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ABSTRACT Deep learning (DL) based methods have been found popular in the framework of remote
sensing (RS) image scene classification. Most of the existing DL based methods assume that training
images are annotated by single-labels, however RS images typically contain multiple classes and thus
can simultaneously be associated with multi-labels. Despite the success of existing methods in describing
the information content of very high resolution aerial images with RGB bands, any direct adaptation for
high-dimensional high-spatial resolution RS images falls short of accurate modeling the spectral and spatial
information content. To address this problem, this paper presents a novel approach in the framework of the
multi-label classification of high dimensional RS images. The proposed approach is based on three main
steps. The first step describes the complex spatial and spectral content of image local areas by a novel K -
Branch CNN that includes spatial resolution specific CNN branches. The second step initially characterizes
the importance scores of different local areas of each image and then defines a global descriptor for each
image based on these scores. This is achieved by a novel multi-attention strategy that utilizes the bidirectional
long short-term memory networks. The final step achieves the classification of RS image scenes with multi-
labels. Experiments carried out on BigEarthNet (which is a large-scale Sentinel-2 benchmark archive) show
the effectiveness of the proposed approach in terms of multi-label classification accuracy compared to the
state-of-the-art approaches. The code of the proposed approach is publicly available at https://gitlab.tubit.tu-
berlin.de/rsim/MAML-RSIC.

INDEX TERMS Multi-label image classification, deep neural network, multi-attention strategy, remote
sensing.

I. INTRODUCTION
Advances in satellite missions for Earth observation have
led to a significant growth of remote sensing (RS) image
archives. Accordingly, the development of RS image scene
classification methods, which aim at automatically assign-
ing class labels to each RS image scene in an archive, is a
growing research interest in RS. In recent years, deep learn-
ing (DL) based approaches have attracted the attention of
RS researchers. As an example, in [1] a gradient boosting
random convolutional network is proposed as an ensemble
framework to combine several deep neural networks for RS
image scene classification problems. In [2] feature learning
strategies defined based on different training procedures for
convolutional neural networks (CNNs) are analyzed. In [3]
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a region attention network, which assigns attention scores to
candidate regions for the expected object locations, is intro-
duced to learn the alignment of RS image scenes. to this
end, different image sources are used together for the iden-
tification of fine-grained categories. In [4] a semi-supervised
approach based on a generative adversarial network is pro-
posed for the cases that the amount of annotated training
data is insufficient. In [5] an intermediate feature aggrega-
tion method that progressively combines the different level
features of CNNs is proposed. In [6] a scale-free CNN that
transfers the fully connected layers in a pre-trained CNN
model to convolutional layers and then uses a general average
pooling layer after the final convolutional layer is introduced.
The above-mentioned DL based approaches in RS assume
that each training image is annotated by a single (broad
category) label, which is associated to the most significant
content of the image. However, this assumption may not
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be appropriate for complex scene classification applications
where RS image scenes contain multiple land-cover classes
and thus simultaneously associated to different class labels
(i.e., multi-labels) [7].

To train DL models with training images annotated by
multi-labels, few DL based multi-label scene classification
methods have been recently introduced in RS. In [8] a radial
basis function neural network is applied on the CNN fea-
tures of aerial images as a multi-label classifier. In [9] a
structured support vector machine that models the spatial
contiguity is utilized based on the CNN features of the aerial
images in the framework ofmulti-label classification. In these
approaches, CNNs are used as conventional transfer learning
approaches, for which pre-trained models on publicly avail-
able general purpose computer vision (CV) datasets (e.g.,
ImageNet) act as fixed feature extractors without changing
the model parameters. However, this approach can reduce
the multi-label scene classification accuracy because of the
differences in image characteristics in CV and RS. In [10]
a data augmentation strategy is introduced to avoid using
a pre-trained network for an end-to-end training of a shal-
low CNN. In this approach, to adapt the standard CNN
architecture in multi-label learning, the softmax function
of the classification layer is changed into a sigmoid func-
tion. The direct use of standard CNNs that are actually
designed for the images annotated by single-labels is a
common approach in multi-label classification problems.
However, it may lead to inaccurate identification of the
multiple classes present in images. To overcome this limita-
tion, integration of sequential neural network approaches into
CNN architectures is introduced in RS. In [11] a class-wise
attention-based recurrent neural network (RNN) is intro-
duced to sequentially model the co-occurrence relationship
of multiple classes. In this approach, class predictions are
obtained one after another in the RNN sequence and each
prediction is based on the decisions made until the corre-
sponding class is reached. In [12] an attention-aware label
relational reasoning network is proposed to: i) localize dis-
criminative regions of aerial images; and ii) characterize the
label relations present in the images based on the local-
ized feature maps. In [13] an encoder-decoder neural net-
work is introduced to characterize the aerial image features.
In detail, a squeeze excitation layer is used for modeling
the channel-wise interdependencies of the feature maps in
the encoder, whereas a RNN based decoder is exploited
as an adaptive spatial attention mechanism. The attention
strategies proposed in [11]–[13] identify informative areas
of images through an attention map based on the feature
maps of convolutional layers. These strategies are effective
for very high resolution aerial images, however they can be
insufficient for accurately describing the complex content
of satellite RS images with high spatial resolution (e.g.,
Sentinel-2 and Landsat multispectral images). Results carried
out on very high resolution aerial images with only RGB
bands show the success of these strategies for the description
of the spatial image content. A direct adaptation of these

methods for high dimensional RS images may lead to an
incomplete representation of the spectral information content.
These issues are critical particularly for images with several
spectral bands with varying spatial resolutions acquired by
the new generation satellites (e.g., Sentinel-2). Thus, methods
that can efficiently and effectively describe the spatial and
spectral information content of high dimensional RS images
are needed in the framework of multi-label RS image scene
classification.

