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ABSTRACT: The objective of this article is to reconsider some important aspects of modeling
piezoelectric active thin-walled structures. Hence, it is dealt here with thin-walled laminated
structures involving piezoelectric patches. A recently developed shell type finite element is used
for the purpose. The first aspect is adequate modeling of electric field within the piezoelectric
patches polarized in the thickness direction. The influence of higher order functions for the
electric field on the accuracy of the model is discussed. The second aspect is related to
modeling geometrical non-linearities in the behavior of the considered structures and their
significance on the accuracy of the predicted behavior. Both aspects are considered with
respect to static and dynamic cases.
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INTRODUCTION

G
ENERALLY speaking, an active structure is a
structure that includes bonded or embedded

multi-functional material-based active elements – sen-
sors and/or actuators, the purpose of which is to
monitor the state of the structure and to produce
desired excitations affecting the structure, respectively.
In further step, sensors are coupled with actuators by
means of a controller, which enables the structure to
respond to external stimuli to compensate for undesired
behavior or to produce desired one. Such a structure is
denoted as adaptive.
The interest for the piezoelectric active thin-walled

structures have significantly increased over the last two
decades. A number of researchers have been attracted to
the field, which is due to the potential and already used
benefits active structures offer over passive ones. A large
group of research projects is dedicated to new industrial
applications of active structures or the improvement
of already existing applications. The other group
deals generally with the problem of modeling active
structures. The main aim here is to provide adequate
models, modeling tools, and to give new insights into the
issue. Namely, in any analysis scenario, it is necessary at
first to decide the significant aspects of the physical
processes to be modeled. Hereafter, model building

explores alternative solutions with the aim of achieving
a satisfying compromise between the model complexity
and the accuracy of the predicted behavior of the physical
system – the two objectives that are definitely not easy to
conciliate. The aspects of modeling piezoelectric active
structures that are considered in the article are investi-
gated by means of finite element (FE) method with a
recently developed shell type FE used for the purpose.

The first aspect to be investigated is modeling
the electric field quantities in the piezoelectric active
elements. Within the last few years a number of papers
have been published, in which a quadratic distribution of
the electric potential, and correspondingly, a linear one
for the electric field through the piezolayer thickness was
accounted for (e.g., Yang et al., 2004; Butz and Klinkel,
2005; Cotoni, 2006). The mentioned papers also give
significance to this issue, while, on the other hand, a great
number of previously developed formulations take
a priori a linear and constant distribution, respectively,
and also yield results of good accuracy (e.g.,Gabbert et al.,
1998; Piefort, 2001). This gave impetus to investigation on
this matter. The investigation presented in this article is
actually a sequel to a similar consideration presented by
the authors in Marinković et al. (2007).

The second aspect to be investigated is related to
geometrical non-linearities in the behavior of active thin-
walled structures. A relatively small body of literature is
available on this matter and that was themainmotivation
to address this aspect here. Recently some researchers
have given attention to this issue (e.g., Rabinovitch, 2005;
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Kulkarni and Bajoria, 2007; Marinković et al., 2008).
If a model-based control is to be developed in order to
render active structure an adaptive one, it is of crucial
importance to have a model capable of predicting the
actual behavior with a satisfying accuracy. Such a level of
accuracy might require consideration of geometrically
non-linear effects. The intention of the authors is to
present briefly the developed geometrically non-linear
formulation and to investigate this aspect on a relatively
simple example involving both static and transient
behavior of a structure.

SHELL ELEMENT FOR THIN-WALLED ACTIVE

STRUCTURES

Only the most important features of the developed
element will be given here, since a thorough description
of the element formulation is already available
in Marinković et al. (2006) and Marinković (2007).
The effective modeling and simulation of the considered
structures are driven by the recognition that the nature
of their general behavior allows the condensation of
the complex 3D field to the essential ingredients of the
structural response described by a 2D approach. Of all
the FEs developed for plate and shell structures, the
degenerated shell element family is widely considered
to be one of the most efficient and economic. The choice
of the authors goes in the same direction.
The developed element is a 9-node shell element and

is applicable over a wide range of thickness and
curvatures. The kinematical assumptions made in the
formulation of the element are fully compatible with the
Mindlin–Reissner kinematical assumptions (first-order
shear deformation theory). Thus, the transverse shear
strains and stresses are included in the formulation and,
consequently, the element can be used for modeling thin
as well as moderately thick structures.
In the formulation of the element three different

