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This study focused on the quantitative assessment of the vertical displacement velocities
retrieved using Sentinel-1 and Cosmo-SkyMed synthetic aperture radar images for the
Tengiz oilfield. Tengiz oilfield was selected as a study area because of its historically
reported continuous subsidence and limited up-to-date studies during recent years. The
small baseline subset time-series technique was used for the interferometric processing of
radar images acquired for the period of 2018–2020. The geospatial and statistical analyses
allowed to determine the existing hotspots of the subsidence processes induced by oil
extraction in the study area. Ground deformation measurements derived from the Sentinel-
1 and COSMO-SkyMed satellite missions showed that the Tengiz oilfield continuously
subsided during 2018–2020 with the maximum annual vertical displacement velocity
around −77.4 mm/y and −71.5 mm/y, respectively. The vertical displacement velocities
derived from the Sentinel-1 and the COSMO-SkyMed images showed a good statistical
relationship with R2≥0.73 and RMSE ≤3.68 mm. The cumulative vertical displacement
derived from both satellites for the most subsiding location also showed a good statistical
relationship with R2 equal to 0.97 and RMSE = ± 4.69. The observed relative differences of
measurements by both satellites were acceptable to determine the ongoing vertical
surface displacement processes in the study area. These studies demonstrated a
practical novelty for the petroleum industry in terms of the comparative assessment of
surface displacement measurements using time-series of medium-resolution Sentinel-1
and high-resolution COSMO-SkyMed radar images.
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INTRODUCTION

Tengiz oilfield is located at the coast of the Caspian Sea with low-lying wetlands. The recent
successful studies by (Bayramov et al., 2021, Grebby et al., 2019 andOrynbassarova 2019) proved that
the Tengiz oilfield was under the impact of ground deformation processes induced by the petroleum
and gas operational activities.
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Nowadays, industry significantly benefits from the ground
deformation mapping as one of the important advancements for
the surveillance programs of onshore oil and gas reservoirs. It is
well known that the interferometric technologies were verified as
effective for the measurement of the sensor-to-target line of sight
projection of the ground deformation mapping of large onshore
reservoirs rather than traditional in-situ measurements using
geodetic tools (Zhou et al., 2006; Mirzaii et al., 2019;
Bayramov et al., 2020a; Bayramov et al., 2020b; Bayramov
et al., 2020c). Besides the Tengiz oilfield, other successful
ground deformation studies which proved the effectiveness
and quality of interferometric technologies had also been
performed for the Karazhanbas oilfield, the Karaganda Coal
Basin and other petroleum and mining sites in Kazakhstan
(Junisbekova et al., 2016; Mozer et al., 2017; Togaibekov
2020). The precision of interferometric measurements is not
comparable with the one achieved by geodetic measurements.
However, in-situ geodetic measurements don’t provide the broad
coverage of vertical displacements (Shi et al., 2019).

The studies by Grebby et al. (2019) and Orynbassarova (2019)
clearly indicated the vertical displacements caused by oil and gas
exploitation in the Tengiz oilfield during 2004–2009 and
2016–2017, by using Envisat and Sentinel-1 radar images,
correspondingly. The investigations by Grebby et al. (2019)
and Orynbassarova (2019) applied the Intermittent Small
Baseline Subset (ISBAS) method from Sowter et al., 2013
which contributed to the determination of the continuously
increasing cumulative vertical displacement (maximum of
-79.3 mm/year) in the Tengiz oilfield during 2016–2017.
ISBAS method was examined to be more effective for the
increased density of ground deformation measurements.

The studies of Zhantaev et al. (2012) applied the Small Baseline
Subset (SBAS) method from Berardino et al. (2002) for the
observation of vertical displacements in the Tengiz oilfield
using ENVISAT images acquired during 2004–2009 and ALOS
PALSAR images acquired during 2007–2010.

