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For economic nonlinear model predictive control and dynamic real-time optimization fast and accurate models are neces-

sary. Consequently, the use of dynamic surrogate models to mimic complex rigorous models is increasingly coming into

focus. For dynamic systems, the focus so far had been on identifying a system’s behavior surrounding a steady-state opera-

tion point. In this contribution, we propose a novel methodology to adaptively sample rigorous dynamic process models

to generate a dataset for building dynamic surrogate models. The goal of the developed algorithm is to cover an as large as

possible area of the feasible region of the original model. To demonstrate the performance of the presented framework it is

applied on a dynamic model of a chlor-alkali electrolysis.
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1 Motivation and Introduction

The need for online reoptimization of continuously oper-
ated chemical plants becomes ever more important given
the increase in demand response activity of industry, in-
creases in feed fluctuations, or changes in demand, etc. [1].
For processes with complex dynamics and slow return to
steady-state, economic nonlinear model predictive control
or dynamic real-time optimization has long been investi-
gated [2, 3]. Apart from the necessity to have highly accu-
rate process models and reliable state estimators, fast and
robust solution of the associated optimization problems is
of the essence.

Hence, many research groups have started working on
dynamic surrogate models, which accurately mimic the
behavior of complex rigorous models of chemical processes
and allow for fast computation of both state estimation and
real-time optimization problems [4].

In these schemes, simulation problems using rigorous
models are carried out offline and their results are then
employed to train, e.g., recurrent neural networks, for
online application [5]. In these settings, the number of sim-
ulations performed offline does not need to be limited.
Rather, it is important that the simulations cover a large
swath of the original model’s feasible region in terms of
both inputs (controls and initial conditions) and outputs
(state variables) as most surrogate models have no guaran-
tees regarding extrapolation.

Sampling and surrogate modeling for steady-state sys-
tems is well established [6, 7]. For dynamic systems, the
focus so far had been on system identification, i.e., identify-
ing a system’s behavior surrounding a steady-state opera-

tion point [8]. These methods are in general not capable to
generate surrogate models capable of mimicking the behav-
ior of a chemical plant from start-up to shutdown and have
only a small range of validity.

1.1 Objective

To fill this gap, the present contribution proposes a novel
methodology to adaptively sample rigorous dynamic pro-
cess models, with the goal of covering an as large as possible
area of the feasible region of the original model.

f _x; x; u; d; p; tð Þ ¼ 0 (1)

The systems of interest are defined by Eq. (1), wherein f is
a set of differential-algebraic equations (DAE), x are state
variables, u control variables, d disturbances, p model
parameters, and t time. The goal is to describe f by a surro-
gate model g, which predicts x of the next time point (tk+1)
based on the values of x and u of the current time point
(tk).
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As a starting point for the sampling of f, we shall limit
ourselves to the realistic assumptions of only one known set
of initial values (x0 = x(t0), u0) and that upper and lower
bound for all controls are known (uL £ u £ uU).

Based on this initial knowledge, we here aim to create a
dataset for building g from scratch. Given that this initial
information does not contain any information on the extent
of the feasible region of f, nor does it hold information of
the systems time constants beyond the initial point (x0,u0).
By consequence, the proposed method will have to both
explore the space of state variables x as well as investigate
frequencies at which the system f shows excitations, which
is subsequently relevant to determine the minimum time
step for g.

2 State of the Art

For system identification, step experiments and oscillating
input signals can be used for simple systems. These perturb
a process at steady-state and generate data, which can be
used to approximate the process by surrogate models valid
in a limited area surrounding the steady-state operation
point [9]. In case of more complex systems, the choice of
excitation signal is paramount. Multisine [10] as well as
chirp [11] and amplitude modulated pseudo random binary
signals (APRBS), which ‘‘can be understood as a sequence
of step functions’’ [12], need to be tailored depending on
the system’s characteristics, i.e., delays, nonlinearity, time
constants, etc. APRBS combines highly dynamic steps and
low dynamic constant parts and covers the whole input
space [11]. Design of experiments may be used to maximize
the information that can be achieved with every (simula-
tion) experiment of the process [12]. These methods typi-
cally focus on excitation of the system by manipulating u
and to hence generate data for x, while always starting from
the same initial point x0.