coordinate systems have been used: global (x, y, z), local
(x0, y0, z0), and natural (r, s, t) (Figure 1). The global
c.s. is a Cartesian c.s. with a fixed position in space.
The behavior of the structure is described with respect to
this c.s. The natural c.s. has dimensionless coordinates
taking values between �1 and þ1, where r and s are the

curvilinear coordinates in the reference surface, while t is
linear in the thickness direction. The local c.s. is defined
at each point of the structure reference surface so as to
have one of its axis (the z0-axis) perpendicular to the
reference surface. This c.s. provides an effective way of
handling directionally dependent material properties,
e.g., when the passive material of the structure comprises
fiber-reinforced composite layers. The local c.s. is also
used in the definition of the element geometry,
displacement, strain and stress field, and it comes very
handy for the description of the piezoelectric coupling.
Namely, the coupling based on the ‘e31’ effect is achieved
between the in-plane strain components and electric
voltage acting in the thickness direction. Both quantities
are effectively described in the local coordinate
system regardless of the complexity of the structure’s
configuration (e.g., curvature) or the change of config-
uration throughout the analysis.

The developed shell element has six mechanical
degrees of freedom (three translations and three
rotations) at each of the nine nodes, and additionally,
as many electrical degrees of freedom as there are
embedded/bonded piezoelectric layers. The formulation
assumes that the piezoelectric layers are polarized in
the thickness direction only and that the differences
of electric potentials between the lower and upper face
of piezolayers are constant over the surface of the
element. Those are actually the electrical degrees of
freedom. The integration of the element vectors
and matrices in the thickness direction is performed
analytically, while the in-plane integration is performed
numerically.

The element is capable of modeling linear and
quadratic distribution of electric voltage across the
thickness of piezoelectric layers. The user is given the
choice which one to use. The element also supports
geometrically non-linear analysis based on the updated
Lagrangian formulation. The natural strains and
Cauchy stresses are determined with respect to the
local coordinate system.

The element is named ACShell9 (9-node active
composite shell).

MODELING OF ELECTRIC FIELD QUANTITIES

IN PIEZOPATCHES

As it is aforementioned, the authors have alreadymade
an investigation into the matter of accurate modeling of
electric field quantities within the piezoelectric layers
(Marinković et al., 2007). In the investigation, this aspect
was examined considering only static cases. The objective
here is to extend the investigation by considering
additionally the influence of modeling piezolayers’
electric field quantities on the dynamical behavior of
structure. For the sake of completeness, the most
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Figure 1. Coordinate systems of the ACShell9 element.
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important features from the preceding investigation as
well as a small set of static cases will also be given here.
The form of the linear piezoelectric constitutive

equations depends on the choice of independent vari-
ables (Ikeda, 1996). Choosing the mechanical strain and
electric field as independent variables they read:

�f g ¼ cE
� �

ef g � e½ �T Ef g ð1Þ

Df g ¼ e½ � ef g þ de½ � Ef g ð2Þ

where {�} and {e} represent the mechanical stress and
strain in the vector notation, respectively, {D} and {E}
are the electric displacement and the electric field vector,
respectively, [cE] is the Hooke’s matrix at constant
electric field, the matrix [e] comprises the piezoelectric
coupling constants, and [de] is the matrix of dielectric
(permittivity) constants at constant strain.
It is dealt here with thin piezoelectric patches

polarized in the thickness direction and with the electric
field applied in the thickness direction (Figure 2). Hence,
the quantities are written here with omitted indices and
having in mind that they are always related to the
thickness direction of the patch, which is at the same
time the thickness direction of the structure. The electric
potential, �, and electric field, E, are related in the
well-known way:

E ¼ �
@�

@z0P
ð3Þ

where z0p denotes the local thickness coordinate taking
the zero value at the mid-surface of the piezopatch.
Most of authors approach this issue by assuming the
electric potential to be a linear function in z0p and,
correspondingly, the electric field to be constant:

Eðz0PÞ ¼ �
��

hP
¼ const:; �ðz0PÞ ¼ ��

z0P
hP
þ
1

2

� �
ð4Þ

with �� (denoting the difference of electric potentials
between the upper and lower faces of the piezopatch and
hP is the thickness of the patch. This assumption
is correct for patches exhibiting purely membrane
behavior. Nevertheless, the function of active compo-
nents attached to thin-walled structures is mainly related
to bending behavior of the structures. In that case, it can
be demonstrated that the consistent functions (i.e.
satisfying the Gauss law) for the electric potential and

electric field are strongly related to the theory used to
describe the structure’s kinematics.