Comola et al. (2016) and Del Conte et al. (2013) applied the
SqueeSAR method from Ferretti et al. (2011a) to optimize the
inputs for the geomechanical modeling of reservoir using
Radarsat-1 satellite images acquired during 2004–2007.
(Comola et al., 2016). proved that the integration of ground
displacements into the geomechanical modeling principles would
significantly contribute to the characterization of the
hydrocarbon reservoir properties for the duration of its
production life. (Katrenov et al., 2012). studied the influences
to the reservoir compaction as a result of the pressure depletion
along with the surface subsiding processes.

Recent studies by (Bayramov et al., 2021) focused on the
differences of vertical (uplift and subsidence) and horizontal
deformations (east-west and north-south) derived from 3D
and 2D decompositions and cosine correction of line-of-sight
(LOS) measurements in the Tengiz oilfield. These studies
demonstrated a practical value for the operators to realize
actual differences between InSAR line-of-sight and vertical
measurements. These studies also demonstrated the benefits of
measured horizontal movements to oil and gas operators in the
analyses of the natural tectonic processes.

Based on the fore-mentioned studies it is possible to once
again conclude about the ongoing Tengiz oilfield ground
deformation processes caused by oil and gas industry.

To the extent of our awareness, there have been few publically
accessible studies on the multi-satellite monitoring of vertical
displacements in the Tengiz oilfield, in particular with the focus
on the comparative assessment of vertical displacements derived
frommultiple Sentinel-1 and Cosmo-SkyMed Synthetic Aperture
Radar (SAR) imagery. There were successful studies for the
measurement of surface displacements in other Kazakhstan oil
and gas and mining fields using multiple medium- and high-
resolution radar sensors (Mozer et al., 2017; Pickering 2020;
Togaibekov 2020). Therefore, multi-satellite interferometric
analysis of recent vertical displacements would significantly
contribute to the reliability assessment of the SAR
measurements from different Earth observation missions in
the Tengiz oilfield.

However there were many other related comparative studies
between Sentinel-1 and Cosmo-SkyMed radar images which did
not focus specifically on the oil and gas fields or study areas
outside of Kazakhstan. The studies by (Costantini et al., 2017)
allowed to determine that InSAR analyses based on the
COSMO-SkyMed radar images provided higher deformation
precision, density and 3D positioning in comparison to the wide
coverage of Sentinel-1 images. The studies by (Çomut et al.,
2016) demonstrated that a count of persistent scatterer points
derived from the high-resolution COSMO-SkyMed was
3.5 times higher than from the medium-resolution Sentinel-1
radar images. The studies of (Ho Tong Minh et al., 2020) also
demonstrated similar results with larger number of persistent
scatterer points derived from COSMO-SkyMed images with
higher spatial resolution in comparison to Sentinel-1 images.
This was reflected in the higher root mean square difference and
standard deviation of COSMO-SkyMed images in comparison
to Sentinel-1 images. Based on these studies it is possible to
conclude that InSAR analyses using both COSMO-SkyMed and
Sentinel-1 provided identical cumulative vertical
displacement but with a different density and precision of
measurements.

Our research specifically focused on the assessment of vertical
displacements derived from COSMO-SkyMed and Sentinel-1
SAR imagery using SBAS multi-temporal interferometric
technique and geostatistical interpolation techniques followed
by the cosine corrections to derive vertical movements from LOS
measurements. The primary advantage of the present research is
to quantitatively examine the differences in vertical displacement
measurements using C-band Sentinel-1 and X-band Cosmo-
SkyMed SAR imagery since in-situ geodetic measurements
were not accessible for the present research.