Naturally, this does not necessarily induce a large cover-
age of the feasible area in x. Many different methods are
available to sample in hypercubes. Distributing points
evenly in a k-dimensional hypercube can be achieved by a
uniform grid. However, it requires an exponentially growing
number of sample points with an increase in k. Nonuniform
sampling techniques, such as Latin hypercube [13], Ham-
mersley sequence [14], and Sobol [15], are more efficient,
but cannot avoid the exponential growth in terms of
required number of points. Halton and Hammersley se-
quences are used to generate well distributed, space-filling
samples even in higher dimensions. Both are deterministic
and every subsequence has the same space-filling properties
[16]. ‘‘Hammersley points are an optimal design for placing
n points on a k-dimensional hypercube’’ [17].

Applying these to generate different initial points for x0,
however, is ill-advised as these will almost certainly lead to
infeasibilities. Given the complexities of sampling both in
steady-state and dynamic systems, many different sampling

methods have been developed for surrogate model creation.
‘‘One-shot approaches’’ generate all samples at once, with-
out incorporating any prior knowledge of the system. They
provide a good coverage of the input space [18].

Adaptive sampling methods for static systems have
recently become popular. They can be divided into explora-
tion- and exploitation-based methods. The former try to
obtain a wide coverage of the input space, while exploita-
tion-based methods are driven by the training progress of
the model. The latter require multiple iterations of model
training.

In [7] an exploration-based method is proposed that esti-
mates the feasible region in parameter space by using a pre-
determined number of samples. ‘‘Automated learning of
algebraic models for optimization’’ (ALAMO) can be used
to sequentially sample data and structurally improve the
surrogate model of algebraic systems.

An exploitation-based method is presented in [19]: The
input space is divided into regions, which are sampled inde-
pendently. The model is trained and evaluated on those
regions. New samples are added to the region with the high-
est model error, improving the prediction.

A different method is proposed in [20]. It combines
exploration and exploitation and reduces the number of
function evaluations. However, multiple surrogate models
on different subsets of data are trained. Another hybrid
method is described in [18]. The exploration criterion is
based on a Voronoi tessellation in the input space, and the
exploitation part uses local linear approximations of the
objective function.

All of these methods are used for steady-state models.
Adaption to dynamic models and time series forecast is not
easily possible. Olofsson et al. use design of dynamic experi-
ments for model discrimination [21]. The exploration-
based methods focus on coverage of the input space, while
the exploitation-based methods focus on minimizing the
number of samples and function evaluations. Contrarily to
that, our proposed method is based on coverage of the out-
put space and minimizes training time.

3 Proposed Algorithm for Adaptive Sampling

The proposed algorithm aims at generating a dataset for
building a surrogate model. An overview is given in Fig. 1.
Multiple simulations with a short time horizon, a fixed
timestep, and different inputs �u are used to obtain a good
coverage of the input space. (Bio-)chemical systems can
have time constants differing by orders of magnitude. To
identify these, a frequency modulated APRBS (FAPRBS) is
proposed here and added on the inputs. It can be under-
stood as a sequence of multiple APRBS with different fre-
quencies and is depicted in Fig. 2. The maximum amplitude
of the FAPRBS is small compared to the valid range of u.

The overall algorithm is based on geometric quantities,
especially the Euclidean distance of samples. The curse of
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dimensionality restricts the number of output variables
which can be considered. A subset of all variables, that can
contain state and non-state variables, must be selected.
These variables form the output space Y. The dimensional-
ity of Y is currently limited to 7 by the applied implementa-
tion of the Quickhull algorithm [22, 23]. Using a different
implementation to determine the convex hull, however,
could eliminate this limitation.

