permutation of (0123).
Fig. 2.4 gives a graphical representation of Table 2.1, and the isomorphism J.

e1

e2

e0 e0 e1
e0

e0

e1

e1

e2

ΛW W*
J

Λ

Fig. 2.4 The standard Grassmann P(
V

V) and its dual P(
V

V∗) are related by the Poincare
isomorphism J.

2.3.1.2 Description of J Furthermore, J(10) = I0 and J(I0) = 10 since these grades
are one-dimensional. To sum up: the map J is grade-reversing and, considered as a map
of coordinate-tuples, it is the identity map on all grades except for bivectors. What
happens for bivectors? In P(

∧
V), consider e01, the joining line of points e0 and e1 (refer

to Fig. 2.3). In P(
∧

V∗), the same line is e23, the intersection of the only two planes
which contain both of these points, e2 and e3. On a general bivector, J takes the form:
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J(a01e
01 + a02e

02 + a03e
03 + a12e

12 + a31e
31 + a23e

23) =
a23e01 + a31e02 + a12e03 + a03e12 + a02e31 + a01e23

The coordinate-tuple is reversed. See Fig. 2.2. Since J−1 is obtained from the definition
of J by swapping superscripts and subscripts, we can consider J : W ↔W ∗ as a defined
on both algebras, with J2 the identity. The full significance of J will only become evident
after metrics are introduced. See Sect. 5.10.

2.3.1.3 J in n-dimensions Here we generalize the construction above for n = 4 to
arbitrary dimension, to show how to construct the algebra isomorphism J with the desired
property, and connect it to the principle of Poincaré duality. We take up the issue of J
again in Sect. 5.10 where we discuss it in relation to alternative formulations involving a
metric.

A subset S = {i1, i2, ...ik} of N = {1, 2, ..., n} is called a canonical k-tuple of N if
i1 < i2 < ... < ik. For each canonical k-tuple of N , define S⊥ to be the canonical (n−k)-
tuple consisting of the elements N \ S. For each unique pair {S, S⊥}, swap a pair of
elements of S⊥ if necessary so that the concatenation SS⊥, as a permutation P of N , is
even. Call the collection of the resulting sets S. For each S ∈ S, define eS = ei1 ...eik .
We call the resulting set {eS} the canonical basis for P(

∧
V) generated by {ei}.

Consider P(
∧

V∗), the dual algebra to P(
∧

V). Choose a basis {e1, e2, ...en} for
P(
∧

V∗)1 so that ei represents the same oriented subspace represented by the basis
(n-1)-vector e(i⊥) of P(

∧
V). Construct the canonical basis (as above) of P(

∧
V∗) gen-

erated by the basis {ei}. Then define a map J : P(
∧

V)→ P(
∧

V∗) by J(eS) = eS⊥ and
extend by linearity.

J is an “identity” map on the subspace structure of V: it maps a simple k-vector
B ∈ W to the simple (n − k)-vector ∈ P(

∧
V∗) which represents the same geometric

entity as B does in RPn. Proof: By construction, eS represents the join of the 1-vectors
eij , (ij ∈ S) in W . This is however the same subspace as the meet of the n − k basis
1-vectors eij , (ij ∈ S⊥) of P(

∧
V∗), since ei is incident with ej ⇐⇒ j 6= i.

We now show how to use J to define meet and join operators valid for both P(
∧

V)
and P(

∧
V∗).

2.3.1.4 Projective join and meet Knowledge of J allows equal access to join and
meet operations. We define a meet operation ∧ for two blades A,B ∈ P(

∧
V):

A ∧B = J(J(A) ∧ J(B)) (2.6)

and extend by linearity to the whole algebra. There is a similar expression for the join ∨
operation for two blades A,B ∈ P(

∧
V∗):

A ∨B := J(J(A) ∨ J(B)) (2.7)
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2.4 Remarks on homogeneous coordinates

We use the terms homogeneous model and projective model interchangeably, to denote
the projectivized version of Grassmann (and, later, Clifford) algebra.

The projective model allows a certain freedom in specifying results within the algebra.
In particular, when the calculated quantity is a subspace, then the answer is only defined
up to a non-zero scalar multiple. In some literature, this fact is represented by always
surrounding an expression x in square brackets [x] when one means “the projective
element corresponding to the vector space element x”. Similarly, xR is used to represent
“the 1-dimensional vector subspace corresponding to the projective point x”. We do not
adhere to this level of rigor here, since in most cases the intention is clear.

Some of the formulas introduced below take on a simpler form which take advantage
of this freedom, but they may appear unfamiliar to those used to working in the more
strict vector-space environment. On the other hand, when the discussion later turns to
kinematics and dynamics, then this projective equivalence is no longer strictly valid.
Different representatives of the same subspace represent weaker or stronger instances of
a velocity or momentum (to mention two possibilities). In such situations terms such as
weighted point or “point with intensity” will be used. See [Whi98], Book III, Ch. 4. See
also Sect. 9.2.3.1 below, which discusses the use of homogeneous coordinates with respect
to the inertia tensor of a rigid body.

2.5 Guide to the literature

[PW01] (Chapter 1 and Section 2.2) provides a good overview of the background material
on projective geometry and exterior algebra. For detailed background on exterior alge-
bras, see [Wik], [Bou89], or [Gre67b]. For more on Poincaré duality, consult [Gre67b].,
Sec. 6.8. [Kow09] provides a good introduction to projective geometry with a synthetic
component.



Chapter 3

Metric foundations

Projective geometry was originally discovered as an extension of euclidean geometry, mo-
tivated by the experiences of perspective painters. The reverse path, to discover euclidean
(and other metric spaces) within projective geometry, occurred in the second half of the
19th century. This chapter is devoted to the prerequisites of this construction, which will
be described in Chapter 4, and forms itself the basis for introducing Clifford algebras in
Chapter 5.

The key ingredient in this construction is the concept of a quadric surface in RPn.
A non-degenerate quadratic form yields a unique non-degenerate quadric surface, in a
way we will make precise below. Such non-degenerate surfaces will serve to model non-
euclidean geometry. Degenerate quadric surfaces, on the other hand, are not uniquely
specified by a single quadratic form. We restrict attention to a subset of such degenerate
quadric surfaces (which we term admissable), which will be used to model euclidean, and
other related, geometries.

Most of the original results are synthetic ones; we present only the analytic version.
For details of both approaches, see [Kow09], Chapter 4.

Remark 20. Since we work in the n-dimensional space P(V), we assume throughout this
chapter that the dimension of V is n+ 1.

3.1 Symmetric bilinear maps and quadratic forms

We introduce the important concepts from linear algebra before turning to the application
of these to construct quadric surfaces in RPn in the next section.

Begin with a symmetric bilinear map B on a real vector space V, that is a bilinear
mapping

B : V ⊗ V→ R such that B(x,y) = B(y,x) ∀ x,y ∈ V

To each such B one defines the corresponding real quadratic form

Q : V→ R by Q(x) := B(x,x)

20
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Conversely, given such a Q, there is a unique symmetric bilinear form B (obtained by
polarizing Q), which is related to the given Q in this way. Throughout this discussion,
B and Q are assumed to be related in this way.

Let x ∈ V and u ∈ V∗. Every bilinear map B determines a linear map LB : V → V∗

by the condition B(x,y) = 〈LBx,y〉. When B is symmetric, 〈LBx,y〉 = 〈LBy,x〉.
By the results of Sect. 2.2.3.1, the adjoint map LB

∗, defined as
∧n−1(f), represents

the induced quadratic form on V∗.

Definition 21. The adjoint bilinear form B∗ : V∗ ⊗ V∗ → R is defined by

B∗(u,v) := 〈u, LB∗v〉

The adjoint quadratic form Q∗ satisfies Q∗(u) = B∗(u,u).

Definition 22. Q := {u | Q(u) = 0} is called the zero-set of Q.

Remark 23. Q is well-defined in P(V), and Q∗ is well-defined in P(V∗).

Definition 24. The rank r(Q) of a quadratic form Q is equal to the rank of any matrix
representing it.

3.1.1 Normal form of a quadratic form

By standard results of linear algebra ([BM97], Ch. 9), it is possible to choose a basis for
V for which the matrix of B is diagonal: B(ei, ej) = εδi,j where ei is a basis vector, δi,j is
the Kronecker delta function, and ε ∈ {−1, 0, 1}. The number of 1’s, 0’s, and −1’s along
the diagonal is then an invariant (under action of L(V,V)) of Q, called the signature, a
triple of integers SQ := (p,m, z) where p+m+z is the dimension of the underlying vector
space, and p, m, and z are the numbers of positive, negative, and zero entries along the
diagonal of the matrix representing B.1

The signature (p,m, z) is not essentially different from the signature (m, p, z). Hence
we can assume that p ≥ m. We sometimes call this an inner product structure and write
Q(x,y) = x · y.

3.1.1.1 Sign vectors for signatures To simplify notation for this, we represent a
specific instance of signature (p,m, z) with an (n + 1)-vector consisting of the symbols
{+,−, 0}. For example, (+0−) represents the quadratic form x2

0− x2
2, one of six possible

forms for (1, 1, 1). We call (+0−) a sign vector for the signature. We typically use an
alphabetical ordering to choose a canonical representative of these six possibilities.
r(Q∗) depends on r(Q), and can be easily calculated by considering the canonical

matrix given above and its adjoint:

1 The signature is traditionally defined as the p−m. To fully determine Q, one needs also the rank
r(Q) and the dimension n + 1. The signature introduced here is an equivalent way of encoding
these 3 numbers.
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r(Q∗) =


n+ 1 if r(Q) = n+ 1
1 if r(Q) = n

0 if r(Q) < n

(3.1)

Theorem 25. If (p,m, 0) is the signature of Q, then the signature of Q∗ is{
(p,m, 0) if m is even
(m, p, 0) otherwise

(3.2)

Proof. Consider the standard form above and knowledge of cofactors.

Remark 26. This means that when r(Q) = n+ 1, Q∗ has equivalent signature to Q.

Definition 27. A point x such that Q(x,y) = 0 ∀ y is called a singular point of Q. Q
is said to be degenerate if it has a singular point; otherwise, non-degenerate. The set of
all singular points is called the vertex of Q.

Remark 28. Q is non-degenerate ⇐⇒ z = 0. In this case there are dn+1
2 e distinct

possibilities such that p ≥ m.

Remark 29. The vertex of Q is a closed subspace of V of dimension (n+ 1− r(Q)).

3.1.2 Pole and Polar

Definition 30. For a point x, the polar of x, x⊥ := {y | B(x,y) = 0}. x is a regular
point with respect to Q if x⊥ has dimension n− 1.

Remark 31. y ∈ x⊥ ⇐⇒ LB(x)(y) = 0. Hence x⊥ = ker(LB). x is regular is equivalent
to LB(x) 6= 0, in which case x⊥ can be identified with LB ∈ V∗. If x is not regular, then
it is singular, and x⊥ = V, which is equivalent to LB(x) = 0.

We state without proof the following important result ([Kow09], Section 4.2):

Theorem 32. For non-degenerate Q, the map LB : V→ V∗ is a polarity and every point
is regular.

Remark 33. This polarity is called the polarity on the quadric Q.

3.1.2.1 Restriction of Q to subspace

Definition 34. For a closed X ⊂ V, the polar of X , X⊥ := {y | B(x,y) = 0 ∀ x ∈ X}.
X is a regular subspace with respect to Q if X⊥ has dimension dim(n− 1− dim(X ).

If X is a k-dimensional subspace of V, the restriction of Q to X is a quadratic form
QX . When X is regular, QX is non-degenerate. We have the following decomposition of
Q (for later reference):

Theorem 35. Let X be a regular k-dimensional subspace of RPn. Then Q = QX +QX⊥ .



3.2 Quadric surfaces 23

3.2 Quadric surfaces

Definition 36. An admissable quadric surface is a pair of non-zero quadratic forms of
the form (Q,Q∗). The quadric surface is called standard if Q is defined on V, and Q∗ is
defined on V∗; and it is called dual if Q is defined on V∗ and Q∗, on V.

Remark 37. The full theory of quadric surfaces lies outside the scope of this work. It
forms a part of classical projective geometry. There are a wide variety of degenerate
possibilities which do not fulfill the above conditions and which do not lead to Cayley-
Klein spaces. The above subset suffices to model the geometries which form the object
of our investigations.

Remark 38. A quadric surface (Q,Q∗) is sometimes defined as the zero-sets (Q,Q∗). We
prefer to work with the quadratic forms themselves.

Remark 39. A quadric surface in V = RP 2 is called a conic section.

Theorem 40. For an admissable quadric surface r(Q) = n+ 1 or r(Q) = n.

Proof. This follows directly from the definition of Q and Q∗ by considering the three
cases for r(Q):

• r(Q) = n+ 1: Then Q∗ ∼= Q and both are non-zero.
• r(Q) = n: we can suppose the sign vector for Q is (0+++...- - -) where there are p +’s

and m -’s. Then Q∗ can be calculated via the cofactor matrix; one obtains (x000...000)
where x = + if m is even, and otherwise −.

• r(Q) < n: then Q∗ = 0 so the pair is not admissable.

Remark 41. Consider the example in the proof, when r(Q) = n. Interpreted as a standard
quadric surface, VQ is the point E0 = (1, 0, ....0); VQ∗ consists of the plane bundle centered
at this point. There is a similar incidence condition on VQ and V bQ for a general quadric

surface (Q, Q̂) which we have omitted since it is not relevant for our purposes.

Remark 42. The same example can be interpreted as a dual quadric surface (conic sec-
tion). Then VQ0 is the plane e0, and VQ0

∗ , the point field contained in it. This dual
conic section turns out to be the appropriate choice to arrive at a model of the euclidean
plane. See Sect. 4.3. In general, Q = (1, 0, n) and Q∗ = (n, 0, 1) yield the proper metric
for n-dimensional euclidean space. See below, Sect. 4.3.

We collect the observations of the previous remarks regarding the singular elements
of an quadric surfaces of the form (Q,Q∗):

Theorem 43. Let Q be a quadric surface of the form (Q,Q∗). Then a ∈ VQ∗ ⇐⇒
〈a,v〉 = 0 for some v ∈ VQ.

Proof. For rank-n Q, the previous remarks suffice to establish the result. For rank-k with
k < n, VQ has dimension n + 1 − k > 1. a has co-dimension 1 viewed as a subspace of
the dual space. Hence the two subspaces have non-empty intersection, hence there exists
v ∈ VQ with the desired property. ut



24 3 Metric foundations

Remark 44. To see that there are quadric surfaces which are not admissable: Let Q =
(+00) and Q̂ = (00+). Then Q, defined on V, is the point range x2

0 = 0 (doubled) and
Q̂, defined on V∗, is the line pencil u2

2 = 0 (doubled). The line pencil is incident with the
point range. This represents a valid conic section. On the other hand, both Q and Q̂ are
rank-1 quadratic forms, so are not admissable. See Type VII in Sect. 3.2.2.2 below.

3.2.1 Rank-n quadric surfaces via limiting process

Because of their importance for the sequel, we also investigate how to derive the rank-n
quadratic surfaces (standard and dual) from the rank-(n + 1) surfaces by a geometric
limiting process.

For example, begin in RP 2 with Q = (-++) in standard form, represented in point
coordinates as Q(x) = −x2

0 + x2
1 + x2

2. Define Qε := −ε2x2
0 + x2

1 + x2
2. For ε 6= 0, Qε is

non-degenerate and by the definition of adjoint, Qε∗ = u2
0 − ε2u2

1 − ε2u2
2. Then:

lim
ε→0

Qε = x2
1 + x2

2 (3.3)

lim
ε→0

Qε
∗ = u2

0 (3.4)

The limiting values Q0 = (0++) and Q0
∗ = (+00), are in agreement with the result

obtained in Thm. 40.

Remark 45. The limiting process can also be carried out in the direction of∞. To evaluate
this limit, one then uses projective invariance under multiplication by a non-zero factor
to multiply through by −ε−2 and obtains:

lim
ε→∞

Qε = x2
0 (3.5)

lim
ε→∞

Qε
∗ = u2

1 + u2
2 (3.6)

Remark 46. Here the limit is the dual conic section discussed in Remark 42; interpreting
the original conic section dually leads to the original standard limit.

Remark 47. We include the limit as ε → ∞ since that is the method originally used
by Klein ([Kle26]) to establish the euclidean metric. However one takes the limit, and
whether one begins with a standard or dual conic section, one has two geometric limits:
either one expands an oval conic section until it flattens out to a plane, or one contracts
it until it collapses into a point. The former leads to euclidean geometry; the latter to
dual euclidean geometry. One can also begin with the totally imaginary conic (+ + +)
but then the result is less geometrically meaningful.

Remark 48. Applied to a general non-degenerate signature (p,m, 0), one can attach the
ε2 term to any of the n + 1 positions; the resulting signatures will be Q = (p,m − 1, 1)
or Q = (p − 1,m, 1), depending on whether the ε2 term was attached to a negative or
positive term; and Q∗ = (1, 0, p+m− 1).
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Remark 49. If one attaches ε to more than one term of the polynomial defining Q, one
arrives at surfaces with rank less than n. More complicated non-admissable signatures
can be generated by more complicated limiting process (see Type VII in Example 2
below). Such surfaces will not be of interest for our later investigations.

3.2.2 Enumeration of low-dimension quadric surfaces

We give here an enumeration of quadric surfaces in RPn for n = 2 and n = 3 since all
the important examples of interest to us are already present.

3.2.2.1 Example RP 1 For n = 1, there are three possible quadratic forms. See Ta-
ble 3.2.2.1. The possible choices of Q are listed in alphabetical order, where (+,−, 0) is
the alphabetical order of the basic symbols. For simplified book-keeping, we assign each
possibility a roman numeral identifier which we call the Type.

Q Q∗ Type Q

(++) (++) I 2 conjugate imaginary points

(+-) (+-) II 2 real points

(+0) (0+) III 1 real double point

Table 3.1 The three possible signatures in RP 1.

3.2.2.2 Example RP 2 For n = 2 there are seven possible quadric surfaces (conic
sections). All but one is admissable. See Table 3.2.2.2.

There are exactly two non-equivalent non-degenerate conic sections with signature
(3, 0, 0) and (2, 1, 0). The first is completely imaginary, the second is a real oval.

Let homogeneous point coordinates be represented by (x, y, w) and homogeneous line
coordinates by (u, v, t). There are also degenerate conic sections, such as two intersecting
point ranges. This can be represented by the equation (x + y)(x − y) = x2 − y2 = 0.
Hence, its signature is (+ − 0). It has rank 2. By the above, the signature on the dual
space is (00+). This corresponds to the line pencil in the intersection point (0, 0, 1) of
the two point ranges of Q, counted twice.

We can also find degenerate conic sections beginning with the dual space of lines.
Then, the analogous equation u2 − v2 = 0 corresponds to a pair of real line pencils that
share a common line w = 0.

We can also have the totally imaginary rank-2 conic x2 + y2 = 0 in point space. The
sign vector (++0) in point space yields sign vector (00+) in line space. The latter is again
a real line pencil at the origin (0, 0, 1), the intersection of the two conjugate imaginary
point ranges (x+ iy) = 0 and (x− iy) = 0. If one begins in line space, this construction
yields a totally imaginary pair of line pencils which share the real point range z = 0.
This conic section, we will see, is the signature needed to model euclidean geometry.
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Notice that two complex conjugate imaginary point ranges have a real point in com-
mon; and two complex conjugate imaginary line pencils have a real line pencil in common.
The type identifiers have been assigned to agree with those in [Kow09]. Of the degenerate
cases (III-VII), only Type VII does not satisfy Q̂ = Q∗.

Q bQ Type Q Q∗

(+++) (+++) II pointwise imaginary conic linewise imaginary conic

(++-) (++-) I pointwise oval conic linewise oval conic

(++0) (00+) IV 2 conjugate imaginary point ranges real double line pencil

(+-0) (00+) III 2 real point ranges real double line pencil

(+00) (0++) VI real double point range 2 conjugate imaginary line pencils

(+00) (0+-) V real double point range 2 real line pencils

(+00) (00+) VII real double point range real double line pencil

Table 3.2 The seven possible conic sections (quadric surfaces) in RP 2.

3.3 Guide to the literature

For a standard treatment of symmetric bilinear forms and quadratic forms see [Gre67a],
Ch. 9-10. For details in for RP 2 and a listing of the 18 distinct quadric surfaces for
RP 3, see [Kow09], Section 4.4. For a detailed discussion of degenerate quadratic forms
in arbitrary dimension, see [SS04], p. 157, or [Gie82].



Chapter 4

Cayley-Klein spaces

Equipped with the results on admissable quadric surfaces from Chapter 3, we now turn
to the Cayley-Klein construction of metric spaces within RPn. We begin by describing
in detail how the construction works for the three metric planes: elliptic, hyperbolic, and
euclidean. Using these examples as a guide, we then define what a Cayley-Klein space
is and list the spaces of interest for this study. We discuss the exceptional features of
pseudo-euclidean spaces. Finally, we show that the isometry group of a Cayley-Klein
space can be generated by the subset of harmonic homologies whose axes are proper.

All the examples are set in the projective plane RP 2.

4.1 Example 1: the elliptic plane

Introduce the non-degenerate quadratic surface (Q,Q∗) with Q = (3, 0, 0) . Then Q is a
completely imaginary conic, whose points satisfy x2

0 + x2
1 + x2

2 = 0, and Q∗ is the same
conic in its dual, line-wise aspect.

Define a distance function on the points of RP 2 as follows: for two points x and
y ∈ RP 2, find the two complex conjugate points f+ and f−, where the line joining x and
y intersects Q. We choose subscripts + and − so that the points (f+,x,y, f−) defines a
cyclic order of the four points on the line. Define the distance:

d(x,y) =
1
2i

ln(f+, f−; x,y)

The resulting value is a real-valued function (Exercise), and for three collinear points,
satisfies

d(x,y) + d(y, z) = d(x, z)

and the other axioms which characterize a metric space.
Using basic functional identities, it is possible to show ([Wei35]):

27
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d(x,y) = cos−1

(
B(x,y)√

B(x,x)B(y,y))

)
) (4.1)

The right-hand side is the expression for the angle between two vectors in R3. If we
assume Q(x,x) = Q(y,y) = 1, then this represents the angle between points on the unit
sphere, and the distance function is the central angle between these two points. However,
since in RP 2 x ≡ −x, the unit sphere contains two copies of this space, which is called the
elliptic plane. It satisfies all axioms of euclidean geometry except the Parallel Postulate,
since in RP 2 every two lines interesect.

4.1.1 Isometries

Projectivities which preserve Q are isometries of the elliptic plane. For, suppose A is
such a projectivity and x and y are two points in RP 2, with distance d(x,y) as above.
Then the distance of A(x) and A(y) is:

d(A(x), A(y)) =
1
2i

ln(g+,g−;A(x), A(y))

where g+,g− are the intersections of the transformed line with Q, with cyclic order
(g+, A(x), A(y),g−).

Lemma 50. g+ = A(f+) and g− = A(f−)

Proof. Since A preserves Q, {g+,g−} = {A(f+), A(f−)}. Since a projectivity preserves
cyclic order on lines, g+ = A(f+) and g− = A(f−). ut

Then the distance between two transformed points is unchanged:

d(A(x), A(y)) =
1
2i

ln(A(f+), A(f−);A(x), A(y))

=
1
2i

ln(f+, f−; x,y)

= d(x,y)

where we have used the invariance of cross ratio under projectivities.

4.2 Example 2: the hyperbolic plane

Using instead the non-degenerate quadratic form Q with signature (2, 1, 0) leads to im-
portant differences to the elliptic plane. Now Q is a real conic section, in affine coordinates
the unit circle, which separates RP 2 into two components. We call the points of Q the
ideal points of the metric space.

We choose the interior K, the unit disk, as the set of proper points P of the metric
space. Similar remarks apply to Q∗; as proper lines we choose the component P̂ of RP 2∗
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Fig. 4.1 Distance cal-
culation for Q = (2, 1, 0)
involves the four marked
points: x and y plus the
intersections f+ and f− of
the line joining x and y
with the quadric Q.

x yf+ f-

Q

consisting of lines which lie “outside” Q∗; these are lines which cut Q in two real points.
Then two proper points are joined by a proper line, although two proper lines do not
always intersect in a proper point.

A hyperbolic line is a chord of the unit circle. Such a chord always belongs to a proper
line. To simplify notation, we will not always carefully distinguish between proper lines
and the proper chord of hyperbolic points lying inside the unit circle.

The distance function is defined similarly to above, but since the joining line of two
points in K intersects Q in two real points, the distance function looks like:

d(x,y) =
1
2

ln(f+, f−; x,y)

which is equivalent to:

d(x,y) = cosh−1(
B(x,y)√

B(x,x)B(y,y))
) (4.2)

See Fig. 4.1.
Isometries, as in the previous example, consist of projectivities which preserve Q.

The resulting metric space consisting of proper points and proper lines, is a model for
two-dimensional hyperbolic geometry, which also satisfies all the axioms of euclidean
geometry except the parallel postulate. For details see [Kow09], Sec. 6.1.

4.3 Example 3: the euclidean plane

Here the conic section is given by the dual quadric surface (Q,Q∗) for Q = (0++). The
point-wise description of the surface is x2

0 = 0 and the line-wise is u2
1 +u2

2 = 0. Hence Q is
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the line x0 = 0, doubled, and Q̂ is a pair of conjugate imaginary line pencils ui+ iu2 = 0
and ui − iu2 = 0. Note that these two pencils intersect in the real line x0 = 0.

As in the hyperbolic case, define the ideal points and lines of the metric space to
be Q and Q∗, resp. Define the proper points to be RP 2 \ Q, and the proper lines to
be RP 2∗ \Q∗. Proper elements are sometimes called euclidean, or finite. The euclidean
plane is denoted as E2.

4.3.1 The euclidean distance function

Since Q is flat, it is no longer possible to define a distance function using the cross ratio
as in the non-degenerate cases above, since every proper line intersects Q in a single
real point. Instead, we use a limiting process of non-degenerate metrics to arrive at the
desired distance function. To simplify the exposition, we derive the euclidean distance
function for a euclidean line rather than plane; the argument for the plane (and higher
dimensions) proceeds in the same way.

Introduce a family Qε of quadratic forms (with associated bilinear form Bε) parame-
trized by the real parameter ε→∞ as above, (3.5), but based on Q = (3, 0, 0). Consider
two proper points x = (x0, x1) and y = (y0, y1). Then x0 6= 0 and y0 6= 0. Choose the
projective representative so that x0 = y0 = 1. Then:

Bε(x,y) := εx0y0 + x1y1 = ε+ x1y1

By (4.1), the distance function dε associated to Qε is determined by:

cos dε(x,x) =
Bε(x,y)√

Bε(x,x)Bε(y,y))
(4.3)

Abbreviate dε(x,y) as dε.
Rewrite (4.3) and manipulate:

cos2 (dε)〈x,x〉ε〈y,y〉ε = 〈x,y〉ε (4.4)

cos2 (dε)(ε+ x2
1)(ε+ y2

1) = (ε+ (x1y1))2 (4.5)

cos2 (dε)(ε2 + ε((y1)2 + (x1)2) + (x1y1)2) = ε2 + 2ε(x1y1) + (x1y1)2 (4.6)

Now consider the limit as ε→∞. It’s clear from (4.3) that limε→∞ cos dε = 1. So we can
replace cos dε2 by (1− d2

ε), and simplify the resulting expressions:

(1− d2
ε)(ε

2 + ε(y2
1 + x2

1) + (x1y1)2) = ε2 + 2ε(x1y1) + (x1y1)2 (4.7)

ε(y2
1 + x2

1 − 2x1y1) = d2
ε(ε

2 + ε(y2
1 + x2

1) + (x1y1)2) (4.8)

(x1 − y1)2 = d2
ε(ε+ (y2

1 + x2
1) +

1
ε

(x1y1)2) (4.9)

Notice that the LHS is the square of the desired euclidean distance function. In order
to make the limit converge to this, define a new distance function d̂ε :=

√
εdε. This is

exactly the scaling needed to prevent the distance from going to zero in the limit. One
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obtains:

lim
ε→∞

d̂2
ε =

(x1 − y1)2

(1 + 1
ε (y2

1 + x2
1) + 1

ε2 (x1y1)2
(4.10)

= (x1 − y1)2 (4.11)

Remark 51. The above process, applied to the plane, produces the familiar euclidean
distance function

d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 (4.12)

Remark 52. A similar limiting process produces distance functions for any pseudo-
euclidean metric.

Isometries. The group of projectivities preserving Q and Q∗ includes isotropic scaling
transformations. One obtains the euclidean group by further requiring that the projec-
tivity preserves the distance function (4.12).

Remark 53. Measuring angle between lines. In all three metric planes above, the
angle between two proper lines which intersect in a proper point is given by the formula:

d(u,v) = cos−1

(
B∗(u,v)√

B∗(u,u)B∗(v,v))

)
(4.13)

When the lines intersect in the point E0, the result follows from the fact that Q∗, re-
stricted to such lines, is identical for all three geometries. If the two lines intersect in
another proper point P, then find an isometry moving P to E0 and measure the angle of
the transformed lines. That such isometries exist follows from the standard result that
the isometry groups of these geometries are transitive on proper points [TL97].

4.4 The Cayley-Klein Construction

The examples above are all examples of Cayley-Klein spaces. Based on Cayley’s 1859
paper ([Cay59], and later developed as part of his Erlangen program by Klein ([Kle26]),
such spaces are metric spaces created in projective space RPn based on quadratic forms.
The examples above illustrate all the important features of this construction.

The general Cayley-Klein construction in its modern formulation is based on a nested
sequence of subspaces Xi of RPn, and a non-degenerate quadratic form Qi defined on
each Xi. The admissable quadric surfaces correspond to the simplest of such sequences,
of length 1 (rank-(n + 1) quadric surface) and length 2 (rank-n quadric surface). For
simplicity we have chosen an exposition based on quadric surfaces ( the original approach
of Klein [Kle26]) instead of the more general modern approach. A second advantage of
the formulation in terms of a pair (Q, Q̂) is that it lends itself to dualization, which
meshes well with the projective approach used throughout this study. Interested readers
are referred to [Gie82] to see how the modern definition is compatible with the one
presented here.
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4.4.1 Defining a metric space

We consider first a standard quadric surface Q = (Q,Q∗), so that Q is defined on RPn,
and Q∗, on (RPn)∗. One defines a metric space MQ as follows. Let P (the proper points
of MQ) be a connected component of RPn \Q, and P̂ (the proper planes1 of MQ) be a
connected component of (RP \)∗Q∗.

The points of Q are called ideal points; the planes of Q∗, ideal planes. Points and planes
which are neither proper nor ideal are called improper. That is, an ideal point, although
not proper, is also not improper. This partition into three categories is convenient for
the ensuing discussions. The quadric surface (Q,Q∗) is called the absolute figure of MQ.

Measurement in this metric space is discussed in Sect. 4.4.3.

Remark 54. When Q is dual, one defines a metric space MQ in a similar way, except
that the roles of Q and Q∗ are reversed (the former determines the ideal planes, and the
latter, the ideal points).

Remark 55. When Q 6= ∅, there are two choices for P: P+ := {P ∈ RPn | Q(P ) > 0} and
P− := {P ∈ RPn | Q(P ) < 0}. At least one of these sets is non-empty for admissable
quadric surfaces. Similar remarks apply to P̂. When all four of these sets are non-empty,
there are four different combinations, each of which potentially yields a different metric
space MQ.

4.4.2 Cayley-Klein spaces of interest

We are now in a position to give names to the spaces of interest:

Definition 56. Let C be a Cayley-Klein space whose absolute figure is the admissable
quadric surface Q := (Q,Q∗). Then C is an admissable Cayley-Klein space. It is called:

• elliptic n-space Elln if Q = (n+ 1, 0, 0),
• hyperbolic n-space Hn if Q = (n, 1, 0), P = P−, P̂ = P̂+,
• dual hyperbolic n-space Hn∗ if Q = (n, 1, 0), P = P+, P̂ = P̂−,
• a pseudo-euclidean n-space if Q is dual rank-n, and
• a dual pseudo-euclidean n-space if Q is standard rank-n.
• The pseudo-euclidean space with Q = (n, 0, 1) is called euclidean n-space En.
• The dual pseudo-euclidean space with Q = (n, 0, 1) is called dual euclidean n-space

En∗.

Remark 57. Note that the definitions of elliptic and hyperbolic spaces do not depend on
whether one uses a standard or dual quadric surface. There are two types of hyperbolic
space, depending on how one chooses the proper points and planes. Hyperbolic space
consists pointwise of the interior of the unit ball P− and planewise of the planes which
intersect the unit ball (P̂+). Dual hyperbolic space consists of points and planes which
lie outside the unit ball (P+). Dual hyperbolic space is the image of hyperbolic space
under the polarity of RPn determined by Q (see Sect. 6.2.2.2).

1 We use plane here instead of the more awkward but correct hyperplane to denote an element of
(RPn)∗.
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Remark 58. Elliptic space Elln is closely related to the n-dimensional sphere Sn. The
latter is the universal cover of the former; the covering is 2:1. Consult [Gun10], §2.2
and §3.3, for a detailed discussion of the relationship of these two spaces, including
computational aspects. Almost any result established for Elln is either directly true also
for Sn, or can be easily amended to be true. We state our results here for Elln only.

Remark 59. So-called de Sitter space arises by using P+ along with P̂+: points exterior
to the unit ball, and planes which intersect the unit ball. There are improper planes
consisting of proper points! See [Kow09], §6.4, for more on de Sitter space; we don’t
discuss it further.

Remark 60. A euclidean space is also pseudo-euclidean; this is chosen to avoid the awk-
ward construction “euclidean and pseudo-euclidean” to refer to dual rank-n quadrics.
The reversal of the dual attribute in these spaces due to the fact that the euclidean
metric requires that Q (the less degenerate quadratic form) be defined in V∗; hence the
dual euclidean must be based on V.

Remark 61. We focus in the sequel on the euclidean (and occasionally on the dual eu-
clidean) case; many of the results carry over naturally to the other pseudo-euclidean
spaces.

4.4.2.1 Terminology alert. The euclidean vector space signature (n+1, 0, 0) becomes,
in the projective setting, the elliptic signature. And the euclidean signature in the pro-
jective setting, is the degenerate one introduced above.

4.4.3 Measurement

The nature of measurement of distances in a Cayley-Klein space depends qualitatively
on whether the quadric surface is degenerate or not.

4.4.3.1 Non-degenerate measurement If Q is non-degenerate, one can define a dis-
tance function on pairs of proper points whose joining line is not tangent to Q, hence
intersects Q in two distinct points, by using the natural logarithm of the cross ratio of the
two points and these two intersection points. See Fig. 4.1. The method is fully described
for n = 2 in Sect. 4.1 and Sect. 4.2; the generalization to arbitrary n is immediate. A
dual formula exists for the angle between two proper hyperplanes as in Remark 53. The
example of the hyperbolic plane makes clear that the situation can be complicated; two
lines can intersect in an ideal or improper point, in which case the angle between the two
lines is not defined.

4.4.3.2 Pseudo-euclidean measurement When Q is degenerate, as in the euclidean
plane example, one uses an appropriate limiting process of non-degenerate Q to derive
a distance function not based on the cross ratio approach. Since we are only interested
in rank-n quadric surfaces, for which Q̂ = Q∗, the limiting process is essentially the
same as the one shown above for the euclidean case in Sect. 4.3.1. To be precise, suppose
Q = (p,m, 1) = (0+++...- - -...) and Q∗ = (1, 0, p + m) = (+00...0). Then, using the
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same technique as in Sect. 4.3.1, the distance function for normalized proper points (with
x0 = 1) is given by

d(x,y) =

√√√√ p∑
i=1

(xi − yi)2 −
p+m∑
i=p+1

(xi − yi)2 (4.14)

Remark 62. The above distance definition applies to points in pseudo-euclidean spaces,
and to hyperplanes in dual pseudo-euclidean spaces.

4.4.4 Peculiarities of pseudo-euclidean metrics

The nature of measurement in the pseudo-euclidean spaces is not without subtleties. We
take the opportunity to discuss them now since they play a crucial role in geometry of
such spaces. (Everything we say here also applies to dual pseudo-euclidean spaces, when
properly “translated”.)