The detailed goals of the present research are as follows:

1) SBAS-based detection of vertical displacement hotspots using
COSMO-SkyMed and Sentinel-1 imagery acquired during
2018–2020

2) Quantitative analyses of the vertical displacement velocities
and cumulative vertical displacement derived from Sentinel-1
and COSMO-SkyMed satellite images
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3) Determination of spatial relationships between the detected
patterns and the hotspots of vertical displacements, wells and
faults

DATA PROCESSING

Research Area
Tengiz oilfield is one of the largest in the world and it is located at
the coast of the Caspian Sea with an area of 2,500 km2 (Figure 1).
The climate in the study area is semi-arid with temperature range
−30 °C - 40° in summer and winter, respectively. The average
annual precipitation is in the range of 100–200 mm (Klein et al.,
2012). Tengiz field is located in the seismically active region of
Kazakhstan. The seismic faults derived from (Anissimov et al.,
2000) are indicated in Figure 1. According to (Grebby et al.,
2019), the reservoir is estimated to be around 25 billion barrels of
oil and is located at the depth of 3885–5117 m. High pressure with
large proportion of gas was observed in the oil coming out of
wells. The production is estimated to be 720,000 barrels per day.
Sour gas injection enhanced oil recovery method is used in the
Tengiz oilfield (Bealessio et al., 2020).

Quantitative Assessment of Vertical
Displacement in the Tengiz Oilfeld Using
SBAS Processing of Sentinel-1 and
Cosmo-SkyMed Images
Sentinel-1 A/B TOPS with C-band (5.6 cm wavelength and
5.4 GHz) images from the European Space Agency (ESA) and

COSMO-SkyMed (CSK) with X-band (3.1 cm wavelength and
9.6 GHz) from the Italian Space Agency were used for the present
study to assess the vertical displacement velocities and cumulative
vertical displacement in the Tengiz oilfield (Table 1). The extents
of the Sentinel-1 and COSMO-SkyMed imagery are presented in
Figure 2. The connection graphs of the Sentinel-1 images in
Figures 3A,B and COSMO-SkyMed images in Figures 3C,D
show that all radar images were well connected in time in order to
follow the vertical displacement monitoring over the period of
2018–2020.

96 Sentinel-1 images were acquired on descending Path 35,
Frame 441, Absolute Orbit 30,557 in the TOPSAR
Interferometric Wide Swath (IW) mode, with VV + VH
Polarization between 1 January 2018 and 31 December 2020
(Table 1; Figure 2). VV polarization band of Sentinel-1 was used
because of a higher coherence (Imamoglu et al., 2019). Sentinel-1
images in wide-swath mode provide a wide coverage of about
250 km with a range resolution of 5 m and an azimuth resolution
of 20 m (Yang C et al., 2019).

87 COSMO-SkyMed images were acquired on descending
Frame 2, Absolute Orbit 39,000 in the interferometric
StripMap HIMAGE mode with HH polarization between 1
January 2018 and 31 December 2020. HH polarization band
of COSMO-SkyMed that was only available had been used for the
present research. COSMO-SkyMed images in StripMap Himage
mode provide coverage of about 40 km with a range resolution of
3 m and an azimuth resolution of 3 m (Tapete and Cigna, 2019)
(Table 1; Figure 2).

Descending tracks of Sentinel-1 and COSMO-SkyMed satellite
images provided a complete coverage of the Tengiz oilfield.

FIGURE 1 | Tengiz oilfield with the representation of wells and faults.
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However in case of high-resolution COSMO-SkyMed satellite
images (3 × 3 m), the processed area of interest was limited to the
subsidence hotspot because of limited computing power
and space.

SBAS - based interferometric processing technique was
used for the assessment of the vertical displacement. SBAS
workflow is presented in Figure 4 with the following
processing steps: creation of a connection graph, definition
of AOI, generation of interferograms, refinement and re-
flattening, first inversion, second inversion and geocoding
(Loesch and Sagan, 2018; Sarmap 2021). One arcsecond
digital elevation model (DEM) with 30 m spatial resolution
from the Shuttle Radar Topography Mission (SRTM) was
applied for the correction of the topographic contribution
to the radar phase (Farr et al., 2007). The ground control
points (GCP) were collected for the refinement and ref-
flattening stage on the unwrapped phase data with the
careful consideration of the following criteria: no high
frequency residual topography fringes, no displacement

fringes preventing from being collected on the
displacement areas, no phase jumps corresponding to
unwrapping errors (Sarmap 2021). For the overlapping
areas of Sentinel-1 and CSK interferometric stacks, GCPs
were collected in the same locations to produce relatively
accurate measurements for the reliability of further
comparative analyses.

