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Abstract 

We present a first exact study on more-dimensional packing problems with order constraints. 

Problems of this type occur naturally in applications such as logistics or computer architecture and 

can be interpreted as more-dimensional generalizations of scheduling problems. Using graph-theoretic 

structures to describe feasible solutions, we develop a novel exact branch-and-bound algorithm. This 

extends previous work by Fekete and Schepers; a key tool is a new order-theoretic characterization 

of feasible extensions of a partial order to a given complementarity graph that is tailor-made for use 

in a branch-and-bound environment. The usefulness of our approach is validated by computational 

results. 

1 Introduction 

Scheduling and Packing Problems. Scheduling is arguably one of the most important topics in 

combinatorial optimization. Typically, we are dealing with a one-dimensional set of objects (“jobs”) 

that need to be assigned to a finite set of containers (“machines”). Problems of this type can also 

be interpreted as (one-dimensional) packing problems, and they are NP-hard in the strong sense, as 

problems like 3-PARTITION are special cases. 

Starting from this basic scenario, there are different generalizations that have been studied. Many 

scheduling problems have precedence constraints on the sequence of jobs. On the other hand, a great 

deal of practical packing problems consider more-dimensional instances, where objects are axis-aligned 

boxes instead of intervals. More-dimensional packing problems arise in many industries, where steel, 

glass, wood, or textile materials are cut. The three-dimensional problem is important for practical 

applications such as container loading. 

In this paper, we give the first study of problems that comprise both generalizations: more- 

dimensional packing problems with order constraints—or, from a different point of view, more-dimensio- 

nal scheduling problems. In more-dimensional packing, these problems arise when dealing with prece- 

dence constraints that are present in many container-loading problems. Another practical motivation to 

consider more-dimensional scheduling problems arises from optimizing the reconfiguration of a particular 

type of computer chips called FPGA’s—described below. 

Field-Programmable Gate Arrays and More-Dimensional Scheduling. A particularly inter- 

esting class of instances of three-dimensional orthogonal packing arises from a new type of reconfigurable 

computer chips, called field-programmable gate arrays (FPGA’s). An FPGA typically consists of a reg- 

ular rectangular grid of equal configurable cells (logic blocks) that allow the prototyping of simple logic 

functions together with simple registers and with special routing resources (see Figure 1). These chips 

(see e.g. [1, 30]) may support several independent or interdependent jobs and designs at a time, and 

parts of the chip can be reconfigured quickly during run-time. (For more technical details on the un- 

derlying architecture, see our previous paper [28], and the more recent abstract [4].) Thus, we are faced 
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with a general class of problems that can be seen as both scheduling and packing problems. In this 

paper, we develop a set of mathematical tools to deal with these more-dimensional scheduling problems, 

and we show that our methods are suitable for solving instances of interesting size to optimality. 

  

Figure 1: An FPGA and a set of five jobs, shown in ordinary two-dimensional space and in three- 

dimensional space-time. Jobs must be placed inside the chip and must not overlap if executed simulta- 

neously on the chip. 

Related Work. We are not aware of any exact study of more-dimensional scheduling problems with 

order constraints. For a comprehensive survey of classical “one-dimensional” scheduling problems, the 

reader is referred to [21]. Closest to our problems is the class of so-called resource-constrained project 

scheduling problems (RCSP), which can be interpreted as a step towards more-dimensional packing 

problems: In addition to a duration t; and precedence constraints on the temporal order of job, each 

job may have a number of other “sizes” ol ) ete. that indicate the use of some resources. The total 

amount 0; ao ) of each resource is limited at any given time. See the book [29] and the references in the 
article [24] for an extensive survey of recent work in this area. Even though RCSP’s can be formulated 

as integer problems, solving resource-constrained scheduling problems is already quite hard for instances 

of relatively moderate size: The standard benchmark library used in this area consists of instances with 

30, 60, 90 and 120 jobs. Virtually all work deals with lower and upper bounds on these instances, and 

even for instances with 60 jobs, a considerable number has not yet been solved to optimality. 

It is easy to see that any more-dimensional packing problem (possibly with precedence constraints on 

the temporal order) can be relaxed to a resource-constrained scheduling problem. However, the example 

in Figure 2 shows that the converse is not true, even for small instances of two-dimensional packing 

problems without any precedence constraints: An optimal solution for the corresponding resource- 

constrained scheduling problem may not correspond to a feasible arrangement of rectangles for the 

original packing problem. (We leave it to the reader to verify the latter claim.) 
  

  

  

  

      

              

  

Figure 2: A set of jobs that is feasible for scheduling with one resource constraint, but infeasible for 

two-dimensional packing: Job 8 does not violate a resource constraint, but does not fit as a contiguous 

rectangle. 