The trajectory of each simulation run will oscillate around
a single point, which is called seed from here on. Based on
the seeds, poorly covered areas in the output space are identi-
fied and new inputs for the next simulation are estimated
under the assumption that the system is mostly linear be-
tween the seeds. If this assumption is fulfilled, it can be
ensured that new samples are placed in the target region of
the output space. In case the as-
sumption was invalid and the new
point is not in the target region,
new polygons will still be gener-
ated, which can be re-evaluated
and allow the algorithm to contin-
ue.

The algorithm is passed multi-
ple times. One iteration is called
an epoch. The initial conditions
x0 are kept the same for all simu-
lations in one epoch.

An epoch is composed of four
phases (see Fig. 1). Phase 1 uses
classical sampling methods to
create the basis for the following
adaptive part. Phase 2 expands

the convex hull of the seeds in the output space, while phase
3 populates empty regions inside the hull. Phase 4 creates a
new set of initial conditions for the next epoch. In the
following, each of these phases are detailed further and the
settings and termination of the algorithm are discussed.

3.1 Phase 1 – Initial Sampling

Phase 1 creates the basis for the adaptive sampling. The input
space is a hypercube of dimension di. Hammersley sequence
sampling is used to create samples for �u, which are well dis-
tributed in the input domain. For input space dimensions
di > 5, the points in a Hammersley set tend to align, which
reduces the usability as a sampling method for the input space.
For this reason, we recommend using a Halton sequence sam-
pling in this case [16]. Additional samples are set directly on
the corners and the center of the faces of this hypercube (see
Fig. 3a). FAPRBS samples are generated around each sample
of �u (see Fig. 2 and 3a) and dynamic simulations are carried
out for all resulting dynamic control trajectories using the ini-
tial conditions x0 of the current epoch (see Fig. 3b).

3.2 Phase 2 – Expansion

The goal of phase 2 is to increase the coverage of the output
space Y, specifically to extend the convex hull of the seeds to
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Figure 1. Overview of proposed adaptive sampling method.

Figure 2. Frequency and amplitude modulated pseudo-random
binary signal with 30 samples at f1 and 10 samples at f2. f1� f2.
The input signal is sampled around the given mean �u.

a) b)

Figure 3. a) Projection of three-dimensional input space with mean of inputs. b) Seeds of all
simulations in output space.
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cover a larger space. The seed of one simulation is calcu-
lated by taking the weighted mean of all simulation results
(Fig. 3b). To achieve this, possible candidates (a new input)
and targets (expected value in the output space) are com-
puted. The targets are designed to be close to the current
perimeter of the hull and as far away as possible from the
seeds. They are scored accordingly. The best candidate gets
selected, and the simulation is started.

A candidate consists of input and target and is created by
combining exactly two previously run experiments. Accord-
ing to the linearity assumption the input of the candidate is
�u* ¼ �u1 þ �u2ð Þ=2 and the target value in y can be deter-
mined as t* ¼ �y1 þ �y2

� �
=2. All combinatorial possible can-

didates are calculated and scored.
For scoring the center point of all seeds, M, is computed,

and for every target t* the Euclidean distance to M, l*, and
to the closest seed, r*, are calculated.

l* ¼ t*�Mk k2 (2)

r* ¼ min t*� �y1

�� ��
2; . . . ; t*� �yn

�� ��
2

� �
(3)

One example is shown in Fig. 4. All possible targets are
then scored: s* = f(l*, r*). f is chosen in such a way, that the
score improves for larger l* and larger r*. To prevent an
infinite loop, targets are declared invalid, if they are too
close to any previously used target: t* – tused,i2 < rused,i.

Phase 2 is repeated until there are no more valid targets,
the maximum number of simulations in phase 2 is reached,
or a threshold for the scoring function is surpassed. The lat-
ter two are hyperparameters for this phase.

