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Abstract

Using simulation systems for transport planning has become more popular in
the past two decades. Most of these systems rely on the ”four-step process”.
A more recent approach is to use transport-planning systems based on multi-
agent simulations. MATSim is a framework for building multi-agent-based
simulations for transport systems. Unlike the flow-based models such as
the one used by the software VISUM, multi-agent systems are based on
distinct daily plans for the whole simulated population. These plans are
then executed in a simulated world for all agents in parallel.

One advantage of multi-agent simulations is that it is possible to build a
complex system of traffic interaction by modeling the agent’s behavior with
simple rules. The complex behavior of the system is broken down to the
behavior of simple agents.

By using the computationally inexpensive ”Queue Model”, the MATSim
framework is capable of simulating even large-scale networks and population
groups. The traffic demand of cities, counties or even entire countries can
be simulated. For example, all of traffic in the Berlin-Brandenburg region in
Germany with its seven million agents has been simulated using the MATSim
framework.

Unfortunately, only more or less aggregated data can be used as an out-
put of these simulation runs. Given the enormous amount of data generated
during a simulation run, it is not feasible to examine the unaggregated data.
However, since an aggregated view of the results of the simulation may ob-
scure important details, a more finely granular view would be beneficial.

The aim of this thesis is to enable the researcher to have an unaggregated
view of the simulation. In the first part of this thesis, ways of visualizing the
unaggregated data will be examined. The unaggregated view of the actual
traffic flow promises to be a useful tool when looking for causes of observed
phenomena. The graphics capabilities of computers have continuously in-
creased over the past years. Trying to visualize hundreds of thousands of
agents simultaneously on screen no longer seems far-fetched. A software
architecture will be developed that is capable of displaying these quantities
of agents while being open and expendable enough to allow the researcher
to add any form of visualization him or herself. This architecture will en-
able the researcher to investigate cause-and-effect chains in a multi-agent
simulation by examining the unaggregated data. To achieve this, modern
hardware acceleration of 3-D graphics is extended to accelerate the display
of primarily 2-D traffic data.

The second part of this dissertation will address possible ways to in-
crease the execution speed of traffic simulations by means of modern graph-
ics hardware. Accelerating the execution speed of simulations has already



been tried a few times. This has normally involved incorporating large clus-
ters of computers or using some other sort of expensive supercomputing
hardware. However this is probably not a feasible way to reach a state in
which ordinary engineering offices can use a multi-agent simulation to pre-
view the results of a planned measure. Using modern graphics hardware,
on the other hand, is simple and cheap. All that needs to be acquired is
a e300 graphics card and a regular office PC. It will be shown that it is
possible to achieve a speedup of up to 70 times more than the ”usual” Java
version of mobility simulations by using graphics hardware to calculate the
simulation. This will make high-performance computing affordable even for
small companies. Finally, fast simulation and visualization will be brought
together to create a system capable of displaying a simulation of hundreds
of thousands of agents in real time.
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Zusammenfassung

Der Einsatz simulationsbasierter Systeme für die Verkehrsplanung hat sich
in den letzten beiden Jahrzenten etabliert. Viele der Systeme basieren im
Moment auf dem ”4-Stufen Modell”. Eine neuere Entwicklung ist es, die Si-
mulation auf einer Multi-Agenten-Simulation aufzubauen. MATSim ist ein
solches Framework für die Multi-Agenten-Simulation von Verkehr. Anders
als in Fluss-basierten Modellen, wie z.B. von der Software VISUM genutzt,
wird in der Multi-Agenten-Simulation eine Vielzahl von Agenten mit distink-
ten Tagesplänen erzeugt. Diese Agenten durchlaufen dann in einer physika-
lischen Simulation ihren Tagesablauf.

Multi-Agenten-Simulationen haben den intrinsischen Vorteil, dass das
Zusammenspiel verschiedenster Verhaltensweisen und die daraus resultie-
renden komplexen Systeme mit einfachen Regeln gestaltet werden können.
Das ganze System wird auf das Verhalten einzelner Individuen herunter ge-
brochen.

MATSim eignet sich durch das effizient berechenbare Queue-Modell sehr
gut zur Simulation auch großer Städte oder Regionen. So wird zum Beispiel
die Region Berlin-Brandenburg mit ihren ca. 7 Millionen Einwohnern simu-
liert. Sogar der Verkehr ganzer Länder ist in MATSim modellierbar. Die
enorme Menge an Daten macht es mit herkömmlichen Mitteln allerdings
nicht möglich, diese in einer interaktiven Weise zu untersuchen. Eine feinma-
schige Visualisierung ist aber ein wichtiges Handwerkszeug zur Evaluierung
von Agenten-basierten Simulationen.

Hier setzt die Arbeit dieser Dissertation in zweierlei Weise an. Im ers-
ten Teil der Arbeit wird untersucht, inwieweit es mit modernen Computern
möglich ist, diese großen Mengen an Agenten zu visualisieren. Diese Visua-
lisierung der tatsächlichen Verkehrsflüsse ermöglicht eine bessere Untersu-
chung der Ursachen von beobachteten Phänomenen, wie zum Beispiel der
Stau-Bildung. Für einen Versuch, Hunderttausende von Agenten gleichzei-
tig darzustellen, sind die verwendeten Algorithmen sorgfältig auszuwählen.
Es wird eine Architektur entwickelt und vorgestellt, die in der Lage ist, die
gewünschte Zahl von Agenten zu präsentieren. Sie wird dabei jedoch flexi-
bel genug sein, jegliche Art von Information aus der Simulation mit kleinem
Aufwand zu visualisieren. Die auf dieser Architektur beruhende Visualisie-
rung wird es ermöglichen, verkehrswissenschaftlich interessante Szenarien in
einer neuen Detailgenauigkeit zu untersuchen.

Der zweite Teil der Dissertation beschäftigt sich mit der Frage, inwieweit
man die inzwischen verbreiteten 3D-Grafikkarten nicht nur für die Darstel-
lung, sondern direkt für die Berechnung von Verkehrssimulationen einset-
zen kann. Hier wird der Versuch unternommen, herkömmliche Grafikkarten



zu nutzen, um die Simulation auf interaktive Geschwindigkeit zu beschleu-
nigen. Dabei zeigt sich, dass die Ausführung der Simulations-Schicht auf
das Siebzigfache beschleunigt werden kann. Des Weiteren werden Wege auf-
zeigt, diese neue Simulation nahtlos in das bestehende MATSim Framework
einzubetten. Letztendlich wird die so entstandene Simulation genutzt, um
die interaktive Visualisierung von Vorgängen zu beschleunigen und zu un-
terstützen.

Der Vorteil dieser Herangehensweise liegt auf der Hand. Ein solches Sys-
tem ist von der reinen Simulationsgeschwindigkeit mit Clustern im Wert
mehrerer hunderttausend Euro zu vergleichen. Es ist aber für vergleichsweise
geringe Anschaffungskosten von ca. fünfhundert Euro und vernachlässigbaren
Betriebskosten bereitzustellen. Jedes größere Ingenieurbüro sollte in der La-
ge sein, eine solche Anschaffung zu tätigen. Dies mag –natürlich im Zu-
sammenspiel mit sinnvollen Resultaten der Simulation– der Akzeptanz von
Multi-Agenten-Systemen zuträglich sein.
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Chapter 1

Introduction

Playing the trumpet like Miles Davis did is a rare gift. It takes talent to
reach such spheres of musicianship. Apart from talent, another key to suc-
cess is practice. Practicing to play the trumpet is a difficult but certain way
to attain at least an basic trumpet competence. Practicing an instrument
means interacting with it. One could read a lot of books on trumpet playing
and still not be able to coax more than obscene noises from the instrument.
Practicing implies interaction with a chosen subject. Experiencing the prin-
ciple of cause and effect helps one build a better understanding of or, more
commonly placed, a better “intuition” for the area of interest.

Multi-agent transport simulation and trumpet playing differ in many
ways, but what they do have in common is that practice and experience are
vital tools for understanding and interpreting observed events. Following
the Merriam-Webster online dictionary, “interaction” is defined as “mutual
or reciprocal action or influence”. Fig. 1.1 illustrates this rather elementary
circumstance. If we exchange “System A” with “human user” and “System
B” with “simulation” one sees that, from the user’s perspective, this inter-
action can only take place when some means of inducing actions upon the
simulation and some means of experiencing the results of this actions are
supplied. Therefore, an interactive tool –which is the subject of this thesis–
needs to offer ways of initiating actions and perceiving the resulting changes
in the simulation. The two key issues for interaction are

• the processing user’s input and

• the visualization of the simulation’s output.

But “Real time interaction” offers one more challenge. The term “real
time” does not necessarily mean that one second of the simulated world
equals one second of wall-clock time. Rather, the actual interaction with
the problem domain modeled in the simulation is expected to happen in
“real time”, meaning that the simulation may have to speed up or slow
down the “simulated time” to present the modeled problem in a humanly
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Figure 1.1: Schematic view of an interaction between processes

perceivable time frame. When simulating the impacts of a car accident,
it might be necessary to slow down simulated time to be able to analyse
the events taking place in seconds. When, on the other hand, the purpose
of the simulation is to analyse the consequences of polar glacier melting, a
decent speedup of simulated time versus wall-clock time would probably be
necessary to enable human interaction and gain insight into the process.

The simulated time period for traffic simulation, which is examined in
this thesis, is twenty-four hours. To interact with this period of time, the
simulation should be able to run it in one or two minutes of real time. Thus,
a ratio of simulated time against real time by an order of 103 should be
minimally achieved to maintain expedient interaction.

Three key issues were detected for providing means of real time interac-
tion with the multi-agent simulation of traffic or mobile intelligent particles:

• providing input mechanisms for the user to change (the view of) the
simulation

• visualizing the state of the simulation in a meaningful way

• accelerating the execution of the simulation so that it is presentable
in a humanly perceivable time frame.

The purpose of this thesis is to solve these key issues to provide real
time interactive ways to experience traffic simulations and therefore gain
insights into cause-and-effect chains of large scale traffic behavior by means
of multi-agent simulations.

1.1 Roadmap of this dissertation

This thesis is structured as follows: Chapter 1 will introduce related work.
Other traffic simulation systems and visualization tools will be discussed.

2



The reader will also be given an overview of how and in what domains GPU
(graphics processor unit)-based calculations have been successfully used to
decrease overall calculation time.

In Chapter 2 the generic model of the queue simulation will be discussed
and algorithms which implement a queue-model-based simulation will be
given. In addition, the benefits and drawbacks of using the queue model
will be considered.

Chapter 3 will introduce the CUDA SDK, which is the SDK used in
this thesis to harvest the computational power of the GPU. How to trans-
late given generic algorithms to algorithms that make the best use of the
infrastructure of the GPU will be explained. Furthermore, useful data struc-
tures for storing necessary data for the agents as well as the network will
be constructed. These data structures are needed to feed information into
the simulation and to update the state of the simulation. Another data
structure for ”observing” the characteristics of a simulation run will be in-
troduced. The output of events at critical or interesting points of action
will be implemented and discussed. Finally, the possibility of coupling the
CUDA simulation to the existing Java code of MATSim will be investigated
in Chapter 4.

Chapter 5 will treat the topics of visualization and interaction with MAT-
Sim. Therefore some information on the architectural structure of the MAT-
Sim framework will be provided. This will be followed by a discussion of
client-server architectures with respect to interactive visualization. Then
the implementation of the OTFVis (on the fly visualization) tool for MAT-
Sim simulation runs will be discussed. Finally, the combination of OTFVis
and GPU simulation will be presented in Chapter 6.

Chapter 7 concludes this thesis and will contain a summary of the results
achieved.

1.2 Traffic simulation

Using simulation techniques in transport planning has become increasingly
popular. Many transport simulation systems have already been imple-
mented. The more traditional approach of the four-step process as described
in [92, 78] has certain drawbacks, but has been popular for many years, as
it is rather easy to apply and yields mathematically provable results. Al-
though its strong mathematical foundation is appealing, its shortcomings
are not. As Michael Balmer [13] accurately stated, ”Traffic is not caused by
vehicles, but by travelers.” The MATSim approach is therefore to model ev-
ery single individual, who causes traffic. By stating fairly simple rules for an
individual’s behavior, an complex, emergent behavior of the overall system
can be observed. With this approach, it is possible to describe the charac-
teristics of individuals or groups of individuals in a freely chosen granularity,
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therefore partially refining the system’s behavior partially. Conversely, it is
also possible to identify the winners and losers of a change to the system
and analyse them with respect to different groups within the population.
Thus, multi-agent-based simulation tools offer more precise insight into the
actual causes of an emergent system’s behavior, albeit without the strong
mathematical foundation of other approaches. Multi-agent simulations of
traffic systems are being developed in many places all over the world, exam-
ples can be found in [99, 71, 33]. In this thesis, the multi-agent simulation
framework MATSim [66] will be used as a basis for the implementation of a
traffic-assignment layer executed on graphics hardware.

1.3 Visualization

As the legendary American baseball player and trainer Yogi Berra put it,
”You can observe a lot by watching” [16]. Or as a perhaps more trustworthy
source of inspiration, René Descartes, stated in 1637 [58]:

”Imagination or visualization, and in particular the use of
diagrams, has a crucial part to play in scientific investigation.”

The term (scientific) visualization is often attributed to McCormick, DeFanti
and Brown in their article ”Visualization in Scientific Computing” (1987)
[68]. According to the rather basic definition of this young discipline given
in the article,

”The goal of Visualization in [scientific] computing is to gain
insight by using our visual machinery.”

There is quite a lot of definitions for the word ”visualization” in terms of
(scientific) computation around. Richard Hamming maintained that,

”The purpose of [scientific] computing is insight, not numbers.”

This leads to the question of how visualization can help one to attain in-
sight. The word ”sight” in ”insight” might point into the right direction.
Presenting something as a visual stimulus helps engage a large area of the
cortex, as 50% of our neurons are associated with vision. As R.M. Friedhoff
and T. Kiley stated,

”The standard argument to promote scientific visualization
is that today’s researchers must consume ever higher volumes of
numbers that gush, as if from a fire hose, out of supercomputer
simulations or high-powered scientific instruments. If researchers
try to read the data, usually presented as vast numeric matrices,
they will take in the information at snail’s pace. If the informa-
tion is rendered graphically, however, they can assimilate it at a
much faster rate”.
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Finally, as J. Foley and B. Ribarsky propounded,

“A useful definition of visualization might be the binding (or
mapping) of data to representations that can be perceived. The
types of bindings could be visual, auditory, tactile, etc., or a
combination of these.”

The last two citations were taken from [29].
One of the the driving forces behind the development of visualization

techniques over the past decade is the ever increasing computational power
of workstations. The power to create detailed visual stimuli has increased
tremendously leading to new dimensions in visualization. Another trend
that increased the interest in visualization is again based on the massive
computing power at hand:

Supercomputers calculate and output gigabytes of data nowadays, pro-
ducing a huge and ever increasing flow of data to be analysed. These num-
bers cannot be looked at without aggregating or representing them in a
multi-dimensional way that engages the visual perception of the human
brain, thus leading to new insights.

The demand for visualizing ever larger data sets has kept pace with the
capability of doing so.

This is true for traffic simulations as well. The MATSim simulation
is used for huge networks comprising millions of agents going about their
daily business. Therefore, one simulation run generates gigabytes of data
to be analysed. One way to deal with the tremendous volume of data is
certainly to aggregate the data and evaluate meaningful operating figures.
Aggregation, however, is a useful but dangerous tool; the agents might well
behave perfectly according to the given aggregated operation figures, but
the simulation might still be completely wrong, but even though it adds up
to seemingly correct figures. Therefore, an inspection of the unaggregated
data is a useful debugging tool for the researcher.

Offering aid with the inspection of data is one of the main purposes of
visualization. DeFanti, Brown and McCormick [34] identified two main goals
for visualization: To them visualization is

“- A tool for discovery and understanding. The deluge
of data generated by supercomputers and other high-volume data
sources (such as medical imaging systems and satellites) makes
it impossible for users to quantitatively examine more than a
tiny fraction of a given solution. That is, it is impossible to
investigate the qualitative global nature of numerical solutions.

(...)
- A tool for communication and teaching. Much of the

modern sciences can no longer be communicated in print. DNA
sequences,, molecular models, medical imaging scans, ...and so
on, all need to be expressed and taught visually over time.”
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This holds true for traffic simulation as well. The first aspect was already
discussed above. An additional benefit of visualization is that it can be
used to generate images and impressions better suited to inform or instruct
the general public about certain aspects of political decisions, e.g., with
regards to land-use or traffic-system planning. This is where visualization
and presentation meet.

1.4 The evolution of (graphics) hardware

The next two sections will give an overview of developments in the field of
graphics hardware as well as certain aspects of CPU development. The first
section will describe the way that consumer graphics devices have evolved
from simple VGA adapters to today’s multi-core architectures. The second
part will discuss CPU’s development and Moore’s Law.

1.4.1 A short history of consumer graphics cards

In the 1980s the first graphics devices were developed by IBM and were
named VGAs (Video Graphics Adapters). Their sole purpose was to con-
tain some RAM for storing the letters to be displayed and some simple
transistors for converting the letters into scanlines that could be displayed
on an external screen. Although in scientific research better solutions were
already being used at that time, the consumer market remained largely un-
touched by these highly expensive developments until the 1990s. Based on
the huge success of ”2.5”-dimensional games like “DOOM” that were ren-
dered on plain 2D hardware at the time, in 1995 the company 3dfx released
the ”Voodoo” series of 3D graphics adapters. These were used solely for
rendering 3D images; they did not have regular graphics hardware and were
therefore installed as an add-on card to supplement a regular graphics de-
vice. Therefore, it was even possible –in 1998– to install two of these cards
together, which formed something like an early multi-core architecture. In
the early 2000s first 3D-capable graphics adapters entered the mass market.
Triggered by the invention of games played in a three-dimensional virtual en-
vironment, the demand for rendering these virtual worlds in ever-increasing
resolutions overburdened the CPUs available at that time.

These 3D graphics devices were restricted to a fixed-function pipeline
which could be run in hardware to outplay the CPU on a very confined
range of duty. Still, improvements to this devices over the past decade have
been outstanding, not only in terms of computing power, but also in terms
of the expressiveness of the hardware. The first generations of 3D accel-
erator cards had a fixed-function pipeline to do the ”usual” mathematical
transformations in hardware, such as calculating a perspective view or sim-
ulating light sources. But with the increasing popularity of 3D games, the
need of designers and game developers to distinguish their work from the
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work of others became more pronounced. Therefore, hardware manufactur-
ers had to break up the fixed-function pipeline to introduce ways of adding
custom-generated code to it. This demand for new features was thwarted
by the demand to unify the interfaces needed to implement features on the
different graphics devices. This process was accompanied by the develop-
ment of two significant graphics APIs: DirectX and OpenGL. Both offered
a more or less unified view of the different hardware platforms. With Di-
rectX 9.0, the notion of ”shaders” was introduced, giving programmers the
possibility to transform vertices and shade pixels directly on the graphics
device and freely describe the process in some sort of assembler language.
This was at first cumbersome and evolved into today’s shading languages,
which are more reminiscent of some higher languages like C or Java. This
development finally led to the devices we find today, which are multi-core
computing devices and are no longer limited to the sole purpose of rendering
graphics anymore.

The development of computing power and memory bandwidth over the
past decade is illustrated in Figure 1.2 for devices by NVIDIA and ATI. As
the figures show, modern graphics devices can execute up to 1 TFLOPS of
operations and can transfer more than 100 GB per second. By comparison,
the most recent Intel Dual core hardware (Intel Pentium Dual Core Presler
965) issues about 20 GFLOPS [47] and has a memory bandwidth of 5-10
GB per second.

1.4.2 The free lunch is over

In 1965 Gordon Moore made a prediction in his article ”Cramming More
Components onto Integrated Circuits” in the ”Electronics Magazine” which
came to be known as Moore’s Law :

The complexity for minimum component costs has increased
at a rate of roughly a factor of two per year (...) Certainly
over the short term this rate can be expected to continue, if not
to increase. Over the longer term, the rate of increase is a bit
more uncertain, although there is no reason to believe it will
not remain nearly constant for at least 10 years. That means
by 1975, the number of components per integrated circuit for
minimum cost will be 65,000. I believe that such a large circuit
can be built on a single wafer.

Although the original formulation – which Moore later changed to a dou-
bling every two years– referred only to transistor densities, it was adopted to
many different areas of computing. The overall CPU performance, storage
capacity and processing speed have all adhered to Moore’s Law. Up until
2002, the processor speed doubled every two years (or even every 18 months,
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as another Intel executive predicted). But this came to a rather sudden halt
in the years 2002 to 2004. Intel introduced the first processor running at 3
GHz in November 2002. The peak processor speed was reached in January
2006 with 3.73 GHz. The additional 0.73 Ghz improvement apparently did
not conform to Moore’s law. Nowadays Intel concentrates on multi-core pro-
cessors running at lower speeds of around 2.3 GHz [56]. The race for higher
processor speeds seems to have come to an end.

Herb Sutter, C++ evangelist and long-time secretary of the C++ stan-
dards committee, wrote an article entitled ”The Free Lunch is Over: A
Fundamental Turn toward Concurrency in Software” [96] in the computer
science magazine ”Dr. Dobb’s Journal,” stating the obvious: Moore’s Law
did not hold any longer in terms of processing speed. The CPU speed had
stopped progressing at around 3GHz, not showing any relevant improvement
over the next few years. As Moore’s Law propagates exponential growth, it
was bound to hit the wall some time, because ”light is not going to get any
faster,” as Mr. Sutter put it.

It had been a convenient truth for several years that programmers could
rely on the speed improvements of the next generation’s CPUs to speedup
their application. When an application had a performance lag in some parts
of its calculations, a viable way of dealing with it was to simply wait for the
next processor generation.

Sutter predicted that although improvements in processor speed have
come to a rather abrupt stop, improvements in performance will not. To
maintain increasing performance, CPU manufactures will have to resort to
concurrency, employing a multitude of cores. In 2005, when Sutter wrote his
article, neither Intel nor AMD had multi-core processors on the market, but
server- and workframe-oriented companies like Sun Microsystems or IBM
were already offering them. Nowadays, Intel and AMD offer four- or even
eight-core processors. Additionally Intel plans to release an new kind of
processor named Larrabee, which is expected to comprise up to 64 cores,
sometime in 2010. These multi-core processors promise to be able to follow
Moore’s Law.

Unfortunately for the lazy programmers, these multi-core processors do
not offer their potential for free. Sutter suggested that a new paradigm
in software engineering be adopted with this new generation of processors:
Concurrent programming. Though this concurrent programming has been
around for a while, Sutter maintained that it has not been and will not be
adopted by the mainstream until proper toolsets are in place for a reliable
development framework. Sutter compared this to the ”revolution” of object-
oriented programming, which had existed ”since at least the days of Simula
in the late 1960s,” but did not make it into the mainstream until the 1990s
due to the lack of reliable tools and the absence of the necessity for such a
framework. Not until the 1990s did software projects became so large scale
that ”OOP’s strengths in abstraction and dependency management made it
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a necessity for archiving large-scale software development that is economical,
reliable and repeatable”.

A new programming paradigm is being introduced and no software will
benefit from the new multi-cores without adapting to the new programming
style. There may have been a noticeable speedup when computers were
upgraded from one- to two-core processors, as one of the cores took over
all the little tasks such as the virus protection, DRM, drivers, etc. which
constantly run on every computer system, thus freeing up the second CPU
core to perform the main application better. But this construct will not live
on to four or more cores.

Therefore, parallel, concurrent algorithms are a must nowadays for all
software which requires powerful performance, as Herb Sutter proclaimed in
2005.

In more recent talks, such as one he held in 2007 at a Northwest C++
User Group (NWCPP) meeting [97], Sutter has also placed great emphasis
on the latency of memory accesses as an important factor for performance
gains or, more often, performance losses. He claims that latency will cause
bandwidth lag when a certain balance is lost.

First, he showed that the latency of CPU systems has not improved
as much as bandwidth has in the past twenty years. He stated that over
this period, latency had increased by factor of four, whereas bandwidth had
increased by a factor of 500, measured in actual wall-clock times. When
latency is measured in clock cycles – which apparently is an even more
relevant parameter– it decreased by a factor of 150. This led Sutter to draw
an analogy to queuing theory:

Little’s law states that, given a long term arrival rate λ of customers and
a long-term average time a customer spends in a system W , the long-term
average count of customers L is:

L = λW

Sutter adapted Little’s law to computing by replacing λ with the band-
width of a memory system, replacing the average time spent in the system
with the latency of the memory system and finally using L as the average
count of items executed concurrently:

Concurrency = Bandwidth× Latency

This tells us that with staggering latency, an ever-increasing bandwidth can
only be utilized by offering higher concurrency. This is interesting with
regard to the actual consideration behind the NVIDIA CUDA framework,
as will be shown in Chapter 3.1. Only a higher degree of concurrency can
save an application’s performance from the risk of great latency in memory
accesses.
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With the advent of multi-core processors and the need to fill the gap
between memory latency and bandwidth, parallel models must be found and
used as the new programming paradigm for performance hungry applications
such as the large-scale traffic simulation. How to achieve this with the aid
of graphics devices will be the topic of the next section.
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Chapter 2

The MATSim framework for traffic
generation

As discussed in the previous chapter, the MATSim framework will be used
as a basis for this thesis. The MATSim framework is a traffic simulation
framework capable of computing large-scale scenarios. Up to millions of
agents with multiple trips per agent can be handled within the MATSim
framework.

The agents use genetic algorithms to improve their plans in an iterative
process. This chapter will introduce the MATSim framework and the op-
tions it offers for dynamic traffic assignment (DTA) and activity-based plan
generation as well as the feedback learning based on genetic algorithms.

The following section will describe how the framework is constructed
and how it provides agents with the ability to learn. The section after
that will examine the differences between the MATSim framework and the
more traditional ”four-step process”. Finally, the implementation of the
“strategic” and “physical” layers responsible for the actual generation and
execution of the agents’ plans will be discussed.

2.1 The four-step process and beyond

The ”four-step process” described in [92, 78] is a state-of-the-practice sim-
ulation technique for traffic-system planning. This process divides a given
network into a set of disjunct zones. By describing trips, or more precisely
counts of trips, taken by travelers between different zones, it can compute
an equilibrium solution of the actual flow of vehicles in the network. This is
called the four-step-process, as it involves four separate steps of execution.
These steps are:

• Trip generation: for each zone the number of outgoing trips is evalu-
ated. Likewise, each zone is assigned a number of incoming trips.
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• Trip distribution: For every zone that has outgoing trips, the distribu-
tion of trips to every other zone is determined. That is, the fraction of
outgoing trips entering another zone as incoming trips is established.
The resulting matrix of trip fractions is called the origin-destination
(OD) matrix.

• Mode choice: The choice of the mode of transportation is determined
here for each trip, i.e., whether the trip was taken by public transport,
on foot, by bicycle or by car.

• Route assignment : For each trip taken by car, a route is assigned.
This process typically searches for a user equilibrium, which means
that all paths used for a certain OD pair have the same travel time,
and no unused path is faster than this travel time [105].

The four step process is illustrated in Figure 2.1
The route assignment process can lead to unique mathematically proven

solutions, which is a great advantage of the four-step-process. Nevertheless,
this process has two major drawbacks. It cannot model time-dependent
aspects of the network’s load. That is, it cannot take time-dependent factors
like peak traffic spreading or congestion spillback into account, making it
impossible to spot time-dependent bottlenecks [25].

Another disadvantage of the four-step process is that all data are aggre-
gated at the zone level, or rather, at a stream level describing the traffic
between two zones. Individual behavior cannot be distinguished. Therefore,
a fine-grained modeling of travelers’ behavior based on demographics is hard
to introduce into the process.

2.1.1 Agent-based dynamic traffic assignment

The latter drawback can be overcome using activity-based demand generation
(ABDG). This models each traveler’s plan based on given activities and
has different requirements compared to the four-step process. First of all,
the zone-wise aggregated information on how many travelers leave or enter
zones apparently does not sufficiently describe the demand. Other means of
determining the demand for a traffic network have to be been found using
activity-based demand generation, as described in [52, 11].

This is a process of choosing daily plans for the agents. Starting from
whatever data has been collected from a microcensus or other sources of in-
formation, a synthetic population is generated. In a second step, a complete
chain of activities is computed for each member of the synthetic population.
That is, a chain of typical tasks these members of the population have to
deal with over the course of the day is determined. The activities include
both a description of the activity type, i.e., ”shopping”, ”working” and ”at-
tending school”, and the location where the activity will take place. (See
also [100]).
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Figure 2.1: The four step process of traffic assignment
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Given these sequences of activities at different places, the need to travel
arises for the agents. Which mode of transportation they choose can depend
on the attributes of the individual traveler, in contrast to the mode-choice
step of the four-step process. This mode-choice step can optionally be done
simultaneously with the activity choice [62] or after the location choice [64].

2.1.2 Dynamic traffic assignment

Having the description of a whole day’s worth of activities and places where
the activities will take place, it is now feasible to make the traffic assignment
dynamic in contrast to the static assignment of the four-step-process. As
the time-based demand is already known from of the activity-based demand
generation, it would be a pity to aggregate everything, and throw away the
already gained timing information, just to be able to generate OD matrices
that fit into the static assignment process.

Dynamic traffic assignment (DTA) has been used for quite a while
[59, 8, 19, 37]. Apart from the time-based demand mentioned above, DTA
requires a traffic dynamics model that described how vehicles are moved in
the network. The major drawback of DTA is that it is not as fully em-
beddable in a stringent and well-understood mathematical background as
the four-step process. Although some theoretical background for DTA is
known [19, 23], DTA lacks a provable unique solution. Daganzo, [32] for
example, showed that DTA can end up in more than one Nash equilibrium.
This makes it more complicated to compare different versions of the DTA
process.

To avoid the intricate analytical approach of DTA, it is feasible to use a
simulation technique. Assuming that the activity-based traffic assignment
is already providing us with complete daily plans, it would be logical to use
an agent simulation approach to compute the traffic assignment. The multi-
agent simulation approach [38] perfectly complements the activity-based de-
mand generation. Multi-agent simulation exactly needs what demand gen-
eration has to offer: individual plans for individual agents, describing their
unique way through the day.

2.1.3 Iterative demand optimization

Apart from the (initial) demand generation, the simulation-based assign-
ment is often coupled with systematic relaxation, [59, 72, 19] introducing a
learning process based on feedback learning. This can be outlined as follows:

1. The assignment starts with some initial routes for the agents’ plans.
These routes will often be the shortest paths from origin to destination
links.

2. Run the simulation, executing all agents’ plans simultaneously.
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3. Use the results from step 2 to calculate new routes for some or all
agents.

4. Continue with step 2

Steps two and three of this iteration can also be viewed as two different
layers of the agents’ reality. The layer represented in step 2, the execution
of the agents’ plans, is called the physical layer. From an agent’s point of
view, this is the ”reality” he or she is experiencing. Therefore, it is often
called ”synthetic reality”. The other layer, in which the agents re-plan their
routes, is based on the actual events of the last simulation run and is often
referred to as the ”strategic layer”. It can also be seen as the agent’s ”mental
map” of the ”synthetic reality”. These two-layered information exchange is
illustrated in Fig. 2.2. The strategic layer provides the simulation with the
agents’ plans in order to execute them in the network, whilst the simulation
provides the strategic layer with a description of observed events so that this
information can be used to improve plans.

Figure 2.2: The two layers of MATSim

There are several ways to actually implement such DTA, e.g. [103, 20, 17,
80, 81, 7]; most of them deliver time-based OD matrices. For smaller scenar-
ios or telematics applications, there are fully agent-based implementations
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[91, 10, 14, 12]. Large-scale scenarios can be computed with TRANSIMS
[99]. Other applications for agent-based modeling include land-use models
like URBANSIM [104] or ILUTE [87].

The agent-based traffic simulation framework MATSim [15] will be used
in this thesis. The traffic assignment in MATSim-T is illustrated in Figure
2.3.

Figure 2.3: Dynamic traffic assignment with agents

MATSim and its physical layer based on the queue simulation [43] will
be discussed in the next section.

2.2 The strategic layer

A Nash equilibrium [73] is reached, when no agent is capable of improving his
or her own plan unilaterally. The agents’ plans converge against this Nash
equilibrium in an iterative process. This process was already mentioned in
Section 2.1.3 and will be discussed further in Section 2.2.2. The strategic
layer consists of the agent’s mental model of reality and his or her beliefs
about the “world”. This strategic layer is modeled in MATSim-T as an agent
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Listing 2.1: A sample plans file in XML representation
<plans name="example plans file" xml:lang="de-CH"> ...