More-dimensional packing problems (without order constraints) have been considered by a great 

number of authors, but only few of them have dealt with the exact solution of general two-dimensional 

problems. See [6, 8] for an overview. It should be stressed that unlike one-dimensional packing problems, 

more-dimensional packing problems allow no straightforward formulation as integer programs: After



placing one box in a container, the remaining feasible space will in general not be convex. Moreover, 

checking whether a given set of boxes fits into a particular container (the so-called orthogonal packing 

problem, OPP) is trivial in one-dimensional space, but NP-hard in higher dimensions. 

Nevertheless, attempts have been made to use standard approaches of mathematical programming. 

Beasley [2] and Hadjiconstantinou and Christofides [15] have used a discretization of the available 

positions to an underlying grid to get a 0-1 program with a pseudopolynomial number of variables and 

constraints. Not surprisingly, this approach becomes impractical beyond instances of rather moderate 

size. More recently, Padberg [25] gave a mized integer programming formulation for three-dimensional 

packing problems, similar to the one anticipated by Schepers [26] in his thesis. Padberg expressed the 

hope that using a number of techniques from branch-and-cut will be useful; however, he did not provide 

any practical results to support this hope. 

In [6, 8, 9, 10, 28], a different approach to characterizing feasible packings and constructing optimal 

solutions is described. A graph-theoretic characterization of the relative position of the boxes in a 

feasible packing (by so-called packing classes) is used, which represent d-dimensional packings by a 

d-tuple of interval graphs (called component graphs) that satisfy two extra conditions. This factors 

out a great deal of symmetries between different feasible packings, it allows to make use of a number 

of elegant graph-theoretic tools, and it reduces the geometric problem to a purely combinatorial one 

without using brute-force methods like introducing an underlying coordinate grid. Combined with good 

heuristics for dismissing infeasible sets of boxes [7], a tree search for constructing feasible packings was 

developed. This exact algorithm has been implemented; it outperforms previous methods by a clear 

margin. 

See our previous papers for details. For the benefit of the reader, a concise description is contained 

in Appendix A. 

The Graph Theory of Order Constraints. In the context of scheduling with precedence con- 

straints, a natural problem is the following, called transitive ordering with precedence constraints (TOP): 

Consider a partial order P = (V,~<) of precedence constraints and a (temporal) comparability graph 

G = (V, E), such that all relations in P are represented by edges in G. Is there a transitive orientation 

D = (V,A) of G, such that P is contained in D? 

Korte and Mohring [18] have given a linear-time algorithm for deciding TOP. However, their ap- 

proach is only useful when the full set of edges in G is known. When running a branch-and-bound 

algorithm for solving a scheduling problem, these edges of G are only known partially, but they may 

already prohibit the existence of a feasible solution for a given partial order P. This makes it desirable 

to come up with structural characterizations that are already useful when only parts of G are known. 

Results of this paper. In this paper, we give the first exact study of more-dimensional packing with 

order constraints, which can also be interpreted as more-dimensional scheduling problems. We develop 

a general framework for problems of this type by giving a pair of necessary and sufficient conditions 

for the existence of a solution for the problem TOP on graphs G in terms of forbidden substructures. 

Using the concept of packing classes, our conditions can be used quite effectively in the context of a 

branch-and-bound framework, since it can recognize infeasible subtrees at “high” branches of the search 

tree. In particular, we describe how to find an exact solution to the problem of minimizing the height of 

a container of given base area. If this third dimension represents time, this amounts to minimizing the 

makespan of a more-dimensional scheduling problem. We validate the usefulness of these concepts and 

results by providing computational results. Other problem versions (like more-dimensional knapsack or 

bin packing problems with order constraints) can be treated similarly. 

The rest of this paper is organized as follows. In Section 2, we describe basic assumptions and some 

terminology. In Section 3, we introduce precedence constraints, describe the mathematical foundations 

for incorporating them into the search, and explain how to implement the resulting algorithms. Finally, 

we present computational results for a number of different benchmarks in Section 4.



2 Preliminaries 

Problem instances. We assume that a problem instance is given by a set of jobs V. Each job has 

a spatial requirement in the x- and y-direction, denoted by w,(v) and wy,(v), and a duration, denoted 

by a size w;(v) along the time axis. The available space H consists of an area of size hy, x hy. In 

addition, there may be an overall allowable time h, for all jobs to be completed. A schedule is given by 

a start time p;(v) for each job. A schedule is feasible, if all jobs can be carried out without overlap of 

computation jobs in time or space, such that all jobs are within spatial and temporal bounds. 

Graphs. Some of our descriptions make use of a number of different graph classes. An (undirected) 

graph G = (V, E) is given by a set of vertices V, and a set of edges FE; each edge describes the adjacency 

of a pair of vertices, and we write {u,w} for an edge between vertices u and w. For a graph G, we 

obtain the complement graph G by exchanging the set E of edges with the set FE of non-edges. In a 

directed graph D = (V, A), edges are oriented, and we write (u,w) to denote an edge directed from u 

to w. A graph G = (V,E) is a comparability graph if the edges E' can be oriented to a set of directed 

arcs A, such that we get the transitive closure of a partial order, i.e., a cycle-free digraph for which the 

existence of edges (u,v) € A and (v,w) € A for any u,v,w € V implies the existence of (u,w) € A. 

