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Abstract

We investigate the polyhedral structure of the Periodic Event Scheduling Problem (PESP),
which is commonly used in periodic railway timetable optimization. This is the first investigation
of Chvátal closures and of the Chvátal rank of PESP instances.

In most detail, we first provide a PESP instance on only two events, whose Chv́atal rank is
very large. Second, we identify an instance for which we prove that it is feasible over the first
Chvátal closure, and also feasible for another known prominentclass of known valid inequalities,
which we reveal to live in much larger Chvátal closures. In contrast, this instance turns out to be
infeasible already over the second Chvátal closure. We obtain the latter result by introducing new
valid inequalities for the PESP, the multi-circuit cuts.

In the past, for other classes of valid inequalities for the PESP, it had been observed that these
do not have any effect in practical computations. In contrast, the new multi-circuit cuts that we
are introducing here, indeed show some effect in the computations that we perform on several
real-world instances – a positive effect, in most of the cases.

1 Introduction

It has been only recently that combinatorial optimization entered the practice of service design in
public transport. The 2005 timetable of Berlin Undergroundis the first optimized timetable that was
put into service [9]. It had been computed with integer programming techniques, namely profiting
from several different classes of valid inequalities. Today, also the Dutch railways are operating a
timetable that was designed with the help of techniques fromcombinatorial optimization and con-
straint programming [7]. Both projects build upon the Periodic Event Scheduling Problem (PESP).

The PESP, in its pure formulation of a feasibility problem, had been introduced by Serafini and
Ukovich [18] and it generalizes the vertex coloring problem. In particular, for the two most natural
optimization problems that are investigated on top of the PESP, MAXSNP-hardness has been estab-
lished [8, 9]. In practice, this results in the following typical behavior of MIP solvers on medium to
large sized instances. Known valid inequalities are able toclose60–90% of the initial gap between
the integer optimum value and the optimum value of the LP relaxation. Still, solving this tightened
IP risks to take several hours, if it is solvable at all.

There are of course much larger transportation networks in practice, which are beyond the com-
putational limits of the methods that were used so far. As a consequence, at present there are several
other research groups trying to tackle the periodic railwaytimetabling problem, and they are sharing
the PESP as their model of choice [2, 17, 19]. For instance, Villumsen put the polyhedral approach
that was suggested by Lindner [14] into practical computations for the commuter train network of
Copenhagen. Unfortunately, he had to make the observation that
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“the chain cuts [14] have no effect on the solution” [19].

This is one motivation for us to have a closer look at the polyhedral structure of the feasible region
of PESP instances. We do so by following the methodology thathas been suggested recently by
Fischetti and Lodi [6] for optimizing over the first Chvátal closure. Notice that one of the first
instances to which they applied their method was the “hard MIPLIB instancetimtab1”, which is
in fact a PESP model [10].

As a motivation, we first generalize an infeasible PESP instance – which is due to Lindner [14] –
to a family of instances that are defined on wheel graphs. In Section 6 we will prove that these
instances are feasible over the first Chvátal closure. Still worse, even the change-cycle inequalities
that have been introduced by Nachtigall [15], of which in Section 4 we prove that, in general, they lie
in much larger Chv́atal closures, are not suited to certify infeasibility. Nevertheless, the techniques
of Fischetti and Lodi suggested that these particular instances might be infeasible already over the
secondChvátal closure. Indeed, by expoiting problem-specific insight, in the second Chv́atal closure
we identify general new valid inequalities for the PESP (Section 5) by which we prove that these
particular instances are infeasible. We call these new inequalities themulti-circuit cuts.

In Section 7 we add multi-circuit cuts to the IP formulationsof several timetabling instances that
we took from practice. Although we have to admit that the results are not fully striking, on many
instances we observe a perceptible speed-up in the solutiontime. In turn, on more complex instances,
for which up to now no optimal solution has been found, our newcuts from the second Chvátal
closure might indeed yield better railway timetables.