3.3 Phase 3 – Population

The goal of phase 3 is to populate empty regions inside the
convex hull of the seeds in the output space. Identifying
these empty regions is equivalent to the largest empty sphere

problem, which is known in computational geometry and
can be solved using Voronoi diagrams [5]. A Voronoi-algo-
rithm returns vertices [4], which are the center of spheres
defined by the closest seeds and can be used in higher
dimensions.

Applying the algorithm on the seeds off the previously
run simulations, every vertex defines a set of d+1 experi-
ments. The number of vertices and the computational cost

of the algorithm ðOðndimðYÞ=2
simulations in epochÞÞ is small in compari-

son to an exhaustive search ðOðndimðYÞ
simulations in epochÞÞ.

For every vertex, a candidate is computed and scored.
The criterion is based on the size of spheres surrounding
the targets and the number of simulation results – y(t) –
inside of them, favoring big spheres with few points inside
of them.

Candidates and targets are computed similarly to phase 2,
by combining d+1 experiments.

u*
i ¼

1
d þ 1

Xdþ1

j¼1

uj (4)

t*
i ¼

1
d þ 1

Xdþ1

j¼1

yj (5)

A radius is defined as the smallest distance between the
target and the defining seeds.

r*
i ¼ min t*

i � y*
1

��� ���
2
; . . . ; t*

i � y*
dþ1

��� ���
2

� �
(6)

The target is scored by the function s* = fk(r*, n*), where-
in n* describes the number of simulation results inside the
d-ball centered at t*. The original outputs y with fixed time-
steps are used for counting the simulation results inside a
d-ball. k is a hyperparameter, which defines the number of
d-balls that are considered (see Fig. 5). Especially in higher
dimensions the d-ball with radius 1 � r* often is empty, so
multiple d-balls with radius r = 1 � r*,K, kr*) are evaluated.
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Figure 4. Two-dimensional output space with an exemplary tar-
get, the corresponding seeds and necessary values l*, r* for cal-
culation of the scoring function.

Figure 5. Phase 3 candidate selection. The vertex defines the
selection of seeds, for target calculation. Size and number of
simulation results inside the blue n-balls are used in the scoring
function.

2100 Research Article
Chemie
Ingenieur
Technik



The inner shells have a bigger influence on the scoring
function.

The score improves for big radii and small number of
results inside the d-balls. To prevent an infinite loop, targets
which are close to already used ones, are declared invalid
and are not evaluated further.

Phase 3 is repeated until there are no more valid targets
left or the maximum number of experiments is reached.
During phase 3, as the empty regions are filled, the mean of
the computed radii r* decreases. This serves as an additional
termination criterion. The maximum deviation for the
mean radius and the number of iterations below that value
are hyperparameters as well as the number of evaluated
n-balls k.

3.4 Phase 4 – Restart

If the maximum number of epochs is not reached, a new set
of initial conditions for the next epoch is determined with
the intention to expand the covered region in output space
Y. Selecting new initial conditions for a DAE-system is non-
trivial. By taking a point from a formerly traversed trajec-
tory it can be guaranteed that the selected point is a valid
initialization of the system.

The new initial condition is computed by using all simu-
lations from all epochs. To overcome the issue of the curse
of dimensionality, a subset of all state variables must be
selected that is considered further. The center of all results
is calculated and the point with the largest distance to the
center is selected as new initial condition. A minimum dis-
tance to all previously used initial conditions must be main-
tained. It is proposed to use the average distance between
two random points in a hypercube as minimum distance,
but it can be chosen freely [24].

The algorithm terminates when there are no more valid
initial conditions, or the maximum number of epochs is
reached.

3.5 Computational Complexity

The main influencing factors for each phase are stated
below: The number of simulations in phase 1 depends on
the dimensionality of the input space and the chosen num-
ber of Hammersley samples.

nPI ¼ 2du þ 2du þ nPI
HSS (7)

The number of candidates for each iteration in phase 2 is
nsim;epoch

2

� �
¼ O n2

sim;epoch

� �
, wherein nsim,epoch is the

number of simulations in the current epoch, which have to

be evaluated.