Precedence constraints. Mathematically, a set of precedence constraints is given by a partial 

order P = (V,~<) on V. The relations in < form a directed acyclic graph Dp = (V, Ap), where Ap is 

the set of directed arcs. In the presence of such a partial order, a feasible schedule is assumed to satisfy 

the capacity constraints of the container, as well as these additional constraints. 

Packing problems. In the following, we treat jobs as axis-aligned three-dimensional boxes with 

given orientation, and feasible schedules as arrangements of boxes that satisfy all side constraints. 

This is implied by the term of a feasible packing. There may be different types of objective functions, 

corresponding to different types of packing problems. The Orthogonal Packing Problem (OPP) is to 

decide whether a given set of boxes can be placed within a given “container” of size hy, x hy x hy. For the 

Constrained OPP (COPP), we also have to satisfy a partial order P = (V, <) of precedence constraints 

in the t-dimension. (To emphasize the motivation of temporal precedence constraints, we write t to 

suggest that the time coordinate is constrained, and x and y to imply that the space coordinates are 

unrestricted. Clearly, our approach works the same way when dealing with spatial restrictions.) 

There are various optimization problems that have the OPP or COPP as their underlying decision 

problem. Since our main motivation arises from dynamic chip reconfigurations, where we want to 

minimize the overall running time, we focus on the Constrained Strip Packing Problem (CSPP), which 

is to minimize the size h; for a given base size hz x hy, such that all boxes fit into the container 

hy X hy X hy. Clearly, we can use a similar approach for other objective functions. 

3 Problems with Precedence Constraints 

As mentioned in the introduction, a key advantage of considering packing classes is that it allows to 

deal with packing problems independent of precise geometric placement, and that it allows arbitrary 

feasible interchanges of placement. However, for most practical instances, we have to satisfy additional 

constraints for the temporal placement, i.e., for the start times of jobs. For our approach, the nature 

of the data structures may simplify these problems from three-dimensional to purely two-dimensional 

ones: If the whole schedule is given, all edges EF; in one of the graphs are determined, so we only need 

to construct the edge sets E, and Ey of the other graphs. As worked out in detail in [27, 28], this allows 

it to solve the resulting problems quite efficiently if the arrangement in time is already given. 

A more realistic, but also more involved situation arises if only a set of precedence constraints is 

given, but not the full schedule. We describe in the following how further mathematical tools in addition 

to packing classes allow useful algorithms.



3.1 Packing Classes and Interval Orders 

Any edge (v1, v2) in a component graph G; corresponds to an overlap between the projections of boxes 

1 and 2 onto the 2;-axis. (See Appendix A for a brief introduction of the underlying concepts.) This 

means that the complement graph Gj given by the complement EF; of the edge set E; consists of all 

pairs of coordinate intervals that are “comparable”: Either the first interval is “to the left” of the 

second, or vice versa. Any (undirected) graph of this type is a so-called comparability graph (see [14] 

for further details). By orienting edges to point from “left” to “right” intervals, we get a partial order 

of the set V of vertices, a so-called interval order [22]. Obviously, this order relation is transitive, i.e., 

e < f and f < g imply e * g, which is the reason why we also speak of a transitive orientation of the 

undirected comparability graph G;. See Figure 3 for a (two-dimensional) example of a packing class, 

the corresponding comparability graph, a transitive orientation, and the packing corresponding to the 

transitive orientation. 
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Figure 3: (a) A two-dimensional packing class. (b) The corresponding comparability graphs. (c) A 

transitive orientation. (d) A feasible packing corresponding to the orientation. 

Now consider a situation where we need to satisfy a partial order P = (V,Ap) of precedence 

constraints in the time dimension. It follows that each arc a = (u,w) € Ap in this partial order forces 

the corresponding undirected edge e = {u,w} to be excluded from F,. Thus, we can simply initialize 

our algorithm for constructing packing classes by fixing all undirected edges corresponding to Ap to be 

contained in E;. After running the original algorithm, we may get additional comparability edges. As 

the example in Figure 4 shows, this causes an additional problem: Even if we know that the graph G; 

has a transitive orientation, and all arcs a = (u, w) of the precedence order (V, Ap) are contained in Ey 

as e = {u, w}, it is not clear that there is a transitive orientation that contains all arcs of Ap. 

Vy V3 
  

— E, (comparability edges) 

= Ey (component edges)     
  

v1 V4 

Figure 4: A comparability graph Gz = (V, Ez) with a partial order P contained in Ey, such that there 

is no transitive orientation of Gy that extends P. 