To address this problem, we propose a DL based approach
that aims at accurately describing complex spatial and spec-
tral content of RS images in the framework of multi-label
RS image scene classification. To this end, the proposed
approach is based on three main steps: 1) spatial and spec-
tral characterization of image local areas; 2) definition of a
multi-attention driven global descriptor; and 3) classification
of RS image scenes withmulti-labels. The proposed approach
assumes that RS image bands can be associated with varying
spatial resolutions and a set of training images annotated with
multi-labels (based on land-cover land-use classes present
in the images) is available. In the first step, we introduce
a novel branch-wise CNN architecture (which is called as
K -Branch CNN) that efficiently describes the complex con-
tent of local areas of each image by different CNN branches
specialized according to the spatial resolutions of image
bands. In the second step, we present a novel multi-attention
strategy in the framework of RNNs that: i) accurately identi-
fies importance levels (i.e., scores) for different local areas;
and then ii) defines a global descriptor for each image based
on these scores. In the third step, multi-labels are automat-
ically assigned to each RS image represented by the global
descriptors. The main novelty of the proposed approach con-
sists in the design and development of: i) the K -Branch CNN
to efficiently model the complex information content of RS
images for which the spectral bands can be associated to vary-
ing spatial resolutions; and ii) the multi-attention strategy that
defines a global image descriptor based on the extraction and
exploitation of importance scores of image local areas. The
proposed approach has been briefly presented in [14] with
limited experimental analysis. This paper extends our work
introducing a detailed description of the proposed approach
with a detailed ablation and comparison study. In order to
evaluate the performance of the proposed approach, several
experiments are carried out on the BigEarthNet since it is
the only publicly available benchmark archive that includes
Sentinel-2 multispectral images, each of which is annotated
with multi-labels. Unlike the conventional DL based methods
in RS that consider all the image bands as a single volume
(after applying an interpolation method to the lower spatial
resolution bands) and define a global descriptor by neglecting
the importance scores of different local areas, the experimen-
tal results show the success of the proposed approach. The
rest of the paper is organized as follows. Section II introduces
the proposed approach for multi-label RS image scene clas-
sification, while Section III explains the BigEarthNet bench-
mark archive and design of experiments. Section IV provides
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the experimental results. Section V draws the conclusion of
this work.

II. PROPOSED APPROACH
LetX={x1, . . . , xM } be an archive that consists ofM images,
where xi is the ith image. We assume that a set T ⊂ X of
labeled images is initially available. Each image in T ⊂ X is
associated with multi-labels from a label setL = {l1, . . . , lS},
where |L| = S. Label information of xi ∈ T is defined
by a binary vector yi ∈ {0, 1}

S , where each element of
yi indicates the presence or absence of label ls ∈ L in a
sequence. We also assume that spectral bands of each image
xi can be associated to the K different spatial resolutions,
resulting in different pixel sizes. We aim to learn F(x∗; θ ) =
g(f (x∗; θ)) that maps a new image x∗ to multi-labels, where
f (·) generates classification scores for each label ls and g(·)
produces y∗ as a predicted label set and θ is the given set
of model parameters. We propose a multi-label RS image
scene classification approach made up of three main steps:
1) spatial and spectral characterization of image local areas
by a novel K -Branch CNN; 2) definition of a multi-attention
driven global descriptor with a novel multi-attention strategy;
and 3) classification of RS image scenes with multi-labels.
Fig. 1 presents the block diagram of the proposed approach
and each step is explained in the following sub-sections.

FIGURE 1. Block diagram of the proposed approach for multi-label RS
image scene classification.

A. SPATIAL AND SPECTRAL CHARACTERIZATION
OF LOCAL AREAS
To efficiently characterize the spatial and spectral content of
image local areas, each RS image is initially divided to R
non-overlapping w × w sized local areas. Let ρri be the r th

local area of xi. Then, for each local area, we define different
sets of image bands based on their spatial resolutions. Let
ρri,k be the k th subset of the r th local area for the corre-
sponding spatial resolution, where k ∈ {1, 2, . . . ,K } and
r ∈ {1, 2, . . . ,R}. To accurately describe the local areas with
varying spatial resolutions, we introduce a K -Branch CNN
that utilizes separate CNNs, each of which is designed to
describe the local areas of image bands with different spatial
resolutions. Thus, the number K of CNN branches is selected
as the total number of different spatial resolutions. If all
spectral bands are associated to the same spatial resolution,
the proposed K -Branch CNN turns into a single branch CNN

(i.e., K = 1). Each ρri,k are fed into different branches of
the K -Branch CNN. Let φk be the k th branch that provides
local descriptors associated with k th spatial resolution by
applying convolutional layers and a fully connected (FC)
layer. Different local descriptors for all sets of image bands
are first characterized and then concatenated into one vector
for one local area. To effectively combine information from
different branches, all concatenated feature vectors are fed
into a new FC layer to produce the local descriptorsψ i,r . This
step is illustrated in Fig. 2.

FIGURE 2. The proposed K -Branch CNN introduced in the first step of the
proposed approach. One local area is highlighted as an example to feed
into the corresponding CNN.