4.4.4.1 Ideal points are free vectors We can assume Q is the plane e0. We can also
assume proper points are normalized to have the E0 coordinate 1. For two such proper
points x and y, define v := x−y. Then v ∈ Q (since v0 = 0), that is, v is an ideal point.
On the other hand, as the difference of two proper points, v is a free vector. Hence, free
vectors can be identified with ideal points.

Remark 63. The proper points and the ideal points of the pseudo-euclidean space consti-
tute the points and vectors of an affine space ([Gre67a], Ch. 10).

4.4.4.2 Transferring the rank-n metric to e0 (4.14) can be written in the form:

d(x,y) =
√
B(x− y,x− y) =

√
B(v,v)

We have, however, no right to write this, since B represents the symmetric bilinear form
on V, while v ∈ V∗. In fact, x,y ∈ VQ∗ ⇒ B∗(x,y) = 0. The two points should have
inner product 0; however, the euclidean distance formula implies that their inner product
is given by the rank-n quadratic form Q rather than the rank-1 quadratic form Q∗. This
is a point whose importance for (pseudo-) euclidean geometry is difficult to overestimate:
The ideal hyperplane VQ∗ ⊂ RPn of a pseudo-euclidean space MQ is naturally equipped
with the non-degenerate quadratic form, given by the restriction to the non-degenerate
part of the rank-n quadratic form Q. We write this transferred quadratic form on the
ideal plane field as Q∞.

4.4.4.3 Possible perspectives for understanding How can this “overriding” of the
normal inner product in the ideal plane e0 be understood? The following observations
provide different perspectives:

1. The limiting process described above in Sect. 3.2.1 that led to the degenerate pseudo-
euclidean signature can be restricted to the proper points P ⊆ RPn \Q∗. This leaves
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the signature on Q∗ alone, hence it retains the restriction of the original signature
to Q∗, which is exactly Q∞.

2. For X1, X2 ∈ VQ, consider any two planes x1 and x2 such that x⊥i = Xi. Define a
symmetric bilinear form B∞(X1,X2) := B̂(x1,x2). This is well-defined since parallel
planes have the same polar point. This in effect transfers the quadratic form Q∗ to
VQ∗ .

3. As noted above, it is the unique inner product consistent with the euclidean distance
function (4.14).

Remark 64. Since the quadratic form Q∗ is extremely degenerate (rank 1), it is perhaps
not surprising that much of euclidean geometry is carried out via operations with free
vectors (ideal points), for which the inner product is non-degenerate (rank n). The natural
presence of the non-degenerate quadratic form with signature (p,m, 0) on the ideal plane
e0 of pseudo-euclidean spaces (and, naturally, for the ideal points of the dual spaces), is
an essential feature of doing geometry in these spaces. We take repeated advantage of it
in the sequel. To the best of our knowledge, it has remained unremarked in the literature.
As we’ll see in Sect. 6.1.1 and Sect. 7.3.1, the Clifford algebra model presented here is
well-equipped to recognize this subtle fact: Q∞ can be calculated using operations within
the algebra.

4.5 Cayley-Klein spaces as differentiable manifolds

One can also handle Cayley-Klein space as differentiable manifold. Then one is led nat-
urally to the question what is the tangle bundle of the manifold, or, locally, what is the
tangent space TP at a point P of the space? Here we take advantage of the freedom we
have to choose a representative for our projective point, and we choose representatives
such that ‖Q(P )‖ = 1. That is, for the proper points X, Q(P ) is constant. Then for any
curve P (t) ∈ X, B(P, Ṗ ) = 0. The set of all such possible Ṗ is used to construct TP . On
the other hand, this is the same as the polar plane P⊥. Hence, we have arrived at the
important result:

Theorem 65. The tangent space TP at a proper point of a Cayley-Klein space can be
identified with P⊥.

Cayley-Klein spaces as Riemannian manifolds. One can further require of a
Cayley-Klein space that it is a Riemannian manifold, that is, the tangent space at every
point has a euclidean vector space structure, or equivalently, the metric relations are
given by a positive definite quadratic form. Then one is left with only three possibilities
in every dimension n. This can be shown as follows: By Thm. 65, the tangent space at a
point x is the polar x⊥. Since the signature of x⊥ should by assumption be (n, 0, 0), the
possibilities for Q are easily enumerated. These are given in Table 67.

Definition 66. A Cayley-Klein space of dimension n is called a Cayley-Klein geometry
if for every proper point x, x⊥ has signature (n, 0, 0).
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Remark 67. These are the 3 geometries which have the same axiomatic structure as eu-
clidean geometry with the (possible) exception of the Parallel Postulate. See [Kow09]
and [TL97].

Q Q∗ type name

(n+1,0,0) (n+1,0,0) SD elliptic

(n,1,0) (n,1,0) SD hyperbolic

(n,0,1) (1,0,n) D euclidean

Table 4.1 The quadric surfaces for three classical Cayley-Klein geometries in RPn. S = standard,
D = dual.

Remark 68. Semi-riemannian Cayley-Klein spaces. Other signatures result in spaces
which are not Riemannian, since the signature of the tangent space is not positive definite.
For example, for Q = (2, 2, 0), the quadric surface is a 1-sheeted hyperboloid; the polar
plane of points of RPn \Q, may have signature (1, 2, 0) or (2, 1, 0); in either case, there
are directions in which one “sees” Q and directions in which one doesn’t. Hence (2, 2, 0)
does not give rise to a Riemannian manifold.

4.6 Isometries of Cayley-Klein spaces.

Motions of a metric space which preserve the distance between points play an important
role in studying the space. In this section we discuss such motions in Cayley-Klein spaces.

Definition 69. An isometry of a metric space F is a bijection of F such that for every
pair of points P,Q, d(P,Q) = d(F (P), F (Q)).

Theorem 70. An isometry of a Cayley-Klein space C with a non-degenerate metric
quadric (Q,Q∗) is a collineation F of RPn such that F (Q) = Q. For degenerate (Q,Q∗),
F must additionally preserve the distance function on C.

Remark 71. The proof is essentially that given in Sect. 4.1.1.

Remark 72. In the euclidean case, isotropic scaling is a collineation that preserves the
quadric (Q,Q∗), but does not preserve distance.

Definition 73. A reflection of a Cayley-Klein space is a harmonic homology with center
Z and axis m such that Z and m are a polar pair. If Z is proper, then m = Z⊥; if m is
proper, then Z = m⊥.

The conditions on the center and axis are necessitated by the asymmetry of the degenerate
metric. Note that the definition implies that Z /∈ Z⊥.
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Theorem 74. A reflection R of a Cayley-Klein space is an isometry.

Proof. We prove this for a non-degenerate metric by showing R(Q) = Q. Define 〈X,Y〉 :=
B(X,Y). From the proof of Thm. 12, P = S + xZ and R(P) =: P′ = −S + xZ with
〈S,Z〉 = 0. P ∈ Q ⇐⇒ 〈P,P〉 = 0. Substitute to obtain

0 = 〈P,P〉 = 〈S + xZ,S + xZ〉
= 〈S,S〉+ x2〈Z,Z〉+ 2x〈S,Z〉
= 〈−S,−S〉+ x2〈Z,Z〉
= 〈−S,−S〉+ x2〈Z,Z〉 − 2x〈S,Z〉
= 〈P′,P′〉

Hence R(P) ∈ Q. Hence by Thm. 70, R is an isometry. For the euclidean case, one can
choose coordinate system so that m = e1. Then Z = E1. Given proper points P and Q,
it is easy to verify that the distance function between these two points (4.12) is preserved.
ut

Definition 75. A reflection is called proper if its axis is proper.

Remark 76. The reflection in an improper hyperplane a is a point reflection in the proper
point a⊥. The latter can be generated by reflections in n hyperplanes passing through
the point. Hence, the isometry group can be generated using proper reflections.

We include a standard result on the important role of reflections. See [Bac59], §9 for
a proof.

Theorem 77. The isometry group of an admissable Cayley-Klein space is generated by
proper reflections.

Remark 78. The fact that the isometries are generated by proper reflections will play an
important, simplifying role in the subsequent development. See in particular Sect. 5.6.2.

4.7 Guide to the literature

The best introduction to non-euclidean geometry via the Cayley-Klein construction re-
mains the classic [Kle26]. See also [Kow09] for a modern treatment of the same material
limited to the plane. See [Wei35], pp. 55-6, for detailed account of the elliptic plane.
[TL97] includes a thorough treatment of the 3-dimensional case along with the theory
of quotient spaces of these Cayley-Klein geometries. [Gie82] is a standard reference for
modern Cayley-Klein theory. See also [SS04].



Chapter 5

Clifford algebra

In this chapter we merge the results on projectivized Grassmann algebras from Chapter 2
with the Cayley-Klein metric construction from Chapter 4 to obtain real Clifford algebras.
We show that, given an admissable quadric surface (Q,Q∗), there is a Clifford algebra
whose geometric product faithfully reproduces the inner product structure of (Q,Q∗).
We establish some results in n dimensions. For example, we show that multiplication
by the unit pseudoscalar I is equivalent to the polarity on the metric quadric of the
Cayley-Klein space. We introduce a family of Clifford algebras Clnκ corresponding to
the Cayley-Klein geometries of euclidean, elliptic, and hyperbolic n-space. We discuss
how the isometry group of the Cayley-Klein geometry appears in the Clifford algebra.
This leads to a description of the most important sub-algebras of the Clifford algebra.
This n-dimensional treatment provides the foundation for the detail consideration of the
2-dimensional and 3-dimensional cases in Chapter 6 and Chapter 7, resp.

The chapter closes with a pair of appendices devoted to clarification work. The first is
devoted to a a widespread confusion in the literature regarding representation of reflec-
tions in planes vs. reflections in points. The second concerns another widespread confusion
in the literature: between the non-metric isomorphism J introduced in Chapter 2 and the
polarity on the elliptic metric quadric, which is often used (inappropriately, we claim)
for the same purpose.

Throughout this discussion V = Rn+1 so that P(V) = RPn.

5.1 Clifford algebra = Cayley-Klein + Grassmann algebra

The discussion of the previous chapter shows how to construct Cayley-Klein metric spaces
in RPn by selecting an admissable (standard or dual) quadric surface Q = (Q,Q∗). We
now turn to the question of how this construction can be integrated with the associated
Grassmann algebras P(

∧
V) and P(

∧
V∗). The resulting product structure should con-

tain both the inner product (from Q) and the outer product of the Grassmann algebra.
For standard (dual) Q, define a geometric product on 1-vectors of P(

∧
V) (P(

∧
V∗))

by:

38
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xy := B(x,y) + x ∧ y (5.1)
= x · y + x ∧ y (5.2)

where x · y := B(x,y) is the inner product associated to the quadratic form Q. This
definition can be meaningfully extended to the full exterior algebra. The resulting product
is associative. The algebra is called a real Clifford algebra.

Remark 79. If Q has the signature (p,m, z), where p+m+ z = n+ 1, denote the corre-
sponding real Clifford algebra constructed on P(

∧
V) by P(Rp,m,z); that constructed

on P(
∧

V∗), as P(R∗p,m,z). We assume a canonical basis of P(
∧

V) (P(
∧

V∗)) (see
Sect. 2.3.1.3) generated by the basis 1-vectors with signature (s + + + ... − − − ...),
where s ∈ {+, 0,−}, as described in Sect. 3.2.

5.2 Clifford algebra fundamentals

We review some notation and facts of Clifford algebras which we’ll need in the sequel.
Let C be a Clifford algebra and X and Y arbitrary multivectors.

• X represents the conjugation of X. For a k-vector X, X = (−1)kX, hence projectively
X ≡ X.

• X̃ represents the reversal of X. For a k-vector X, X̃ = (−1)
k(k−1)

2 X, hence projectively
X̃ ≡ X.

• 〈X〉k represents the grade-k part of X. X is a k-vector ⇐⇒ 〈X〉j 6= 0 exactly for
j = k.

• For a k-vector X and an m-vector Y,

XY =
∑
i

〈XY〉i where i ∈ {|k −m|, |k −m|+ 2, ..., k +m}

• For a k-vector X, X2 = 〈X2〉0: the square of a k-vector is a scalar.
• The inner product X ·Y := 〈X,Y〉|k−m|.
• The outer product X ∧Y = 〈X,Y〉k+m.

• The commutator product X×Y :=
1
2

(XY −YX).

Remark 80. We assume a basic familiarity with real Clifford algebras, as can be found in
[DFM07], [HS87], or [Lou01], Ch. 14.

Remark 81. Almost without exception, the standard literature on Clifford algebras omits
the degenerate signature case. For example, all the standard sources mentioned above
do so. As a result, the discussion here adapts, wherever possible, existing results for
non-degenerate signatures to be valid also for the degenerate signatures handled here,
and develops alternative strategies when such adaptation is not possible. For example,
out use of Poincaré duality to implement the join operator reflects the fact that for a
degenerate metric the metric polarity cannot be used for this purpose – as is common
practice ([HS87], [DFM07]).
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5.3 Cayley-Klein compatibility check

The quadric surface associated to the Cayley-Klein spaces studied here consists of a pair
(Q,Q∗), but the definition (5.1) refers only to Q. Our first step in verifying that the
Cayley-Klein construction can be transferred to the Grassmann algebra is to verify that
Q∗ is compatible with the resulting geometric product. The inner product Q∗ on dual
vectors should be given in the Clifford algebra by the Clifford inner product (defined in
the previous section) on n-vectors. To be precise:

Theorem 82. For u ∈
∧n(V), u · u = Q∗(u).

Proof. We prove this first for canonical basis vectors Ei of
∧n(V), which satisfy Ei =

±
∏
j 6=i ej . Then

Ei ·Ei = 〈EiEi〉0 (5.3)

= E2
i (5.4)

= (
∏
j 6=i

ej)(
∏
j 6=i

ej) (5.5)

= −1
n(n+1)

2

∏
j 6=i

e2j (5.6)

For a non-degenerate signature Q = (p,m, 0), this leads to following:

E2
i =

{
(−1)

n(n+1)
2 +m if 0 ≤ j < p

(−1)
n(n+1)

2 +m−1 if p ≤ j ≤ (p+m) = n+ 1
(5.7)

Depending on the parity of n(n+1)
2 and m, one arrives at the signature (p,m, 0) or

(m, p, 0). By Sect. 3.2, both are equivalent to the original signature (p,m, 0), which is
also Q∗. So, for the non-degenerate case, the claim is established.

This leaves the case of rank-n quadric surfaces (Q,Q∗). Evaluating (5.3) for this case
yields:

E2
i =

{
0 if 1 ≤ j ≤ n
(−1)

n(n+1)
2 +m if j = 0

(5.8)

This agrees with the calculations for the pseudo-euclidean signatures in the proof of
Thm. 40 and also here one has Ei · Ei = Q∗(Ei). Since both sides of the desired result
are bilinear in u, the result can be extended to arbitrary elements u ∈

∧n(V). ut

Remark 83. By Sect. 3.2, the theorem can be uniquely extended to an inner product
consistent with B∗.

Remark 84. Notice we have attached the quadratic form Q of a standard quadric surface
to P(

∧
V) and that of a dual quadric surface, to P(

∧
V∗). When Q is non-degenerate,

one obtains an isomorphic algebra by attaching Q∗ instead to P(
∧

V∗) (standard), or
to P(

∧
V) (dual). But when Q is rank-n (standard), attaching Q∗ to P(

∧
V∗) leads
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to inconsistent results, since the induced metric on n-vectors is 0, whereas it should
have rank-n. In particular, the pseudo-euclidean Cayley-Klein spaces must be based on
P(
∧

V∗), and the dual pseudo-euclidean spaces, on P(
∧

V).
We next show that the polarity on the metric quadric is available directly via the

Clifford algebra product.

5.4 Metric polarity via pseudoscalar multiplication

It is standard result of Clifford algebras that multiplication by the pseudoscalara I is
a grade-reversing algebra homomorphism, and an isomorphism when I2 6= 0. Here we
want to connect this multiplication to the polarity on the metric quadric introduced in
Sect. 3.1.2.

Theorem 85. Define Θ : P(
∧

V)→ P(
∧

V) by Θ(X) = XI. Then Θ(X) = J ◦
∧

(LB).

Proof. Let ei be a basis 1-vector. Then since eiEi = I,

eiI = e2
iEi (5.9)

On the other hand,
J(
∧

(LB)(ei)) = J(LB(ei)) = J(e⊥i ) (5.10)

The application of J in the last equation moves the element from
∧1(V∗) to the corre-

sponding entity in
∧n(V). A consideration of the admissable signatures for Q establishes

the equality of the RHS of (5.9) and the RHS of (5.10).
Observe that Θ(a ∧ b) = Θ(a) ∨ Θ(b) for two 1-vectors a and b. Hence, Θ can be

written as an exterior power of a map. Since it agrees with the map J ◦
∧

(LB) on
1-vectors, it must be the same map on the whole algebra. ut

5.5 The Clifford algebras Clnκ

The remainder of this study concentrates on the three Cayley-Klein geometries, leaving
the pseudo-euclidean signatures to the side. We show how known results of these geome-
tries can be expressed within the Clifford algebra setting, in many cases with surprising
elegance and compactness.

As pointed out above, for non-degenerate metrics, there are no grounds to prefer
beginning with P(

∧
V) or P(

∧
V∗) to build up the Clifford algebra, since the induced

metric on the dual algebra is identical to the original metric. Remark 84, however, shows
the necessity of using P(

∧
V∗) for the euclidean case, we build the non-euclidean algebras

in the same way. For the elliptic case, that results in the algebra P(R∗n+1,0,0); for the
hyperbolic case, P(R∗n,1,0). We refer to the approach based on these algebras as the dual
approach, or the dual construction.
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5.5.1 Notation

In order to handle these three cases in a metric-neutral way, we introduce some nota-
tion. For discussions which apply equally well to all three algebras, we use the notation
Clnκ , where e2

0 = κ, to denote the corresponding Clifford algebra; there are three cases
corresponding to κ ∈ {−1, 0, 1}. For metric-specific remarks, we supply a specific value
of κ. This value of κ also represents the constant Gaussian curvature of the space when
considered as a Riemannian manifold ([TL97]).

Some other commonly used structures associated to these algebras:

• The even sub-algebra generated by vectors of even grade, will be denoted by Cln+
κ .

• The sub-algebra generated by scalars and pseudoscalars, will be denoted by Cln†κ .
• We use Gnκ to refer to the associated n-dimensional geometries, and refer to these

collectively as κ-geometries. We will have need to refer to the Lie matrix groups
representing the isometries of Gnκ. We refer to these groups generically as Gn

κ with Lie
algebra gnκ. We do not derive these groups here, they can be found in the literature,
for example, see [TL97].

The Lie groups for the three cases are shown in (5.11). We focus on the direct isometries
since these will be important in the discussion of rigid body motion. The presence of the
P in the name indicates that the groups are projectivized; since they are all subgroups
of the projective group PGL(n + 1,R). SE(n), the euclidean group, is the semi-direct
product PSO(n, 0) o R(n). One important theme of the later chapters will be to show
how to find finite coverings of these groups inside Cln+

κ for n = 2 and n = 3.

Γnκ =


PSO(n, 1) κ = −1
SE(n) κ = 0
PSO(n+ 1, 0) κ = 1

(5.11)

Remark 86. We retain the Grassmann algebra P(
∧

V) solely as an exterior algebra, pri-
marily for calculating the join operator. Again, this decision is based on the fact that the
metric relations in the euclidean case are poorly behaved. For the non-euclidean case,
one could perhaps also carry out metric operations in P(

∧
V∗); this is not done here.

All metric operations are carried out in P(
∧

V∗). Or equivalently, we attach the metric
(0, 0, n+ 1) to W , forcing all inner products to zero.

Remark 87. Notation alert. Due to the more prominent role of P(
∧

V∗), the basis
element for scalar and pseudoscalar in P(

∧
V∗) will be written without index as 1 and

I; we may even omit 1 when writing scalars, as is common in the literature.

5.6 Isometries via conjugation

One of the most powerful aspects of Clifford algebras for metric geometry is the ability
to realize isometries as conjugation operators of the form:
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g(X) := gXg−1 (5.12)

where X is any geometric element of the algebra and g is a specific geometric element,
unique to the isometry. We will prove below (Thm. 89) that when g is a proper 1-vector,
then g is a reflection in g, hence by Thm. 77, the elements generated by such g generate
the isometry group of the Cayley-Klein space.

Remark 88. Since conjugation is an overloaded mathematical term, we also use the less
ambiguous term sandwich operator to refer to g.

5.6.1 Reflections

Let a be a normalized 1-vector representing a proper hyperplane in a κ-geometry. Then
a−1 = a, and the sandwich (5.12) takes then the form a(X) := aXa. We show that a
represents a reflection in the hyperplane a, in the sense of Def. 73: a is the axis of the
reflection, and a⊥ is the center. Fig. 5.1 shows the situation for n = 2.

Let b be another hyperplane. Then, applying Def. 73, the reflection R of b in a is
given by:

R(b) = −〈a⊥,a〉b + 2〈a⊥,b〉a
= −S(a⊥ ∧ a)b + 2S(a⊥ ∧ b)a
= −(a · a)b + 2(a · b)a

Here we have converted the evaluation map 〈, 〉 to the wedge product, then applied
Ex. 6.1.1.1-5 to convert to inner product.

Theorem 89. R(b) = a(b).

Proof.

Fig. 5.1 The sandwich
of an arbitrary object X
in the algebra with a 1-
vector is a reflection of the
object in the hyperplane
represented by the 1-
vector.

a

X

aXa
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aba = a(b · a + b ∧ a)
= (a · b)a + a(b ∧ a)

(a · a)b = (aa)b = a(ab)
= a(a · b + a ∧ b)
= (a · b)a− a(b ∧ a)

aba + (a · a)b = 2(a · b)a
aba = −(a · a)b + 2(a · b)a

5.6.2 Spin group

Multiplication of 1-vectors corresponds to composition of reflections. It’s useful to intro-
duce some definitions to describe the situation.

Definition 90. A versor is an element that can be written as the product of 1-vectors.
A versor is called even if it can be written as the product of an even number of 1-vectors.
A versor is called proper if it is the product of proper 1-vectors.

Remark 91. When g is a proper versor, the above proof also shows that g is an isometry,
since it is by definition a product of proper reflections. An even proper versor then
corresponds to a direct isometry, an odd versor to an indirect one. By Thm. 77, the
proper versors generate the isometry group.

Definition 92. • The pin group Pinn+κ of the Clifford algebra Clnκ is the group gener-
ated by 1-vectors a satisfying a2 = 1.

• The spin group Spinn+κ of the Clifford algebra Clnκ is the subgroup of Pinn+κ consisting
of even proper versors.

• An element of Spinn+κ is called a rotor.

Remark 93. When a is improper but not ideal, a⊥ = aI is a proper point, and the
reflection in a is a point reflection in a⊥. The latter is not a reflection in the Cayley-
Klein geometry. This is the reason we restrict Pinn+κ to proper 1-vectors. The point
reflection can be written in this restricted group as the n-versor a⊥, which is the product
of n proper 1-vectors.

Remark 94. The condition a2 = 1 for the pin group is equivalent to the condition that
a is normalized proper. It follows from the definition of Spinn+κ that group elements
satisfy a−1 = ã so aã = 1. The latter condition is commonly used to define the group.
Then it may happen that some elements are not versors ([HS87], Ch. 3). But since the
isometry groups we study are generated by reflections in proper 1-vectors, our groups
in fact consist of proper versors. Additionally, some treatments also include the larger
group Spinnκ := {g ∈ Cln+

κ | gg̃ = ±1}. Due to our use of proper versors, we do not have
to consider this group.

Remark 95. Some authors ([HS87], [Per09]) refer to an element of the spin group as a
spinor but this assumes familiarity with an non-trivial program carried out by Hestenes
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to justify the use of this term ([Lou01], p. 327). Since our interest here is not in spinors
per se, we use the term rotor instead. [HS87] defines a rotor as an even versor. For reasons
given above, we restrict this to even proper versors. Note that the discussion of the spin
group in [HS87] is overly complicated by the presence of a power of −1 which the dual
approach avoids (for a discussion of this problem see Sect. 5.9 below).

Remark 96. We will discuss Spinn+κ (for n = 2 and n = 3) in more detail in the following
chapters, and show that they satisfy the properties listed in the “wish-list” of Chapter 1.
The group Pinn+κ will occupy less of our attention because it does not satisfy these
properties.

Definition 97. The logarithm of a rotor g is a bivector L such that g = eL.

Remark 98. We will show that for Cl2κ (Chapter 6) and Cl3κ (Chapter 7), every rotor has
a logarithm.

5.7 The structure of Clnκ

Fig. 5.2 The important
sub-algebras and sub-
spaces of Clnκ .

Cln+
a+bI

1

gg=1~ Λ2

bivectors

Cl nκ

κ

Spin+κn

Fig. 5.2 gives a simplified overview of the structural entities in Clnκ introduced above.
We have omitted Pinn+κ since we are mostly concerned here with the direct isometry
group. The even sub-algebra Cln+

κ contains the sub-algebra Cln†κ , consisting of scalars
and pseudoscalars.
Cln+

κ also contains the spin group Spinn+κ. As we have seen, these are the elements
of Cl3κ which have been normalized to satisfy gg̃ = 1; in general, they form a finite cover
of the direct isometry group G of the Cayley-Klein space.
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Finally, the bivectors
∧2 ⊂ Clnκ can be identified with the Lie algebra. It’s straight-

forward to verify that Σ ∈ (
∧2 ∩ Spinn+κ) ⇐⇒ Σ is simple. Such a bivector is a rotor,

representing an order-2 rotation around its line.
Chapter 6 and Chapter 7 provide a detailed account of these sub-algebras and sub-

spaces for dimension 2 and 3, resp.

5.8 Guide to the (Lack of) Literature

[Lou01] gives a good introduction to real Clifford algebras with a wealth of examples.
[HS87] has a rich collection of formulas and themes. Neither provides any significant
treatment of degenerate metrics as present in the euclidean algebra Cln0 . [Abl86] is con-
cerned with spin groups in such degenerate Clifford algebras. However, our pin and spin
groups are simpler than his (and than the general non-degenerate spin groups also) due
to the fact mentioned above our groups are generated by proper reflections, so we are
above to provide a self-contained treatment of them here.

Many results in the standard literature are stated for vector spaces rather than Cayley-
Klein spaces in projective space. This leads to slight differences in how the groups are
defined, since some isometries which are distinct in the vector space setting are equivalent
in the projective space setting. Finally, the dual construction based on W ∗ is not worked
out in detail in the literature, as we are forced to do here by the euclidean metric. For
all these reasons, the following chapters prove a series of results that are similar but not
identical to standard results.

5.9 Appendix: Reflections in points and in hyperplanes

This is an appropriate point to discuss a matter of practical concern regarding how
reflections are represented in Clifford algebra, and which much of the standard literature
handles rather sloppily. We saw above that when a is a 1-vector, then a is the reflection in
a. In the dual algebra W ∗, a represents a hyperplane (for n = 2, a line); in the standard
algebra W , it represents a point. ( We leave aside for the moment the question of whether
a is proper or not, since this distinction is not relevant for the issue at hand.)

A consequence of these observations is that reflections in hyperplanes are not given nat-
urally in point-based algebras by sandwich operators with 1-vectors, but with codimension-
1 vectors. It is however common practice in the literature to represent such a reflection
using a sandwich with a 1-vector (see for example [DFM07], p. 168, or [HS87], Ch. 3). In
the vector space model of Rn, one writes for the reflection of a point X in a hyperplane
whose normal vector is P:

X→ −PXP (5.13)

Without the minus sign, the expression PXP represents a reflection in the vector P.
In 3 dimensions, this is a rotation of π radians around the line PR. See Fig. 5.3. To obtain
the reflection in the plane p orthogonal to P, one must compose this vector reflection with
the point reflection in the origin, which is achieved by multiplying by −1.This undoes
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Fig. 5.3 In the vector
space Clifford algebra R3,
reflection in the line PR is
given by PXP. Reflection
in the hyperplane P⊥, on
the other hand, is given
by −PXP.

the rotation around the line PR and introduces a reflection in the orthogonal plane. This
yields the expression −PXP as the form for a reflection in the plane orthogonal to P.
See also [Lou01], pp. 57-8.

This illustrates another advantage to the dual homogeneous model presented here,
since reflections in points and in planes are represented without any extra minus signs.

5.10 Appendix: Poincaré duality and the elliptic metric polarity

We can now appreciate better the significance of the Poincaré isomorphism: J : P(
∧

V)↔
P(
∧

V∗). Consider the map Π : P(
∧

V)→ P(
∧

V) defined analogously to J in (2.5) for
the case V = R4:

Π(ei) := Ei, Π(Ei) := ei, Π(eij) := ekl (5.14)

Π is the same as J, but interpreted as a map to P(
∧

V) instead of P(
∧

V∗). It’s trivial
to verify that Π is the polarity on the elliptic metric quadric with signature (4, 0, 0).

For general dimension n, recall the definition of J using a canonical basis in Sect. 2.3.1.3.
Instead, equip P(

∧
V) with signature (n, 0, 0) to form the Clifford algebra P(Rn,0,0)

with pseudoscalar I = eN . Then, by Thm. 85, the polarity on the metric quadric is
given by eSI = e(S⊥), where equality follows from the fact that for the canonical basis,
(eS)−1 = eS .This is the polarity Π : P(

∧
V) → P(

∧
V) on the elliptic metric quadric

(see Sect. 4.4).
Conclusion: Both J and Π represent valid grade-reversing involutive algebra iso-

morphisms. The only difference is the target space: Π : P(
∧

V) → P(
∧

V), while
J : P(

∧
V)→ P(

∧
V∗).
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5.10.1 The regressive product via a metric

Given the point-based exterior algebra W , the outer product A ∧ B represents the join
of subspaces A and B.1 The meet operator A∨B (also known as the regressive product)
is often defined as

Π(Π(A) ∧Π(B))

([HS87], [DFM07]). That is, the elliptic metric (any nondegenerate metric suffices)
is introduced in order to provide a solution to a projective (incidence) problem. By
Sect. 2.3.1.4, the same result is also given via J(J(A) ∧ J(B). (Here, the ∧ denotes the
outer product in P(

∧
V∗)).

5.10.1.1 The Hodge ? operator A map very similar in spirit to J is described in
[PW01], p. 150. The ? operator is presented there as a way of generating dual coordinates,
which is an apt description of the J operator also. One can then define the regressive
product by ?(?A ∧ ?B). Formally, however, ? is a map from W to W , so is identical to
the metric polarity Π.

5.10.2 Comparison

The two methods to calculate the regressive product yield the same result, but they have
very different conceptual foundations. As pointed out in Sect. 2.2.4, the meet and join
operators live the exterior algebra P(

∧
V) and its dual. J provides the bridge between

these two projective algebras, hence provides a projective explanation for what is a
projective operation. A related advantage of J is that it also is useful when used “alone”
– whereas Π (and also ?) – when imported to realize the regressive product – is only
valid when it appears in the second power, and hence disappears. For these reasons, we
propose a differentiation of the terminology to reflect this mathematical differentiation.
Instead of referring to multiplication by I (or I−1) as the duality operator, we propose it
should be called the metric polarity operator This is consistent with the mathematical
literature. The purely projective term duality would be reserved for the J operator. To
be precise, J(X) gives the dual coordinates of X.

1 In this paragraph we depart from the notation adopted for this thesis which represents the outer
product in P(

V
V) with the symbol ∨.



Chapter 6

Metric planes via Cl2κ

This chapter is devoted to the exploration of the two-dimensional members Cl2κ of the
family of Clifford algebras introduced in the previous chapter. We demonstrate that
the algebraic structures provide compact, elegant representation of the classical metric
planes: euclidean, hyperbolic, and elliptic.

We undertake this study of the 2D case first, due to the unfamiliar concepts involved –
notably the dual construction and the degenerate euclidean metric. Then, when we turn
to the 3D case in Chapter 7, we can focus on the special challenges which it presents,
notably the existence of non-simple bivectors.

This chapter begins by discussing metric-neutral properties of Cl2κ, before turning
to metric-specific discussions. It then analyses the structure of the isometry groups,
demonstrates the existence of logarithms for every rotor. This leads to a classification
of the flow generated by exponentiating a general bivector. The chapter closes with a
discussion of how the results can be related to known results of Lie groups and algebras.

6.1 Description of the algebras

Notation. For denoting general vectors in the algebra: we denote 1-vectors with small
bold Roman letters, and 2-vectors with capital bold Roman letters.

A basis for the algebra Cl2κ is given by

{1 := 10, e0, e1, e2,E0 := e1e2,E1 := e2e0,E2 := e0e1, I := e0e1e2}

with the relations
{e2

0 = κ; e2
1 = e2

2 = 1}

This induces on the higher grades the following metric relations:

{E2
0 = −1; e2

1 = e2
2 = I2 = −κ} (6.1)

49
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1 e0 e1 e2 E0 E1 E2 I

1 1 e0 e1 e2 E0 E1 E2 I
e0 e0 κ E2 −E1 I −κe2 κe1 κE0

e1 e1 −E2 1 E0 e2 I −e0 E1

e2 e2 E1 −E0 1 −e1 e0 I E2

E0 E0 I −e2 e1 −1 −E2 E1 −e0

E1 E1 κe2 I −e0 E2 −κ −κE0−κe1

E2 E2 −κe1 e0 I −E1 κE0 −κ −κe2

I I κE0 E1 E2 −e0 −κe1 −κe2 −κ
Table 6.1 Geometric product in Cl2κ.

Inspection of the multiplication table Table 6.1 reveals that the geometric product of
a k- and l-vector yields a product that involves at most two grades. When these two
grades are |k− l| and k+ l, we can write the geometric product for 2 arbitrary blades A
and B as

AB = A ·B + A ∧B

The only exception is (l, k) = (2, 2) where the grades |k− l| = 0 and |k− l|+2 = 2 occur.
Then using the commutator product (Sect. 5.2):

〈AB〉2 = A×B

where A and B are bivectors. Hence, every product of k- and l- vectors can be decomposed
into pure grade parts using the inner, outer, and commutator products. We’ll find this
is also true for n = 3 (see Chapter 7). Since all vectors in Cl2κ are blades, the above
decompositions are valid for the product of any two vectors in this algebra.

6.1.1 The geometric product

The geometric product can be understood by studying its restriction to pure grade ele-
ments, that is, products of k- and m-vectors for all possible k and m. For this purpose,
define two arbitrary 1-vectors a and b and two arbitrary bivectors P and Q with

a = a0e0 + a1e1 + a2e2, etc.

These coordinates are of course not instrinsic but they can be useful in understanding how
the metric is working in the various products, especially with regard to the distinguished
role of e0. For the following metric-neutral discussion we assume, unless otherwise noted,
that these vectors are proper elements of the κ-geometry. We sometimes use the special
symbol X to denote a k-vector of arbitrary grade.

1. Norms. It is often useful to normalize vectors to have a particular intensity. In gen-
eral, define the norm of a proper k-vector X as ‖X‖ :=

√
|X ·X|. When the norm
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is non-zero, we can apply linearity to show that
X
‖X‖

has norm ±1. It is often con-

venient to work with normalized vectors, for example, in evaluating homogeneous
distance and angle formulas such as (4.1) and (4.2). Proper elements, since they do
not belong to Q or Q∗, have non-zero norm, hence can be normalized. It is even
sometimes possible to introduce a meaningful norm for ideal elements. See the sepa-
rate discussions of the euclidean plane (Sect. 6.2.3) and hyperbolic plane (Sect. 6.2.2)
below.

2. Pseudoscalar magnitudes. Define S : P(
∧2 R2∗) → P(

∧0 R2∗) by S(αI) =
1
I (αI) = α. This gives the scalar magnitude of a pseudoscalar in relation to the
basis pseudoscalar I. It is well-defined since P(

∧2 R2∗) is one-dimensional with basis
element I. Note that this expression does not depend on the existence of I−1. We
sometimes use (a ∨P) = S(a ∧P) for the same purpose.

3. Inverses. k-vectors with non-zero norm also have unique inverses. X−1 =
X

X ·X
.

Hence, proper points and planes in the model have unique inverses.
4. a ∧ P = (a0p0 + a1p2 + a2p2)I = (a ∨ P)I = 〈a,P〉 vanishes only if a and P are

incident. Otherwise, when a and P are normalized, it is related to the distance of the
point to the line. Details follow in the discussions of specific metrics.