<person id="393241" age="37" income="50000">

<plan >

<act type="home" link="58" start_time="00:00" dur="07:00"

end_time="07:00" />

<leg mode="car" dept_time="07:00" trav_time="00:25"

arr_time="07:25">

<route >1932 1933 1934 1947</route >

</leg >

<act type="work" link="844" start_time="07:25" dur="09:00"

end_time="16:25" />

<leg mode="car" dept_time="16:25" trav_time="00:14"

arr_time="16:39">

<route >1934 1933</route >

</leg >

<act type="home" link="58" start_time="16:39" dur="07:21"

end_time="24:00" />

</plan >

</person >

...

</plans >

database plus strategic modules serving the database. That will be the topic
of the next section. The database can support the other layer, the “synthetic
reality”, with a set of plans. Each agent chooses one plan for execution prior
to a simulation run. The physical layer then executes the agents’ plans and
thereby generates events. Events are understood as “observations” of what
is the actually happening inside the physical world. The events should not
interpret the ongoing simulation, but rather merely chronicle it. The events
thus reported permeate the strategic layer and serve the strategy manager
as decision support. Based on these events decisions can be made to make
up new plans or build new mental maps of the witnessed “reality”. This
process is illustrated in Figure 2.2.

2.2.1 Agent database

The term microscopic simulation has been interpreted quite diversely in
transport planning. Often, the term “microscopic” only refers to the actual
model used to simulate the flow of mobile particles along the network [106]
implemented in some simulation package like VISSIM [102].

In the MATSim framework, the individual level of microscopic simulation
is preserved in both layers. Every single agent is modeled individually.
Each agent’s activity chain is modeled for a whole day. This daily plan
is defined by an XML representation. Listing 2.1 taken from Balmer, [13]
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shows the representation of an agent (person) and one of his or her plans.
This also means that plans have to be assigned dynamically over the whole
day, including ”executing” the activities. However, these activities are not
the focus of our traffic simulation and are often implemented as waiting
times, after which the agents get inserted into the simulation again. All
of the agents needed to execute a meaningful simulation run are stored
inside a large agent database. This e.g. read from an XML file containing
several plans per agent, including much supplementary information about
the agents such as to which household they belong, their gender, income,
etc. A selection of plans from the agent database is chosen for execution at
every simulation run. This process will be described in the following section.

2.2.2 Co-evolutionary algorithm

As already stated in Section 2.1.3, the MATSim framework uses an iterative
process to optimize certain aspects of the agents’ plans. Not all information
about an agent’s daily activities can be extracted from the census data or
questionnaires in a meaningful way. The actual route taken from one activity
to another is a good example of information that is usually not part of the
information provided. Therefore, assumptions have to be made in order to
find a feasible way to gather missing information. Given the assumption
that every agent will try to find the ”best” possible route for his own daily
plan, and –as we are modeling a typical weekday– is also capable of knowing
the best way to get around, a state of equilibrium must be found in which
all agents have the best routed they can find for themselves. The Wardrop
equilibrium [105] describes such a state for route choice.

In MATSim-T, agents may determine not only their routes, but also
their departure times and choice, order and location of their activities. As
these factors and the actual degree of success for the agents’ daily plans
depend on further constraints like street capacities, business hours, etc., the
success of an agent’s plan can only be diagnosed by executing the plans of
all agents simultaneously. The MATSim-T framework uses co-evolutionary
algorithms [53, 54] to optimize the daily plans of all agents simultaneously.

A evolutionary algorithm consists of these basic steps:

1. Initialize a set of agent’s plans, P (t = 0), the generation at time zero

2. Calculate a score or fitness function for P

3. Do a selection of P ′ from members of P (t): “survival of the fittest”

4. Re-combine (cross over) and mutate P ′

5. P (t+ 1) = P ′(t); increase time step t = t+ 1

6. Go to step 2 and repeat until some indicator is fulfilled.
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Transferred to the realm of MATSim-T, the algorithm reads as:

1. Load or generate an initial set of daily plans for all agents

2. Run the simulation to evaluate the plan’s fitness and calculate a score

3. Remove plans with low scores

4. Create variations of the remaining plans for a set of agents

5. Go to step 2.

In MATSim-T there are modules for the different stages of execution of the
above algorithm. Namely, there are modules for

• generation of the initial demand

• execution of the physical simulation

• calculation of the score of every executed plan and

• replanning the daily plans of some agents.

The next sections will cover each of these modules except for the initial
demand generation module, which was discussed in Section 2.1.1.

2.2.3 Execution of the physical layer

There are many ways to model traffic flow. Some are detailed models like
the ones presented by Wiedemann [107] or the model implemented in VIS-
SIM [79]. These detailed models take a rather long time to compute. Given
that traffic-system planning is not concerned with detailed driving char-
acteristics, but with congestion formation and spill-back queues and their
resolution, a simpler and computationally less expensive model could be em-
ployed to serve as the physical layer of our simulation, such as the queue
model designed by Gawron [43].

Two different implementations of the queue model are available in MATSim-
T. One implementation is a re-implementation of the single-core variant of
the mobility simulation presented by Cetin [24]. It is written in Java, the
host language of the whole MATSim-T project. Therefore, it can be seam-
lessly integrated into the MATSim-T execution, sparing users the effort of
converting data formats or writing and reading back from files. An addi-
tional benefit is that it naturally makes use of Java’s platform independence,
running out-of-the-box under Unix, Windows and Mac OS X.

The simulation is discrete, and each step simulates one second of time.
As the main issue is to update two queues per link, the total runtime Tmobsim

depends on the number of links. It can be estimated with this formula:

Tmobsim = tsim/δt ∗ 2 ∗ s,
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where tsim is the simulated period of time (e.g., 86.400 seconds for a whole
day), δt is the resolution of the simulation (1 second in our runs) and s is
the number of links. The execution time is therefore more dependent on the
number of links than on the number of agents simulated.

This mobility simulation is the basis for the later implementation of the
CUDA variant discussed in Section 3.2. It is therefore described in more
detail in section 2.3.

Another implementation of the queue simulation used in MATSim-T
is the DEQSim (deterministic event-based queue simulation) described by
Charypar et al. [26]. It implements a more sophisticated variant of the
queue simulation that handles not only the actual FIFO (first-in, first-out)
characteristics, but also the backward movement of free link-spaces more
realistically. Furthermore, its execution is based solely on the actual events
an agent experiences, or, simply put, nothing is computed when nothing is
happening in the simulation. Therefore, the runtime of this simulation is
not only linked to the number of links in the network but is proportional
to the number of agents in the system. The DEQSim is implemented in
C++. Therefore, it is not so easily ported between operating systems and an
additional overhead must be taken into account for exchanging data between
the simulation and the Java-based framework. A native Java version of the
DEQSim-algorithm has recently been developed, with impressive runtime
characteristics. Unfortunately, as of writing this thesis, there is no reference
given for new this implementation.

2.2.4 Evaluation of the fitness of a plan with a scoring function

After executing all plans in the mobility simulation of choice, a score needs
to be determined for each plan executed to estimate the actual benefit of the
plan for the agent. An individual fitness function describing the actual goal
of the agent and eventually possibly its his or her behavior forms the basis
of this calculation. One fitness function exemplarily used in conjunction
with MATSim-T was described in by Nagel and Charypar [28]. It is based
on Vickrey’s departure-time choice model [101], but enhanced from dealing
only with single trips to handling whole-day plans [82]. The total utility of
a plan is described as:

Utotal =
n∑

i=1

Uperf ,i +
n∑

i=1

Ulate,i +
n∑

i=1

Utravel ,i (2.1)

where Utotal being the summed-up gross utility of the plan with n activ-
ities, Uperf ,i is the (positive) total of the utility of the performed activities,
Ulate,i is the (negative) utility of being late and Utravel ,i is the (negative)
utility of travel on trip i.

The positive utility of activities Uperf ,i is assumed to be of logarithmic
shape:
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Uperf ,i(tperf ,i) = βperf · t∗,i · ln
(
tperf ,i

t0,i

)
(2.2)

Here tperf ,i is the actual length of the activity i, t∗,i is the wanted duration
of activity i. βperf defines the marginal utility of the activity at t∗ and t0,i is
an additional factor, influencing the importance and the minimum duration
of an activity. If the agent is not allowed to drop activities from his or her
plan, then the utility for all activities is the same.

The utility for being late is defined as:

Ulate,i = βlate · tlate,i , (2.3)

with βlate as the marginal utility for being late and tlate,i as the late
arrival for activity i.

Finally, the utility of traveling is defined as:

Utravel ,i = βtravel · ttravel,i , (2.4)

Again, βtravel is the marginal utility of traveling and ttravel,i is the time
spent traveling during trip i. The marginal utilities are usually described
as Euros/hour and accordingly, the travel times and delays are described in
hours.

The utility function describes the behavior and goals of an agent. The
agent will search for the best solution in the solution space defined by the
utility function. No optimizations outside of the solution domain of the
utility function 2.1 can be incorporated by the agent. This has direct impact
on the replanning choices that are possible with a given utility function, as
will be discussed briefly in the next section.

2.2.5 Replanning modules

This strategic layer is itself split into a set of possible modules for replan-
ning certain aspects of an agent’s original plan. This part of the process
corresponds to the fitness function described in the previous section. If a
new module is added to the replanning capabilities of an agent, the fitness
function must be adapted so that it includes the newly generated solution
space. On the other hand, it is permissible to use a function that evaluates
more than the solution space actually engaged in the current simulation.
Therefore, it is permissible to use the function with the provision for de-
parture times given in formula 2.1 of the last section, even though only the
routes are varied.

The modules can be roughly divided into modules using random muta-
tion and those trying to utilize the experiences gained in the last iteration
of the physical simulation. The latter ones are called ”best response” mod-
ules, as they attempt to deliver the best response to the information from
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the previous run. The random-based modules are often faster in terms of
execution speed, but are more likely to need a higher number of iterations
before converging.

The most important modules for replanning in MATSim-T are as follows:

• Time allocation mutator : A module that randomly mutates the de-
parture times and durations of activities. Because it is an extremely
fast module, its actual computing time is negligible.

• Router modules: There are three different flavors of router modules im-
plemented in the MATSim-T framework, all based on time-dependent
Dijkstra algorithms [36]. The newest is based on a Landmarks-A*
algorithm [63] and offers best performance.

• Planomat : Another best choice module is the planomat module de-
scribed by Meister [69, 70]. This module is not restricted to varying
only certain aspects of the day’s plan, but affects all parts simultane-
ously, including the coordination of the plans of all household members
and their joint activities. In addition, the planomat module serves as
a time-allocation mutator and can substitute above random module.

The open framework of MATSim-T makes it possible to easily add new
replanning modules to already existing ones. A wide variety choice of mod-
ules has been added to MATSim-T by the community, with features ranging
from secondary location choice to the inclusion of social networks [46]. Even
schedules of local public transport systems have been incorporated into a
module [98].

2.3 The physical layer

In this section, the model behind the Java implementation of the mobility
simulation used in the MATSim-T framework will be discussed. The queue
model designed by Gawron will be explained as will the modifications im-
plemented for a better reproduction of traffic behavior. As discussed above,
the traffic simulation should fulfill some constraints. Namely, it should

• use individual particles or vehicles that are being moved through a
network. These should match the agents of our framework

• be a rather simple model so it can be compared to the methods used
for static assignment

• be computationally inexpensive in order to limit the computation time
needed for the iterative relaxation process

• result in traffic assignments comparable to real traffic counts.
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An approach based on queuing theory [94, 93] was chosen. The queuing
model was introduced by Gawron and it will be discussed in Section 2.3.1.
The following will deal with some drawbacks of the Gawron model and will
discuss the addition of some desired features missing in the original model.

A drawback of queue models is their inability to correctly model the
speed of the backwards traveling kinematic wave. A singular free link space
should travel backwards at about 15km/h [51]. In a queue model a vehicle
leaving a link opens a free space immediately. This is visualized rather
descriptively in the dissolving of congestion, which in reality would happen
from the front of the queue. In a queue model, congestion will dissolve
starting from the end of the queue. This problem is solved by the DEQSim
implementation, which was discussed briefly in Section 2.2.3.

2.3.1 Gawron’s queue model

The queue model introduced by Gawron [43] defines three key components
for describing a link’s attributes:

• Free flow travel time T0

• Storage capacity Cstorage

• Flow capacity Cflow

Each link is given a regular speed (per XML input network file) for the
uncongested traveling v0, a length of the link segment is L, and it is given
flow capacity Cflow and a number of lanes nlanes .

The above attributes match these readings as follows:

• The free-flow travel time is defined as T0 = L/v0

• the storage capacity is defined as Cstorage = L× nlanes/l, where l is a
pre-defined space consumption of a single vehicle and

• the flow capacity is given directly as input.

Listing 2.2: The movement code by Gawron
for all links do

while vehicle has arrived at end of link

AND vehicle can be moved according to flow capacity

AND there is space on destination link do

move vehicle to next link

end while

end for

The intersection logic designed by Gawron is given in pseudo-code in
listing 2.2. All links are processed in an arbitrary sequence of execution.
For each link a vehicle can move to its respective destination link if
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1. it is the first vehicle on the source link

2. the link’s flow capacity is not exhausted and

3. there is enough space left on the destination link.

The first condition implies that every vehicle that enters the link at time
step t will have to stay on the link at least until t + T0. Establishing the
second condition is a little bit tricky. The outgoing flow capacity of a link
per second will rarely be an integer number. Therefore, the link logic has
to deal with the occurring fractions, as the vehicle is seen as an atomic unit
and can not be partially sent over the link. There are basically two ways
to deal with this situation, and they need only to be employed if there is
an actual fractional residual rfrac . Either a statistical approach is chosen
by selecting a random number 0 < rnd < 1 and comparing this against the
residual, moving a car whenever rnd < rfrac . The other approach is to add
up the residual fraction in an extra capacity counter. If the non-fraction
part of the capacity is exhausted, one additional vehicle is allowed to leave
the link whenever the extra counter is larger than one. The counter will
then be reset. The third condition is met when the number of vehicles on
the destination link is less than the space capacity of the link.

2.3.2 Improvements to Gawron’s algorithm

Although the Gawron algorithm presented in listing 2.2 is a beautifully
simple algorithm, it is not optimally suited to traffic simulation. The fixed
sequence of execution running over all links and exchanging vehicles contains
two catches. Both involve shortcomings caused by the sequential execution
of the movement code for all links. The problems and possible solutions will
be discussed in the next two paragraphs.

Fair intersection

One problem intrinsic to the simplistic queue model is that the links are
always selected in the same sequence. Hence, certain links are more equal
than others, i.e., they will get an earlier chance to get rid of their vehicles
before other links can. This leads to unrealistic behavior in congested states,
when a small byroad can block out a main street if the byroad happens to be
before the main road in the sequence of links after the space of the incoming
link has opened up. To resolve this behavior, the vehicles’ movement al-
gorithm is changed from Gawron’s link-centered approach to a node-based
method [24]. By doing this, the links are served by stepping through all
intersections of the network and then executing all incoming links for the
nodes. The pseudo-code implementation of this can be found in listing 2.3.
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Listing 2.3: Fair vehicle movement at the intersections as in Cetin [24].
// Move vehicles across intersections:

for all nodes

while there are still eligible links

Select an eligible link randomly proportional to capacity

Mark link as non -eligible

while vehicle has arrived at end of link

AND vehicle can be moved according to capacity

AND there is space on destination link

move vehicle from source link to destination link

end while

end while // eligible links

end for // all nodes

The incoming links of one node (which are the links competing with
each other for space on the outgoing links) can then be ordered in a newly
defined sequence. To implement a fair intersection that prefers the main
roads but still gives smaller roads a chance to issue vehicles from time to
time, the Java mobility simulation of the MATSim-T framework uses the
following approach: By choosing the sequence of links to be executed with
a random draw into these links based on their capacity, it guarantees that
links with larger capacity get chosen more often, but smaller links get a
chance to update first from time to time. To implement this, the sum of all
capacities of the incoming links of a node n which have vehicles waiting are
calculated as inSumMultn.

inSumMultn =
∑

incominglinksn

capacityflow

Then a random number between zero and this sum inSumMultn is
drawn. A loop adds up the capacities of the links and an index pointer i
until the sum of the capacities is larger or equal to the random number. The
link with the index i is chosen to be executed next. The flow capacity of
this link is then subtracted from the inSumMultn, and the link is removed
from the list of eligible links. This algorithm is repeated until all links are
served. Apparently, in each step the probability for each link to be chosen
as the first link is

p1l = flowcapl/
∑

linksremaining

flowcapincoming

This gives larger links a greater probability of being chosen over smaller
links, while still maintaining a fair chance for all links.

Listing 2.4 shows a pseudo code version of the algorithm. This version
implements the behavior described by the line Select an eligible link ran-
domly proportional to capacity in listing 2.3 and it needs to be inserted as a
replacement for that line into the code of listing 2.3.

27



Listing 2.4: Choosing eligible links
// this replaces ‘‘Select an eligible link randomly

proportional to capacity ’’

// build sum of all link capacities

for all eligible links

sum_cap += link flow capacity

end for

// draw one random link based on capacities

rndNum = draw random number between 0 and sum_cap

for all links left

act_cap += actual links flow capacity

if act_cap >= randNum

choose link for MOVEMENT

sum_cap -= actual links flow capacity

break this loop

end if

end for

Parallel update

The second drawback to Gawron’s original algorithm is that it is depen-
dent on the link sequence in terms of the uniqueness of the simulation’s
run. With Gawron’s algorithm the position of a vehicle in the network can
change to different new positions in one time step, depending on the se-
quence of execution of the links. If a link has a free travel time smaller
than one time step, then a vehicle that is ready to leave an incoming link
to that link can enter the link and leave it in the same time step or has to
stay on the link, depending on whether the incoming link is in front of the
link in the execution sequence or not. This is clearly an undesirable behav-
ior. The exhibited traffic characteristics should not depend on the purely
implementational constraint of the sequence of links. Figure 2.4 illustrates
this.

To make the state of the simulation independent of the order of execu-
tion, another buffer is introduced. A link buffer capable of fitting the size of
the outgoing capacity, i.e., the next integral value larger or equal to the ca-
pacity, is constructed. The movement of vehicles is then split into two parts.
First, a vehicle moves from the link’s main queue (the queue describing the
spatial constraints of a link) into the newly constructed buffer, based on the
outgoing flow capacity of the link. Vehicles are allowed to move only if the
following conditions are met:

• It is the first vehicle in the source link’s spatial queue

• The outflow capacity is not exhausted and
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Figure 2.4: Parallel update by including an additional flow buffer.

• There is enough space left on the new buffer, which might still hold
vehicles from the previous time step.

The second step is to move vehicles from the new buffer construct onto their
respective destination links. This step is only constrained by the amount of
free space left on the destination link. The algorithm taken from Cetin [24]
is written in listing 2.5.

Listing 2.5: Vehicle movement at the intersections as presented by Cetin.
(Note how the algorithm separates the flow capacity from intersection dy-
namics.)
// Propagate vehicles along links:

for all links do

while vehicle has arrived at end of link

AND vehicle can be moved according to capacity

AND there is space \emph{in the buffer} (see Fig~\ref{fig:

buffer })

move vehicle from link \emph{to buffer}

end while

end for

// Move vehicles across intersections:

for all \emph{nodes}

while {there are still eligible links}

{Select an eligible link randomly proportional to

capacity}

{Mark link as non -eligible}

29



while {there are vehicles in the buffer of that link}

{Check the first vehicle in the buffer of the link}

if {the destination link has space}

{Move vehicle from buffer to destination link}

{Proceed to the next vehicle in the buffer}

else

{Break the inner while loop and proceed to the next

eligible link}

end if

end while // still vehicles

end while // eligible links

end for // all nodes

It is interesting to note that this addition to the original algorithm makes
each link’s update independent of all other updates, relying solely on the link
and the link’s buffer. Likewise, a node’s update can be done independently
of all other nodes’ updates. This will be of interest when the concurrent
execution is discussed in Section 3.2.
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Chapter 3

Implementing the queue model on graph-
ics devices

Simulating large-scale scenarios with the queue model described in the last
chapter has a high computing demand. Therefore, executing a simulation
run with a frame rate high enough for real time interaction is not a sim-
ple task. In the work presented in this thesis, this will be achieved by the
use of common graphics hardware. This chapter will introduce the hard-
and software utilized to accomplish high frame rates. Furthermore, it will
compare different implementations and data structures to reveal their us-
ability for our task. The last part of this chapter will concentrate on the
necessary tasks for running the actual GPU algorithms on a host computer
and for combining the GPU-based simulation with the Java-based MATSim
framework.

As has been said in the introduction, the goal of this thesis is to accom-
plish interactive frame rates by using a single affordable desktop computer
system instead of high end cluster hardware. There were two possible choices
of hardware capable of general purpose calculations, namely graphic cards
from either ATI/AMD or NVIDIA.

3.1 CUDA SDK

In this thesis NVIDIA hardware was chosen to implement the queue simula-
tion on. Although both relevant hardware vendors deliver capable hardware
of about the same performance, the CUDA SDK was more commonly used
at the time of writing the thesis. In this chapter the hard and software
architecture of the latest NVIDIA GPU devices will be explained.
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(a) CPU scheme

(b) GPU scheme

Figure 3.1: CPU versus GPU layout.
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3.1.1 The NVIDIA hardware

The NVIDIA hardware has its roots in the consumer 3D graphics market.
Therefore it is not surprising that this hardware has specialized in maxi-
mizing the floating point capabilities measured in FLOPS (floating point
operation per second). Consumer 3D-graphics has a very high demand for
these operations. All 3D to 2D operations in this market revolve around
floating point operations, whereas double precision floating point operations
are more a domain of scientific research. Therefore, it has been ignored by
NVIDIA for a long time. Figure 1.2 gives an impression of the computing
power of the latest GPU generations. 3D-graphics rasterization, which is
the main duty of these cards, is easily expressed in a parallel manner, re-
sulting in the GPUs to have evolved into multi-core parallel devices. Fig.
3.1 illustrates the different forms of specialization of CPU and GPU.

The CPU must be flexible in terms of flow control and achieves fast mem-
ory access mainly by having a sophisticated caching strategy combined with
a rather big memory cache. Therefore it physically does not have enough
room for many ALUs (Arithmetic Logical Unit), the actual computing units,
and has only one central control unit.

The GPU on the other hand does not have a big on-chip-cache to speed
up memory access. It uses mainly uncached access to the DRAM and pro-
vides several autonomous control units, each of which controls a rather large
number of ALUs.

The GPU is especially well suited for problems that can be expressed in
data parallel algorithms. This means that there is one algorithm executed
in parallel on many different data elements. Again, this is the actual de-
mand of the rasterization process in 3D-graphics. After some preprocessing,
large sets of pixel or vertex data can be processed in parallel with the same
algorithm in place. But, as described in the last chapter, this type of com-
putational model also fits other domains outside the actual 3D rendering.

Streaming multiprocessors

The NVIDIA hardware groups sixteen ALUs and one control unit to an
array of multi-threaded streaming multiprocessors (SMs). Beside these six-
teen ALUS, also called scalar processors (SP) or core, a SM consists of
a multi-threaded instruction (or control) unit, two special function units
for transcendental functions and a small block of on-chip shared memory.
The multiprocessor can create, manage and execute concurrent threads with
zero scheduling overhead. In addition to that, it implements a barrier-
synchronization intrinsic with a single instruction. These qualities enable
lightweight thread creation and managing and efficiently support very fine
grained parallelism. With the NVIDIA architecture it is possible to decom-
pose a problem into thousands of threads efficiently.
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To manage these many threads executing different instructions or at
least different branches of a common instruction list, the SM employs a
new architecture called SIMT (single instruction, multiple threads). This
expression is chosen to distinguish the new approach from the more usual
SIMD (single instruction, multiple data) solutions.

In SIMD architectures multiple ALUs execute the same instruction over
a set of input data in parallel. With SIMT, each thread has an individual
instruction counter and register set. The multiprocessor maps a thread to
each of the eight SPs. This thread is then executed on the SP independently
of the other threads, using its own instruction address and register state.

Having the ability to run different code (-branches) in each thread of ex-
ecution without infringing upon computational correctness of the executed
program is a big benefit. Nevertheless, for gaining substantial speed-ups in
program execution the programmer will have to use data parallel techniques.
The entry level to successfully program the GPU is very low with CUDA,
giving the programmer the chance to implement correct code first, optimiz-
ing it later. SIMD architectures on the other hand oblige the programmer
to follow the data parallel paradigm from the start on.

Warps and half-warps

The execution of threads in the CUDA architecture follows these rules: Each
SM unit creates, manages, schedules and executes threads in groups of 32
parallel threads. This group is called a warp. All threads of a warp start at
the same program address. After that, they are completely free to branch
and execute individually. At each clock cycle the SM chooses a thread warp
that is ready to execute (i.e. not stalled by waiting for a global memory
access) and then executes the next common instruction to all threads that
this instruction applies to.

If threads of a warp choose different execution paths by data-dependent
branches, then these branches are serialized and executed on the respective
threads attending the particular branch. Full efficiency is achieved only
when all threads of a warp agree on their execution path. Threads that
do not share the same warp run independently regardless of their execution
path.

Multiprocessor memory layout

Fig 3.2 shows the overall layout of a GPU device. Apart from the DRAM
of the graphics device the multiprocessor has four different memory types
on-chip:

• One set of local 32-bit registers per processing unit SP

• A parallel data cache or shared memory block that is shared by all SPs
of a multiprocessor. Caching has to be implemented by the threads.
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Figure 3.2: Layout of the multiprocessors
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• A read-only constant cache that is shared by all SPs and speeds up
reading into special constant memory areas of the global memory.

• A read-only texture cache. This is most useful for accessing data in
an interpolated and filtered way often needed with textures.

Accessing memory

The general cost for accessing memory differs very much depending on which
memory is accessed. Accessing a register will not generally cost extra cycles
at all, but delays might occur because of read-after-write dependencies or
internal memory bank conflicts. The read-after-write dependency results
from a new assignment to a register taking about 24 cycles to be available
for reading. This latency can be overcome when a thread count of at least
192 threads per SM is maintained. As 4 threads of the 32 threads of a warp
are being executed in each of the 8 SPs, it needs 6 warps (6 ∗ 4 = 24) to
mask the 24 cycles. That makes 6 ∗ 8 = 192 active threads per SM.

Accessing the on-chip shared memory is as fast as reading a register, but
again with constraints in respect to possible memory conflicts. The shared
memory is divided into memory banks. If two threads try to access the same
memory bank, these reads have to be serialized. For texture and constant
memory the access costs a full global memory access only if the memory
access has a cache miss. Otherwise the cost is like one register read for
every thread that accesses different constant memory addresses.

For the texture cache the above held true as well, although the cache
is optimized for spatial locality. For general purpose programming of the
GPU, the texture cache memory is often not easy to adopt in a meaningful
way.

The global memory space available for reading and writing is not cached.
The only way for the SM to deal with this waiting time is to compute other
warps. Therefore it is important to engage a large number of threads, so
that there are enough warps of threads waiting to be executed at any time to
cover the waiting times caused by global memory access. It takes four clock
cycles to issue a memory request. If the memory request reads/writes from
or to global memory there will be an additional penalty of 400 to 600 cycles
for this operation. This stresses the importance of having enough threads
at hand to cover these clock cycles.

In general, memory access is capable of reading 32-bit, 64-bit and 128-bit
words in a single instruction. For having an assignment like this
__device__ type device [32];

type data = device[index ];

compile to a single read instruction the type has to comply with these
rules:
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• The sizeof(type) must be 4,8 or 16 bytes

• Variables of type type must be aligned to sizeof(type)

For CUDAs predefined data types the latter condition automatically
holds true, for user defined types the could be enforced by using alignment
specifiers, namely __align(8)__ or __align(16)__.

For structures larger than 16 bytes the compiler has to generate multiple
load instructions. For ensuring to generate the lowest number of load in-
structions, it is advisable to define those structures with the __align(16)__
specifier. A variable of the type
struct __align (16)__ \{

long a, b, c, d;

\} long4;

will be read using two 128-bit instructions. With the __align__ the
efficiency of single read instruction can be optimized. But there are more
opportunities to optimize global memory access when inter-thread relation-
ship is taken into account, as we will see in the next section.

Coalesced memory access versus uncoalesced access

As a memory access to global memory is expensive, optimizing the exe-
cution of the code in terms of minimizing the stalled time from waiting
for global memory is mandatory. One way to achieve better execution times
with respect to memory access is by maintaining coalesced memory accesses.
Memory accesses take place in sizes of 32, 64 or 128 bytes. If all threads of
a half warp (either the first 16 threads or the second 16 threads of a warp
form a half-warp) access data in conformity to the following rules, memory
access is performed in a coalesced way.

• All threads access words of equal size. This size might be either a
32-bit word, a 64-bit word or a 128-bit word.

• The read instruction’s size depends on the word size and is one 64-
byte, one 128-byte transaction and two 128-byte transactions for the
aboves sizes.

• All 16 words must reside in the same memory segment (aligned to the
size of the respective memory transaction)

• Threads must access the words in sequence, i.e. thread i must access
the i-th word.

• Threads might skip reading memory, as long as all reading threads
meet the above conditions
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(a) Coalesced access

(b) Uncoalesced access

Figure 3.3: Coalesced and uncoalesced memory access on the GPU.
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If coalesced memory access is possible one (or two in the 128-bit word
case) memory transactions are issued to read the whole 16 words. If these
instructions are not being met, up to 16 memory access instructions are
necessary. This depends on the hardware revision of the CUDA device in
use. This is discussed in more depth in the CUDA Programming manual
[31] .

The memory bandwidth of coalesced memory access is two times higher
in case of 128-bit accesses (the uncoalesced case will need 16 32-byte accesses,
summing up to 512 bytes to be transported, whilst the two 128-byte accesses
only send 256 bytes), but about four times higher in case of 64-bit accesses
and about an order of magnitude faster in case of 32-bit accesses.

Fig. 3.3 illustrates one example of coalesced and one example of uncoa-
lesced memory access. In the next section actual ways to achieve coalesced
memory access in terms of traffic simulation will be discussed in depth. It
will be shown that changing a simple data structure can result in noticeable
speedup by increasing the amount of coalesced memory accesses.

Technical capabilities of the Geforce G80 series

The most advanced hardware that will be covered by this thesis is the
GeForce G80 series by NVIDIA. This chip has 240 processing units grouped
in 15 multi-processing units. The chip is credited with having a peak per-
formance of about 1.0 TFLOPS (one trillion single-precision floating point
instructions per second) and a memory bandwidth of about 100 GB per
second. In comparison to that, the latest Intel CPU Hapertown is capable
of executing about 80 GFLOPS and has a memory bandwidth of 17 GB/s.

Summary

The latest NVIDIA hardware is based on multiprocessors consisting of a
control unit, several different types of on-chip memory and 16 processing
units. Collaboration in a multiprocessor is based on a SIMT architecture.
This architecture is an extension to more generally used SIMD architectures.
It allows each thread running on a processing unit to hold its own instruction
counter and register set, enabling each thread to act completely independent
from the other threads.

The programmer is not bound to any SIMD-wise constraints if he is not
interested in gaining maximum performance, but is only interested in writing
correct code. Nevertheless it is more likely that one wants to write code that
is optimized in terms of execution speed. In this case global memory access
is the main bottleneck. This can be overcome by obeying certain rules like
alignment of data structures and maintaining coalesced access. The sheer
computing power of the GPU is impressive, but to what extend this power
is utilizable for the queue simulation is the question still to be answered.
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3.1.2 The CUDA SDK software API

Given the above hardware, NVIDIA needed to come up with an API (ap-
plication programmer interface) to make the capabilities of the hardware
accessible to programmers. OpenGL and DirectX provide this accessibility
for graphical operations, but are not designed for general purpose compu-
tation. Only lately, both big graphic device vendors came up with SDKs
intended to support the programming of more general problems on GPUs.

ATI/AMD introduced an extended version of a programming language
developed with massive multi-threading in mind, namely the BROOK lan-
guage [21], named BROOK+ [9].