It is well known that the SAR interferometry can measure
deformation in the LOS direction (Vassileva et al., 2017). As a
significant limitation of the present study related to the restricted
computing power needed for the processing of the high resolution
COSMO-SkyMed images, the vertical displacement was only
derived from a single track and cosine correction that means
projecting the LOS deformation along the vertical direction
considering the cosine of the local incidence angle. It was
considered to be sufficient for the present study area since the
studies by (Bayramov et al., 2021) showed the non-significant
differences of vertical displacements derived from 3D and 2D
decompositions of LOS measurements and cosine corrections in

TABLE 1 | Characteristics of SAR images used for the present research.

Sensor imaging
mode

Track Resolutions: Range
× azimuth

(m × m) and swath [km]

Revisit time
(days)

Count of
images

Temporal span Polarization

S1 IW TOPS mode Descending 5 × 20; 250 6 96 1 January 2018 and 31 December 2020 VV + VH
COSMO-Skymed stripmap mode Descending 3 × 3; 40 4 87 1 January 2018 and 31 December 2020 HH

FIGURE 2 | Extents, count and acquisition period of Sentinel-1 and COSMO-SkyMed imagery.
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the Tengiz oilfield. However, it is necessary to emphasize that the
use of the cosine correction approach may not be suitable for
other oil and gas fields worldwide.

Cosine correction approach assumes that surface movements
are vertical and neglects horizontal ones. The vertical
displacement velocity using the cosine correction approach is
derived through the division of the LOS movement rates by the
cosine of the radar incidence angle as it is shown below in Eq. 1
(Gee et al., 2016; Yang Y.-J et al., 2019):

dvert (Up−Down) � (dLOS/ cos θ) (1)

The produced LOS and vertical displacements from the Sentinel-1
and COSMO-SkyMed satellite images were interpolated using the
Inverse Distance Weighting (IDW) method to achieve the
continuous grid models. The interpolation was only applied for
the points with the coherence value higher than 0.5 that
corresponds to the threshold of reliable measurements. This
deterministic method of interpolation contributed to the simplified
interpretation and comparative overlay analysis of the vertical
displacements by means of the geospatial analysis. The wells and
seismic faults derived from (Anissimov et al., 2000) were used as the
contextual information to analyze the spatial relationships between
the detected hotspots of the vertical displacements and natural and
man-made factors.

RESULTS

LOS displacement velocity derived from the Sentinel-1 radar
satellite images was observed to be in the range of
−58.9–22.7 mm/y (Figure 5A). The vertical displacement
velocity derived through the division of the LOS displacement
rates by the cosine of the radar incidence angle is presented in
Figure 5B with the range of −77.4–29.4 mm/y. The spatial
distribution histogram of the measured LOS and vertical
displacement velocities derived from the cosine corrections are
presented in Figure 5C. It is possible to clearly observe the
prevailing number of pixels with negative values which
confirms the ongoing subsidence in the Tengiz oilfield.

The hotspot of significant subsidence can be observed at the
crossing of profile lines in Figure 6A. The same location was
observed to be as the most subsiding. As it is possible to observe in
Figure 6B, the maximum annual subsidence velocity along the
profiles reaches about −70 mm/y. The cumulative vertical
displacement is shown in Figure 7A with the range of
−243.7–79.9 mm. The maximum cumulative vertical
displacement along the profiles on 23 December 2020
reaches—235 mm (Figure 7B).