5. P · a = (p2a1 − p1a2)e0 + (p0a2 − κp2a0)e1 + (κp1a0 − p0a1)e2 is a line which passes
through P and is perpendicular to a. Reversing the order changes the orientation of
the line.

6. P ∨Q is the joining line of P and Q. ‖P ∨Q‖ has a metric-specific significance; see
metric-specific discussions below.

7. a∧b =: T is the intersection point of the lines a and b. Reversing the order reverses
the orientation of the resulting point.

8. a · b has different interpretations, depending on whether the two lines intersect in
a proper, ideal, or improper point. For normalized lines a and b that intersect in
a proper point with angle α, a · b = cos(α). Which of the two possible angles is
being measured here depends on the orientation of the lines. The other cases will be
discussed in the metric-specific treatment below.

9. P ×Q is the polar point of the line P ∨Q, since a direct calculation confirms that
P×Q = −(P ∨Q)I.

10. a⊥ := aI = κa0E0 + a1E1 + a2E2 is the polar point of the line a.
11. P⊥ := PI = p0e0 + κ(p1e1 + p2e2) is the polar line of the point P.

6.1.1.1 Examples We provide examples throughout the exposition which derive results
of interest. Many details of these examples are left to the reader to fill in.

1. All the results obtained above in Sect. 6.1.1 can also be framed in the n-dimensional
context, where 1-vectors representing (n−1)-dimensional hyperplanes, and n-vectors
represent points. Then a∧b is an (n− 2)-dimensional subspace common to a and b,
etc. The reader is encouraged to work out some examples to familiarize himself with
the n-dimensional analogs.

2. When the arguments to the formulas in Sect. 6.1.1 are not normalized, one can
incorporate the norms in the fomulas in a straightforward way. For example, the
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formula for the angle between non-normalized proper lines is:

cos d =
a · b
‖a‖‖b‖

Similar expressions appear in all the other formulas.
3. Projection onto a line, and onto a point. For a proper normalized line a and

proper point P, (P · a)a−1 is the orthogonal projection of the point P onto a. (a ·
P)P−1 is the line through P perpendicular to (a ·P).

4. Orthogonal decomposition.

• Of a line with respect to a second line. Notice that (aa)b = a(ab). Then,
for proper normalized lines a and b, b = b‖ + b⊥ := (a · b)a + a · (a ∧ b). b⊥ is
perpendicular to a.

• Of a point with respect to a line. Using the same approach, for a proper
normalized line a and proper normalized point P, P = P‖ + P⊥ := a(a · P) +
a(a ∧P). P‖ lies on a and P⊥ is a multiple of a⊥.

5. The following identities involving the geometric product are useful:

a. a · b = S(a ∧ bI) = a ∨ bI.
b. P×Q = −(P ∨Q)I.

6.2 Metric-specific discussion

The foregoing discussion has handled the algebras Clnκ from a metric-neutral standpoint.
We now turn to a discussion of metric-specific features.

6.2.1 Elliptic plane via Cl21

The elliptic plane is characterized by the nature of its absolute as a totally imaginary non-
degenerate conic section (Sect. 4.1). Most of the metric-specific aspects of this geometry
can be explained via reference to this feature.

(6.1) shows that the induced signature on 2-vectors is (0, 3, 0), equivalent to the original
metric (3, 0, 0).

The polarity on the metric quadric, implemented in the Clifford algebra by multiplica-
tion by I, is a self-map of the plane, hence introduces no new qualitative phenomena. It
essentially flips angles and lengths, and corresponds to the well-known polarity of a trian-
gle and its polar triangle. Compare to the hyperbolic plane discussion below Sect. 6.2.2.

The elliptic plane is the least complicated of the metric planes. There are neither ideal
nor improper points or lines, so every vector (2-vector) can be normalized to have norm
1 (-1).

A check of the multiplication table Table 6.1 reveals that Cl2+1 w H. We will return
to this isomorphism below in Remark 101 after a discussion of isometries.
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Fig. 6.1 A selection of
the geometric products
between various k-blades
in the the hyperbolic
plane via R2,1,0. Points
and lines are assumed to
be normalized.
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6.2.2 Hyperbolic plane via Cl2−1

The hyperbolic plane is characterized by the nature of its absolute as a totally real non-
degenerate conic section (Sect. 4.2). Most of the metric-specific aspects of this geometry
can be explained via reference to this feature. We sometimes refer to proper elements as
hyperbolic elements.

The induced metric on 2-vectors (points) is (2, 1, 0), exactly equal to the original
signature (compare to elliptic case).

Following the discussion in Sect. 4.3, ideal points and lines satisfy ‖X‖ = 0; hyper-
bolic points and properly improper lines satisfy ‖X‖ < 0; properly improper points and
hyperbolic lines satisfy ‖X‖ > 0. Hence, normalized hyperbolic points satisfy P ·P = −1
and normalized hyperbolic lines satisfy m ·m = 1.

6.2.2.1 Enumeration of various products We now carry out an investigation anal-
ogous to Sect. 6.1.1. See the companion diagram in Fig. 6.1. Due to the large number of
possible combinations of proper, ideal, and improper points and lines, only a sampling of
the many possibilities are given here; the remaining are left as an exercise for the reader.

1. Ideal norm of ideal points. Ideal elements satisfy by definition X ·X = 0. Define
the ideal norm ‖a‖∞ of an ideal line a by ‖a‖∞ := ‖a ∨ e0‖, where the latter is the
point norm defined in Sect. 6.1.1. ‖a‖∞ =

√
a2
1 + a2

2 is the euclidean norm of the
direction vector of a.
Similar remarks apply to ideal points. For such a point P, one defines ‖P‖∞ :=
‖P ∨E0‖; the result is the euclidean norm of the direction vector of the line joining
P with the origin E0.
Note that the norms ‖X‖∞ defined here are non-zero for non-zero X. These norms
are applied in Sect. 6.3.2 to provide canonical forms for isometries associated to ideal
elements.

2. Hyperbolic distance.
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• Between lines. For normalized hyperbolic a and b, such that a∧b is hyperbolic,
the angle between the lines satisfies cosα = a · b. When a ∧ b is improper, the
hyperbolic distance d between them (measured along the common normal (a∧b)I)
satisfies cosh d = a · b.

• Between points. For normalized hyperbolic P and Q, the hyperbolic distance d
between P and Q satisfies cosh d = −P ·Q.

3. a∧P vanishes only if a and P are incident. Otherwise, when both are hyperbolic and
normalized, cosh−1 (a ∧P)I is the hyperbolic distance between a and P. The other
cases are left as exercises.

4. a · b = cosh−1 d for normalized hyperbolic lines a and b that meet in an improper
point. Here d is the hyperbolic distance between the two lines measured along the
common perpendicular. See Fig. 6.1.

5. aI is the polar point of the line a: the intersection of the tangent lines at the inter-
sections points of a with the ideal circle. The polar point of a hyperbolic line is an
improper point; the polar point of an improper line is a hyperbolic point. The polar
point of an ideal line is the ideal point where the ideal line touches the ideal circle.

6. PI is the polar line of the point P. The polar line of a hyperbolic point is improper;
the polar line of an improper point is hyperbolic; the polar line of an ideal point is
ideal: the tangent line to the ideal circle at the ideal point.

6.2.2.2 Dual hyperbolic plane As explained in Sect. 5.4, the metric polarity I is an
algebra isomorphism. Thus, polar to the model of the hyperbolic plane H consisting of
the points of the open unit disk, there is a model of the hyperbolic plane Ĥ := I(H),
whose “points” are the improper lines of H, the lines “outside” the unit disk. Such a line
we call a dual hyperbolic line. And an improper point of H is a dual hyperbolic point of
Ĥ. All the metric relations that are true for points within H carry over and are true for
such lines in Ĥ. The distance between two such lines is the hyperbolic distance between
the polar points in H, etc. Contemplating Fig. 6.1 is recommended to familiarize oneself
with the nature of this polarity. Note that both P(R∗2,1,0) and the dual Clifford algebra
P(R2,1,0) contain H and Ĥ. As explained in Sect. 4.4.2, the dual hyperbolic plane arises
by choosing different sets of proper points and lines when constructing the Cayley-Klein
space.

6.2.3 Euclidean plane via Cl20

The euclidean plane has the most complicated behavior due to the degenerate and asym-
metric nature of Q and Q∗. Since it also of the most interest for applications, we inves-
tigate the Clifford algebra P(R∗2,0,1) in detail.

6.2.3.1 Consequences of degeneracy The pseudoscalar I satisfies I2 = 0. Hence,
I−1 is not defined. Many standard formulas of geometric algebra are, however, typically
stated using I−1 ( [DFM07, HS87]), since that can simplify things for nondegenerate
metrics. As explained in Sect. 2.4, many formulas remain projectively valid when I−1 is
replaced by I; in such cases this is the solution we adopt.
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6.2.3.2 Notation e0 is the ideal line of the plane, e1 is the line x = 0 and e2, the line
y = 0. E0 is the origin (1, 0, 0) while E1 and E2 are the ideal points in the x− and y−
direction, resp. Points and lines which are not ideal, are called finite, or euclidean.

6.2.3.3 Converting to and from traditional notation The natural embedding of
a euclidean position x = (x, y) we write as i(x) = E0 + xE1 + yE2. A euclidean vector
v = (x, y) corresponds to an ideal point (see Sect. 4.4.4); we denote its embedding with
the same symbol i(v) = xE1 + yE2. We sometimes refer to such an element as a free
vector. Conversely, a bivector wE0 +xE1 +yE2 with w 6= 0 corresponds to the euclidean
point ( xw ,

y
w ). We refer to w as the intensity or weight of the bivector. And, we write A

to refer to i−1(A). The line ax+ by+ c = 0 maps to the 1-vector ce0 + ae1 + be2. A line
is euclidean if and only if a2 + b2 6= 0.

6.2.3.4 Enumeration of various products Here we extend the results of Sect. 6.1.1
to include metric-specific euclidean features.

1. Norms.

• 1-vectors. a2 = a · a = a2
1 + a2

2. Then
a
‖a‖

is a vector with norm 1, defined for

all vectors except e0 and its multiples. In particular, all euclidean lines can be
normalized to have norm 1. Note that when a is normalized, then so is −a. These
two lines represents opposite orientations of the line.

• 2-vectors. P2 = P · P = p2
0E

2
0 = −p2

0. Define the norm of P to be p0 and write
it ‖P‖. Note that this can take positive or negative values, in contrast to

√
P ·P.

Then
P
‖P‖

is a bivector with norm 1, defined for all bivectors except where p0 = 0,

that is, ideal points. In particular, all euclidean points can be normalized to have
norm 1. This is also known as dehomogenizing.

2. Euclidean distance. For normalized proper P and Q, ‖P ∨ Q‖ is the euclidean
distance between P and Q.

3. Ideal norm on ideal points. Recall the discussion in Sect. 4.4.4.2, where the
existence of a almost non-degenerate metric on ideal euclidean points was highlighted.
How this can be implemented in the Clifford algebra is described in this and the
following point. First define a norm on ideal points. Let V be ideal (that is, a free
vector) and P any normalized euclidean point. ‖V‖∞ := ‖V∨P‖ =

√
v2
1 + v2

2 is the
length of V as element of the vector space R2. ‖V‖∞ is called the ideal norm of V.

V
‖V‖∞

is normalized to have length 1.

4. Angles between free vectors. For normalized ideal points U and V (‖V‖∞ = 1,
etc): ,

〈U,V〉∞ := (U ∨P) · (V ∨P) = cosα

where P is any normalized proper point and α is the angle between the vectors. In
effect, one converts the points to lines with the desired direction, and then calculates
the angle between these lines.
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Fig. 6.2 A graphical
representation of selected
geometric products be-
tween various k-blades in
the euclidean algebra Cl20.
Points and lines are as-
sumed to be normalized.
Ideal points are drawn as
vectors, distances indi-
cated by norms.
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5. S(a ∧ P) = a ∨ P, when a and P are normalized, equals the signed distance of the
point to the line.

6. PI = p0e0 is the polar line of the point P: for finite points, the ideal line, weighted
by the intensity of P. Ideal points have no polar line.

6.2.3.5 Examples The following examples illustrate features of the euclidean plane.

1. Parallel lines. a and b are parallel when they intersect in an ideal point: (a∧b) 6= 0
but ‖(a∧b)‖ = 0. When the lines are normalized, the distance between the two lines
is then

‖a ∧ b‖∞
2. Ideal elements. It is instructive to consider what changes have to be made to the

above formulas in the case one or more of the parameters are ideal. We have in fact
considered such cases in the discussion above of how to calculate the angle between
ideal points.

3. For normalized A,B, and C, the area of ∆ABC is given by (A∨B)∧C. This reduces
to the determinant rule for calculating the area of a triangle.

4. Triangle centers. Given a euclidean triangle ABC, this exercise shows how to use
P(R∗2,0,1) to calculate the four classical triangle centers, and prove three lie on the
Euler line. Consult Fig. 6.3.

a. ∆ABC can be assumed to have normalized corners A = E0, B = E0 + b1E1,
and C = E0 + c1E1 + c2E2.

b. Define the edge-lines a := B ∨C, b := C ∨A, and c := A ∨B.
c. The median mA, perpendicular bisector pa, altitude ta and angle bisector na

associated to the pair a and A are given by the following formulas:
• ma = (B + C) ∨A
• pa = (B + C) · a
• ta = A · a
• na = ‖c‖b + ‖b‖c
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Fig. 6.3 The three trian-
gle centers M (centroid),
T (orthocenter), and P
(circumcenter) lying on
the Euler line e of the
triangle ABC.

d. Analogous formulas for the lines associated to b and c are obtained by permuting
the symbols.

e. ma, mb, and mc are co-punctual; their common point is the centroid M of the
triangle. [Hint: to show that the three lines go through the same point you can
show the outer product of all three is 0. If you work with the fully general forms
for A, B, and C (don’t use 4a), you can alternatively show that the expression
for the intersection of two of the lines is symmetric in {a,b,c} and {A, B,C}.]

f. One can also show each of the following triple of lines are co-punctual:
• (pa, pb, pc), to obtain the circumcenter P,
• (ta, tb, tc), to obtain the orthocenter T, and
• (na, nb, nc), to obtain the incenter N.

g. M, P, and T lie on a line e (the Euler line of the triangle). [Hint: to show three
points lie on a line, show that the join (∨) of two of the points has vanishing
outer product with the third.

h. M lies between P and T on the Euler line, and is twice as far from T as from P.
This can be shown by establishing that M∧(P∨T) = 0, and that 2M∨P = M∨T.

6.3 Isometries

The discussion of Sect. 5.6 implies that in Cl2κ, a proper 1-vector a gives rise to the conju-
gation operator a which is a reflection in the normalized line a (a2 = 1). The restriction
to proper a is necessary, since for improper a (which only arise in the hyperbolic plane),
a is a rotation of π radians around the proper point a⊥.
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6.3.1 Rotations

Adapting a well-known result in plane geometry to be metric-neutral yields:

When two proper lines intersect in a proper point R, the composition of the reflections in
the two lines is a rotation around R, through an angle equal to twice the angle between the
two lines.

Translating this into the language of the Clifford algebra, the composition of reflections
in lines a and b will look like:

P′ = b(aPa)b

= TPT̃

where we write T := ba, and T̃ is the reversal of T.

Remark 99. The intersection R of the two lines will be fixed by the resulting isometry.
The nature of the isometry depends on the value of R2, which determines whether it is a
proper, ideal, or properly improper point. In any case TT̃ = abba = 1, so T ∈ Spin2

+κ.

Remark 100. The above discussion can be made valid for arbitrary dimension n, by taking
into account that a∧b is not a point but a simple (n−2)-dimensional subspace invariant
under the rotation.

For now, we consider only the case where R is proper. Then 〈R〉0 = a · b = cosα
where α is the angle between the two lines (Sect. 6.1.1). If we write T with normalized
R we obtain:

T = cos (α) + sin (α)R

If one substitutes this into (6.2) and multiplies out, one arrives at the result quoted
above, that a point P undergoes a rotation of 2α around the point R. (Simple check: let
a = e1 and b = e2).

Given a proper point R and an angle θ, one could construct a rotor producing the
rotation of θ degrees around R by finding two lines l1 and l2 through R which meet at

an angle of
θ

2
. But this is not necessary. In Sect. 5.6.2 below, a direct way is shown to

create this rotor by applying the exponential function to the 2-vector representing its
invariant point.

Remark 101. An extension of quaternions. Note that Cl2+1 w H under the mapping
(1, i, j,k) → (1,E0,E1,E2). The former algebra is projectivized, so acts on the elliptic
plane; while the latter is traditionally associated to R3. For the moment we consider
Cl21 as non-projectivized. Then for a 1-vector a of Cl2κ1, a represents a reflection in the
plane a. Hence, we have found an algebraic structure which extends the quaternions in
an important respect, allowing not just rotations around lines in R3 but also reflections
in planes. We will return to this question in Chapter 12 and give a cumulative account
of further discoveries related to the questions posed in Chapter 1.

Remark 102. Rotation versus translation. A rotation around a point P in the elliptic
plane is equivalent to a translation by the same angle along its polar line PI = P⊥. We
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obtain a representation via the latter if we use the point-based model P(R3,0,0); then
2-vectors are lines, and a sandwich of the form in this algebra

(cosα+ m sinα)X(cosα−m sinα)

represents the translation of angle α along the 2-vector (line) m. This is another way
of seeing that the elliptic plane can be built just as well using P(

∧
V) as P(

∧
V∗).

Similar remarks apply to the hyperbolic plane, replacing trig functions with hyperbolic
trig functions. However, note that in contrast to the elliptic case, the axis of translation
will be an improper line.

In both cases, the result of using P(
∧

V) as the basis of the Clifford algebra is that
rotations around a proper point are represented by bivectors, that is, by lines. Since we
generally prefer to characterize a rotation by its center point rather than its invariant
line, this illustrates another advantage of the dual construction based on P(

∧
V∗). And,

furthermore, if we want to include the euclidean case we are forced to use P(
∧

V∗), since
the polar line of every euclidean point is the ideal line.

6.3.1.1 Examples

1. Point reflection. A point reflection in a proper point P is an isometry that sends
each point Q to its reflected image on the “other side” of P. In particular, the image
of Q lies on the line P∨Q on the other side of P an equal distance to P. Q→ PQP̃
realizes this point reflection. On the other hand, this is a rotation since P ∈ Spin2

+κ.
The apparent contradiction can be resolved by observing that cos (π/2) = 0.

2. Glide reflection. The composition of a reflection in a line m with a rotor that
leaves m invariant is called a glide-reflection (for example, a rotation around the
point m⊥). A glide reflection is uniquely characterized by its axis and the distance
which points on the axis are moved. Clearly every glide reflection is the product of
three reflections. And, generically, the product of three reflections is a glide reflection.
We leave it as an exercise for the reader to find the axis and distance of this glide
reflection given the three reflections.

6.3.2 Logarithms for 2D rotors

The following discussion shows how to find the logarithm of a rotor g ∈ Spin2
+κ.

Definition 103. Given a rotor g, let B := 〈g〉2, and s = B2. Then the rotor is:

• elliptic, if s < 0,
• parabolic if s = 0, and
• hyperbolic, if s > 0.

The associated isometries g are called elliptic rotations, parabolic rotations, and hyper-
bolic rotations.

6.3.2.1 Norm of simple rotor We need a metric-neutral way to refer to the magni-
tude of an simple rotor. First we use the ideal norms introduced in the metric-specific
discussions to define a non-zero norm for a bivector.
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Definition 104. Given a simple bivector B.

• The norm N(B) is:

N(B) =

{
‖B‖ if B2 6= 0
‖B‖∞ otherwise

(6.2)

• B is normalized if N(B) = 1.
• A logarithm tB of a rotor is called normalized if B is normalized,
• If tB is a normalized logarithm of a rotor g, t is the measure of g.

Remark 105. We include the adjective simple in the definition so the definition can be
used in other dimensions as well.

Remark 106. For an elliptic rotor, the measure is just the ordinary angle; for a hyperbolic
rotor it is a “hyperbolic” distance it moves points on its proper axis; and for parabolic
rotor it is either a euclidean distance (when I2 = 0) or related (when I2 = −1).

Theorem 107. Every rotor in g ∈ Spin2
+κ has a normalized logarithm.

Proof. Write g = a+ B where B = 〈g〉2. Then by assumption

gg̃ = a2 −B2 = 1

There are three cases depending on the type of B.

• Elliptic. Then there exists θ 6= 0 such that s = cos (θ) and ‖B‖ = sin (θ). Define

BN :=
B

sin θ
, with B2

N = −1. Then g = cos (θ) + sin (θ)BN . On the other hand, the

formal exponential eθBN can be evaluated to yield:

eθBN =
∞∑
i=0

(θBN )i

i!

= cos (θ) + sin (θ)BN

g = eθBN =⇒ θBN is a normalized logarithm of g.
• Parabolic. B is an ideal point. Then we can assume that s = 1 (if s = −1, the

element −g with s = 1 has the same sandwich behavior as g). Suppose ‖B‖∞ = t,
then find BN such that B = tBN with ‖BN‖∞ = 1. Again, the formal exponential
etB can be evaluated to yield:

etB =
∞∑
i=0

(tBN )i

i!

= 1 + tBN

g = eB =⇒ tBN (= B) is a normalized logarithm of g.
• Hyperbolic. Then there exists t 6= 0 such that s = cosh (t) and ‖B‖ = sinh (t). Define

BN :=
B

sinh t
, with B2

N = 1. Then g = cosh (t) + sinh (t)BN . As above, the formal

exponential etBN can be evaluated to yield:
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etBN =
∞∑
i=0

(tBN )i

i!

= cosh (t) + sinh (t)BN

g = etBN =⇒ tBN is a normalized logarithm of g.
ut

6.3.2.2 Classification of metric bivectors The proof of Thm. 107 shows that the
nature of an isometry is determined by the value of I2 and B2, as enumerated in Def. 103.
Only 6 of the 3×3 = 9 possibilities can occur. Table 6.2 shows the allowed combinations.

-1 0 1

-1 X X X

0 X X X

1 X X X

Table 6.2 Allowed combinations of I2 (horizontal) and B2 (vertical).

6.3.3 The flow generated by a bivector

We can explore the differences among these 6 types of rotors by investigating a 1-
parameter family of curves generated by the respective logarithms. We obtain these
curves by parametrizing the exponential forms obtained above for g. If 〈g〉2 = B is the
bivector part of the rotor, then there is a one-parameter family of isometries given by

g
t
(X) = etBXe−tB

Each point X in RP 2 (not just the proper points of the model) determines one such curve,
for t ∈ (−∞,∞). We will return to this theme later in Chapter 8, where we will explore
the constant vector field which underlies this system and justify the term integral curves
applied to these curves. The characteristic pictures of the foliation of the projective plane
by these six types of curves is shown in Fig. 6.4.

6.3.3.1 Elliptic rotors These are the elliptic rotors of Def. 103. The three cases B2 =
−1 all exhibit a similar picture: nested conic sections enclosing the proper fixed point B,
the center of the motion. The polar line B⊥ is called the axis of the isometry. We can
characterize the family of conic sections using the familiar terminology based in euclidean
geometry. When I2 = 0, they remain euclidean circles; in the non-euclidean case, they
become parabolic by touching e0, then expand further and become hyperbolas, which
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Fig. 6.4 Integral curve patterns for the six possibilities of (I2,B2): (-1,-1),(0,-1),(1,-1),(-
1,0),(0,0),(-1,1). The case (0,0), euclidean translation, is shown in perspective.

then approach B⊥ from both sides. Of course in the non-euclidean geometry itself the line
e0 has no special significance; it is only a useful aid to the euclidean-trained imagination.

6.3.3.2 Parabolic rotors In order to provide a canonical form for these curves we
assume B normalized so that ‖B‖∞ = 1.
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The case of B2 = 0, when I2 = 0, yields euclidean translations; the integral curves
consist of parallel lines in direction of translation. In this case B is an ideal point. In
Fig. 6.4 this case is shown in perspective. The ideal line e0 is shown in blue although it
is not the polar line of B as in the other figures. The darker lines are the integral curves;
the lighter lines meet in B. The meeting point of the darker lines is the polar point of B
with respect to the elliptic metric on the ideal ine e0.

When I2 = −1, one calls the integral curves horocycles; to understand them better,
it is useful to consider the projectivity M which maps the unit circle to the parabola
P whose axis is the x-axis, which passes through the E0 and E1. Consider the family
of parabolas given by P, translated in the positive direction along the x-axis. In can be
shown that the horocycles, are the images of this family of parabolas under the inverse
mapping M−1. When one considers all parabolas (also those along the negative x-axis),
one obtains a complete set of integral curves for this type of rotor.

6.3.3.3 Hyperbolic rotors Finally, the case B2 = 1 occurs only when I2 = −1. Then
B is an improper fixed point, and B⊥ is a proper fixed line, the axis of the hyperbolic
translation. Points move along conic sections which all pass through the two intersections
points of this axis with the ideal circle. The unit circle itself is one such conic section. As
in the previous cases, these conic sections outside of the unit circle contact e0 and wrap
around to approach B⊥ from the other side.

6.3.4 Lie groups and Lie algebras

The above remarks provide a realization of the direct isometry group G2
κ of the geometry

G2
κ and of its Lie algebra g2

κ within Cl2κ. The spin group Spin2
+κ forms a double cover

of G2
κ since the rotors g and −g represent the same isometry. Within Cl2+κ , the spin

group consists of elements of unit norm; the Lie algebra consists of the pure bivectors as
a vector space, so includes the zero element. The exponential map X→ eX is a covering
map: locally bijective with a finite fiber. This structure is completely analogous to the
way the unit quaternions sit inside P(R∗+3,0,0) and form a double cover of SO(3). The
full group – including indirect isometries – is also naturally represented in Cl2κ as the
group Pin2

+κ generated by reflections in proper lines. This exponential map is depicted
in Fig. 6.5.

6.4 Guide to the literature

6.4.0.1 The euclidean case There is a substantial literature on the four-dimensional
even subalgebra P(R∗+2,0,1) with basis {1,E0,E1,E2}. In an ungraded setting, this struc-
ture is known as the planar quaternions. The original work appears to have been done by
Study ([Stu91], [Stu03]); this was subsequently expanded and refined by Blaschke in his
elegant monograph [Bla38]. Study’s parametrization of the full planar euclidean group
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Fig. 6.5 The exponential
map of the Lie algebra
(bivectors) to the Lie
group (Spin2

+κ).

1 tΩ

tΩe
G 

0

(rotors)

(bivectors)

as “quasi-elliptic” space is worthy of more attention. Modern accounts include [PW01],
Ch. 8, and [McC90].1

6.4.0.2 The non-euclidean case Existing literature on the algebras R3,0,0 and R2,1,0

can be adapted by dualization and projectivization to yield the results described here.
However, we are not aware of other efforts to describe the elliptic and hyperbolic plane
directly using these dual homogeneous Clifford algebras, nor of any metric-neutral treat-
ment which combines this with the euclidean case as here.

1 which however confuses the euclidean inner product on vectors with the inner product on points.



Chapter 7

Metric spaces via Cl3κ

The extension of the results in the previous chapter to the three-dimensional case Cl3κ
is mostly straightforward. Many of the results can be carried over virtually unchanged.
For a two-dimensional configuration C2 in Cl2κ, the analogous configuration C3 in Cl3κ is
obtained by replacing 1-vectors (lines) by 1-vectors (planes), and 2-vectors (points) by
3-vectors (points). A more precise discussion is given below in Sect. 7.3.1.

The main challenge in three dimensions is due to the existence of non-simple bivectors;
in fact, most bivectors are not simple! This means that the geometric interpretation of a
bivector is usually not a simple geometric entity, such as a spear or an axis, but a more
general object known in the classical literature as a linear line complex, or null system.
Such entities are crucial in kinematics and dynamics. Because of their importance, we
provide a review of their essential non-metric properties in Sect. 7.2.

The main result of this chapter shows that a given non-simple bivector Ω can always
be factored into the form Ω = (α+ βI)Φ where α, β ∈ R and Φ is simple. Φ is called an
axis of Ω. This factorization is key to finding the logarithm of a rotor. It also makes it
possible to interpret non-simple bivectors geometrically within the Cayley-Klein 3-space.
To arrive at this factorization, the sub-algebra consisting of scalars and pseudoscalars
(known as Study numbers) plays a crucial role.

7.1 Introduction

As a basis for the full algebra we adopt the terminology for the exterior algebra P(
∧

R4∗)
in Sect. 2.3. Consult Fig. 2.3 for an overview of the basis vectors.

Notation. We continue to denote 1-vectors (planes) with bold small Roman letters
a; trivectors (points) will be denoted with bold capital Roman letters P; and bivectors
will be represented with bold capital Greek letters Ξ.1

We begin with a non-metric discussion of bivectors. We work in P(
∧

V∗), since that
is the foundation of the metric. As a result, even readers familiar with bivectors from

1 A convention apparently introduced by Klein, see [Kle72].

65
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a point-based perspective will probably benefit from going through the following plane-
based development. We begin with an overview of projective properties of bivectors, that
is, properties that can be derived from the outer product alone.

7.2 Projective properties of bivectors.

We begin with a simple bivector Σ := a∧b where a and b are two planes with coordinates
{ai} and {bi}. The resulting bivector has coordinates

pij := aibj − ajbi (ij ∈ {01, 02, 03, 12, 31, 23}) (7.1)

in P(
∧2 R4∗). These are the plane-based Plücker coordinates for the intersection line

(axis) of a and b. If qkm are the point-based coordinates for the same line, then by a well-
known result in line geometry (already touched on by our discussion of J in Sect. 2.3.1.2),
there is some non-zero λ such that qkm = λpij , for (ijkm) an even permutation of (0123).

A simple calculation yields:

Σ ∧Σ = 2(p01p23 + p02p31 + p03p12)I

By the anti-symmetry of ∧,

Σ ∧Σ = (a ∧ b) ∧ (a ∧ b) = 0.

Conversely, if Σ ∧Σ = 0, the bivector is simple ([Hit03]).
It is sometimes useful to have Σ ∧Φ as a scalar; this is facilitated by the identity:

Σ ∧Φ = (Σ ∨Φ)I (7.2)

Given a second axis Φ = c ∧ d, the condition Σ ∧ Φ = 0 implies the two lines have
a plane in common. (7.2) also implies Σ ∨Φ = 0, so they also have a point in common.
For general bivectors,

Σ ∧Φ = (p01q23 + p02q31 + p03q12 + p12q03 + p31q02 + p23q01)I (7.3)

The parenthesized expression is called the Plücker inner product of the two bivectors,
and is written 〈Σ,Φ〉P . With this inner product, the space of bivectors P (

∧2(R4)∗) is
the Cayley-Klein space

B := P(R3,3),

and the space of lines is the quadric surface

L := {Σ | Σ ∧Σ = 0} ⊂ B.

L is sometimes called the Klein quadric, or the Plücker quadric. It is also the Grassmann
variety G4,2. Note that the natural coordinates for B do not yield a diagonal form for
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the absolute quadric. They are however generally retained since they are closely tied to
the coordinate system of the underlying RP 3. For a discussion of a diagonal basis see
Remark 117.

Fig. 7.1 L is a quadric
surface in B defined by
the quadratic form 〈, 〉P ,
the Plücker inner prod-
uct. A general line in B
which intersects L in two
points Σ1 and Σ2 has in
general no other points in
common with the quadric.

Σ1

Σ2
Σ = Σ1 Σ2+

= RP5

Definition 108. Two bivectors Σ and Φ are in involution when Σ ∧Φ = 0, .

For a fixed Σ, the orthogonal complement {Φ | Σ ∧ Φ = 0} is a 4-dimensional
hyperplane of B consisting of all bivectors in involution to Σ. To prevent confusion later
with the orthogonal complement with respect to the metric quadric coming from the
Cayley-Klein space in RP 3, we denote the orthogonal complement with respect to the
Plücker metric as Σ`.

7.2.1 Linear line complexes

The intersection of Σ` with L is a 3-dimensional quadric submanifold M3
2 called a linear

line complex. When Σ is simple, it is called a special line complex, and consists of all
lines which intersect Σ.

7.2.1.1 Pencils of line complexes Two bivectors Σ and Φ span a line in B, called
a line complex pencil, or bivector pencil. Points on this line are of the form αΣ + βΦ
for α, β ∈ R, both not 0. Finding the simple bivectors on this line involves solving the
following equation in the homogeneous coordinate λ = α : β:

0 = (αΣ + βΦ) ∨ (αΣ + βΦ) (7.4)

= α2(Σ ∨Σ) + 2αβ(Φ ∨Σ) + β2(Φ ∨Φ) (7.5)

This equation can be undetermined (when Σ and Φ are intersecting lines), or have 0,
1, or 2 real homogeneous roots. See [PW01] for details. Finding the intersection of a
bivector pencil with L is a common procedure in line geometry. It’s used below in the
discussion of the null polarity, and later to calculate the axes of a non-simple bivector.
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7.2.1.2 Null polarity associated to a non-simple bivector Assume that Σ is not
simple. Then Σ determines a collineation of B, the harmonic homology :

HΣ : B→ B

with center Σ and axis Σ` (see Def. 10). It is a reflection of the Cayley-Klein space
B. An element Φ of L is mapped to another element of L which lies on the line in B
determined by Σ and Φ. This is generically a second intersection, distinct from Φ.

To proceed, we need a theorem relating projectivities of RP 3 and projectivities of B
preserving L. See [PW01], p. 144, for a proof.

Theorem 109. The group of projectivities of RP 3 and the group of collineations of B
preserving L are isomorphic.

This result confirms that the harmonic homology HΣ has an associated projectivity
on RP 3, the null polarity associated to Σ. We use the same symbol to refer to this
projectivity. The image HΣ(Φ) of a line Φ is called the conjugate line of Φ with respect
to the null polarity. By definition of the harmonic homology, this is given by:

HΣ(Φ) = −(Σ ∨Σ)Φ + 2(Φ ∨Σ)Σ

On the other hand, a line complex pencil which includes Σ, includes at most two elements
of L. These two elements are then conjugate lines with respect to the null polarity of Σ.
Lines which are equal to their conjugate are called null lines. Geometrically, this means
the bivector pencil is tangent to the Plücker quadric. These are the members of the linear
line complex associated to Σ.

How can one identify the null lines in RP 3? For example, which null lines pass through
a given point P? Recall Σ is non-simple. Define the null plane of P as NΣ(P) := Σ∨P.
Then NΣ(P) ∨ P = 0, so P lies in its own null plane. Also, let Q be another point of
NΣ(P). Then apply the associativity of the ∨ product to obtain:

0 = NΣ(P) ∨Q = (Σ ∨P) ∨Q

= Σ ∨ (P ∨Q)

This shows that the line P ∨Q is in involution to Σ, hence a null line. Conversely, any
null line of Σ passing through P can be written in the form P ∨Q, and one can reverse
the reasoning to conclude it must lie in NΣ(P). So the null lines passing through P are
the line pencil determined by P and its null plane.

When Σ is simple, null plane and points are only defined for points and planes not
incident with Σ, and NΣ is not a projectivity.

One can also dualize the discussion to define the null point of a plane NΣ(a) := Σ∧a.
See Fig. 7.2. Then NΣ(NΣ(a)) = a by (7.12) , showing that NΣ is an involution, hence
in fact deserves the name null polarity. For details see [PW01]. We will encounter the
null polarity later in Chapter 8, where it plays a crucial role in kinematics.

7.2.1.3 Subspaces of B As remarked above, the Plücker polar of a point Σ in B
intersects L in a 3-dimensional quadric submanifold called the linear line complex associ-
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Fig. 7.2 Three null
point/plane pairs belong-
ing to a single null line.
For a null point/plane
pair, P = Σ ∧ p and
p = Σ ∨P.

P

PvΣ p

p vΣ

ated to Σ. Occasionally Σ itself is referred to as the line complex, but this is technically
inprecise.

The Plücker polar of a line L ∈ B intersects L in a 2-dimensional quadric submanifold
called a line congruence, or congruence for short. This congruence comes in four varieties,
depending on the nature of the intersections of L with L in (7.5): hyperbolic, parabolic,
and elliptic have (2, 1, 0) intersections, resp., with the Plücker quadric. The Plücker polar
of a 2-plane is another 2-plane which, generically, intersects L in a non-degenerate conic
section, whose image is RP 3 is a regulus. The degenerate cases are important for a full
understanding of line space but exceed the scope of this study.