3.2 Finding Feasible Transitive Orientations 

Consider a comparability graph G that is the complement of an interval graph G. The problem TOP of 

deciding whether G has a transitive orientation that extends a given partial order P has been studied 

in the context of scheduling. Korte and Méhring [18] give a linear-time algorithm for determining a 

solution, or deciding that none exists. Their approach is based on a very special data structure called 

modified PQ-trees. 

In principle, it is possible to solve our more-dimensional packing problems with precedence con- 

straints by adding this algorithm as a black box to test the leaves of our search tree for packing classes:



In case of failure, backtrack in the tree. However, the resulting method cannot be expected to be rea- 

sonably efficient: During the course of our tree search, we are not dealing with one fixed comparability 

graph, but only build it while exploring the search tree. This means that we have to expect spending 

a considerable amount of time testing similar leaves in the search tree, i.e., comparability graphs that 

share most of their graph structure. It may be that already a very small part of this structure that is 

fixed very “high” in the search tree constitutes an obstruction that prevents a feasible orientation of all 

graphs constructed below it. So a “deep” search may take a long time to get rid of this obstruction. 

This makes it desirable to use more structural properties of comparability graphs and their orientations 

to make use of obstructions already “high” in the search tree. 

3.3. Implied Orientations 

As in the basic packing class approach, we consider the component graphs G; and their complements, 

the comparability graphs G;. This means that we continue to have three basic states for any edge: (1) 

edges that have been fixed to be in Fj, i.e., component edges; (2) edges that have been fixed to be in 

Ej, i.e., comparability edges; (3) unassigned edges. 

In order to deal with precedence constraints, we also consider orientations of the comparability 

edges. This means that during the course of our tree search, we can have three different possible states 

for each comparability edge: (2a) one possible orientation; (2b) the opposite possible orientation; (2c) 

no assigned orientation. 

A stepping stone for this approach arises from considering the following two configurations — see 

Figure 5: 

Vy Vy 

ial v3 My %3 
(Dla) (D1b) 

  

—_— E, (comparability edges) 

  

= E, (component edges) 

(unassigned or 
Vo V2 

‘\ m comparability edges) 

v 
‘1 %3 OY 3 

(Dla’) (D1b’) (D2’) 
Figure 5: Implications for edges and their orientations: Above are path implications (D1, left) and 

transitivity implications (D2, right); below the forced orientations of edges. 

      

The first configuration consists of two comparability edges {v,, v2}, {ve, v3} € Ey, such that the third 

edge {v1, v3} has been fixed to be an edge from the component graph E,. Now any orientation of one of 

the comparability edges forces the orientation of the other comparability edge, as shown in the left part 

of the figure. Since this configuration corresponds to an induced path in Gj, we call this arrangement 

a path implication. 

The second configuration consists of two directed comparability edges (v1, v2), (v2, v3). In this case 

we know that the edge {v1,v3} must also be a comparability edge, with an orientation of (v1, v3). 
Since this configuration arises directly from transitivity in G;, we call this arrangement a transitivity 

implication. 

Clearly, any implication arising from one of the above configurations can induce further implications. 

In particular, when considering only sequences of path implications, we get a partition of com- 

parability edges into path implication classes that will be used in more detail in Appendix B: Two



comparability edges are in the same implication class, iff there is a sequence of path implications, such 

that orienting one edge forces the orientation of the other edge. For an example, consider the arrange- 

ment in Figure 4. Here, all three comparability edges {v1, v2}, {ve,v3}, and {v3,v4} are in the same 

path implication class. Now the orientation of (v1, v2) implies the orientation (v3, v2), which in turn 

implies the orientation (v3, v4), contradicting the orientation of {v3, v4} in the given partial order P. It 

is not hard to see that the implication classes form a partition of the comparability edges, since we are 

dealing with an equivalence relation. 

We call a violation of a path implication a path conflict. 

As the example in Figure 6 shows, only excluding path conflicts when recursively carrying out path 

implications does not suffice to guarantee the existence a feasible orientation: Working through the 

queue of path implications, we end up with a directed cycle, which violates a transitivity implication. 

  

(a) (b) (c) 

Figure 6: (a) A graph G; with a partial order formed by three directed edges; (b) there are three path 

implication classes that each have one directed arc; (c) carrying out path implications creates directed 

cycles, t.e., transitivity conflicts. 

We call a violation of a transitivity implication a transitivity conflict. 

Summarizing, we have the following necessary conditions for the existence of a transitive orientation 

that extends a given partial order P: 

D1: Any path implication can be carried out without a conflict. 

D2: Any transitivity implication can be carried out without a conflict. 

These necessary conditions are also sufficient: 

Theorem 1 (Fekete, K6hler, Teich) Consider a partial order P = (V,Ap) with arc set Ap con- 

tained in the edge set E of a given comparability graph G = (V, EF). Ap can be extended to a transitive 

orientation of G, iff all arising path implications and transitivity can be carried out in any order without 

creating a path conflict or a transitivity conflict. 