The piezoelectric materials belong to dielectrics. Since
there are no free charges in dielectrics, the Gauss law reads:

@D

@z0P
¼ 0 ð5Þ

Now, within a first-order theory for the kinematics of
thin-walled structures, the in-plane displacements
are assumed as linear in z0p, while the transverse
deflection is assumed constant across the thickness.
Correspondingly, the in-plane strains are linear in z0p
and they consist of purely membrane strains (constant
term) and flexural strains related to the curvature of
deformation k (linear term). Starting from the set of
Equations (1) and (2), using the Gauss law and the
aforementioned description of kinematics, a quadratic
function in z0p for the electric potential of piezopatch can
be derived, as it is done in Marinković et al. (2007). Then
it is obvious from (3) that the electric field is a linear
function in z0p.

The same conclusion may be deduced in a more
intuitive manner observing another set of piezoelectric
constitutive equations that corresponds to the choice of
mechanical strain and electric displacement as indepen-
dent variables:

�f g ¼ cD
� �

ef g � h½ �T Ef g ð6Þ

Ef g ¼ � h½ � ef g þ be½ � Df g ð7Þ

with [h] comprising coupling constants and [be] inper-
mittivity constants.

It is already elaborated that the Gauss law yields a
constant value of dielectric displacement over the
thickness of piezopatch. Hence, from (7) it is obvious
that the function describing the electric field has to be of the
same order in the thickness coordinate as the corresponding
function for the mechanical strain, i.e., it depends on the
theory chosen to describe the kinematics of the structure
and is actually of the same order as the theory itself.

The electric potential and electric field functions
consistent with the first-order shear deformation
theory (first-order theory with shear deformation
included) are derived in Marinković et al. (2007) and
can be given here in a somewhat simplified form:

�ðz0P,kÞ¼
1

2
k’ðk,e31,d33Þ z0

2
P�

hp
2

� �2
 !

þ��
z0P
hp
þ
1

2

� �
ð8Þ

Eðz0P,kÞ¼�
@�ðz0P,kÞ
@z0P

¼�k’ðk,e31,d33Þz0P�
��

hp
ð9Þ

where k’ is a coefficient depending on the piezoelectric
constant e31, dielectric constant d33, and curvature
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Figure 2. Piezopatch – electric field and electric potential.
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of deformation k. The information that should be
extracted from (8) and (9) is that the highest order
terms (quadratic for electric potential and linear
for electric field) are related to the curvature of
deformation, while the remaining of the both
functions is the same as the functions used in typical
approximations (4).
One may start from the Hamiton’s principle in order

to develop the FE equations for the piezoelectric
continuum. The question that arises now is what
difference the derived higher order functions make in
the model. Following the formalism of developing
the FE equations, the outcome of the electric field
dependency on the curvature of the piezopatch
deformation is an additional, purely mechanical
stiffness in comparison with the model based on
approximate functions (4) (Marinković et al., 2007).
This additional stiffness can be given here in the
following form:

Kpiezo
mech

h i
¼

0½ � �
� 0½ �

�� þ ����

0½ � �
� Kpiezo

yy

h i
2
664

3
775 ð10Þ

with

Kpiezo
yy

h i
¼

2

3

XNpe

k¼1

ctgkcpmk

 !Z
AP

BR1f½ �
T BP½ � BR1f½ �dA

ð11Þ

where Npe is the number of piezoelectric layers across
the thickness, AP the surface covered by piezolayers, ctgk
and cpmk

are the thickness geometrical factor and
piezoelectric material factor of the k-th piezolayer,
respectively:

ctgk ¼
hpk
h

� �3

ð12Þ

cpmk
¼

e2
31

d33

 !
k

ð13Þ

h is the overall thickness of the laminate, [BR1f] is
the part of the strain-displacement matrix defining
flexural and torsional strains, and [BP] is a Boolean
matrix which simply excludes the torsional strains
from (11).
The additional stiffness is related to the rotational

degrees of freedom only and is exhibited in bending
dominated behavior. The more important question
is if the difference in the results from the two models
is pronounced enough to make the additional stiffness
a necessary part of the model. In order to provide
the answer, it would be worthwhile to give briefly
the parameters, which determine the significance of

the additional stiffness and which are identified
from (11):

(1) The thickness geometrical factor ctg: The additional
stiffness depends on the third power of the
piezolayer thickness to the overall thickness ratio
(see (12)).