The proposed K -Branch CNN describes the complex
information content of image local areas through specific
branches associated to different spatial resolutions. By this
way, a unique CNN is used for the image bands with the
same spatial resolution unlike the traditional CNN based
methods in RS (which consider all the image bands as a
single volume after applying interpolation to the low spatial
resolution bands). On the one side, this approach leads to an
accurate characterization of the content of high dimensional
RS images. On the other side, due to modeling the local
areas, it requires a smaller number of model parameters being
estimated. Thus, the computational complexity of training
phase is reduced, while the risk of over-fitting on training data
with low generalizing capability is avoided (since smaller
neural networks have less tendency for over-fitting).

B. DEFINITION OF A MULTI-ATTENTION DRIVEN
GLOBAL DESCRIPTOR
After obtaining the local descriptors {ψ i,r }

R
r=1 in the first

step, a global descriptor can be defined by simply stacking all
local descriptors. In this way, local descriptors equally con-
tribute to the definition of a global descriptor. However, local
areas of an RS image can be subject to different levels (i.e.,
scores) of importance to represent the semantic content of
the image. Accordingly, this step aims at accurately extract-
ing and exploiting importance levels of local areas of each
image, while defining a global image descriptor. To this end,
we introduce a novel multi-attention strategy that is defined
based on long short-term memory (LSTM) networks [15].
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FIGURE 3. Single LSTM cell with its inputs, gates and cell state followed
by two LSTM cells in a sequence. Without losing in generality, particular
sequence of the LSTM network (which starts with the first local area and
ends with the last local area) is chosen in the figure.

An LSTM network contains sequentially ordered LSTM
nodes (i.e., cells). Each cell includes input gate (i), forget gate
(f ), output gate (o) and cell state (c). Cell state characterizes
the knowledge of observed inputs until the corresponding
cell. Different gates control how the cell state should behave
according to different aims. Forget gate decideswhich portion
of the current cell state value should be forgotten. Input gate
controls which portion of the input should be read by cell
state. Output gate decides which portion of the cell state
should be produced as the output of the new cell state. The
reader is referred to [16] for the detailed explanation. In the
proposed approach, each LSTM cell takes the descriptor of
r th local area (ψ i,r ) from the K -Branch CNN as input and
employs the aforementioned operations as follows:

f r = δ(Wf ,rψ i,r + Uf ,rhτ + bf ,r )

ir = δ(Wi,rψ i,r + Ui,rhτ + bi,r )

or = δ(Wo,rψ i,r + Uo,rhτ + bo,r )

cr = f r � cτ + ir � tanh(Wc,rψ i,r + Uc,rhτ + bc,r ) (1)

where tanh and δ are the hyperbolic tangent and sigmoid func-
tions, W.,r and b.,r are the weight and bias parameters; and
the subscript of r refers to the parameters of the LSTM cell
associated with r th local area. All operations of one LSTM
cell are illustrated in Fig. 3. Each LSTM cell produces one
preliminary attention score given the sequence, hr|τ , based
on the cell state and the gates as follows:

hr = hr|τ = or � tanh(cr ). (2)

We utilize two LSTM networks in a bidirectional manner to
consider the different orders of local areas and thus all LSTM
cells are placed in two different sequences with different
parameters. Each cell of the first LSTM network produces
the preliminary attention score of one local area concerning
the knowledge acquired from the attention scores of previous
local areas (i.e., previous cells). Thus τ becomes r − 1
in (1). The second LSTM network employs the same idea by
considering the subsequent local areas and thus τ becomes
r + 1 in (1). In the context of bidirectional LSTM networks,
forward and backward sequences can be combined by using
the concatenation, the summation or the multiplication oper-
ations [17], [18]. The concatenation operation is a widely

FIGURE 4. Proposed multi-attention strategy with bidirectional LSTM
networks for the second step of the proposed approach.

used operation in the literature. However, it requires a fully
connected layer for the reduction of a vector into a single
value, which can significantly increase the computational
complexity of the whole approach.Whenmultiplication oper-
ation is used, the resulting value can be dominated by one of
the sequences, if the preliminary attention score is a negative
value. Accordingly, we select the summation operation for
combining the sequences. To this end, after obtaining two pre-
liminary attention scores from the different orders, we apply
the final attention score of the r th local area αi,r as follows:

αi,r = δ

(
hr|r−1 + hr|r+1

2

)
. (3)

This produces an attention score for the r th local area within
the range of [0, 1]. For the beginning of passes (r = 1
or r = R), τ refers to an initial state of the nodes. Each
attention score shows the importance level of the considered
local area for the complete characterization of the whole
image content. Accordingly, multi-attention scores {αi,r }Rr=1
for the ith image xi show the different importance levels of
the image local areas. The proposed multi-attention strategy
is illustrated in Fig. 4.
Let �i be the multi-attention driven global descriptor of

the xi. After obtaining the multi-attention scores, the global
descriptor�i is defined by the concatenation of local descrip-
tors weighted by attention scores as follows:

�i = [αi,1ψ>i,1, . . . , αi,Rψ
>
i,R]
>. (4)

Due to this step, the proposed approach extracts and
exploits the importance scores of local areas of each image
instead of equally considering them.