A proof and further mathematical details are described in our report [5]. A sketch is contained in 

Appendix B. The interested reader may take note that we are extending previous work by Gallai [11], 

who extensively studied implication classes of comparability graphs. See Kelly [17], Mohring [22] for 
informative surveys on this topic, and Kramer [20] for an application in scheduling theory. 

3.4 Solving OPP’s with Precedence Constraints 

We start by fixing for all arcs (u,v) € A the edge {u,v} as an edge in the comparability graph G;, and 

we also fix its orientation to be (u,v). In addition to the tests for enforcing the conditions for unoriented 

packing classes (C1, C2, C3), we employ the implications suggested by conditions D1 and D2. For this 

purpose, we check directed edges in G; for being part of a triangle that gives rise to either implication.



Any newly oriented edge in G; gets added to a queue of unprocessed edges. Like for packing classes, 

we can again get cascades of fixed edge orientations. If we get an orientation conflict or a cycle conflict, 

we can abandon the search on this tree node. The correctness of the overall algorithm follows from 

Theorem 1; in particular, the theorem guarantees that we can carry out implications in an arbitrary 

order. 

4 Computational Experiments 

In the following we present our results for different types of instances: The video-codec benchmark 

described in Section 4.1 arises from an actual application to FPGA’s. In Section 4.2 we give a number 

of results arising from different geometric packing problems. More details (and a number of figures 

showing the optimal packings for various order constraints) are contained in Appendix C. 

Our code was implemented in C++ and run on a SUN Ultra 2. 

4.1 Video-Codec Benchmark 

Figure 7 shows a block diagram of the operation of a hybrid image sequence coder/decoder that arises 

from the FPGA application. The purpose of the coder is to compress video images using the H.261 

standard. In this device, transformative and predictive coding techniques are unified. The compression 

factor can be increased by a predictive method for motion estimates: blocks inside a frame are predicted 

from blocks of previous images. 
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Figure 7: Block diagram of a video-codec (H.261) (left); problem graph of the video-codec (right). 

The blocks of the operational description shown in the figure possess the granularity of more complex 

functions. However, this description contains no information corresponding to timing, architecture, and 

mapping of blocks onto an architecture. Figure 7 (right) shows a problem graph G of the video-codec 

The problem graph contains a subgraph for the coder and one subgraph for the decoder. For realizing the 

device, we have a library of three different modules. One is a simple processor core with a (normalized) 

area requirement of 625 units (25 x 25 cells, normalized to other modules in order to obtain a coarser 

grid) called PUM. Secondly, there are two dedicated special-purpose modules: a block matching module 

(BMM) that is used for motion estimation and requires 64 x 64 = 4096 cells; and a module DCTM for 

computing DCT/IDCT-computations, requiring 16 x 16 = 256 cells. The makespan was minimized for 

different latency constraints. The result is shown in Table 1. 

Table 1: Optimizing reconfigurations for the Video-Codec 

  

| test || container sizes 

| ht | ha | hy | CPU-time (s) 

| 1 59 | 64 64 24.87 s 
  

             



4.2 Two-dimensional packing problems 

Here we describe computational results for two types of two-dimensional objects. The first was con- 

structed from a particularly difficult random instance of 2-dimensional knapsack (see [6]). Results are 

given for order constraints of increasing size. In order to give a better idea of the computational diffi- 

culty, we give separate running times for finding an optimal feasible solution, and for proving that this 

solution is best possible. (See the appendix for the exact sizes of the 17 rectangles involved, and for 

figures of optimal packings.) 

The second class of instances arises from the well-known tiling of a 112x112 square by 21 squares of 

different sizes. Again, we have added order constraints of various sizes. For the instance square21-2mat 

(with order constraints in two dimensions), we could not close the gap between upper and lower bound. 

For this instance, we report the running times for achieving the best known bounds. 

Table 2: Optimal packing with order constraints 

  

  

              
  

instance optimal h; hy upper bound | lower bound 

okp17-0 169 100 7.29 s 179 s 

okp17-1 172 100 6.73 s 1102 s 

okp17-2 182 100 5.39 s 330 s 

okp17-3 184 100 236 s 553 Ss 

okp17-4 245 100 0.17 s 0.01 s 

square21-no 112 112 84.28 s 0.01 s 

square21-mat 117 112 15.12 s 277 8 

square21-tri 125 112 107 s 571s 

square21-2mat [118,120] | [118,120] 346 s 476 s 
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Appendix A: Solving Unconstrained Packing Problems 

A.1 A General Framework 

If we have an efficient method for solving OPP’s, we can also solve BMP’s and SPP’s by using a binary 

search. However, deciding the existence of a feasible more-dimensional packing is a hard problem in 

higher dimensions, and proposed methods suggested by other authors [2, 15] have been of limited success. 

Our framework uses a combination of different approaches to overcome these problems: 

1. Try to disprove the existence of a packing by fast and good classes of lower bounds on the necessary 

size. 