In phase 3, for each iteration the most expensive opera-
tion is to calculate and evaluate the matrix of Euclidean dis-
tances between the targets and the simulation results. The
Voronoi algorithm returns OðndimðYÞ=2

sim;epochÞ vertices and there-
fore targets. With a fixed timestep and time horizon for all
simulations, there are ny ¼ nsim;epochnDt=sim simulation

results. So, the matrix is of size ndimðYÞ=2
sim;epoch · ny and must be

evaluated for every considered radius for a total k times.
In phase 4 the distance matrix of size

nepochs · nsim;totalnDt=sim must be computed once.

4 Case Study

To demonstrate the performance and the applicability for
dynamic data-driven modeling, the presented adaptive sam-
pling framework is applied on a dynamic model of a chlor-
alkali electrolysis (CAE) and a recurrent neural network is
trained and tested based on the generated dynamic data
sets.

4.1 Problem Description

The chlor-alkali electrolysis produces chlorine, hydrogen
and caustic soda for sodium chloride brine using electrical
power. A flowsheet of the modeled process is shown in
Fig. 6a. Here, the CAE cell is represented as a coupled sys-
tem of two continuously stirred-tank reactors. For a detailed
description of the used model, the reader is referred to [25].

The control variables u used for the case study are the cur-
rent density j applied to the CAE cell, the inlet temperature
of the catholyte feed Tin and the volume feed flow of the
sodium chloride brine Vin. To manipulate the two latter con-
trols, the two controllers marked in dashed lines in Fig. 6a
had to be removed from the original model. The lower and
upper bounds of u as well as the maximum possible control
changes in one time step (amplitude of the FAPRBS) used in
the sampling algorithm are listed in Tab. 1.

The variables that are supposed to be described in the
dynamic surrogate model (output space Y) are the tempera-
ture in the CAE cell Tcell and the sodium ion mass fraction
in the anolyte wNaþ . Both variables are controlled variables
of the removed controllers (marked dashed in Fig. 6a).
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Table 1. Specification of the used FAPRBS control sampling.

Control u Lower bound
of u

Upper bound
of u

Amplitude of
FAPRBS

j [A m–2] 5000 6000 200

Tin [�C] 59 89 6

Vin [L s–1] 0.05 0.07 0.004
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4.2 Adaptive Sampling

The presented framework was applied on the CAE system
described above. The algorithm finished using five epochs
(initial conditions) and performed 145, 15 and 121 dynamic
simulations in the phases 1, 2 and 3, respectively. Each
dynamic simulation used a FAPRBS signal with 30 samples
at a frequency of 1000 s–1 and 10 samples at a frequency of
2000 s–1. The FAPRBS’s amplitude specifications are listed
in Tab. 1.

The resulting dynamic samples in the in- and output
spaces are shown in Fig. 7. Since both output variables used
in the algorithm are algebraic variables in the CAE model,
the initial results at t0 are distributed over four areas, each
corresponding to an initial condition. 97.5 % of the compu-
tation time was used for the simulations, with the rest spent
on the algorithm. Here, calculation and evaluation of the
matrix in phase 3 took 81.5 % of the computing time, deter-
mination of all input signals 14.2 %, and the calculation of
targets 2.5 %. All other subroutines can be neglected with a
maximum time usage of less than 0.5 % each.

4.3 Dynamic Data-Driven Modeling

To model the dynamic behavior of the predefined output
variables y, a recurrent neural network was trained for each
output separately. The in- and output specifications of the
used recurrent neural network are shown in Fig. 6b. To pre-
dict y at time point tk+1 the last O control variable values at
the time points tk–O,K,tk and the last N values of the mod-
eled output variable y at the time points tk–N,K,tk are fed
into the recurrent neural network as input variables.