C. CLASSIFICATION OF RS IMAGE SCENES WITH
MULTI-LABELS
This step aims to classify RS images into multi-labels by
using the multi-attention driven global descriptor�i obtained
in the second step of the proposed approach. To this end,
we employ a FC layer f (·) as a classifier that generates class
scores zlj for each class label lj in the sequence based on
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FIGURE 5. Detailed illustration of the three main steps of the proposed approach: (a) spatial and spectral characterization of local areas; (b) definition of
a multi-attention driven global descriptor; (c) RS image scene classification with multi-labels.

the global descriptor �i. Then, we obtain the class posterior
probability of lj for the image xi with the sigmoid function as:
P(lj|xi) = 1/(1+ e−zlj ). After characterizing the class poste-
rior probabilities, we define the overall loss of the approach
as the cross entropy loss throughout all labels and images as
follows:∑
xi∈T

S∑
j=1

[lj ∈ yi]log(P(lj|xi))

+ (1− [lj ∈ yi])log(1− P(lj|xi)) (5)

where [lj ∈ yi] is the Iverson bracket, which equals 1 if the lj
is one of the true multi-labels of xi, 0 otherwise. After end-
to-end training of the entire neural network by minimizing
the cross-entropy loss, the parameters θ of the function F
(i.e., model parameters of the approach) can be learned.
Accordingly, our model becomes capable of producing the
posterior probabilities of multi-labels to be assigned to a new
RS image scene x∗. Then, the proposed approach predicts the
multi-labels by thresholding the probability values.

Each step of the proposed approach is illustrated in Fig. 5.

III. DATA SET DESCRIPTION AND EXPERIMENTAL SETUP
A. DATA SET DESCRIPTION
We conducted all experiments on the BigEarthNet benchmark
archive1 [19]. BigEarthNet consists of 590, 326 Sentinel-2
images acquired between June 2017 and May 2018 over
10 European countries (Austria, Belgium, Finland, Ireland,
Kosovo, Lithuania, Luxembourg, Portugal, Serbia, Switzer-
land). Each image in the archive is a section of: i) 120× 120
pixels for 10m bands; ii) 60 × 60 pixels for 20m bands; and
iii) 20×20 pixels for 60m bands and has been annotated with
multi-labels among 43 land-cover classes provided from the
2018 CORINE Land Cover (CLC) database. The number of
labels associated with each image is in the range of 1 and 12,
whereas 5% of images have more than 5 multi-labels [19].

1The BigEarthNet is publicly available at http://bigearth.net.

FIGURE 6. Example of Sentinel-2 images and their multi-labels in the
BigEarthNet archive.

Fig. 6 provides an example of images with their multi-labels.
Each image is atmospherically corrected. In the experiments,
70, 987 BigEarthNet images that are fully covered by sea-
sonal snow, cloud and cloud shadow were not used2. Accord-
ing to our knowledge, BigEarthNet is the only archive in RS
that includes Sentinel-2 multispectral images, each of which
is annotated with multi-labels. Thus, we could only use it in
the experiments in this paper. The other benchmark archives,
e.g., DFC15 [11] and UC-Merced archives [20], consist of
a very small number of RS images that are annotated with
multi-labels and contain only RGB bands. Thus, they are
not adequate to evaluate the proposed approach and are not
considered in this paper.

The number of images associated with each BigEarth-
Net class varies significantly in the archive. To divide the
BigEarthNet archive into training set (which is used for train-
ing the considered neural networks), validation set (which
is used for selecting hyperparameters) and test set (which is

2The lists of images fully covered by seasonal snow, cloud and cloud
shadow are available at http://bigearth.net/#downloads.
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used for accuracy assessment), one could apply random sam-
pling. However, when images with multi-labels are consid-
ered, this approach has a risk that randomly selected images
may not represent all classes present in the whole archive.
There are also other approaches to divide a dataset into
train, validation and test sets, however they are also designed
for images annotated by single-labels and thus not suitable
for multi-label applications [21]. In this paper, we develop
an algorithm to represent each BigEarthNet class with a
sufficient number of images in training, validation and test
sets based on the label frequencies. The algorithm starts by
including all images to the the training set. Let clm ∈ N be the
number of images associated to the label lm in the training set,
where m ∈ {1, . . . , S}, and thus we define the frequency γlm
of the label lm in the training set as follows:

γlm =
clm∑S
m=1 clm

. (6)

Then, we define the cost of moving an image and its set of
multi-labels from the training set to either validation or test
set as follows:

Cxi,yi = −
S∑

m=1

γ ∗lm −
1
S

√
γlm

(7)

where γ ∗lm indicates the new frequency of the label lm after
images are moved from the training set to the validation or
test sets. The algorithm first sorts the label list in decreasing
order based on the number of images associated to each class.
Then, from the sorted list, the images with the decreasing
cost values associated to each class are randomly selected
and moved either to the validation set or to the test set.
Since the algorithm starts to operate on the images associated
to the majority classes, most of the images will be moved
from the training set at the beginning. However, the cost
value will reach the stationary point when it operates on
the images associated to the minority classes. Application
of this algorithm to the BigEarthNet results in a validation
set of 198, 762 images, a test set of 203, 269 images, and a
training set of 117, 308 images. The algorithm is summarized
in Algorithm 1.

B. EXPERIMENTAL SETUP
After the selection of training, validation and test sets,
we divided each image into non-overlapping local areas.
Then, we employed three branch CNN (i.e., K = 3 for the
K -Branch CNN) due to the three different spatial resolutions
of Sentinel-2. Accordingly, for each local area, we split the
bands into three subsets. Then, we stacked bands of each sub-
set to obtain a single volume for each CNN branch. In detail,
the bands 2 to 4 and 8 (which have 10m spatial resolution)
were fed into the first branch, while the bands 5 to 7, 8A,
11 and 12 (which have 20m spatial resolution) were fed into
the second branch and the third branch takes as input the
remaining bands 1 and 9 (which have 60m spatial resolution).
We selected the number of local areas and all other hyper-
parameters with respect to the classification performance on

Algorithm 1 Our Algorithm for the Selection of Training,
Validation and Test Sets
Input: X={x1,. . . , xM }, L={l1,. . . , lS}, Y={y1,. . . , yM }
Assumption: L is sorted in decreasing order based the num-

ber of images associated to each class.
1: function LabelFreq(T , lm)
2: clm ← |{(xi, yi) | (xi, yi) ∈ T , yi,m = 1}|
3: γlm ← clm/(