2. In case of failure, try to find a feasible packing by using fast heuristics. 

3. If the existence of a packing is still unsettled, start an enumeration scheme in form of a branch- 

and-bound tree search. 

By developing good new bounds for the first stage, we have been able to achieve a considerable 

reduction of the number of cases where a tree search needs to be performed. (Mathematical details for 

this step are described in [7, 9].) However, it is clear that the efficiency of the third stage is crucial for 

the overall running time when considering difficult problems. Using a purely geometric enumeration 

scheme for this step by trying to build a partial arrangement of boxes is easily seen to be immensely time- 

consuming. In the following, we describe a purely combinatorial characterization of feasible packings 

that allows to perform this step more efficiently. 

A.2 Packing Classes 

Consider a feasible packing in d-dimensional space, and project the boxes onto the three coordinate 

axes. This converts the one d-dimensional arrangement into d one-dimensional ones. (See Figure 8 for 

an example in d = 2.) By disregarding the exact coordinates of the resulting intervals in direction i 

and only considering their overlap, we get the component graph G; = (V, E;): Two boxes u and v are 

connected by an edge in Gj, iff they have overlapping x;-coordinates. By definition, these graphs are 

interval graphs that have been studied intensively in graph theory (see [14, 22]), and that have a number 

of very useful algorithmic properties. 
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Figure 8: The projections of the boxes onto the coordinate axes define interval graphs (here in 2D: Gy 

and G2). 

Considering sets of d component graphs G; instead of complicated geometric arrangements has some 

clear advantages. (Algorithmic implications for our specific purposes are discussed further down.) It is 

not hard to check that the following three conditions must be satisfied by all d-tuples of graphs G; that 

are constructed from a feasible packing: 

C1: G; is an interval graph, Vi € {1,---,d}. 

C2: Any independent set S of G; is i-admissible, Vi € {1,---,d}, ie., wi(S) = ,e5 wi(v) < hi, since 

all boxes in S must fit into the container in the ith dimension.



C3: nt, E; = (). In other words, there must be at least one dimension in which the corresponding 

boxes do not overlap. 

A d-tuple of component graphs satisfying these necessary conditions is called a packing class. The 

remarkable property (proven in [26, 8]) is that these three conditions are also sufficient for the existence 

of a feasible packing. 

Theorem 2 A d-tuple of graphs G; = (V, E;) corresponds to a feasible packing, iff it is a packing class, 

i.e., if it satisfies the conditions C1, C2, C3. 

This allows it to consider only packing classes in order to decide the existence of a feasible packing, 

and disregard most of the geometric information. 

A.3 Solving OPP’s 

Our search procedure works on packing classes, i.e., triples of component graphs with the properties C1, 

C2, C3. Since each packing class represents not only a single packing but a whole family of equivalent 

packings, we are effectively dealing with more than one possible candidate for an optimal packing at a 

time. (The reader may check for the example in Figure 8 that there are 36 different feasible packings 

that correspond to the same packing class.) 

The search tree is traversed by Depth First Search, see [10, 26] for details. Branching is done by 

fixing an edge {b,c} € E; or {b,c} ¢ E;. After each branching step, it is checked whether one of the 
three conditions C1, C2, C3 is violated, or whether a violation can only be avoided by fixing further 

edges. This is easy for two of the conditions: enforcing C3 is obvious; property C2 is hereditary, so 

adding edges to F; later will keep it satisfied. (Note that computing maximum weighted cliques on 

comparability graphs can be done efficiently, see [14].) In order to ensure that property Cl is not 

violated, we use a number of graph-theoretic characterizations of interval graphs and comparability 

graphs. These characterizations are based on two forbidden substructures (again, see [14] for details; 

the first condition is based on the classical characterizations by [12, 13]: a graph is an interval graph 

and its complement has a transitive orientation, iff it does not contain any induced chordless cycle of 

length 4.) In particular, the following configurations have to be avoided: 

1. induced chordless cycles of length 4 in F;; 

2. so-called 2-chordless odd cycles in the set E; of edges excluded from E; (see [10, 14] for details); 

3. infeasible stable sets in F;. 

Each time we detect such a fixed subgraph, we can abandon the search on this node. Furthermore, if 

we detect a fixed subgraph, except for one unfixed edge, we can fix this edge, such that the forbidden 

subgraph is avoided. 

Our experience shows that these conditions are already useful when only small subsets of edges have 

been fixed, since by excluding small sub-configurations, like induced chordless cycles of length 4, each 

branching step triggers a cascade of more fixed edges.