NVIDIA voted against a new language and extended the C-language by
some new keywords and syntax constructs instead. By resorting to a well
known language like C, NVIDIA tried to keep the learning curve as low as
possible. This design decision makes it very easy for programmers already
capable of programming C or C++ to enter the realm of GPU programming.
Syntactically, there are just a few additional keywords to be learned and
restrictions to be considered. This programming model will be described in
more detail in the next section.

CUDA Computing model

There is basically only one new paradigm that the C-programmer has to in-
ternalize to start programming the GPU: The kernel. A kernel is a specially
marked C-function. This function, when called, will be executed on a large
number of parallel threads, simultaneously, but on different data. To define
a kernel in CUDA, the declaration specifier __global__ is used. Addition-
ally, the programmer has to declare how many threads to start in parallel
with this kernel. This is specified by a new syntax using triple brackets
<<<...>>>.

A simple example in which N float numbers from a float array A are
added to numbers stored in an array B and the result is stored in array C
like this:
// kernel definition

__global__ void vecAdd( float* a, float* b, float* c)

{

int i = threadIdx.x;

c[i] = a[i] + b[i];

}

...

int main()

{

// kernel invocation

vecAdd <<<1,N>>>(A,B,C);

}
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Each of the N threads that execute the vecAdd kernel is given a unique
threadID that can be accessed inside the kernel by the use of the internal
variable threadIdx. In this example each kernel is using this threadIdx to
access one specified element in the array given and adds the array elements
pairwise.

Apart from kernel declared with the keyword __global__, the API dis-
tinguishes two more function types. Functions marked with __device__ are
functions that solely run on the GPU. These functions can only be called
from kernels. Functions marked as __host__ are run on the host machine.
If a declaration specifier is omitted, __host__ is implicitly assumed. The
keywords __device__ and __host__ can also be combined, in which case
the compiler generates two versions of this function, one to be executed on
a CPU and one for GPU execution.

There are some more restrictions for functions declared either as __device__
or __global__:

• They do not support recursion.

• They cannot declare static variables inside the function body.

• They cannot use variable argument numbers.

• Function pointers to __device__ functions are forbidden, to __global__
allowed.

• The maximum size of the argument list of a __global__ function is
256 bytes.

A grid of thread blocks

The internal variable threadIdx is designed as a vector (x, y, z). This makes
accessing data organized in either two or three dimensional array more con-
venient. Threads within this index description form an one-, two- or three-
dimensional block of threads. This provides an easy and natural way to
invoke multi-threaded computation of elements structured in domains of
vectors, fields or matrices. A simple example would be the above addition
extended to a two-dimensional array.
// kernel definition

__global__ void arrayAdd( float a[N][N], float b[N][N], float c

[N][N])

{

int i = threadIdx.x;

int j = threadIdx.y;

c[i][j] = a[i][j] + b[i][j];

}
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Figure 3.4: The grid of blocks of threads defined by <<< (3, 2), (2, 4) >>>
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...

int main()

{

// kernel invocation

dim3 dimBlock(N,N):

arrayAdd <<<1, dimBlock >>>(A,B,C);

}

The actual index of a thread is the x-component in the one-dimensional
case. In the other cases it is straightforward. For a two-dimensional block,
the thread ID of index (x, y) is x + y ∗ Dx and in three dimensions it is
likewise x+ y ∗Dx + z ∗Dx ∗Dy. The dimension (Dx, Dy) can be accessed
through the built-in variable blockDim.

Threads within a block can cooperate. They can exchange data by us-
ing the multi-processor’s shared memory and synchronizing their execution.
This is achieved by setting explicit synchronization points in the kernel by
using the special function __syncthreads(). This method acts as a bar-
rier that all threads of a block of threads have to reach before execution is
resumed behind this point.

This synchronization mechanism and shared memory access is only pos-
sible for threads within one block of threads. The number of threads within
one block of threads is restricted. In the NVIDIA G80 series the maximum
number of threads in a block of threads is 512.

However, a kernel call can be executed by multiple equally shaped blocks
of threads. The total number of executed threads is then the number of
threads in a block of threads times the number of blocks the kernel is run
on. These blocks are organized as a grid of thread blocks. This grid can be
one- or two-dimensional. The dimension of the grid is specified by the first
parameter of the <<<...>>> syntax. A grid of thread blocks is illustrated
by Fig. 3.4.

Each block index within the grid will be accessible from within the kernel
call by the intrinsic variable blockIdx. The dimension (Dx, Dy) of the grid
of blocks can be accessed through the build-in variable gridDim and the
threadID within the grid of block is constructed following the same pattern
as above. Therefore, though only up to 512 threads can make up one block
of threads, the grid of blocks can run thousands or even trillions (the actual
upper limit of individually indexable threads being 65536× 65536× 512) of
threads in parallel.

Thread blocks are required to execute independently. Depending on the
number of cores, they might be executed in parallel or in series. Communica-
tion between two threads in different thread blocks is only possible through
global memory. There is no synchronization mechanism between blocks re-
spectively, or between threads in different blocks. If two instructions need
to be synchronized between all threads, these must be put into subsequent
kernels.

43



Choosing the values for grid and block sizes depends on the problem
domain. It might be necessary to synchronize certain sets of threads. These
need to remain within one block of threads.

But, as all threads of a block have only one small set of shared memory at
their disposal, it might be necessary to cut the number of threads in a block
down, if the kernel needs larger amounts of shared memory. The function
arguments for the kernel call also remain in shared memory, reducing the
available shared memory even more.

Memory types of the API

Reflecting on the numerous memory types of the hardware, there are several
ways to define memory types in the CUDA API.

• __device__: declares a variable residing on the GPU device.

– Resides in global memory space.

– Has the lifetime of the application.

– Is accessible from all threads; is accessible from host by API calls.

• __constant__: declares a variable that:

– Resides in constant memory space.

– Has the lifetime of the application.

– Is accessible from all threads; is accessible from host by API calls.

• __shared__ declares a variable that:

– Resides in shared memory space of a thread block.

– Has the lifetime of the block.

– Is accessible from all threads within the same block.

– Writes are guaranteed to be finished only after execution of __syncthreads().

Compiler for CUDA

Extending the C-language by additional symbols eventually brings the need
for an appropriate compiler. NVIDIA’s CUDA compiler is called “nvcc”.
The “nvcc” compiler’s role is twofold. First of all, it acts like a preprocessor
for the CUDA-related source code files. It splits the code that is to be run
on the GPU from the code run on the host. The GPU related code is then
translated, and new files in regular C are created. In these C-files the CUDA-
device code (called PTX code) is embedded as binary data. Additional code
for loading and starting the CUDA binary object is also included. In the
latest release of the CUDA SDK, PTX code compilation can be triggered
on-the-fly through the driver API.
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Figure 3.5: The nvcc compilers compilation path (taken from [31])

For preprocessing and compiling the C/C++ code NVIDIA uses a mod-
ified version of the open-source C++ compiler Open64 mainly developed
with Intel funding, but currently hosted by Hewlett-Packard and the Uni-
versity of Delaware. The translation process is illustrated by Fig. 3.5.

Atomic operations

As explained earlier, threads which do not run in the same block of threads
have no way to synchronize. Mutual access of the same global data is not
synchronized. If two threads write to the same address in global memory, the
sequence of writing is undefined. If one thread needs to read data and write
it back in a synchronized way it needs to use atomic operations. NVIDIA’s
SDK offers a set of atomic operations which guarantee interference-free read-
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modify-write cycles. These atomic operations are rather expensive in terms
of execution time, but nevertheless useful in some situations that would oth-
erwise result in undefined race conditions. Atomic operations operate on in-
teger values only. Atomic operations include addition, increment, exchange
and a compare and swap operation reminiscent of C’s ? : operator. Also,
the bitwise operations AND, OR and XOR are implemented in an atomic
version.

OpenGL and DirectX interoperability

Given that CUDA code executes on data that resides in the graphic devices
RAM anyway, it suggests itself to offer access to this data through the
drawing interfaces. OpenGL, supervised by the Kronos Group, and DirectX,
developed at Microsoft, represent the relevant 3D Graphics APIs. Both
can interact with CUDA memory blocks. CUDA provides necessary API
functionality to read and write from and to DirectX and OpenGL resources,
making it easy to modify graphics data with CUDA routines or to visualize
CUDA results by exchanging data directly on the graphics device. This
functionality will be used in implementing the visualizer for the CUDA traffic
simulation.

Asynchronous execution

A kernel execution started with the <<<...>>> syntax will resume CPU
code execution immediately. This means that CPU and GPU code execute
in parallel. The kernel calls will be queued for execution and will not run
in parallel. To synchronize CPU and GPU execution the API provides
the function cudaThreadSynchronize() to make sure all kernel calls have
finished their execution. Memory transfer functions between CPU and GPU
also synchronize both devices. cudaThreadSynchronize() should be used
conservatively as it might hold the execution layer from choosing the best
execution strategy. But for benchmarking subsequent kernels it might be a
good choice.

3.1.3 Theoretical peak of calculation speed and memory bandwidth

In this section, some simple benchmarks will be presented to get an impres-
sion of the capabilities of the GPU devices in terms of memory bandwidth
as well as computational power. The next section will present three differ-
ent approaches for benchmarking the performance of either CPUs or GPUs.
The next section will present results from benchmark runs on different ar-
chitectures.
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Listing 3.1: Kernel implementation for the triad operation
// kernel definition

__global__ void arrayAdd( float* a, float *b, float *c, float

scalar , int N)

{

int index = __mul24(blockIdx.x,blockDim.x) + threadIdx.x;

if(index >= N) return;

c[index] = a[index] + scalar * b[index];

}

Some standard problems

The three different benchmarks used in this section will try to get a wide
overview of different figures addressing different areas of performance. The
first benchmark used will be a simple copy instruction on the GPU device.
This instruction will therefore present the sheer bandwidth of the GPU de-
vice when moving parts of the memory. This will give us an impression of the
peak performance possible with the different devices, but is not necessarily
a figure that is of any use in real life. Two more benchmark applications
were chosen with having the computational power of the GPU in mind as
well as a mix of computation and memory access. The latter one is based
on the STREAM benchmark [67] published by John D. McCalpin of the
computer science department of the University of Charlottesville, Virginia.
This STREAM benchmark has been run on a wide range of computers and
supercomputers. It includes four different tests which are mainly targeted at
memory throughput. The four operations implemented for the benchmark
are copy, scalar-multiply, add, triad (add and multiply). Small changes had
to be made to adopt the original STREAM code to the CUDA SDK, namely
kernels had to be defined. One such kernel can be found as an example in
listing 3.1.

The other benchmark chosen is an implementation of the Black-Scholes-
Model introduced in [18] in 1973. It describes the market for an equity
with the equity’s price being modeled as a stochastic process. From that
model follows a partial differential equation (PDE), which again can be
solved for e.g. a European call option. The resulting formula is called the
Black-Scholes formula. Apart from being a Nobel Prize worthy formula, its
benefit in terms of benchmarking lies in its good measure of memory access
and mathematical calculations. This last factor distinguished it from the
other chosen benchmark, the STREAM code. The steam benchmark does
not really test the mathematical functions of the device, except for addition
and multiplication, whereas the Black-Scholes solution relies on exponential
and logarithmic functions, making good use of the transcendental functions
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units integrated in each MP, as described in Section 3.1.1. Therefore it
probably is a benchmark where a smart CUDA application can shine, as
mathematical functions are one of its advantages. Implementations of the
Black-Scholes model can be found in a huge variety of computer languages
at [108]. We will not discuss the actual algorithm in this thesis, as we only
use it as a benchmark, but the implementation is given in listing 3.2 taken
from the NVIDIA CUDA SDK samples [31].

Benchmarking of standard problems and discussion

GeForce 8600GT GTX 280 CPU Pentium
Bandwidth 7638 MB/s 120 GB/s 1068 MB/s
STREAM Copy (double) 1955 MB/s 118 GB/s 2422 MB/s
STREAM Scale (double) 1948 MB/s 118 GB/s 2123 MB/s
STREAM Add (double) 1974 MB/s 121 GB/s 2285 MB/s
STREAM Triad (double) 1965 MB/s 120 GB/s 2292 MB/s
STREAM Copy (float) 7797 MB/s 127 GB/s 5089 MB/s
STREAM Scale (float) 7699 MB/s 126 GB/s 4595 MB/s
STREAM Add (float) 7484 MB/s 127 GB/s 3845 MB/s
STREAM Triad (float) 7413 MB/s 128 GB/s 3621 MB/s
Black-Scholes 763.85 MO/s 8165.94 MO/s 6.62 MO/s

Table 3.1: Benchmark results (MO = Mega Options)

The results of the bandwidth test in Table 3.1show how badly the pas-
sively cooled GeForce 8600GTX performs in terms of memory bandwidth.
The sheer numbers have to be divided by the number of SPs (or cores) to
compare both CUDA devices with each other, as every core has its own
memory link. But still the memory of the older card performs only half of
the GTX280 with 238 MB/s per core against 500 MB/s per core. Apart
from that both devices clearly outperform the CPU in terms of memory
bandwidth. The STREAM suite of tests basically underlines the perfor-
mance of the raw memory bandwidth tests. It is also rather obvious that
NVIDIA overhauled the double precision rendering for the GTX280. Perfor-
mance of the STREAM test with double values can compete with the single
precision results on the new architecture, but is basically half as fast on the
older revision of the graphics device. The Black-Scholes algorithm, which
combines the memory throughput with some elaborate calculations, finally
makes the GPU device really shine. The Black-Scholes implementation runs
about 115 times faster on the GeForce 8600GT than on the CPU. The CPU
implementation does only engage one of the two cores. The GTX280 runs
the algorithm about 1200 times faster than the CPU. This implies that even
one single core of the GPU manages to run the calculation five times faster
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Listing 3.2: Kernel implementation for the Black-Scholes formula for Euro-
pean options
// Copyright 1993 -2007 NVIDIA Corporation. All rights reserved.

// Polynomial approximation of cumulative normal distribution

function

__device__ inline float cndGPU(float d){

const float A1 = 0.31938153f;

const float A2 = -0.356563782f;

const float A3 = 1.781477937f;

const float A4 = -1.821255978f;

const float A5 = 1.330274429f;

const float RSQRT2PI = 0.39894228040143267793994605993438f;

float K = 1.0f / (1.0f + 0.2316419f * fabsf(d));

float cnd = RSQRT2PI * __expf(- 0.5f*d*d) *

(K *(A1 + K*(A2 + K*(A3 + K*(A4 + K * A5)))));

if(d > 0) cnd = 1.0f - cnd;

return cnd;

}

// Black -Scholes formula for both call and put

__device__ inline void BlackScholesBodyGPU(

float& CallResult ,

float& PutResult ,

float S, // Stock price

float X, // Option strike

float T, // Option years

float R, // Riskless rate

float V // Volatility rate

){

float sqrtT , expRT , d1 , d2 , CNDD1 , CNDD2;

sqrtT = sqrtf(T);

d1 = (__logf(S/X) + (R + 0.5f*V*V)*T) / (V*sqrtT);

d2 = d1 - V * sqrtT;

CNDD1 = cndGPU(d1);

CNDD2 = cndGPU(d2);

// Calculate Call and Put simultaneously

expRT = __expf(- R * T);

CallResult = S * CNDD1 - X * expRT * CNDD2;

PutResult = X *expRT *(1.0f - CNDD2) - S *(1.0f - CNDD1);

}
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than the CPU. This has to be attributed to on the one hand the good mem-
ory bandwidth but also the optimized implementation of the mathematical
functions used here. The CPU version was not optimized for any special
instruction set, other than the with the use of the regular -O3 flag which
does some optimization.

To sum things up, the above benchmarks do show impressively what the
GPU devices are capable of, given the right problems. Unfortunately, these
high figures cannot be expected when dealing with the implementation of
the queue simulation. As we will see in the coming section, random access to
memory comes with a rather severe performance penalty, but is nevertheless
at the core of the queue algorithm. So it remains an interesting question if
the GPU device is nevertheless capable to speed things up in this domain. If
a way is found to exploit the power of the GPU in terms of traffic simulation,
further generations of graphics devices will –again– yield a free performance
dinner, so exploring this new road might be fruitful even for generations yet
to come.

3.2 The queue model transferred to CUDA

The algorithms needed to implement the queue model for transport simula-
tion were discussed in Section 2.3.1. In this section, a parallel version of these
algorithms will be implemented to run on a GPU device. Different variations
of implementation will be derived and tested for their performance.

3.2.1 Parallelize the queue model

To parallelize the queue model’s algorithm found in listing 2.5, it needs to
be dissected into distinct parts which can safely be run in parallel. As there
are two main loops that run over all links and all nodes respectively, these
are possible candidates for parallelization. Figure 2.4 illustrated the link
update process. As one can easily see, there is only the link’s storage and
the buffer of the same link involved. No other memory area needs to be
accessed. Therefore, it is safe to do this update for all links in parallel. For
the moveNode() method, we can see that all links contribute solely to one
particular node as incoming link and to one particular node as outgoing link.
Only this particular node touches buffers of its incoming links, therefore no
conflicting, parallel access to these buffers can take place when running all
nodes concurrently. Also, all links occur as outgoing link of at most one
link, so no link’s storage is accessed by more than one node.

As seen, it is safe to concurrently run all link updates and all node
updates and still maintain a deterministic execution of the simulation. The
execution of these two updates should be sequential, though. If we run node
and link updates concurrently, it is indeterminate whether the node or the
link updates a certain buffer first, resulting in different outcomes.
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When transferring the algorithm onto the GPU, two kernel calls are
necessary to achieve the above deterministic parallel execution of the code.
One kernel will update the buffer of all links in parallel and after that another
kernel is responsible for executing the node’s movement code for all nodes
concurrently. The pseudo-code for the general movement loop will look like
listing 3.3.

Listing 3.3: Pseudo code for queue movement
void simstep () {

for all links do {

moveLinks(time);

}

for all node do {

moveNodes(time);

}

time ++;

}

Simulation code without node logic

This section will start with an even simpler approach of executing the sim-
ulation loop than the one implemented by the queue model itself.

The basic flow of vehicles in the queue model is from links to buffers and
from buffers back to links, as seen in Section 2.3.1. The flow from the buffer
to another link is managed by the code that implements the node logic. In
a first and very simple implementation of vehicular flow, this code might be
replaced by moving the vehicles directly from a buffer onto the next link.
This means completely omitting the notion of a node, solely relying on the
links and the link’s buffer. The next link is given by the vehicle/agents
plan. In this first approach to the queue model the moveNode() method
of the algorithm listing 3.3 is replaced by a simpler version acting directly
upon all buffers. This method is called moveBuffer() and a pseudo-code
listing is found in listing 3.4.

Following the discussion in the last section, it is obvious that this im-
plementation of moveBuffer() which runs over all buffers in parallel bears
one major drawback: As all incoming links of a node compete for space on
the outgoing links in parallel, a deterministic execution is no longer given.
Additionally it is necessary to install mechanisms to avoid that one buffer
overrides data which another buffer has already written, as they access the
outgoing link’s storage concurrently. This can be achieved by using CUDA’s
atomic operations, as will be shown in more detail in the discussion of the
data structures used.
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Listing 3.4: Pseudo code for buffer movement
void moveBuffer () {

while (buffer is not empty)

{

dest = destination link of first veh

if( dest.hasSpace ())

{

move veh on top to destination link

} else {

// if first veh cannot leave , none can

break and return;

}

}

}

f1 f2 d1 d2 d3 d4 d5 d6
ACT f f f f f f
Flag ← 24-bit data →

Table 3.2: Data format for plan chunks

3.2.2 Activity chains

The Population sample used for a simulation run consists of a list of Objects
of class Person. This Person object holds information about this particular
person, e.g. age or sex, as well as the plans of this Person.

A Person can have more than one plan, but only one plan of these is
marked selected. Only the selected plan will be executed in the physical
mobility simulation.

Therefore only this plan needs to be reproduced in the GPUs main mem-
ory. As the GPU memory is a tight resource, a representation with a prefer-
ably small memory footprint must be found.

The daily plan of an agent consists of a sequence of activities the agent
plans to attend. These activities are intermitted by the need to travel from
the location of one activity to the location of the following activity.

Each piece of information of a person’s chosen plan is stored in a single
32 bit integer value. The upper eight bits of information are being used as
a flag to indicate the actual meaning of the information bit. The remaining
24 bits of the integer value are left for additional data. Table 3.2 shows this.

There are three different types of data defined: ACT, LEG and ULEG.
The following bit combinations were chosen for the three flags: ACT(0x01),
LEG(0x02) and ULEG(0x03). The following sections will discuss the mean-
ing of each flag. At the end of this section it will be discussed how one can
build the representation of a whole day plan from these primitives.
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Data structures for activities

Per definition, each daily plan starts and ends with an activity taking place
at the same location, most often this location is “home”. Each activity has
an activity type. Examples are “home”, “work”, “leisure” or “school”. Each
activity has a defined end time, when the agent will finish that particular
activity. Two activities might take place at the same location; in that case,
no travel is necessary between these two activities. Integer values preceded
by the ACT flag represent a certain activity taking place. Activities have
two data items relevant for the execution of the simulation. The end time
of an activity is the one information needed and the LinkId of the link on
which the activity takes place is the second mandatory information. The
activity’s location can be found in the first LEG or ULEG entry following
an activity. One integer value is used for storing the activity’s end time.
The activity’s type is not of interest for the mobility simulation; therefore
this data is omitted in the reduced representation of the plan.

The data bits of an ACT item indicate the end time of this activity
in seconds. As there are 24 bits left, an activity can last for a maximum
of nearly 16 million seconds (the data token 0xffffff being reserved for a
special activity) or roughly 194 days. The final home activity has the value
ACTEND == 0x01ffffff, being the ACT Flag combined with the special

value 0xffffff as data.

Data structures for Routes

The class describing a travel between activities is called a leg. This leg
class contains amongst other information the mode of transportation (e.g.
car, pt (public transport), bike) as well as the actual route taken. In this
simulation, we will only execute legs with mode choice ”car”. Any other
mode will be handled as if the agent has been teleported from one activity
to its succeeding activity.

When a travel time is given for a non-”car” mode, this travel time is
being waited for before another activity is started.

The data bytes of a LEG indicate which linkID to travel next on this
leg’s route. As the data region of our integer value is only 24 bits wide, our
network is constrained to a maximum of 16 million links. Each LEG route
is complete in the sense that it contains all links necessary for the car to
travel along including the start and end link.

A LEG is only used for ”car” mode travel. With any other mode, the
ULEG data flag is used. ULEG routes consist of the start links as the first
entry of the route, followed by a special entry which has a time difference
as data. It is the time difference given in the travel time duration member
of this particular leg. Finally the destination link’s ID is given as the third
entry of the ULEG route. Although the ULEG “teleportation” would not
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need the start or end link IDs, as it never enters the link’s buffer or queue
but just gets from one activity to the next, we supply this information to
be able to send more meaningful information to the framework as will be
discussed in Section 4.4.2.

A complete plan

The activity’s location is stored in the first LEG or ULEG information of the
route following this activity. If two activities are on the same link, these two
activities follow in direct sequence, without an extra LEG between them. A
”car”-mode route consists of a sequence of LEG data.

A complete plan consists of at least two activities. It might contain more
iterations of an activity followed by either three ULEG entries or a sequence
of LEG data. If there is a LEG or ULEG data immediately behind an ACT
data it will be the link this activity took place on.

Caused by this information reduction, the simulation is not capable of
determining the actual location of any daily plan that wholly takes place
on one link. In this case the Java framework has to supply the additional
information from the agent’s plan, as will be discussed in the Section 4.1
about the event generation.

See Fig. 3.6 for an example plan translation from its XML representation
to the data chunks used on the GPU.

3.2.3 Network data

Apart from the plan’s data, describing the daily activity chain of every
agent in the simulation, the network upon which the activities and routes
are executed must be read. A (street) network in MATSim consists of links
and nodes. The links represent the streets of our network, whereas the
nodes represent the street crossings. A link represents one side of the street
including all lanes. The opposite direction is modeled by another link.

In addition to the links and nodes, a third data structure is needed to
implement the queue model: each link has an additional buffer to store
vehicles which are ready to go to the next link.

Links

As seen in Section 2.3.1, in order to a link in the queue model, we need
certain information. The freeLinkTravelTime is the time a vehicle needs
to travel a certain link in the uncongested case. The spaceCapacity of a
link holds the upper limit of cars being on a link at the same time. It is
calculated as

spacelink = length ∗ lanes/carsize
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<plan >

<act type="h" x=" -25000" y="0" link="1"

end_time="06:00" />

<leg mode="car">

<route >2 7 12</route >

</leg >

<act type="w" x="10000" y="0" link="20"

end_time="17:00" />

<leg mode="car">

<route >13 14 15</route >

</leg >

<act type="h" x=" -25000" y="0" link="1" />

</plan >

(a) A sample plan

ACT 0x005460

LEG 0x000001

LEG 0x000002

LEG 0x000007

LEG 0x000012

LEG 0x000020

ACT 0x00EF10

LEG 0x000020

LEG 0x000013

LEG 0x000014

LEG 0x000015

LEG 0x000001

ACT 0xffffff

(b) A data representation

Figure 3.6: Translation of a XML Plan into the GPU structure.
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Car size is set to 7.5m in all examples executed within this thesis. The
final attribute missing is the flowCapacity, which is the maximum number
of vehicles that can leave a link in a given time step. It is used to determine
the size of the buffer needed for every link and is calculated as follows:

sizebuffer = capacityflow ∗∆ttimestep/∆tflowperiod

The capacityflow and ∆tflowperiod is given by the network XML file, ∆ttimestep

is 1 second in all runs performed here. Another information needed for de-
scribing a link is which two nodes this link connects, namely the fromNode
and the toNode. A link does not hold any geographical information about
its placement or orientation. This information has to be derived from the
appropriate node’s data.

Nodes

The nodes hold information about their actual coordinates. This informa-
tion is only used for visualization, not to extract link length from, as the
actual length of a link might differ from the Euclidean length between the
two nodes. The node’s coordinate system might not allow length calcula-
tion, or the actual street represented by the link might be winding. Albeit
this information is not given explicitly by the network’s XML file, all incom-
ing links of a node will be calculated and stored with every node. As this
information will be needed at every time step, it is pre-calculated so as to
not having to search for it while the simulation is running.

3.2.4 Administrative structures

All links and nodes are given a new internal ID after being read from the
XML file. The original ID is stored in a map along with the new ID to
identify these links and nodes for event writing later on. The new ID is an
integer number starting from zero to maxlink−1 or maxnode−1 respectively.
This guarantees that the internal IDs are contiguous and confined.

As seen above, the maximum sizes for all buffers and link spaces neces-
sary to store the vehicles en route is known. To avoid memory segmentation,
all vehicle data cells for the link space and all vehicle data cells for the buffers
will be allocated in one big chunk of memory. Additionally, we define ad-
ministrative data structures to hold the bounds of the actual link space or
buffer queue. These administrative structures will give us a start and an
endpoint for every link or buffer and the actual assignment.

As no link can be an incoming link of more than one node, the link data
can be sorted by their respectively toNode. Then another additional data
structure for the nodes is used that points to the first and the last incoming
link of a given node. An order might get applied to the links within one
node. At first, the links will be sorted by their relative flow capacity. In
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order to check all incoming link buffers for vehicles ready to leave the link,
each node can step from its first link to its last link in sequence serving
them in order of their capacity or shuffle these indexes to serve the links in
changed order.

Choosing the implementation of these administrative structures will greatly
impact the actual performance of a simulation run. Different implementa-
tions of data structures will be described in the following sections. Finally
the performance measured with the different implementations will be dis-
cussed.

3.2.5 Array of structs

Coming from a CPU based environment, where dynamic data structures
like the STL-library or Java’s collections are used to store our data, the
obvious choice is to use an array of a data structure (AOS = array of struct)
combining the necessary administrative information. Such a struct might
be defined as follows:
QueueAdmin{

int pos;

int start;

int end;

}

This structure is illustrated in Fig. 3.7. For every link it contains in-
formation about the starting position of this link’s data in the large vehicle
array as well as the end position and the insertion point for the next vehicle.
The position member tells us how many of the queue’s slots are actually
filled with cars right now. If pos == start, as it is at the beginning of the
simulation, there is no car in the queue; otherwise, all cells from start to
pos are filled with car data. The integer values start, pos and end refer to
indexes inside of the large car data array.

If a vehicle gets added to the link or buffer, it is inserted at the position
pointed to by the pos member of the struct, and this member is increased
by one to point to the next free space. If, on the other hand, a car has to be
removed from the start of the queue, all remaining cars have to be moved
one position nearer to the start and the pos pointer must be decremented
to point to the now empty slot.

Apart from the benefit of an easy and straightforward implementation,
this struct bears two main disadvantages. First, moving all vehicles in the
queue every time the first vehicle gets removed is costly in terms of per-
formance. Second, the data structures are not aligned in such a way that
coalesced access to this data is possible. Each thread executing the link
movement code will at least have to access its pos and end member to check
whether any cars are in the buffer. For a given index i and a size of 4 bytes
for an integer variable, this will access byte positions 0 and 8 in the above
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Figure 3.7: Administration structure for vehicle data residing on a link or
in a buffer as AoS (array of structs)

QueueAdmin data structure. The struct itself will be situated from byte po-
sition 3× i. So byte indexes 3× i and 3× i+ 8 will be accessed. This is not
feasible in a coalesced way as described in Section 3.1.1. As the penalty for
uncoalesced memory access is rather high, other data structures should be
used.

3.2.6 Struct of arrays

One inexpensive way to achieve coalesced access to memory is to rearrange
the data into a multitude of different streams of data that can be accessed
by the same index. Instead of using an array filled with structs of the above
layout, this struct is changed to hold pointers to arrays of a simple data type,
i.e. an integer value in this case. This will –in terms of memory access–
give rise to a memory layout that is better aligned with thread indices.
Two adjacent kernels will have adjacent memory accesses, separated by 4-
byte-wide integers, which enables coalesced memory accesses, the fastest
way to access the global memory from a thread block. In terms of the
implementation it is also a simple optimization step, as one only ”shifts”
the index to the right.

This has been done to all administrative memory layouts, and the al-
location code has to be slightly adapted. The modified layout of the data
structure is illustrated by Fig. 3.8. This Struct of Arrays (SOA) layout has
also been suggested in a CUDA workshop [50].
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Figure 3.8: SoA (struct of arrays) layout for the administrative structure

QueueAdmin{

int pos;

int start;

int end;

}

(a) AoS before

QueueAdminSoA{

int pos[];

int start [];

int end[];

}

(b) SoA after

Figure 3.9: Translation of the struct from AoS to SoA.
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The actual struct is to change from the form in Fig. 3.9(a) to that in
Fig. 3.9(b). Likewise the implementation needs to be changed. A former
expression
int size = array[index].pos − array[index]. start ;
will change to
int size = array.pos[index] − array.start [index ];

This transition could be done in a nearly mechanical way. It was ap-
plied to the buffer and the link’s and agent’s administrative structs. The
performance gains through this optimization will be discussed in Section 3.4.

3.2.7 Ring buffer

The second drawback of our initial implementation from Section 3.2.5 is
the need to move all remaining vehicles, whenever vehicles leave the queue.
This leads to performance penalties in a congested situation, when only a
small number of vehicles is allowed to leave a link and all remaining vehicles
must be moved forward each time step. It also causes additional uncoalesced
memory accesses, which should be avoided.

Fortunately, there is a well known cure to this problem, namely the use
of a ring buffer as known from file I/O implementations [45]. The ring
buffer basically adds another pointer to the original struct, pointing to the
start of the queue. So, whenever a vehicle is removed, the start pointer is
decremented, and when a vehicle is inserted at the end of the queue, the end
pointer is incremented. A possible ring buffer data structure is given by the
following struct, as illustrated by Fig. 3.10.
QueueAdminRing{

int start [];

int len [];

int ep[];

int count [];

}

The ring buffer comes with some extra overhead in administrative data
and effort. The ring buffer implementation above has one start pointer
which is pointing into the vehicles block to indicate this link’s first memory
position as before. The other members of the struct are relative to the start
position. The len member gives us the maximum size of this buffer. So start
+ len points behind the last element of this buffer. The ep (extraction point)
member indicates where the first element of the actual queue resides. The
count member is also relative to the extraction point member and indicates
how many units there are in the queue at a given time. Vehicles are removed
from a memory position calculated by

postop = start+ ep

.
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Figure 3.10: Administration structure implemented as a ring buffer

Up to count vehicles can be removed from there, calculating the next
position as

nexttop = start+ (ep+ i)%len

where i runs from 0..count -1. We can insert up to len - count vehicles
at the insertion position calculated as

posinsert = start+ (ep+ count)%len

Insertion and removal of vehicles does not need to move any existing
vehicles anymore, enhancing performance in situations where the AOS data
structure was not performing well. The size of our administrative data
structure is increased by one which could result in performance losses in
the uncongested time steps of the simulation, as more reads are needed to
evaluate the ring buffers state.