∑S
m=1 clm )

4: return γlm
5: end function
6: function Cost(T , (xi, yi), S, 0L)
7: sum← 0
8: for m← 1 to S do
9: γlm ← 0L
10: γ ∗lm ← LabelFreq(T − (xi, yi), lm)
11: sum← sum− (γ ∗lm −

1
S )/
√
γlm

12: end for
13: return sum
14: end function
15: T = {(xi, yi) | xi ∈ X , yi ∈ Y} F Initial training set.
16: V = ∅ F Initial validation set.
17: E = ∅ F Initial test set.
18: S ← |L|
19: state← Cost(T ,∅, S)
20: 0L←

⋃S
m=1LabelFreq(T , lm) F Initial frequencies.

21: for m← 1 to S do
22: for all i such that yi,m = 1 do
23: if Cost(T , (xi, yi), S, 0L) < state then
24: T ← T − (xi, yi)
25: (V ← V + (xi, yi))⊕ (E ← E + (xi, yi))
26: state← Cost(T , (xi, yi), S, 0L)
27: end if
28: end for
29: end for
30: return T ,V, E F Resulting sets.

the validation set. To select the local area size w × w, w
is tested within the range of [18, 60] with a step size of 6.
It is worth noting that, for the sizes, which are not evenly
divisible by the image size (120×120 for 10m bands, 60×60
for 20m bands, 20 × 20 for 60m bands), we applied zero
padding to the image borders. Although the same number of
convolutional layers was used for all branches, the number
of filters, the exploitation of pooling strategy and the filter
sizes vary among branches. It is worth noting that the number
of convolutional layers in all branches can be increased at a
large extent to achieve deeper models. However, this would
also increase the number of model parameters and thus the
computational complexity. Accordingly, three convolutional
layers were used for all branches. For the first branch, 32 fil-
ters with the size of 5 × 5, 32 filters with the size of 5 × 5
filters and 64 filters with the size of 3×3 filters were selected.
For the second branch, the same number of filters was used,
while 3 × 3 filters were employed in each layer. For the
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third branch, 32 filters with the size of 2 × 2 were used in
each layer. We utilized the stride of 1 and zero padding in
all convolutional layers to preserve the spatial dimensionality
and not to lose information. In addition, max-pooling was
utilized in the first two branches to provide partial translation
invariance [22], which was not used in the last branch to
avoid further decreasing the spatial resolution. For the LSTM
networks, we used a 128 dimensional memory.

We jointly trained all CNN branches, FC layers and LSTM
networks (i.e., an end-to-end learning of all steps was applied
simultaneously). We used the Adam method [23] of Stochas-
tic Gradient Descent with the initial learning rate of 10−3

to decrease the sigmoid cross entropy loss, which aims at
maximizing the log-likelihood of the multi-labels in the train-
ing set. For the initialization of neural network weights,
we utilized the Xavier method [24] to keep the variance of
weights similar among all layers. We selected the 2 × 10−5

L2-regularizationweight to layer-wise regularize theweights.
20% dropping out probability was chosen for Dropout reg-
ularization [25] to avoid the over-fitting of the proposed
approach on the training set. In addition, we utilized the Batch
Normalization [26] to decrease the effect of different spectral
band statistics.

In the experiments, we compared the proposed approach
with: 1) the Very Deep Convolutional Networks (i.e., VGG
networks) [27]; 2) the Deep Residual Nets (i.e., ResNet net-
works) [28]; and 3) the Class-Wise Attention-Based Con-
volutional and Bidirectional LSTM Network [11] (denoted
as CA-LSTM). For the VGG networks, we selected 16 lay-
ers (VGG16) and 19 layers (VGG19) versions. At the sim-
ilar depths to the VGG networks, we selected 18 layers
(ResNet18) and 34 layers (ResNet34) versions of the ResNet
networks. These are widely used CNNs for the image clas-
sification problems in the CV literature. We used the same
parameters presented in [27] and [28] for the VGG net-
works and the ResNet networks, respectively, except only
the considered learning rates. CA-LSTM is one of the few
DL based approaches proposed for the multi-label RS image
scene classification task. For the CA-LSTM, we used the
same feature extraction module (which is ResNet50 [28]),
same LSTM network (bidirectional LSTM network with
2048 dimensional memory) and same parameters presented
in the [11] except the learning rate.

We also evaluated the different steps at the proposed
approach. To assess the effectiveness of the first step of the
proposed approach (that is theK -BranchCNN), we compared
it with different single branch CNN approaches. To this end,
we initially applied cubic interpolation to 20m and 60m bands
and stacked all bands into one volume. Then, three different
approaches are considered as follows: 1) a single branch CNN
that considers all the image bands as input and operates on
the whole images (denoted as SiB-CNN); 2) a single branch
CNN that considers all the image bands as input and operates
on the local areas of images (denoted as L-SiB-CNN); and
3) a single branch CNN that considers only RGB image
bands as input and operates on the whole images (denoted as

SiB-CNNRGB). For these approaches, the architecture of
the first branch of the proposed K -Branch CNN is used.
To evaluate the effectiveness of the second step of the pro-
posed approach (that is the multi-attention strategy), we com-
pared the results with those obtained without using the
multi-attention strategy (i.e., only the first step is used). For
all the experiments, we used the same training procedure from
scratch with the same number of epochs, learning rate and
the number of mini-batches to compare different approaches
under the same setting. We performed our experiments on a
cluster of 4 NVIDIA Tesla V100 GPUs.