Unfortunately, because of no accessibility to the historical in-
situ high-precision geodetic measurements in the present
research, it was not possible to validate the reliability and

FIGURE 3 | (A) Sentinel-1 time-position plot for SBAS; (B) Sentinel-1 time-baseline plot for SBAS; (C)COSMO-SkyMed time-position plot for SBAS; (D) COSMO-
SkyMed time-baseline plot for SBAS.
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accuracy of the SBAS measurements derived from the Sentinel-1
images. Therefore, it was considered to use the COSMO-SkyMed
images for the cross-validation of measurements from both
satellites. The processed area of the COSMO-SkyMed images
was limited to the subsiding hotspots derived from the processing
of the Sentinel-1 images. The spatially interpolated vertical
displacement velocity derived from the COSMO-SkyMed
images is presented in Figure 8A. Figure 8B presents the
spatial distribution of SBAS measured points derived from the
COSMO-SkyMed and the Sentinel-1 images. These points with
measured vertical velocities were used in the interpolation of
spatial grids used in the comparative analysis (Figure 8A). The
enhanced view of the vertical displacement velocity derived from
the COSMO-SkyMed images and profile lines are presented in
Figure 8C. The histogram of negative vertical displacement
velocities derived from the COSMO-SkyMed images is
presented in Figure 8D. This implies that the SBAS analyses
using the COSMO-SkyMed images also showed the subsidence
processes in the same hotspot detected by the processing of the
Sentinel-1 images.

The profiles of the vertical displacement velocities derived
from the Sentinel-1 and the COSMO-SkyMed images are
presented in Figure 8C and Figures 9A–D. As it is possible to
observe, the vertical displacement velocities derived from the
Sentinel-1 and the COSMO-SkyMed images for the Profile 1

showed a good statistical relationship with R2 equal to 0.93,
p-value < 0.05, RMSE equal to ±2.86 (Figures 9A,C). Good
statistical relationship was also observed for the Profile 2 with
R2 equal to 0.73, p-value < 0.05, RMSE equal to ±3.68 (Figures
9B,D). The standard deviation of the phase calculated over the
profiles 1 and 2 was observed to be 8.9 for profile 1 and 7.9 for the
profile 2 (Figures 9A,B).

The location for the maximum subsidence derived from the
Sentinel-1 images is presented in Figure 10A. The cumulative
vertical displacement derived from the Sentinel-1 and the
COSMO-SkyMed images for the most subsiding location are
presented in Figure 10B. The cumulative vertical displacement in
the most subsiding location reaches around 245 mm on 23
December 2020 (Figure 10B). The regression analysis between
the cumulative vertical displacements derived from the Sentinel-1
and COSMO-SkyMed images for the most subsiding location
showed a strong statistical relationship with R2 equal to 0.97. This
was also reflected in RMSE = ± 4.69 and p-value < 0.05. This
allows to conclude that SBAS produced identical results from the
Sentinel-1 and the COSMO-SkyMed images. It is obvious that the
ground deformation measurements from the COSMO-SkyMed
images are more detailed because of the higher spatial resolution
of images.

Since the hotspot of the most subsiding areas is not anyhow
spatially related to the concentration of wells, it is possible to

FIGURE 4 |Workflow of SBAS interferometric processing followed by the cosine correction for the assessment of vertical displacements and spatial interpolations.
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assume that the primary factors controlling the vertical
displacements in the Tengiz oilfield are the oil and gas
extraction industrial processes and natural subsurface

tectonics. However, it is possible to observe that a number
of wells are located within the detected hotspot of the
subsidence in Figure 8A. The oil terminal is located

FIGURE 5 | (A) LOS and (B) vertical displacement velocity from cosine correction of the Tengiz oilfield; (C) Histogram of LOS and vertical displacement velocity.

FIGURE 6 | (A)Map of vertical displacement velocity derived from the Sentinel-1 images with the indication of profile lines; (B) profile lines of vertical displacement
velocities.
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outside of the subsidence hotspot (Figure 1; Figure 8A) and it
is obviously less vulnerable to the potential geohazards.
Besides these areas are crossed by faults which might be
subject to the potential reactivation (Figure 8A). Hence,
some of the wells located within the detected subsidence
hotspot should always be prioritized for the regular
geotechnical and geohazard risk assessment.