(2) The piezoelectric material factor cpm: Larger values
of the piezoelectric coupling constant increase the
additional stiffness, while the dielectric constant has
the opposite influence (see (13)).

(3) The surface covered by the piezolayers: The integra-
tion in (11) runs only over the part of the structure
surface covered by the piezopatches.

(4) The ‘genuine’ mechanical stiffness of the material:
If the bending stiffness of both passive and active
material originating from their mechanical proper-
ties is much greater that the additional stiffness, then
the influence of the latter will be practically
unnoticeable.

Static Examples

The set of static examples given below is similar to
examples from the previous investigation (Marinković
et al., 2007). The examples are therefore not discussed in
details. Actually, the results contain only the relative
difference in displacements (�) obtained with different
electric field formulations, as this is the focus here. The
so obtained results are used to assess the significance of
the aforementioned stiffening effect. The considered
examples and the results are given tabularly starting
from the well-known academic case of bimorph beam,
which consists of two piezolayers only, then an active
beam with a passive layer and finally a case of active
plate (Table 1). For the sake of reproducibility of the
examples, the material parameters as well as
the dimensions are available in Table 1.

In all the considered cases the active layers have
symmetric position with respect to the thickness of the
structure and they act as actuators. They are oppositely
polarized and supplied with the same electric voltage,
which results in bending moments uniformly distributed
over the edges of the surface covered by piezopatches.
This results in bending-dominated behavior of the
structure, which is a precondition for investigating the
aspect at hand.

What should be observed here is the change of the
above listed parameters influencing the significance of
the investigated aspect. The thickness geometrical factor
has obviously the highest possible value in the case of
bimorph beam and is reduced going toward the active
plate. The piezoelectric material factor is an important
issue only in the first example. In this example,
the whole structure is made of active, piezoelectric
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material only, and the beam is considered once to be
made of polyvinylidene fluoride (PVDF) and then again
to be made of piezoelectric ceramic PIC151. Although in
this case all the parameters are set so as to yield the
highest possible influence of the stiffening effect, when
the structure is made of PVDF the significance of the
effect is rather small. This is due to the very small values
of the piezoelectric coupling constant. Hence, in further
examples only PIC151 is considered as an active
material, which means that the piezoelectric material
factor remains unchanged. Regarding the surface
covered by piezoelectric elements, obviously in the first
example it is 100% of the structure. In the second
example, 38.6% of the structure is covered by piezo-
patches, and in the third case, it is 7.8% of the structure.
Finally, the genuine mechanical stiffness of the material
increases going from the first toward the last example –
in the first example the considered material is active
with no passive materials included, in the second
example the passive material is aluminium and in the
third it is steel. Also, the thickness of the passive
materials increases throughout the examples.
The only remarkable difference between the results

with the higher order functions for the electric quantities
accounted for and the results obtained with typical
approximate functions, is present in the very first
example of the bimorph beam made of PIC151 – it is
8.1%. Indeed, all the parameters in that case are chosen
so as to yield the highest influence of the stiffening

effect. In all other cases the difference is rather small
and especially in the last considered case (active plate),
where it is completely negligible. On the other hand, it
should be noticed that the active plate example mostly
resembles typical commercial application of piezoelec-
tric active components – thin piezoelectric patches of
rather small surface compared to the surface of the host
structure.

As it was already concluded in Marinković et al.
(2007), the considered examples point out that for
typical applications of piezoelectric active elements on
thin-walled structures (small thin patches attached to the
structure’s passive material), the usual approximations
given here in (4) yield quite satisfactory results. In the
following it should be considered if the same is valid for
dynamic behavior of the structures.

Dynamic Example

A great part of dealing with active structures involves
dynamics, such as vibration suppression, noise attenua-
tion, fatigue damage protection, etc. This points out the
necessity for investigation of the influence of considered
stiffening effect on the dynamic behavior of piezoelectric
structures. The following investigation is supposed to
reveal how the eigenfrequencies of an active rectangular
plate structure are affected by the effect.