7.2.1.4 Isotropic subspaces of B It is useful to have an understanding of subspaces
of B lying entirely in L. The simplest example, an isotropic line, corresponds to a line
pencil in RP 3. There are two types of isotropic planes, arising from line bundles (all the
lines through a point) and line fields (all the lines in a plane) in RP 3. These are usually
referred to as α-planes and β-planes, resp. Two planes of the same type intersect in a
point; two such planes of differing types intersect in a line, when they are incident in
RP 3, or not at all.

With these remarks we close our discussion of the projective properties of bivectors
and the associated null polarities.

7.3 Description of the algebras Cl3κ

We now proceed to a description of the metric-related features of these 3D algebras, fo-
cusing on the new features related to bivectors. We intersperse metric-specific discussions
more frequently than in Chapter 6.

We leave the construction of a multiplication table analogous to Table 6.1 as an ex-
ercise. As in the two-dimensional case, most of the geometric products of a basis k- and
m-vector obey the pattern AB = A ·B+A∧B. Two new exceptions involve the product
of a bivector with another bivector, and with a trivector:

ΞΦ = Ξ ·Φ + Ξ×Φ + Ξ ∧Φ (7.6)
ΞP = Ξ ·P + Ξ×P (7.7)
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Here, as before, the commutator product A×B := 1
2 (AB −BA).

7.3.1 Metric-neutral enumeration of geometric product

All the products described in 6.1.1 have counter-parts here, obtained by leaving points
alone and replacing lines by planes. For example, the statement from Sect. 6.1.1:

a · b has different interpretations, depending on whether the two lines intersect in a proper,
ideal, or improper point. For normalized lines a and b that intersect in a proper point with
angle α, a · b = cos(α).

remains true for n = 3 when “line” is replaced by “plane”, and “point” is replaced by
“line”:

a ·b has different interpretations, depending on whether the two planes intersect in a proper,
ideal, or improper line. For normalized planes a and b that intersect in a proper line with
angle α, a · b = cos(α).

Here we focus on the task of enumerating the products that involve bivectors. For
that purpose, we extend the definition of a,b, P, and Q to have an extra coordinate, and
introduce two arbitrary bivectors, which may or may not be simple:

Ξ := p01e01 + p02e02 + p03e03 + p12e12 + p31e31 + p23e23

Φ := g01e01 + g02e02 + g03e03 + g12e12 + g31e31 + g23e23

See metric-specific discussions which follow for details of the following properties.

1. Inner product.

Ξ ·Φ = −(p12g12 + p31g13 + p23g23 + κ(p01g01 + p02g02 + p03g03)) (7.8)

Ξ·Φ is a symmetric bilinear form on bivectors, called the Killing form.2 We sometimes
write Ξ ·Φ = 〈Ξ,Φ〉K . We call a bivector ideal if Ξ · Ξ = 0, and proper if Ξ2 < 0,
and improper if Ξ2 > 0. The latter occurs only for κ = −1.

2. Norm. Define the norm as before ‖Ξ‖ =
√
|Ξ ·Ξ|. Then for non-ideal Ξ,

Ξ
‖Ξ‖

has

norm 1; we call it a normalized bivector.

3. Inverses. For non-ideal Ξ, define Ξ−1 =
Ξ

Ξ ·Ξ
. Inverses are unique.

4. The square of a bivector consists of a scalar and a pseudoscalar:

Ξ2 = 〈Ξ2〉0 + 〈Ξ2〉4
= Ξ ·Ξ + Ξ ∧Ξ

Sect. 7.6 studies the sub-algebra Cl3†κ of such elements, which play a key role in
handling non-simple bivectors.

2 This inner product is well-known for its role in the classification of Lie algebras. The connection
to its appearance here will become clear once we establish that the bivectors form the Lie algebra
of the isometry group of the Cayley-Klein space below.
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5. Ξ ∧Φ = (Ξ ∨Φ)I = 〈Ξ,Φ〉P I is the Plücker inner product times I. When Ξ and Φ
are simple, the magnitude of this product is proportional to the distance of the two
lines. See metric-specific discussions below.

6. Commutator. Ξ×Φ is a bivector which is in involution to both Ξ and Φ (Exercise).
We’ll meet this later in the discussion of kinematics (Chapter 8) as the Lie bracket.

7. Null point. a ∧Ξ, for simple Ξ, is the intersection point of Ξ with the plane a, or
0 if they are incident; in general it’s the null point of the plane with respect to Ξ.

8. Null plane. P ∨ Ξ, for simple Ξ, is the joining plane of P and Ξ, or 0 if they are
incident; in general it’s the null plane of the point with respect to Ξ.

9. P ·Ξ, for simple Ξ, is a plane passing through P perpendicular to Ξ.
10. P × Ξ, for simple Ξ, is a point orthogonal to the plane through P and Ξ. For the

euclidean metric, this is naturally an ideal point.
11. a ·Ξ, for simple Ξ, is a plane containing Ξ whose intersection with a is perpendicular

to Ξ.
12. Applying the metric polarity to a bivector Ξ yields:

Ξ⊥ = ΞI = p23e01 + p31e02 + p12e03 + κ(p03e12 + p02e31 + p01e23) (7.9)

This is the polar bivector of Ξ with respect to the metric quadric. Note that here
we do use the standard notation Ξ⊥ to denote the polar line. The bivector pencil
spanned by Ξ and Ξ⊥ plays an important role in Sect. 7.7 below.

7.3.1.1 Examples

1. The products a · b,P ·Q,a ∧ P,a · P,P ∨Q,P ×Q,aI,PI from Sect. 6.1.1 can be
translated to 3D using the method described at the beginning of Sect. 7.3.1. The
definition of norm to points and planes can also be easily translated into 3D.

2. Many of the products in Sect. 7.3.1 are described only for simple Ξ. It is a non-trivial
question, what the analogous statements are for non-simple Ξ.

3. The inner and outer products are both symmetric bilinear forms in their arguments.
They are related via the metric polarity: Ξ ·Φ = Ξ ∨ΦI = ΞI ∨Φ.

4. In a Cayley-Klein geometry, the intersection of two proper planes is a proper line,
and every proper line arises in this way. One can use the fact that a2 > 0 for a proper
plane, and that eiej = −ejei to show that the definition of a proper line above is
consistent with this behavior.

5. Orthogonal projection. Here we investigate orthogonal projections involving lines.
Not only can one project points onto lines, but lines can also be projected onto points.
To be more precise: One can project points onto spears, and axes onto bundles. For
simplicity we have replaced X−1 by X without effecting the validity of the result,
qua subspace.

a. Projecting a point onto a line, and vice-versa. For proper P and proper
simple Π, p := P · Π is the unique plane of P perpendicular to Π, and pΠ
is the intersection of this plane with Π: the orthogonal projection of P on Π.
Furthermore, pΠ∨P is the unique line through P intersecting Π at right angles.3

3 Compare the brevity of this expression with Section 11.9 of [DFM07].
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See Fig. 7.3. pP, on the other hand, is the unique line of P perpendicular to p.
It meets Π at p⊥.

P

Π

P

Π

Π.P

P

Π

Π.P

(Π.P)ΛΠ

P

Π

Π.P ((Π.P)ΛΠ)VP

(Π.P)ΛΠ

Fig. 7.3 Step-by-step construction of the unique perpendicular through the point P to the line
Π. First (upper right) Π ·P is the perpendicular plane to Π passing through P. Then (lower left)
wedging this plane with Π gives the intersection point with Π, and finally (lower right) joining
this to P gives the desired line.

b. Projecting a line onto a plane, and vice-versa For proper a and simple
Π, p := Π · a is the unique plane of Π perpendicular to a. pa is the orthogonal
projection of Π onto a. pΠ is the plane of Π perpendicular to p. pΠ ∧ a is the
unique line of a perpendicular to Π.

6. Intersection and join of two lines. Assume Ξ∧Φ = 0 for simple bivectors Ξ and
Φ, with Ξ 6= Φ. For a point P not in the plane spanned by Ξ and Φ, Ξ∧ (Φ∨P) is
the common point. For a plane a not passing through the common point, Ξ∨ (Φ∧a)
is the common plane of the two lines. With probability 1, one can obtain such a P
(a) by choosing a random point (plane). Can you find a reliable way to obtain such
a P and such a a?

7. Incidence of point and line. A point P lies on the simple bivector Ξ ⇐⇒ P∨Ξ =
0. One can use (7.13) above to show this is equivalent to P×Ξ = 0. In both cases the
formulas are valid also for non-simple Ξ, since, for non-simple Ξ, neither expression
can vanish.
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8. The following identities involving involving general bivectors, and a 3-vector P are
useful for what follows, and can be verified by direct calculation (in the next-to-last
one, P is proper normalized):

(Ξ×Φ) ∧Ξ = 0 (7.10)
ΞI ∨Φ = Ξ ∨ (ΦI) = Ξ ·Φ (7.11)
−2Ξ ∧ (Ξ ∨P) = (Ξ ∨Ξ)P (7.12)

Ξ×P = (Ξ ∨P)I (7.13)

2P× (Ξ×P) = PΞP−P2Ξ (7.14)
P · (Ξ×P) = 0 (7.15)

7.4 Metric-specific remarks

7.4.1 Elliptic

All planes, lines, and points of RP 3 are proper elements of elliptic space. As a result,
elliptic space exhibits a simplicity and symmetry unmatched by the other spaces under
consideration. In particular, elliptic 3-space contains interesting geometric structures
which have fascinated mathematicians since they were first reported by Clifford [Cli82c].
We discuss them here since they appear below in Sect. 7.7.2, and the theme is intimately
connected to the genesis of Clifford algebras.

7.4.1.1 Clifford parallels In analogy to euclidean parallels, Clifford parallels are el-
liptic lines which have infinitely many common normals, one through each point, and the
distance between the two parallels measured along these normals is constant. However,
in contrast to euclidean parallels, which meet in an ideal point, Clifford parallels don’t
meet, in fact, they have linking number one as topological circles. In contrast to the eu-
clidean case, through a given point not on a line, there are exactly two Clifford parallels
to the given line. One is a left Clifford parallel, the other, a right Clifford parallel. The
set of left (right) Clifford parallels to a given line form an elliptic line congruence, see
above, Sect. 7.2.1.3. The set of Clifford left parallels at a given distance to a given line
form a regulus; the set of right parallels at the same distance forms the complementary
regulus. Such a regulus is called a Clifford torus and is interesting since it has gaussian
curvature 0: it is a euclidean torus embedded in elliptic space.

Each set of Clifford parallels determines a 1-parameter family of isometries of elliptic
space which map each such parallel line to itself. In this respect they are like euclidean
translations. Such a translation of elliptic space is called a (left or right) Clifford transla-
tion. Representing the points of elliptic space as unit quaternions, already Cayley showed
such a translation along a set of left (right) parallels can be implemented by left (right)
multiplication by a unit quaternion. We take up this theme again in Sect. 7.11.1 below,
where we show how these translations appear in Spin3

+1.
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7.4.2 Hyperbolic

The proper points of hyperbolic space form the interior of the unit ball. The ideal points
are the unit sphere, sometimes called the ideal sphere. Lines and planes are ideal if they
are tangent to the ideal sphere. Improper points, lines, and planes lie outside the ideal
sphere. The polar of a proper element is improper. In particular, the polar of a proper
bivector Ξ is improper. The polar of an ideal element is again ideal. Table 7.1 shows how
to identify the type of a hyperbolic element from the sign of its square:

X proper ideal improper

plane + 0 -

line - 0 +

point - 0 +

Table 7.1 Sign of X2 for hyperbolic space.

7.4.2.1 Ideal norm of ideal elements One can also introduce a normalization for
ideal elements in the hyperbolic case. For example, for an ideal point V, define

‖V‖∞ := ‖V ∨E0‖

This effectively yields the euclidean vector norm of the direction vector represented by V
(ignoring the w-coordinate). Similarly for an ideal plane ‖a‖∞ := ‖a ∧ e0‖. For an ideal
line Ξ,

‖Ξ‖∞ := ‖Ξ ∧ e0‖ =
√
q212 + q231 + q223 (=

√
q201 + q202 + q203)

The term in parentheses follows from the condition that it is an ideal line. Such norms
are useful in order to normalize ideal elements to be “the same size”. We use them below
in defining logarithms of rotors involving ideal bivectors in Sect. 6.3.2.1.

7.4.3 Euclidean

e0 now represents the ideal plane of space, the other basis vectors represent the coordinate
planes. E0 is the origin of space while E1 = e0e3e2 is the ideal point in the x-direction,
similarly for E2 and E3. The bivector e01 is the ideal line in the x = 0 plane, and similarly
for e02 and e03. e23, e31, and e12 are the x-, y-, and z-axis, resp. We use i again to denote
the embedding of euclidean points, lines, and planes, from RP 3 into the Clifford algebra.

7.4.3.1 Ideal norm of Ideal elements. The ideal points of euclidean space consist of
points lying in e0, points of the form xe1+ye2+ze3. As in the 2D case, we can obtain the
familiar euclidean vector norm for an ideal point by the expression ‖V‖∞ := ‖V ∨ P‖,
where P is any normalized euclidean point. We also obtain a similar norm on an ideal
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line Ξ by joining the line with any normalized euclidean point P, and taking the norm
of the plane: ‖Ξ‖∞ = ‖Ξ ∨P‖. We normalize ideal bivectors with respect to this norm.
We call this the secondary norm on these elements.

7.4.3.2 A euclidean decomposition of bivectors There is a convenient decompo-
sition of bivectors based on the ideal plane of euclidean space. Write the bivector Ξ as
the sum of two simple bivectors Ξ = Ξ∞ + Ξo:

Ξ∞ := p01e01 + p02e02 + p03e03

Ξo := p12e12 + p31e31 + p23e23

This is the unique decomposition of Ξ as the sum of a line lying in the ideal plane
(Ξ∞) and a euclidean part (Ξo). It is sometimes useful to write Ξ = (Ξ∞; Ξo). This
decomposition is useful in characterizing the simple bivectors:

Ξo ∧Ξ∞ = 0 ⇐⇒ Ξo ∨Ξ∞ = 0 ⇐⇒ Ξ is simple.

We say a bivector is ideal if Ξo = 0, otherwise it is euclidean. Ξo is a line through the
origin, whose direction is given by the ideal point NΞ := −e0Ξo = p23E1+p31E2+p12E3.
We call NΞ the direction vector of the bivector. For simple Ξ, Ξ∧NΞ = 0: the direction
vector lies on the line. The following identities can be easily verified:

1. Ξ ∧Φ = Ξ∞ ∧Φo + Ξo ∧Φ∞.
2. Ξ×Φ = (Ξ∞ ×Φo + Ξo ×Φ∞; Ξo ×Φo).
3. Ξ ·Φ = Ξo ·Φo.
4. Ξ is simple ⇐⇒ Ξ∞ ∧Ξo = 0.
5. NΞ = −e0Ξ.
6. e0Ξo ∨E0 = Ξo.

Remark 110. This decomposition is widely used in the literature on euclidean line geome-
try, where the Plücker line coordinates are arranged as a pair of ordinary 3-vectors (l, l′).
Due to our dual construction, l corresponds to our Ξo and l′, traditionally called the
moment of the line with respect to the origin, corresponds to Ξ∞. The geometric prod-
uct of two lines is then pieced together via ordinary inner and cross products operations
these 3-vectors, as indicated in the list above.

Invariance properties. This decomposition is interesting due to its invariance prop-
erties with respect to euclidean translations. First, consider the case of a line passing
through the origin E0. Then Ξ = E0∨N where N can be assumed to be ideal. Note that
Ξ = Ξo in this case. Let T be the ideal point representing a translation vector. Then the
image of Ξ under this translation is:

ΞT = (E0 + T) ∨N (7.16)
= Ξ + T ∨N (7.17)
= (T ∨N ; Ξo) (7.18)

where we have used the fact that ideal points are invariant under translations, and that
the join of two ideal points is an ideal line (T∨N). Since any line is the translation of a
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line through the origin, this shows that Ξo is invariant under translations, while Ξ∞ is
not.

We can be more precise.

Theorem 111. Two simple bivectors Ξ and Φ are parallel when Ξo ≡ Φo. In this case,
let PΞ and PΦ be two normalized euclidean points on Ξ and Φ, resp. Then Ξ − Φ =
NΞ ∨ (PΞ −PΦ) and is, moreover, an ideal line.

Proof. The two lines intersect in NΞ, an ideal point, hence are parallel. Then Ξ = NΞ∨PΞ

and Φ = NΞ∨PΦ. The desired equality follows directly. Ξ−Φ is ideal since both factors
of the ∨ are ideal.

7.4.3.3 Examples

1. Relationships of lines. In this exercise, both Ξ and Φ are normed euclidean simple
bivectors.

a. Distance between lines. For normalized Ξ and Φ, Ξ∧Φ = sin (α)dΞΦ, where
dΞΦ is the euclidean distance between the two lines, and α is the angle between
their two direction vectors. This can be seen by considering the tetrahedron
spanned by unit vectors on Ξ and Φ.]

b. Dual norm and dual angle. Define the dual norm ‖Ξ‖d := 〈Ξ〉0 + 〈Ξ〉4. Then
‖ΞΦ‖d = 0 ⇐⇒ Ξ and Φ intersect at right angles. In general,

‖ΞΦ‖d = ±(cos (α)− sin (α)dΞΦI

where α is the angle between the direction vectors of Ξ and Φ. This is called the
dual angle of Ξ and Φ and measures both the angle between the directions and
the distance between the lines.

7.5 The structure of Cl3κ

The remainder of the chapter focuses on the representation of isometries in Cl3κ. The
presentation is roughly similar to that of Cl2κ, but is complicated by the presence of non-
simple bivectors. In order to develop tools to overcome these complications, one must
take advantage of the more differentiated structure of the Clifford algebra.

Fig. 7.4 repeats with Fig. 5.2 with the addition of historical labels specific to dimension
3. The even subalgebra Cl3+κ is isomorphic to the biquaternions introduced by Clifford
and studied exhaustively by Study in [Stu03]. As we will also see below, the key for this
analysis is provided by the sub-algebra Cl3†κ , which are studied in Sect. 7.6, and whose
elements are known as Study numbers.

The key result of the following discussion can be stated as: Every bivector can be
factored as the product of a Study number and a simple bivector. (See Corollary 121
below.) This result forms the basis for a series of geometrical insights into the structure
of the individual isometries.



7.6 Study numbers 77

Fig. 7.4 The important
sub-algebras and sub-
spaces of Cl3κ.
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7.6 Study numbers

The scalars and pseudoscalars of a Clifford algebra always form a sub-algebra Cln†κ . This
sub-algebra plays an important role in calculations in the Clifford algebra. For example,
the square of a bivector Ξ in Cl3κ is of this form: Ξ2 = Ξ ·Ξ + Ξ∧Ξ. An element of Cl3†κ
we call a Study number .

Study introduced Study numbers in ([Stu03]). Instead of I, he used ε to specify the
extra unit. His biquaternion algebra B consisted of the 8 units:

1, i, j,k, ε, εi, εj, εk

Define a map φ : B→ Cl3+κ by:

φ(1) := 1; φ(i) := e12; φ(j) := e31; φ(k) := e23;
φ(ε) := I; φ(εi) := e03; φ(εj) := e02; φ(εk) := e01;

and extend by linearity. Then it is straightforward to verify that φ is an isomorphism of
B with Cl3+κ . Further examination of the connection between ε and I would lead beyond
the scope of this work.

Remark 112. Terminology alert.. Study originally used the term dual numbers to de-
scribe numbers of the form a + bε, without specializing a specific value for ε2. Blaschke
([Bla42]), following Study, confirms this; he refers to numbers for the elliptic case satis-
fying ε2 = 1 as dual numbers. Only relatively recently in the modern literature (see for
example [PW01]) has the definition of dual number begun to be restricted to the case
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ε2 = 0. In order to avoid conflicts with this modern usage, we have chosen to introduce
the term Study numbers to refer to the metric-neutral form, in honor of their inventor.

When I2 = −1, the Study numbers are isomorphic to the complex numbers; when
I2 = 1, to the Clifford numbers; and when I2 = 0, to the dual numbers. There is a certain
amount of terminology common to all three cases which we introduce now; metric-specific
features will be discussed below. Use of the term Study number in the following list is
always assumes a particular choice of I2. It turns out that many calculations in Cl3κ can
be effectively solved with the aid of Study numbers. We proceed to derive the necessary
facts.

• Center Elements of Cl3†κ commute with other elements of Cl3+κ : they form the center
of Cl3+κ .

• Conjugate. Define the conjugate z = a− bI. zz = a2 − I2b2 ∈ R.
• Norm. Define the norm ‖z‖ :=

√
|zz|. A Study number z is said to be ideal if ‖z‖ = 0.

• Normed. For non-ideal z, define the zN =
z
‖z‖

. zN is a real multiple of Z that has

norm ±1.
• Inverse. For non-ideal z, define the inverse z−1 =

z
zz

. The inverse is the unique
Study number w such that zw = 1.

• Square root. Almost always, square roots of Study numbers exist. Let z = a+ bI be
a Study number. Then

√
z = x+ yI:

1. I2 = 0. We require a 6= 0. Then x :=
√
a and y :=

b

2
√
a

.

2. I2 = 1. We require a2 − b2 6= 0. For a2 > b2, let r :=
√
a2 − b2. Find θ so that

z = r(cosh θ + I sinh θ). Then x :=
√
r cosh θ

2 and y :=
√
r cosh θ

2 . For a2 < b2,
reverse roles of sinh and cosh.

3. I2 = −1. Let r :=
√
a2 + b2. Find θ so that z = r(cos θ+I sin θ). Then x :=

√
r cos θ2

and y :=
√
r cos θ2 .

7.7 The axes of a bivector

Given g ∈ Cl3+κ . It is easy to show that

z := gg̃

is a Study number a+ bI. Define the Study norm of g as

‖g‖S := c+ dI =
√

z,

when this exists. When, furthermore, the norm is non-zero, it has an inverse, and we can
normalize g with respect to this norm, as follows.

Define
gN := ‖g‖S−1g. (7.19)
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Then gN g̃N = 1, since ‖g̃‖S = ‖g‖S .
Now we want to specialize to the case that g = Ξ is a bivector, with normalized form

ΞN . Then ΞN is simple, since ΞN ∧ΞN = 0. We can rewrite ΞN from its definition as:

(c+ dI)ΞN = cΞN + dΞ⊥N = Ξ (7.20)

(7.20) expresses Ξ as a linear combination of ΞN and its polar line Ξ⊥N . This motivates
the following definition, whose significance will only become apparent in our study of
isometries in Sect. 7.9.

Definition 113. A simple bivector Φ is called an axis of a bivector Ξ if there exists a
Study number z such that zΦ = Ξ.

If Ξ is simple, then Ξ is an axis of itself.

7.7.1 Euclidean axes

For I2 = 0, there are two cases. If Ξ is ideal, then it is also simple, hence an axis. Then
Ξ = (Ξ∞; 0). Let Θ = (Θ∞; Θo) be a simple euclidean bivector such that Θo = Ξ∞.
Then Θ is an axis of Ξ since ΘI = Ξ. So ideal euclidean bivectors have, in addition to
themselves, ∞2 other axes, which constitute a line bundle centered at the ideal point
polar to Ξ in the elliptic metric of the ideal plane.

Otherwise, Ξ is proper and ΞI is an ideal line called the secondary axis of Ξ. The
secondary axis is not an axis of Ξ since it doesn’t satisfy Def. 113. (zΦI is ideal, but Ξ
is not.)

7.7.2 Noneuclidean axes

For I2 6= 0: if Φ is an axis of Ξ, then so is its polar line ΦI, since

(zI−1)(ΦI) = Ξ

7.7.2.1 Non self-polar bivectors Furthermore, if Ξ satisfies Ξ 6≡ Ξ⊥, we can describe
the axes in more detail, since any axis lies in the pencil LΞ in B determined by Ξ and
Ξ⊥. For non-simple Ξ, LΞ contains at most two real intersections with L. If Ξ is simple
but proper, it and its polar Ξ⊥ are distinct and non-intersecting (as a straightforward
evaluation of (αΞ+βΞ⊥) · (γΞ+δΞ⊥) shows), and the same holds. Otherwise, Ξ is ideal
simple, and L is a line pencil tangent to Q; all its elements are axes of Ξ.

In any case, when LΞ is well-defined, all bivectors in LΞ share the same axes.

7.7.2.2 Self-polar bivectors: Clifford bivectors This leaves the case that Ξ ≡ Ξ⊥.
Examination of the possibilities for I show that this can only happen if I2 = 1. Then any
bivector of the form

Ξ = (xe01 + ye02 + ze03)± (ze12 + ye31 + xe23)
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satisfies Ξ ≡ Ξ⊥. Hence Ξ and Ξ⊥ do not determine a line in B. In fact, such bivectors
have many axes. For, let Φ be any bivector of the form

Φ = (ae01 + be02 + ce03)± ((z − c)e12 + (y − b)e31 + (x− a)e23)

Clearly, Φ belongs to a 3-dimensional linear subspace of B parametrized by the 3 values
(a, b, c), and its intersection with L is a 2-dimensional manifold. Assume then that Φ lies
in this submanifold, hence is simple. Since by construction

(1± I)Φ = Ξ

Φ fulfils the condition of Def. 113. This motivates the following definition:

Definition 114. A left Clifford bivector Ξ is an elliptic bivector satisfying ΞI = −Ξ; a
right Clifford bivector is one satisfying ΞI = Ξ.

By considering what this implies for the Plücker coordinates for the bivector, one obtains
as an immediate consequence: A left [right] Clifford bivector Ξ has the form

Ξ = (xe01 + ye02 + ze03) + [−](ze12 + ye31 + xe23)

The set of right Clifford bivectors Cr span a 2-plane in B, of signature (−−−). In fact,
for two bivectors in this plane, Ξ ∨ Φ = Ξ · Φ = −2(x2 + y2 + z2). The left Clifford
bivectors Cl span a similar 2-plane with signature (+ + +); these two planes have empty
intersection and span B, hence any bivector can be written uniquely as the sum of a right
and left Clifford bivector. We next state a lemma which we will need later in Sect. 7.11.1.

Lemma 115. For Ξ ∈ Cr and Φ ∈ Cl, ΞΦ = 0.

Proof. Then by Def. 114, Ξ = 1−I
2 Ξ and Φ = 1+I

2 Φ. Hence

ΞΦ =
1− I

2
Ξ

1 + I
2

Φ =
(1− I)(1 + I)

4
ΞΦ =

12 − I2

4
ΞΦ = 0

ut

Remark 116. The name derives from the fact that all the axes of a Clifford bivector Ξ
are Clifford parallel to each other. See Sect. 7.4.1 for more on Clifford parallels. We’ll see
below in Sect. 7.9 that exponentiating a Clifford bivector Ξ produces elliptic isometries
(so-called Clifford translations) which leave Ξ and all its axes invariant; the motion is a
flow along these axes. This is the only isometry besides euclidean translations in which
all points move along straight lines. Sect. 7.11.1 analyzes Clifford translations in more
detail.

Remark 117. A diagonal Plücker basis. The use of left and right Clifford bivectors as
a basis for B was first proposed by Klein, who suggested using the basis {e01±e23, e02±
e31, e03 ± e12} instead of the standard Plücker basis. The choice of + yields the right
Clifford bivectors; − yields the left Clifford bivectors. Obviously in this basis the Plücker
inner product is diagonal (+ + +−−−).
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7.7.2.3 Axis pairs Clearly, the foregoing discussion implies that if there are exactly two
axes, then they are polar partners with respect to the metric quadric. On the other hand,
Sect. 7.2.1.2 shows that they are conjugate with respect to the null polarity determined
by Ξ. Hence, another characterization, in the non-degenerate case, of the axes of a non-
Clifford bivector is that they are the unique pair of lines which are conjugate both with
respect to the null polarity of Ξ and with respect to the metric quadric. In the Clifford
case, Ξ is a fixed point of the metric polarity and there are infinitely many lines through
Ξ, each of which yields an axis pair of Ξ.

Remark 118. Axes, in particular axis pairs, are key to understanding of applications
of this material to kinematics and dynamics. For example, a rotor can, generically, be
uniquely decomposed as a pair of commuting rotations around an axis pair of its grade-2
component. See Thm. 134.

7.7.3 Calculating an axis

(7.19) yields an axis for Ξ except when

s :=
√

ΞΞ̃ =
√
−Ξ ·Ξ−Ξ ∧Ξ

doesn’t exist, or is zero. We consider these two cases in turn.

I. s isn’t defined in two cases (see Sect. 7.6 above):

a. Ideal euclidean.I2 = 0 and Ξ ·Ξ = 0. But then Ξ∧Ξ = 0, so Ξ is simple, and
we are in the case that s = 0, treated below.

b. Clifford bivector (elliptic). I2 = 1 and Ξ · Ξ = ±Ξ ∨ Ξ. By inspection,
this is the case when Ξ is a Clifford bivector. We have described above how to
calculate the axes of Clifford bivectors. And, conversely, if Ξ ·Ξ = ±Ξ∨Ξ, Ξ is
a Clifford bivector. To see this, recall the fact that a2 + b2 > 2ab with equality
⇐⇒ a = b. Apply this to the three pairs (p01, p23), (p02, p31), and (p03, p12) of
the coordinates of an arbitrary bivector

Ξ := p01e01 + p02e02 + p03e03 + p12e12 + p31e31 + p23e23

to show that Ξ ·Ξ = ±Ξ ∨Ξ only for Clifford bivectors.

II. s = 0. Then it has no inverse. This can happen only if Ξ is ideal and simple. Then
Ξ is its own axis, but there are also other axes. There are two cases:

a. Ideal euclidean. I2 = 0. There are additionally ∞2 other axes, proper lines Θ
such that ΘI = Ξ, described in Sect. 7.7.1.

b. Ideal hyperbolic. I2 = −1. There are additionally∞1 other axes, the elements
of the line pencil spanned by I and I⊥.

Remark 119. The exceptional cases discussed above correspond to cases where Ξ and Ξ⊥

do not determine a regular bivector pencil in B. In the elliptic case, since Ξ = Ξ⊥; in
the euclidean case, since Ξ⊥ = 0; and in the hyperbolic case since the bivector pencil is
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isotropic, and consists of simple bivectors, all of which are axes of every other element of
the pencil.

We state for future reference the result of our investigation:

Theorem 120. Let n be the number of axes of a bivector Ξ. Then

n =



1 if I2 = 0 and Ξ2 6= 0;
∞2 if I2 = 0 and Ξ2 = 0;
∞1 if I2 = −1 and Ξ2 = 0;
2 if I2 6= 0, Ξ2 6= 0, and Ξ 6= Ξ⊥;
∞2 if I2 = 1, Ξ2 6= 0, and Ξ = Ξ⊥.

(7.21)

One consequence of this theorem is that every bivector has an axis. We rephrase this
slightly to a more precise form:

Corollary 121. For every bivector Ξ, there exists a Study number z and a simple bivector
Φ such that Ξ = zΦ.

Remark 122. By the theorem, such a factorization is not in general unique.
The existence and structure of axes for bivectors is an important ingredient in the dis-

cussion of logarithms in Sect. 126 below. Another important ingredient is Study analysis
as described in the next section.

7.7.3.1 Examples

1. The common normal of two lines. Let Ξ and Φ be two skew simple proper
bivectors in elliptic 3-space.

a. Θ := Ξ×Φ is a bivector which is in involution to both Ξ and Φ.
b. When Θ has exactly two axes, Θ1 and Θ2, each is a line perpendicular to both

Ξ and Φ.
c. Let a be a plane not containing Θ1. Then the intersections of Θ1 with Ξ and Φ

are ((a ∧Θ1) ∨Φ) ∧Ξ and ((a ∧Θ1) ∨Ξ) ∧Φ, resp. Similarly for Θ2.
d. The shortest distance between the two lines is given by the shorter of the distances

between the two pairs of points found.
e. Similar treatments can be given for euclidean and hyperbolic space but only one

axis is proper.

2. The cylindroid Given a regular bivector pencil (i. e., one that has two points
common with L), one can ask: how does the set of axes for this pencil appear in RP 3?
By continuity, these axes should sweep out a developable surface which contains the
lines corresponding to these two points. It is a well-known result of classical euclidean
line geometry that this surface, when expressed in point coordinates in RP 3, is a cubic
surface in the variables (x, y, z, w). For the non-euclidean case, one has to be more
careful in stating the question, since in general each bivector in the pencil has two
axes, and one must choose one of this pair in a continuous fashion. One can then
follow through analogous reasoning as in the euclidean case and arrive at a quartic
surface. See [Hea84] for a treatment of the elliptic cylindroid.
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7.8 Study analysis.

Analysis in these Clifford algebras proceeds analogously to analysis over complex num-
bers. We use the fact that the important elements of the algebra can be normalized to
have square −1, 1, or 0. These elements then can be substituted into formal power se-
ries such as exponentials and trigonometric functions, and known results of convergence
follow in the same way for complex numbers when one uses the fact that i2 = −1.

Let Φ be some entity such that Φ2 ∈ {−1, 0, 1} which commutes with scalars and
pseudoscalars. For our purposes this will be a simple normalized bivector, but much of
what follows is formally true for such a more general unit. Such an element satisfies
Φ2 ∈ {−1, 0, 1}. Note that for I2 = 1, only the case Ξ2 = −1 occurs; for I2 = 0, Ξ2 = 0
is also possible; while for I2 = −1, all three possibilities occur.

Φ2 f1(t) f2(t) I2Φ2 f3(u) f4(u)

1 cosh(t) sinh(t) 1 cosh(u) sinh(u)

0 1 t 0 1 u

-1 cos(t) sin(t) -1 cos(u) sin(u)

Table 7.2 f1, f2, f3, and f4.

We begin with a formal evaluation of e(t+uI)Φ. We define implicitly four real-valued
functions f1, f2, f3, and f4 as follows:

e(t+uI)Φ = etΦe(uIΦ) (7.22a)
= (f1(t) + f2(t)Φ)(f3(u) + f4(u)IΦ) (7.22b)

= (f1(t)f3(u) + f2(t)f4(u)Φ2I) + (f2(t)f3(u) + f1(t)f4(u)I)Φ (7.22c)

f1 and f2 depend only on the value of Φ2; while f3(u) and f4(u) depend on I2Φ2. See
Table 7.2.

I2 Φ2 e(t+uI)Φ

1 -1 cos (t) cos (u)− sin (t) sin (u)I + (sin (t) cos (u) + cos (t) sin (u)I)Φ

0 -1 cos (t)− sin (t)uI + (sin (t) + cos (t)uI)Φ

0 0 1 + (t+ uI)Φ

-1 -1 cos (t) cosh (u)− sin (t) sinh (u)I + (sin (t) cosh (u) + cos (t) sinh (u)I)Φ

-1 0 1 + (t+ uI)Φ

-1 1 cosh (t) cos (u)− sinh (t) sin (u)I + (sinh (t) cos (u) + cosh (t) sin (u)I)Φ

Table 7.3 e(t+uI)Φ based on possible values of I2 and Φ2.
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We will make heavy use of (7.22c) below when we calculate logarithms of rotors.
Table 7.3 gives an overview of the six specific forms which (7.22c) takes in reality.

7.9 Isometries

The results of Sect. 6.3 can be carried over without significant change to 3D. For a proper
1-vector a, the sandwich operation a(P) = aPa is a reflection in the plane represented
by a. For a pair of proper 1-vectors a and b with g := ab, g(P) = gPg̃ is a rotor fixing
the line a ∧ b = 〈g〉2 point-wise.

Definition 123. A rotor which fixes a line point-wise is called a rotator.

We will see below that this is equivalent to the condition that the bivector part of
the rotor is simple. We can also carry over to such rotators, the terminology of Def. 103
(elliptic rotator, parabolic rotator, and hyperbolic rotator) based on the nature of the
simple bivector a ∧ b.

It’s not hard to see that the set of rotators is not closed under composition. First,
note that the composition of two rotators is an isometry. Let h := cd be another rotator.
Then k = ΞΦ = abcd. When the two lines a ∧ b and c ∧ d do not intersect. 〈gh〉4 6= 0.
Only when the axes of g and h intersect, 〈gh〉4 = 0 and the product is a rotator.