DISCUSSION

The assessment of the vertical displacement velocities and
cumulative vertical displacement derived from the Sentinel-1
and the COSMO-SkyMed images showed a good statistical
relationship. This allows to assume that the measurements by
both satellites are reliable. The present research results also
exhibit shortcomings related to the non-accessibility to the
historical in-situ geodetic measurements to verify the accuracy
of the measurements. Therefore this study used both Sentinel-1
and COSMO-SkyMed images to cross-validate the achieved
results from both satellites. The qualitative judgment for the
verification of the present research results was also based on the
previously published studies which also observed and detected
continuous subsidence processes in the Tengiz oilfield (Del Conte
et al., 2013; Comola et al., 2016; Grebby et al., 2019;
Orynbassarova 2019; Bayramov et al., 2021). The identical
spatial deformation patterns and trends with a maximum
subsidence rate rising up-to −79.3 mm/year were observed in
the previous studies by Grebby et al., 2019 and
Orynbassarova 2019.

Based on the published studies by (Rocca et al., 2013; Del
Conte et al., 2013; Ferretti et al., 2011b), it is crucial to have a
high-density and a high-precision of vertical displacement
measurements to incorporate this critical parameter into the

procedure of the reservoir characterization and the
geomechanical analysis by oil and gas industry.

Another shortcoming is that only SBAS method was used for
the present research. It would also be recommended to run the
PSI method since it is proved to provide a high-precision of
measurements for the oil and gas infrastructure (terminals, wells,
pump stations etc.) considered as the persistently reflecting
ground features (Ferretti et al., 2000; Ferretti et al., 2005;
Lauknes et al., 2005; Hooper 2006; Ferretti et al., 2007).

Based on the published studies by Even et al., 2020, the vertical
(uplift, subsidence) and horizontal (east-west, north-south)
displacement derived from LOS measurements are critical as
one of the parameters for the regular reservoir monitoring.

It is known that surface motions occur in three spatial
dimensions (east, north and up) (Fuhrmann and Garthwaite,
2019). Many studies successfully used both descending and
ascending tracks to assess actual vertical and horizontal
displacements (Fialko 2006; Klemm et al., 2010; Chang et al.,
2017; Liu et al., 2017; Motagh et al., 2017; Fernandez et al., 2018;
Aslan et al., 2019a; Aslan 2019b; Yang C et al., 2019; Alatza et al.,
2020; Ho Tong Minh et al., 2020; Pawluszek-Filipiak and
Borkowski, 2020; Staniewicz et al., 2020). As it was mentioned
before, the use of the cosine correction approach for the Tengiz
oilfield was only decided based on the studies by Bayramov et al.,
2021 which had shown non-significant differences of vertical
displacements derived from the 3D and 2D decompositions and
cosine corrections. This means that the cosine correction
approach is suitable for the Tengiz oilfield on the basis of
previously identified not significant rates of horizontal
movements, but this may not be the case for other oil and gas
fields worldwide.

(Tamburini et al., 2010) recommended to consider the
reservoir depth to evaluate the usefulness of the
interferometric measurements in conjunction with the

FIGURE 7 | (A)Map of cumulative vertical displacement derived from the Sentinel-1 images with the indication of profile lines; (B) profile lines of cumulative vertical
displacement.
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subsurface measurements. This should also be considered in the
future to understand the actual value of these measurements for
oil and gas industry.