A steel plate (Y¼ 2.1� 105N/mm2, �¼ 0.3, r¼
7800 kg/m3) with the in-plane dimensions 100� 50mm2

Table 1. Static examples for the investigation of additional stiffening effect.

Case Properties of the layers " (%)

Only active layers:
PVDF: Y¼ 2 GPa 0.87
e¼0.046 C/m2 d¼ 1.062�10�8 F/m

PIC151: Y¼ 59.4 GPa
e¼9.6 C/m2 d¼ 1.062�10�8 F/m

8.1

Active layers: Passive layer: 1
Aluminium

PIC 151 Y¼70.3 GPa

Steel �10�2

PIC 151 Y¼ 207 GPa
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and the thickness of 0.5mm, the upper surface of which
is entirely covered with a 0.25mm layer of piezoceramic
(PIC151, r¼ 7800 kg/m3) is considered. The plate is
simply supported on two opposite longer sides. The steel
plate is grounded and acts as an electrode. Additionally,
10 identical electrodes, each covering the whole width of
the plate, are regularly distributed along the length of
the plate (Figure 3). At first, the modal analysis of the
plate is performed with the stiffening effect neglected for
the piezolayer under all 10 electrodes, i.e., with the
approximate functions (4) for the electric field and
potential. In the next steps, the effect is taken into
account gradually always for one more electrode
starting from one of the free sides of the plate and
going toward the opposite free side, thus gradually
increasing the influence of the third parameter (surface
covered by active elements). This may be understood as
if the active layer was passive in the beginning with
exactly the same mechanical and physical properties (but
with no piezoelectric coupling), and afterwards, in each
step this passive layer is exchanged for the original active
layer (with piezoelectric coupling) under a new electrode
(thus including the stiffening effect under the electrode).

The modal analysis is performed for each step and the
change of the eigenfrequencies is observed.

The diagram in Figure 4 shows the relative increase of
the eigenfrequencies for different modes. The reference
eigenfrequency for each mode is the one obtained with
the stiffening effect neglected for all 10 electrodes. It is
easy to recognize that the eigenfrequencies continuously
grow with the effect accounted for under each new
electrode. Furthermore, as expected, the increase is quite
small for the electrodes in the vicinity of the mode
nodes, and oppositely, the fastest increase is noticeable
for the electrodes around the mode antinodes (the points
with maximal amplitudes). An approximately linear
increase can be noticed for the bending modes along the
width (the first and the fifth mode), which is due to the
fact that each electrode covers the whole width and they
are added in the direction of the length. In this case each
new electrode results in approximately the same increase
of the additional mechanical stiffness of the structure
and, consequently, the same increase of the eigenfre-
quency of the mentioned modes.

Nevertheless, it may be noticed that the maximal
change in eigenfrequencies (i.e., for 100% of the structure
surface covered by active elements) is fairly below 1%,
which contributes to the conclusion given for static cases.

GEOMETRICALLY NON-LINEAR EFFECTS IN

BEHAVIOR OF THIN-WALLED ACTIVE

STRUCTURES

The prediction of the linearity of the system response
rests on assumptions, which imply that the displace-
ments of the FE assemblage are quite small with respect
to the dimensions of the modeled structure and that the
material exhibits a linear elastic behavior. An additional
assumption says that the boundary conditions remain
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unchanged during the action of the loads. On the other
hand, if those assumptions are not met, it means that the
structural parameters, such as mechanical stiffness for
example, change during the action of loads. Such a
behavior is denoted as geometrically non-linear and it
requires a geometrically non-linear formulation. It is a
matter of engineering judgment whether to perform one
or another type of analysis, but the choice needs to be
justified. The here considered active structures with
embedded/bonded piezoelements belong to the group of
slender structures. They are susceptible to relatively
large displacements and/or rotations, typically as a
consequence of the act of external transverse forces or
bending moments, still exhibiting small strains.
Displacements in the range of structure’s thickness
may already suffice to make the geometrically non-
linear analysis necessary in order to achieve required
accuracy. Such a magnitude of displacement is not
so rare in practical applications of thin-walled piezo-
structures. It should be emphasized that retaining the
small strain range is especially important for the
piezoelectric patches, which are most frequently made
of rather brittle ceramics.
The adopted geometrically non-linear formulation