Remark 124. Polar rotators. In the case that the bivectors satisfy h = gI, it is straight-
forward to describe the motion. First observe that the bivectors 〈g〉2 and 〈h〉2 are sim-
ple, and are invariant under both rotations: fixed pointwise by the “own” rotation, and
translated along itself by the other. It is also an easy calculation that the two rotations
commute: gh = hg. So, to follow a point P, rotate it around the line 〈g〉2 and around
the line 〈h〉2, in either order. This motivates the following definition, which we’ll spend
the rest of the chapter investigating.

Definition 125. A screw motion is an isometry that can be factored as two commuting
rotations around simple, non-intersecting bivectors of the form Ξ and ΞI.

Remark 126. Terminology alert. In order to have a mutually-exclusive notation, in this
definition we do not consider the identity mapping a rotation, so the rotations on each
of Ξ and ΞI are non-trivial.

Like the linear line complex, a screw motion has no counterpart in 2D. In fact, 〈k〉2
is a non-simple bivector ⇐⇒ k is the rotor of a screw motion. We will prove this in
Corollary 141; to do so, we need to extend 2D results on rotors.

7.10 Rotor logarithms

The analysis of the logarithms of isometries g for g ∈ Spin3
+κ is more difficult than

for Spin2
+κ due to the presence of non-simple bivectors. Nevertheless, a full theory of
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logarithms and exponentials for 3D is possible; we present it below. The general plan: to
first establish results for rotators, then to show how non-rotator rotors can be decomposed
as the product of two commuting rotators. The axis of the bivector part of the rotor plays
a distinguished role in these proceedings.

We begin with two technical lemmas which we will need for calculating logarithms in
Sect. 7.10.2.

Write
g = 〈g〉0 + 〈g〉2 + 〈g〉4 = s1 + Ξ + p1I (7.23)

Then the condition that g ∈ Spin3
+κ can be written as:

1 = gg̃ = s21 + p2
1I

2 + 2s1p1I−Ξ ·Ξ− (Ξ ∨Ξ)I (7.24)

Lemma 127. If g ∈ Spin3
+κ as above, then Ξ is simple ⇐⇒ p1 = 0 or s1 = 0.

Proof. The coefficient of I on the RHS of (7.24) is zero. ut

We will need the following lemma regarding elliptic rotors.

Lemma 128. Assume n is odd, I2 = 1, g a rotor. Then gI is a rotor and g ≡ gI.

Proof. The condition that n is odd is necessary so that gI ∈ Cln+
κ . We establish that

gI ∈ Spinn+κ:

(gI)(g̃I) = gIĨg̃

= gI2g̃

= gg̃ = 1

Let X represent a k-vector.

gI(X) = gIXĨg̃

= (−1)kgXIĨg̃

= (−1)kgXg̃

= (−1)kg(X)

= g(X) ≡ g(X)

where we have used XI = (−1)kIX and IĨ = 1. The conjugation operation on the last
line does not effect the result since each k-vector is mapped to a non-zero multiple of
itself. ut

Remark 129. The lemma implies that Spin3
+1 is generallly a 4 : 1 cover of SO(4), since

g 6= gI except when g is a Clifford bivector. Hence, with this exception, g,−g,gI, and
−gI, all distinct, correspond to the same isometry; otherwise only g and −g are distinct. ?

Remark 130. Note that for a normalized axis Φ, Φ2 ∈ {−1, 0, 1}.
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7.10.1 The logarithms of a simple rotor

We begin our detailed study of logarithms with a simple case that can be analyzed using
the same techniques used in 2D.

Definition 131. For a rotor g, 〈g〉2 is the bivector part of g. A rotor is simple if its
bivector part is simple. An axis of a rotor is an axis of its bivector part.

Theorem 132. A simple rotor in Spin3
+κ has a normalized logarithm.

Proof. Suppose, in (7.23), that Ξ is simple. Then by Lemma 127 either s1 = 0 or p1 = 0.
We can assume p1 = 0. Indeed, assume p1 6= 0. Then, when I2 = 1, gI is also a rotor
which by Lemma 128 is equivalent to g and has p1 = 0; if I2 = −1 or I2 = 0, then the
assumption p1 6= 0 leads to a contradiction: p2

1I
2 − Ξ2 = −p2

1 − Ξ2 = 1 or −Ξ2 = 1.
The rest of the proof is identical to that of Thm. 107 if one replaces B by Ξ and the
parameter a by s1. The resulting logarithms represent lines of fixed points rather than a
single fixed point. ut

7.10.1.1 Examples These results combined with those of Sect. 7.8 can be used directly
to calculate the form of simple rotors.

1. How can one find the rotor corresponding to a rotation of
2π
3

radians around the

line through the origin and the point (1, 1, 1)? First, let the unknown rotor be g. The
axis of g will be

Ξ : = E0 ∨ (E1 + E2 + E3)
= E0 ∧E1 + E0 ∧E2 + E0 ∧E3

= e23 + e31 + e12 = e12 + e31 + e23

Ξ ·Ξ = 3, so we normalize ΞN =
1√
3

(e12 + e31 + e23). Then by the above, to obtain

a rotation of
2π
3

, one uses θ =
π

3
and calculates

eθΞN = cos (θ) + sin (θ)ΞN

= .5(1 + e12 + e31 + e23)

Notice that the result is metric-neutral, since the line goes throught the origin E0,
where all metrics agree.

2. In hyperbolic space, let Σ be the line of intersection of the planes z =
√

2
2 and x = y.

Determine the rotator around the line Σ through an angle π
4 .

Solution. Represent the first plane as a1 = e3−
√

2
2 e0 and the second as a2 = e1−e2.

Then Σ = a1 ∧ a2 =
√

2
2 (e01 − e02) − e31 − e23. Verify that Σ2 = −1, hence is

normalized proper. Then by the above results on simple rotors, the logarithm of the
desired rotor g is π

8 Σ, and e
π
8 Σ = cos(π8 ) + sin(π8 )Σ. One can obtain the same result

from Table 7.3.
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7.10.2 The logarithm of a general rotor

Let Φ be an axis of Ξ (Thm. 120). Then there exists a Study number s2 +p2I satisfying:

(s2 + p2I)Φ = Ξ (7.25)

Substituting into (7.23) yields

g = s1 + p1I + (s2 + p2I)Φ

Finding the logarithm of Ξ is equivalent to finding a solution to:

e(t+uI)Θ = g (7.26)

The left-hand side of (7.26) should be familiar from (7.22) above. Substituting for both
sides we arrive at:

(f1(t)f3(u)+f2(t)f4(u)X2I)+(f2(t)f3(u)+f1(t)f4(u)I)Θ = s1+p1I+(s2+p2I)Φ (7.27)

We consider the right-hand side elements as given, and seek to solve for t and u. Exam-
ination of (7.27) reveals that the only hope for a solution is given by setting Θ = Φ, the
axis of Ξ. Furthermore, equating corresponding coefficients of both sides yields:

f1(t)f3(u) = λs1 (7.28a)

f2(t)f4(u)Φ2 = λp1 (7.28b)
f2(t)f3(u) = λs2 (7.28c)
f1(t)f4(u) = λp2 (7.28d)

This appears to be overconstrained since there are four equations for two unknowns, but
remember that g is normalized, so the entries of g cannot be arbitrary.

The following set of four equations suggests itself as a starting point for further in-
vestigations. We use the notation a : b instead of

a

b
to include the case that b = 0.

f1(t) : f2(t) = s1 : s2 = p2 : Φ2p1 (7.29a)

f3(u) : f4(u) = s1 : p2 = s2 : Φ2p1 (7.29b)

These equations provide, in general, two alternatives for each of the left-hand side un-
knowns.

7.10.2.1 Example: logarithm in the elliptic case For example, consider the elliptic
case. Then every bivector satisfies Φ2 = −1, and I2X2 = −1. Using Table 7.2 to find out
the values of fi leads to the equation:

exp (t+ uI)Φ = cos (t) cos (u)−sin (t) sin (u)I+(sin (t) cos (u)+cos (t) sin (u)I)Φ (7.30)
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Then (7.29) looks like (substituting also Φ2 = −1):

cos(t) : sin(t) = s1 : s2 = p2 : −p1 (7.31a)
cos(u) : sin(u) = s1 : p2 = s2 : −p1 (7.31b)

This leads to the solutions

t = tan−1 (s2, s1) = tan−1 (−p1, p2) (7.32a)

u = tan−1 (p2, s1) = tan−1 (−p1, s2) (7.32b)

Note that not all elements of C := {s1, p1, s2, p2} can be zero, since otherwise so is g. So
at least one of the two RHS alternatives on each line is valid. When both are valid, which
should be used? We choose the alternative in which the largest absolute value among
the elements of C occurs. This guarantees that tan−1 is defined, and also that the least
chance for numerical errors occurs. The resulting solutions (t, u) satisfy (7.26), hence the
conditions of Def. 97: (t + uI)Φ is the logarithm of g. Notice this logarithm is unique
except up to multiplies of 2π in both t and u.

7.10.2.2 The general case The general case proceeds in exactly the same way, with
other values for fi. Depending on the values of Φ2 and of I2Φ2 (see Table 7.2), there
are a total of 3 x 3 = 9 possible combinations of the function pairs (f1(t), f2(t)) and
(f3(u), f4(u)), of which only 6 occur in reality (see Table 6.2). To simplify the notation
of the desired logarithm, we introduce Table 7.4, similar to Table 7.2 but containing the
possible solutions for the various cases. Notice that the solutions are unique, except for
solutions involving tan−1, where integer multiplies of 2π can be added (last row of table).

Also, note there are no entries for t2 or u2 when Φ2 = 0. In this case e(t+uI)Φ degen-
erates to 1 + (t + uI)Φ ( see Table 7.3 ), and there are no alternatives to t1 and u1 for
calculating t and u.

Φ2 t1(Φ2) t2(Φ2) I2Φ2 u1(I2Φ2) u2(I2Φ2)

1 tanh−1 (s2, s1) tanh−1 (p1, p2) 1 tanh−1 (p2, s1) tanh−1 (Φ2p1, s2)

0
s2
s1

- 0
p2

s1
-

-1 tan−1 (s2, s1) tan−1−p1, p2) -1 tan−1 (p2, s1) tan−1 (Φ2p1, s2)

Table 7.4 Possible (t, u) solutions to exp (t+ uI)Φ = g.

We collect the above results in a theorem:

Theorem 133. Given a rotor g ∈ Spin3
+κ, with normalized axis Φ, write

g = s1 + p1I + (s2 + p2I)Φ
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Let C := {s1, p1, s2, p2}. Choose t ∈ (t1(Φ2), t2(Φ2)) and u ∈ (u1(I2Φ2), u2(I2Φ2)) (from
Table 7.4), such that t and u derive from the formula involving the element of largest
absolute value in C. Then (t+ uI)Φ is a normalized logarithm of g.

7.10.3 Decomposing a rotor as two commuting rotators

We can also characterize the effect of g.

Theorem 134. Given a rotor g ∈ Spin3
+κ with normalized axis Φ and logarithm Ω =

(t+ uI)Φ. Then:

1. g can be decomposed as the concatenation of two simple commuting rotors (at most
one of which is the identity map)

g = gtgu = gtgu

where gt := etΦ and gu := euIΦ,
2. gt is a rotation around the axis Φ of measure 2t and gu is a rotation around ΦI of

measure 2u.

Proof. 1. Clearly gt and gu are simple rotors. If t = 0 then gt = 1, similarly for u = 0.
But t = 0 and u = 0 cannot occur. Since Φ and IΦ commute, the basic identity of
the exponential function can be applied to prove commutativity:

gtgu = etΦeuIΦ = e(t+uI)Φ =

e(uI+t)Φ = euIΦetΦ = gugt

2. One just confirms that Def. 104 is satisfied.
ut

Remark 135. Note that the theorem does not assert that ΦI is also an axis. From the
preceding discussion of axes, we know that ΦI will be an axis, except when I2 = 0, then
it is a secondary axis.

Remark 136. One can also apply Thm. 120 to describe in how many different ways a
given rotor can be decomposed in this way, since each distinct axis pair (Φ,Φ⊥) gives
rise to a distinct decomposition. In the generic noneuclidean case (setting Ξ := 〈g〉2),
I2 6= 0, Ξ2 6= 0, and Ξ 6= Ξ⊥, the decomposition is unique. For a discussion of two classes
of isometries which have non-unique decomposition, see below, Sect. 7.11.

7.10.4 Pitch of a rotor

It’s natural to ask whether there are invariants of rotor logarithms under group actions.

Definition 137. For a normalized logarithm (t+ uI)Φ of a rotor h, the factor t+ uI is
called the homogeneous pitch of h, and the ratio u : t is called the affine pitch, or simply
pitch, of the rotor.
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Recall that the inner automorphism of a group determined by the group element g
is defined by h → ghg−1. For Spin3

+κ this is clearly just the isometry g restricted to
Spin3

+κ.

Lemma 138. Let Ξ = (t+uI)Φ be a normalized logarithm of the rotor h. The exponen-
tial curve h(s) := esΞ, for s ∈ R satisfies h(s) ⊂ Spin3

+κ.

Proof. h(s) ∈ Cl3+κ by examination; furthermore, h(s)h̃(s) = esΞe−sΞ = 1, so h(s) ∈
Spin3

+κ. ut

Theorem 139. 1. Homogeneous pitch is preserved under inner automorphisms of Spin3
+κ.

2. Affine pitch is constant along h(s).

Proof. 1. Let (t+ uI)Φ be a normalized logarithm of h. Then

g(h) = ge(t+uI)Φg̃

= e(t+uI)(gΦeg)

= e(t+uI)g(Φ)

Here we have used the definition of the exponential function and the fact the scalars
and pseudoscalars commute with bivectors. This shows that (t + uI)g(Φ) is a nor-
malized logarithm of g(h).The homogeneous pitch is clearly preserved.

2. By the lemma, h(s) is a rotor with normalized logarithm (st + suI)Φ. Clearly the
affine pitch su : st = u : t is constant along the curve. ut

Remark 140. This definition of affine pitch agrees with the traditional one for pitch in
euclidean line geometry (e.g., [PW01], §3.1). It is intuitively obvious that when a rotor
undergoes an isometric motion, the amount of rotation and translation experienced by
the transformed axis Φ must equal that of the untransformed one. Furthermore, two
rotors which result from the exponentiation of the same bivector (but for different values
of time) will also preserve the proportion of rotation to translation.

7.10.5 Screw motions

We can now characterize screw motions as we anticipated at the beginning of this dis-
cussion:

Corollary 141. A rotor g is a screw motion ⇐⇒ 〈g〉2 is non-simple.

Proof. Let Ξ = 〈g〉2. By the theorem, g has logarithm (t+uI)Φ. It’s clear from Def. 125
that g is a screw motion ⇐⇒ t 6= 0 and u 6= 0. On the other hand, (7.27) shows that
Ξ lies in the line complex pencil spanned by the axis pair Φ and Φ⊥. By the previous
remark, Φ ∧Φ⊥ = 0 only if I2 = −1 and Φ is ideal. In all other cases Φ and Φ⊥ span
a regular bivector pencil, so Ξ is different from either of Φ and Φ⊥, hence non-simple,
exactly when t 6= 0 and u 6= 0. ut
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7.10.5.1 Classification of 3D Isometries The factorization given by Thm. 134
into two commuting rotations allows us to apply the classification of isometries from
Sect. 6.3.2.2 also in the 3D case. Each 3D rotator naturally corresponds to some 2D type
(obtained by slicing its axis by any orthogonal plane). One obtains thereby two 2D types
for a given 3D isometry. For I2 = 1, both are elliptic rotations. For I2 = 0, one is elliptic
and one is parabolic; and for I2 = −1, either one is elliptic and one is hyperbolic, or
both are parabolic. Since the latter two axes intersect, their sum is also a line, hence the
rotor is a rotator. Thus, there are three types of non-intersecting axis pairs, one for each
metric, each of which represents the generic screw motion in that metric. The other types
of isometries are related to cases in which one or the other of t or u in the logarithm are
zero, and yield a pure rotator, which can be classified according to the 2D classification.

Fig. 7.5 Screw motions in the three classical geometries: elliptic, euclidean, hyperbolic.

7.10.5.2 Comparison of screw motions in different metrics Fig. 7.5 illustrates
the difference between the screw motions in the three metrics. The screw motions are
all of the form g = etΦ where Φ = e01 + .5e23. This is a bivector which has as axis
e23, the vertical z-axis. e01 is an axis in the non-euclidean cases and a secondary axis
in the euclidean case (in this case it is the ideal horizon line, and represents a vertical
translation). By the above discussion, the pitch of these screw motions is in every case .5.
The figure shows the orbit of 15 points on a circle C of radius .5 lying in the (x = y = 0)
plane centered on E0. The orbit of a point P ∈ C consists of points of the form g(t)(P)
for t-values in t ∈ [−1.5, 1.5]. Finally, all three images are viewed from approximately the
same distance with a field of view of 90 degrees. It is typical that in the elliptic case one
cannot see the full extent of the curves.

These curves, in every metric, lie on a surface equidistant from the axis e23. In the
elliptic case this is a hyperboloid; in the euclidean case, a cylinder; and in the hyperbolic
case, an ellipsoid. In the elliptic case, the surface is also equidistant from the axis e01.
Such an equidistant surface is called a Clifford torus and, as a submanifold of Ell3, has
curvature 0, that is, is a euclidean torus in elliptic space ([Kle26]).
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7.11 Clifford translations and euclidean translations

We have already mentioned in Sect. 7.4.1 that in elliptic space there are an exceptional set
of isometries, the Clifford translations. We touched again on the same topic in Sect. 7.7.2
where we introduced Clifford bivectors. Here we want to discuss this topic in more detail
and to connect Clifford translations to the the earlier representation, also mentioned
in Sect. 7.4.1, involving left- and right-quaternion multiplication only. We show how
the Clifford translations can be represented in Spin3

+1, work out an example involving
Clifford parallels, and then close with a discussion of euclidean translations.

7.11.1 Clifford translations

The original representation of elliptic space via quaternions implemented isometries via
left and right multiplication by quaternions (Sect. 7.4.1.1). Let

h = cos θ + sin θ(x0i + y0j + z0k)

be a unit quaternion (so x2
0 + y2

0 + z2
0 = 1), and P = w + xi + yj + zk be a second

unit quaternion (so x2 + y2 + z2 +w2 = 1. Then, identifying the unit quaternions with a
double covering of Ell3, P→ hP is an isometry of elliptic space, a left Clifford translation;
P→ Ph is a distinct isometry, a right Clifford translation.

How are the same isometries be represented in Cl31 as a sandwich g? Define the fol-
lowing elements:

Φ := x0e23 + y0e31 + z0e12 (7.33a)

Φ⊥ := ΦI = x0e01 + y0e02 + z0e03 (7.33b)

go := e
θ
2 Φ = cos

θ

2
+ sin

θ

2
Φ (7.33c)

g−∞ := e−
θ
2 Φ⊥ = cos

θ

2
− sin

θ

2
Φ⊥ (7.33d)

g+
∞ := e

θ
2 Φ⊥ = cos

θ

2
+ sin

θ

2
Φ⊥ (7.33e)

gl := e
θ(1−I)

2 Φ = g−∞go = gog−∞ (7.33f)

gr := e
θ(1+I)

2 Φ = g+
∞go = gog+

∞ (7.33g)

Here Φ is any line; we choose the coordinate system so it passes through the origin, with
direction vector (x0, y0, z0). go is a rotator around Φ. g−∞ and g+

∞ are rotators of the
same angle, around the polar line, through opposite and equal angles. gl and gr, the
product of go with g−∞ and g+

∞, resp., have bivector parts which are left (resp., right)
Clifford bivectors:
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〈gl〉2 = − sin (θ)
1− I

2
Φ = − sin (θ)

2
(x0e01 + y0e02 + z0e03 + z0e12 + y0e31 + x0e23)

〈gr〉2 = − sin (θ)
1 + I

2
Φ = − sin (θ)

2
(x0e01 + y0e02 + z0e03 − z0e12 − y0e31 − x0e23)

A straightforward calculation confirms that gl is the sandwich corresponding to the left
Clifford translation, and gr, the sandwich operator corresponding to the right Clifford
translation. We call 1−I

2 Φ the left Clifford bivector associated to Φ and write Φl; Φr is
similarly defined.

Using this representation of Clifford translations, we can carry out an analysis of the
classical problems associated to such translations. We first define the Clifford parallels
associated to a Clifford bivector, and prove that they have the desired invariance prop-
erties.

Definition 142. Given a right [left] Clifford bivector Ξ, a right [left] Clifford parallel
belonging to Ξ is a simple bivector Φ such that (1 + I)Φ = Ξ [(1− I)Φ = Ξ]. Denote
the set of all such parallels with RΞ [LΞ].

Remark 143. A Clifford parallel for Ξ is an axis for Ξ.
We show that Clifford parallels of a Clifford bivector Ξ are invariant under the Clifford

translations generated by Ξ.

Theorem 144. For Φ a Clifford parallel belonging to a Clifford bivector Ξ, etΞ(Φ) = Φ.

Proof. ΞΦ = (1+I)ΦΦ = Φ(1+I)Φ = ΦΞ since pseudoscalars commute with bivectors.
Hence etΞ(Φ) = etΞΦe−tΞ = etΞe−tΞΦ = Φ. ut

Theorem 145. Every left Clifford translation commutes with every right Clifford trans-
lation.

Proof. A left Clifford translation gl is of the form etΞ for a left Clifford bivector Ξ; a right
Clifford translation gr is of the form euΦ for a right Clifford bivector Φ. By Lemma 115,
ΞΦ = 0 = ΦΞ, so

glgr = etΞeuΦ = etΞ+uΦ = euΦ+tΞ = euΦetΞ = grgl

Here we have used the commutativity of Ξ and Φ to apply the exponential rule eaeb =
ea+b. ut

Next we turn to showing that the set of Clifford parallels belonging to a Clifford bivec-
tor form an elliptic line congruence. We restrict attention to a right Clifford bivector;
analogous results hold for a left Clifford bivector.

Lemma 146. For a right Clifford bivector Ξ and another bivector Φ, Ξ ·Φ = Ξ ∨Φ.

Proof. From (7.12), ΞI ∨Φ = Ξ ·Φ. By Def. 114, ΞI = Ξ. ut

Lemma 147. If Ξ and Φ are right Clifford bivectors such that Ξ ∧Φ = 0, and Θ is a
Clifford parallel belonging to Φ, then Ξ ∧Θ = 0.
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Proof. Substituting Φ = (1 + I)Θ yields 0 = Ξ ∧ (1 + I)Θ = Ξ ∧ Θ + Ξ ∧ (ΘI) =
Ξ ∧Θ + (Ξ ·Θ)I = 2Ξ ∧Θ, where we have applied the previous lemma to get the final
equality. ut

We are now prepared to show that RΞ is an elliptic line congruence. For, the 2-plane Cl
with Plücker signature (− − −) has an elliptic metric; the polar line of Ξ with respect
to this metric is a line B of right Clifford bivectors. The Plücker polar of this elliptic
bivector pencil is, by definition, an elliptic congruence. The following theorem describes
this congruence more exactly:

Theorem 148. B` = RΞ.

Proof. By definition, each point of B is in involution to Ξ, hence, by the lemma, to each
Clifford parallel of Ξ. Thus, RΞ ⊂ B`. We now show B` ⊂ RΞ. If Φ ∈ B` is simple, we
need to show that Φ is a Clifford parallel, i.e., (1 + I)Φ ≡ Ξ. By assumption, Ψ∧Φ = 0
for Ψ ∈ B. By the first lemma, Ψ ·Φ = 0 also. But then 0 = (Ψ ·Φ) = Ψ∨ (ΦI), which
implies ΦI ∈ B`. Then so is (1 + I)Φ. But this is a right Clifford bivector, and there is
only one such element in Cr, namely, Ξ. ut

We conclude with a pair of simple corollaries.

Corollary 149. Let Ξ be a Clifford bivector, and etΞ the one-parameter family of asso-
ciated Clifford translations. Then the orbit of a point P ∈ Ell3 under this family lies on
a line.

Proof. By Thm. 148, there is a unique Clifford parallel to Ξ passing through P. By
Thm. 144, such a Clifford parallel is invariant under the associated Clifford translations.
Hence, the image of P is constrained to lie on this line. ut

Corollary 150. A right [left] Clifford translation is an elliptic screw motion with homo-
geneous pitch 1 [-1].

Proof. Apply Def. 142 and Def. 137 to the logarithm of Ξ provided by Thm. 133. ut

The above discussion of Clifford translations is intended to give a flavor of how one can
establish classical results such as contained in [Bla42], Part I, and [PW01], §8.2, within
the framework of bivectors and rotors in Cl31. A more detailed analysis however exceeds
the scope of this study.

Remark 151. Comparison. In the older representation of elliptic isometries via left-
and right-quaternion multiplication, the simplest isometry is a Clifford translation. In
Cl31, on the other hand, the simplest isometry is a rotation. Consequently, we built
a Clifford translation above out of two rotators in two polar lines. In the quaternion
approach, one builds rotations out of Clifford translations: gPh is a rotation when the
translation distances of g and h are the same. At a first glance, it would appear that the
traditional approach using left- and right-quaternion multiplication provides a simpler,
elegant representation for elliptic isometries, since it gives priority to Clifford translations,
which do seem more essential than rotations for elliptic space. On the other hand, the
bivectors and rotors which represent Clifford parallels and translations in Cl31 have an
immediate geometric interpretation which the pure quaternion approach lacks.
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Fig. 7.6 An elliptic screw
motion with unit homo-
geneous pitch is a Clif-
ford translation. The one
shown here has homoge-
neous pitch 1, otherwise it
is identical to that shown
in Fig. 7.5. One sees that
the orbits of points are
lines, arranged on a hy-
perboloid (a so-called
Clifford torus).

7.11.2 Euclidean translations

Sect. 7.4.1 observed similarities between Clifford parallels and euclidean parallels, and
Clifford translations and euclidean translations. As Klein pointed out in [Kle26], §8.5,
this is not accidental, since under the limiting process that yields euclidean geometry
beginning with elliptic geometry, the Clifford parallels (translations) degenerate into
euclidean parallels (translations) in the limit. The Clifford parallels corresponding to a
Clifford bivector (1± I)Ξ become euclidean parallels passing through the euclidean ideal
point −e0 ∧ Ξ = xE1 + yE2 + zE3, and the translations become euclidean translations
around the ideal line xe01 + ye02 + ze03, conjugate to this point in the elliptic metric of
the ideal plane.

Euclidean translations exhibit several distinctive features which we discuss in the
following sections.

7.11.2.1 The analysis of a euclidean translation Let (t+uI)Φ be the logarithm of a
euclidean translation. It is always possible to choose Φ so that IΦ = 0, that is Φ is an ideal
line. Then Φ is its own axis. In this case, the value of u in the logarithm can be arbitrary:
(t+ uI)Φ = tΦ. Φ = x1e01 + y1e02 + z1e03 is normalized, so ‖Φ‖2∞ = x2

1 + y2
1 + z2

1 = 1.
Then gt = etΦ = 1+tΦ. Let P be an arbitrary euclidean point P := E0+xE1+yE2+zE3.
Calculate the sandwich:

etΦPe−tΦ = E0 + (x− 2tx1)E1 + (y − 2ty1)E2 + (z − 2tz1)E3

This is a euclidean translation of distance 2t with direction vector (−x1,−y1,−z1). One
of the peculiarities of euclidean translation rotor g is that left- and right-multiplication
by g gives half the translation:

2gP = 2Pg̃ = gPg̃
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Remark 152. When one constructs the logarithm of a euclidean translation using a proper
axis, then t = 0 and ΦI is the ideal axis. Since the ideal axis is the simplest representative
of the translation, it is preferable to work directly with the ideal axis instead of a proper
axis. This is always possible, that is, one can require that t 6= 0 in the logarithm. This
effectively forces euclidean translations to be handled as in the preceding paragraph, and
avoids the illusory multiplicity provided by the proper axes.

7.11.2.2 Invariant line 6= axis If Ξ is the bivector part of a rotor g, the theorems
above show that any axis of Ξ is invariant under the isometry g. Is the converse true? By
the above discussion, a euclidean translation has rotor g = 1 + t(x1e01 + y1e02 + z1e03).
Let Θ = ae01 + be02 + ce03 be a euclidean ideal line. A quick calculation confirms that
g(Θ) = Θ. Hence, all ideal lines are invariant under a euclidean translation, but none
are axes of the rotor.

7.12 The continuous interpolation of the metric polarity

We close our discussion of three-dimensional geometry with an intriguing metric-related
motion, which also illustrates the power of the Clifford algebra approach to represent het-
erogeneous concepts within a unified framework. It will also shed light on the significance
of elements of Cln+

κ \ Spinn+κ.
The polarity on the metric quadric (Thm. 32) is a correlation, that is, it maps points to

planes and vice-versa. At first glance it would not appear possible to define a continuous
transformation of Clnκ which interpolates between a geometric configuration and its image
under the metric polarity. The first step is to restrict the allowable configurations to a
set which is mapped to itself under a correlation.

7.12.1 Surface elements

Definition 153. A surface element is a pair A := a + A where a is a proper 1-vector,
A is a proper n-vector, a ∧A = 0. Denote the set of all surface elements by S.

Note that SI ⊂ S with equality exactly when I2 6= 0. We assume for the following
discussion that I2 = −1 and n = 3. The construction generalizes directly to arbitrary
n. I2 = 1 exhibits imaginary behavior which make it less suitable for an introductory
treatment.

For a given surface element A = a+A, AI = aI+AI =: Â+ â = Â is another surface
element. We further assume that A is normalized so that a2 = −A2. This is possible
since both vectors are proper.

7.12.2 Definition of the interpolation

Define a one-parameter family of maps Θt : S → S by Θt(X) := X(cos t + sin(t)I) for
t ∈ [0, π]. Then for a surface element A:



7.12 The continuous interpolation of the metric polarity 97

Θt(A) = cos tA + sin(t)Â
= (cos(t)a + sin(t)AI) + (cos(t)A + sin(t)aI)
=: at + At

Θt(A) is, as claimed, a surface element:

(at + At) ∧ (at + At) = cos2(t)(a ∧A) + sin2(t)(AI ∧ aI) + cos(t) sin(t)(a ∧ aI + AI ∧ a)
= cos(t) sin(t)(a ∧ aI + AI ∧ a)

= cos(t) sin(t)(a2 −A2) = 0

Then Θt, as claimed, maps S to itself. At t = 0 and t = π, it is the identity map on a
surface element, while at t = π

2 , its value is the polar surface element. Hence, it represents
the promised continuous interpolation of the polarity.

To understand the intermediate path better, define the axis Λ := a∧ Â and the spear
Ψ = A ∨ â. Then a direct calculation shows that at ∧Λ = 0 and At ∨Ψ = 0. In words:
the surface element at + At moves so that the plane at rotates around the axis Λ while
the point A moves along the spear Ψ. Thus, the motion is a linear one.

Through a direct calculation one can verify that at t = π
4 and t = 3π

2 , a2
t = A2

t = 0:
the surface element becomes ideal. The points lie on the ideal sphere, the planes are
tangent to it. This is singular position of the interpolation since Θt(S) collapses onto a
2-dimensional surface at these values.

The original configuration lies in hyperbolic space, while the polar configuration lies
in polar hyperbolic space. The time values t = π

4 and t = 3π
2 represent the transitions

between these two spaces.

7.12.2.1 Examples

1. Action on a plane bundle. Consider a plane bundle in the proper point P. This is
a family of ∞2 surface elements all sharing the same point. The polar of this bundle
is the improper plane field P⊥, ∞2 surface elements all lying in the same plane. At
any time t, these surface elements determine a surface. One can show with an easy
calculation that this is a hyperbolic sphere centered at P. See Fig. 7.7.

2. Action on lines. The map Θt is well-defined not just on S but on the full algebra
Cl3−1. The subalgebra Cl3†−1 is mapped to itself, as is P(

∧2). A bivector Ξ is mapped
to an element of the pencil spanned by Ξ and Ξ⊥. This will be a non-simple bivector
except for t = 0 and t = π. The ∞3 surface elements centered on points of Ξ (lying
in planes of Ξ) are mapped at t = π to the surface elements of Ξ⊥. Those lying in a
plane a and centered on a point P of Ξ move under Θt to surface elements centered
on the polar point a⊥ and lying in the plane P⊥, of Ξ⊥. One can show that all the
surface elements of Ξ at time t envelop an equi-distant surface around Ξ, all of whose
points lie the same distance from Ξ.
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Fig. 7.7 Three views of the action of Θt on a plane bundle, for t = 0, t = .5, t = 1. At t = 0 and
t = 1 each surface element is double covered, with two different oriented surface elements. The
right-most figures shows both t = 0 and t = 1.
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7.12.3 Relation to Spinn+κ

Suppose q ∈ Cl3+κ . Then qq̃ = a + bI =: z ∈ Cl3†κ . If z has a non-zero square root w,
then qw−1 = g ∈ Spin3

+κ. Consider the sandwich operator defined by q, acting on a
k-vector X:

qX = qXq̃

= gwXwq̃

= (−1)kg(X)z ≡ g(X)z

We see that a sandwich by an arbitrary element of Cl3+κ can be factored as multiplication
by an element of Cl3†κ (that has a square root) times a rotor isometry. For κ = −1, all ele-
ments of Cl3†κ have square roots. Due to this decomposition, we can study multiplication
by an arbitrary z ∈ Cl2†κ separately from the rotor isometry.

We can furthermore assume ‖z‖ = 1 since we are working projectively. Then there
exists t ∈ [0, π] such that z = cos t + sin tI, and we see Xz = Θt(X). Hence there is a
one-dimensional family of sandwich operators in Cl3+κ which preserve the metric quadric
while mapping an element X to a linear combination of X and X⊥. This makes clear
why the condition gg̃ = 1 is required in order that g is an isometry.

Remark 154. The continuous interpolation on the metric quadric can be applied to the
integral curves shown in Fig. 6.4. Recall that the latter represent orbits of points under the
rotor curves etP ⊂ Spin2

+κ. If one imagines the curves also equipped with all their tangent
vectors, then they are curves of surface elements, and Θt (more precisely: its 2D analog)
permutes these curves among themselves. Furthermore, the two flows commute (since
elements of Cln†κ commute (up to projective equivalence) with other algebra elements.

7.13 Guide to the Literature

For background material on Sect. 7.2, the review of projective line geometry, see[PW01].
Chapters 2 and 3 contain a modern, more detailed treatment of the subject (intermixed
with some euclidean material we handle later). Here we have restricted attention to
results necessary for the sequel.

Much of the content of this chapter can be traced back to the theory of biquaternions,
whose primary inventor was Clifford ([Cli82c]). Clifford’s early death prevented a de-
tailed development; this was achieved most prominently by Eduard Study in [Stu91] and
[Stu03]. In these works Study worked out in rich detail the structure which in modern
form appears as the even subalgebra Cl3+κ , with focus on the case κ = 0.

Study avoided using the term quaternion; the structure he described has nonetheless
become known as the dual quaternions. As noted above in Sect. 7.6, his original use of
“dual” included all three metric possibilities. His dual parameter ε maps to the pseu-
doscalar I. A full description of the correspondence between the two systems lies outside
the scope of this work, nor is the full scope of [Stu03] reflected in material presented here.
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[Zie85] gives an excellent, differentiated survey of the historical development that
led up to Study’s work. Möbius, Plücker, Hamilton, Klein, and Clifford were Study’s
most important predecessors; he and Ball ([Bal00]) had a relationship based on mutual
appreciation. Weiss, a student of Study’s, wrote a concise introduction [Wei35] to Study’s
investigations which can be recommended. For beginners, [Bla54] provides a simpler
introduction to Study’s approach.

The main ingredient that Study’s approach lacked was the graded structure of the
exterior algebra. Study was familiar with and admiring of Grassmann’s work ([Gra44])
but Study did not bring his biquaternions into direct connection with the exterior algebra.
However, Study himself appears to be aware of the possibility of extending his work within
a more comprehensive algebraic structure. He remarked at the end of [Stu03] (p. 595,
translated by the author):

The elementary geometric theory, that hovers thus before us, will surpass the construction
possibilities of the quaternions, to the same degree that the geometry of dynamen surpasses
the addition of vectors. The accessory analytic machinery will consist of a system of com-
pound quantities, with eight, or better yet, with sixteen units. {Study’s italics!}

It seems likely that Cl3κ is in fact the 16-dimensional algebraic realizations of Study’s
prophetic inkling.