Performance evaluation of any multi-label classification
approach requires to analyze several factors rather than
only evaluating the number of correct predictions and thus
needs much more complex analysis with respect to the
single-label case [29]. Accordingly, we utilized the different
classification-based and ranking-based metrics with varying
characteristics to accurately evaluate the accuracy of the pro-
posed approach. Classification-basedmetrics consider the list
of predicted classes, whereas ranking-based metrics focus on
the ordered list of probabilities for all classes.

Under the category of classification-based metrics, results
of experiments were provided in terms of three performance
metrics: 1) Recall (R); 2) F2-Score (F2); and 3) Hamming
loss (HL). Classification-based metrics can be calculated by:
i) giving equal importance to each sample of the test set
(sample averaging); ii) giving equal importance to each class
(macro averaging); and iii) comparing the overall test set with
the ground reference (micro averaging) regardless of giving
importance to neither each sample nor each class.

Let TPij, FPij, FNij and TNij indicate the conditions of
true positive, false positive, false negative and true negative,
respectively, for the ith image and jth label (lj), where each of
them takes 0 or 1 and TPij+FPij+FNij+TNij = 1 holds. The
recall is expressed by different averaging methods as follows:

Rsmpl =
1
M

M∑
i=1

∑S
j=1 TPij∑S

j=1 TPij + FNij
(8)

Rmacr =
1
S

S∑
j=1

∑M
i=1 TPij∑M

i=1 TPij + FNij
(9)

Rmicr =

∑M
i=1

∑S
j=1 TPij∑M

i=1
∑S

j=1 TPij + FNij
. (10)

TheF2-Score is the weighted harmonicmean of the correct
prediction rates among the considered ground reference and
the multi-label predictions. Thus, it is expressed by different
averaging techniques as follows [30]:

F2
smpl =

1
M

M∑
i=1

∑S
j=1 5TPij∑S

j=1 5TPij + 4FNij + FPij
(11)

F2
macr =

1
S

S∑
j=1

∑M
i=1 TPij∑M

i=1 5TPij + 4FNij + FPij
(12)
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TABLE 1. Multi-label classification accuracies and the number of required model parameters (NP) when using local areas with different sizes for the
proposed approach.

F2
micr =

∑M
i=1

∑S
j=1 5TPij∑M

i=1
∑S

j=1 5TPij + 4FNij + FPij
. (13)

The Hamming loss is the average Hamming distance
between the ground reference labels and predicted multi-
labels. Thus, it is defined as follows [31]:

HL =
1
M

M∑
i=1

1
S

S∑
j=1

[lj ∈ yi ⊕ lj ∈ y
∗
i ] (14)

where ⊕ is the XOR logical operation.
Under the category of ranking-based metrics, results of

experiments are provided in terms of four performance eval-
uation metrics: 1) Ranking loss (RL); 2) One error (OE);
3) Coverage (COV ); and 4) Label ranking average preci-
sion (LRAP). All the ranking-based metrics are defined with
respect to the ranking of the jth label in the class probabilities
result of an multi-label classification approach for the ith

image that is defined as rankij = |k : P(lk |xi) ≥ P(lj|xi)|.
Unlike the classification-based metrics, ranking-based met-
rics are calculated only by giving equal importance to each
sample of the test set.

Accordingly, ranking loss is the rate of wrongly ordered
label pairs (i.e., the probability of a label, which is irrelevant
to the image, is higher than a ground reference label), and thus
expressed as follows [32]:

RL =
1
M

M∑
i=1

1
|yi|(S − |yi|)

∑
lj∈yi

∑
lk /∈yi

rankik ≤ rankij. (15)

The one error is the rate of test images whose predicted
label having the highest ranking is not in the ground reference
and thus defined as follows [29]:

OE =
1
M

M∑
i=1

[argmax
j

rankij /∈ yi]. (16)

The coverage calculates the average number of labels
required to be included in the prediction list of a multi-label

classifier such that all ground reference labels will be pre-
dicted. Accordingly, it is defined as follows [32]:

COV =
1
M

M∑
i=1

max
lj∈yi

rankij. (17)

For each ground reference label, the label ranking average
precision calculates the rate of higher-ranked ground refer-
ence labels. This is expressed as follows [29]:

LRAP =
1
M

M∑
i=1

1
yi

∑
lj∈yi

|{lk : rankik ≤ rankij, lk ∈ yi}|
rankij

.

(18)

It is worth noting that, for any multi-label classifier, LRAP
provides scores strictly greater than 0 unlike the other met-
rics [29]. Thus, small differences in the score of this metric
can be more informative compared to other metrics (e.g.,
recall). Smaller values of the Hamming loss, ranking loss,
one error and coverage indicate better performance of an
approach, whereas higher values of the recall, F2-Score and
the label ranking average precision are associated to better
performance.

IV. EXPERIMENTAL RESULTS
We carried out different kinds of experiments in order to:
1) perform a sensitivity analysis with respect to different
parameter settings and strategies; and 2) compare the effec-
tiveness of the proposed approach with the widely used deep
CNNs and one recent multi-label RS image scene classifica-
tion approach [11].

A. SENSITIVITY ANALYSIS OF THE PROPOSED APPROACH
In this section, we performed the sensitivity analysis of the
proposed approach under different parameter settings and
strategies.

In the first set of trials, we analyzed the effect of utilizing
local areas with different sizes in terms of themulti-label clas-
sification accuracy and computational complexity. Table 1
shows the results with the required number of parameters
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TABLE 2. Results obtained by the SiB-CNNRGB, the SiB-CNN, the L-SiB-CNN and the proposed K -branch CNN.