2 An IP for PESP

Initially, the Periodic Event Scheduling Problem (PESP, [18]) has been stated as a pure feasibility
problem. We are given a directed graphD = (V, A), which may feature (anti-) parallel arcs. For each
arca, there are defined some lower boundℓa and some upper boundua. The PESP then asks whether
for the given fixed period timeT , the instance admits a(periodically) feasible node potentialπ ∈
[0, T )V , i.e.,

(πj − πi − ℓa) mod T ≤ ua − ℓa, ∀a = (i, j) ∈ A. (1)

In a railway timetabling context, the valueT is the period time of the railway system, e.g.,60 minutes.
A nodei represents an arrival or departure of some specific directedline in the network, and we must
assign a time valueπi to this event. For instance, in the current timetable, the direct ICE trains from
Berlin to Karlsruhe leave Berlin main station33 minutes past the hour. Finally, in the constraint
parametersℓ and u one may encode lower and upper bounds on time durations to ensure safety
requirements, transfer quality requirements, as well as many other things [11].

In a mixed-integer linear programming formulation, the modulo-operator in (1) is resolved by
introducing integer variablespa for the arcs, which we denoteperiodical offsets. Furthermore, we
penalize any slack on the lower boundsℓa in a linear objective function,

min
∑

a=(i,j)∈A wa(πj − πi + Tpa)

s.t. πj − πi + Tpa ≥ ℓa, ∀a = (i, j) ∈ A

πj − πi + Tpa ≤ ua, ∀a = (i, j) ∈ A

πi ∈ [0, T ), ∀i ∈ V

pa ∈ Z, ∀a ∈ A.

(2)

Other formulations for this problem had been stated in termsof so-called tension variablesya =
πj − πi, or evenperiodic tension variablesxa = πj − πi + Tpa, see e.g. [4, 11]. Observe that we
always haveℓa ≤ xa. In particular, the resulting MIPs, in which we can make the node potential
variablesπ redundant, already perform considerably better [13]. Yet,their performance can even be
enhanced—and it has to!—by adding valid inequalities. In this spirit, in the remainder of the paper
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we illustrate the limits of known valid inequalities, and introduce new classes of valid inequalities,
which let us go beyond.

In Section 4, when we provide a relatively large lower bound on the Chv́atal rank of PESP polyhe-
dra, we will also find it most convenient to make use of the periodic tension variablesxa. Throughout
the other parts of this article, however, we stay with (2). This is because we consider this formulation
being more accessible, in particular for the newcomer, and it is a straightforward computation to adapt
the classes of valid inequalities that we identify there to other equivalent mixed-integer programming
formulations of the PESP.

The following lemma reveals that we are in fact dealing with pure integer programs.

Lemma 1 ([16]). If ℓ, u, andT are integers, then in (2) w.l.o.g. we may replaceπi ∈ [0, T ) with
πi ∈ {0, . . . , T − 1}.

Proof. Consider an optimum solution(π∗, p∗) of (2). Now, fix the vectorp∗. The resulting problem
is a linear optimization problem with twice the node-arc incidence matrix of the constraint graphD
as constraint matrix, which is thus totally unimodular. Since the right-hand side is integer, the LP has
some integer optimum solutionπ◦, and(π◦, p∗) is feasible for (2) and not worse than the optimum
solution(π∗, p∗).

Note that the periodical offset variablespa are either binary, or may in addition take the value
two, provided thatua >

⌈
ℓa+ε

T

⌉
T . Nevertheless, w.l.o.g. we forget about any explicit boundon any

of the variables in (2), and just keep their integrality requirements.

3 Chvátal Closures

Let M be anm × n matrix and consider the general rational polyhedron

P = {x |Mx ≤ b}.

The(first) Chv́atal closureP ′ of P is characterized by

P ′ = {x |λTMx ≤ ⌊λTb⌋, for all λ ≥ 0 with λTM integer}.

Also, setP (0) := P and recursively defineP (i+1) = (P (i))′. In integer programming, we are
interested in theinteger hullPI of P ,

PI := conv({x ∈ Z
n |Mx ≤ b}).

The following is a key theorem in integer programming.

Theorem 2([3]). For each rational polytopeP there exists some integert such thatP (t) = PI .

Note that in the sequel, we will switch back ton = |V | andm = |A|.
Now, denote byB the node-arc incidence matrix of a PESP constraint graphD. Then, consider

the matrix

M :=

[
−BT −T · Im

BT T · Im

]
, (3)

whereIm refers to them-dimensional unit matrix. Together with the right-hand side vector

b :=

[
−ℓ

u

]
, (4)

the convex hull of the feasible solutions of (2) is nothing but PI .
Also for the PESP, several studies of its polyhedral structure have been conducted [14, 15, 16].