The modern legacy of biquaternions is varied. Focusing just on euclidean applications,
the adaption rate of Cl30 among practitioners is low. Jon Selig, a robotics researcher,
presented it in [Sel00] and [Sel05]. He, in turn, discovered the existence of this degenerate
Clifford algebra as an exercise in the textbook [Por81], §13.86 ([Sel]), whose motivation
can be traced back to [Stu03]. Most modern references that go beyond the use of linear
algebra or quaternions, use dual quaternions in more or less original form ([McC90]). For
non-euclidean Cayley-Klein spaces, it appears there has been little activity since [Bla42].

Another direction in which the biquaternions have been extended to a 16-dimensional
algebra is via the so-called quadriquaternions ([Gsc91], which introduce another pair of
quaternions to represent points and planes, at the cost of an extra operator to correct
commutation relations provided for free by the graded structure of Cl3κ.

Blaschke ([Bla42], Part I), and Pottmann and Wallner ([PW01], §8.2), contain re-
lated discussions of Clifford translations and Clifford parallels based on left- and right-
quaternion multiplication. The former shows clearly the step from quaternion to biquater-
nion representation. The latter has an abundance of related material.

The continuous interpolation of the metric polarity (Sect. 7.12) was first explored by
Locher-Ernst in two articles which are reprinted in [LE70], pp. 55-75. He connects it to
a non-euclidean Huygens principle of wave propagation. The same theme was handled in
[Gsc91] using quadriquaternions.



Chapter 8

Kinematics

In this chapter we build on the rotor-related results of Chapter 7 to do kinematics:
represent isometric motions and their derivatives. The bivectors, as the Lie algebra of
the group, naturally play a crucial role, as the first theorem (Thm. 157) shows. We then
turn in Sect. 8.2 to a discussion of the use of two coordinate systems, one based in the
body and one in space. Thm. 161 describes a transformation rule for derivatives from one
coordinate system to another. This yields, when applied to a bivector, the Lie bracket.
Applied to the orbit of a point under an isometric motion, this yields a formula for the
vector field associated to the motion. We give a novel factorization of this vector field as
the composition of two polarities. Finally, we discuss the dual formulation of kinematics
based on the projective foundations of our approach.

8.1 Isometric motions

Definition 155. An isometric motion is a C1 path g : [0, 1]→ Spin3
+κ with g(0) = 1.

Remark 156. The terminology is a bit awkward due to the generality of the treatment;
in specific cases one uses naturally the specific terms euclidean motion, etc.

Theorem 157. For an isometric motion g, g̃ġ is a bivector.

Proof. g̃ġ is in the even subalgebra. For a bivector X, X̃ = −X; for scalars and pseu-
doscalars, X̃ = X. Hence it suffices to show ˜̃gġ = −g̃ġ.

g̃g = 1
˙(g̃g) = 0

˙̃gg + g̃ġ = 0˜̇gg + g̃ġ = 0˜̃gġ = −g̃ġ

ut

101
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8.2 Coordinate systems

Up til now, we have been considering the behavior of the system at a single, arbitrary
moment of time. But if we want to follow a motion over time, then there will be two
natural coordinate systems. One, the body coordinate system, is fixed to the body and
moves with it as the body moves through space. The other, usually called the space
coordinate system, is the coordinate system of an unmoving observer. Once the motion
starts, these two coordinate systems diverge. The following discussion assumes we observe
a system as it evolves in time. All quantities are then potentially time dependent; instead
of writing g(t), we continue to write g and trust the reader to bear in mind the time-
dependence.

We use the subscripts Xs and Xc
1 to distinguish whether the quantity X belongs to

the space or the body coordinate system. When we consider a isometric motion g as
being applied to the body, then Sect. 5.6 established that the relation between body and
space coordinate systems for any element X ∈ Cl3κ, with respect to a motion g, is given
by the sandwich operator:

Xs := g(Xc) = gXcg̃

Definition 158. The velocity in the body Ωc := g̃ġ, and the velocity in space Ωs :=
gΩcg̃.

Remark 159. The situation is graphically depicted in Fig. 8.1. The derivative ġ is an
element of the tangent space Tg. In order to produce an element of the Lie algebra this
tangent vector has to pulled back to the tangent space of the identity element of the spin
group by multiplication by g−1 = g̃. Left multiplication produces Ωc, right multiplication
produces Ωs.

Fig. 8.1 The velocity in
the body Ωc is ġ pulled
back to the identity via
left multiplication by eg.

1
0

g
.g(t)

g~g =: Ω
.

c

G (rotors)

(bivectors)

1 From corpus, Latin for body.
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Remark 160. It is sometimes useful to evaluate expression at time t = 0. In that case, the
two coordinate systems agree and we can omit the subscripts. Or, in expressions in which
only the space coordinate system appears, it is also conventional to omit the subscripts.

8.3 Derivatives

We derive a general result for a time-dependent element (of arbitrary grade) in these two
coordinate systems.

Theorem 161. For time-varying X ∈ Cl3κ subject to the motion g with velocity in the
body Ωc,

Ẋs = g(Ẋc + 2(Ωc ×Xc))g̃ = gẊcg̃ + 2(Ωs ×Xs)

Proof. Apply Leibniz rule to the sandwich product and rearrange terms:

Ẋs = ġXcg̃ + gẊcg̃ + gXc
˙̃g

= g(g̃ġXc + Ẋc + Xc
˙̃gg)g̃

= g(ΩcXc + Ẋc + XcΩ̃c)g̃

= g(Ẋc + ΩcXc −XcΩc)g̃

= g(Ẋc + 2(Ωc ×Xc))g̃

The next-to-last equality follows from the fact that for bivectors, Ω̃ = −Ω; the last
equality is the definition of the commutator product. On the other hand,

Ẋs = ġXcg̃ + gẊcg̃ + gXc
˙̃g

= ġg̃gXcg̃ + gẊcg̃ + gXcg̃g ˙̃g

= gẊcg̃ + 2(Ωs ×Xs)

ut

Remark 162. We’ll be interested in the case Xc = Φc is a bivector. In this case, Φc and
Ωc can be considered as Lie algebra elements, and 2(Ωc ×Φc) = ΩcΦc −ΦcΩc is called
the Lie bracket, sometimes written [Ωc,Φc]. It expresses the change in one (Φc) due to
an instantaneous motion represented by the other (Ω).

As an application of Thm. 161, we consider the orbit of a point R under a motion g.

8.4 The orbit of a point under a motion

For a point R0, the motion g induces a path R(t), the orbit of the point R, given by
R(t) = g(t)R0g̃(t). Applying the theorem yields
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Fig. 8.2 In the metric plane, the velocity state V can be identified with the null point (small
blue cross) of the vector field 2V×R, shown here in the neighborhood of V = E0 + .25E1 + .5E2.
From left to right: elliptic, euclidean, hyperbolic. The polar line of V is shown in blue. Notice it is
invariant under the flow. In the hyperbolic plane, the ideal circle is also shown.

Ṙ(t) = 2(Ω(t)×R(t)) (8.1)

where we have omitted the subscripts since everything is in the space coordinate system.
We also omit the function notation Ṙ = 2(Ω×R) since everything is parametrized by t.

Remark 163. Metric-neutral vector field. In the euclidean case, from Sect. 7.3.1 we
seen that Ω ×R is an ideal point, a free vector. In the general setting, (by the general
form of (7.15)) Ω×R is orthogonal to R, hence lies in the polar plane of R. In light of
the identity of the polar plane of a point and the tangent space at the point (Thm. 65),
we continue to use the term vector field to describe the assignment Ṙ = 2(Ω×R). The
vector field for t = 0 (for a random selection of points R) is pictured in Fig. 8.2 for the
case of an elliptic rotor in the 3 metric planes. We next establish a connection to Fig. 6.4.

Remark 164. Integral curve confirmation. Let the rotor g have logarithm Ω. Define
g(t) := etΩ. Calculate:

ġ(t) = ΩetΩ

= Ωg(t)
ġ(t)g̃(t) = Ω

Hence the velocity in space for this isometric motion is the constant bivector Ω, and at
any time t, the vector field Ṙ(t) is given by (8.1). Thus the curves R(t) = etΩR0e

−tΩ

(shown in Fig. 6.4 in the 2D case) are in fact integral curves of the constant vector field
Ω×R.

8.5 Null plane interpretation

By (7.13), Ξ × P = (Ξ ∨ P)I. Substituting this into (8.1) yields Ṙ = 2(Ω ∨ R)I. We
recognize the result as the polar point (with respect to the metric) of the null plane
of R (with respect to Ω). See Fig. 8.4. Thus, the vector field can be considered as the
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composition of two simple polarities: first, the null polarity on Ω, then the polarity Π
on the metric quadric:

R NΩ−−→ Ω ∨R Π−→ (Ω ∨R)I 2−→ 2((Ω ∨R)I) = Ṙ

(See Sect. 7.2.1.2). This leads to the somewhat surprising result that regardless of the
metric used, the underlying null polarity remains the same. One could say, for a given
point, its null plane provide a projective ground for kinematics, shared by all metrics;
the individual metrics determine a different perpendicular direction to the plane, giving
the direction which the point moves. See Fig. 8.3.

Fig. 8.3 The vector field
induced by a bivector on
a point R can be decom-
posed as the product of
two polarities.

r := Ω v R

R := 2(Ω v R)I
.

R

Null polarity

Metric polarity

Remark 165. This decomposition only makes itself felt in the 3D case. In 2D, the null
polarity is degenerate: V ∨R is the joining line of V and R, and (V ∨R)I is the polar
point of this line. Hence, all the vectors in the vector field lie in the polar line of V.

A similar degeneracy occurs in 3D when Ω is simple. One sees that the vector field
vanishes wherever Ω∨R = 0. This only occurs if Ω is a simple bivector and R is incident
with it (Ex. 7.3.1.1-7). The picture is consistent with the knowledge, gained above, that
in this case etΩ generates a rotation (or translation) with axis Ω. All the vectors in the
vector field determined by Ω lie in the polar line of Ω.

Otherwise, when Ω is non-simple, Ω∨R is a plane p containing R; when R is proper,
so is r and rI 6= 0. Hence, the vector field at any proper point R is non-null, and so no
proper points remain fixed. In fact, when I2 6= 0, Ω×R is a bijection of 〈Cl3κ〉3, and the
inverse is given by the polar bivector:

(ΩI)× (Ω×R) = R (8.2)
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Fig. 8.4 A point R,
its null plane (Ω ∨ R),
and the velocity vector
Ṙ = 2(Ω ∨R)I. Compare
Fig. 7.2.

R

v RΩ

(Ω vR)IR = 2
.

8.6 Dual formulation of kinematics

It is possible to dualize the basic kinematic formulation to be plane-based. Replace R
with an arbitrary plane r in (8.1). Dual to Ṙ, the instantaneous direction of motion of
the point, is

ṙ = 2(Ω× r) = 2(Ω ∨ rI)

the instantaneous axis of rotation of the plane, where the second equality can be con-
firmed by a direct calculation.

Fig. 8.5 shows the configuration. r and R are any null plane/point pair with respect
to the velocity state Ω. p and P are another null plane/point pair determined by P = rI.
The instantaneous velocity of R is along the line ΛR := (Ω∨R)I∨R. The instantaneous
velocity of r is around the line Λr := (Ω ∨ rI) ∧ r. The two lines are clearly conjugate
lines of the null polarity of Ω:

NΩ(p ∧ r) = (Ω ∧ p) ∨ (Ω ∧ r)
= P ∨R

There are infinitely many pairs of such conjugate lines, and each such pair determines a
decomposition of Ω as the sum of two lines.

Fig. 8.5 A null
plane/point pair (r,R),
and a second pair
(p = Ω ∨ rI,P = rI).
The meet of the planes
and the join of the points
give the instantaneous
motion of the pair (r,R).

r = Ω v R
Λ  = P v R

p 
= 

Ω
 v 

rI 
= 

r

R = Ω    r v

 P = rI = R   

Λ 
 =

 p
      

r v

R

r

.

.
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We call the assignment ṙ = 2(Ω × r) a co-vector field. The co-vector field is the
composition of the polarity Π on the metric quadric followed by the null polarity NΩ

with respect to Ω. The latter formulation is the same as the vector field, but the polarities
are applied in opposite order:

r Π−→ rI NΩ−−→ Ω ∨ rI 2−→ 2(Ω ∨ rI) = ṙ

In the case of a non-degenerate metric, one can show a further equivalent form:

ṙ = −2(ΩI ∧ r)I

This has the same form as Ṙ except one uses the polar velocity ΩI.

Remark 166. Historical note. The dual formulation of kinematics can be traced back
to Lindemann ([Lin73]). He worked with non-euclidean metrics. He referred to the ve-
locity state Ω as the rotational linear complex associated to the motion, and ΩI as the
translational linear complex. He observed that under the metric polarity, the infinitesimal
picture involving Ω is matched by another, isomorphic one involving ΩI. In particular
the decomposition of Ω into two infinitesimal rotations around two conjugate axes cor-
responds to two infinitesimal translations around the polar spears, which are necessarily
conjugate wrt ΩI. The axes of Ω, in this formulation, are the common null lines of Ω
and ΩI, underlining the fact that the dual formulation changes none of the kinematic
events, only offers an alternative model for them.

Remark 167. The role of ΩI. We have already seen in (8.2) that ΩI functions as a kind
of “kinematic inverse” of Ω: applying ΩI to the vector field of Ω gives the identity map.
Furthermore, if Ω is used as a generator for a motion via an exponential of the form
e(t+uI)Φ, where Φ is an axis of Ω (as described in Sect. 126), then in the generic case, Φ
is also an axis of ΩI and the same exponential can be used.

Remark 168. The lines ΛR are called the point characteristics of the motion; the lines Λr,
the plane characteristics of the motion. The set of all point (plane) characteristics forms
a quadratic line complex, that is, a 3-dimensional subset of L determined by a quadratic
equation in Plücker coordinates. In particular, they form a so-called tetrahedral line
complex: for every line of the complex, the cross ratio of its four intersections with the
four planes of the fundamental tetrahedra is constant. See [Lin73] for details.

8.7 Guide to the Literature

See Sect. 9.11.



Chapter 9

Rigid body mechanics

This chapter shows how to model rigid body motion using the Clifford algebras Cl3κ
described in the previous chapters. We handle all three cases simultaneously, specializing
to one or the other algebra whenever exceptional situations require.

This chapter picks up where Chapter 8 left off. We will apply the concepts obtained
there to explore the motion of mass particles and bodies built out of such particles. In
Sect. 9.1, we give a homogeneous formulation of statics based on bivectors. We introduce
dynamics with a new approach to newtonian particles (Sect. 9.2), formulated via duality
in bivector space, such that the velocity and momentum state of the particle are “almost”
an axis pair of the global velocity state. Collecting such particles yields rigid bodies
(Sect. 9.3). The inertia tensor of a rigid body is derived as a positive definite quadratic
form on the space of bivectors; a separate Clifford algebra is introduced to model this. In
Sect. 9.5, equations of motion in the force-free case are derived, followed by the treatment
of the presence of external forces. The dual formulation of dynamics is briefly sketched.

Along the way a variety of topics – such as a canonical 4-particle representation of
a rigid body – are handled, and connections – such as the isomorphism of dynamics in
Elln and Rn+1 – are established, which reflect the geometric power of the metric-neutral,
Clifford algebra approach.

The chapter closes with an appendix devoted to comparing the Clifford algebras pre-
sented here to those arising from the so-called conformal model.

Remark 169. In the following, we represent velocity states by Ω, momentum states by
Π, and forces by ∆.

9.1 Statics

Traditional euclidean statics addresses the behavior of rigid bodies near to equilibrium.
It is only concerned with the question, whether a system of forces acting on a body is in
equilibrium or not. Dynamics proper begins once one attempts to follow the motion in
the case the system of forces is not in equilibrium.

108
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Traditional formulation.A single force F acting along a line is represented tradition-
ally as a pair of 3-vectors (V,M), where V = (vx, vy, vz) is the direction vector of the
force, and M = (mx,my,mz) is the moment with respect to the origin (see [Fea07], Ch.
2). The resultant of a system of forces {Fi} is defined to be∑

i

Fi = (
∑
i

Vi,
∑
i

Mi) =: (V,M)

From V and M one can describe the system of forces:

• The forces are in equilibrium ⇐⇒ V = M = 0.
• V = 0 and M 6= 0 ⇐⇒ the resultant force is a force couple.
• 〈V,M〉 = 0 ⇐⇒ the system represents a single force. (Here 〈, 〉 is ordinary euclidean

inner product.)

Homogeneous formulation. If P is a point on the line carrying the force, define
Φ := i(P ) ∨ i(V ). Φ is the weighted bivector representing this line. We call Φ the
homogeneous form of the force. Comparison with the definition of V and M above shows
that:

Φ = mxE01 +myE02 +mzE03 + vzE12 + vyE31 + vxE23

That is, the six Plücker coordinates of the line carrying F are a rearrangement of the
2× 3 coordinates of V and M . The mysterious “moment with respect to the origin” M
is nothing else than the ideal part of the line, which reflects how the line with direction
V is translated away from the origin (see Thm. 111). The resultant of a system of forces
Fi is then

∑
i Φi =: Ξ a bivector, possibly non-simple.

Translated into the language of bivectors, the above list becomes:

• The forces are in equilibrium ⇐⇒ Ξ = 0.
• Ξo = 0 ⇐⇒ the resultant force is a force couple.
• Ξ ∧Ξ = 0 ⇐⇒ the system represents a single force.

Remark 170. The observant reader has perhaps observed that the above description of
euclidean statics is purely projective. If one removes the euclidean metric, then the force-
couple is just another simple force, and one obtains results on force systems that apply in
any metric. See [Whi98], Book V, Chapter 1, “Systems of Forces”. We return to the fact
that the resultant of a set of simple forces is defined projectively rather than metrically
in Chapter 12.

Remark 171. Given a line Φ, the conjugate line Θ of Φ with respect to a non-simple Ξ
is characterized by the property that it is simple, and Ξ = αΦ + βΘ. A null line of the
polarity associated to Ξ is a line for which this is impossible. A force system Ξ can be
decomposed as the sum of a given simple bivector Φ and its conjugate with respect to
the null polarity of Ξ, except when Φ is a null line of Ξ.

Remark 172. Note that the intensity of the bivectors representing the force system play
a role. Hence, we are no longer working purely in the projective space B. However, the
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intensity of the bivectors can be taken into account without giving up the projective
representation. One must simply be careful to work with the correct representative of
the projective points.

9.2 Newtonian particles

The basic object of Newtonian mechanics is a particle P with mass m located at the point
R ∈ R3. Newton’s law asserts that the force F acting on P is: F = mR̈. By Sect. 4.5,
all the tangents spaces for our Cayley-Klein geometries are euclidean. Since derivatives
are vectors in the tangent space of the point R, this definition of a newtonian force is
metric-neutral, and so is the concept of a newtonian particle.

As far as possible we carry out the following discussion in a metric-neutral way. Oc-
casionally we include remarks to connect the discussion to traditional euclidean formula-
tions. We remind the reader of the identity S(Ξ∧Φ) = Ξ∨Φ, which we apply frequently
to simplify the notation.

Define R := i(R) as the 3-vector representing R in Cl3κ. We will assume throughout
this discussion that R is normalized to ‖R‖ = 1. This is possible since we are only
interested in newtonian particles at proper points.

To obtain Newtoniam particles we define further:

Definition 173. The spear of the particle is Λ := R ∨ Ṙ.

Definition 174. The momentum state of the particle is Π := mΛ.

Definition 175. The velocity state of the particle is Γ := ΛI.

Definition 176. The kinetic energy E of the particle is

E :=
m

2
N(Ṙ)2 = −m

2
Λ ·Λ = −1

2
Γ ∨Π (9.1)

Remark 177. N(P) is the norm on points introduced in Def. 104, which takes into account
the possibility that P is ideal.

Remark 178. Fig. 9.1 shows the configuration of the particle’s spear, momentum, and
velocity. Π is a weighted bivector whose weight is proportional to the mass and the
velocity of the particle. Γ is designed so that rotation around Γ results in the particle
moving (translationally) along the spear Λ, in the direction Ṙ. Up to the factor m, Γ is
the polar line of Π with respect to the metric quadric. The definition of kinetic energy
agrees with the traditional one. The second and third equalities for the kinetic energy
can be verified by direct calculations.

Remark 179. The euclidean case. Since we can assume R is normalized, Ṙ is an ideal
point. Γ is also ideal, corresponding to the fact that the particle’s motion is translatory.
It is straightforward to verify that the linear and angular momentum of the particle
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Fig. 9.1 The spear Λ,
momentum Π and ve-
locity Ω of a newtonian
particle of mass m located
at R.

Γ :
 =

 Λ
I Λ := R v R

.

R
.

R
Π := mΛ

appear as Πo and Π∞, resp. Furthermore, a simple calculation shows that Def. 176 can
be expressed in the more familiar form:

E =
m

2
‖Ṙ‖2

9.2.1 Force-free system

For now, we consider only force-free systems. See Sect. 9.7 for extension to external forces.

Theorem 180. If F = 0 then Λ, Π, Γ, and E are conserved quantities.

Proof. F = 0 implies R̈ = 0. Then:

• Λ̇ = (Ṙ ∨ Ṙ + R ∨ R̈) = 0
• Π̇ = mΛ̇ = 0
• Γ̇ = (Λ̇)I = 0

• Ė =
1
2

(Γ̇ ∨Π + Γ ∨ Π̇) = 0.
ut

9.2.2 Particles under the influence of a global velocity state

The key to analyzing rigid body motion is the observation that the constituent particles
making up the body no longer follow their own natural motions, but instead are “gov-
erned by” an isometric motion g with associated global velocity state Ω := ġ(0). Ω, in
turn, determines Ṙ as as described in Sect. 8.4. Fig. 9.2 shows the configuration of the
newtonian particle in this case.

Then Π, Γ, and E depend on Ω as follows:
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Fig. 9.2 For a newtonian
particle located at R
under the influence of a
global velocity state Ω:
the null plane r := Ω ∨R
of R, the derivative Ṙ :=
2rI, the spear Λ := R∨ Ṙ
and particle velocity state
Γ := ΛI. Finally, the
difference Ξ = 2Ω −Π is
a line passing through R. r := Ω v R

Γ :
 =

 Λ
I

Λ := R v R
.

R := 2rI
.

R

Σ := 2Ω - Γ

Π := mΛ

Ṙ = 2(Ω×R) (9.2)
Π = 2m(R ∨ (Ω×R)) (9.3)
Γ = 2(R ∨ (Ω×R))I (9.4)

= 2(R× (Ω×R)) (9.5)

E = −1
2
Γ ∨Π (9.6)

( = −2m(R× (Ω×R)) ∨ (R ∨ (Ω×R)) ) (9.7)
= −Ω ∨Π (9.8)

The step from (9.4) to (9.5) follows from (7.14). The step from (9.6) to (9.8) is equivalent
to the assertion that 2(Ω ∨ Π) = Γ ∨ Π. From Π = mR ∨ Ṙ it is enough to show
2(Ω∨R) = Γ∨R. Since both sides of the equation are planes passing through R, it only
remains to show that the planes have the same polar points. (This approach is designed
to be also valid in the euclidean case.) This is equivalent to

Theorem 181. 2(Ω×R) = Γ×R.

Proof.

Γ×R = 2(R× (Ω×R)×R) (9.9)
= 2(R(Ω×R)R) (9.10)
= (R(ΩR−RΩ)R) (9.11)

= (RΩR2 −R2ΩR) (9.12)
= (−RΩ + ΩR) (9.13)
= 2(Ω×R) (9.14)

Here we have used the fact that R · (Ω ×R) = 0, the definition of ×, the fact that for
proper points R2 = −1, and finally the definition of × a second time. ut

Then the theorem yields immediately two corollaries:



9.2 Newtonian particles 113

Corollary 182. The difference Ξ := 2Ω− Γ is a simple bivector incident with R.

Proof. The theorem implies Ξ×R = 0. But Ξ×R = (Ξ ∨R)I is the polar point of the
plane Ξ ∨R. Hence Ξ×R = 0 implies either

1. Ξ∨R is euclidean ideal, hence (Ξ∨R)I = 0. But Ξ∨R is a plane through R, hence
it cannot be ideal. This leaves the second possibility

2. Ξ ∨R = 0, which can only happen if Ξ is simple and R is incident with it.
ut

Corollary 183. For non-simple Ω, Ξ is the conjugate line of Γ with respect to the null
polarity Ω.

Proof. This follows from the observation that the conjugate of a line Φ with respect to a
non-simple bivector Ω is a line lying in the pencil spanned by Φ and Ω. This condition
is clearly satisfied by both Ξ and Γ. Since there are at most two such lines in the pencil
(Ω is non-simple), the proof is complete. ut

Remark 184. The significance of Ξ is not entirely clear. It can be used to argue that (Γ,Π)
are “almost” an axis pair for Ω. Γ is the metric polar of Π, while Γ is the conjugate of
Ξ with respect to Ω. Π and Ξ, however, are “close”: they belong to the same line pencil
in R. It would be interesting to understand better the geometric significance, if any, of
the difference Π−Ξ.

Remark 185. After completely our treatment of rigid body motion, we return for some
further reflections on Newtonian particles in Sect. 9.3.

9.2.3 Inertia tensor of a particle

Define a real-valued bilinear operator A on pairs of bivectors:

A(Ω,Ξ) := −m
2

((R ∨ 2(Ω×R))I) ∨ (R ∨ 2(Ξ×R)) (9.15)

=
m

2
(R ∨ 2(Ω×R)) · (R ∨ 2(Ξ×R)) (9.16)

where the step from (9.15) to (9.16) can be deduced from Sect. 7.3.1. (9.16) shows that
A is symmetric since · on bivectors is symmetric: Λ ·∆ = ∆ ·Λ. We call A the inertia
tensor of the particle, since E = A(Ω,Ω) = −Ω ∨Π. We’ll construct the inertia tensor
of a rigid body out of the inertia tensors of its particles below. We overload the operator
and write Π = A(Ω) to indicate the polar relationship between Π and Ω.

9.2.3.1 Homogeneous coordinates and the inertia tensor We assume throughout
this discussion that all particles have positions R normalized so that ‖R‖ = 1. On the
other hand, the expression (9.16) for the inertia tensor clearly depends on ‖R‖: if one
uses λR instead of R throughout, then one obtains λ4A(Ω,Ξ) instead of A(Ω,Ξ). The
question naturally arises, are there possible inertia tensors which are only obtainable
by using non-normalized particle positions R? The answer is provided by the following
theorem.
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Theorem 186. The inertia tensor for a particle with mass m and non-normalized po-
sition R is the same as that of the particle with mass ‖R‖4m at normalized position
R
‖R‖

.

Proof. Directly verify the claim by subsituting into (9.15). ut

9.3 Rigid bodies

Begin with a finite set of mass points Pi; for each derive the velocity state Γi, the
momentum state Πi, and the inertia tensor Ai.1 Such a collection of mass points is
called a rigid body when the distance between each pair of points remains constant under
an isometric motion.

Extend the momenta and energy to the collection of particles by summation. Also
define the mass of the rigid body as the sum of the masses.

Π :=
∑

Πi =
∑

Ai(Ω) (9.17a)

E :=
∑

Ei =
∑

Ai(Ω,Ω) (9.17b)

m :=
∑

mi (9.17c)

Note that we can avoid referring to the individual velocity states by virtue of (9.8).
Since for each single particle these quantities are conserved when F = 0, we have:

Theorem 187. Π and E are conserved quantities.

We introduce the inertia tensor A for the body:

Definition 188. A :=
∑

Ai.

Then Π = A(Ω) and E = A(Ω,Ω). Neither formula requires a summation over the
particles: the shape of the rigid body has been encoded into A. We sometimes use the
identity

A(Ω1,Ω2) = −Ω1 ∨A(Ω2) (9.18)

which is a consequence of the fact that the individual inertia tensors for each particle
exhibit this property.

9.3.1 Inertia tensor of rigid body

Suppose the particle Ri = wiE0 + xiE1 + yiE2 + ziE3. Then evaluating A(Ω,Ω) via
(9.15), multiplying out, summing over all particles in the body, and expressing the result
in terms of the canonical basis for P(

∧
R2∗), the matrix for A is:

1 We restrict ourselves to the case of a finite set of mass points, since extending this treatment to
a continuous mass distribution presents no significant technical problems; summations have to be
replaced by integrals.
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A = 2
∑
i

mi


w2
i + κx2

i κxiyi κxizi −wiyi wizi 0
κxiyi w2

i + κy2
i κyizi wixi 0 −wizi

κxizi κyizi w2
i + κz2

i 0 −wixi wiyi
−wiyi wixi 0 x2

i + y2
i −yizi −xizi

wizi 0 −wixi −yizi x2
i + z2

i −xiyi
0 −wizi wiyi −xizi −xiyi y2

i + z2
i

 (9.19)

Remark 189. In this form, the matrix represents a linear map P(
∧

R2∗)→ P(
∧

R2). To
obtain a map P(

∧
R2∗) → P(

∧
R2∗), multiply the result by J. The entries we denote

with {aij}.

Remark 190. Thm. 186 guarantees that we obtain all possible inertia tensors for a rigid
body using particles with normalized positions.

Remark 191. By well known results of quadratic forms, we can choose a coordinate system
in which A is diagonal. Then A reduces to a diagonal matrix with the entries

(M01,M02,M03,M12,M31,M23)

where for example M01 =
∑
mi(w2

i + κx2
i ), M02 =

∑
mi(w2

i + κx2
i ), etc. These entries

are called the moments of inertia of the rigid body. Note that regardless of the metric,
all entries are positive. A negative value would only be possible in the hyperbolic case,
but for a proper hyperbolic point, wi > xi, hence the inertia tensor is a positive definite
form.

Remark 192. For the euclidean case, M01 = M02 = M03 = m, and the lower three entries
are the familiar moments of inertia for the angular velocity, see for example [Arn78],
Ch. 6. For the non-euclidean case, remembering that our points are normalized to unit
length, one sees quickly that

κM01 +M23 = κM02 +M31 = κM03 +M23 = m (9.20)

9.3.1.1 The vector space of inertia tensors The inertia tensors obviously form a
vector space T , since the sum of two inertia tensors is again a valid inertia tensor, as is
a scalar multiple of one. Not all symmetric bilinear forms can occur as inertia tensors, as
(9.20). shows. A glance at (9.19) reveals that there are other constraints on the entries of
the inertia tensor, besides (9.20). For example, the anti-diagonal is zero. Furthermore, the
other off-diagonal entries only span a 6-dimensional space, since, for example, a04 = −a15,
etc. The diagonal entries represent a 4-dimensional space, so dim(T ) = 10, whereas the
space of symmetric bilinear forms is 21. It is an open question, how one can characterize
T in a geometrically meaningful way.

9.3.1.2 The four-particle representation of a rigid body It is possible from the six
values {Mij} to find four positive values (m0,m1,m2,m3) so that m0E0+m1E1+m2E2+
m3E3 is a rigid body with the given inertia tensor. This is a rigid body consisting of points
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Fig. 9.3 Any rigid body
has the same dynamic
behavior as a four-particle
body, whose particles are
positioned at the basis
which diagonalizes the
inertia tensor.

m0 E0

m3 E3
m2 E2

m1 E1

at the vertices of the fundamental tetrahedron, with masses given by (m0,m1,m2,m3),
presumably the simplest and most canonical one can construct. See Fig. 9.3. To find
the required masses mi: For simplicity assume κ = 1. From (9.20), 2

∑
mi(x2

i ) = M12 +

M13−M23. Define m1 :=

√
M12 +M13 −M23

2
, and similarly for the other masses. Verify

that the resulting rigid body yields the inertia tensor with the given moments of inertia
Mij . Proceed similarly for other values of κ.

Remark 193. The euclidean case. For a euclidean-trained imagination it is challenging
to imagine: three of the four particles lie at the ideal plane. This picture, however,
is consistent with the degenerate form of the euclidean inertia tensor. The fact that
M01 = M02 = M03 = mw2 = m can be seen in the figure in that the ideal vertices of
the tetrahedron have vanishing weight relative to the single euclidean vertex E0 (their
squares, after all, are 0). Among themselves, however, these ideal vertices determine the
other three non-degenerate moments of inertia, the moments of inertia of a body rotating
with a fixed point (E0). Once again, one sees remnants of the non-degenerate elliptic inner
product on the ideal plane (Sect. 4.4.4).

9.3.2 A Clifford algebra for the inertia tensor

We define a Clifford algebra CA based on P(
∧2 R4∗) by attaching the positive definite

quadratic form A as the inner product.We denote the pseudoscalar of this alternative
Clifford algebra by IA, and inner product of bivectors by 〈, 〉A. We use the same symbols
to denote bivectors in W ∗ as 1-vectors in CA. Bivectors in W are represented by 5-vectors
in CA. Multiplication by IA swaps 1-vectors and 5-vectors in CA; we use J (lifted to
CA) to convert 5-vectors back to 1-vectors as needed. The following theorem, which we
present without proof, shows how to obtain Π directly from IA in this context:

Theorem 194. Given a rigid body with inertia tensor A and velocity state Ω, the mo-
mentum state Π = A(Ω) = J(ΩIA).
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Conversely, given a momentum state Π, we can manipulate the formula in the theorem
to deduce:

Ω = A−1(Π) = (J(Π))I−1
A

In the sequel we denote the polarity on the inertia tensor by A(Ω) and A−1(Π), leaving
open whether the Clifford algebra approach indicated here is followed.

9.3.3 Center of mass

The reader may have wondered why the center of mass has not been introduced into the
discussion of the inertia tensor. This is due to the fact that the concept is metric-specific.

The process of diagonalizing the inertia tensor introduces a special coordinate system
M closely tied to the mass distribution of the body. The existence of a four-particle
representative for any rigid body (Sect. 9.3.1.2) is one consequence of this connection.
The question of the center of mass is also related to this.

This coordinate system in the euclidean case is determined by the center of mass and
the so-called principle axes: the axes of symmetry of the inertial ellipsoid. The latter can
be thought of as ideal points (directions); the set of four orthonormal points then forms
the fundamental tetrahedron of M. The center of mass is the unique proper (non-ideal)
vertex of this tetrahedron. The name fits since the mass points making up the body can
in no way approach the other three vertices.

In the non-euclidean metrics, this special coordinate system cannot be so characterized.
Particularly in elliptic space, the four corners of the fundamental tetrahedron are all
proper and have equal right to be called the center of mass. The distribution of mass can
just as well be said to be “centered” on one as on the other.

On the other hand, in the hyperbolic case, there is a unique time-like vertex C of the
fundamental tetrahedron, such that C2 < 0. C can then be treated as the center of mass
since clearly the mass distribution, similar to the euclidean case, cannot approach the
other, space-like vertices of the tetrahedron.

9.4 Newtonian particles, revisited

Now that we have derived the inertia tensor for a rigid body in a metric-neutral way, it is
instructive to return to consider the formulation of newtonian particles above (Sect. 9.2).
We can see that in this formulation, particles exhibit properties usually associated to the
ones we have discovered for rigid bodies. The following similarities can be identified:

• E = − 1
2Γ ∨Π: The kinetic energy is the result of a dual pairing between the particle’s

velocity state and its momentum state in bivector space.
• E = −Ω ∨Π: the same energy is obtained by using twice the global velocity state in

place of the particle’s velocity state. This follows from Thm. 181.
• Γ = 1

mΠI: The dual pairing is given by the polarity on the metric quadric, scaled by
1
m . In the euclidean case only, this pairing is degenerate and only goes in one direction:
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from the momentum state to produce the velocity state. In the non-euclidean case,
the two states are true polar partners with respect to this scaled metric quadric.

In contrast, in the traditional approach to newtonian particles, such similiarities can only
be found in a very disguised form, if at all. We consider it an advantage of the approach
presented here, that the constituents out of which rigid bodies are composed behave in
essentially the same way as the rigid bodies themselves. The idea that the inertia tensor
of a particle is provided by the metric quadric is, to our knowledge, a new one.

9.5 The Euler equations for rigid body motion

In the absence of external forces, the motion of a rigid body is completely determined
by its momentary velocity state or momentum state at a given moment. How can one
compute this motion? First one needs to make essential use of the body and space
coordinate systems introduced in Chapter 8.

The conservation laws of the previous section are generally valid only in the space
coordinate system, for example, Π̇s = 0. On the other hand, the inertia tensor will be
constant only with respect to the body coordinate system, so, Πc = A(Ωc). We need a
definition of momentum dual to that of velocity.