It is quite difficult to judge about the criticality level of the
ongoing and increasing vertical displacement velocities and
cumulative vertical displacement of the Tengiz oilfield
subsidence in the relationship to the petroleum and gas
industry standards for the effective risk management.
However the previous studies by (Mahajan et al., 2018)
indicated that the reservoir compaction cases in Oman
resulted in the well damages, well integrity, and subsidence
damage to the facilities of surface tremors because of fault
reactivation. As it was possible to observe in the present
studies, around 15 wells of the Tengiz oilfield are located in
the detected subsidence hotspot from two satellites. Besides, it

is necessary to emphasize the fact of the increasing subsidence
velocity that was also well spotted by the present research and
previous studies of (Grebby et al., 2019). The studies by
(Nagel, 2001) indicated that the impact of reservoir
compaction and subsidence are not always negative but
may contribute to the possibilities for the increased
production and also recovery. Hence as it was mentioned
before, along with the prediction and mitigation of risks to
petroleum and gas infrastructure,
interferometric technologies play a significant role for the
reservoir characterization and management (Grebby et al.,
2019).

The application of Sentinel-1 or COSMO-SkyMed images
should be selected depending on the scale of analysis, required
density and precision of measurements.

FIGURE 8 | (A) Map of the spatially interpolated vertical displacement velocity derived from the Sentinel-1 and COSMO-SkyMed satellite images; (B) SBAS
measured points from the Sentinel-1 and COSMO-SkyMed satellite images used for the spatial interpolation; (C) profile lines of vertical displacement velocity derived
from the COSMO-SkyMed images; (D) histogram of vertical displacement velocities derived from the COSMO-SkyMed satellite images.
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CONCLUSION

The present research compared the vertical displacements
derived from the Sentinel-1 and COSMO-SkyMed radar
images collected during 2018–2020 for the Tengiz oilfield.

- The vertical displacement velocities and cumulative vertical
displacement derived from the Sentinel-1 and COSMO-
SkyMed images showed good agreement. The vertical
displacement velocities derived from the Sentinel-1 and
COSMO-SkyMed images showed a good statistical

FIGURE 9 | Vertical displacement velocity derived from the Sentinel-1 and COSMO-SkyMed satellite images for: (A) profile 1, (B) profile two; regression analysis
between vertical displacement velocities derived from the Sentinel-1 and COSMO-SkyMed satellite images for: (C) profile 1, (D) profile two.

FIGURE 10 | (A) Location of the most subsiding location based on the cumulative vertical displacement derived from the Sentinel-1 images; (B) regression analysis
between the cumulative vertical displacements derived from the Sentinel-1 and COSMO-SkyMed satellite images for the most subsiding location.
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relationship with R2 equal to 0.93, P-value < 0.05 and RMSE
equal to ±2.86 for the Profile one and R2 equal to 0.73,
P-value < 0.05 and RMSE equal to ±3.68 for Profile 2. The
cumulative vertical displacement derived from the Sentinel-
1 and COSMO-SkyMed images for the most subsiding
location showed a good statistical relationship with R2

equal to 0.97, P-value < 0.05 and RMSE = ± 4.69. This
allowed to assume that the SBAS measurements from both
satellites are reliable and also confirmed the ongoing
subsidence processes in the Tengiz oilfield.

- Vertical displacement velocities and cumulative vertical
displacement derived from the COSMO-SkyMed
images were observed to be more dispersed than from
the Sentinel-1 images. This was reflected in the higher
sample variance and standard deviation of the vertical
displacement values derived from the COSMO-SkyMed
images.

- Ground deformations derived from the Sentinel-1 and
COSMO-SkyMed images showed that the Tengiz oilfield
subsided during 2018–2020 with the maximum annual
vertical displacement velocity around −77.4 mm/y and
−71.5 mm/y, respectively.

- The detected hotspot of the most subsiding areas was not
anyhow spatially related to the concentration of wells.
Therefore, it is possible to assume that primary factors
controlling the vertical displacements in the Tengiz
oilfield are the oil and gas extraction industrial processes
and also natural subsurface tectonics.

- The selection among the Sentinel-1 or COSMO-SkyMed
images should be decided depending on the scale of analysis,
required density and precision of measurements.
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