In the sequel, we summarize some of their results and relate them to the general concept of Chvátal
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closures. To this end, define anoriented circuitC = C+∪̇C− as a subset of the arcs ofD such
that reorienting the elements ofC− would result in a directed circuit. The arcs inC+ are called the
forward arcs, and the arcs inC− are thebackward arcs. In particular, we distinguish the two oriented
circuits that map onto the same circuit in the underlying undirected graph.

The following valid inequalities for PESP have been identified by Odijk [16].

Theorem 3 ([16]). Let D be the constraint graph of a PESP instance and consider some oriented
circuit C in D. Then thecycle inequality

∑

a∈C+

pa −
∑

a∈C−

pa ≤

⌊
∑

a∈C+

ua

T
−

∑

a∈C−

ℓa

T

⌋
(5)

is valid for (2). More precisely, the cycle inequalities already show up in the first Chvátal closureP (1)

of the LP-relaxationP of a PESP-polytopePI .

Proof. We combine these inequalities from the ones in (2). To this end, for each forward arc inC,
multiply the less-than inequality of its upper boundua with 1

T
. Similarly, for each backward arc inC,

multiply the greater-than inequality of its lower boundℓa with − 1
T

, which translates into a positive
coefficient in the vectorλ. It is a simple observation that the node variablesπ all cancel out in a
telescope sum. Finally, we round down the right-hand side and obtain (5).

Both, the potential strength of the cycle inequalities and the key role of the periodical offset
variablesp are reflected by the following theorem.

Theorem 4([16]). An instance of PESP is feasible, if and only if there exists anintegervectorp such
thatp satisfiesall the cycle inequalities.

This is why we are seeking stronger valid inequalities in terms of the periodical offset variablesp.
In the next theorem we show that doing so we need to investigate the second Chvátal closure. This
will be the main topic from Section 5 on. There, we start by highlighting that there exist some
oriented circuitsC in which the upper bound in (5) can even be decreased, still being valid for PI ,
of course. In fact, Lindner [14] proved that the coefficientsof anyvalid inequality for the PESP that
only features periodical offset variablesp, have to constitute a circulation in the constraint graph. Let
us already mention that in Section 4 we provide an explicit proof that the Chv́atal rank of a PESP
instance may be at leastT

2 .
Denote byQ the polyhedron that is defined by taking all the inequalitiesfrom P (1) that do not

feature any of the node variablesπ.

Theorem 5.Then, the cycle inequalities (5) constitute the complete description ofQ, where

Q = {p | p satisfies all cycle inequalities (5)}.

idea. Basically, the proof makes use of the decomposition of an integer circulation into oriented
circuits. However, due to space limitations we have to omit further details here.

Notice that we are aware of instances on whichQ doesnot equal the projection ofP (1) onto the
periodical offset variablesp. In particular, there thep-part of some reversed-arc cut, which is defined
in the next section, is necessary to certify the emptiness ofP (1), while Q 6= ∅.

4 A Lower Bound on the Chvátal Rank of PESP

In this section we present the change-cycle inequalities, which were introduced by Nachtigall [15].
We provide a PESP-instance on two vertices, on which the change-cycle inequalities appear first in
the T

2 -th Chv́atal closure, whereT denotes the period time. To the best of our knowledge, this isthe
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[3, 8]6

[0, 5]6

Figure 1: A feasible PESP instance on the2-circuit C2 with T = 6

strongest explicit lower bound on the Chvátal rank of PESP. Unfortunately, due to space limitations
we have to omit details of the proof here.

Before formulating the change-cycle inequalities, we introduce a few notation. LetC be some
oriented circuit in the constraint graph of a PESP-instance. We sum the periodic tension values of the
forward arcs inx+ and the periodic tension values of the backward arcs inx−, i.e.,

x+ :=
∑

a∈C+

xa and x− :=
∑

a∈C−

xa.

Analogously, we define
ℓ+ :=

∑

a∈C+

ℓa, and ℓ− :=
∑

a∈C−

ℓa.