Definition 195. The momentum in the body Πc := A(Ωc), and the momentum in space
Πs := gΠcg̃.

9.5.1 Solving for the motion

Since Ωc = g̃ġ, ġ = gΩc, which is a first-order ODE. If we had a way of solving for Ωc,
we could solve for g. If we had a way of solving for Πc, we could apply Theorem 194 to
solve for Ωc. So, how to solve for Πc?

We apply the corollary to the case of force-free motion. Then Π̇s = 0: the momentum
of the rigid body in space is constant. By Theorem 161,

0 = Π̇s = g(Π̇c + 2(Ωc ×Πc))g̃ (9.21)

The only way the RHS can be identically zero is that the expression within the outer
parentheses is also identically zero, implying:

Π̇c = 2Πc ×Ωc (9.22)

= 2Πc ×A−1Πc (9.23)

The latter equation, the momentum form of Euler’s equation of motion, involves only
Πc. Writing Πc =

∑
ij pijeij , and mij := M−1

ij , (9.23) can be written as six separate
equations:
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ṗ01 = 2(m02 −m03)p02p03 + ( m31 −m12)p12p31 (9.24a)
ṗ02 = 2(m03 −m01)p01p03 + ( m12 −m23)p12p23 (9.24b)
ṗ03 = 2(m01 −m02)p01p02 + ( m23 −m31)p23p31 (9.24c)
ṗ12 = 2(m01 − κm31)p01p31 + (κm23 −m02)p02p23 (9.24d)
ṗ31 = 2(m03 − κm23)p03p23 + (κm12 −m01)p01p12 (9.24e)
ṗ23 = 2(m02 − κm12)p02p12 + (κm31 −m03)p03p31 (9.24f)

Remark 196. Note that for each coordinate ˙pij depends on all the other coordinates with
the exception of pkl. For example, ˙p01 involves all the other coordinates except p23. For
the euclidean case κ = 0, one also has m01 = m02 = m03 = m−1, and one sees that the
equations reduce to the familiar euclidean equations for linear and angular motion.

Remark 197. The form of the equations shows that an object with much symmetry will
have less complex motion, since more of the 12 differences mij −mkl with vanish. When
m01 = m02 = m03 and m12 = m31 = m23, for example, the inertia tensor maps L to L,
so simple momentum states give simple velocity states.

One can also express this ODE in terms of the velocity state alone. This yields the
velocity form of Euler’s equation:

Ω̇c = A−1(Π̇c) = 2A−1(Πc ×A−1(Πc))

= 2A−1(A(Ωc)×Ωc)

This equation can also be written as six separate equations. Here let Ω =
∑
ij qijeij

q̇01 = − 2m01((M02 − κM12)q02q12 + (κM31 −M03)q03q31) (9.25a)
q̇02 = − 2m02((M03 − κM23)q03q23 + (κM12 −M01)q01q12) (9.25b)
q̇03 = − 2m03((M01 − κM31)q01q31 + (κM23 −M02)q02q23) (9.25c)
q̇12 = − 2m12((M01 − M02)q01q02 + ( M23 −M31)q23q31) (9.25d)
q̇31 = − 2m23((M03 − M01)q01q03 + ( M12 −M23)q12q23) (9.25e)
q̇23 = − 2m31((M02 − M03)q02q03 + ( M31 −M12)q12q31) (9.25f)

The complete set of equations for the motion g are given by the pair of first order
ODE’s:

ġ = gΩc (9.26)

Ω̇c = 2A−1(A(Ωc)×Ωc) (9.27)

When written out in full, this gives a set of 14 first-order linear ODE’s. The solution
space is 12 dimensions; the extra dimensions corresponds to the normalization gg̃ = 1.
At this point the solution continues as in the traditional approach, using standard ODE
solvers. Our experience is that the cost of evaluating the Equations (9.26) is no more
expensive than traditional methods.
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9.5.2 The Euler top revisited

Equipped with the equations of motion (9.24) and (9.25), we can now return to the case
of the Euler top as discussed in Chapter 1. We want to show that the Euler top appears
in all the spaces under consideration.

What conditions on the velocity Ω and momentum Π are necessary in order that the
body behave as an Euler top, i.e., that the origin E0 remains fixed under the resulting
motion? Assume we have chosen our coordinates so that the origin E0 is a center of
mass of the object. Let {qij} be the coordinates of Ω and {pij} be the coordinates of
Π. E0 remains fixed only if, for all time, Ω is a line passing through it. We have shown
previously that this implies that q01 = q02 = q03 = 0. The relation that Π = A(Ω)
implies then that p23 = p31 = p12 = 0, i.e., Π is a line lying in e0, the polar plane of
E0. Substituting these values into (9.25) reveals that they reduce to the 3-vector cross
product form given in (1.1).

Remark 198. Angular momentum. In the derivation of the Euler top, we defined the
angular momentum of a particle to be Mi := miR × Ṙi while in the discussion of
newtonian particles in this chapter, the momentum took the form miRi ∨ Ṙi. We want
to show that these two definitions are compatible. Using affine coordinates for Ri and
Ṙi yields Πi = (Ṙ; Ri × Ṙi) (here we use the notation of Sect. 7.4.3.2 to represent a
bivector as a pair of 3-vectors). Hence

Π =
∑
i

Πi

=
∑
i

(Ṙ; Ri × Ṙi)

= (0;
∑
i

Ri × Ṙi)

= (0; M)

Here we used the fact that p23 = p31 = p12 = 0 to go from the second to third equation,
and we used the definition of the angular momentum in Chapter 1 to produce the final
equation. Hence, the angular momentum M of the Euler top is related to the total
momentum Π as follows: M is the normal direction of the plane obtained by joining Π
to the fixed point E0 of the body.

9.5.3 Integrals of the motion

By Thm. 187, given an initial momentum bivector Π, two quantities are conserved:

• Energy: E = −Πc ∨Ωc = A(Ωc,Ωc), and
• Momentum: Πs = Π.

Conservation of energy implies Ωc lies on the ellipsoid QE : A(Ωc,Ωc) = E during the
motion. This ellipsoid is a positive definite quadric hypersurface of B. Conservation of
momentum implies that Πc lies on the quadric surface Πc · Πc = Π · Π = L in B.
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Converting to velocity states via A(Ωc) = Πc implies that Ωc lies on the quadric surface
QM : A(Ωc) ·A(Ωc) = L. Thus, Ωc lies on the intersection of QE and QM in B. Hence,
the velocity state in the body is restricted to a 5−2 = 3-dimensional quartic submanifold
of B (as is the momentum state in the body). Hence the polhode, the path of Ωc in B,
lies in this submanifold. We return to this question in the results chapter in Sect. 11.4.4.

In every case, QE is an ellipsoid (positive definite), while the signature of QE depends
on the metric quadric. And, since A is diagonal, the two quadric surfaces are confocal.

Remark 199. Two-dimensional case. In 2D, the two quadric surfaces intersect in a
quartic curve. In light of Sect. 9.6, this agrees with classical results describing an Euler
top, that the angular velocity moves along a closed quartic curve. In the hyperbolic plane,
the surface QM is a hyperboloid of 2 sheets (consistent with the inner product (2, 1, 0)).

9.6 Isomorphism of dynamics in Elln with Rn+1

We are now in a position to remark on a connection of the non-euclidean mechanics
with a well-known part of euclidean dynamics. This connection depends on the fact that
the isometry group of Elln is PSO(n + 1), the isometry group of Rn+1 is SO(n + 1).
PSO(n+ 1) = SO(n+ 1)/±1.

Sect. 9.2.3.1 and, in particular, Thm. 186, established that any rigid body whose par-
ticles have non-normalized positions is equivalent to one which has normalized positions.
So, we can assume that the positions of all particles in the rigid bodies in both Rn+1 and
Elln are normalized.

The two Clifford algebras P(Rn+1,0,0) (for Rn+1) and P(R∗n+1,0,0) (for Elln are iso-
morphic; one is the projectivized version of the other. The equations of motion are then
identical for bodies with the same inertia tensor. It is straightforward to construct a
canonical map from a rigid body BR in Rn+1 with inertia tensor A, to a rigid body BE
in Elln with the same inertia tensor:

BR and the antipodal body −BR (the image of BR under the antipodal map in Rn+1)
have the same inertial tensor. Then BE := P(BR) is a rigid body in Elln with the same
inertia tensor. On the other hand, a rigid body BE can be doubled by the antipodal map
to produce a rigid body BR ⊂ Rn+1 with twice the inertia tensor of BE ; multiplying all
masses by 1

2 produces a rigid body with the same inertia tensor.
Any solution of the equations (9.26) in Spinn+1 gives simultaneously a solution for the

elliptic body BE in PSO(n + 1) and one for BR in SO(n + 1). Any motion of the rigid
body BR induces a motion in the rigid body BE by projectivization.

We use this isomorphism to translate known results about euclidean rigid body motion
with a fixed point into results about elliptic motion. In particular the force-free dynamics
of a rigid body in the elliptic plane are the same as a Euler top in R3. Clifford was the
first to remark on this phenomenon in a short note from 1876, to be found in [Cli82a],
pp. 236-240.



122 9 Rigid body mechanics

9.7 External forces

Until now, everything we have done is in the absence of external forces. It is relatively
straightforward to go back and add them back in to the force-free results. The external
force F acting on the rigid body is the sum of the external forces Fi acting on the
individual mass points. In traditional notation, Fi = mir̈. What is the homogeneous
form for Fi? In analogy to the velocity state of the particle, we define the acceleration
spear of the particle Υi := Ri∨R̈i, and the force state of the particle ∆i := miΥi. Then
the total force ∆ is the sum:

∆ =
∑

∆i

The following theorem will be needed below in the discussion of work (Sect. 9.7.1):

Theorem 200. ∆ = Π̇

Proof. Take the derivative of (9.17a):

Π̇ =
∑

mi
d

dt
(Ri ∨ Ṙi)

=
∑

mi(Ṙi ∨ Ṙi + Ri ∨ R̈i)

=
∑

mi(Ri ∨ R̈i)

= ∆

ut

Theorem 200 applied to (9.21) yields Euler equations for motion with external forces::

∆s = Π̇s = g(Π̇c + 2(Ωc ×Πc))g̃

g̃∆sg = Π̇c + 2(Ωc ×Πc)

∆c = Π̇c + 2(Ωc ×Πc)

Π̇c = ∆c + 2(Πc ×Ωc)

Note that the forces have to be converted from world to body coordinate systems.

9.7.1 Work

As a final example of the projective approach, we discuss the concept of work. Recall
that Π = A(Ω), so Π̇ = A(Ω̇), and the definition of kinetic energy for a rigid body :
E = A(Ω,Ω).

Theorem 201. Ė = −Ω ∨∆
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Proof.

Ė =
d

dt
A(Ω,Ω)

= (A(Ω̇,Ω) + A(Ω, Ω̇))

= A(Ω, Ω̇)

= −Ω ∨A(Ω̇) = −Ω ∨ Π̇

= −Ω ∨∆

where we apply Leibniz rule, the symmetry of A, (9.18) and finally Thm. 200. ut

In words: the rate of change of the kinetic energy is equal to the signed magnitude of
the wedge product of force and velocity. This is noteworthy in that it does not involve
the metric directly.
Ė is sometimes called the power. The work done by the force between time t0 and t

is the defined to be the integral:

w(t) = E(t)− E(t0) =
∫ t

t0

Ėds

=
∫ t

t0

−Ω ∨∆ds

The integrand depends on the incidence properties of the force and the velocity, as points
in B. If the two elements are in involution, then ∆ ∨Ω = 0 and there is no work done;
the “further away” Ω lies from ∆, (in B!) the greater the power and hence the work
done. The quantity ∆ ∨Ω is usually called the virtual work achieved by the force.

Remark 202. Ball ([Bal00]) introduced terminology for this situation which is widely-
used in the English-speaking literature. He called a bivector representing a force or a
momentum, a wrench; and a bivector representing a velocity, a twist. The bivector qua
bivector, he called a screw. Then, the situation in the previous paragraph is described as
“the virtual work achieved by the wrench ∆ acting upon the twist Ω”.

9.7.2 Example

Imagine an ice skater who moving along the surface of a frozen lake with negligible fric-
tion; the single force is given by gravity. Assuming gravity is in the negative z-direction
acting on the skater located at the origin, then ∆ = ge12 (corresponding to the inter-
section line of the planes x = 0 and y = 0 with weight gravitation constant g). Consider
two possible motions of the skater:

• The motion of the skater is a translation in the x-direction given by an ideal line of
the form Ω = de01, d < 0. ∆ ∧Ω = 0, so no work is required for the skater to skate!
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• The skater spins around a fixed point. Then the velocity state relative to the natural
diagonalized form of the inertia tensor has null ideal part Ω∞ = 0 and the correspond-
ing momentum state Π = A(Ω) has null euclidean part Πo = 0: it’s a momentum
couple: a momentum carried by an ideal line!

• As the skater spins, she stretches her arms out, then pulls her arms close to her body.
This latter movement decreases the entries in the inertia tensor A, increasing the
entries in A−1; since Ω = A−1(Π), her velocity increases proportionally in intensity:
she spins faster.

One can see from this example the advantages of the projective approach: it unifies
calculations, and handles exceptional cases, such as the translations and couples in the
above example, at no extra cost.

9.8 The three metrics on B

The inertia tensor 〈, 〉A can be considered as a third quadratic form on B, in addition to
the Plucker inner product 〈, 〉P and the Killing inner product 〈, 〉K . The interaction of
these three quadrics in B gives rise to most of the phenomena associated to rigid body
motion.

1. 〈, 〉P : 〈Ω,Ω〉P = 0 ⇐⇒ Ω is a line; for two lines Ω and Φ, 〈Ω,Φ〉P = 0 ⇐⇒ the
lines intersect. Furthermore, 〈Ω,Π〉P expresses the kinetic energy of a rigid body with
velocity Ω and momentum Π. Why is this so? In their pure forms, Ω ∈ P(

∧
V∗) and

Π ∈ P(
∧

V) (see Sect. 9.3.1), and E = 〈Ω,Π〉 where 〈, 〉 is the evaluation operator of
a vector and dual vector. However, as explained in Sect. 5.5.1, we carry out operations
in P(

∧
V∗) wherever possible. That is, we work with J(Π) ∈ P(

∧
V∗) instead of with

Π. It is easy to verify that 〈Ω,Π〉 = 〈Ω,J(Π)〉P .
2. 〈, 〉K expresses the metric of the Cayley-Klein space in B; here we have considered

the three cases κ ∈ {−1, 0, 1}. It is conserved by all isometries of the space, and
expresses what a rigid body is.

3. The inertia tensor is the most individualized of the quadratic forms; the inertia ten-
sors form a 10-dimensional vector space, as noted above in Sect. 9.3.1.1. Furthermore,
the polarity it determines, in contrast to the Plücker and Killing forms, does not pre-
serve L. It also determines the form of the Euler equations (9.22), and therefore can
rightfully be held responsible for the complex, unpredictable motion of the Euler top.

See [Ada59], §41, for a related discussion.

9.9 The dual formulation of dynamics

For non-degenerate metrics, one can formulate the results of dynamics also dually. This
formulation is obtained, just as in the case of kinematics Sect. 8.6, by applying the polarity
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on the metric quadric to the complete dynamical configuration. As with kinematics, the
resulting dynamics do not change; what changes is the descriptive framework.

Rather than newtonian point particles, one obtains newtonian plane particles. Since
the velocity Γ and momentum Π of a point particle is described by ΛI and mΛ, resp., the
velocity Γ̂ and momentum Π̂ of the polar plane particle will be given by ΛI2 and mΛI,

resp. These are easily seen to be κ
1
m

Π and mΓ (and one also sees why in a degenerate

metric the process doesn’t work). That is, the same weighted lines which represented the
velocity and momentum of the point particle will in the dual formulation represent the
momentum and velocity, resp., of the associated plane particle, with intensities depending
on the mass m.

A rigid body consisting of particles will then be replaced by a rigid body consisting
of the polar planes. If the midpoint of the body is E0, then the “mid-plane” of the dual
body is e0. Using simple principles of projective geometry one can show that the concepts
of “inside” and “outside” are reversed for such pairs of bodies. Consult Chapter 10 for
an introduction to this line of reasoning; Fig. 10.2 shows how a 6-point body and its dual
(polar) body appear.

Remark 203. Polar momenta. The figures in Chapter 11 make clear that the polar
momentum m⊥ (a point in 2D and a line in 3D) play important roles in the the resulting
forms of motion, even when the momentum is carried – as spear – completely by the
original momentum line. For example, the center of mass of a symmetric rigid body in
the hyperbolic plane under the influence of an improper momentum line rotates in a
circle around m⊥ (see Fig. 11.2). On the other hand, the center of mass of the polar
body is an improper line, the polar line of the standard center of mass. This polar center
of mass moves then in a “circle” around the momentum line m (as elements of the dual
hyperbolic plane).

Remark 204. Quality of a dual force. Dynamic concepts such as mass, force, and
momentum, in contrast to purely kinematical concepts, are unthinkable without an as-
sociated bodily experience. In euclidean space a simple force reveals itself as a weighted
spear, and its relationship to the experiencing human being is characterized by its point-
wise nature; such a force acting on a human being is perceived as a more-or-less idealized
point of pressure. In the dual formulation, possible in non-euclidean space, the same force
may also appear as an axis; such a force naturally doesn’t act on point-wise bodies, as a
spear does, but on plane-wise bodies.

9.10 Comparison to traditional approach

The projective Clifford algebra approach outlined here exhibits several advantages over
other approaches to rigid body motion. Considering to begin with just the euclidean case,
the representation of kinematic and dynamic states as bivectors rather than as pairs of
ordinary 3-vectors (linear and angular velocity/momentum/etc.) provides a framework
free of the special cases which characterize the split approach (for example, translations



126 9 Rigid body mechanics

are rotations around an ideal line, a force couple is a single force carried by an ideal line,
etc.). The Clifford algebra product avoids cumbersome matrix formulations and, as seen
in Thm. 161, yields formulations which are valid for points, lines, and planes uniformly.
The inertia tensor of a rigid body can be represented as a separate (positive definite)
Clifford algebra defined on the space of bivectors. The treatment of Newtonian particles
reveals an underlying velocity-momentum polarity in bivector space analogous to that of
rigid bodies, an aspect which to our knowledge has not been discussed in the literature.
Finally, very little extra work is required in the Clifford algebra approach, to estab-
lish metric-neutral results, valid for euclidean and non-euclidean rigid body mechanics.
The non-euclidean results can then be directly polarized to yield a dual formulation of
dynamics.

9.11 Guide to the literature

The treatment of rigid body motion in this chapter owes much to the spirit of [Arn78],
Appendix 2. This school of thought, which has a wide literature (see also [Rat82] and
[MR98]), defines a rigid body abstractly as a left-invariant metric on a Lie algebra. In our
case, this is provided by the inertia tensor of the object, but the theory can be developed
with reference to this more abstract formulation.

The fact that rigid body dynamics can be handled so elegantly using the algebras Cl3κ
is not an accident. In many respects, Clifford algebras can be understood as a modern
fruit on a mathematical tree whose roots reach back to the 19th century investigations of
Chasles, Möbius [Möb37], Plücker [Plu68], Klein [Kle27], and others into the mathemati-
cal formulation of rigid body dynamics. The impetus for the development of line geometry
was given exactly by euclidean statics, see [Möb37], where the discovery of the linear line
complex was reported. Consequently, the first mathematically sound formulation of rigid
body motion using line geometry was achieved by Klein [Kle71].

Study himself worked mostly in kinematics rather than mechanics, despite the name
of [Stu03]. His approach however was applied to mechanics in [vM24] and [Bla42]. The
former was hampered by the awkward matrix notation required for stating transformation
laws. These, on the other hand, are “built in” to the Clifford algebra approach and
simplify the approach considerably. [Bla42] concentrated on the kinematics and rigid
body motion in elliptic space.

The modern legacy of this work is varied. Some modern literature in rigid body me-
chanics, such as [Fea07], use spatial vectors to model rigid body motion; these are 6D
vectors equivalent to our bivectors, but developed within a linear algebra framework
reminiscent of [vM24]. This literature can also be seen as continuation of the work of
Ball [Bal00], which has continued to have influence in the English-speaking literature,
particularly in the area of kinematics and robotics.

Much contemporary work which applies Clifford algebra methods to physics and en-
gineering uses the conformal model of Clifford algebra ([DL03], [Per09], [Hes10]) rather
than the homogeneous model presented here. A euclidean extract of this thesis appears
in [Gun11].
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Non-euclidean literature. The extension of these euclidean results to non-euclidean
spaces was first foreseen by Klein and Clifford independently. Klein’s work led him to
the insight that many of the principles of euclidean rigid body mechanics were in fact
projective ones, and surmised that the same approach would also yield a theory for non-
euclidean mechanics, when combined with the Cayley-Klein metric construction. This
research was carried out at the end of the 19th century and beginning of the 20th in
the work of Lindemann [Lin73], Clifford [Cli82b], Heath [Hea84], de Francesco [dF02],
and others. Clifford, Heath, and Lindemann concentrated on the elliptic case; while de
Francesco was the first to deal explicitly with rigid body motion in hyperbolic space.
Explicit solutions of (9.25) were first provided by Heath in [Hea84] for elliptic space
by the use of theta functions of two variables. These were later corrected and extended
to hyperbolic space by de Francesco ([dF02]. [Bal00] contains a supplement devoted to
elliptic rigid body motion based on his screw theory approach.

It is typical of the close connections of Clifford algebras with research into rigid body
mechanics that Clifford’s first research into the algebras which bear his name were done
in the context of rigid body motion in elliptic space.



Chapter 10

Dual euclidean geometry

In Sect. 4.5 the choice of the three Cayley-Klein geometries featured in this research was
discussed. On the other hand, an impartial observation of the methods and results which
have been developed in the preceding chapters cannot overlook the ubiquitous role played
by the projective principle of duality. This is particularly clear and unavoidable when one
considers the non-degenerate metrics. The dual formulation of kinematics, (Sect. 8.6),
or the fully equivalent roles of velocity and momentum in the formulation of dynamics,
point to its importance.

Only in the euclidean case is this symmetry disturbed due to the degeneracy of the
metric polarity, and the principle of duality appears to be lamed. For example, the dual
formulation of kinematics is not valid here. One can however ask whether there is a
larger context in which this euclidean exception nonetheless finds a dual partner. Recall
that dualizing a Clifford algebra means to attach the same inner product to the dual
Grassmann algebra, or equivalently, switching Q and Q∗. Furthermore recall (Thm. 25)
that dualization of a non-degenerate algebra does not yield a new metric space, since Q
and Q∗ are equivalent, but dualizing a degenerate one does.

This leads us to introduce a fourth Clifford algebra to our standard trio. Consider
Fig. 10.1. The three Cayley-Klein geometries studied til now correspond to the values
-1, 0, and 1 of κ on the circle. Reflection in the horizontal line represents dualizing the
corresponding Clifford algebra. Algebraically, this corresponds to inverting κ. As shown
in Sect. 3.2, -1 and 1 are fixed points under dualization: the metric spaces which arise
can be identified with the original metric spaces. However, 0 is mapped to ∞; euclidean
geometry is mapped to dual euclidean geometry.

Considered geometrically, the limiting process which gave rise to euclidean space,
described in Remark 45, can be pictured as expanding an oval quadric until it flattens
out to a plane; the dual process, denoted here by ∞, goes in the other direction and
shrinks the oval quadric to a point. Thus, the quadric Q of dual euclidean space is a
single point; Q∗ consists of the plane bundle in this point, all planes passing through
this point. The three states (plane bundle in point, oval quadric, point field in plane) are
shown in Fig. 7.7, where they arise in the process of continuously interpolating a polarity.

Thus, the addition of dual euclidean geometry to the three other geometries results
in a mathematically self-dual configuration. Extending the circle of geometries from 3

128
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Fig. 10.1 The three
Cayley-Klein geometries
correspond to the values
-1, 0, and 1 of κ. Du-
alization of the Clifford
algebra Clnκ is equivalent
to inverting κ. -1 and 1
are fixed points, while
euclidean geometry is
mapped to dual euclidean
geometry, and vice-versa.
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to 4 means at the same time loosening the condition which leads to the restriction to
these 3 (see Sect. 4.5). This condition is based on the notion of a manifold as a point set,
an intrinsically non-self-dual concept. When one broadens this concept to allow spaces
composed of planes, also, then one is led to include dual euclidean geometry as well as
the other three. Elaboration of this idea lies outside the scope of the current work.

The rest of this chapter provides an introduction to dual euclidean geometry as a step
towards a deeper understanding of how these four geometries form an organic whole, and
closes with some references to current research into possible scientific applications of this
unfamiliar geometry.

10.1 Introduction

The Clifford algebra for dual euclidean geometry is P(Rn,0,1), which is naturally iso-
morphic as algebra to P(R∗n,0,1). We also denote this algebra as Cln∞. The difference lies
in the geometric interpretation of 1-vectors: as points or as hyperplanes. All the results
obtained up til now for the euclidean plane and for euclidean space apply without excep-
tion to the dual euclidean plane and dual euclidean space, once they have been dualized.
Space limitations make it impossible to make a detailed study. However, it is instructive
to consider a few simple examples from these results in the areas of geometry, kinematics,
and dynamics to provide a taste of what sort of geometry dual euclidean geometry is.
Since mathematically-formally there is nothing new, we concentrate on noting the ways
in which the geometry presents itself differently to human perception.

Write the metric space associated to P(Rn,0,1) as Ên. Consider the dual euclidean
plane and its Clifford algebra P(R2,0,1). Just like the euclidean plane E2 has an ideal
line represented by e0, Ê2 has an ideal point e0. Furthermore, in this ideal point there
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is a elliptic metric on the ideal lines, which is in perspective to the elliptic metric on the
ideal points of the ideal line of the euclidean plane. This means that the notion of angle
measured in this ideal line pencil agrees with the angle measurement between euclidean
lines in E2.

In order to compare these two metric geometries within the same plane, we assume
the coordinates on W and W ∗ described in the previous chapters. Then we define an
algebra isomorphism P : P(

∧
V) ↔ P(

∧
V∗) by its action on the basis 1-vectors by

P (ei) = ei and extend by linearity. Using P , any configuration C in the euclidean plane
can be interpreted as a configuration Ĉ, and vice-versa.

10.2 Example: hexagon and hexalateral

Fig. 10.2 shows a euclidean hexagon H and its polar counterpart Ĥ, a polar-euclidean
hexalateral. The small star-form in the middle represents the ideal point e0. The 6 vertices
of H correspond under P to the 6 bold lines forming Ĥ; the six boundary lines of H
map to the 6 corners of Ĥ. The edges, as point sets, are line segments. The dual of a line
segment (all the points between two given points on a line) is a fan: all the lines through
a point between two given lines of the point. These 6 fans appear at the corners of the
Ĥ.

Inside and outside. The interior of a euclidean polygon is the set of points which are
separated from the ideal line by the edges of the polygon. Similarly, the interior of the
polar polygon is the set of lines which are separated from the ideal point by the fans of
the polar polygon. The dual line E0 = P (e0), the image of the ideal line of the euclidean
plane, is clearly such a line; one can reach all other such lines by moving this line, as long
as one is careful not to cross through one of the fans of the polar polygon. Hence, the
interior of a polar polygon is a domain of lines that encloses the boundary of the polar
polygon from outside (seen euclideanly). The interior of a euclidean domain is sometimes
called a kernel ; that of a polar-euclidean domain, a hull, to reflect this radically different
quality it presents to the human perception.

The pattern of dots in the interior of H maps to the pattern of lines in the interior of
Ĥ. The asymmetry of the way these geometries present themselves to human experience
is clearly brought out by comparing these two patterns. The crossing points of the lines
in Ĥ correspond to joining lines of the points in Ĥ; the former are given to see while the
latter must be thought.

The right-hand image shows the result of applying the “same” translation in each of
the spaces. Here, same means that if T is the translation in E2, then PTP−1 is the
translation of Ê2

10.2.1 Metric-neutralaspects

The duality between hexagon and hexalateral is not yet a metric one; the relation is
based purely on projective principles. Only the application of a translation to both fig-
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Fig. 10.2 A view of a euclidean hexagon and a polar-euclidean hexalateral. The right image shows
the result of a translation applied in both spaces.

ures introduces a metric element. Consequently, the left-hand side of Fig. 10.2 can be
considered also to apply as well to duality in non-euclidean geometries. In particular, if
one considers the hexagon as representing a rigid body, then the hexalateral represents
the dual rigid body (see Sect. 9.9), composed – in the plane – of mass lines instead of
mass points. Then the center of mass of this particular dual rigid body is the polar line
(in the particular metric being used) of the point-wise center of mass. The fact that inner
and outer are reversed gives some inkling that dual dynamics presents challenges to the
ordinary consciousness of space.

10.3 Euclidean and dual euclidean measurement

Clearly, the metric relations of points in the one geometry is mirrored by the metric
relations of lines in the other, and vice-versa. That means that distances of points in
dual euclidean geometry are calculated as angles are calculated in euclidean geometry,
and distances of lines in dual euclidean geometry correspond to the distances of points
in euclidean geometry.

To avoid confusion with terminology, the separation of two points in dual euclidean
geometry is called the shift between the two points; the separation of two lines in dual
euclidean geometry is called the turn between the two lines. Note that the shift, like eu-
clidean angle, takes values in [0, 2Π); while the turn, like euclidean distance, can become
unboundedly large. The latter occurs when one of the lines approaches the ideal point.
Two points are parallel when they lie on the same line through the ideal point. Two
points are perpendicular when their joining lines to the ideal point meet at right angles.

We close our discussion of dual euclidean geometry by dualizing one euclidean concept,
chosen from among many possible candidates.
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10.3.1 Dual gravity

Objects in the neighborhood of the earth are attracted towards the earth according to
Newton’s law of gravitation. The force of attraction is carried by the line Σg joining the
center of mass of the object and that of the earth (which can be considered to be the
origin E0), and is proportional to the mass of each. If such an object is dropped from
a position close to the surface of the earth, its center will move along the line Σg with
essentially constant acceleration.

Dualize this situation. We have to consider both the object and the earth as being
composed of planes which envelop their surfaces. The center plane of this dual earth can
be considered to be the “origin plane” E0. The center of the object is a plane close to
the surface of the earth (which consists of tangent planes to this surface). The force of
dual gravity will then be carried by a line Σd formed by the intersection line of the two
center planes. Viewed with euclidean lenses, this will be an ideal line (since E0 is the
euclidean ideal plane). If such an object is dropped, its center (plane) will rotate around
Σd with essentially constant acceleration. Since Σd is euclidean ideal, the rotation will
appear as a translation perpendicular to the normal direction of the plane, and (viewed
euclideanly) away from the surface of the earth, towards the center plane E0 of the dual
earth. The analogous 2D situation is illustrated in Fig. 10.3.

M

P
Gravity

g

Levity

m

G

p

Fig. 10.3 The figure on the left illustrates the force of gravity acting on a point P along the
line G towards the center M of a planet represented by a circle of points. On the right, the dual
force acting on a line p around the intersection point g towards the center line m of a dual planet
represented by a circle of lines. The star point represents the ideal point of the dual plane. In both
cases the direction of the force is away from the ideal element.
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Such is the phenomenology of dual gravity: planes moving away from the surface
of the earth. Searching for a single word to express its nature, one is hard put to do
better than levity. Whether such a force has a reality that expresses itself in the physical
world is a second question. Certainly the success of predictive theories in the history of
science teaches us that the chances of detecting something are greatly improved when
one has first recognized it conceptually. The present work is limited to this conceptual
“ground-breaking” which must precede any successful cultivation.

10.4 A circle of metric geometries

The focus of this work has been on the four discrete values κ ∈ {−1, 0, 1,∞} in Fig. 10.1.
However, for all other values of κ there exists a non-degenerate Cayley-Klein geome-
try with that “curvature”. We took advantage of the existence of such non-degenerate
geometries in the limiting processes which led to euclidean and dual euclidean geome-
try in Sect. 3.2.1. With this expanded view, the object of study is a continuous family
of geometries (and associated Clifford algebras). Without dual euclidean geometry, this
family is parametrized by R; with the addition of dual euclidean geometry κ = ∞ it
is parametrized by S1, and hence is the 1-point compactification of R, and has conse-
quently the nice properties associated to compact objects. It is furthermore closed under
dualization, which, in light of the importance of projective geometry in the foregoing
exposition, is a further advantage of including dual euclidean geometry. The following
literature guide shows that there is also a growing body of research supporting the inclu-
sion of dual euclidean geometry within the standard mathematical toolkit of the natural
scientist.

Since Riemann, the geometry of the physical universe has been accepted as an object of
empirical research. Cosmologists typically model the universe as a general Riemannian
manifold, with a variable curvature at each point. To first order, the above “circle”
of constant-curvature geometries provide an approximation to the overall shape of the
universe. The qualitative differences exhibited by this family is a valuable first step to
understanding more complicated curved spaces. The Clifford algebras associated to this
family provide a multi-purpose tool for exploring an d comparing geometry, kinematics,
and dynamics in these spaces.

10.5 Guide to the Literature

Remark 205. Terminology alert. There is not yet a consistent terminology in the liter-
ature. What we call dual euclidean geometry is also known as polar euclidean geometry;
its 3-dimensional version is also known as counter-space.

[Kow09], appendix to Ch. 6, contains a good introduction to this theme. Of particular
interest is his discussion of areas of scientific research where dual euclidean geometry
appears to provide promising advantages over euclidean geometry. For example, phe-
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nomena of plant growth such as bud development, which proceeds around and out of an
ideal point within; or, the central role of planar surfaces (leaves, flower petals) in plant
morphology. A detailed account of the latter theme may be found in [AW80]; [Ada34] is
a mathematical prequel by the same author that explores the vistas opened by projective
geometry for the understanding of the human and natural worlds, and provides valuable
background material for anyone interested in this theme.

See [Con08], pp. 71ff., for related discussions regarding the role of dual euclidean
geometry in mechanics. [Tho09] represents an ambitious program to apply this concept
to fundamental themes of physics such as gravity, light, electricity and magnetism, and
more.



Chapter 11

Results

The results of Chapter 9 have been implemented in software. This chapter presents results
based on this software, allowing a firstf look at the phenomenology of rigid body motion
in elliptic and hyperbolic space. The chapter begins with an account of rigid body motion
in the plane, since this context allows certain characteristic features to be identified most
easily, before moving on to the three-dimensional case.

11.1 Comparison to Poinsot description of the Euler top

Recall the discussion of the Euler top in Chapter 1, in particular the discussion of the
Poinsot description of the motion. The visualizations presented here also display the
polhode (Sect. 9.5.3). The polhode in this case is the path of a bivector in B. Representing
a general bivector in RP 3 presents several challenges. As a first reduction, we use the
ambient metric to represent a bivector via an axis pair (which is usually unique, see
Sect. 7.7; resolving the non-unique case has to separately handled). Thus one obtains
two paths in L, representing these two axes. We currently investigate only one of these,
which includes the proper axis if one exists. Each of these paths corresponds to a ruled
surface in RP 3. We sample the path in order to obtain an optimal representation.

There are some features of the SO(3) Euler top which do not appear in our treatment
of Cayley-Klein geometries. The inertia ellipsoid can be defined as the set of velocities
that, for a given momentum and a given rigid body, preserve a given kinetic energy.
This set is given by the level sets of the quadratic form A−1 in B. We have not found a
simple way to visualize this in RP 3. The herpolhode is contained in the invariant plane,
which is a hyperplane of B. As noted in Sect. 7.2.1.3, such a hyperplane corresponds to
a linear complex. The same analysis that Poinsot applied in the SO(3) case regarding
the interaction of the inertia ellipsoid and the invariant plane can also be applied here
to show that the inertia ellipsoid rolls along the invariant plane in B, tracing out the
polhode and the herpolhode on the two surfaces. We have not visualized these aspects,
although there are no technical difficulties in visualizing the herpolhode in the same way
as the polhode (see details below).

135
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The current research does not provide a full Poinsot description for the rigid body
motion studied here. Such a project would, like the Poinsot analysis described above,
base itself on the moments of inertia and therefore have to be based in B, but at the
same time translate the results obtained back into the 3D Cayley-Klein space. Due to
the lack of such a theoretical understanding, the results presented here are mainly visual
evidence accompanied by heuristic reasoning and conjectures. They will have served their
purpose if they help to inspire interest in the subject which leads to a mathematical
understanding.