Appendix B: Proving Theorem 1 

For the proof of Theorem 1 we make use of so-called modular decompositions of graphs. This concept 

was introduced by Gallai [11] for studying comparability graphs. Due to space restrictions we cannot 

give a complete introduction of the theoretical background. However, we give a brief overview of the 

main ideas that are necessary to understand the proof of Theorem 1. The interested reader is referred 

to [17, 23] and [5] for more details. 
A module of a graph G = (V,E) is a vertex set M C V such that each vertex v € V \ M is 

either adjacent to all vertices or to no vertex of M in G. Gallai showed that each graph G has a 

unique decomposition (the so-called canonical decomposition) of its vertex set into a set of modules 

(so-called quasi-mazimal modules) with a variety of nice properties. He observed that each graph G is 

either of parallel type, i.e., G is not connected and its canonical decomposition is defined by its set of 

connected components. Or G is of series type, i.e., G is not connected. In the latter case the canonical 

decomposition is given by the connected components of G. If both G and G are connected, then G is 

said to be of prime type; Gallai showed that in this case there is a unique maximal decomposition of 

the vertex set of G into non-trivial modules. 

The decomposition graph G# of a graph G is the quotient of G by the canonical decomposition 

{A],..., Aq}, ie., V(G#) ={A),... , Ag}, and distinct vertices Aj and A; are joined by an edge in G# 

iff there is an A;Aj;-edge in G. 

The tree decomposition of a graph G is obtained by iterating the canonical decomposition on the 

graphs induced by the modules of the canonical decomposition of the corresponding higher level. 

An important property of this decomposition scheme is its close relationship to the concept of 

implication classes (described in Section 3). Gallai observed the following properties of implication 

classes with respect to the modular decomposition: 

1) If G is not connected and G},...,Gq (q > 2) are the components of G, then the implication classes 

of Gj,...,Gq are exactly the implication classes of G. 

2) If G is not connected (so that G is connected), Gi,...,G@q (q > 2) are the components of G, and 

A; = V(G;), then A; and A; are completely connected to each other whenever 1 < i < j < ¢. 

Moreover, for all such 7 and j, the set of A;Aj-edges form an implication class Ej; of G. The 

implication classes of G that are distinct from any Ej; are exactly the implication classes of the 

graphs Gj = G[Aj] (¢ = 1,...,q). 

3) If G and G are both connected and have more than one vertex, and {A;,...,A,} is the canonical 

decomposition of G, then we have 

a) If there is one edge between A; and A; (1 <i <j <q), then A; and A; are completely joined. 

b) The set of all edges of G that join different A;’s forms a single implication class C' of G. Every 

vertex of G is incident with some edge of C, (i.e., V(C) = V(G)). 

c) The implication classes of G that are distinct from C are exactly the implication classes of the 

graphs G; = G[Ai] (1 <i < q). 

This strong relationship between implication classes and the modules in the canonical decomposition 

of a given graph turns out to be a powerful tool for studying graphs having a transitive orientation. 

Note that also the fastest known algorithms for recognizing comparability graphs and also permutation 

graphs make extensively use of this relationship. Gallai used the above properties (among others) for 

proving the following theorem.



Theorem B.1 (Gallai) Let G be a non-empty graph, let T = T(G) be the tree decomposition of G, 

and let H be a vertex set corresponding to a node of T. 

1) If G is transitively oriented, and A and B are successors of H in T, then every A, B-edge of G 

is oriented in the same direction (to or from A). Therefore, H# receives an induced transitive 

orientation. 

2) Conversely, assuming that H* is transitively orientable for each H € T, one can choose an arbitrary 

transitive orientation of each H# and induce a transitive orientation of G by orienting all AB-edges 

(for A and B successors of H in T) in the same direction that A and B are oriented in H*. 

From this theorem one can draw the following helpful corollaries. 

Corollary B.2 A graph G is a comparability graph if and only if every decomposition graph in the 

tree-decomposition is a comparability graph. 

Corollary B.3 Let G be a comparability graph and T its tree-decomposition. Assigning to each of the 

decomposition graphs of T a transitive orientation independently results in a transitive orientation of 

G. 

Furthermore, if only a partial orientation of G is given and we are interested in extending this 

orientation to a transitive orientation of G, we can formulate the following lemmas. 

Lemma B.4 Given an orientation of a comparability graph that is consistent with the forcing for each 

implication class. This orientation is transitive if and only if the induced orientation of each of the 

decomposition graphs in the tree decomposition is transitive. 

Lemma B.5 Let G be a comparability graph and T its tree-decomposition. Furthermore, let P be a 

partial orientation of G, assigning orientations to some, but not all implication classes of G. P 1s 

extendible to a transitive orientation of G if and only if for each decomposition graph H# of T the 

orientation induced on H# by P is extendible to a transitive orientation on H*. 

Let P = (V,Ap) be a partial order with arc set Ap contained in the edge set EF’ of a comparability 

graph G. We call a directed graph F' the pt-closure of P if F consists of all arcs of P together with all 

orientations of edges of G that are implied by a sequence of path and triangle implications of arcs of P. 

Now we are ready to sketch the proof of Theorem 1. 

Theorem B.6 Let G = (V,E) be a comparability graph and P a partial orientation on the edges of G. 

P can be extended to a transitive orientation on G if and only if conditions D1 and D2 are satisfied. 