of the element belongs to the updated Lagrangian
formulation (the reference configuration is always the
last calculated one) with the corotational formulation
taken advantage of in order to approximate natural
strains in the local, corotational c.s. An advantage
of this approach is that it is well adapted to the
treatment of FE with rotational degrees of freedom
(beams, plates, shells) for arbitrarily large rotations.
Such elements are difficult to treat with the total
Lagrangian formulation due to a complicated update
of the rotational degrees of freedom and the requirement
to reduce the material law according to the assumption
of zero normal stress (or strain) in the thickness
direction. An interested reader is referred to
Marinković (2007) and Marinković et al. (2008) for
more information on the developed formulation.
An incremental step-by-step approach represents a

usual solution strategy in the non-linear analysis.
Assuming that the solution at discrete time t��t is
known, it seeks the solution at discrete time t, with a
suitably chosen time increment �t. The linearized set of
FE equations for the piezoelectric continuum can be
given in the following form on the element level:

t M½ �t €uef gþ
t C½ �t _uef gþ

t��t KuuT

� �t��t
�uef gþt��t Kuf

� �t��t

��ef g¼t fexte
� �

�t��t finte
� �

, ð14Þ

t��t Kfu
� �t��t

�uef gþt��t Kff
� �t��t

��ef g

¼ t qexte
� �

�t��t qinte
� �

, ð15Þ

where {fext}, {fint}, {qext}, and {qint} stand for the
external and internal mechanical and electrical loads,

[M] is the mass matrix, [C] the damping matrix (usually
defined as Rayleigh damping), [KuuT], [Ku�], and [K��]
are the tangential mechanical stiffness, piezoelectric
coupling, and dielectric stiffness matrices and the vectors
{ue} and {�e} comprise all the element mechanical and
electrical degrees of freedom, respectively. The left
superscript denotes at which time instant the corre-
sponding quantity is defined, while � denotes the
increment of the corresponding quantity between
the actual and the next time instant (i.e., between time
instants t��t and t). The external mechanical
and electric loads are the applied forces/moments and
electric charges, while the internal mechanical and
electrical loads are obtained integrating the mechanical
stresses and dielectric displacements over the current
structure configuration (i.e., at time t), respectively:

finte
� �

¼

Z
V

BL½ �
T �f gdV, ð16Þ

qinte
� �

¼

Z
A

B�½ �
T Df gdA, ð17Þ

with the integration in (16) running over the volume
of the whole structure, V, and in (17) over the surface
of the piezopatches, A, [BL] is the linear strain-
displacement matrix and [B�] is the electric field –
electric potential matrix.

If a static case is considered, the dynamic effects, i.e.,
the inertia and damping, are excluded from (14) and
time obviously represents only a convenient auxiliary
variable used to denote gradually increasing loads.
When it is dealt with a dynamic case, it is convenient
to move the terms containing mechanical stiffness and
piezoelectric coupling matrices from the left-hand side to
the right-hand side of the equation. Adding those terms
to the internal force at time instant t��t gives the
internal force at time instant t, t finte

� �
. Actually, this

term is usually calculated using directly the information
about the stress state at t, i.e., (16) is used, but the
previous observation points out an interesting fact about
the piezoelectrically induced loads. Namely, they are
configuration dependent, i.e., they are of the follower
type. This is due to the fact that the piezoelectrically
induced loads change their orientation during deforma-
tion as the active elements change their orientation
(reflected in the change of the piezoelectric coupling
matrix). The intensity of the induced loads is also
affected, but to a smaller extent. The same is pretty
much valid for the measured voltages, when active
elements are used as sensors. As Bathe (1982) has
emphasized, the virtual work of the follower forces can
be approximated to a sufficient accuracy using a small
enough load/time step. Otherwise, the virtual work due
to the change of the piezoelectrically induced loads as a
consequence of the change in geometry would have to be
taken into account, which is a difficult task since both
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the direction and the intensity of the loads change over
the incremental step.
The developed element is implemented in an explicit

dynamic solver. Such time-marching-forward schemes
are performed without iterations and the associated
factorization of the structure matrices, but they are only
conditionally stable requiring that the time-step is
smaller than a critical value. A small time step complies
well with the aforementioned follower nature of the
induced forces. It also permits to apply small strain –
small displacement (or engineering) relationship with
respect to the co-rotational c.s. in order to calculate
the incremental strains. As proposed in Ansys Theory
Reference, the strain-displacement matrix of the mid-
configuration between two consecutive configurations is
used for the purpose. Static cases are solved using the
same solver in combination with the dynamic relaxation
method. The idea consists in observing the solution of a
static problem as a steady-state solution of a dynamic
problem. Hence, the static problem is transformed into a
dynamic one by adding artificial dynamic effects and
parameters so that the degree of freedom of the model
with the highest eigenfrequency is critically damped.
This actually means that in the dynamic relaxation
method both the mass and damping matrices lose their
physical background and become fictive quantities used
to control the solution process.
In the following, a simple active structure is

considered in order to assess the importance of the
geometrically non-linear effects in its static and transient
behavior.