3.2.8 Vehicle data

Two versions of data handling for the vehicle data were implemented. For
the AOS and SOA implementation the vehicle data is defined as
typedef struct vehdata {

int nextdata;

int id;

int deptime;

} VehData;
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whereas the more sophisticated implementation with the ring buffer struc-
ture uses a plain
typedef unsigned int VehIdType;

for storing the vehicle’s ID only. The first data structure VehData caches
additional data, namely the next departure time as well as the next plan’s
entry, for easier access in the kernels. Accessing these data locations would
cost two dereferencing actions otherwise. Although this seems a good idea,
the later kernel for the ring buffer based algorithm uses only the vehicle
ID as data for the buffer and link-space and caches the departure time in
the plan’s administrative structures and just executes the double referencing
for the plan’s data. This makes vehicle movement less costly, as only one
integer value has to be moved. As the benchmarks will show, this will not
necessarily improve the performance of a run. The additional references to
get the uncached data from the plans file can, in some situations, take more
time than is saved by not having to move the bigger data structure. But the
buffer and link space sizes shrink to a third of their original size, thereby
saving memory and making it possible to run bigger scenarios. This was
deemed more important than the performance loss. Exact figures will be
shown in the benchmarks in Section 3.4.

3.3 The simulation loop

After having implemented the various data structures, in this section, the
actual code to implement the queue model on the CUDA hardware will be
discussed. Only one implementation of the code for the internal movement
on links is presented as the moveLink() code did not present many options
for diversification. Three different implementations for the movement of the
vehicles across the nodes were implemented. All of these implementations
will be discussed in the following sections.

The starting point of this thesis was not so much to present the best
parallel code for implementing a transport simulation on the GPU, but to
see if it is feasible to achieve relevant speedups with using existing –CPU
based– paradigms and algorithms and transport them to GPU without much
change. Therefore the most straightforward implementation was chosen,
whenever possible.

3.3.1 The moveLink() kernel

The pseudo code for the movement within the links can be found in Section
2.3.1. To transfer this to the GPU, mainly the access to the data structures,
described in the sections above, needs to be implemented. An implementa-
tion of the moveLinks() kernel for the AOS (array of structs) data structure
can be found in listing 3.5.
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In line 6 is an “early out” option which is chosen whenever no vehicle is on
the link at that time. If there are vehicles on the link, the maximum possible
number of vehicles on the link is calculated in line 8. The dataEnd member
might be larger than the actual linkEnd would allow, as the buffer’s linkpos
member is incremented in moveNodes() regardless of the actual insertion of
a vehicle into the link. This will be discussed in depth in Section 3.3.3. In
lines 10 to 12 the allowed flow of vehicles for this time step is calculated.
Then all vehicles will be iterated, until either a vehicle has a departure time
later than the time of this step, or the buffer’s flow capacity is exhausted or
all vehicles were iterated. If one vehicle has an applicable departure time,
the kernel will check whether the next planned item is to enter another link
or to perform an activity. In the latter case, the timer for this particular
activity will be set, and the vehicle is removed from the link’s queue. The
handling of vehicles in activities is obliged to the insertWaiting() kernel
discussed later. If a vehicle is ready to enter another link and enough buffer
space is left, lines 27ff. will move that vehicle into the link’s buffer and
decrease the flow related variables accordingly.

If either the first vehicle does not fit into the buffer, or the first vehicle’s
departure time is later than this time step, the iteration of the queued
vehicles can be stopped. In lines 42 to 48, the remaining vehicles are moved
forward, if necessary. Line 50 finally stores the updated flow_accu variable
for use in the next time step.

Listing 3.5: Kernel for link movement (AoS)
1 __global__ void moveLink_k(int time , ...) {

2 int linkIndex = __mul24(blockIdx.x,blockDim.x) + threadIdx.

x, p = 0, move = 0;;

3

4 int dataIndex = linkAdmin[linkIndex ]. start;

5 int dataEnd = linkAdmin[linkIndex ].pos;

6 if (dataIndex == dataEnd) return;

7

8 dataEnd = min(linkAdmin[linkIndex ].end , dataEnd);

9

10 float cap = flow_cap[linkIndex ];

11 float accu = flow_accu[linkIndex ];

12 if (accu < 1.0) accu += cap -(int)cap;

13

14 for (p = dataIndex; p < dataEnd; p++){

15 //get vehicle data and check departuretime

16 VehData* veh = &linkData[p];

17

18 if (veh ->deptime <= time){

19 // this vehicle is ready to go to a buffer if there is

space

20 // first check if next data is ACTIVITY , then we do not

need buffer
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21 if ((veh ->nextdata & ACTDATA) == ACTDATA) {

22 int actend = veh ->nextdata & 0xffffff;

23 //set act endtime in plans , just remove veh from link

aka inc move;

24 plans[veh ->id]. nextactend = actend;

25 move ++;

26 } else {

27 int bufferpos = bufferAdmin[linkIndex ].pos;

28 if( (bufferpos < bufferAdmin[linkIndex ].end)&& ((cap >=

1.0) || (accu >= 1.0))) {

29 //yes , there is place in the buffer , move vehicle

there

30 moveVehicle (& bufferData[bufferpos], veh);

31 move ++;

32 bufferpos ++;

33 bufferAdmin[linkIndex ].pos = bufferpos;

34 if (cap >= 1.0) cap -= 1.0;

35 else accu -= 1.0;

36 } else break;

37 }

38 } else break; // if nothing has been removed from link , or

no place in buffer stop here

39 }

40

41 // from now on just step through remaining veh to copy them

to front of link

42 if (move != 0) {

43 for(;p < dataEnd;p++) {

44 VehData* veh = &linkData[p];

45 moveVehicle (& linkData[p - move], veh);

46 }

47 linkAdmin[linkIndex ].pos = dataEnd - move;

48 }

49

50 flow_accu[linkIndex] = accu;

51 }

3.3.2 The moveBuffer() Kernel

In a first implementation of moving particles on the GPU, the actual node
logic was completely omitted. Looking for the simplest possible solution for
moving particles around the network, these particles were transported from
the buffer directly back into the link space of the appropriate link that is
the next link on the route of the particle. Although this does not necessarily
deliver a realistic traffic pattern, it is a very simple test to see what speedup
can be achieved by the use of CUDA devices. The moveNodes() code of the
queue model is replaced with a moveBuffer() method, which simply takes
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all vehicles from a link’s buffer and tries to put them into the next link’s
space. This functionality is shown in listing 3.6.

Listing 3.6: Kernel for buffer only movement (AoS)
1 __global__ void moveBuffer_k(int time , ...) {

2 int linkIndex = __mul24(blockIdx.x,blockDim.x) + threadIdx.x,

p, move = 0;

3

4 int dataIndex = bufferAdmin[linkIndex ]. start;

5 int dataEnd = bufferAdmin[linkIndex ].pos;

6

7 //clip too large pos pointers from moveLink () code

8 dataEnd = min(bufferAdmin[linkIndex ].end , dataEnd);

9

10 for (p = dataIndex; p < dataEnd; p++){

11 //get vehicle data and check departuretime

12 VehData* veh = &bufferData[p];

13 // go to a buffer if there is space ...so, get next link’s

buffer

14 int toLinkIndex = veh ->nextdata & 0xffffff;

15 int linkpos = atomicAdd (& linkAdmin[toLinkIndex ].pos ,1);

16

17 if( linkpos < linkAdmin[toLinkIndex ].end) {

18 // calc nextdata and deptime here

19 int nextDataIndex = plans[veh ->id].idx;

20 PersonData nextData = plansData[nextDataIndex ];

21 veh ->nextdata = nextData;

22 plans[veh ->id].idx = nextDataIndex + 1;

23 veh ->deptime = time + linkAdmin[toLinkIndex ]. traveltime;

24 moveVehicle (& linkData[linkpos], veh);

25 move ++;

26 } else break; // if the "first" vehicle can not move stop

the whole process

27 }

28 // from now on just step through remaining veh to copy them

to front of link

29 if (move != 0)

30 for(;p < dataEnd;p++) {

31 VehData* veh = &bufferData[p];

32 moveVehicle (& bufferData[p - move], veh);

33 }

34

35 bufferAdmin[linkIndex ].pos = dataEnd - move;

36 }

The algorithm iterates over the vehicles from the buffer’s start position
to the current insertion point. The destination link of the topmost vehicle is
being looked up, and an atomic addition is executed on the destination link’s
position pointer. The contents of the pointer before the addition is returned

65



and stored in linkpos. As this operation is atomic, it is guaranteed that no
other concurrently running thread can get the same link position counter.
Still it has to be ensured that the gathered link position counter is a valid
one. It must be smaller than the destination link’s endPosition.

If this condition is met, it is safe to store the vehicle at the top of
our buffer into this link’s space. After that the iteration continues. If the
topmost vehicle cannot be moved, the whole iteration stops. Again, at the
end of our kernel remaining vehicles have to be moved to the front, and the
latest end position of the buffer has to be saved for later use.

3.3.3 The moveNode() Kernel

A more realistic version of the movement at an intersection is given by the
implementation of moveNodes(). This kernel can rely on knowledge about
what incoming links an intersection has to service. For this implementation
the incoming links are being served in a predetermined order. The incoming
links are sorted from larger flow capacities to smaller ones. The algorithm
iterates over all incoming link’s buffers, satisfying the buffer’s demand as far
as possible and then switching to the next link, if this link’s buffer is empty
or the first vehicle cannot leave the link. Then the next link has a chance
to distribute its vehicles. The code for that is quite simple. It is based on
moveBuffer_na() method from the last section. The only difference is that
this moveNode_na() method does not need to use an atomic operation for the
destination link’s position increment. The only links that can possibly access
the destination link’s space are now being serialized inside the moveNodes()
method, as only the incoming links of this particular node are candidates for
inserting vehicles into the destination link. The method is listed in listing
3.7.

Listing 3.7: Kernel for node movement (AoS)
1 __global__ void moveNodes_k(int time , ...) {

2 int nodeIndex = __mul24(blockIdx.x,blockDim.x)+threadIdx.x;

3

4 int dataStart = nodesData[nodeIndex ]. start;

5 int dataEnd = nodesData[nodeIndex ].end;

6

7 for (int p = dataStart; p < dataEnd; p++) {

8 // serialized calc of movement for link’s start to end

9 moveBuffer_na(p, time , ...);

10 }

11 }

3.3.4 The moveNode() Kernel with random selection

The above code privileges links with higher flow capacities. This can lead
to overly decreasing traffic on the smaller links and is not a good implemen-
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tation of traffic behavior. Therefore it is necessary to give the other links a
chance to continue with their traffic event when the main road is constantly
congested.

A common way, also implemented in the Java version of the queue sim-
ulation, is to choose the sequence of precession for the links in a random
fashion. To maintain a higher probability for the “main streets” to be cho-
sen by the random draw, the domain of the draw is divided into different
sized parts, depending on the flow capacity of the respective link. This
has been described in Chapter 2.3.2. Multiple random numbers have to be
drawn for this approach. For the CUDA simulation a different approach was
chosen. Again, the domain of the random draw was divided into sections of
length proportional to the relative flow capacities of the incoming links of a
node. Then only one random number is drawn and a link is chosen as in the
Java implementation. Beginning from this link, all incoming links are then
served in a ring-buffer like fashion. Therefore it is still maintained that the
link with the highest flow capacity has the highest probability to be drawn,
but other links will get a chance from time to time, depending on their flow
capacity. To reduce the necessary computation and memory accesses in the
kernel a precomputed value is stored with each node as follows: As the ran-
dom number generator presented by [55] and used in this implementation
generates positive 32-bit integer values, the integer number inSumMult
necessary to multiply the actual sum of incoming flows for one node with
to yield the maximal positive 32-bit integer (MAX_INT == 0x07fffffff) is
stored with every link. So for every Node n

inSumMultn =
∑

incominglinksn

capacityflow/0x7fffffff

is stored with the node.
In the kernel, one random number is used. The sum of the incoming flows

multiplied with the node’s inSumMultn is computed. This is guaranteed
to sum up to MAX_INT. As soon as the sum is greater than or equal to the
random number, the loop is stopped and the according link is chosen as the
start link. All other links are served in a ring-buffer fashion starting from
this link and ending with the link before this start link. So for a link l1
the probability to be chosen as the first link is exactly as it was in the Java
implementation:

p1l1 = flowcapl1/
∑

linksincoming

flowcapincoming

But the probability of a link l2 to be picked as a second link will differ from
the java version’s

p2l2 = (1− p1l2)× flowcapl2/((
∑

linksincoming

flowcapincoming)− flowcapl1)
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and will be equal to the previous link’s probability to be the first link.
Nevertheless this behavior will assign every node a certain chance to deliver
their vehicles first.

Both the Java version and the version presented here try modeling (un-
known) logic of the street crossings. Neither of the implementations have a
straight-forward real-life interpretation. Dividing the time steps into time
windows according to the actual capacities of the links would have been a
feasible approach to model the intersection logic without resorting to ran-
dom numbers. The lowest common denominator for all link capacities must
be found and all link intersections must get time slices according to their
capacity times this number. This approach would model some sort of traffic
signal installed at the respective node or street crossing. Replacing them
with a more precise model dealing with the traffic signals installed would be
advantageous. This has not been tried in this thesis, because the complexity
of such an implementation is high and additional sources of data would have
to be acquired for modeling the signals correctly.

Listing 3.8: Kernel for flow-capacity-dependent random pick of a starting
link

1 __device__ int

2 chooseRandomStart(int dataStart , int dataEnd , int inSumMult ,

int rnd) {

3 unsigned int sum = 0;

4 int i;

5 for (i = dataStart; i < dataEnd; i++) {

6 sum += (int)(inSumMult * dsimdata.flow_cap[i]);

7 if (rnd <= sum) break;

8 }

9 return i - dataStart;

10 }

3.3.5 The alternative moveNode() and moveBuffer() kernels

As avoiding uncoalesced memory accesses proofed to be a good strategy
for achieving speedup, another kernel was implemented trying to exploit
this even further. The implementation called RING2 in the results of Sec.
3.4 differs from the RING implementation in that the moveBuffer() resp.
moveNode() kernels only mark vehicles ready to move over to the link space.
This is done by writing the vehicle’s destination index into an additional field
vehDest. A second kernel runs over the complete block of buffered vehicles
moving only the vehicles with a destination set.

This additional kernel can access the buffer data in a coalesced way. This
leads to performance gains in the RING2 setting with moveBuffer() but
does not perform well in the case with moveNode(). While with moveNode()
there is a speedup possible with doing only coalesced memory accesses, the
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moveNode() code still executes the read access to the buffer in an uncoalesced
manner, as it is aligned to the node data. The alternative implementations
only make sense when one has to move the larger VehData struct. In case
of the VehIdType used in the EVENT variants, the writing of one integer
pointer per vehicle is as expensive as directly writing the vehicle’s Id into the
appropriate link space. Therefore the RING2 variant was discontinued in
favor of the, also less space consuming, EVENT variant with the VehIdType
data type.

3.3.6 The insertWaiting() kernel

One last kernel is needed. As seen in Section 3.3.1, whenever a vehicle has
reached the destination link to perform an activity on, it is simply removed
from the link’s queue and a timer is set to the time the activity will stop.

The insertWaiting() kernel is responsible for checking whether a ve-
hicle wants to leave an activity. It checks the timer for every plan on every
tick. If the timer is set to −1 it ignores the plan, as this indicates that the
vehicle is driving along a route. Otherwise it tests whether the activity’s
end time is reached. When that is given, the vehicle is put back into the
link buffer of the activity’ link, when there is space left in the buffer. Oth-
erwise the kernel will repeat trying to do this in the next time step, until it
succeeds. It is also possible that two activities take place in succession at
the same link. In this case the timer is reset to the next activity’s end time.

Again the kernel is shown in listing 3.9 for the AOS data structure.

Listing 3.9: Kernel for executing activities (AoS)
1 __global__ void insertWaiting_k(int time , ...) {

2 int planIndex = __mul24(blockIdx.x,blockDim.x) + threadIdx.x;

3

4 int deptime = plans[planIndex ]. nextactend;

5 if (deptime > time) return;

6

7 int nextDataIndex = plans[planIndex ].idx;

8 PersonData nextData = plansData[nextDataIndex ];

9

10 if (( nextData & LINKDATA) == LINKDATA) {

11 int linkIndex = nextData & 0xffffff; // link of activity;

insert in buffer

12 int bufferpos = atomicAdd (& bufferAdmin[linkIndex ].linkpos

,1);

13

14 if( bufferpos < bufferAdmin[linkIndex ]. linkend) {

15 //this will now drive away , put it in buffer , if there is

room

16 plans[planIndex ]. nextactend = 0xffffff; //no activity

being performed right no

17
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18 //yes , ther is place in the buffer , fill vehicle there

19 VehData* veh = &bufferData[bufferpos ];

20 veh ->id = planIndex;

21 nextData = plansData[nextDataIndex +1]; //this is the NEXT

link

22 veh ->nextdata = nextData;

23 plans[planIndex ].idx = nextDataIndex + 1;

24 }

25 }else { //two ACTIVITIES on the SAME link

26 // increase counter to next activity

27 plans[planIndex ].idx = nextDataIndex + 1;

28 // set next departuretime

29 plans[planIndex ]. nextactend = plansData[nextDataIndex +1]

& 0xffffff;

30 }

31 }

3.4 Benchmark and performance results

Not all combinations of the above algorithms and data structures have been
tested. The AOS and SOA data structures have been implemented with
the VehData structure only, the plain ring buffer implementation uses the
VehData struct as well, but the versions used for writing events in the next
chapter, which are also based on ring buffers, use the simpler VehIdType as
defined in Section 3.2.8. The simpler data type comes with the advantage of
not having to move three integer values every time a vehicle is moved across
a link or buffer. But on the other hand this version has to get the next
data chunk needed to determine the next link by using two indirections,
whereas the older version only needs one. As the benchmark results will
show, these differences about balance each other. Still the use of VehIdType
cuts the memory consumption of link space and buffer to a third, so this
version is preferred in later implementations. There are four different im-
plementations of data structures used named SOA (struct of arrays), AOS
(array of structs), RING (ring buffer) and one called EVENT (ring buffer,
with VehIdType). Furthermore three different ways to move vehicles from
the buffer to the next link’s space were implemented.

The plain moveBuffer() method does not implement any regulation for
the competition of the incoming links for space on the outgoing links. It is
the simplest implementation. The moveNode() implementation does serve
the incoming links in the order of their respective flow capacities, which is
unfair to the smaller links. And a third implementation moveNodeRnd()
chooses a random incoming link as a starting link at every time step instead
of using the predetermined order. Not all methods have been implemented
for all data structures. Table 3.3 gives an overview. The combinations
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data struct moveBuffer() moveNode() moveNodeRnd()
AoS, sec.3.2.5 VehData AOS AOSNODES
SoA, sec.3.2.6 VehData SOA SOANODES
Ring, sec.3.2.7 VehData RING RINGNODES RINGRND
Ring2, sec.3.3.5 VehData RING2 RINGNODES2
Event, sec.3.2.8 VehIdType EVENT EVENTNODES EVENTRND

Table 3.3: Data structures and execution paths implemented for bench-
marking. (The last row is named ”Event” as this configuration is used for
implementing the event handling in Sec. 4.1)

with blank fields have not been implemented. The names in the other cells
correspond to the names used in the benchmark tables.

3.4.1 Hardware

Two different hardware systems have been used for evaluation of the bench-
marks. The technical data of the two systems can be found in Table 3.4. The
LOW system uses an inexpensive, passively cooled version of the GeForce
8600 series. With its severely reduced memory bandwidth and small number
of cores, it marks the lower end of possible GPU acceleration. The HIGH
system uses the latest installment of NVIDIA GPUs. This GPU has 240
cores and, albeit being at nearly the same clock rate, a much higher band-
width. This is due to the fact that each core has its own link to the main
memory. The bandwidth per link is with 238 MB/s (LOW) and 500 MB/s
on the HIGH system more reasonable to compare. Nevertheless the band-
width of the lower end system is inferior to that of the high end system,
which should result in a speedup decrease that is higher than the actual
ratio of cores.

System GPU CPU

LOW
Name GeForce 8600 GT Intel Pentium
Num. cores 32 2
Clock rate 1.18 GHz 2.0 GHz
Memory size 1 GB 3GB
Mem. bandwidth 7638 MB/s

HIGH
Name GeForce GTX280 Intel Pentium
Num. cores 240 2
Clock rate 1.3 GHz 2.2 GHz
Memory size 1 GB 3 GB
Mem bandwidth 120 GB/s

Table 3.4: Technical data of CPUs and GPUs used
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3.4.2 Data samples and network

Each of the configurations in Table 3.3 has been run on both systems with a
variety of data sets. To construct feasible results a data set from a previous
work of Chen et al. [30] has been taken. It represents the overall work
traffic in the Zurich area on a normal business day. This sample has about
1.8 million agents. To construct a base set for the runs in this thesis, 1
million agents have been taken from the Zurich area sample. Starting from
this base set of 1 millon agents further samples have been taken. Each
sample of 100%, 50%, 25%, 10% and 1% was run on the Zurich area network
consisting of approximately 37.000 links and 25.000 nodes. The actual Java

LOW LOW LOW Opteron
Java base

Code Rev. 3562 Rev. 7241 Rev. 7241 Rev. 7241
event
handling w/o w/o with with
Sample # Agents
100% 1 mio. 108 – – 96
50% 500.000 181 142 – 170
25% 250.000 308 323 254 267
10% 100.000 462 533 463 471
1% 10.000 1123 1004 938 1169

Table 3.5: Real time ratios for the CPU-based Java simulation and sample
sizes used in this thesis (all ratio values were taken at midnight, 24:00)

version of the MATSim queue simulation was run on the same set of data
to get an idea of the speedup achievable by using the GPU instead of a
highly optimized implementation on the CPU. These runs were executed on
the system labeled “LOW” in Table 3.4 with an earlier version of the Java
simulation (Revision 3562) and all event handling disabled. The running
times of these runs can be found in the column Java base. All speedups
mentioned in the rest of this chapter are relative to these running times.

To get an impression of the computing power of this home PC system,
additional runs were executed on an Opteron-workstation. These runs were
executed with a more recent version of the Java simulation (Revision 7241)
with improved speed. The running times can be found in Table 3.5 and
include the event generation and handling. To compare these values to the
values used for speedup calculation additional runs were made. The LOW
system was run on certain samples with event handling installed, thus with
exactly the same configuration as the Opteron runs. Then a further run was
started, this time without event generation and handling, as the original
Java base configuration. The real time ratios achieved for the different
configurations together with the actual agent count of the samples produced
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can be found in Table 3.5. The running times of both CPU-based systems
are almost equal for the configuration with event handling. The additional
runs without event handling show an improvement of about 15%. One can
assume that the Opteron runs would also improve to that magnitude with
event handling disabled. The running times of the original runs with the
Java base are thus expected to have about 5% to 15% less performance.

Finally, the samples were also run with a CPU based version of our ring
buffer algorithm, for getting an impression of how the algorithm performs
on a CPU. This will help to estimate whether a possible performance gain is
to be attributed to the multi-core hardware used, or solely to the necessary
algorithmic changes made to implement the queue model on CUDA.

All real time ratio and speedup values were calculated from the simu-
lation time necessary to run the simulation up to midnight (24:00). After
midnight only a very small group of agents was still active. But these few
agents drove for another 10 hours. So the sample until midnight deemed
a better performance indicator than the overall runtime of the simulation
including the long periods with nearly no traffic.

3.4.3 Results for the GeForce 8600 GT

The GeForce 8600 GT used in running the benchmarks is a passively cooled
version of the GeForce 8600 series of GPUs. This version is at the lower end
of the GPUs capabilities. It has 32 cores running at 1.18 Ghz. The memory
bandwidth is also at the lower end. Still it has 1GB of RAM so even the
bigger samples up to the 100% sample can be run. The benchmark results
for this card will be discussed in the following sections.

Results for AOS and SOA structs

The results for the simpler implementations shown in Figure 3.11 indicate
that the AOS and AOSNODES implementation do perform a bit better than
the actual Java version which we are using in the MATSim framework. The
results for the SOA and SOANODES data structures look more promising.
This has to be attributed to the data access pattern, which is not coalesced
in the AOS case. Albeit the speedup is still rather low, it performs better or
equal to the Java implementation. Proportionally seen it is apparent that
the GPU implementation of the queue model scales in nearly the same way
as the Java version, so that the ratio stays about the same for all sample
sizes. Only the SOA offers remarkably more performance on the 10% sample
than the Java version.

Results for the RING implementations

When taking into account the ring implementations RING, RINGNODES,
RING2 and RINGNODES2, another relevant speedup occurs as shown in
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Figure 3.11: Speedup of the GeForce 8600 GT relative to the Java version

Figure 3.12: Speedup of the GeForce 8600 GT relative to the Java version
(continued)
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Fig. 3.12. The RING versions outperform the simpler implementations.
With the bigger samples, this difference gets even more obvious. This is
due to the higher number of vehicles moving through the net at one time
step. This results in more performance being spent on moving the actual
vehicles in the simpler implementation, which is not necessary for the ring
buffer based implementations. The speedup achieved with the ring buffer
based implementations goes up to nine times faster than the Java imple-
mentation. The version of the code which additionally generates events is
slower than the version without. Still this performance loss is rather small.
Even the generation of random numbers does not impact the performance
prohibitively. As EVENTRND is the implementation closest to the Java ver-
sion, the speedup of this version might be called the most relevant speedup.
A speedup of four against the Java version is possible with the EVENTRND
version.

Although the speedups achieved with our GPU implementation are not
very big, still every implementation is faster than the Java version. In the
next section we will run the code on the high end system and will compare
the speedups to the ones here.

3.4.4 Results for the GeForce GTX280

The GTX280 is the latest installment of the G80 series of NVIDIAs GPUs.
It runs at 1.3 Ghz, and has a remarkable memory bandwidth of 120GB per
second and 240 cores. This is 7.5 times the core count of the lower end GPU.
When our implementation scales well with the number of cores we should
be able to achieve a speedup of 7 against the other runs. All test were run
on this card with exactly the same code that was run on the low end card.
Not even a re-compile was necessary to start the application.

Results for AOS and SOA structs

As we can see from the diagram 3.13, the speedup goes up to 37 for the
SOA variant. Apparently the speedup with respect to the sample size is not
linearly to the Java version anymore. The implementation is more sensitive
to the sample size on the GTX280. This tendency is also visible in the
direct speedup comparison of GeForce 8600 GT and GTX280 in diagram
3.16. Again one can see that the speedup decreases with the increase of
the sample size. Nevertheless this speedup is remarkable. The GTX280
performs up to 16 times faster than the older card. As the number of cores
only suggests a speedup of about seven. This must be attributed to the
bandwidth of the memory access which is doubled in the newer card.
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Figure 3.13: Speedup of the GTX280 relative to the Java version

Figure 3.14: Speedup of the GTX280 relative to the Java version (continued)
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Results for the RING implementations

For the more sophisticated implementations, which do not depend on mem-
ory access so much with the bigger samples, the picture of the last section
changes again. As we can see from diagram 3.14 the speedup increases with
the bigger samples. RING2 reaches a peak performance of nearly 70 times
faster than the Java implementation. Compared to the GeForce 8600GT
the speedup is somewhere between 7 and 8, which gives us a linear speedup
with respect to the core count. This is a very good result. It seems that the
RING implementations do scale very well with the count of cores available,
whereas the slower implementations are rather memory bound, therefore
improving in speedup against the GeForce 8600GT because of the higher
memory bandwidth. The very low speedups with the 1% sample indicate
that the GTX was not capable to cover the stalls from memory access with
the small data sets for the high number of cores.

3.4.5 Conclusion

As the results show rather prominently, the GPU is capable to outperform
any of the given CPU based versions of the physical layer’s simulation.
Even the most elaborate implementation EVENTRND would perform with
a speedup of about 38 compared to the Java version. Diagram 3.15 shows
the actual real time ratio that was achieved with the GPU version. A 50%
sample is therefore executed about 13.000 times in one second of realtime,
simulating 3.5 hours of these 500.000 agents in one second. Another example
is that one can run a simulation with 1 million agents of the Zurich network
from 6:00 in the morning to midnight with the RNDEVENT implementation
in about 15 seconds.

Also, the speedup of the GTX 280 against the GeForce 8600 GT is
interesting. Many times the speedup is higher than the actual core ratio
would allow. This has to be attributed to the faster memory bandwidth and
a newer implementation of the core logic. Results for the relative speedups
can be found in diagram 3.16.
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Figure 3.15: Real time ratio of the GTX280 (simulated secs / wall clock
secs)
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Figure 3.16: Speedup of the GTX280 relative to the Geforce 8600 GT (con-
tinued)
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Chapter 4

Integrating the CUDA Simulation into
the MATSim framework

Apart from being a useful tool for benchmarking the computational poten-
tial of CUDA devices, the actual benefit from our new implementation of a
mobility simulation is rather limited. To make use of it, it is necessary to
integrate the physical simulation into the MATSim framework. As seen in
Figure 2.2 the connection of the simulation to the strategy layer of MATSim
is twofold. On the one hand the simulation needs to be capable of reading
MATSim plan files as an input format. This was already achieved with the
implementation described in Chapter 3. On the other hand, the simulation
needs to output descriptions for all relevant events inside the “virtual re-
ality” simulated. These observations are the basis for all reasoning inside
the strategical layer of MATSim in almost the same manner as the given
plans are the basis for all activity that takes place inside the simulation. In
the C++ version of the simulation from Cetin [24] and the DEQSim from
Charypar [27] the plans as well as the events are written to a file by the
generating layer and then read by the recipient layer.

In this chapter the event representation in MATSim will be described
as well as the measures taken to implement the generation of events in
the CUDA simulation. Furthermore the JNI (java native interface) will be
described. It will be used to omit the need to write plans and events to a
file as an intermediate step. With JNI all necessary data can be exchanged
directly.

4.1 Event generation and transportation

The information flow from the physical layer to the strategy layer in the
MATSim framework is implemented as a messaging mechanism. The phys-
ical layer can create messages for all relevant events that occur in executing
the physical layer. These notifications are called Events in the MATSim
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ActEnd ActStart
AgentMoney AgentReplan

LinkEnter LinkLeave
AgentArrival AgentDeparture
AgentStuck AgentWait2Link

PersonEntersVehicle PersonLeavesVehicle
ArrivalAtFacility DepartureAtFacility

Table 4.1: List of events used in the MATSim framework

framework. There is a set of possible events that the MATSim framework
knows, but this is not a fixed set of possible events. Users might extend
the events for their own need. Not all event types available in MATSim are
needed for implementing the scoring of the executed plans. The CUDA sim-
ulation will only implement and generate a subset of the possible MATSim
events. This subset includes all events necessary for the scoring function.
Table 4.1 lists all types of events that MATSim has implemented at this
time. In Table 4.1 the events relevant for the scoring function are displayed
in bold type.

Data structure for events

The scoring function depends on five different events to determine the actual
score of a plan.

• ActStart event : The ActStart event is issued whenever an agent is
ready to start with a certain activity.

• ActEnd event: At the end time of an activity the ActEnd event is
created.

• AgentDeparture event: This event indicates that an agent has started
traveling from one activity to the next activity.

• AgentArrival event: Whenever an agent stops traveling and is ready
to execute the next activity, this event is generated.

• AgentStuck event: The agent has not been able to move on for a certain
defined period of time.

ActStart and ActEnd events will only appear in pairs in a successfully
executed simulation run. Excepted from this rule are the first and the last
activity, which must be of type ”home”. These activities will only issue
one event. The first activity only issues an ActEnd event, whereas the last
activity only generates an ActStart event.
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Listing 4.1: Struct for event data
typedef struct eventstruct {

int* eventid;

int* agentid;

int* linkid;

} Event;

The AgentDeparture event will either have a matching AgentArrival
event, or –in case of an unforeseen termination of the plan’s execution–
an AgentStuck event.

Under certain conditions, the agent has to be removed from the simula-
tion. In this case no AgentArrival event is issued and the agent is removed
from the simulation. The scoring function will get informed of this event, as
it has to get an opportunity to penalize this agent’s plan. If the agent is re-
moved from the simulation and his plan execution is canceled the AgentStuck
Event is sent.