11.2 Simulation Software

As noted in the previous chapter, the equations of motion have explicit solutions involving
theta functions of two variables. The simulation does not use these exact solutions.

In the course of writing this thesis, two separate software simulations were written.
First, non-interactive Mathematica packages and notebooks were developed for assistance
in verifying all the calculations presented in the theoretic part. This code is focused on
the 2- and 3-dimensional cases handled in the thesis. It is noteworthy that the code not
only verified results but in many cases suggested new ones. However, since the code itself
offers no innovative features, we do not discuss it further here.

This chapter focuses on the interactive software developed for visualizing the simula-
tion results. We first give a short description of the software for the three-dimensional
case. The two-dimensional version is essentially the restriction of the three-dimensional
software to the z = 0 plane; its special features are defined separately below.

11.2.1 Specification of parameters

The software is designed to allow full control over parameters identified in the theoretical
part of this work, for force-free rigid body motion. This includes:

1. The inertia tensor of the body. This is specified by giving the homogeneous
coordinates (x, y, z, w) of a proper point. Then using the 4-particle representa-
tion discussed in Sect. 9.3.1.2, the rigid body consists of the four mass points
(xE1, yE2, zE3, wE0). The points must be proper points for the respective geome-
tries; w is adjusted if necessary to bring it within range. The point (x, y, z, w) is
normalized to have norm 1; any desired scaling can be interpreted as a mass, which
is handled separately with the parameter m. The inertia tensor of the resulting body
is proportional to the diagonal matrix

A = m(w2 + κx2, w2 + κy2, w2 + κz2, x2 + y2, x2 + z2, y2 + z2)

(Sect. 9.3.1). m, the mass, is a separate parameter controlled by a slider. Changing m
speeds up or slows down the motion, but otherwise has no effect. Every valid inertia
tensor can be created in this way (up to a rigid motion).
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2. The momentum in space. A momentum line Π is specified by a distance d ∈ [0,∞]
from the origin, and an 3D orientation, interactively entered using a virtual trackball.
There is an additional real parameter α ∈ [0, 1]. The actual momentum bivector used
is then Ξ = (1 − α)Π + αΠ⊥. α splits the momentum between Π and its polar
line Π⊥. The instantaneous velocity Ω is calculated as Ω = A−1Π and is likewise a
non-necessarily simple bivector.

Remark 206. The momentum bivector Ξ plus the inertia tensor A fully determine the
evolution of the body under Euler’s equations (9.26).

11.2.2 3D Visualization

The visualization is implemented using jReality ([jr06], [WGH+09]), a metric-neutral
3D scene graph. jReality offers seamless support for visualization in all three geometries
featuring the “insider’s” view of these spaces. For a detailed description of the metric-
neutral design and implementation issues involved, including a discussion of the insider’s
view, see [Gun10].

11.2.2.1 Visualization of bivectors Bivectors play a large role in this simulation.
A simple bivector can be visualized as the line it represents – this does not depend on
the metric. But for non-simple bivectors there is no convenient projective visualization.
Such bivectors are displayed via an axis pair. This applies to simple bivectors, since the
bivector itself is an axis then. The axis pair is generally unique (Remark 136), but any
pair will do. Currently they are both displayed with the same color and intensity. There
are plans in a future version of the software for color coding to be applied based on the
homogeneous pitch of the bivector. Equal color on each axis would correspond to affine
pitch 1 (Def. 137).

11.2.2.2 Visualization of ideal elements In the hyperbolic case, the ideal sphere
of hyperbolic space is displayed using a semi-transparent textured map sphere, which
allows one to see which parts of the momentum and velocity axes lie inside of hyperbolic
space and which lie outside. This is not a realistic feature, but rather a informational one,
which allows the user also to see “outside” of hyperbolic space, since important elements
in the dynamic simulation may have their home there. See Fig. 11.1. Notice that only
parts of one velocity axis and one momentum axis are within the sphere; the ends of
these axes, and the improper axes, are visible more dimly outside the sphere.

11.2.2.3 Overview of 3D rigid body visualization The user chooses the desired
metric from the 3 possibilities. The user can start and stop the rigid body motion sim-
ulation at any point. The underlying visualization strategy for rigid body motion is to
display the following components:

1. The body is represented as a box (a right-angled hexahedron) centered on E0 with
proportions determined by (x, y, z, w) above. In particular, the 8-particle body with
unit-mass particles located at ±xE1 +±yE2j +±zE3 +wE0 has inertia tensor pro-
portional to the 4-particle one described above. These 8 positions determine the
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Fig. 11.1 The ideal
sphere of hyperbolic
space is displayed as a
semi-transparent texture-
mapped surface, allowing
the user to see which
parts of the configuration
are proper and which are
improper.

displayed box. The displayed size of the box can be scaled by the user, the default
scale factor is .1. In the elliptic case, the choice of E0 is arbitrary, and any of the
four points Ei can serve this function (Sect. 9.3.3); each has a corresponding box
centered on a different Ei. For example, the box around E2 consists of the 8 points
(±x, y,±z,±w) (which are projectively equivalent to (±x,±y,±z, w). To distinguish
the different boxes, to each axial direction is associated a color, so the four boxes
each have 3 colors, 2 of which they share with any other one. Currently only the first
is displayed.

2. Π and Ω. Both are calculated in the body coordinate system but displayed (natu-
rally) in the space coordinate system. This provides a good check of the validity of
the simulation, since the momentum in space is constant. If the displayed momentum
appears to move, there is a problem with the simulation. Ω in general is a non-simple
bivector. Both axes of this bivector are then displayed. Currently the momentum axes
are displayed in purple, and the velocity axes in bright green.

3. The orbit of the center of mass. As noted in Sect. 9.3.3, in elliptic dynamics there
are four centers of mass. But regardless of the metric, the orbit (history of motion)
of each of the points Ei is maintained and the user can choose which of these to
display. In the euclidean case, they are not visible since they lie in the ideal plane;
in the hyperbolic case they lie beyond the ideal sphere (but are nonetheless visible);
only in the elliptic case are they all proper curves in the space.

4. The polhode (optional). A regular sampling of the velocity state Ωc as axis pair is
collected in a list and then displayed. By Sect. 9.5.3, this is a closed curve for n = 2.
One research goal of the software is to help suggest analogous results for the velocity
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state in the body in the 3D case. The polhode is currently displayed as yellow lines
which, for performance reasons, are rendered without shading.

11.2.3 2D Visualization

As indicated above, the 2D simulation and visualization is essentially the 3D one re-
stricted to the plane z = 0. Hence we refers to points here as (x, y, w) triples. Since m
lies in the z = 0 plane also, only three of the six moments of inertia have an influence on
the motion: M01,M02,M12. These can be calculated from (x, y, w) and the metric κ as
follows:

M01 = κy2 + w2

M02 = κx2 + w2

M12 = x2 + y2

In the following, we often refer to (x, y, w) rather than (M01,M02,M12) to identify the
rigid body since the former is a metric-neutral identification, while the latter depends
on the metric. This is useful for comparative studies of the same rigid body in different
metrics. However, an exact analysis of the behavior in each metric is to be sought via
{Mij}, not (x, y, w).

The standard 2D simulation displays the rigid body as a small texture-mapped rect-
angle with the aspect ratio x

w : y
w . The momentum line m = e2 + de0 is a line parallel

to the y-axis e2. Hence, d = 1 corresponds to an ideal hyperbolic momentum line. Since
d = m ∨ E0, d is sometimes called the moment of the momentum with respect to the
origin. The polar point of the momentum M := m⊥ is also displayed and plays an impor-
tant role in the non-euclidean setting. The boundary of the hyperbolic disk is displayed
as a circle.

11.2.3.1 Compact mode In the two-dimensional version, there are optional “com-
pact” display options for elliptic and hyperbolic planes. These compact views have the ad-
vantage that they offer full visibility of all components of the dynamical system, whereas
the quality of the normal planar view (particularly for the elliptic case) is diminished by
the frequent “disappearance” of one or the other moving element.

• Compact mode for the elliptic plane displays the simulation on the surface of S2, using
the standard double-covering S2 → Ell2. It replaces the rectangle representation of
the body with a 3D box centered at the center of the sphere, representing the Euler top
in R3 corresponding to the elliptic body, under the isomorphism defined in Sect. 9.6.
Everything in the elliptic plane, except the rigid body itself, then appears twice in the
compact view.

• Compact mode for the hyperbolic plane uses stereographic projection to map the
hyperbolic plane onto the unit sphere, 1:1 except for the line e0 which is mapped to
the “North pole” of the sphere. The boundary of the hyperbolic plane is mapped to
the equator of the sphere. The momentum line is mapped to a circle.
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See Fig. 11.2.

11.2.3.2 Flat 2D hyperbolic features For the flat model of the hyperbolic plane,
the display has a number of unique features:

• A piece of “hyperbolic graph paper” is included, centered on the x-axis. See Fig. 11.2,
lower right image. This “horizontal” markings on this surface are equidistant curves
with respect to the x-axis; the “vertical” lines are hyperbolically equally-spaced, per-
pendicular lines to x-axis. Hence, the (x, y) position of a point lying on this graph
paper gives its distance from the origin along the x-axis, then the perpendicular dis-
tance up to the point. This is useful in metrically assessing the orbit of a point.

• Related to the previous point, the orbit of the center of mass along this graph paper
(and its virtual extension to the whole disk), is also presented in a euclidean view where
the (x, y) coordinates are interpreted as euclidean coordinates. Hence the euclidean
distances along the horizontal axis and along any vertical line are also hyperbolically
correct; but the true hyperbolic distances between the vertical lines, as one leaves the
x-axis, increase exponentially although in the euclidean picture they remain constant.
See Fig. 11.6

• The momentum line is always positioned in canonical position. That means, when
it is proper, it is the line e2. When it is improper, it is the line e0. To achieve this,
a hyperbolic translation is applied to the whole scene (with the exception of the
boundary and the graph paper described in the previous item).

11.3 2D rigid body mechanics

We now turn to a description of results obtained for planar rigid body motion. We
discuss first bodies with (x, y) rotational symmetry, then turn to asymmetric bodies.
Each of these topics in turn is discussed with regard to different choices of m. The
distinctions are somewhat artificial, since they only apply fully to hyperbolic case. And,
other distinctions arise in the elliptic case which are handled separately. Note that due to
the isomorphism of a rigid body moving in Ell2 to a Euler top in R3 (Sect. 9.6), all the
results in the elliptic plane can be translated to the R3 setting where a mature theory
exists to explain most of the phenomena demonstrated here. A full treatment based on
this translation lies outside the scope of the current work.

11.3.1 General observations

Regardless of the choice of symmetry and position of m, there are some distinctive
features which can be observed, even before the object begins to move. Consider the
three points M, V, and E0, the center of mass. Given initial conditions such that V
lies between M and E0 for the elliptic plane, then V lies on the other side of E0 from
M for the hyperbolic plane, and vice-versa. This follows directly from the fact that
M = m⊥ ≡ m0E0 + κm1E1 + κm2E2.
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Fig. 11.2 A sampling of 2D visualizations of motion of (x-y) rotationally symmetric body in the
three metrics elliptic, hyperbolic, and euclidean. The parameters were (x, y, w) = (1, 1, 2), and
d = 4. The non-euclidean cases include flat and compact views. The lower right picture shows the
hyperbolic graph paper feature discussed in Sect. 11.2.3.2.
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11.3.2 Rotationally symmetric body

By a rotationally symmetric body we mean one with M01 = M02. This is equivalent in
our setup to x = y. For the elliptic case, a body is rotationally symmetric if any two
moments of inertia are the same (but, naturally, with a different axis for each pair). We
leave this to the side since no qualitatively new behavior thereby arises.

11.3.2.1 With far momentum line By far we mean that m is improper in the
hyperbolic metric. Then M is proper.

Fig. 11.2 illustrates the evolution of a symmetric rigid body ((x, y, w) = (1, 1, 2)) under
the action of a momentum line with moment d = 4. The path of the center of mass E0

appears to be, in the non-euclidean case, a circle; and in the euclidean case, a straight
line. That this is in fact the case can be deduced from the Euler equations (9.25). We
show only that the polhode is a circle in all three cases. Set q03 = q31 = q23 = 0 (since
z = 0 in the plane), q12 = 1 (homogeneous coordinates) and M01 = M02 = M (x − y
symmetry of object). Then one obtains:

q̇01 = − 2q02
M

(M − κM12)

q̇02 =
2q01
M

(M − κM12)

q̇12 = 0

This is a vector field that points perpendicular to the line connecting V with E0. Thus,
regardless of the metric, the velocity point moves in a circle around the center of mass
E0. One can then integrate the equation of motion ġ = gΩc to deduce that:

• Euclidean. The body moves on a straight line parallel to m, and rotates around its
center of mass with an angular velocity proportional to d.

• Elliptic. The body moves CCW around a circle which goes away from the momentum
line, and undergoes an additional CCW rotation around its own center with signed
angular velocity proportional to M12 −M01(= M02) (CCW when M12 > M01, CW
when M12 < M01).

• Hyperbolic. The body moves CW around a circle which “heads” towards the mo-
mentum line, and undergoes an additional CCW rotation around its own center with
angular velocity proportional to M12−M01. Since M12 > M01 in the hyperbolic case,
CW rotation is not possible.

11.3.2.2 With near momentum line By near we mean m is proper in the hyperbolic
metric and M is improper: d << 1.0. The most dramatic change from the previous case
occurs naturally for the hyperbolic case. See Fig. 11.3. Center of mass moves along equi-
distant curve to momentum line, and approaches but never arrives at the ideal point of
this line in this direction. This is analogous to the behavior of the euclidean body, which
also moves along an equidistant curve to the momentum line (which is a parallel line to
the momentum line), and also approaches but never meets its ideal point.
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In the other cases, the qualitative motion is the same as for far m. In the euclidean
case, the object moves along the same line, but the linear velocity increases while the
angular velocity is reduced. In the elliptic case, both the center of mass and the velocity
state move along larger circles; the rotation around the center of mass is diminished.
These behaviors can be deduced by elementary considerations arising from the relation
m = A(V); we leave that to the never-tiring reader.

Fig. 11.3 A rotationally symmetric rigid body acted on by a “far” momentum line. Left picture
shows flat view of hyperbolic case. Middle view shows flat elliptic plane, illustrating difficulties
associated to flat view. Right view shows compact view of elliptic plane, here one clearly sees both
path of center of mass and path of velocity are circles.

11.3.2.3 With ideal momentum line For a euclidean ideal momentum line, the
resulting motion is pure rotation; the momentum line is obtained by integrating a force
couple. For a hyperbolic ideal line, the center of mass moves along a horocycle passing
through the ideal point of tangency of m. Fig. 11.4 shows two time values of this motion.
The body never arrives at the ideal point. This behavior has no analog in the other
metrics.

Remark 207. It would be conceivable to create a second kind of “horocyclic” graph paper
for the hyperbolic disk which would demonstrate that this curve is actually a horocycle,
just as the graph paper in Fig. 11.3 demonstrates that the curve is an equidistant curve.

11.3.3 Asymmetric body

Asymmetric means all moments of inertia are different. This is not possible for the
euclidean case, since M01 = M02 = m. This leaves the non-euclidean cases to consider.
We consider a body with (x, y, w) = (.2, 1, 1.2).

11.3.3.1 Far momentum line We begin with the case of a far momentum line with
d = 4. The two non-euclidean cases exhibit a similar behavior in this case. The motion
of the center of mass describes a curve reminiscent of the herpolhode curve, the curve
traced out by the angular velocity vector of an Euler top on the invariant plane.
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Fig. 11.4 A rotationally symmetric rigid body acted on by an ideal momentum line in the hyper-
bolic plane. The center of mass moves along a horocycle which shares a point with the momentum
line, but never arrives at this point.

The body moves within a pair of circles centered on the center of mass. When it
reaches the outer circle, it is oriented so that its long axis points at E0; when it reaches
the inner circle, it has rotated so that its shorter axis points to the center. There are two
frequencies involved: the angular velocity λ1 around the momentum point m⊥, and the
angular velocity λ2 around the center of mass. When these two are commensurate, the
curve is periodic; otherwise it fills the annulus bounded by the two circles.

When m moves further away (closer in), the circles shrink toward (expand around)
m⊥.

Fig. 11.5 An asymmetric rigid body acted on by a “far” momentum line. Left picture shows flat
view of hyperbolic case. Middle view shows flat elliptic plane. Right view shows compact view of
elliptic plane.

11.3.3.2 Near momentum line We begin with the case of a near momentum line
with d = .45. The left image of Fig. 11.6 shows the motion for a hyperbolic body with
(x, y, w) = (.22, 1.0, 1.03). One observes that the body oscillates back and forth along m
while moving in the direction of the ideal point of m to the right. The right image of
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Fig. 11.6 provides the euclidean version of the graph paper (see above, Sect. 11.2.3.2).
Close examination of this curve shows that it is not a pure sine curve, but obviously
periodic. In any case, this oscillatory behavior with respect to a line has no analog in
euclidean or elliptic space. It is a premonition, however, of the screw motion in three
dimensions (Def. 125), as it combines an periodic motion in one direction with a trans-
lational one in the transverse one.

Remark 208. The values (.2, 1.0, 1.03) in the previous example corresponds to very large
hyperbolic body whose inertia tensor is (0.06, 1.013, 1.05). M01 is very small. The oscil-
lation becomes more pronounced, the smaller M01 becomes.

Fig. 11.6 The orbit of an asymmetric rigid body in the hyperbolic plane with (x, y, w) =
(.22, 1.0, 1.03) and d = .45. On the left, the view in the hyperbolic disk showing how the ob-
ject moves from one side of the momentum line to the other. The velocity state curve consists
of improper points (upper right yellow curve). On the right, the “euclidean” version of this path,
redrawn on euclidean graph paper.

Finally, we consider the asymmetric elliptic case with a near momentum line. For
some values of (x, y, w), the behavior is not qualitatively different from far momentum
line. Decreasing d moves the pair of limiting circles away from the point M towards m.
However, it can also happen that there is only one limiting circle; the path of the rigid
body crosses over m instead of remaining bounded away from it. See Fig. 11.7. The
conditions under which this happens is a question requiring more robust mathematical
tools than so far developed here.

11.3.3.3 With ideal momentum line For a hyperbolic ideal momentum line, the
center of mass of an asymmetric body oscillates around a horocycle passing through the
ideal point of tangency of m. Fig. 11.8 shows two time values of this motion. The body
never arrives at the ideal point. This behavior is a combination of the two behaviors
already observed in hyperbolic plane: asymmetric with near momentum line (oscillation
around m), and symmetric with ideal momentum line (approach ideal point of horocycle).

This concludes our investigation of 2D rigid body motion. We have presented examples
of all qualitatively different behaviors that have arisen in our simulations. The basic
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Fig. 11.7 The orbit of a center of mass of an asymmetric rigid body in elliptic space can also
have only one limiting circle. Left picture shows flat view; right view shows compact view.

Fig. 11.8 An asymmetric rigid body with (x, y, w) = (.25, 1.2, 2.0) acted on by a hyperbolic ideal
momentum line. Two views of the same motion; the approach to M is clearly indicated.

vocabulary of behaviors which we have encountered will form the basis of our observations
of the 3D case, which now follows.

11.4 3D rigid body mechanics

The main differences to the initial conditions specifying the motion include the extra
coordinate z in the specification of the body and the fact that the momentum can be an
arbitrary non-simple bivector.

This momentum Π then can be decomposed as the sum of two simple bivectors αΠs+
βΠx where Πs and Πx are normalized, and Πx = Π⊥s . The affine pitch of such a non-
simple bivector is the ratio β : α (Def. 137).
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The greatly enlarged parameter space of initial conditions for 3D rigid solid motion
force this discussion to be less thorough and more anecdotal than the 2D discussion. We
try to bring the attention to a selection characteristic behaviors without being able to
offer a systematic survey of all possible combinations.

Since we restrict attention in this report the the center of mass E0, the w coordinate
plays a special role in these considerations. The other three values (x, y, z) have equivalent
roles to play. The evolution naturally also depends on the position of Π. The situation is
complicated by the fact that the default position of Π is aligned with the box coordinates
and leads to an unstable planar orbit of the center of mass which is not interesting to us
since it is isolated in orbit space.

11.4.1 Fully symmetric body

11.4.1.1 Simple momenta The extra dimension means that there are a range of sym-
metry conditions that give rise to distinctive behavior. We begin again with the study
of spherically symmetric bodies, that is, ones for which x = y = z with arbitrary (but
valid) w. Then M01 = M02 = M03 = k1, and M12 = M31 = M23 = k2. When such a
body is subjected to a simple far momentum Π, it behaves like the 2D symmetric body
above: in the euclidean case it moves along a line; in the non-euclidean it moves in a
circle around Π⊥ whose radius depends on the distance of the initial position from Π⊥,
with an angular velocity depending on k1, while rotating around a parallel axis through
its own center, with an angular velocity depending on k2.

Remark 209. Ideal momentum line. An ideal momentum line leads in the euclidean
case to pure rotation, as before; and to motion along a horocycle in the hyperbolic case.
A near momentum line in the hyperbolic case leads to motion along an equidistant curve.

11.4.1.2 Non-simple momenta We next observe spherically symmetric bodies under
the influence of non-simple momenta. Here the affine pitch (see above) is the distinguish-
ing parameter. A pitch of 0 means that the momentum is carried by the line Πs; a pitch
of ∞, that it is carried by the polar line Πx. Pitches close to 0 will lead to motion close
to circular: helices with very gradual rise; larger values lead to steeper helices. Fig. 11.9
shows three examples of different pitches, one in hyperbolic space and two in elliptic.
Note the path moves on an equidistant surface with respect to Πx; in hyperbolic space
it is an ellipsoid; in elliptic space it is a one-sheeted hyperboloid. Also note that the path
in elliptic space returns and fills in more of this surface unless the two frequencies are
commensurate, in which case it is periodic orbit.

11.4.1.3 Clifford motion In elliptic space, when the affine pitch = 1, the body moves
along a straight line which is right Clifford parallel (Sect. 7.4.1 ) to both Π and Π⊥.
For pitch −1, the motion is along a left Clifford parallel. Besides the trivial case that
Π is simple and passes through the center of mass, this is the only example of linear
motion outside of euclidean space. Clifford motion puts particular strain on the simu-
lation software since bivectors occur which have infinitely many axis pairs, so that the
decomposition into an axis pair is not unique, resulting in visual anomolies that have no
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Fig. 11.9 A spherically symmetric body under the influence of a non-simple momentum. The left
figure is hyperbolic with pitch .003; the middle is elliptic with pitch .03; the right is also elliptic
with ptich .22.

physical significance. For example, the momentum in space may appear to wander, even
though the bivector itself is constant.

We do not discuss non-simple momenta further in this chapter, since the resulting
motions can be better handled by decomposing the motion into two motions, one due to
Πs and one due to Πx, and then recombining the results. This is essentially the strategy
followed above in deducing the helical form of the polhodes in the case of spherically
symmetric bodies.

11.4.2 Radially symmetric body

The next stricter condition on (x, y, z, w) is that at most two values are equal. The most
striking aspect of this kind of rigid body is that, for simple Π, the center of mass moves
along an rotationally-symmetric invariant surface. The size and form of this invariant
surface depends on the relative sizes of the values of (x, y, z, w).

The special case of two pairs of equal values is of interest only in the elliptic case and
leads to an invariant surface close to a circular cone with axis Π⊥. See Fig. 11.10.

Fig. 11.10 A symmetric rigid body with (x, y, z, w) = (1, 2, 1, 2) acted on by a simple far momen-
tum line in elliptic space. Left view is silhouette view; right view shows view from surface towards
“neck”.
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Leaving this special situation to the side, consider a single pair of equal values and
two other unequal values, say x = y and z 6= w. First consider the elliptic case. When w
is largest of the values, then the invariant surface is convex, appearing to be a symmetric
band cut from the outer surface of rotationally symmetric ellipsoid (symmetric means
the top circular boundary is congruent to the bottom one); when w is the smallest value,
the surface appears to be a similarly symmetric band cut from a hyperboloid of one
sheet. The closer w approaches the next largest value, the more the spherical surface
approaches the full sphere; in the other case, the more w approaches the next smaller
value, the more the hyperboloid widens out and fills in the full surface mentioned in the
previous paragraph. See sample pictures in Fig. 11.11.

Fig. 11.11 Upper images: A rotationally symmetric body with (x, y, z, w) = (.7, 1, 1, 1) acted
on by a simple momentum line. Upper left; with a momentum line almost parallel with x-axis;
upper right: with a momentum line far from axial. Lower left: (x, y, z, w) = (.7, 1, 1, .55), with same
momentum as UR. Lower right: hyperbolic with (x, y, z, w) = (1, .6, .6, 1.25), with same (hyperbolic
improper) momentum line as previous.
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11.4.3 Asymmetric body

The final case is that all the values (x, y, z) are different. The resulting orbit of the center
of mass tends then to fill out a volume in 3-space bounded by smooth surfaces. Fig. 11.12
shows a body with x = y symmetry, whose orbit is a surface; then the same body where
the x = y symmetry has been broken. Notice that the orbit of the center of mass thickens
out to fill a volume bounded by two similar hyperboloid-like surface pieces, joined top
and bottom with a convex-appearing bridge surface.

Fig. 11.12 Upper left: orbit of body with x = y symmetry in hyperbolic space; upper right:
same settings except x 6= y. Lower left: another view of UR; Lower right: similar orbit of another
asymmetric body in hyperbolic space.

11.4.4 Polhode

As noted in Sect. 9.5.3, the polhode (the orbit of Ωc ) lies in a 3-dimensional quartic
submanifold in B. And, as indicated above in Sect. 11.2.2.3, the simulation software col-
lects the polhode in an array which can be, optionally, displayed. Samples of this display
technique for a short orbit is shown in Fig. 11.13. Note the distinctive cusp singularities.
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Watching the real-time development of this polhode reveals interesting temporal rhythms
only partly expressed in the still frames shown.

Fig. 11.13 Samples of polhode for rotationally symmetric body (x, y, z, w) = (1, .25, 1, 1.3) in
elliptic space. Figure on right is sampled 6 times more frequently than on left

.

After repeated observations of rotationally symmetric objects in hyperbolic space, the
conjecture arose that the polhode (as a set of lines in RP 3) envelops an egg-shaped surface
centered on the center of mass and aligned with the inertial axes. Due to the rotational
symmetry of the orbit, this egg shape also has rotational symmetry. We attempted to
approximate this surface with an ellipsoid (interactively). Fig. 11.14 shows two views of
the same approximation. The ratio of the axes of the approximating ellipsoid bear no
immediately recognizable relationship to the moments of inertia of the object. It remains
an open question, exactly which surface this is. Is it quadric or quartic, or neither? Here
one requires probably methods for studying intersections of hypersurfaces in B and the
corresponding line set RP 3.

11.5 Conclusion

This concludes the presentation of simulation and visualization results. In the survey
presented here of rigid body motion, we have focused our attention on the varied be-
haviors which can be observed in force-free rigid body motion in non-euclidean space1

As far as we know, these are the first such simulations and first such images that have
been produced of non-euclidean rigid body motion. As noted in the introduction to this
chapter, the corresponding Poinsot theory of motion is lacking. Such a phenomenological
survey is nevertheless a useful research result if it stimulates others to activity towards
such a theory. The visualization strategies presented here have been implemented without
noteworthy difficulties using the metric-neutral scene graph provided by jReality. Among

1 We have left the euclidean case to the side and used it mainly as a control for algorithm correct-
ness.
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Fig. 11.14 A view of a the orbit of Ωc for a rotationally symmetric body in hyperbolic space
with (x, y, z, w) = (1, 1, .5, 1.2). The blue ellipsoid has been determined empirically to be tangent
to all the yellow lines.

the visualization aspects, the theme of bivector visualization is particularly interesting.
Much remains to be done in both the metric and projective setting.
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Conclusion

The goal, stated in the Forward, of modeling rigid body motion in spaces of constant
curvature in dimensions 2 and 3, has been achieved. Based on this theory, simulations
have been developed and images produced for the first time of how rigid bodies move
in these non-euclidean spaces. Along the way to this goal, a series of related innovative
results and tools, ranging from concrete to methodological, in a variety of geometric
domains, have been established and discussed. In this chapter we provide an overview of
these results.

12.1 Clifford algebras for Cayley-Klein geometries

Among other questions, Chapter 1 posed the question, whether it is possible to find
algebraic structures similar to quaternions, for the Cayley-Klein geometries under con-
sideration, and with possibly more powerful features.

We already noted in Remark 101 that Cl21 contains the quaternions as an subalgebra,
and furthermore extends the quaternions by including reflections via the operators a for
1-vectors a.

In fact, we have shown that the real, dual, projectivized Clifford algebras Clnκ for
κ ∈ {−1, 0, 1} provide a faithful representation of the full (direct and indirect) isome-
try groups for the Cayley-Klein hyperbolic, euclidean, and elliptic geometries, resp. In
Chapter 10 we saw that P(Rn,0,1) provides a similar structure for dual euclidean space,
completing a family of four geometries that are closed under dualization. The resulting
representations satisfy properties I-III of Sect. 1.3.1.

We noted in Chapter 4 that similar results can be obtained for the larger family of
pseudo-euclidean geometries using the Clifford algebras P(R∗p,m,1) and P(Rp,m,1). This
class of geometries arose naturally from our definition in Chapter 3 of admissable quadric
surfaces. A detailed treatment of all but the euclidean case, however, lies outside the scope
of the current work.

153
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12.2 Innovations

We also asked in Chapter 1 whether it is possible to generalize the quaternions in such
a way that the resulting structures extend the functionality of the quaternions in other
directions not related to the isometry group theory of the previous section. This study has
established numerous such extensions. Here we give a brief review of the most important
ones:

Geometry. The presence of the full exterior algebra allows the development of a rich
metric geometric toolkit which the quaternion structure only offers in a restricted form.
This representation exhibits a fundamental simplicity missing in linear algebra: the same
entity that represents a geometric object (such as a plane) also represents the geometric
transformation associated to it (in this case, the reflection in the plane). The detailed
analysis of the geometric products in specific grades revealed a full gamut of geometric
operations, both projective and metric. A series of examples were presented to show
how these operations could be applied to familiar themes from metric geometry, such
as orthogonal projection, distance and angle calculations, triangle centers, and more. In
the euclidean case, particular attention was paid to the presence of a non-degenerate
metric in the ideal plane. This fundamental aspect of euclidean geometry was shown to
be faithfully represented in the algebra Cln0 .

Isometries. A further important theme was a thorough analysis of the pin and spin
groups Pinn+κ and Spinn+κ, which took advantage of the fact they consist of proper
versors. For n = 2, the resulting exponential curves eΞPe−Ξ were illustrated and classified
into six classes depending on metric and type of bivector (proper, ideal, improper). For
n = 3, the concept of an axis of a rotor was defined, and led to a detailed algorithm for
computing a logarithm of any rotor. Finally, an account of the continuous interpolation
of the metric polarity was given.

Kinematics. Equipped with these powerful algebraic tools it was straightforward to
produce a compact, metric-neutral representation of kinematics. One innovation was the
decomposition of the vector field of a velocity state into a null polarity determined by the
velocity state bivector, followed by the metric polarity. The derivation of the Lie bracket
followed directly from the Leibniz rule applied to the geometric product form of the rotor
operator g. One other innovation of the treatment was the discussion of dual kinematics,
obtained in the non-euclidean spaces by polarizing the kinematic configuration on the
metric quadric, and illustrating that in these spaces points and planes are equal citizens.

Dynamics. The treatment of dynamics followed standard approaches, such as found in
[Arn78], but proceeded in a metric-neutral fashion, based in the dual, projectivized setting
of the algebras Cl3κ. An innovative formulation of newtonian particles was presented,
which we believe has much more in common with the theory of rigid bodies than existing
treatments. A metric-neutral theory of rigid body motion was developed by building up
rigid bodies out of such particles. Among the innovations presented was the handling of
the inertia tensor as a separate Clifford algebra on the space of bivectors. The discussion
of center of mass raised an important distinction with euclidean dynamics. This led to
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another innovation, the “4-particle form” of the rigid body, a particularly simple canonical
form for a rigid body. Finally, dual dynamics (analogous to the dual kinematics of the
previous paragraph) was sketched out.

Visualization. Motivated by the example of Poinsot’s work on the Euler top, one of the
key visualization challenges addressed in this thesis is to provide 3-dimensional represen-
tations of the six-dimensional Lie groups and Lie algebras at work here. The theory of
axes developed in Chapter 7 provided the key for representing both Lie group elements
(rotors) and Lie algebra elements (bivectors). Further refinements of this approach were
indicated in Chapter 11.

12.3 Advantages of our approach

Having established in the previous section the specific innovations contained in this thesis,
in this section we change to focus to reflect on some methodological characteristics of this
approach.

Advantages of the full algebra. While many of the results mentioned above can be
also achieved within Cln+

κ alone (e. g., everything in [Stu03] belongs in this category),
here the advantage of having the full algebra Cl3κ over the even subalgebra Cl3+κ reveals
itself strongly. To begin with, the rotor operators g operate uniformly on points, lines
and planes. Furthermore, many of the fundamental entities and operations are defined
in terms of points or planes:

• the null polarity: polar plane Ξ ∨P and polar point Ξ ∧ a (Sect. 7.3.1),
• the vector field associated to a bivector (Sect. 8.4), and
• the velocity and momentum of newtonian particles (Sect. 9.2).

Projective elements. The central position of the Cayley-Klein construction in this the-
sis implies naturally that projective geometry plays an important role. Over and above
this necessary significance, we have striven to clearly delineate the role of projective ge-
ometry throughout the exposition. The use of Poincaré duality to implement the join
operator in the Grassmann algebra can be seen as an aspect of these efforts. This depar-
ture from the prevailing metric approach was discussed in Sect. 5.10.

A specific, innovative thread in the investigation has been the role of purely projective
elements within kinematics and dynamics. We mention here a few of the places where
this projective principle reveals itself:

• the null polarity interpretation of the vector field associated to a global velocity state
(Sect. 8.5),

• the condition for equilibrium of a force system (Sect. 9.1), and
• the definition of work (Sect. 9.7.1).

In all these cases, the underlying formula involves some purely projective condition in
B. The first case features the composition of a skew polarity (the null polarity) and a
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symmetric polarity (the metric polarity) to produce the vector field of a global velocity
state. In the second case, the condition is that the set of weighted force bivectors sum
to zero, regardless of metric. Finally, the last case asserts that the rate of change of the
kinetic energy is equal to the wedge product (∨) of the force bivector and the velocity
bivector. This is, again, a non-metric value that depends only on the relative position of
the bivectors in B.

A new light on euclidean geometry. Finally, this research throws a fresh and interest-
ing light on euclidean geometry. By imbedding it in a continuous family of non-euclidean
geometries (as described in Sect. 10.4), one is presented with the phenomena of euclidean
geometry in a new, comparative setting. A certain class of phenomena, wider than com-
monly thought – as indicated in the previous paragraph – are projective and hence shared
by the whole family. Against this projective background, one is confronted by a triad of
qualitatively distinct geometries. On the one side there is hyperbolic geometry, with an
ideal sphere separating it from the improper elements, which form, independently, polar
hyperbolic geometry. On the other hand, elliptic geometry has neither ideal nor improper
elements. In between, euclidean geometry has an ideal plane but no improper elements.
And, in this ideal plane, we focused on the unexpected but crucial presence of an elliptic
metric on ideal points (Sect. 4.4.4) and showed how it is accommodated by the Clifford
algebras we use. Finally, to complete the family of geometries, Chapter 10 introduced
dual euclidean geometry, characterized by an ideal point, along with an elliptic metric
on its lines and planes.

Metric-neutral toolkit for geometric research and development. The main
mathematical structures used to achieve the description of rigid body motion are the
dual, projectivized real Clifford algebras P(R∗n+1,0,0), P(R∗n,1,0), and P(R∗n,0,1) for n = 2
and n = 3. A wide variety of results for these algebras flowed into the earlier chapters
of this thesis, providing the framework in which the solution of the rigid body motion
challenge was possible in a compact, elegant, and metric-neutral fashion. Such a self-
contained, integrated framework for metric geometry, kinematics, and dynamics of the
classical Cayley-Klein geometries has no counterpart that we are aware of in the existing
literature or praxis.
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