Static Example

The initial geometry of the considered structure
corresponds to a plate simply supported over two
parallel edges (Figure 5). It consists of three layers
forming a symmetric architecture. The mid-layer is
made of graphite fiber-reinforced epoxy T300/976,
with the Young’s modulus in the fiber direction
Y11¼ 150GPa and in a perpendicular (in-plane)
direction Y22¼ 9GPa, Poisson’s ratio �12¼ 0.3 and
shear moduli G12¼ 7.1GPa and G23¼ 2.5GPa. The
orientation of fibers is 908 with respect to the global
x-axis and the mass density of the layer is r¼ 3.95 g/cm3.

The outer two layers are made of piezoelectric ceramic
PZT G1195 which is considered to have isotropic
mechanical properties: Y11¼ 63GPa and �12¼ 0.3.
Furthermore, the piezolayers have the in-plane piezo-
electric constant e31¼ e32¼ 22.86� 10�5 C/m2 and the
mass density r¼ 7 .85 g/cm3. The piezolayers are
oppositely polarized and when the same electric voltage
is supplied to both of them simultaneously a bending
moment uniformly distributed over the edges is induced
(Figure 5). The point A, which is located in the middle of
the structure, is chosen as a representative one and its
motion is observed as the deformation of the structures
progresses.

The obtained results in the static case are compared
with those from the Shell91 element from the ANSYS
FE library (Ansys Theory Reference). It is an 8-node
layerwise shell element, which applies the 2� 2 in-plane
integration rule, but a layerwise numerical integration in
the thickness direction (with the ACShell9 the integra-
tion in the thickness direction is analytical). It should
also be emphasized that the Shell91 is a purely
mechanical element, thus not capable of modeling
piezoelectric coupling. Thus, this case can not be
calculated directly by the Shell91 element and an
approximate approach is required. Namely, the
moments induced through the piezoelectric coupling
are pre-calculated by applying the overall voltage of
300V on the initial structure configuration. The so-
calculated bending moments are then incrementally
applied. Hence, in this calculation the follower nature
of the induced bending moments is not accounted for
because their magnitude and direction are calculated for
the initial configuration. Both, the pure (prescribed
voltages) and the approximate (pre-calculated moments)
approach calculated with the ACShell9 yielded a very
small difference in the order of 0.1%. Thus, the
conclusion states that the influence of the follower
nature of the piezoelectrically induced loads does not
play an important role in the case of the considered
structure. This means that the results from ANSYS
obtained with the pre-calculated bending moments can
be used for the purpose of comparison.

Figure 6 shows a high agreement in the results
obtained with the ACShell9 and Shell91 elements.
It also reveals significant non-linear effects, since the
geometrically non-linear result starts to diverge from the
linear one already for the voltage of approximately 30V.
At the full voltage of 300V the result based on the
assumption of linearity overestimates the non-linear
result by 89.2%. Such a difference is certainly worth of
attention. In the linear analysis of the considered case,
bending stiffness plays the major role in the structural
behavior. However, due to the selected boundary
conditions and the change in the structural configura-
tion, in the actual behavior of the structure significant
internal membrane forces are induced very fast after the

z

x

y
A

ΔΦ

Figure 5. Simply supported composite shell.
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deformation is initiated. Hence, the structure resists the
deformation more efficiently than predicted by the linear
analysis. Those effects and the corresponding behavior
of the structure are successfully predicted by the
geometrically non-linear analysis.