TABLE 3. Multi-label classification accuracies obtained by using different steps of the proposed approach.

under different sizes of local areas. By analyzing the table,
one can see that the reduction of computational complexity
highly depends on the local area size w × w. This is due to
the fact that enlarging the local areas increases the number of
parameters required to learn. As an example, using 18 × 18
sized local areas reduces the number of parameters by a half
order of magnitude compared to the case for which 60 × 60
sized local areas are used. From the Table 1 one can also
observe that the accuracies obtained by different sizes of local
areas are similar to each other under most of the metrics.
As an example, using 60 × 60 sized local areas provides
almost the same F2

macr score compared to the case 30 × 30
sized local area is considered. In few cases, there are notice-
able differences in the results associated to metrics. As an
example, using 48× 48 sized local areas results in more than
7% higher Rmicr compared to using 24×24 sized local areas.
This is due to the fact that a smaller window size may reduce
the capability of describing the spatial information content.
All these results show that the selection of local area size in a
proper range does not significantly affect the classification
accuracy of the proposed approach, however considerably
changes the computational complexity. Accordingly, for the
rest of the experiments we used 30 × 30 sized local areas
for 10m resolution bands since it provides the best values in
ranking-based metrics and Hamming loss with a significantly
reduced number of parameters (that is less than a half of those
required for 48× 48, 54× 54 and 60× 60 local area sizes).

In the second set of trials, we analyzed the effect of the
first step of the proposed approach on the multi-label clas-
sification accuracy. To this end, we compare the results of
the K -Branch CNN (which is introduced in the first step)
with those obtained by the SiB-CNNRGB (which is a single
branch CNN that considers RGB bands), SiB-CNN (which
is a single branch CNN that considers all bands) and L-SiB-
CNN (which is a single branch CNN that considers all bands
and operates on the image local areas). Table 2 shows the

multi-label classification accuracies under different metrics.
From this table, one can observe that the proposed K -Branch
CNN provides the best scores under most of the metrics.
As an example, the proposed K -Branch CNN provides more
than 9%, almost 4% and more than 3% higher F2

macr scores
compared to the SiB-CNNRGB, SiB-CNN and L-SiB-CNN,
respectively. In greater detail, the SiB-CNN provides more
than 6% higher F2

smpl score by achieving a reduction of about
4% in one error compared to the SiB-CNNRGB. This shows
that using spectral bands associated to 20m and 60m spatial
resolutions improves the multi-label classification accuracy.
Moreover, the L-SiB-CNN provides more than 4% higher
F2
smpl score by achieving a reduction of more than 9% in

coverage compared to the SiB-CNN. This indicates that
exploiting local areas of images also improves the multi-label
classification accuracy. In addition, the proposed K -Branch
CNN leads to a reduction of about 7% in Hamming loss
and more than 7% higher Rmacr compared to the SiB-CNN.
All these results show that the K -Branch CNN much more
accurately characterizes the spectral content of RS images by
utilizing all spectral bands with different spatial resolutions
in branch-wise CNN architecture compared to single branch
CNN approaches (which require to apply interpolation to
lower resolution bands).

In the third set of trials, we evaluated the effect of the sec-
ond step of the proposed approach. To this end, we compared
the results of proposed approach with those obtained by
neglecting the multi-attention strategy (i.e., only the first step
is used).When the second step is neglected, global descriptors
are obtained by the concatenation of local descriptors without
weighted by attention scores. Table 3 shows the multi-label
classification accuracies under different metrics. From this
table, one can observe that when the use of multi-attention
strategy significantly improves the classification accuracy
under all the metrics. As an example, the improvements are
6% in Rmacr and more than 3% in F2

smpl score. This shows the
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TABLE 4. Results obtained by the ResNet18, ResNet34, VGG16, VGG19, CA-LSTM and the proposed approach together with the number of required model
parameters (NP).

FIGURE 7. An example of the BigEarthNet images with the true multi-labels and the multi-labels assigned by the ResNet18, ResNet34, VGG16, VGG19,
CA-LSTM and the proposed approach.

effect of modeling the importance scores of image local areas
for the characterization of a global descriptor.

B. COMPARISON AMONG THE EXISTING APPROACHES
In the fourth set of trials, we compared the effectiveness of
the proposed approach with the ResNet architectures at the
depths of 18 and 34 (ResNet18 and ResNet34), the VGG
architectures at the depth 16 and 19 (VGG16 and VGG19)
and the CA-LSTM (which is a recent multi-label RS scene
classification approach). Table 4 shows the multi-label clas-
sification results of these methods under different metrics.
By analyzing the table, one can observe that our proposed
approach leads to the highest accuracies with the lowest
number of parameters. As an example, the proposed approach
provides 15% higher Rmacr , more than 5% higher F2

smpl score
and a reduction of more than 21% in ranking loss com-
pared to the VGG16 (which is one of the well known CNNs
for image classification problems). Moreover, the proposed
approach requires a significantly reduced number of param-
eters that is more than two orders of magnitude compared
to the VGG16. Even with the deeper architecture (VGG19),

the VGG approach is not capable of increasing the classi-
fication accuracy (while providing the lowest scores under
all metrics except the Rmacr and F2

macr compared to the
VGG16) and requires the highest number of parameters to
learn. As an example, the VGG16 leads to a reduction of
about 6% in ranking loss. This shows that increasing the
depth of a CNN is not sufficient to obtain accurate multi-label
RS classification results. In addition, the proposed approach
leads to more than 11% higher F2

macr score and more than
8% higher LRAP score with a reduced number of parameters
that is more than an order of magnitude lower compared to
the ResNet34 (which is one of the most popular CNNs due
to the integration of residual connections with convolutional
layers). The proposed approach provides better metric values
(e.g., more than 9% higher Rmacr , 7% higher F2

macr score,
9% higher Rmacr and a reduction of about 30% in ranking
loss) also compared to the CA-LSTM. This success has been
achieved with the significantly reduced number of parameters
by more than an order of magnitude. All these results clearly
show that the proposed approach reduces the needs for very
deep CNNs to achieve a high classification accuracy. This is
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TABLE 5. Table of symbols.