Proor. If there is a transitive orientation F of G that contains P, then F trivially satisfies D1 and 

D2. 

Suppose now that D1 and D2 are satisfied, let F’ be the pt-closure of P, and let T be the tree 

decomposition of G. We show that F can be extended to a transitive orientation of G. 

First observe that in F’ an orientation conflict either stems from an orientation conflict on a single 

edge class containing arcs of P, contradicting D1, or otherwise implies a cycle conflict in F’, contradicting 

D2. Hence, F is an orientation of edges of G and there is no orientation or cycle conflict in F' (i.e. all 

implication classes in F are oriented conflict-free). By Corollary B.3, every single conflict-free oriented 

implication class of G is extendible to a transitive orientation of G. By this observation, the orientation 

of an implication class C in a pt-closure F' implies an orientation of the edge(s) corresponding to this



implication class in the decomposition graphs of T. More precisely, for every series type node H of T 

each edge e = {AB} of H* corresponds exactly to one implication class C, of G. If C, is oriented 

conflict-free in F’, this orientation directly induces an orientation of e (see Theorem B.1). For a prime 

type node H the set of edges joining different A;’s (see above) forms exactly one implication class Cp 

of G. Again, if Cg is oriented conflict-free in F’, this orientation immediately implies an orientation on 

H#., All we have to show now is that for each decomposition graph H* of T, the partial orientation 

implied by F can be extended to a transitive orientation of H#. Then, by Corollary B.3, the implied 

orientation of G is transitive. 

By Corollary B.3 neither a parallel type node of T can create a contradiction to transitivity (it does 

not contain any edges) nor a prime type node of T can create a contradiction, since all its edges are 

contained in only one implication class and, since all implication classes of F’ are oriented conflict-free, 

the corresponding orientation induced by F' on this single implication class is transitive. 

Suppose there is a series type node H of T with decomposition graph H*, where the partial orien- 

tation implied by F cannot be extended to a transitive orientation of H#. Then this partial orientation 

has to be cyclic, because H# is a complete graph and every acyclic partial orientation of a complete 

graph can trivially be extended to a transitive orientation of this complete graph. However, by the 

definition of T and the implied orientation of H* by F, an directed cycle in H* immediately implies 

an oriented cycle in F’, contradicting D2. Oo



Appendix C: Benchmark Problems and Their Solutions 

Here we provide details of our benchmark instances and show the best solutions we found. The instances 

consist of the boxes listed in Table 3. For easier reference, the boxes in the okp17 instances are labeled 

1-17 in the given order, while the squares in the square21 instances are labeled by their edge lengths. 

Note that instance square21-2mat has constraints in 2 dimensions. 

Table 3: The problem instances okp17 and square21. 

  

okp17: base width of container = 100, number of boxes = 17 

sizes =  [(8,81),(5,76),(42,19),(6,80),(41,48),(6,86) (58,20) ,(99,3),(9,52), 

(100,14),(7,53) (24,54), (23,77) ,(42,32),(17,30),(11,90),(26,65) | 

okp17-0: no order constraints 

okp17-1: 11-8, 11-16 

okp17-2: 11-8, 11-16, 8-16 

okp17-3: 11-8, 11-16, 8-16, 8-17, 117, 16-7 

okp17-4: 11-8, 11316, 816, 8-17, 11-47, 16-7, 17-16 

  

  

  

  

  

  

    

  

  

square21: base width of container = 112, number of boxes = 21 

sizes =  [(50,50),(42,42), (37,37), (35,35) (33,33), (29,29), (27,27) (25,25), 

(24,24),(19,19),(18,18),(17,17),(16,16),(15,15),(11,11),(9,9),(8,8), 

(7,7),(6,6).(4,4),(2.2)] 
square21-0: no order constraints 

square21-mat: 2-4, 637, 839, 1115, 16-417, 18-319, 24-25, 27-29, 

33-935, 3742, 2-50, 50-4 

square21-tri: 215, 15-17, 227, 4-16, 16-29, 4-29, 6-17, 17-33, 

633, 718, 18-35, 7335, 819, 19-37, 8-37, 924, 

24-442, 9-42, 11-25, 25-50, 11-350 

square21-2mat: «-constraints: 

2-19, 625, 829, 11-435, 16-42, 18-4, 24-47, 27-59, 

33-15, 37-17, 50-4, 18-50 

y-constraints: 

2-4, 67, 8-9, 11-15, 16-17, 18-19, 2425, 27-29, 

33-335, 37-42, 2-50, 50-4 
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Figure 9: (a) An optimal packing of okp17-0 of height 169; (b) an optimal packing of okp17-1 of height 

172; (c) an optimal packing of okp17-2 of height 182; (d) An optimal packing of okp17-3 of height 184.
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Figure 10: (a) An optimal packing of square21-0 of height 112; (b) an optimal packing of square21-mat 

of height 117; (c) an optimal packing of square21-tri of height 125; (d) a packing of square21-2mat of 

size 1202120.
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