Transient Examples

The transient behavior of the same structure is
observed considering input voltage as a harmonic and
impulse time functions. It should be emphasized that
damping is neglected in both examples, i.e., the damping
coefficients are set equal to zero.
In the first case, the electric voltage (excitation) is

defined in a sine form with the amplitude of 300V and
frequency of 100Hz. The behavior of the structure is
observed in a time period of 0.05 s. The linear solution
is obtained by the Newmark method (�t¼ 10�4 s, i.e.,
0.5� 103 steps) with the Semi-Loof shell element (dashed
line in Figure 7) and the ACShell9 element (the two
results are seen as almost congruent in the diagram) and
by the central difference method (�t¼ 2� 10�7 s, i.e.,
2.5� 105 steps) with the ACShell9 element. The non-
linear solution is obtained only by the central difference
method (�t¼ 1� 10�7 s, i.e., 5� 105 steps) with the

ACShell9 element. The Semi-Loof element is based on
the discrete Kirchhoff theory.

It may be noted in Figure 7 that both the linear and
non-linear prediction of the dynamic behavior of the
structure yield oscillation driven at the frequency of
excitation and there is also a structural response in
higher frequencies. The amplitudes of the non-linear
solution are lower and the response in higher harmonics
is obviously shifted to higher frequencies with respect to
the response of the linear solution, especially in the
vicinity of maximal deflections. Both effects are a
consequence of the fact that the structure becomes
stiffer as the deformation progresses from the initial
configuration to the configuration corresponding to the
maximal displacements.

In the second case, the structure is excited by electric
voltage in the form of an impulse, the duration of which is
3� 10�4 s. The amplitude of the voltage is 300V. The
differences in the linear and non-linear structural
response are obvious in Figure 8 and the remarks from
the previous case extend to this one as well. However, an
additional remarkmay be given considering the two cases
in parallel. In the first example a forced oscillation is
caused by a harmonic load (electric voltage). The
harmonic nature of the load is reflected in both the
linear and non-linear prediction of the structural
response yielding a certain similarity in the form of the
response. In the second case, however, the load is in the
form of a short impulse and no such a similarity can be
observed any more. Namely, considering the linear and
non-linear predictions of the deflection in the second
case, it can be noticed that they can even yield relatively
large deflections of different signs (opposite orientation
of displacements along the z-axis) at the very same time
instants. For example, the predicted deflection shortly
before the time instant 0.001 s (Figure 8) can be observed
to notice this effect. This demonstrates once again that
the differences between the linear and geometrically non-
linear prediction can be significant, which talks in favor
of a need for the geometrically non-linear formulation.
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CONCLUSIONS

The thin-walled piezoelectric active structures have
attracted a great deal of attention in the last years. Many
researchers have devoted their work to their modeling
and implementation in a wide range of products.
The intention of the authors was to give here
some observations about the modeling of considered
structures, which stemmed out from their work in
the field.
Regarding modeling of electric field quantities, it is

emphasized that their consistent description is closely
related to the chosen 2D theory (kinematical assump-
tions) for modeling thin-walled structures. The so-
developed functions lead to an additional stiffening
effect and the parameters influencing its significance are
given. The significance of the effect is considered on a
small set of static examples and an example dealing with
modal analysis of a plate. All the considered examples
clearly demonstrate that for typical application of small,
thin piezoelectric patches on a relatively large surface of
a host structure, the typical approximations for the
electric field and electric potential (given in (4)) yield
quite satisfactory results. The applications which would
require the use of higher order functions are of rather
academic nature. They involve cases where most of
the structure’s surface is covered by active elements, the
thickness of active elements is relatively large compared
to the overall thickness of the structure and, addition-
ally, the passive material of the host structure has
relatively small mechanical stiffness.
The examples dealing with non-linearities are considered

on a relatively simple structure. Nevertheless, both
static and transient examples clearly demonstrate that
significant non-linear effects may occur shortly after the
deformation is initiated, which further on considerably
affects the overall behavior of the structure. The non-
linearities are especially pronounced in the cases where
the change in the structure configuration in combination
with boundary conditions give rise to change in the way
the structure essentially resists excitations. Typical cases
are problems which are in linear analysis described as
bending dominated, but which can pretty fast involve a
considerable membrane behavior throughout the defor-
mation of the structure. This was demonstrated in the
considered cases. Regarding the coupled-field cases,
such as electro-mechanical, there is another issue to be
noted. Namely, the piezoelectric actuator forces are of
the follower type. They are related to the piezoelectric
stiffness matrix which is always integrated with respect
to the actual configuration, thus depending on it.
Nevertheless, a small enough load (or time) step,
allows the virtual work of the follower forces to be
approximated to a sufficient accuracy. In the considered

cases no significant consequences originating from this
issue are recognized, which should not lead to a general
conclusion in the same direction.
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