an important advantage, since reducing the number of model
parameters to achieve promising performance is as impor-
tant as the classification accuracy for DL based approaches.
Figure 7 shows an example of BigEarthNet images with
the true multi-labels and the multi-labels assigned by the
ResNet18, ResNet34, VGG19, VGG16, CA-LSTM and the
proposed approach. By analyzing the figure, one can see that
our proposed approach accurately predicts all classes without
predicting any wrong ones. Unlike the proposed approach,
the VGG16 and VGG19 predict several unrelated classes.
As an example, both of the approaches predict broad-leaved
forest and mixed-forest classes for the first image, although
this image does not contain these classes. ResNet18 and
ResNet34 are able to accurately predict only some of the
multi-labels. As an example, for the image in the center,
the ResNet networks correctly predict pastures and land

principally occupied by agriculture classes, however conif-
erous forest and transitional woodland/shrub classes are not
predicted and thus missed. These results prove that the VGG
and ResNet networks are less accurate in the prediction of
all classes present in the images with respect to the proposed
approach. From the figure, one can see that the CA-LSTM
provides accurate results for the top image without any
wrong classification. However, for more complex images,
this approach is not capable of identifying some classes.
As an example, for the image in the center, the CA-LSTM
wrongly predicts mixed forest and natural grassland classes
instead of coniferous forest and transitional woodland/shrub
classes. However, these classes are accurately predicted by
the proposed approach. As another example, for the bottom
image, the CA-LSTM does not provide any correct predic-
tion, whereas the proposed approach correctly predicts all
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the classes. These results, again, prove that the proposed
approach more accurately describes the complex spatial and
spectral content of RS images compared to the CA-LSTM.

V. CONCLUSION
In this paper, we have introduced a novel DL based approach
for multi-label remote sensing image scene classification.
The proposed approach is made up of three main steps. The
first step achieves spatial and spectral characterization of
image local areas by a novel K -Branch CNN, which includes
spatial resolution specific CNN branches. The second step
initially estimates the multiple attention scores to identify the
importance levels (i.e., scores) of different image local areas.
This is achieved by the novel bidirectional LSTM-based
multi-attention strategy. Then, each image is represented by a
global descriptor defined on the basis of the attention scores.
In the third step, images modeled by the multi-attention
driven global descriptors are classified and multi-label pre-
dictions are obtained. Experimental results obtained on the
BigEarthNet (which is a large-scale Sentinel-2 benchmark
archive) demonstrate that the proposed approach signifi-
cantly improves the multi-label scene classification accu-
racy compared to the well known deep CNNs and the
state-of-the-art attention drivenmulti-label RS image classifi-
cation approach.Moreover, the proposed approach provides a
computationallymore efficient solution formulti-label classi-
fication problems due to the significant reduction in the num-
ber of model parameters. Decreasing the model complexity
reduces the risk of over-fitting (which also contributes to the
improvement in the classification accuracy). All the results
confirm that the proposed approach is much more suitable
to be used within the operational RS scene classification
scenarios, where the images contain highly complex spatial
and spectral information content. The main reasons for the
success of the proposed approach are summarized as follows:

1) Due to the proposed K -Branch CNN (which includes
a specialized branch in terms of the DL techniques uti-
lized throughout layers for the set of image bands with
the same spatial resolution), the proposed approach
significantly improves the characterization of com-
plex spatial and spectral content of high-dimensional
RS images with high-spatial resolution. Moreover,
K -Branch CNN leads to a significant reduction on the
computational complexity of the entire approach by
reducing the number of model parameters.

2) Due to the proposed multi-attention strategy (which
efficiently exploits the bidirectional LSTM sequences
on the local descriptors of each RS image to esti-
mate themulti-attention scores), the proposed approach
accurately extracts and exploits the importance levels
of image local areas which are then used to define the
global descriptors.

It is worth noting that although in our experiments we
have used the Sentinel-2 multispectral images (which include
13 bands associated to three different spatial resolutions),

the proposed approach can be used with any multispectral RS
image. This can be achieved by selecting: i) the number K of
branches as the total number of different spatial resolutions
associated to the considered RS image bands; and ii) the
proper values of the hyperparameters for each branch in
the K -Branch CNN. If all the image bands are associated to
the same spatial resolution value, the K -Branch CNN turns
into a single branch CNN (i.e., K = 1). It is also important to
note that when RS image bands with varying spatial resolu-
tions are considered, the most straightforward way is to apply
interpolation to the lower spatial resolution bands and then to
use a single-branch CNN. However, the experimental results
show that the use of interpolation may lead to a loss on the
scene classification accuracy.

As a final remark, it is worth noting that to define the
local areas of each image, we simply divide images into
non-overlapping blocks. As a future work, we plan to apply
a strategy for an adaptive definition of local areas based on
the semantic content of RS images that can further improve
the classification accuracy.Moreover, we also plan to develop
a data summarization strategy [33] instead of stacking local
descriptors in the second step of the proposed approach.

NOTATION AND SYMBOLS
A list of the notation and symbols used throughout the paper
is given in Table 5.
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