To find a suitable parameterization of the neural net-
works a hyperparameter tuning using Bayesian optimiza-
tion is performed in addition to the standard model train-
ing. The varied hyperparameters and the results of the
tuning are listed in Tab. 2.

To test the quality of the resulting models, an additional
test set consisting of dynamic data of five simulations is
used. The testing control variables are again sampled from
an FAPRBS using the same specifications as in the adaptive
sampling (see Tab. 1) but with mean control values �u that
were not used in the training data.

The standard model training is per-
formed using Adaptive Moment Estima-
tion (Adam) [26]. The trained models of
the cell temperature and the anolyte
composition show a mean squared error
regarding the testing data of 4.62 � 10–6

and 5.36 � 10–7 (in a normalized output
space between 0 and 1), respectively.

Fig. 8 shows the testing results of both
modeled variables. It can be seen that the
dynamic behavior of both variables can
be predicted with a high degree of accu-
racy over a wide value range in the out-
put space. This behavior indicates that
the data generated using the presented
adaptive sampling algorithm, provides
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Figure 6. Model overview: a) Flowchart of chlor-alkali process model, dashed controllers are removed from model and associated ma-
nipulated variables are used as input variables in sampling algorithm. b) Structure of used recurrent neural networks. Each output is
modeled separately. Parameters N and O are determined in hyperparameter tuning.

Figure 7. Results of the adaptive sampling algorithm for the CAE model. a) Two-dimen-
sional control space representation for j (u1) and Tin (u2). b) Seeds and simulation results
of the output space.

2102 Research Article
Chemie
Ingenieur
Technik



sufficient information over the entire feasible area of the
output variables of interest. The comparison with a conven-
tional method for dynamic system identification, which
uses an APRBS sampling with an amplitude between the
lower and upper bounds of the defined controls (see Tab. 1),
could not be carried out, since the simulation did not con-
verge at such large changes.

5 Conclusion and Outlook

A novel methodology to adaptively sample rigorous dynam-
ic process models to generate a dataset for building a surro-
gate model is presented. The goal of the developed algo-
rithm is to cover an as large as possible area of the feasible
region of the original model. To do so multiple simulations
with a short time horizon, a fixed timestep, and different
inputs �u are carried out. In order to maximize the dynamic
information of the simulation results the here proposed
FAPRBS sampling is used to generate a dynamic trajectory
for the different inputs. In the course of the algorithm,
empty areas in the output space are identified and the cor-

responding values in the input space are esti-
mated in order to generate new data in the re-
quired area.

To demonstrate the performance and the ap-
plicability for dynamic data-driven modeling,
the presented framework is applied on a dynam-
ic model of a chlor-alkali electrolysis. It can be
shown that the generated data is sufficient for
training highly accurate recurrent neural net-
works for describing the dynamic behavior of
the defined output variables over the entire fea-
sible region.

In future work, we will focus on developing
techniques to estimate the uncertainty of the
trained recurrent neural networks to directly
identify areas in the input space where
additional data is required.

Open access funding enabled and organized
by Projekt DEAL.

Symbols used

d [–] number of selected output variables /
dimensionality of output space

du [–] number of control variables /
dimensionality of input space

l [–] distance
n [–] number of results in d-ball
r [–] radius
s [–] score
t [–] time, target
�u [–] mean of APRBS
U [–] input space, control variables
X [–] state variables
�y [–] seed
Y [–] output space
k [–] number of considered d-balls
t [–] time
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Table 2. Parameters and results of hyperparameter tuning using Bayesian optimization.

Model Nodes hidden layer L2 penalty parameter N O of j O of Tin O of Vin

Tcell 119 0.046 15 12 21 8

wNaþ 242 0.149 19 24 7 21

a)

b)

Figure 8. Results of comparison between test data and model prediction for
5 simulations over 110 h: a) cell temperature, b) mass fraction of sodium ions in
anolyte.
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