When an event is generated, it is accompanied by additional info about
the event. The following data is mandatory for all implemented event types:

• event type: The type of the event to be reported

• time: The actual simulation world’s time, when the event occurred.

• agentID: The agent which experiences the action described in the event
type

• linkID: The id of the link this event occurred on

Additionally some events need further information:

• Agent Departure/Arrival Events: the index of the executed leg for this
travel.

• Agent Start/End Activity: the index of the executed activity

In listing 4.1 the data structure for storing an event in the CUDA sim-
ulation is illustrated. Again, the data structure for storing the events is
build in a SoA manner, to enable coalesced access. For each relevant date
we reserve an full 32 bit integer. This is apparently oversized, as in 3.2.2
we already learned that linkIDs are constrained to 24-bit size, therefore it
should be easy to put eventtype and linkId into one full 32-bit integer.
This optimization has not been implemented.

Missing from this struct is the time information as well as the mutual
indices into the activities and legs, respectively. The events are collected
and transported to the MATSim framework at every time step of the simu-
lation. Therefore the time of an event is implicitly given by the simulation
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AgentStuck Event 1 Event in insert_waiting_rev
Agent Arrival Event 1 Event in insert_waiting_rev
AgentDeparture/WaitforLink Event 2 Events in insert_waiting_rev
LeaveLink/EnterLink Event 2 Events in moveNodes_rev

Table 4.2: Execution paths and maximum event count of these

time when the event is generated. The index of either activity or leg is
reconstructed in the actual Java wrapper of the CUDA simulation by keep-
ing track of the count of Agent Departure Events for each agent. This is
discussed in more detail in Chapter 4.4.

Agents with all activities on one link

As has been said in the last chapter, when an agent spends the whole day at
home, the physical simulation will not have a linkID to send for the Activity
Start/End Events. We will send a zero to the Java framework instead of an
agent’s linkID for indicating this situation. The Java framework will have
to find the actual location from the original plan of the agent. For the other
“non-car”-mode transportation we are capable of creating meaningful events
as the necessary data is provided by the –otherwise unnecessary– ULEG link
ID data, as discussed in Section 3.2.2.

Memory demand for Events

As said above, the events of the CUDA simulation get collected at every
time step. The events are stored in an array. An additional integer counter
keeps track of how many events occurred in a time step. As dynamic memory
allocation is not an option with CUDA, an upper limit of the count of events
possible in one time step has to be found.

This upper limit is given by the following consideration: We cannot know
how many agents will issue an event at any given time step. So we have to
assume that all agents want to issue events. How many events one agent
will be capable of generating in one time step is the next question to be
answered, as the product of both will give an upper limit for event space
constraints. To estimate this upper limit we take a closer look at the actual
possible event schedules. Given the execution as described in 3.3 all events
are generated in the moveNodes_rev and the insert_waiting_rev kernel.
Therefore we need to inspect the execution paths of these kernels to identify
possible sequences of events. The sequences of events are summed up in
Table 4.2

This table shows us that there is a maximum of two events issued per
kernel by one agent in each time step. We will have to allocate four times the
number of agents of event structures to hold the maximum possible number
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of events.

4.1.1 Mapping of internal link’s and agent’s representation

As has been described before, the representation of an agent’s ID and a link’s
ID has been mapped to integer values for all uses in the CUDA simulation.
The agent’s ID is equivalent to its storage location in the agent adminis-
tration data structure. The same holds for the linkID. To issue meaningful
events to the Java MATSim framework this internal representation has to be
resolved back to the original ID before generating an event. When reading
the plans and network data from the XML-file, a map for either ID’s has
been constructed for backward mapping these IDs. This map will be used
to reconstruct the original representation. The mapping is implemented as
a simple array of integer values. The index into this array is given by the
internal linkID or agentID. This is consistent, as the internal representation
of all links/agents starts at zero and is sequential up to the actual number
of links/agents.

It is hereby assumed that the external ID can be represented as an integer
value as well. This was valid for the plans/networks used for evaluation of
the implementation, so there was no need for a more general implementation.

Nevertheless this array could easily be extended to use strings instead
of integers to hold the external representations. So, before the external
method for issuing events is called, the IDs get converted back to their
original value, making the internal representation fully transparent to the
external application.

4.1.2 Event generation

Only the moveNodes_rev kernel, running over all nodes, and the activity
related insertWaiting_rev kernel, running over all plans, issue events. The
moveLinks_rev kernel will set a flag in case an event needs to be sent; the
actual sending of the event will then take place in the insertWaiting_rev
kernel. The moveNodes_rev kernel issues a maximum of two events per
vehicle and time step, when a vehicle moves from one link’s buffer into
another link’s space. The other kernel has no loops; therefore it is a simple
task to extract the maximum number of possible events per kernel call as
we did in the previous section. It also issues a maximum of two events per
vehicle. Both kernels might issue their maximum number of events for one
vehicle at the same time step, so the overall maximum count of events per
vehicle and per time step is four.

The events are written to the events buffer using an atomic operation
for synchronizing access to the buffer-counter. Another way to implement
the events would have been to use fixed addresses for the events to be writ-
ten, based on the threadId, storing the events in event[threadID] and
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Implementation real time ratio Percentage of
base case

No events (base case) 1517 100
Empty call 1517 100
ThreadSynchronize() 1484 98
Generating events 1286 85
Generating events & ThreadSynchronize() 1279 84
Saving to HOST & ThreadSynchronize() 1226 81
Saving to DISK & ThreadSynchronize() 1213 80
called from Java & transfer to Java 1028 67

Table 4.3: Changes in real time ratio at midnight (24:00) with event writing
(25% sample run on a GeForce 8600GT, EVENTNODES)

event[threadId*i] for example. This has not been implemented though.
Three ways to output the events were implemented. The created events

could either be written to disk or sent to the Java application or just be
thrown away. The last implementation was for benchmarking only.

4.2 Performance results with Events

Another important question to answer is to what extent the creation and
computation of the events will decrease the performance of the CUDA simu-
lation. In Table 4.3 the different stages of event generation are benchmarked
for one set of sample data (ivtch data, 25% sample) to give an impression of
the penalty for the different output paths and for generating events in the
CUDA kernels alone. In the table the actual real time ratio is listed along
with a percentage relative to the version without event writing.

The ”empty call” means that the "tossEvent()" method was called in
the kernel, but had all lines with memory interaction commented out. This
will give an idea of how expensive a sub-routine call in a CUDA-kernel is.
Apparently the empty subroutine was removed by the optimizing compiler;
no performance degradation is measurable. The ThreadSynchronize() call
is more costly. This will be discussed in more depth in the Section 4.3 about
the CPU loop. The actual generation of events degrades the performance
of the simulation by about 15%. Writing the events to disk amounts to an
overall decrease of 20%. There is only a very small 1% gap between the time
it takes to actually get the events from the device memory to host memory
and the additional writing of the data to disk. This is surprising at first
glance, but it is probably due to the sophisticated scheduling described in
Section 4.3. In summary it can be said that the generation of events does
not come for free, but nevertheless with a reasonable degree of performance
degradation. In any case 80% of the overall performance can be maintained

86



when writing the events to disk.

4.3 The CPU loop

The CPU loop is responsible for calling the kernel methods. As described
before, more than one kernel was utilized to implement the simulation loop.
Furthermore, events are created by the kernel calls. These events need
to be transported either to a file or to the Java framework. This is the
responsibility of the CPU loop. The CPU loop can go over several time
steps before returning control to the framework. This is for convenience but
also to reduce the calling overhead caused by switching from Java to C. A
pseudo-code version of the event loop is found in listing 4.2.

As a first step the actual breakdown on grid size and block size for
the kernel calls is calculated. THREADMIN is a constant describing how many
threads we want to run in a block of threads. If the actual number of threads
needed is higher – which should be the case in every relevant simulation run
– then THREADMIN is taken as the number of threads per block and the
number of blocks is calculated as the upper integer limit of the expression
ThreadCount / THREADMIN.

All data that is used in the kernel is aligned to THREADMIN. That is,
if Plans_Count % THREADMIN != 0, the plans will be filled with dummy
plans consisting only of an ACTEND activity. Likewise links and nodes will be
inserted with no connection or incoming links respectively. After calculating
these values the actual kernels will be called. In case of a simple benchmark-
run no event data will be written; otherwise the events collected in this time
step will be written to disk or sent into the Java-framework. The event
writing will be discussed in more detail in the next section.

4.3.1 Asynchronous event handling

As seen in listing 4.2 the CPU does not have much to do while the GPU
executes the kernels for simulation. On the other hand, the events need to
be sent to their final destination, which is a duty of the CPU. To accomplish
that task in an efficient way the CPU should do that while waiting for the
GPU to finish the kernel execution. Apparently we cannot work on the
events of the actual simulation step, as they reside in the GPU’s memory.
But the events saved from the last time step are safe to be treated by the
CPU. To even run the downloading of the actual events and the writing
of the older events by the CPU a double-buffering technique is installed.
Listing 4.3 shows the same code as above, but this time including the event
handling of the CPU.

The function call to cudaThreadSynchronize() synchronizes kernel and
CPU execution. After this point we can be sure that all kernels above this
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Listing 4.2: The main CPU loop executing the kernels
void CMicroSimRingEvent :: simStep(int stepcount , int stepsize) {

int lthread = min(THREADMIN ,simdata.linkscount);

int pthread = min(THREADMIN ,simdata.planssize);

int nthread = min(THREADMIN ,simdata.nodecount);

int lblock = ceil(( double)simdata.linkscount / lthread);

int pblock = ceil(( double)simdata.planssize / pthread);

int nblock = ceil(( double)simdata.nodecount / nthread);

for(int k=0; k < stepcount; k++) {

// choose the other Event buffer for writing into from

kernels

...

insertWaiting_rev <<<pblock , pthread >>>(simtime , *pEvent ,

deventpos , dagentscount);

moveLink_rev <<<lblock , lthread >>>(simtime , dflow_accu , *

pEvent , deventpos);

moveNodes_rev <<<nblock ,nthread >>>(simtime , *pEvent ,

deventpos);

if(psimdata ->writeEvents) {

// Do the events writing here ... see next section

...

}

simtime += stepsize;

}

// write last round of events

...

}
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Listing 4.3: The CPU loop’s event handling section
void CMicroSimRingEvent :: simStep(int stepcount , int stepsize) {

//size calculation

...

for(int k=0; k < stepcount; k++) {

// choose the other Event buffer for writing into from

kernels

Event* lastEvent = pEvent;

int lastpos = eventpos;

// double -buffer

pEvent = (pEvent == &devent1) ? &devent2 : &devent1;

// kernel execution

...

if(psimdata ->writeEvents) {

// Parallel to kernel execution: Write events from last

time

writeEvents(simtime -1, lastEvent == &devent1 ? event1 :

event2 , lastpos);

cudaThreadSynchronize ();

// get accumulated event count from this kernel execution

, is used in next round

cudaMemcpy (&eventpos , deventpos , sizeof(int),

cudaMemcpyDeviceToHost);

// Asynchronous to host , copy mem of this kernel exe to

eventbuffer

saveEvents (*pEvent , pEvent == &devent1 ? event1 : event2)

;

int help = 0; // reset eventpos on device

cudaMemcpy(deventpos , &help , sizeof(int),

cudaMemcpyHostToDevice);

}

simtime += stepsize;

}

// write last round of events

cudaThreadSynchronize ();

writeEvents(simtime -1, pEvent == &devent1 ? event1 : event2 ,

eventpos);

}
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kernel call insertWaitingkernel call move_linkkernel call move_node
cudaThreadSynchronize()

Figure 4.1: Parallel execution of CUDA simulation and CPU event handling

point have finished their path of execution. So all events of this itera-
tion are guaranteed to have been sent into the GPU buffer by then. This
buffer can then safely be copied to the host RAM. An asynchronous memory
copy instruction is issued to the CUDA framework. Thereafter, the variable
eventcount on the GPU is set to zero again. If there is another time step to
run, the event-buffer will be exchanged with a second one (double-buffering
technique) and execution of the next kernel is started.

As the CPU does not stop after starting the execution of the kernel, the
saveEvents() function is called in parallel to kernel execution. This method
handles the events from the previous frame, which have been completely
copied to the CPU already as guaranteed by the last cudaThreadSynchronize()
call. Finally the CPU and GPU execution paths will meet again at this bar-
rier given by the cudaThreadSynchronize(). After the last iteration of this
simStep() an additional cudaThreadSynchronize() and saveEvents() call
is needed, to save the last iterations events. When the event handling of the
CPU takes longer than the kernel execution, the whole simulation time is
virtually annihilated by the event processing. This schedule is shown in
Figure 4.1. Some results with this asynchronous execution can be found in
Table 4.5.
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4.4 JNI interface and coupling to Java

The Java language has been written with a tight integration of existing
C-libraries in mind. Therefore the creators of Java, SUN, integrated the
keyword native into the language. With the native keyword methods
with no method body can be declared. Calling these methods yields the call
of a particularly named C-method. This method can access the members
of the wrapping classes object as well as the parameters delivered by the
method call. This gives the Java programmer the ability to call functions
written in C. As C++ is also capable of defining C-style functions, it is
possible to call a C-style function that in turn makes use of C++ objects.
More so, Java objects can be handed over to the C-functions, which again
can call methods of these Java objects.

This enables a communication between Java and C that is mutual. The
JNI enables us to program an interface between the Java-based MATSim
framework and the C++ based CUDA simulation. Unfortunately, the actual
programming of this JNI interface is rather cumbersome. Therefore a toolkit
to assist in implementing the proxy classes is of great benefit.

4.4.1 Toolkits for coupling C++ and Java

Two toolkits for binding Java and C through the JNI are dominant on the
Internet. The first is SWIG (simplified wrapper and interface generator)
[3]. SWIG is a general approach at binding different high-level languages to
C/C++. An intermediate language definition file has to be written, from
which interfaces to several languages can be generated. SWIG generates
stubs into 18 different languages, some more prominent examples would be
Python, Lua, Ruby or Java. SWIG is a very flexible toolkit but it seems
that Java is not the primary target of the SWIG developers. Very little
documentation was found on using SWIG together with Java. Also, the
necessity to write and maintain an extra set of files with the intermediate
language definitions in it seemed time consuming and error prone. A second
package that restricts itself to support binding of Java and C/C++ only is
cxxwrap[5]. It generates wrapper classes directly from C/C++ header files.
This eliminates the need for writing extra files. Another bonus feature of
the cxxwrap package is the ability to overload C++ methods in Java nearly
effortlessly. This feature is used to transfer the CUDA events to Java, as
shown in the next section.

4.4.2 Transferring events to the MATSim framework

With the cxxwrap toolkit overloading C++ methods in Java is implemented
as follows. Every method which is declared abstract in a C++ class can be
overloaded in Java. This is done by simply extending it from the proxy class
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of the given C++ class and implement a method with the same name and
signature as the C++ abstract method. cxxwrap will generate a stub method
which tries to call the Java method every time the stub method gets called
from within the C++ code. Obviously this makes transferring events from
C++ to Java a trivial task. The C++ base class has an abstract method
writeEvent(int type, int agentId, int linkId, int legNumber).

Two classes were already derived from this base class in C++ overloading
the writeEvent()method:

• CMicroSimRingEvent2File, which writes the information to a file,
and

• CMicroSimRingEvent2Null, which just drops the information by do-
ing nothing.

To create a Java implementation of the CUDA simulation, the new class
JCudaSim is derived from the cxxwrap generated stub class JEventRingSim.
Additionally the appropriate writeEvent(...) method is implemented in
Java. This method is then automatically called, whenever the base classes
implementation calls writeEvent(...) from C++.

As the events are delivered as a primitive data type, not much conversion
effort is needed. The Java method uses existing code from reading the output
of the DEQSim to actually generate Java events. The Java events are then
fed into the regular MATSim event loop.

Listing 4.4 shows the relevant parts of the Java implementation. In the
static part of the Java class the C-library is loaded. This guarantees that
the native part is in place whenever a JCudaSim instance is created, but not
needed or loaded otherwise.

4.4.3 Implementing wrapper classes for the plans

Unlike the transport of events into the Java framework, getting the selected
plans from the strategical layer into the CUDA simulation without relying
to file-IO is more complex. As file reading of the plans is based on the
C++ version of the DEQSim, so are the data structures in which the initial
plans data is stored. When switching from the C++ only implementation
to a version also capable of getting the plans directly from Java’s JNI some
changes had to be made.

An abstraction layer was introduced, which resembles the original C++
data structures as much as possible but breaks up the structure far enough
to act as an generic interface to the Java version. To exemplify this, Figure
4.2 shows this process for the class holding the trip information of one leg.
An abstract base class CTripBase was introduced. It basically offers the
same methods the original Trip class had, but reduces the interface to a
minimum of necessary methods. Another class CTrip was written to act as
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Listing 4.4: The Java wrapper of the CUDA simulation
public class JCudaSim extends CMicroSimRingEventJ{

static {

try {

System.loadLibrary("TraSimGL");

} catch (Exception e) {

System.out.println("TraSimGL lib not found!");

};

}

...

public void writeEvent(double time , int agentId , int linkId ,

int eventId) {

Integer legNumber = legscount.get(agentId); // do this

later on in CUDA

if (( legNumber == null)|| (legNumber ==0)) legNumber = 1;

// next leg bei agentdeparture event

if(eventId == 6) legscount.put(agentId , legNumber + 2);

else legscount.put(agentId , legNumber);// same leg

if(this.events != null) {

BasicEvent ev;

if(eventId == 1) {

stuck ++;

//this event is not handled by EventsReaderDEQv1

ev = new AgentStuckEvent(time , Integer.toString(agentId

), Integer.toString(linkId), legNumber);

} else ev = EventsReaderDEQv1.createEvent(time , agentId ,

linkId , eventId , legNumber);

events.processEvent(ev);

}

eventcount ++;

}

...

}
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CTripBasevirtual int getDepartureTime()=0;virtual int getTravelTime()=0;virtual int getEndLinkId()=0;virtual int getNextLinkIdAndAdvance()=0;virtual void setNextLinkIndex(int i) = 0;
CTripCTrip(Trip* tr)int getDepartureTime()int getTravelTime()int getEndLinkId()int getNextLinkIdAndAdvance()void setNextLinkIndex(int i)

C++JTrippublic JTrip(int endLink, List<Id> route, int startTime)int getDepartureTime()int getTravelTime()int getEndLinkId()int getNextLinkIdAndAdvance()void setNextLinkIndex(int i)
Java

Figure 4.2: UML diagram of the relationship between the abstract and
concrete implementations in Java and C++

a small wrapper for the original Trip class (the counterpart of the MATSims
Leg class. This is done to avoid having to interfere with the original code
of the deqsim implementation, so it is more likely to be able to upgrade to
the next version rather painlessly. The three abstract classes are listed in
listing 4.5

As already described, a Java class, derived from a C++ class containing
abstract methods, can simply overload them. The actual implementation
of a Java pendant to CTrip was thus straightforward. One main difference
between the classes is the constructor that takes the actual structures to be
abstracted from as an input parameter. Likewise, abstractions were writ-
ten for plans and the complete population, CPlanBase and CAllPlansBase.
Finally concrete implementations of these classes in C++ and Java were
added, namely the classes CPlan, CAllPlans and on the Java side JPlan
and JAllPlans. The Java’s person data structure does not have a repre-
sentation here, as the only person-related data needed in the context of the
physical layer is the currently selected plan.

The plan conversion methods were rewritten using the above classes
as Template Pattern and CAllPlans::getNextPlan() as AbstractFactory
Pattern [41]. Finally the methods responsible for converting the plans into
the CUDA format were refactored to solely rely on the abstract classes.
After that it was completely transparent whether the plans were read by
the Java or the C++ code.
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Listing 4.5: The abstract classes for plans exchange
class CTripBase {

public:

virtual int getDepartureTime ()=0;

virtual int getTravelTime ()=0;

virtual int getEndLinkId ()=0;

virtual int getNextLinkIdAndAdvance ()=0;

virtual void setNextLinkIndex(int i) = 0;

virtual ~CTripBase () {};

};

class CPlanBase{

public:

virtual int getAgentId ()=0;

virtual int getNumTrips ()=0;

virtual void perpareTrip(int i)=0;

virtual const CTripBase* getTrip(int i) {perpareTrip(i);

return trip ;};

void setTrip(CTripBase* tt) {trip = tt;};

virtual ~CPlanBase () {};

protected:

CTripBase* trip;

};

class CAllPlansBase {

public:

virtual void restartAgentLoop ()=0;

virtual bool hasNextPlan ()=0;

virtual void prepareNextPlan ()=0;

virtual CPlanBase* getNextPlan (){prepareNextPlan (); return

plan ;};

void setPlan(CPlanBase* pp) {plan = pp;};

virtual ~CAllPlansBase (){};

protected:

CPlanBase* plan;

};
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4.5 Implementing further functionality on the CUDA device

Reducing the execution time of the physical layer will lead to a relatively
higher contribution of the other components to the overall time the iteration
takes to complete. By minimizing the execution time of the CUDA based
mobility simulation, other parts of the calculation become prevalent and
it is worth asking whether such components would be good candidates for
implementation on the CUDA device as well.

Two distinct parts of the iteration, namely path generation and event
handling are known to be rather time consuming. As an example of an
area with potential for further optimization, the handling of events was
examined. A simulation run will generate a large number of events on the
course of execution. About 75% of these events are LinkLeave/LinkEnter
pairs. These events are basically used to generate aggregated travel times
for the links. The travel times will be used by the time-dependend router
during the replanning process. The travel times are normally collected for
certain time periods, e.g., every quarter of an hour, to keep the volume of
data to be stored low.

To calculate the average travel times of a certain time bin, as these time
period are often called, for any given link, the entrance time of all vehicles
entering the link has to be stored until the vehicles leave the link again. At
the moment of exit, the time difference can be calculated and stored in the
appropriate time bin according to the entry time of the vehicle. This means
that all incoming LinkEnter events need to be stored for later retrieval and
mapped to the agents’ IDs. When a LinkLeave event with a particular
agent’s ID occurs, the matching LinkEnter event needs to be fetched from
the map so that the travel time of that agent can be calculated. Links
on which the agent performed an activity need to be excluded from the
calculation to avoid having the activity time added to the average travel
time for that link.

The millions of store/retrieval pairs needed just to calculate the agents’
travel times are rather time intensive. Therefore, it might be beneficial to
have the travel times already aggregated in the mobility simulation, sending
aggregated travel time events instead. This would load the burden of calcu-
lating the travel times upon the CUDA device, freeing the CPU from this
task.

A first implementation in CUDA for a travel time aggregation proved to
be disappointing. For a sample with 250.000 agents (25%) the number of
sent events was reduced from about 12 million to a mere 3.2 million activity
events, plus about 570.000 aggregated travel-time events. The CPU time
for handling these events was therefore reduced by a few seconds, but the
overhead for creating the events in the CUDA code cost more than the time
savings.

Table 4.4 shows the running times of a second implementation. This im-
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GeForce 8600GT (25%) LinkEnter/Leave link tt info both
simulation 136s 142s 150s
event handling 46s 26s 28s
sum 182s 168s 178s
GeForce GTX280 (25%) LinkEnter/Leave link tt info both
simulation 20s 24s 32s
event handling 46s 33s 34s
sum 66s 57s 66s

Table 4.4: Running times for different implementations for link time aggre-
gation

plementation sets aside the complex and unfortunately very memory-access-
intensive aggregation, sending the travel time of maximally one vehicle per
link and time bin. For each vehicle leaving a link, the moveNodes() kernel
identified the time the vehicle had entered the link. If the vehicle’s agent
executed an activity on the link, the entry time was set to −1, and the vehi-
cle was ignored. If it had a valid travel time, the time bin according to the
link enter time was calculated. Additionally, the last time bin for which a
link’s travel-time event had already been sent is stored for each link. If the
link entry time of a vehicle was later than the end of that time bin, a new
event was generated and the link’s time bin was updated.

This is clearly not a perfect solution, but it is computationally less ex-
pensive and may be extended for use with more than one vehicle later on.
The running times for this implementation can also be found in Table 4.4.
The 25% sample was run on the slower system with the older GPU installed
and also on the high-end configuration. The technical details of both sys-
tems can be found in Table 3.4 under the headings “LOW” and “HIGH”.
This time the implementation proved to be faster than the original imple-
mentation with the linkEnter and linkLeave events. On the other hand, the
link events could be used for more than just the aggregation of travel times.
In that case, they had to be generated in addition to the aggregated events.
This seems to be a feasible option, however. As the last column in Table
4.4 shows, the creation of linkLeave and linkEnter events is not expensive
compared to computing the aggregated travel time from these events. These
number were computed by running the simulation two times. In the first
run, events were created and the dismissed without further computations.
This gives us the figure for the mere simulation and event cration times
given in the row labeled “simulation”. Then a second run was made, this
time collecting all events in a list. Then the list of events was processes
after finishing the simulation run. Only the time for processing the events
was taken and listed in the row “eventhandling”. The row “sum” shows the
addition of both times. Between simulation run and the event processing a
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GeForce 8600GT (25%) LinkEnter/Leave link tt info both
overall time 140s 170s 180s
GeForce GTX280 (25%) LinkEnter/Leave link tt info both
overall time 68s 64s 70

Table 4.5: Running times for different implementations for link time aggre-
gation with CPU and GPU working simultaneously

Java garbage collection was enforced. This garbage collection took between
six and nine seconds.

The speedup achieved does not scale linearly with the reduction of events.
Although the event count was cut by more than half, the time to process
these events was not. A closer inspection of the modules for event processing
reveals that these modules completely relied on either the link-related events
or the activity-related events. As the optimization only approached the
link-related events, the runtime of the other modules remained untouched.
Therefore, the possible speedup was restricted to the link-related modules
which caused the asymmetry. Nevertheless, the running time of the event-
related modules was greatly reduced, and putting the aggregation code on
the CUDA side also means that it would benefit from faster CUDA devices.
Reducing the number of events to be handled would additionally reduce the
overhead of saving events to a file system, which is done by the frame work
periodically. Another 30 seconds of computing time was saved through the
reduced set of events when the events were written to a file.

4.5.1 Running event handling an simulation simultaneously

Finally another two runs were started. This time, event creation and han-
dling were executed in the same loop, without artificially separating the two
processes. This should benefit from the asynchronous execution of GPU
and CPU as described in Section 4.3.1. As Table 4.5 shows, the regular
version with the large number of events can benefit very well from the asyn-
chronous execution taken, whilst the “tt info” version cannot benefit. This
shows that the “tt info” is to a great extend GPU bound, whilst the regu-
lar version handles distribution of the workload more advantageous. These
effect are more obvious on the system with the slower GPU as the CPUs of
both systems are comparable, but the GPU is less powerful and “tt info”
moves more work onto the GPU.
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Chapter 5

Visualization and Interaction

An introduction to the general topic of visualization was already given in
section 1.3. This chapter will discuss useful approaches to visualization of
MATSim simulation runs. MATSim generates plans in an iterative process
using evolutionary algorithms. The numbers from a simulation run can be
validated against counting-station counts from real-world traffic. Computing
a mean average error against real-world traffic can give further insights into
the validity of a run.

These are crucial values to estimate the quality of a MATSim run. Nev-
ertheless, it is important to have the option to look at the unaggregated
simulation run to detect regions of implausible or bad performance. This
can never be achieved with the aggregated data alone. One particular street
link with an inappropriate capacity or some other small error in the map
or the agents can substantially influence the aggregated data, thus ruining
the populations performance. Therefore, visualizing the unaggregated data
is a valuable tool for evaluating the actual simulation run and finding these
small regions of erratic behavior. A second important function of visualiza-
tion is certainly to visually reveal the impact of selected traffic measures to
a broader public. Clarifying different effects of certain policies is more ef-
fectively presented with a visualization of the resulting traffic itself than by
a column of numbers and percentages. So, the general benefits of a capable
visualization are twofold:

• Bringing the developer means of easy and efficient debugging of the
actual events taking place inside the simulation run.

• Displaying and visualizing the effects of measures in order to help
policy makers and the broader public to gain a more intuitive under-
standing.

In the rest of this chapter the a visualizer will be defined with these
general goal in mind. Additional subgoal and use cases will be defined
to clarify the design choices. The next section will look into approaches
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to visualize the output of simulations in the context of MATSim and of
multi-agent systems in general. From these efforts the design goal for a
new visualizer will be deducted and discussed. In the following section the
necessary technical matter to implement these design goals will be discussed.
The chapter’s main section will then follow describing the actual design of
the visualizer implemented. Finally, a conclusion is drawn and ways to
further improve the design are shown.

5.1 State-of-practice in traffic visualization

In this section three visualizers used in the past to display MATSim results
will be presented and discussed. In addition to that, two other multi-agent
simulation systems and their visualizers will be described.

5.1.1 TRANSIMS

The multi-agent traffic simulation TRANSIMS [99] has been developed by
the Los Alamos National Laboratory (LANL). It has been recently converted
to an open-source and a commercial version. The development started in
the 1990s and is still active. TRANSIMS is capable of demand generation as
well as the simulation of the actual traffic using a cellular-automaton model.
With the TRANSIMS package there comes the TRANSIMS visualizer Vis.

This visualizer is written in C++ and based on OpenGL. It reads a
certain file format (an ASCII-file with row-oriented data in it) and visualizes
the data found therein. The visualizer can change the colors and icons of the
vehicles displayed based on the input file and some rules that are definable
though configuration-files or the visualizer’s GUI itself. The visualizer is not
extensible by plug-ins or other code additions, but only by re-writing the
monolithic application. The TRANSIMS visualizer’s file format is output
by the MATSim simulation by setting a flag in a configuration-file.

Discussion

The visualizer is written based on OpenGL, making use of the hardware
acceleration of modern graphics devices and is therefore very fast. It is not
a problem to display simulation runs with hundreds of thousands of agent.
But apart from the raw speed the visualizer has not much to offer. It can
only read ”‘post-mortem movie”’ files and display these movies. The user
can not ask questions about the state of each agent at a given time. Another
drawback is the reduced capability to add extensions to the visualizer. These
extensions, although possible, would have to be written in C++; given that
all MATSim code is written in Java this does not seem an optimal situation.
As most MATSim developers will want to extend the visualizer to their
specific need, a change from MATSim’s core language Java towards C++
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seems unfavorable. The visualizer is not easy to maintain or port to other
operating systems.

5.1.2 Visualizer of Christian Gloor

Christian Gloor [44] wrote a visualizer to display the results of his multi-
agent simulation of hikers’ movements in the open terrain of the alps. He
uses many concepts underlying the MATSim framework to implement the
travelers’ choices and demands, as well as choosing and executing a prefer-
able route from a mountain top to down in the valley.

He takes the notion of the two layers (strategical and physical) used
throughout the MATSim framework, as presented in Figure 2.2 in Chapter
2, and extends it to segment the complete application into different modules.
These modules interact through network communication. Therefore, it is
possible to run each module on different computers connected through a
network. This is also applied the visualizer.

Gloor introduces a visualizer module, which can be run on a computer
separate from the actual simulation. This offers some benefits. First of
all, dividing the extra computational load for rendering a visualization is
taken from the simulation computer, leaving more room for larger scenar-
ios. Second, more than one computer can visualize results. Any number
of computers can connect to the simulation computer and render different
visualizations of e.g. different areas.

One might implement visualizers with different perspectives, e.g. one
with an ”‘ego-perspective”’ of one particular agent and a 2D top-down view
of a whole area. Gloor understands the visualizer modules as one another
with many modules that might possibly attach themselves to the flow of
events outpouring from the actual simulation. All of the modules participate
in the simulation process taking place. It is even possible to add events
before they enter the strategical layer again. Gloor demonstrates this by
one visualizer module that enables the user to ”draw” a number of ”rain-
events” into a landscape. These ”rain-event” are then fed back into the
strategical layer in an instant, yielding changes in the agents’ plans.

Gloor uses low level network connections like TCP or UDP connections
as well as UDP’s broadcast modus to issue the events from the simulation.
This low level functionality has to be ported for each operating system the
simulation should run on. This proved to be a rather tedious and brit-
tle strategy, as the implementational details proved to be different on the
different operating systems, even if one merely wanted to use a different
UNIX-system.
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Discussion

Gloor introduces many interesting design decisions. The most outstanding
achievements are:

• The option to interactively add events,

• The possibility to connect to a remote simulation,

• The option to render different aspects of one simulation simultaneously

• The option to use different renderers,

• The option to render and visualize the same (remote) simulation on
different computers in parallel.

These options offer a wide range of use cases and re-usability of the the same
modules for simulation. Unfortunately, there were some drawbacks as well.
The need to handle platform-specific implementational details, like the spe-
cific implementation of sockets for network connections, for each supported
operating system, turned out to be rather cumbersome. Additionally, like
with the TRANSIMS visualizer, the implementation was based on C++,
therefore not the first choice of MATSim’s Java developer to program in
and extend the visualizer. So, although giving many useful suggestions for
implementing a visualizer, to start from the actual source of Gloor seemed
not a viable decision. Furthermore, the experiences from the usage of low-
level networking API was not a completely satisfying one, so it seems a
good idea to be looking for a networking solution that promises to work
”‘out-of-the-box”’.

5.1.3 MATSim’s NetVis

NetVis is a Java-based effort to visualize networks and agents. It has been
implemented together with the re-implementation of the queue model in
Java. The NetVis visualizer is based on the Java SDK’s SWING classes.
The SWING API offers several classes for drawing 2D elements and building
a GUI for the input of values. The NetVis implementation was built with
some flexibility in terms of the transmitted data in mind. It is possible to
change for example the color-represented value that makes up the color of a
link from the link’s load to the average speed driven on the link. The NetVis
visualizer’s input file format is natively written by the MATSim simulation.
Only these ”‘post-mortem”’ files can be read into the NetVis and then be
played.

Discussion

The main benefit of the NetVis visualizer is the fact that it is written com-
pletely in Java. Therefore, extending the visualizer should be fairly easy
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for all of MATSim’s Java programmer. It is extensible in terms of the data
format written and already had some customizations to offer in terms of
what to visualize. Nevertheless, it suffers from one big disadvantage: It was
written in SWING, which is notoriously slow. The NetVis visualizer could
only cope interactively with networks with a few thousand links and nodes
as well as a few thousand agents, which is too little for MATSim’s large-
scale simulation scenarios. In addition to that it was lacking the possibility
to look into the actual running simulation.

5.1.4 Other multi-agent simulations

The author has looked into two other multi-agent simulation packages to
investigate their visualization capabilities. REPAST [83] and MASON [65]
are two well known simulation frameworks. Both are based on a Java im-
plementation.

The REPAST package proved in particular to be rather GUI bound.
There is a good GUI package to design own input mechanisms to provide
the user with ways to change the outcome of a simulation run by means
of a GUI. This GUI even offers the possibility to ”‘look into”’ each agent
at random depth by utilizing the Java’s Reflection API. This is a rather
fascinating way to get to know the inner state of an agent. Unfortunately,
REPAST does not offer support for execution of large-scale scenarios like
MATSim does. It seemed unfeasible to visualize more than a few thousand
agents at a time.

MASON seems to be a well thought package using Java2D as well as
Java3D graphics to render contend on screen. As Java3D is known to be ca-
pable of making use of hardware acceleration, it seems that MASON should
have sufficient resources to display event large networks and large numbers
of agents. Unfortunately it is a rather monolithic package.

Discussion

REPAST just does not have sufficient power to visualize the amount of
agents, links and nodes necessary fro the typical MATSim scenarios. The
MASON package looks more promising on this behalf. But it seemed rather
difficult to extract the visualizing parts from the rest of the simulation pack-
age. To fuse the existing MATSim code with MASON would have been a
rather challenging undertaking, including the necessity to keep track of it
for the lifetime of both products.

5.2 Goals and motivation

From the above findings, the author tried to induce a set of use cases to
achieve a mixture of all good aspects of the visualizers examined.
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The TRANSIMS visualizer does not have much to offer. But one thing
is really good about it, it is fast. Therefore, implementing the visualizer in
such a way that it would benefit from hardware acceleration seemed manda-
tory. From Gloor’s approach many fruitful discoveries arose. The simulation
should be running independently from the actual view onto it. More so, it
should be possible to run the simulation on a remote computer and visu-
alization on another one. Furthermore different computers should be able
to visualize the simulation concurrently and different aspects or regions of
the simulation should be accessible in parallel. Last but not least, the abil-
ity to interact or to send queries into the running simulation seems rather
rewarding (and mandatory for the overall goal of being a debugging tool).
From NetVis, finally, the implementation in Java seemed attractive. To use
the same language as the MATSim core should reduce the barrier for the
MATSim programmers to implement own ways to visualize the data. With
these insights in mind, a list of possible design goals was written. This will
be discussed in the next section.

5.2.1 An on-the-fly visualizer for the MATSim framework

The design goals for the new visualizer based on our insights from the survey
above are listed below:

• Abstract data source (data collection) from data display (visualiza-
tion)

• Easy to extend with own data types

• Simulation can be accessed over a network

• Simulation can be run locally on desktop computer

• Reduce the amount of sent data to a minimum

• Visualization can connect to running simulation (on-the-fly)

• Minimally-invasive to existing MATSIM code

• Fast enough for large scenarios

• Visualization can read from post-mortem dump (mvi-file)

• Read existing file formats (event files, T.veh files)

• Network connection, optionally ssl-encoded

• Multiple different views onto one data set

• Simple network infrastructure, easy to transfer to different connection
types
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• Take advantage of hardware support for drawing

With these design goals in mind, it should be possible to implement a
flexible tool for both inspecting the inner states of a running simulation
(e.g. for debugging purposes) and presenting an output of the simulation in
a form easy to comprehend for the general public or decision makers.

Four different design principles and techniques were selected to optimally
facilitate these design goals. First of all the MVC-pattern. It is the single
most important design pattern when it comes to implementing a GUI in
general. In our specific case it supports the modular approach that proved
beneficial in Gloor’s implementation. Also, choosing a multi-tier approach,
namely a ”‘server-client”’ architecture to separate data sources (the simu-
lation) from the actual visualizer instances arise from the Gloor approach.
Finally, two rather specific APIs were chosen to support the implementa-
tion of an open system. Java’s own RMI (remote invocation interface) offers
easy to establish, platform-independent network connections freeing the pro-
grammer from the hassles of low level network programming. OpenGL is
the one platform independent interface for using graphic hardware to speed
up rendering. It would have been a feasible way to choose Java3d for mak-
ing use of hardware acceleration, but Java3d does not offer the high degree
of freedom the OpenGL API offers and, last but not least, the author was
more familiar with the OpenGL API.

Here is a short overview of which principle/technique supports which of
the aboves goals, some goals are supported by more than one principle:

• MVC Pattern (Model-View-Controller)

– Abstract data source (data collection) from data display (visual-
ization)

– Easy to extend with own data types

– Minimally-invasive to existing MATSIM code

– Multiple different views onto one data set

• Client-Server architecture

– Simulation can be accessed over a network

– Simulation can be run locally on desktop computer

– Reduce the amount of sent data to a minimum

– Visualization can connect to running simulation (on-the-fly)

– Minimally-invasive to existing MATSIM code

– Multiple different views onto one data set

– Simple network infrastructure, easy to transfer to different con-
nection types
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• Java’s RMI (Remote Method Invocation) interface and Serializable

– Visualization can read from post-mortem dump (mvi-file)

– Read existing file formats (event files, T.veh files)

– Network connection optionally ssl-encoded

– Simple network infrastructure, easy to transfer to different con-
nection types

• OpenGL

– Fast enough for large scenarios

– Take advantage of hardware support for drawing

The MVC (Model-View-Controller) pattern

Though not part of the design pattern introduced by the “gang-of-four” [41],
the Model-View-Controller (MVC) pattern is deemed one of the most im-
portant patterns when it comes to document-based design or simply any ap-
plication with a dedicated User-Interface (UI). It was introduced in 1988 by
Krasner and Pope [61] describing ways to design user interfaces for Smalltalk-
80.

The MVC pattern describes a 3-tier applications layout. A model is
defined as the actual application data to be displayed. The view is a rep-
resentation of this data for on-screen presentation and the controller is re-
sponsible for the interaction of the user input and the application’s data.
As the MVC pattern is fundamental to nearly every GUI based application
nowadays, it could also be applied to the new visualizer. In terms of the
OTFVis the model consists of the simulation itself together with the server
code. The controller is given by the client code and the classes responsible
for user input and the view can be any implementation of the actual drawer
classes, i.e. the OpenGL drawer or the SWING based drawer. Figure 5.1
illustrates this.

The MVC pattern itself could easily be decomposed into smaller pat-
terns, as done by Gamma et al.[41]. Regarding to Gamma, the MVC can
be decomposed into a selection of observer, decorator, factory method and
composite patterns, many of which where also engaged in designing the ar-
chitecture for the OTFVis visualizer. The pattern will be discussed in a
later section.

Client-Server

Designing the new visualizer as a client-server architecture suggested itself
based on the two design goals to separate data display from data collection
and to be able to connect to a running simulation. This architecture is of-
ten found in literature when implementing visualizer applications. Paradise
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Figure 5.1: The MVC pattern for OTFVis

[35] is an example for a GIS application based on client-server architecture,
Treinish et al. use it for data flow visualization [6], multi-user environments
[40], streaming 3D graphics [86] or CAVE architectures [90].

Often a scenario is too large to be run on a desktop computer. To have
the ability to connect to these simulations running on a remote computer
a client-server-architecture was mandatory. Apart from that, separating
the code responsible for displaying the actual data from gathering the data
makes it easier to adopt to new technologies in visualizing hard- and soft-
ware.

Java’s RMI and Serializable Interface

RMI (Remote Method Invocation) and the Serializable interface are parts
of the Java SDK. These were implemented for easing the effort to design
application that can be run from remote computers over the Internet. RMI
greatly reduces the overhead necessary to send data over a network connec-
tion, making it possible to use things like SSL-connections in a transpar-
ent way. The Serializable interface of Java plays an important role in
preparing objects to be either sent over a network connection or be saved
and re-created to and from a file. The latter one is used for creating the
post-mortem movie files to be read from. RMI will be discussed in depth in
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Section 5.4.3.

OpenGL

Over the last decade hardware-acceleration for 3D graphics has become a
matter of course for modern computer systems. Even notebooks are most
likely assembled with some sort of hardware-acceleration. For accessing
these hardware features the OpenGL [76] interface is most common when
using multiple operating systems. The OpenGL interface introduces an ab-
straction layer from the actual hardware present. Therefore the programmer
does not need to interact with different hardware in terms of driver program-
ming but can program it once for the OpenGL interface and –hopefully– run
it everywhere. The OpenGL interface is supported by all relevant hardware
vendors. For using OpenGL with the Java language, another small interface
is needed to bridge from Java into the C -based OpenGL. This is supplied
by the JOGL wrapper [4].

Apart from the OpenGL based visualizer a second client, capable of
displaying data based on the 2D SWING package, was implemented, albeit
with the drawback of being slow. It serves as an alternative for displaying
at least smaller scenarios on computers not capable of OpenGL.

5.3 Architecture of an interactive system

Apart from the server-client architecture, other qualities are vital to inter-
actively display large scenarios. In terms of data transport it is mandatory
to reduce the amount of sent data to the bare minimum necessary to still
attain the favored informative value. Three different constellations of data
transfer had to be taken into account:

• Massive amounts of very simple data (e.g. positions of all agents)

• Small amounts of large data sets ( e.g. user generated queries)

• Singular amounts of constant data (e.g. the network topology)

With dividing the data into these categories it is feasible to maintain the
necessary frame rates for interaction while still being able to handle large
scenarios.

5.3.1 Data formats and interfaces

To implement the above mentioned modes of transport for the data from
server to client, three distinct ways to ask the server for data were imple-
mented. First, directly after the client-server connection is established, all
constant data is transfered at once and for one time only. After that, the
server will transport dynamic data to the client, whenever the simulation
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Figure 5.2: Sending dynamic data from server to client over RMI using byte
buffers

changes. Additionally to that a third mode of operation is determined by
sending OTFQuery instances from client to server and vice versa. These three
modes of transport will be discussed in detail in later sections. The first im-
plementation of the necessary data structures for serializing data to a stream
was done by serializing the extracted data to a file stream. To implement
this, a byte buffer was filled with the data. Everything was dumped into
a byte buffer and read from it on the client side. This way of transporting
data was maintained throughout the further development of the on-the-fly
version of the server, as it turned out to be the fastest way to transport large
data sets over the RMI interface. The RMI framework used for transporting
the data over the network will be discussed in Section 5.4.3. For the less time
critical parts, like the initial sending of the data structures and the sending
of OTFQuery objects, the more convenient RMI object proxy methods were
used. The basic outline of the transportation is illustrated by Figure 5.2.

Writer and Reader

All data extracted from the simulation for visualization is written to a byte
array as described in the last section. To maintain the highest possible speed
and the minimum memory footprint this data is written sequentially into a
byte buffer, with no separators between the different sections. Apparently
it is most imperative to have readers reading the exact amount of data
from the stream as the distinct writers have written to the stream. It is
up to the programmer to maintain this synchronicity. In case of our Java
implementation this is achieved by implementing the writer class as an inner
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class of the reader class, combining both codes for writing and reading data
in the same text file, therefore, maintaining the consistency of both should
be fairly manageable.

Apart from having all readers and writers running analogously the same
sequence of writer/reader pairs has to be called. To achieve this, a data
structure for easy access to rectangular region has been implemented. Two
exact copies of this structure are being maintained on each client and server
side, except for the server’s side holding the writers and the client’s side
holding the readers. Whenever a region needs to update, the sequence for
going through the writers is guaranteed to concur in the sequence of the
readers. The data structure used is a quadtree and the data exchange is
discussed in detail in Section 5.5.1.

Receiver

After submitting data from the simulation to the visualization it needs to
be drawn. The classes responsible for drawing data have two distinct re-
sponsibilities: First, they need to be able to receive data from the reader
classes. Secondly, they need to be able to draw on-screen or transmit the
received data to classes capable of drawing on screen. The reader classes
have to agree with a set of receiver/drawer classes over which data needs
to be exchanged. This is done by employing the Java’s interface paradigm
for describing the interaction. This offers the benefit of being flexible in
buildup but still being very fast in execution, as calling an interface method
is as expensive as calling a virtual method. The implementation details are
discussed in Section 5.4.3.

Visualizer

There is no distinct class being the visualizer class. The visualizer consists of
different modules working together to provide the on-screen display. Apart
from the drawer classes mentioned in the last section, the visualizer will
have to provide a framework with elements for user interaction as well as
the interaction with the server and a canvas for the drawer to paint on.
Different elements for interaction are needed, depending on the source of
data provided. The actual implementation of this will be discussed in Section
5.5.2 and Section 5.4.1.

5.3.2 Quadtrees for spatial data storage

Quadtrees have been studied thoroughly in the domains of GIS and com-
puter graphics. In 1974 Finkel and Bentley [39] introduced the notion of
a quadtree to sort spatial data. It has proven itself a valuable tool for
storing spatial data since then. Many variations of the quadtree can be
found. Samet [89, 88] gives a very exhaustive overview of derivations from
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the quadtree. Many variants on the quadtree were implemented for the
different spatial structures, like the R-Trees [85] or PR-trees [77]. In this
thesis a PR-quadtree is used. A PR-tree is a tree structure that stores
two-dimensional points respecting their spatial position. It is a specialized
version of the rectangular quadtree presented by Klinger [60] .

A quadtree divides a two-dimensional space into rectangles. These rect-
angles are stored in the tree structure. Each node of this tree agrees on the
following two conditions:

• A leaf, i.e. a node with no child nodes, can hold up to a predefined
number m of objects.

• An internal non-leaf node has exactly four child nodes, dividing the
quads space equally. One might call them NorthEast, NorthWest,
SouthEast and SouthWest.

Whenever an element is added to a leaf, so that the maximum number
of objects is exceeded, this node becomes an internal node and its objects
get distributed among the new child nodes according to their position. A
search for all elements of a rectangular area becomes easy with a quadtree.
One needs to find the uppermost node fully containing the sought-after
rectangle and then step through all objects in all leaves of this tree section.
A quick test can be performed to test if a child rectangle is fully contained
in the questioned rectangle, in which case all objects can be added to the
result set. Only if the node’s rectangle is included only partially, additional
comparisons have to be made.

Fig. 5.3 shows a space decomposition and the associated quadtree.

Figure 5.3: Space decomposition and quadtree
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All other branches of the quadtree do not need to be inspected at all. The
quadtree is well suited to cover areas with heterogeneous space assignment.
Other than with a grid structure of tiles covering the area in question, the
quadtree has a predefined maximum number of objects per leaf node and is
able to cover areas with many objects with a finer granularity than inane
areas. This greatly reduces the storage demand of the quadtree compared
to a highly resolved grid of tiles.

For implementing a quadtree for handling the data necessary for the
visualization an already existing quadtree implementation was used. Al-
beit, the implemented quadtree being a point quadtree, hence not capable
of storing outspread data, like street sections, it seemed sufficient for our
purpose. Street sections (link) were inserted into this point quadtree using
their respective center point.

The quadtree is known for its O(logn) behavior in terms of data inser-
tion and retrieval. Only the deletion of nodes is expensive. Therefore the
quadtree is best used for data that is mainly static. In the OTFVis imple-
mentation it is used for storing the nodes and links of the network underlying
the simulation run. This network is known to be unchanged for the entire
simulation and, thus, a good candidate for being maintained in a quadtree.

One of the great benefits of a quadtree is that the quadtree simplifies
spatial range queries. These are basically ubiquitous in the domain of visu-
alization. Every time the user zooms into a certain range of the network,
it is necessary to re-collect all data that resides in this range. Optimizing
the visualization for speed means to be prepared to transmit the smallest
possible amount of data that still fully represents the area to be drawn. The
quadtree is used for finding this smallest amount of data. The line data
is stored with their respective center point. This is not the optimal imple-
mentation, a quadtree representing line data like the PM or PMR quadtrees
[74, 75] would have been a better choice for the links, but as no performance
loss was perceptible from the point quadtree and a second data structure had
to be maintained in the other case, the links were left in the point quadtree.
This could be a further improvement to the OTFVis implementation.

5.3.3 Patterns used

Gamma [41, 42] first used the notion of “design pattern” in computer science
to describe and name recurring ways of accessing and deconstructing many
problem domains. Since then design patterns have proven themselves to
be a reliable way to communicate architectural issues. In this section the
primary pattern used to design the OTFVis application will be discussed.
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Proxy

For any client-server architecture the proxy pattern is vital. The proxy pat-
tern describes a class acting as surrogate or placeholder for another object,
to exhibit ways to control the other object. In the context of the OTFVis
the proxy pattern is used by the Java RMI networking SDK. Virtual in-
stances of the server’s quadtree on the client side or the client’s queries on
the server side are good examples of proxy classes.

Factory method

The factory method pattern describes a way to create new objects without
detailed knowledge about the object’s class. This pattern is used heavily
in the context of creating the reader and writer classes for the simulations
objects, as well as in creating the receiver and drawer instances on the client
side. This pattern made it possible to design a hierarchy of responsibilities
for streaming the data from the simulation over the server and the client to
the actual displaying class, without having to make any decision about what
data should be transferred and in which way the data should be visualized.
These pieces of information are provided in terms of a “late binding” as
described in Section 5.4.3.

Visitor

When further functionality needs to be added to objects contained in another
data structure without actually changing or inheriting the data structure,
the visitor pattern is useful. It specifies how an external class can be exe-
cuted upon by members of another data structure. It is used together with
the quadtree implementation. Each quadtree can “execute” visitor objects
on rectangular areas of its member objects. In this way any future opera-
tion can be implemented on the quadtree’s elements, without changing the
actual quadtree code.

Bridge

The bridge pattern is the pattern equivalent to Java’s Interfaces. As the
interfaces are the most used structural elements in nowadays Java code, the
bridge pattern is used throughout the client and server code of the OTFVis.

Decorator and Observer

Again, the decorator pattern is constitutional for a part of the Java frame-
work. The SWING GUI Framework used in the visualizer to implement
all elements of the graphical user interface, i.e. all buttons, drop-down lists,
text fields, etc, is based on using decorators to add functionality to the GUI’s
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objects. Together with the decorator pattern, the observer pattern is used
in the SWING classes to maintain ways to address objects, when they need
to update or redraw.

5.4 Implementation

This section will describe the classes actually written for implementing the
architecture described in the last section. Several different variations of
server implementations needed to be written for serving data from the var-
ious sources. Only two different clients were implemented, based on either
Java’s own graphics library SWING or on the OpenGL graphics library. The
SWING version of the client is very reduced in its capabilities and capacity;
it can merely display a small network with agents. Its main purpose is to
have a fall back solution for users with a computer not capable of displaying
OpenGL graphics. Another aspect of implementing a SWING client was to
serve as a proof of concept that it is feasible to build different clients without
having to implement special servers for these clients.

5.4.1 Client implementation

The client is responsible for several different tasks. It will initiate a con-
nection to the appropriate server. The server’s address is given to the
client by an unique URL. This will be discussed in more detail in Section
5.4.3. The client will manage a connection to the server with the aid of an
OTFHostControlBar instance. Depending on the chosen server, the client’s
visual appearance will differ. When reading from a file, the client will not be
capable of interrogating the server about the inner state of the simulation or
the agents, as it is only a post-mortem – one might say read-only – view onto
the simulation run. Therefore, the toolbar responsible for doing queries into
the server, the OTFQueryBar instance, will be missing. But instead, there
will be an OTFTimeLine instance. This enables the user to scroll through
the actual time line of a pre-recorded simulation run, as the complete time
structure of this run is already known. When running an on-the-fly-version
of the server, the end-time of the simulation is not known, making the draw-
ing of a timeline impractical. Nevertheless the user can step forward in time
by using the controls given by the OTFHostContorlBar. Figure 5.4 depicts
the two different looks of the OTFClient.

OGLClient

The OGLClient class is an implementation of a client based on the OpenGL
graphics interface [76]. This framework is the industry-standard framework
for displaying 3D-graphics. As on modern computers most 3D-graphics
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(a) Reading from file

(b) on-the-fly visualization

Figure 5.4: Different layouts of the OTFVis.
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class function
interface OTFGLDrawable interface for OpenGL related drawing
OTFGLDrawableImpl default implementation of the interface above
OTFOGLDrawer main class for drawing on OpenGL canvas
SimpleStaticNetLayer draws a net without dynamic colors
ColoredStaticNetLayer draws a network with dynamic data
OGLSimpleBackgroundLayer the layer for background images & features
QuadDrawer draws link with capacity based data
QuadSpeedDrawer draws link with average speed based data
OGLAgentPointLayer draws the agents / cars
AgentArrayDrawer optimizes agent drawing with vertex lists
AgentPointDrawer relies on above to draw agents
AgentPadangTimeDrawer specialized version of above
AgentPadangRegionDrawer specialized version of above
SimpleQuadDrawer receives and draws one rectangle
NoQuadDrawer receives but does not draw a rectangle
SimpleBackgroundDrawer draws bitmaps as background pattern
SimpleBackgroundFeatureDrawer draws geotools features as background

Table 5.1: List of OpenGL related classes

rendering is supported by dedicated hardware, this 3D-graphics is tremen-
dously fast compared to traditional CPU based rendering. This holds true
not only in terms of three-dimensional rendering but also when it comes
to high-performance 2D-rendering. The OpenGl-based client outperforms
the SWING-based client by magnitudes. Given the broad circulation and
superior performance of OpenGL, this client was chosen as the standard im-
plementation of the more sophisticated features of OTFVis. TheOGLClient
still uses the SWING-based components for drawing the user interface. Only
the visualization of the simulation is rendered in an OpenGL context. This
affects the class handling the overall rendering of the screen OTFOGLDrawer
as well as all related layer and drawer classes. A list of implemented classes
for OpenGL-based rendering is given in Table 5.1. Apart from these classes,
all queries (as discussed in Section 5.4.1) include code to render to OpenGL
contexts.

SwingClient

As mentioned in the introduction, the SWING version of the client does
not have much functionality at hand. It is based on Java’s own SWING
toolkit, provided with the Java SDK. Its main benefit is that SWING is
guaranteed to be existent whenever a Java SDK is given, therefore, it is as
platform independent as Java itself. The main drawback of the SWING im-
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plementation is being too slow to effectively visualize the large networks
MATSIM is used for. Still it can be used for smaller networks. This
client is implemented in the class OnTheFlyClientQuadSwing in the package
org.matsim.utils.vis.otfvis.executables.

Interaction

The user can interact with the simulation in multiple ways. The most intu-
itive is the interaction with the view via mouse handling. With the mouse
the user can zoom and pan the viewed region. He/she can also save the
current view settings for later reuse. Preferences for agent size or link width
and many more can be saved either to a .mvi file or to a separate config-file.

Depending on the capabilities of the server implementation the OTFVis
differs in the interaction capabilities offered. When the server executed is
not a live-server, the interaction is rather restricted. No queries into the
data base of the server can be issued, as the server can only rely on the pre-
recorded data at hand. Anything that was not recorded at runtime can not
be retrieved anymore. Albeit any information provided by a writer/reader
pair can also be present in a pre-recorded session, the ability to actually
query the agent database is missing. Nevertheless, some additional features
are implemented for the non-live server. As the server already knows how
many time steps were recorded during the simulation, it can present the
user with a time line, representing the whole simulation’s recording. The
OTFTimeLine class provides a convenient time line representation as illus-
trated in Fig. 5.5. It offers the functionality to use a slider for stepping in
time as well as buttons to cancel the reading of the pre-recorded data into a
RAM buffer. It is also possible to specify bounds for looping the animation.

Figure 5.5: The timeline bar for user interaction.

When a live simulation is run, the end time of that simulation is not
known, therefore, the time line is replaced by a different toolbar. With the
OTFQueryControlBar the user can issue queries into the running simulation.
This powerful mechanism will be discussed in depth in Section 5.4.2 and
5.4.2. An illustration of this tool bar can be found in Figure 5.6

Figure 5.6: The query bar for user interaction.
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All queries will be collected in the tool bar’s drop-down list box. Selecting
a particular query might result in additional GUI elements to provide the
user with more options for this query. A query can indicate the need for
an additional option pane by implementing the OTFQueryOptions interface
shown in listing 5.1. In case of additional options a new tab is added to the
query tool bar. The component returned by the getOptiondGUI() method
will be included into this tab called “Options”. The Id list shows all selected
identifiers for the particular query’s selection type. The “Clear” button
clears the selection. The check box on the right hand side indicates whether
multiple Id selection is enabled or not. Clicking into the view will select the
appropriate object nearest to the mouse pointer. If multiple selection is not
enabled each click will clear the previous selection.

Listing 5.1: Interface for a query options tab
public interface OTFQueryOptions {

public JComponent getOptionsGUI(JComponent mother);

}

Mouse handling

As seen in the last section, not only panning and zooming is done via
the mouse or touchpad input device, but also selecting entries that will
be sent to the OTFQueryControlBar. Two interfaces are responsible for
passing the mouse events around. The handling of any mouse action is
done by the VisGUIMouseHandler which inherits respectively implements
the class MouseInputAdapter and the interface MouseWheelListener. This
object holds a reference to an object implementing the OTFDrawer inter-
face. This handler takes care of all general actions regarding changes of the
viewable region. It will call the redraw() or invalidate() methods of the
OTFDrawer interface whenever it suits the situation. In addition to that,
the OTFDrawer interface ensures the presence of the following two methods:

public void handleClick(Point2D.Double point , int mouseButton

, MouseEvent e);

public void handleClick(Rectangle currentRect , int button);

}

These methods are called whenever the mouse handler is instructed to
select a point or a rectangular region. The selection is then passed along to
whatever OTFDrawer implementation is in charge of the actual view. The
drawer decides whether it can handle the request on its own or passes the
click on to an object implementing the OTFQueryHandler interface. This
interface, again, includes the following two methods:
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public void handleClick(String id, Double point , int

mouseButton);

public void handleClick(String id, Rectangle2D.Double

origRect , int button);

}

The additional String id indicates which particular view received the
request. This information might be useful for choosing the correct server,
although in the actual implementation only one server per OTFVis instance
is used.

5.4.2 Server implementation

One aspect prominent in the design decisions was to provide the possibil-
ity to read data from multiple input sources. Movie files written during a
simulation run, conversions of event files or t.Veh data of the old TRAN-
SIMs format should be visualized as well as the actual running simulation.
Thus different classes were implemented providing these servers. Only the
visualization of events files was implemented differently as discussed in the
following section. Providing different sources for visualization is an impor-
tant goal as it improves flexibility in case the complete set of data is not
given. Many older runs of the simulation were only run with T.veh output
activated. Maintaining the ability to compare these older runs to more re-
cent ones by providing ways to visualize the older runs the same way as the
newer runs helps to classify them. All servers implement a common interface
that enables any client implementation to communicate with each of them.
The server interface OTFServerRemote is illustrated in Fig. 5.7OTFServerRemotepublic enum TimePreferenceEARLIER, LATER;public boolean requestNewTime(int time, TimePreference searchDirection) throws RemoteException;public OTFServerQuad getQuad(String id, OTFConnectionManager connect) throws RemoteException;public byte[] getQuadConstStateBuffer(String id) throws RemoteException;public byte[] getQuadDynStateBuffer(String id, QuadTree.Rect bounds) throws RemoteException;public int getLocalTime() throws RemoteException;public boolean isLive() throws RemoteException;public Collection<Double> getTimeSteps() throws RemoteException;

Figure 5.7: UML diagram of the OTFServerRemote interface

The method requestNewTime() is an input into the actual server im-
plementation. The client can state what time steps representation it would
like to receive by the next call to getQuadDynStateBuffer(). The server
might not be able to actually provide the exact time step, so additionally
the client can state whether it wants to receive the next earlier time step
or the subsequent time step after the requested one. This feature had to be
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provided as there is no single obvious solution to what time step is wanted
in absence of the actual requested time step. If, for example, one wants to
jump to the beginning of the simulation, the first time step later than mid-
night will have to be targeted. On the other hand, if one wants to inspect
the simulation at a distinct time of day, this user will most likely want to
start at the first time step previous to the requested one. The actual time
the server has chosen can be requested with the method getLocalTime().

The method isLive() will tell the client, if this server is a running
simulation or a prerecorded movie. In the latter case, all time steps stored
in the record can be retrieved with the getTimeSteps() method. This
is used for pre-caching data from movie files. A live server returns null
instead.

The method getQuad() is used to receive a copy of the server’s data
structure representing the spatial data of the simulation. This contains all
server-side handlers responsible for sending data to the client. This method
has to be issued in the very beginning of the client-server conversation.
Directly after receiving the quad data structure, it is converted to a structure
holding the receiving handlers that complement the server’s handlers. Now
server and client can exchange data. The first data to be exchanged is
the constant data. This will include all data that stays unchanged over a
simulation run and therefore needs to be transfered only once.

Subsequently, the server is waiting for a sequence of calls to the meth-
ods requestNewTime() and getQuadDynStateBuffer(). The process of
exchanging data between client and server is illustrated in listing 5.2.

The actual implementation of the different servers will be discussed in
the following sections.

Server for OTFVis movie files

The most “natural way” to visualize a simulation run is to provide a .mvi -
file, rendered during the actual simulation run. The Java version of the
simulation is capable of providing the dumping of the events of a simulation
run into so called snapshots in different formats. Possible snapshot formats
are:

• transims, the old TRANSIMS format (T.veh)

• googleearth, the format necessary to display runs in Google Earth (kmz)

• netvis, the format of an older visualizer

• otfvis, the OTFVis movie format

Any combination of these snapshot formats can be written by implementa-
tions of the interface SnapshotWriter. The corresponding implementations
are:
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Listing 5.2: Initializing and updating data in OTFVis
public class OTFClient{

private OTFServerRemote server;

...

public void initializeConnection(OTFServerRemote server) {

this.server = server;

OTFServerQuad servQ = host.getQuad(id , connect);

OTFClientQuad clientQ = servQ.convertToClient(id , host ,

connect);

clientQ.createReceiver(connect);

clientQ.getConstData ();

hasNext = server.requestNewTime (0, OTFServerRemote.

TimePreference.LATER);

clientQ.getDynData ();

}

public int gotoTime(int time) {

hasNext = server.requestNewTime(time , OTFServerRemote.

TimePreference.EARLIER);

clientQ.getDynData ();

return server.getLocalTime ();

}

...

}
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• transims: TransimsSnapshotWriter

• googleearth: KmlSnapshotWriter

• netvis: NetStateWriter

• otfvis: OTFQuadFileHandler.Writer

An additional information given to these snapshot writers is the time period
between two snapshots to designate the granularity of time in which a snap-
shot is written. While writing snapshots every second might be helpful for
taking a closer look at a small time period, for runs over an entire day time
steps of 5 minutes are more appropriate. This helps keeping the visualizer
files small and manageable.

The OTFVis movie file provided by the OTFQuadFileHandler.Writer
class can be read directly by the OTFQuadFileHander server class.

Event file conversion

For posterior visualization of a simulation run on the basis of a given event
file, no server was implemented. A tool for converting an event file to
any snapshot format has already been present in the MATSim framework.
Therefore, any event file can conveniently be converted to a movie file. To
provide a server for event files, the structure of the class Events2Snapshot
containing the conversion routines would have to be completely refactored to
fit the time-step-based approach of the server. Instead of rewriting the class,
another class OTFEvent2MVI was implemented for convenient conversion of
event files to .mvi files.

Server for the TRANSIMS format

The data format known from the TRANSIMS project [99] was a long time
acquaintance of the MATSim project. Many older runs exist in the form of
the TRANSIMS output format T.veh. The option to view older runs was
provided by implementing a server for this format, the OTFTVehServer. Fur-
thermore, a pendant to the OTFEvent2MVI class was provided for converting
the T.veh file into a mvi file. This class is called OTFTVeh2MVI.

On-The-Fly-Server for interactive simulation runs

The OnTheFlyServer class is a server implementation, which is run in par-
allel to a simulation run of the queue simulation. The QueueSimulation
class has been extended to include an instance of the OnTheFlyServer class.
The new class OnTheFlyQueueSimQuad adds little change to the original
QueueSimulation class. Three methods of QueueSimulation have been
overloaded. The changes are outlined in listing 5.3. Apart from initializing
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and deconstructing the server in the respective methods, the server inter-
venes only with one line of code in the method afterSimStep(). There the
server is given an opportunity to update its internal status. This update
includes blocking the actual thread of execution, when the client sends a
command to hold the simulation. This control over the simulation is sup-
plied by another interface. The OTFLiveServerRemote interface extends
the OTFServerRemote interface used before and adds the functionality nec-
essary to interact with the running system. Apart from the option to pause
or run the simulation, an option to obtain information from the living sys-
tem is given. An outline of the interface is given in Fig. 5.8. The method
answerQuery() will enable the client to send any kind of query into the
simulation and receive an answer to display.

The OnTheFlyQueueSimQuad can, therefore, be stopped in execution at
each time step and the inner state of any agent can be queried and inspected
at will. Interactions between the agents can be visualized and interrogated.
Even changes to the agent’s inner state can be made, as well as changing
the network’s state. This is provided by another interface. The notion of a
query is discussed in depth in the next section.

Listing 5.3: Class OnTheFlyQueueSimQuad holds an instance of OnTheFl-
yServer
public class OnTheFlyQueueSimQuad extends QueueSimulation{

private OnTheFlyServer myOTFServer = null;

protected void prepareSim () {

this.myOTFServer = OnTheFlyServer.createInstance("<Server 

name or UUID >", this.network , this.plans , events , false

);

super.prepareSim ();

}

protected void cleanupSim () {

this.myOTFServer.cleanup ();

super.cleanupSim ();

}

protected void afterSimStep(final double time) {

super.afterSimStep(time);

this.myOTFServer.updateStatus(time);

}

...

}
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class function
interface OTFQuery interface for OpenGL related drawing
QueryAgentActivityStatus find the activity the given agent is doing
QueryAgentEvents draw events related to this agent onto the road
QueryAgentId given a coordinate, find fitting agent
QueryAgentPan draws the plan of given agent
QueryAgentPTBus a variation of above
QueryLinkId given a coordinate, find fitting link
QuerySpinne draws a partial network based on certain options
QuerySpinneNOW a variation of above

Table 5.2: List of queries implemented for the visualizer

Querying the OnTheFlyServer

The OTFQuery interface given to and returned by the answerQuery() method
of the OTFLiveRemoteServer interface is outlined in Fig. 5.9.

The interface’s main method query() is called by the OnTheFlyServer
instance. This method is provided with all relevant data concerning the
actual simulation run. It is free to extract any data from the given objects
and collect this data in any –serializable– format of choice. After collecting
all data, the query object is returned to the client.

Queries can be of two different types. A continuous query will return
true in the method isAlive() indicating that the query must be trig-
gered at every tick until it is removed by calling the method remove().
In case the query is a one time query, isAlive() returns false and the
query is executed only once on the server. The client side will then in-
tegrate the query into its drawing scheme, calling draw() everytime the
display needs a refresh. A call to the method draw() is supplied with the
actual OTFDrawer, which requests redrawing, as a parameter. This makes it
easy to implement different drawing routines for different implementations
of the client’s GUI. A SWING-based GUI can be updated with the appro-
priate SWING-commands and an OpenGL-based GUI will receive GL-based
drawing instructions. It is up to the OTFQuery class what drawer classes it
supports. Only a small number of queries have been implemented to test
the framework. List 5.2 sums them up.

5.4.3 Managing the data flow

As we have already seen in the previous sections, flexibility in the use of the
visualizer was one important design goal. The visualizer is merely an empty
framework. Classes must be supported for data generation, transportation
and finally visualization. Each of these stages is designed to be overloaded
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OTFServerRemotepublic enum TimePreferenceEARLIER, LATER;public boolean requestNewTime(int time, TimePreference searchDirection) throws RemoteException;public OTFServerQuad getQuad(String id, OTFConnectionManager connect) throws RemoteException;public byte[] getQuadConstStateBuffer(String id) throws RemoteException;public byte[] getQuadDynStateBuffer(String id, QuadTree.Rect bounds) throws RemoteException;public int getLocalTime() throws RemoteException;public boolean isLive() throws RemoteException;public Collection<Double> getTimeSteps() throws RemoteException;
OTFLiveServerRemotepublic void pause() throws RemoteException;public void play() throws RemoteException;public OTFQuery answerQuery(OTFQuery query) throws RemoteException;

Figure 5.8: UML diagram of the OTFLiveServerRemote interface

OTFQuerypublic enum Type AGENT,LINK,OTHER;public void query(QueueNetwork net, Population plans, Events events, OTFServerQuad quad);public void setId(String id);public boolean isAlive();public void remove();public void draw(OTFDrawer drawer);public Type getType();
Figure 5.9: UML diagram of the OTFQuery interface
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and extended with small owner-written classes, to provide additional func-
tionality. These classes need to interoperate to build a continuous connection
from the sink –usually some data source inside the queue simulation– to the
display of data on the screen. A description of the connectivity of all dif-
ferent classes for the different stages must be found. The information about
the interplay of the classes is joined in one class, the ConnectionManager
class. An instance of the ConnectionManager class describes the road the
data takes from data generation to visualization. The connection manager
mainly consists of a map of key-value pairs. Each pair describes a distinct
interplay between an intermediate data source and the corresponding sink.
The data flow is normally defined by four stages of interaction. An example
description of the data flow from a link with agents to the actual visualiza-
tion thereof is found in listing 5.4.

Listing 5.4: A sample OTFConnectionManager instance
public void prepareView1 () {

private OTFConnectionManager connect = new

OTFConnectionManager ();

connect.add(QueueLink.class , OTFLinkAgentsHandler.Writer.

class);

connect.add(OTFLinkAgentsHandler.Writer.class ,

OTFLinkAgentsHandler.class);

connect.add(OTFLinkAgentsHandler.class ,

SimpleStaticNetLayer.SimpleQuadDrawer.class);

connect.add(OTFLinkAgentsHandler.class , AgentPointDrawer.

class);

connect.add(SimpleStaticNetLayer.SimpleQuadDrawer.class ,

SimpleStaticNetLayer.class);

connect.add(AgentPointDrawer.class , OGLAgentPointLayer.

class);

...

}

The first entry marks the transition from the actual MATSim framework
class QueueLink to a class capable of extracting data from a QueueLink and
–if necessary– preparing this data for sending it over the network stream.

This class is mapped to the appropriate reader class which waits for the
data at the end of the stream. This reader class is then connected to one or
more classes responsible for the actual drawing of elements on screen. In the
example the reader class is the OTFLinkAgentsHandler class. It is connected
to two drawer classes, SimpleQuadDrawer and AgentPointDrawer, being
separately responsible for drawing the link itself and the agents thereon.
There is a last and optional stage to establish a connection between a draw-
ing class and a layer class which bundles drawers and might provide ways
to optimize the visualization of the drawers.
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Each of these stages represents only small sections of the overall data
flow. Most of the classes are small and easy to understand and lastly to
extend.

The connection manager holds this map of relations and provides enough
information to do the actual process of building the functional net of objects
automatically. It also provides means to check if the given configuration is
sound. In the next section a closer look is taken on how the visualization is
build up using the connection manager.

Building a visualization view

First the connection between client and server is established, which is the
duty of a single object of the class OTFHostControlBar. This class also
provides the main GUI for the interaction with the server, i.e. buttons
for playing and pausing the simulation and for displaying the simulation’s
current time. While there might be several views into the simulation data
active at the same time, only one object of HostControlBar can have con-
trol over the simulation. From the client’s view all interaction with the
server must be initiated by contacting the appropriate host controlbar.
To establish a new view onto the simulation, a connection manager ob-
ject must be constructed to provide the semantic of the connection. With
this at hand and an unique identifier string for the new view, the method
OTFHostControlBar.createNewView() can be called. This returns a quadtree
structure holding all reader objects to correspond to an quadtree on the
server-side filled with writers.

The OTFHostControlBar instance calls the method createView() of
the RemoteServer interface, to receive the server’s quadtree. The quadtree
is constructed on the server-side by stepping through all links and nodes.
For each object, the ConnectionManager instance is interrogated to provide
the actual WriterFactory class. This WriterFactory class is expected to
provide an implementation of the OTFDataWriterFactory interface. From
this factory actual data writers are requested. It is up to the factory to
either create new writer instances or use a singleton writer for writing.
Each OTFDataWriter needs to store the source’s reference, which was pro-
vided during the initial building process by a call to the writer’s setSrc()
method. Later the writer is responsible for providing the necessary up-
dates, the QueueNetwork will not be iterated again. When all writers have
been created and sorted into the ServerQuad quadtree implementation, this
quadtree is kept in the server, together with the ID of the corresponding
view. The inner working of the method createNewView() is summed up in
listing 5.5.

Listing 5.5: Creating a new View onto the simulation
public OTFClientQuad createNewView(String id,

OTFConnectionManager connect) throws RemoteException {
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OTFVisConfig config = (OTFVisConfig)Gbl.getConfig ().

getModule(OTFVisConfig.GROUP_NAME);

if(config.getFileVersion () < OTFQuadFileHandler.VERSION

...) {

// go through every reader class and look for the

appropriate Reader Version for this fileformat

connect.adoptFileFormat(OTFDataReader.getVersionString(

config.getFileVersion (), config.getFileMinorVersion ()

));

}

System.out.println("Getting Quad");

OTFServerQuad servQ = host.getQuad(id , connect);

System.out.println("Converting Quad");

OTFClientQuad clientQ = servQ.convertToClient(id , host ,

connect);

System.out.println("Creating receivers");

clientQ.createReceiver(connect);

readConstData(clientQ);

this.quads.put(id, clientQ);

return clientQ;

}

A copy of this quadtree is sent to the client’s OTFHostControlBar in-
stance using the RMI interface as discussed in Section 5.4.3. This class
constructs an exact copy of the server’s quadtree exchanging all writer ob-
jects by the analogous reader classes, again relying on the knowledge of the
connection manager and Java’s capability to create instances from class ob-
jects. This having been done, a data connection between the server and the
client with the necessary data for this particular view is established. This
connection is on the client-side represented by the OTFClientQuadTree ob-
ject. Any update of the view’s data will take place with the aid of this
object.

The last necessary step is to actually generate the classes for the vi-
sualization of the data. Again the connection manager provides the nec-
essary informations. The client quadtree’s method createReceiver() re-
cursively tracks through the tree structure and for every reader found it
generates a list of corresponding drawer classes. For this to take place the
drawer implementations implement one or more interfaces inherited from the
OTFData.Receiver interface. For each receiver class a call to the reader’s
connect() method is made. The receiver will instantiate one or more objects
of the Receiver class if it fits its needs. The receiver classes normally provide
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a set of setter -methods to provide the necessary information for drawing. As
an example the OTFDataQuad.Receiver interface provides setQuad() and
setColor() methods for setting coordinates and color of one rectangular
area. These receivers are the classes responsible for the actual drawing of
information on the screen. This procedure is the topic of the next section.

The data flow from server to screen

After having established all connections, the sending of data can start. Data
is classified into two different types: Constant and dynamic data. For keep-
ing the network traffic minimal, constant data should be sent only once.
Typical constant data are, for example, the coordinates of nodes or the link
and node identifiers. Other data has to be updated at every tick like the
agent’s positions.

The constant fraction of data is sent before the first dynamic data is
transmitted and right after the connection is established. The code for this
is exemplified in listing 5.5. The server collects all data in a simple byte
buffer. This buffer is transferred to the client side by RMI, and the client’s
quadtree reads the data from the byte buffer. This should make it relatively
easy to transfer the mechanism to another network platform in case RMI
should not be the preferred interface anymore.

The server-side writer objects are responsible for extracting the informa-
tion needed from their respective source objects and putting this data onto
the byte buffer. The client’s reader classes do not store any data, but are
solely responsible for reading the data from the byte stream in an appro-
priate manner and pushing them directly into the setter -methods of their
drawer or receiver classes. This is done to keep the memory print of the
data on the client-side minimal. The drawer classes could again convert or
strip the data to the smallest necessary set of data already using OpenGL
data structures like DisplayLists or VertexObjectBuffers, possibly relocating
the data onto the graphics card, if feasible.

A sample Reader class is illustrated in listing 5.10. The readDynData()
and readConstDta() methods do not store any data locally, but directly
push them into the receiver classes. The receiver objects have to implement
one or more interfaces inherited from the OTFData.Receiver interface.

A sample Receiver interface for receiving an rectangle for drawing is the
OTFDataQuad.Receiver interface from listing 5.6. As soon as the reader
class has been equipped with an object implementing this interface it can
directly call a method of choice like a virtual method call, maintaining a fast
and safe execution path at runtime. With this approach one issue still re-
mains when it comes to sending different data with the same primitive type.
An example receiver interface named OTFDataFloat.Receiver defining the
anticipated getFloat(float value) method is not a good idea. Given a
reader wants to submit two different float values with distinct meaning, e.g.
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a flow capacitiy and a space capacity, with the OTFDataFloat.Receiver
interface, there is no way to reconstruct which float value belongs to which
receiver class. This could be avoided by creating two interface classes, e.g.
OTFDataSpeedCap.Receiver and OTFDataFlowCap.Receiver and naming
the methods appropriately. Using these Receiver interfaces will make each
access unique again. The Receiver interfaces need to be named after their
data’s usage, not after the actual type of data transferred.

Listing 5.6: A receiver interface for quad data
public interface OTFDataQuad extends OTFData{

public static interface Receiver extends OTFData.Receiver{

public void setQuad(float startX , float startY , float endX ,

float endY);

public void setQuad(float startX , float startY , float endX ,

float endY , int nrLanes);

public void setColor(float coloridx);

public void setId(char[] idBuffer);

}

}

Java RMI

As the design of the visualizer was defined as a client-server-architecture,
some sort of protocol to exchange data from a remote computer to the
client and vice versa had to be found. As the programming framework was
the Java SDK, Java’s own RMI (Remote Method Invocation) framework
for exchanging data seemed natural. Java’s original purpose was to be the
lingua franca of the world wide web. Even though this goal has never really
been met, many parts of the Java SDK are still dedicated to web services and
communication. The RMI framework is one of these packages. It provides
all necessary procedures and structures to send ”living” objects over the net
from one Java VM (virtual machine) to another as long as some kind of
network connection is established.

The RMI interface has been developed together with the Java language
itself and is, therefore, tightly integrated into the Java framework. It obeys
all security constraints of Java, making it easy to guarantee a secure and
encrypted connection if necessary and offering a fast and simple implemen-
tation when security is not an issue, like in an internal network. Using RMI
makes the network connection nearly transparent to the user. Accessing a
remote object is not much different from accessing a local objects, apart
from catching the RemoteException if necessary.

The RMI framework is using Java’s Serializable interface to send,
marshal and un-marshal data on different computers. To enable an object to
be send over the Internet it must be serializable. To call a remote object over
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the network, this object must implement the Remote interface. Furthermore,
every method which might be called over RMI must declare to throw a
RemoteException.

Establishing a remote connection

All access to a remote object is managed by a registry. The Registry
has to be accessed via either a call to the static method getRegistry(),
or by creating a new registry with createRegistry(). For the OTFVis a
registry is created at a certain port number (4019). The first instance of a
RemoteServer will create a registry at this port, further instances will use
the existing registry. There is no problem with putting this registry any-
where else, fitting the needs of the network topology. Running a beowulf-
cluster, typically connected to the Internet by a single host computer, one
might place the registry on this host computer so that the registry is reach-
able from the Internet as well. Over the so-placed registry access from the
Internet to the cluster’s inner computer’s simulations is possible.

To make an object known to the registry, it will be bound to a certain
registry by calling the registry’s method bind(). A unique name must be
given for every object. For the OTFVis server this is achieved by either using
a user-defined unique name or by creating an UUID with the java.util.UUID
class provided by the 1.5 Java SDK. This UUID is appended to the String
"OTFVisServer_" to make it easier to identify the object as an OTFServer.
After the binding, the object is ready to be accessed remotely.

The client will have to ask the registry for access to the object. To do
so, the client needs to know the UUID of the server. This could be achieved
by letting the client start the server itself with a client-chosen UUID, or
by telling the client the UUID of the server to attach to. The client’s con-
structor takes a sort of URL to connect to different servers. The URL
"rmi:localhost:4019:OTFServer_<UUID>" will for example open a local
connection to a server with the given UUID. Another example might be
"file:../studies/berlin/500.plan.mvi" which will open a QuadFile-
Server instance and read from a movie file. For ”live” connections, either
"rmi:" or "ssh:" type of URL could be used, establishing an unsecured or
secured connection to the OTFVis server.

After connecting to the RMI registry, the client can receive a list of
remote objects via a call to the registry method list(). From this list it
has to pick the appropriate server by the UUID. It will then request a proxy
of the found object by a call to lookup(). From then on the client can use
the server as if it is a local object, except for the RemoteExceptions. In case
of the OTFServer, the client can rely on the LiveRemoteServer interface.
It is inherited from the RemoteServer interface and offers the additional
functionality of sending queries to the server.
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OTFVis and RMI

After a client has connected to a host, that is, after retrieving the server’s
proxy object given as an OTFRemoteServer interface, the client can ask for
this server’s quadtree representation of the network. This quadtree represen-
tation is then converted from a OTFServerQuad (containing all OTFDataWriter
objects) to an exact copy containing corresponding OTFReader objects. Send-
ing objects over the RMI interface is rather expensive. Therefore the main
communication between server and client after exchanging the quadtree
structure is reduced to the exchange of arrays of bytes. All writer on the
server side will write their data into the byte buffer and the readers on the
client side will read the data from the buffer into the actual objects respon-
sible for drawing. This ensures the smallest possible amount of data being
send over the network. How this is achieved is described in Section 5.4.3.

Listing 5.7: Interface for the remote server classes
public interface OTFServerRemote extends Remote {

public enum TimePreference{EARLIER , LATER };

public boolean requestNewTime(int time , TimePreference

searchDirection) throws RemoteException;

public OTFServerQuad getQuad(String id, OTFConnectionManager

connect) throws RemoteException;

public byte[] getQuadConstStateBuffer(String id) throws

RemoteException;

public byte[] getQuadDynStateBuffer(String id, QuadTree.Rect

bounds) throws RemoteException;

public int getLocalTime () throws RemoteException;

public boolean isLive () throws RemoteException;

public Collection <Double > getTimeSteps () throws

RemoteException;

}

The full OTFServerRemote interface is illustrated in listing 5.7. Apart
from the methods discussed in Section 5.4.2 it mainly consists of the methods
necessary to send the quadtree and the byte buffers from server to client. The
most frequently called method of this interface is getQuadDynStateBuffer(),
which returns the aforementioned buffer of byte data representing the actual
state of the data in the rectangle given by the bounds parameter. The id
string parameter is needed as one server can serve multiple views onto the
actual simulation. This is discussed in the Section 5.2.1
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5.4.4 Extensibility

The visualizer can be extended in many ways. Starting with smaller issues
like replacing the agent’s drawer by some other way to draw. Assume one
wants to change the coloring scheme for the agents’ icons to run from blue
to yellow instead of the standard coloring. All there is to be done is to write
a small new drawer for the agents, as given in listing 5.8.

Listing 5.8: New coloring scheme drawer for agents
private static OTFOGLDrawer.FastColorizer colorizerBlue = new

OTFOGLDrawer.FastColorizer(

new double [] { 0.0, 50.}, new Color[] { Color.BLUE , Color

.YELLOW });

public class AgentPointDrawerBlue extends AgentPointDrawer {

public void setAgent(char[] id, float startX , float startY ,

int state , int user , float color) {

drawer.addAgent(id, startX , startY , colorizerBlue.

getColor (0.1 + 0.9* color), true);

}

}

}

Then replace the appropriate entry in the OTFConnectionManager by
one referring to the new class and finally associate the drawer with the
correct layer by adding another entry to the connection manager. The two
lines will look like this:

connect.add(OTFLinkLanesAgentsNoParkingHandler.class ,

AgentPointDrawerBlue.class);

connect.add(AgentPointDrawer.class , OGLAgentPointLayer.class);

For more sophisticated operations one might want to add a customized
layer. For example, to assure a certain drawing order, one might intro-
duce an additional layer, overloading the layers getDrawOrder() method
as described in Section 5.5.2. If one wants to add more or different data
from the server to the visualization process, there are two alternative ap-
proaches. Either a new query is defined and collects and displays the data,
or a new writer/reader pair is written. This, again, needs to be inserted
into the OTFConnectionManagers mapping. New ways of interaction can be
provided by overloading the VisGUIMouseHandler class handling all mouse
movements. Finally, even the layout of the views can easily be adapted to
new needs. The OnTheFlyClientQuad is defined as a BorderLayout with a
JSplitPane split layout window in the center, capable of drawing two dif-
ferent views of a simulation run. An example for a split view visualization
is depicted in Figure 5.10.

This could easily be replaced by any combination of Java’s layout man-
agers and panes. The two indispensable elements of the visualization, the
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Figure 5.10: A visualization using the split view pane.

OTFControlToolBar and the view represented by an OTFOGLDrawer instance,
are just plain Java Components to be inserted into any SWING GUI.

The visualizer is easily extended into any direction and the actual state
of affairs should be understood as a starting point for new and more sophis-
ticated ways of mining into the queue simulation’s data. The next chapter
will introduce an extension to the visualizer, enabling the visualizer to show
results from the CUDA runs by accessing the graphics hardware memory
directly without resorting to the CPUs memory, thereby, saving time and
memory.

5.4.5 Version management

Having an open system like the one implemented with the OTFVis also
implies that one has to be prepared for change. A change of a reader or
writer class might be necessary to add features or remove unnecessary data.
As we write the binary stream of information that travels through RMI
into a plain byte buffer and dump this to a file, this file format is fragile in
terms of breaking with classes changing. Three levels of control have been
implemented into the OTFVis to avoid breaking backwards compatibility,
each addressing another aspect of possible change. The next three sections
will explain each level and what safety it achieves for the file format. Only
the .mvi files are affected by changes in the class structure. If you change
a class structure and then run the “live” version of the OTFVis all changes
will be in place anyway.
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Moving classes

Unfortunately, the classes saved to file via the Java’s Serializable() in-
terface are being saved with their full path. For example,
org.matsim.utils.vis.otfvis.handler.DefaultAgentHandler.Writer
might be such a class. At some later point in development, the entire package
might need to be refactored and to be moved one level up out of the utils
package. No class or functionality has been changed, however, the class path
has. So when reading our old visualization from file, Java is unable to find
and construct the original class.

Fortunately, the Java creators have foreseen this situation and exposed
the mechanism in charge of resolving the classes to the user. Whenever a
stream is used to read such a serializable object from a file, a special stream
is used. This stream is derived from the DataObjectInputStream normally
used for reading the objects. This new OTFDataObjectInputStream over-
loads the method resolveObject() which is in charge of creating and pre-
senting a class ready to be filled with the data read from the file. Thus, any
change in the class-path can be kept track and taken care of in this method.
Listing 5.9 shows such a method for the example above and, additionally,
exchanges a very old implementation of the quadtree with the current one.

Listing 5.9: Resolver for Java classes
protected Class resolveClass(final ObjectStreamClass desc

) throws IOException , ClassNotFoundException {

String name = desc.getName ();

System.out.println("try to resolve " + name);

if (name.equals("playground.david.vis.data.

OTFServerQuad")) {

return OTFServerQuad.class;

} else if (name.startsWith("org.matsim.utils.vis.otfivs

")) {

name = name.replaceFirst("org.matsim.utils.vis.otfivs

",

"org.matsim.vis.otfvis");

return Class.forName(name);

}

return super.resolveClass(desc);

}

}

}

So this mechanism will ensure a high level of security when classes are moved
around without being changed.
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Adding or removing data

Another situation that might appear is that we want to add data to our
class or remove data from it. One viable idea is certainly to just put the
additional data into an inherited class of the original or into a completely
separate class altogether. If that is, for some reason, not feasible, then the
changing of the class can be performed in a broad manner without breaking
compatibility. The Java documentation [57] offers the following options for
changing a class-definition without breaking compatibility:

The compatible changes to a class are handled as follows:

• Adding fields - When the class being reconstituted has a
field that does not occur in the stream, that field in the
object will be initialized to the default value for its type.
If class-specific initialization is needed, the class may pro-
vide a readObject method that can initialize the field to
nondefault values.

• Adding classes - The stream will contain the type hierar-
chy of each object in the stream. Comparing this hierarchy
in the stream with the current class can detect additional
classes. Since there is no information in the stream from
which to initialize the object, the class’s fields will be ini-
tialized to the default values.

• Removing classes - Comparing the class hierarchy in the
stream with that of the current class can detect that a class
has been deleted. In this case, the fields and objects cor-
responding to that class are read from the stream. Primi-
tive fields are discarded, but the objects referenced by the
deleted class are created, since they may be referred to later
in the stream. They will be garbage-collected when the
stream is garbage-collected or reset.

• Adding writeObject/readObject methods - If the version
reading the stream has these methods then readObject
is expected, as usual, to read the required data written
to the stream by the default serialization. It should call
the defaultReadObject first before reading any optional
data. The writeObject method is expected as usual to
call default\-WriteObject to write the required data and
then may write optional data.

• Removing writeObject/readObject methods - If the class
reading the stream does not have these methods, the re-
quired data will be read by default serialization, and the
optional data will be discarded.
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• Adding java.io.Serializable - This is equivalent to adding
types. There will be no values in the stream for this class
so its fields will be initialized to default values. The sup-
port for subclassing nonserializable classes requires that the
class’s supertype have a no-arg constructor and the class
itself will be initialized to default values. If the no-arg con-
structor is not available, the InvalidClassException is
thrown.

• Changing the access to a field - The access modifiers public,
package, protected, and private have no effect on the
ability of serialization to assign values to the fields.

• Changing a field from static to nonstatic or transient to
nontransient - When relying on default serialization to com-
pute the serializable fields, this change is equivalent to adding
a field to the class. The new field will be written to the
stream but earlier classes will ignore the value since serial-
ization will not assign values to static or transient fields.

The documentation also indicates changes that will actually break the back-
wards compatibility:

Incompatible changes to classes are those changes for
which the guarantee of interoperability cannot be main-
tained. The incompatible changes that may occur while
evolving a class are:
Deleting fields - If a field is deleted in a class, the stream
written will not contain its value. When the stream is read
by an earlier class, the value of the field will be set to the
default value because no value is available in the stream.
However, this default value may adversely impair the ability
of the earlier version to fulfill its contract.

•• Moving classes up or down the hierarchy - This cannot be
allowed since the data in the stream appears in the wrong
sequence.

• Changing a nonstatic field to static or a nontransient field
to transient - When relying on default serialization, this
change is equivalent to deleting a field from the class. This
version of the class will not write that data to the stream,
so it will not be available to be read by earlier versions of
the class. As when deleting a field, the field of the earlier
version will be initialized to the default value, which can
cause the class to fail in unexpected ways.
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• Changing the declared type of a primitive field - Each ver-
sion of the class writes the data with its declared type. Ear-
lier versions of the class attempting to read the field will fail
because the type of the data in the stream does not match
the type of the field.

• Changing the writeObject or readObject method so that
it no longer writes or reads the default field data or changing
it so that it attempts to write it or read it when the previous
version did not. The default field data must consistently
either appear or not appear in the stream.

• Changing a class from Serializable to Externalizable
or vice versa is an incompatible change since the stream will
contain data that is incompatible with the implementation
of the available class.

• Changing a class from a non-enum type to an enum type
or vice versa since the stream will contain data that is in-
compatible with the implementation of the available class.

• Removing either Serializable or Externalizable is an
incompatible change since when written it will no longer
supply the fields needed by older versions of the class.

• Adding the writeReplace or readResolve method to a
class is incompatible if the behavior would produce an ob-
ject that is incompatible with any older version of the class.

These rules seem rather difficult to cope with, but most of them describe
a rather natural usage of the classes. All simple changes to classes will be
mostly harmless.

Version management of the Buffer I/O

As safety measures mentioned above only affect the classes read from file via
OTFDataObjectStream, but not the plain data written into the byte buffer, a
third and last frontier is build into the OTFVis file format to handle changes.
Each .mvi file gets tagged with a version number, the moment it gets saved
to disk. This version number of the format MajorVersion.MinorVersion
can be used as an indicator of the particular reader class to use for reading
objects from the binary stream. The MajorVersion number is thought of
as indicating an actual break of backwards compatibility, i.e. when the
major number from the file is smaller than the actual major number stored
in the OTFVisConfig, the file is no longer loadable. This is implemented
to give the MATSim coordinators the possibility to –at some time in the
future– clean out compatibility code that is no longer needed in a safe and
documented manner. If only the minor number changes, a non-breaking
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change will be indicated. If, for example, additional data is to be written
by the OTFLinkAgentsHandler and the actual file version is 1.1, the minor
version will thus be increased setting the version number to 1.2. The old
handler’s functionality has to be preserved in another class, e.g., an inner
class of the OTFLinkAgentsHandler.

This might lead to the following class description:

/***

* PREVIOUS VERSION of the reader

*/

public static final class ReaderV1_1 extends

OTFLinkAgentsHandler {

@Override

public void readDynData(ByteBuffer in, SceneGraph graph)

throws IOException {

agents.clear ();

int count = in.getInt ();

for(int i= 0; i< count; i++) readAgent(in , graph);

}

}

}

This functionality and the version number up to which the legacy code is
responsible for reading data written for the OTFLinkAgentsHandler need to
be communicated to finalize the change. This is done by including a static
block in the class declaring the necessary information:

public class OTFLinkAgentsHandler extends OTFDefaultLinkHandler

{

static {

OTFDataReader.setPreviousVersion(OTFLinkAgentsHandler.class

.getCanonicalName () + "V1.1", ReaderV1_1.class);

}

...}

}

This information is visible to the ConnectionManager. Before the con-
nection manager assembles the necessary classes for reading data from a
file, it will fetch the version number from the file and replace the Reader
class with a previous version if necessary. Therefore, it is possible to change
the reader classes for the plain byte stream without breaking the backwards
compatibility to older files. Another viable method would be to just inherit
from the previous version and overload the writing that needs updating.
But this might not be a suitable idea in all cases, as one might want to
change the functionality of a specific reader/writer-pair that is, from there
on, obsolete in his older version. In this case the versioning is a good tool
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for avoiding cluttering the namespace with several similarly named classes.

5.5 Optimizations

In this section two strategies to optimize the data transmission and the
display of data on screen will be presented. Both have been largely used in
the implementation of 3D graphics applications but prove valuable in the
context of large-scale 2D visualization as well. Quadtrees (or in the 3D world
octrees) help to spatially structure data to make it simple to access certain
areas only. So, whenever the display shows only a portion of the overall
network, the speed of the application will benefit from the use of quadtrees.
Another optimization strategy is to re-use already rendered sections of the
data. This is done by carefully organizing these Sections in SceneGraphs.
Whenever the screen needs a redraw (without new data from the server) the
SceneGraph can be used to speed up the display. The next two sections will
discuss the implementation of these optimitzations.

5.5.1 Data exchange via quadtrees

The main attention, when constructing the client server architecture, was
payed to carefully reducing the amount of sent data to a minimum. Sending
redundant data apparently collides with the goal to implement the fastest
possible way to visualize great amount of data. To avoid sending redundant
data, the server must know, what information is to be drawn on the actual
clients display. Therefore, it is mandatory to know the exact rectangular
sector visible on screen to exclusively evaluate and send visible data to the
client. Fortunately, this is what the quadtree structure is capable of with a
very small administrative overhead. A spatial query is sent to the server’s
quadtree to let all writer objects of a certain region write their data into
a byte buffer. This buffer is then sent over to the client via RMI and the
client asks its quadtree to read exactly the same rectangular area from the
byte buffer. So only the minimum amount of data is written and read. Fig.
5.11 illustrates this procedure.

So each writer class must be complemented by the appropriate reader
class. For structural reasons this is done by uniting both classes in a Handler
class, proving the reading capabilities itself and having an inner class that
implements the writer class. By keeping the code of reader and writer in one
class and, thus, source-code file it is easier to maintain the synchronicity of
both reading and writing, which apparently is mandatory, as the stream it-
self has no information whatsoever of when the data dedicated to one reader
ends and the next reader has its turn. A rather simple class is presented by
listing 5.10. This writer simply writes one float value per link. Likewise the
reader class picks one float from the stream. This has to be done regardless
if there is a visualizer waiting for the data or not. Otherwise the stream
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Figure 5.11: The update process per quadtree

would be out of synchronicity. Just like the ServerRemote interface each
writer class provides a method for sending the constant data bits as well as
the dynamic ones. No time step is given here, though. Choosing the right
time step is up to the server. All writers will then write the same time step.

Listing 5.10: Implementation of a simple LinkHandler class
public class OTFDefaultLinkHandler extends OTFDataReader

implements OTFDataQuad.Provider {

protected OTFDataQuad.Receiver quadReceiver = null;

static public class Writer extends OTFDataWriter <QueueLink >

{

private static final long serialVersionUID =

2827811927720044709L;

@Override

public void writeConstData(ByteBuffer out) throws

IOException {

out.putFloat (( float)(this.src.getLink ().getFromNode ().

getCoord ().getX() ...));

out.putFloat (( float)(this.src.getLink ().getFromNode ().
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getCoord ().getY() ...));

out.putFloat (( float)(this.src.getLink ().getToNode ().

getCoord ().getX() ...));

out.putFloat (( float)(this.src.getLink ().getToNode ().

getCoord ().getY() ...));

}

public void writeDynData(ByteBuffer out) throws IOException

{

out.putFloat (( float)this.src.getVisData ().

getDisplayableTimeCapValue ());

}

}

public void readConstData(ByteBuffer in) throws IOException {

float xs = in.getFloat ();

float ys = in.getFloat ();

float xe = in.getFloat ();

float ye = in.getFloat ();

this.quadReceiver.setQuad(xs, ys, xe,ye);

}

public void readDynData(ByteBuffer in, SceneGraph graph)

throws IOException {

this.quadReceiver.setColor(in.getFloat ());

}

}

5.5.2 Caching

Every time the user pushes a button on screen, uses zooming or panning,
opens the context menu or does any other interaction with the application,
an update of the screen’s content is necessary. In many cases no connection
or update to the server is necessary, as all data is available in the client
already. Providing this data to avoid having to resort to the server is called
caching. This technique has been used in other visualization tools as well,
e.g. Treinish et al. [6]. A sophisticated caching strategy has been im-
plemented in the visualizer ensuring that all data is transferred only once.
The steps of refreshing the display and the caching used to optimize this is
discussed in this section.

Refreshing the screen view

When the screen rectangle changes, which might occur frequently, i.e. when-
ever the user zooms in or out, resizes the window, puts the application to
the back or translates the view, the screen’s content needs to be redrawn.
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In many cases some or all of the data already transferred stays valid. It
should, therefore, not be transferred again. If the user zooms in on an area,
for example, no additional data will need to be transferred, as a lager part
of the screen has already been transferred. To avoid getting the information
again, it needs to be cached. If the screen is moved, additional data will
need to be added to the present data. Therefore, a data structure must be
found that offers the capability to add new data later.

SceneGraph

Scene graphs have been used widely in computer graphics to store a compact
yet flexible representation of the data necessary for visualization. The notion
of a graph representation of 3D scenes goes back into the nineties when
Strauss and Carey [95] illustrated with IRIS inventor a new approach for
interactive representation of data by means of a scene graph. A little later
Rohlf and Helman [84] presented the IRIS performer, an optimization of the
IRIS inventor. From this OpenInventor evolved. A more recent example
would be the OpenSceneGraph by Burns, et al. [22].

With the OTFVis a rather simple scene graph was used to store the
actual representation of the data on screen. As mentioned in the last section,
a way to intermediately store the graphics data was needed, capable of the
assimilation of later additions to the graphics as the user explores more of
the visualized network. Using the quadtree ensures the bits of information
immediately needed are transferred from server to client. As the quadtree
is already a highly sophisticated data structure the actual scene graph to
store the drawer is rather simple. The data coming from the quadtree is
not stored in the reader classes, but directly sent to the appropriate receiver
objects. The receiver objects are responsible not only for storing the data,
but also for drawing a representation of the data on screen. Keeping track
of these receiver objects enables us to redraw the scene by simply calling the
appropriate receiver objects again.

SceneLayer

To enable synergies between the different receivers, these can be bundled
in layers. Layers were mentioned in the section on the ConnectionManager
class already. Additional entries correlating drawer classes with layers were
given there. These layers have a two-fold duty in the visualization process.
First, they serve as a factory for drawer objects. That is to create a new
drawer object, the actual layer responsible for these drawer objects is asked
for an instance of the drawer class giving the layer the opportunity to decide
whether to create a new instance or reuse an existing instance. This gives the
layer enough flexibility to centralize certain drawing actions, e.g. use one big
OpenGL VertexArray object to hold the data of all vehicles to be drawn.
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Each drawer not assigned to a distinct layer will end up in the automatically
generated default layer. The default layer will simply return a new instance
of the object’s class and will call the respective draw() routine every time
the object needs to redraw itself. Therefore, execution of the drawing of all
objects is secured, albeit not essentially with the optimal drawing strategy.

Additionally, each layer provides a getDrawOrder() method. This method
is responsible for the sequence in which the layers will be drawn by the scene
graph. The background layer is defined to have an order of zero. The layer
drawing the agents is defined to have the order of 100. The higher the order
number is, the later – i.e. further up – a layer will be drawn.

The drawer implementation

One last object missing in our chain of responsibility is an OGLDrawer in-
stance. This class is responsible for managing the actual OpenGL canvas
and accepting redraw commands from the OpenGL framework. As men-
tioned before, there are two distinct reasons for redrawing the screen. One
being the ongoing change in the simulation as one or more time steps pass.
In this case the OTFHostControlBar will issue a command for redrawing to
all views attached to it. The other reason for the need to redraw is that the
user changes the zoom or clipping region displayed or resizes the window.
The latter cases are reported directly to the OpenGL framework by the
operating system. The framework will in turn call the display() method
of the OTFOGLDrawer instance. There are two ways to issue a redraw in
the OGLDrawer. The simple and less time consuming option is to call the
redraw() method. This is only feasible when it is guaranteed that no ad-
ditional data is needed. For example using the selecting or zoom rectangle
on screen needs all data on screen to be redrawn every time the selection
box moves. But at the same time it is guaranteed that no additional data
is needed, as the screen section is not moved. Therefore, a simple redraw of
the scene graph is sufficient.

If, on the other hand, the screen region changes, the already accu-
mulated data might not be sufficient anymore. In this case the drawer’s
invalidate() method is used to indicate that the actual data stored in the
scene graph might not be valid anymore.

The invalidate() method knows a single parameter: a time value.
If this time value equals the time of the actual scene graph, or if −1 is
given, indicating that the time has not changed, the OGLDrawer will re-use
the existing scene graph. It will receive the updated rectangle describing
the region visible on screen and pass this information on the related client
quadtree to update the scene graph accordingly. The quadtree object will
analyze the correlation between the existing and already loaded rectangle
and the new region to display, generating up to four new rectangles of unread
sections.
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(a) Paninng (b) Zooming

Figure 5.12: Different unread regions resulting from user interaction.

The actual number of sections to be read depends on the action the
user performs. A zooming into the current clipping does not trigger any
re-loading of data at all, whereas moving the section around can trigger up
to two new rectangles to read data from. Zooming out of the current section
finally triggers reading four new sections at each corner of the former clipping
region. This is illustrated in Fig. 5.12. The blue sections must additionally
be read from the server. As the scene graph is capable of handling the extra
data, the new sections are being read into the existing scene graph and this
is returned to the OGLDrawer object. As a final operation the drawer object
calls its own redraw() method.

The chain of responsibility

To sum up the aforementioned, the OTFOGLDrawer of each view is responsible
for keeping the actual screen display up to date. The drawer does so by main-
taining a cache object containing the elements to be drawn. Four distinct
classes might ask the OTFOGLDrawer to update. The OTFHostControlBar
will call the drawer’s invalidate() method, whenever the time on the server
has changed. This leads to the construction of a new SceneGraph object
containing the actual screen rectangle’s representation of the current time
step. The second class is the OTFQueryBar, which is the toolbar on the
lower end of the screen that handles user triggered queries into the simu-
lation. The third class is the VisGUIMouseHandler class, which represents
any change inflicted by user interaction via mouse or keyboard. The last
possible change comes from the OpenGL context itself, e.g., when changing
the screen size.

When the drawer is asked to redraw the screen, it is sufficient to simply
call the drawing routine of the actual scene graph again. The drawer is asked
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to invalidate, because either the user is doing an interaction that brings up
a new region on the screen, or the host is receiving a new time step. The
OTFOGLDrawer will ask his client quadtree to read in the new dynamic data
received and then invalidate itself. This causes all drawers to get updated
with the latest information.

These drawers will be collected in the new scene graph, if a new time step
is requested. If only the view region is changed, the drawer objects triggered
by the call to invalidate() will be collected in the existing scene graph,
additionally to the already established drawer items. This scene graph is
handed back to the OTFOGLDrawer.

The drawer then does a simple redraw of the new scene graph including
the newly added elements. The source code in listing 5.11 illustrates the
steps necessary to do an update of a region. This code is distributed over
different methods in the actual implementation. A new SceneGraph instance
is initiated and all data necessary to display is retrieved from the server side
in an ByteBuffer object. After that, the affected region of the client quad
is traversed, issuing read operations on all reader objects. As mentioned
before, these read operations do not store the information in the reader
object, but pass it along to the related receiver/drawer objects immediately.

The last step is to traverse the region once again with the InvalidateExecutor,
which will add all drawer objects to the new scene graph. Having executed
these steps, the new scene graph is ready to draw the updated content in an
optimized way. The whole process is shown in Figure 5.13.

The server side of this operation is somewhat simpler. It basically con-
tains one line executing a WriteDataExecutor on the appropriate region of
the server’s quadtree, which will write all data to a ByteBuffer.

Listing 5.11: The principal steps for updating a region in the client
Rect bound = {the rectangle to be read}

String id = {The identifier for the quadtree to read from}

SceneGraph newScene = new SceneGraph(rect , time , connect ,

drawer);

ByteBuffer in = ByteBuffer.wrap(host.getQuadDynStateBuffer(

id, bound));

clientquad.execute(bound , new ReadDataExecutor(in ,

readConst , result));

clientquad.execute(bound , new InvalidateExecutor(newScene))

;

}

As the VisGUIMouseHandler can only initiate changes that are local to
one particular OTFOGLDrawer, only this drawer is made known to it. The
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Figure 5.13: Requesting a new time step t+1.
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OpenGL framework knows all drawers, as they are GLCanvas objects, and
will ask them to redraw individually. The OTFQueryBar does not know any
drawer objects, but can ask the OTFControlBar to update all views. The
OTFControlBar, finally, knows all drawers established.

Working with the quadtree

Many of the abovementioned steps require traversing the quadtree structure
for a distinct rectangular region only. The implementation of different be-
havior upon the data stored within a quadtree employed a Visitor -pattern,
as defined by Gamma, et al.[42]. The Visitor -pattern allows additional func-
tionality to be implemented on a certain data structure without infringing
the structural integrity of this structure. The Visitor adding functionality to
the quadtree implements the QuadTree.Executor interface. The interface
consist of only one method:

execute(double x, double y, T object).
This method implements the actual functionality. An instance of the de-

rived Executor class can be executed on a certain region of the quadtree by
calling the tree’s execute(Rect region, Executor<T> executor) method.

5.6 Conclusion

The dissection of the visualization techniques used in conjunction with MAT-
Sim in the past helped to get a good overview over what should be found
in a new visualizer and what should be avoided. A flexible design was cho-
sen based on use cases that outlined the range of application for such a
visualizer.

The two most important features to implement were the ability to run
the visualizer remotely and to issue queries into a running simulation.

Running the visualizer remotely proved important as the longer itera-
tions of the simulation normally are being run on some remote computer in
a cluster and not locally on one’s desktop computer or notebook. Being able
to connect to a remote simulation to take a look into the actual iteration is
helpful to get an impression whether it is worth to continue the iterating.
The other effect of moving the visualizer to a separate computer is that all
resources on the simulation computer can be used for simulation.

The ability to connect to a “living” simulation, asking questions about
every aspect of the simulation’s state is the other important feature. These
queries enable the modeler to efficiently debug their simulation by inspecting
every aspect at every second. This inspection can be done in a visual way,
drawing the state into the network on screen which is often more effective
than a column of numbers.

Apart from that, it is also possible to record movie files from simulation
runs to e.g. show different outcomes of different policies, tolls or changes in
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the road infrastructure.
Client-server architecture, quad trees and scene graphs were adapted for

the usage with MATSim. The overall design proved to be useful to imple-
ment queries. If all queries can be expressed with the given implementation
is still an open question. The development of MATSim is still a very agile
and ongoing process, so the visualizer will have to prove if it is capable to
adapt changes in MATSim fast enough. But as the actual interface between
MATSim and the visualizer is rather small, the author is positive about that.
The visualizer has been accommodated positively by the rest of the MAT-
Sim developers. Extensions for the use with evacuation simulation (display
of tsunami wave, shelters) and public transport (display of bus stops and
buses) have already been implemented.

Eventually it can be said, that the OTFVis has proved to be sufficiently
fast to meet the demands of the MATSim framework and it has shown to
be a stable application. It managed to stay backwards compatible to older
movie files and still be open to new extensions.

149





Chapter 6

OTFVis and CUDA

The visualization framework and the fast CUDA-based simulation which
have been discussed in the two previous chapters can be combined to con-
struct the interactive visualization system proposed in the introduction to
this thesis.

As the CUDA simulation is already embedded into the MATSim frame-
work and the visualization is capable of running the controller of the MAT-
Sim framework, regardless of the simulation used, the ”missing link” for
drawing the results of a CUDA run is easily spotted:

• A reader/writer pair for transporting the generated data to the client

• A drawer class for drawing the CUDA data

• A client/server pair maintaining instances of the above classes

The rest of this chapter will discuss the changes necessary for running the
visualizer and the CUDA simulation together. Three distinct modules have
been changed: the simulation itself, the client and the server.

6.1 Additions to the server side

The server can be changed rather easily. As the OnTheFlyServer class
maintains an extra list of objects not included in the quadtree, the newly
created OTFWriter object for the CUDA vehicle data can be inserted as an
additional object into the server’s object list. The changes needed to have
a client ready to display the CUDA results –given the classes explained in
the next section– are simple. Listing 6.1 shows the necessary changes to
the client class implemented as a static method that adds the entries to the
ConnectionManager instance.

On the server side, all that is left to do is to insert the writer object after
an instance of the server has been created. How these reader, writer and
drawer classes have to be constructed will be explained in the next section.
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Listing 6.1: OTFClient class for CUDA
public class OTFCUDAClient extends OnTheFlyClientQuad {

public static OTFCUDAClient createSim(String url) {

OTFConnectionManager connect = new OTFConnectionManager ();

connect.add(QueueLink.class , OTFNoDynDataLinkHandler.Writer

.class);

connect.add(OTFAgentsVBOHandler.Writer.class ,

OTFAgentsVBOHandler.class);

connect.add(OTFAgentsVBOHandler.class , OTFExternVBODrawer.

class);

connect.add(OTFDefaultNodeHandler.Writer.class ,

OTFDefaultNodeHandler.class);

connect.add(OTFNoDynDataLinkHandler.Writer.class ,

OTFNoDynDataLinkHandler.class);

connect.add(OTFNoDynDataLinkHandler.class ,

SimpleStaticNetLayer.SimpleQuadDrawer.class);

connect.add(SimpleStaticNetLayer.SimpleQuadDrawer.class ,

SimpleStaticNetLayer.class);

return new OTFCUDAClient(url , connect);

}

}

}
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6.2 Using device memory to exchange data

To visualize the CUDA simulation runs, both the visualizer and the CUDA
simulation have to be extended.

In the regular QueueSimulation all links are responsible for informing
the visualizer where to draw the agents currently driving upon themselves.
It is possible to extend this mechanism to the CUDA simulation by having
all links output the current vehicle position every time step or on request.
Unfortunately, this would include transferring the necessary position data
from the CUDA device to the host’s main memory and then back to the
graphics devices as OpenGL arrays.

This is clearly not the most efficient way to handle the given situation.
As all calculations already take place on the graphics device, it would be
more efficient to leave the data on the device and just send a pointer to the
location where the data resides to the OpenGL framework, which can then
display it. This –rather obvious– demand has been foreseen by the NVIDIA
engineers, and the necessary functionality for transferring data from the
CUDA side of the graphics device to the graphics part is already available
as part of the CUDA SDK.

With the cudaGLMapBufferObject(void** p, GLint vbo) method, any
OpenGL vertex buffer array can be mapped to a CUDA memory-area pointer.
Therefore, it is easy to register a VBO (vertex buffer object) on the OpenGL
side and use this to store values actually being computed by CUDA kernels.

Listing 6.2 shows the code for generating a VBO capable of holding a
Vertex2 structure for every vehicle in the simulation and binding it to a
CUDA pointer. After the CUDA related operations have been finished, the
memory location has to be released again by the CUDA context by calling
the cudaGLUnmapBufferObject(GLint vbo) method. This is mandatory so
that the VBO object can be used from the OpenGL side again.

6.3 Calling the kernel to render the positions into a VBO

Given the premises of the last section, it was self-evident to implement
the updating routine for the agents’ –respectively vehicles’– positions as
another CUDA kernel, writing the position data into a VBO. Sending the
VBO’s identifier together with the number of vehicles to be drawn to the
visualizer is sufficient to draw from this buffer. Therefore, it is not necessary
to transfer any vehicle data back to the host’s memory.

The complete host code for calling the kernel is given in listing 6.3

Listing 6.3: Calling the kernel for the VBO update
void CMicroSim :: updateVBO () {

if(vbo <= 0) return;
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Listing 6.2: Use of a VBO on the CUDA device
GLint bsize = sizeof(Vertex2) * simdata.planssize;

glGenBuffersARB (1, &vbo);

glBindBufferARB(GL_ARRAY_BUFFER_ARB , vbo);

glBufferDataARB(GL_ARRAY_BUFFER_ARB , bsize ,

NULL , GL_DYNAMIC_DRAW_ARB);

glGetBufferParameterivARB(GL_ARRAY_BUFFER_ARB ,

GL_BUFFER_SIZE_ARB , &bsize);

if (bsize != (sizeof(Vertex2) * simdata.planssize)) exit (1);

glBindBufferARB(GL_ARRAY_BUFFER_ARB , 0);

cudaGLRegisterBufferObject(vbo);

CUT_CHECK_ERROR("cudaGLRegisterBufferObject failed");

Vertex2 *p;

unsigned long error = cudaGLMapBufferObject ((void **)&p, vbo);

}

int lthread = min(THREADMIN ,simdata.linkscount);

int lblock = ceil(( double)simdata.linkscount / lthread);

unsigned long error = cudaGLMapBufferObject ((void **)&p, vbo);

vehpoints = 0;

cudaMemcpy(dvehpos , &vehpoints , sizeof(int),

cudaMemcpyHostToDevice);

calcVehPos_r <<<lblock ,lthread >>>(simtime , p, dvehpos);

cudaMemcpy (&vehpoints , dvehpos , sizeof(int),

cudaMemcpyDeviceToHost);

cudaGLUnmapBufferObject(vbo);

}

}

The kernel responsible for drawing the vehicles runs over all links. Its
code is rather lengthy and was thus omitted here. The kernel calculates how
many agents’ positions have to be drawn for a particular link and chooses a
color for the agents depending on their status in the queue. If a link and the
associated buffer are empty, the kernel will bail out right away. Otherwise,
vehicles on the link will be drawn in green, while vehicles residing in the
link’s buffer will be drawn in purple.

The position of the vehicles is calculated as equidistant over the whole
link. Therefore, links with less allocation will look less crowded in the visu-
alizer than congested links. For each vehicle, a 2D coordinate and a color
value is saved into the vertex buffer. The number of agents to be drawn
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later by the OpenGL framework is stored in dvehpos. This is done by an
atomicAdd() operation. The actual number of agents and the VBO identi-
fier are the only information transmitted via the host memory.

6.4 The handler for client-server communication

On the server side a new OTFDataWriter class was written for transferring
the VBO-related data. The class OTFAgentsVBOHandler serves as a handler
class for reading and writing the data. The inner class Writer writes the
VBO’s identifier and the actual number of vehicles that need to be drawn
on screen at a particular time step as dynamic data. That is, it transfers
only two integer values as data. This is a grat improvement over the regular
drawer, which had to send the color and position data of every agent over
the network at every time step drawn.

6.5 The drawing on the client side

Two more classes had to be implemented on the client side for the drawing
of the VBO’s content. The interface OTFDataVBO derived from OTFData to
define the methods of the OTFData.Receiver class. These are methods for
receiving the VBO’s ID and the vehicle count. Finally, a drawer class which
could display the VBO in the OpenGL context had to be written. The
OTFExternVBODrawer class consists of only a few lines of code and is given
in listing 6.4

With these classes installed, the CUDA simulation can draw the agents
by sharing a common area of memory between OpenGL and CUDA.

6.6 Result from interactive runs

To see if any speedup was achieved when running the CUDA based simula-
tion inside the OTFVis, the times for two configurations were taken. The
GTX280 system was run with the 10% sample. One run was started with
the regular QueueSimulation serving as the “physical reality” the other run
was started with the JCudaSim.

In the OTFVis it is possible to “jump” directly to a new timestep by
entering time time into the time field. Or one could press the play button
and watch the simulation progress in time. To get an impression of the run
time of both ways to step forward two different times were tested in both
runs: The running time for stepping 24 hours forward with and without
displaying the graphics. The results can be found in Table 6.1. As the
results show, the JCudaSim is about eight times faster than the Java in all
variations. This is nearly an order of magnitude faster in execution speed.
Therefore, the overall goal of reaching interactive frame rates with the aid
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Listing 6.4: The drawer for drawing from the VBO
public class OTFExternVBODrawer extends AgentArrayDrawer

implements OTFDataVBO.Receiver {

private int count = 0;

private int vbo = 0;

protected void drawArray(GL gl) {

int vertex2size =12;

gl.glBindBufferARB(GL.GL_ARRAY_BUFFER_ARB , vbo);

gl.glVertexPointer (2, GL.GL_FLOAT , vertex2size , 0);

gl.glColorPointer (3, GL.GL_BYTE , vertex2size , 0);

gl.glInterleavedArrays(GL.GL_C4UB_V2F , vertex2size , 0);

gl.glDrawArrays(GL.GL_POINTS , 0, count);

gl.glBindBufferARB(GL.GL_ARRAY_BUFFER_ARB , 0);

}

public void setVBO(int vbo) {

this.vbo = vbo;

}

public void setVehCount(int count) {

this.count = count;

}

}

}
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GTX280 CUDA Java
10% w/o graphics 18s 157s
10% with graphics 28s 207s
25% w/o graphics 29s 235s
25% with graphics 42s 335s

Table 6.1: Running times for stepping 24 hours forward with the OTFVis
using CUDA and Java

of modern graphics hardware has been accomplished. Although the peak
performance of executing the simulation in C++ with an speedup of 38
could not be maintained after the integration into the Java framework, a
reasonable speedup still remains, making it possible to shift the time to
execute the simulation into the time frame required to maintain interaction.

157





Chapter 7

Conclusion and Outlook

This chapter comprises a brief summary of the work presented in this thesis
as well as an account of some of the latest developments of the visualizer.
As the visualizer is an open and ”living” project, additions are constantly
being made to it. Some contributions by the author of this thesis will be
described.

7.1 Running the server as an external module

As seen in Section 5.4.2 the OnTheFlyServer class needs to be called from
within the QueueSimulation. The QueueSimulation had to be extended in
order to overload the afterSimStep() method and the server called from
there. This is rather inconvenient as one must decide before starting the
simulation whether to look into the simulation or not by choosing either the
original QueueSimulation or the derived class.

A solution to this has recently been added to the MATSim project. By
”firing” certain events, signaling the different states of the simulation, exter-
nal classes can be informed of the state changes. One of the events fired is
called QueueSimulationAfterSimStepEvent. This event is sent whenever
a simulation step has finished. By making the OnTheFlyServer aware of
this event and registerinf it as an event listener to the currently running
QueueSimulation, the need to overload the method called after each simu-
lation step is eliminated. It is no longer necessary to use a special version
of the QueueSimulation to cooperate with the OnTheFlyServer.

How this is done and how to take this approach even one step further is
shown in the next section.

7.1.1 Running several iterations

Given the high-speed simulation of the CUDA device, it is feasible to run
the complete controller framework in the visualizer, giving the user the pos-
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sibility to run more than one iteration inside the visualizer’s view. The class
responsible for executing MATSim iterations is the Controler class. To use
the JCudaSim instead of the regular QueueSimulation class, the Controler
class needs to be extended. By inheriting and overriding the doMobsim()
method the regular simulation can be replaced by the JCudaSim that is run-
ning the simulation on the graphics device. This small change makes it
possible to run iterations on the CUDA device.

The second step towards running and experiencing the MATSim itera-
tion process through the visualizer is to enable the visualizer to cope with
more than one run of the ”physical” layer and to provide meaningful infor-
mation while the ”strategical layer” is occupied with the replanning process.

To start with, the OnTheFlyServer instance which, up to this point, was
created inside the start-up code of the QueueSimulation, had to be created
by the Controler class and held persistent over several iterations of the
”physical” layer. Because the MATSim framework offers the opportunity
to register external classes as ”listeners” to both an internal event inside
a QueueSimulation and inside the Controler class, the following approach
was chosen.

An ExeViaListener class implementing several interfaces was created
and inserted as a listener to both the simulation and the controller. Further-
more, the OnTheFlyServer interface was extended to hold another method,
getControllerStatus(). This method sends status information when-
ever the controller or the strategic layer is active. Listing 7.1 shows the
ExeViaListener class reacting to several events in the controller and simu-
lation and taking meaningful action. The code should be self-explanatory;
notice how the overloaded notifyAfterMobsim() method is used to issue
the server’s getStatus() method, which used to reside inside the QueueS-
imulation itself.

Listing 7.1: Running the server as an external module
public static class OTFControlerListener implements

StartupListener ,BeforeMobsimListener ,

AfterMobsimListener , QueueSimulationInitializedListener ,

QueueSimulationAfterSimStepListener {

private QueueNetwork queueNetwork;

private OnTheFlyServer myOTFServer;

private Population population;

private Events events;

public void notifyBeforeMobsim(BeforeMobsimEvent event) {

Controler cont = event.getControler ();

myOTFServer.setControllerStatus(OTFVisController.RUNNING +

cont.getIteration ());

}
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public void notifyAfterMobsim(AfterMobsimEvent event) {

Controler cont = event.getControler ();

myOTFServer.setControllerStatus(OTFVisController.REPLANNING

+ cont.getIteration ()+1);

}

public void notifySimulationAfterSimStep(

QueueSimulationAfterSimStepEvent e) {

int status = myOTFServer.updateStatus(e.getSimulationTime ()

);

}

public void notifySimulationInitialized(

QueueSimulationInitializedEvent e) {

QueueSimulation q = e.getQueueSimulation ();

myOTFServer.events = QueueSimulation.getEvents ();

myOTFServer.replaceQueueNetwork(q.getQueueNetwork ());

}

public void notifyStartup(StartupEvent event) {

UUID idOne = UUID.randomUUID ();

Controler cont = event.getControler ();

this.population = cont.getPopulation ();

this.events = cont.getEvents ();

this.queueNetwork = new QueueNetwork(cont.getNetwork ());

this.myOTFServer = OnTheFlyServer.createInstance("

OTFServer_" + idOne.toString (), this.queueNetwork , this

.population , this.events , false);

myOTFServer.setControllerStatus(OTFVisController.STARTUP);

}

}

The listing shows the actual implementation for the regular QueueSimu-
lation. For the CUDA simulation to run, the controller still has to be derived
to override the runMobSim() method and instantiate a JCudaSim object in-
stead of the regular one. Running the simulation over several iterations also
means that the plans of the agents will change and a score for each agent
will be calculated. This makes it even more interesting to be able to inspect
the inner state of an agent.

7.2 Adding reflection

The Java reflection API is part of the Java SDK. With this API it is possible
to inspect every aspect of each class and object without having any previous
knowledge about the object. This API is particularly valuable with regard
to the objects’ fields and their states. One can recursively step through
each field of an object and display its value without any implementational
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Figure 7.1: An agent’s plan visualized using PREFUSE

premises like providing getValueXX() methods. The Java reflection API
was used together with the remarkable PREFUSE visualization library to
display the inner state of each agent, regardless of its class. By stepping
recursively through the fields of the agent and collecting the state of the
agent’s fields, a tree is constructed reflecting the complete inner state of the
agent database. It is, for example, possible to interactively browse all nodes
of an agent’s current route or investigate the score of an agent’s plan. Figure
7.1 shows an expanded view of an agent.

7.3 Summary

Investigating the technical issues of an interaction with mobile intelligent
particles was the mission of this thesis. The challenges to be solved were
diagnosed as

• providing means to explore the huge data sets representing the agents
and the network

• providing visualizations to help the user understand the inner states
of the agents and

• providing sufficient speedup to narrow the time domain of the problem
to an interactively manageable time frame.

A visualization and interaction framework was designed with extensibil-
ity and flexibility in mind. The main features were :
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• MVC-pattern-based

• client-server architecture to run over the network

• separate data-representation and drawing

• easy to extend with self-written classes

• high-speed visualizer for displaying hundreds of thousands of agents

• fall-back solution running on every computer with Java SDK installed

The given implementation of the QueueSimulation proved to be too slow
to interactively handling a physical simulation of transport. A new genera-
tion of graphics hardware was used to decrease the execution time necessary
to run the simulation. The NVIDA CUDA framework offers tremendous cal-
culation power for very little money. A e300 graphics card was chosen, and
a variant of the QueueSimulation was implemented and run on the graphics
device using the CUDA framework. The real-time ratio possible with the
CUDA device is on the order of 104.

This was deemed fast enough to generate interactive frame rates even
for larger agent samples.

The implementations described in the previous chapters brought to-
gether the CUDA simulation and the new OpenGL-based visualizer. Fur-
thermore, whole iterations of simulations could be run interactively.

By using the CUDA simulation and the speedup possible with this im-
plementation, it is feasible to run iterations of samples with hundreds of
thousands of agents in less than a minute, enabling the researcher to exam-
ine the simulation ”live” on screen instead of having to rely on pre-recorded
or aggregated data. Given the fast execution times, it is feasible to conduct
research interactively simply by re-running a certain iteration to inspect the
events leading to an observed (mis-) behavior. Additionally, all kinds of
queries can be sent into the population database to further narrow down
the causes. As writing new kinds of queries is rather straightforward, it is
hoped that, after a certain period of time, a widespread toolbox of queries
and additional visualization modules will become available for data min-
ing into the behaviour of the agent and into the complex, emergent group
behavior shown by multi-agent simulations.

The opportunity to visually interact with the spatial data of a traffic
simulation, will hopefully reveal new trails of emergent behavior that would
have been left unaccounted for by aggregated data. Even the post-mortem
usage of a recorded movie file cannot deliver the bandwidth of research
opportunities that the interaction with the living simulation system can
offer.
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