Last, we define the slopeµ and the ordinate interceptν of the line that induces the change-cycle
inequality as

µ := 1 −
T

ℓ− − ℓ+ + T z̃
and ν := (1 − µ)ℓ+ − T (z̃ − 1), (6)

wherez̃ :=
⌈

1
T

(ℓ+ − ℓ−)
⌉
.

Theorem 6([15]). The followingchange-cycle inequalities

x− ≥ µx+ + ν (7)

are valid for (2).

Notice that a similar inequality, which involves the upper boundsua of the arcs, is valid, too.
Moreover, it had been observed in [12, Fig. 5.1] that change-cycle inequalities (7) are in a sense
complementary to cycle inequalities (5).

In the remainder of this section we provide a two vertices instance of PESP, of which we prove
that its Chv́atal rank isT

2 . In particular, the change-cycle inequality (7) of this instance does only
appear in theT2 -th Chv́atal closure. To this end, letT be a fixed period time and consider the following
PESP-instance on two vertices: Leta1 anda2 be two parallel arcs, whereℓa1

= T
2 , ua1

=
(

3
2T

)
− 1,

ℓa2
= 0, andua2

= T − 1. See Figure 1 for the example that corresponds to the period timeT = 6.
In particular, in terms of periodic tension variablesxa we are dealing with the following polytope

P = {(xa1
, xa2

, z)T |
T

2
≤ xa1

≤

(
3

2
T

)
− 1, 0 ≤ xa2

≤ T − 1, xa1
− xa2

= Tz}, (8)

where the variablez is in fact a shorthand forpa1
− pa2

. Observe thatPI corresponds to the convex
hull of this PESP instance’s solutions.

Proposition 7.Consider the pointQi = (T
2 + i · 1

2 , i · 1
2 , 1

2 ). ThenQi ∈ P (i) \ P (i−1), for all
i ∈ {1, . . . , T

2 }. Moreover, fori < T
2 the pointsQi violate the change-cycle inequality (7). In

particular, the change-cycle inequality (7) cannot be generated prior to theT
2 -th Chv́atal closure.
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z

1

3 6 xa1

change-cycle inequality

initial PESP constraints

CG1-cut CG2-cut

Projection of the polyhedronP :
3 ≤ xa1

z ≤ 1

T
xa1

Figure 2: A visualization of a change-cycle inequality for PESP, and its relation to Chvátal closures,
hereT = 6

sketch.In this context, the situation can be inspected best by exploiting the redundancy of the equa-
tion xa1

− xa2
= Tz to only consider the projection into thexa1

z-plane. In this space, the relevant
inequalities ofP are the initial inequalityxa1

≥ T
2 as well asz ≤ 1

T
xa1

, which is obtained by
plugging0 ≤ xa2

into xa1
− xa2

= Tz. Observe that the point(xa1
, z)T = (T

2 , 0)T makes the
former inequality tight, while(xa1

, z)T = (T, 1)T makes the latter inequality tight. In Figure 2, the
corresponding half-spaces are drawn in red, while our ultimate goal, the change-cycle inequality (7),
is drawn in green.

Then, here we can only summarize that by going from one Chvátal closureP (i−1) to the subse-
quent oneP (i), both these inequalities are “rotated” around the points(T

2 , 0)T and(T, 1)T, respec-
tively, such that the pointQi become tight.

Corollary 8. The Chv́atal rank of PESP is at leastT
2 .

5 New Valid Inequalities for the PESP

The next section will reveal the need for new valid inequalities for the PESP: There, we present an
instance for which all cycle inequalities (5)andchange-cycle inequalities (7) are valid, although the
instance is infeasible. Also, in practical computations adding these two types of valid inequalities we
typically close no more than60-90% of the initial gap between the IP optimum and its LP relaxation,
and the resulting refined IPs still risk to be hard to solve. This is why here, we identify two new types
of valid inequalities for the PESP polyhedron.

The first one is defined exclusively on the periodical offset variablesp. By Theorem 5 we know
that these cannot stem from the first Chvátal closure of the feasible regionP of the LP relaxation
of (2). In more detail, we specify situations in which we may decrease the right-hand side of the
cycle inequalities (5). And with these new inequalities, wecan easily prove the infeasibility of the
instance that we discuss in depth in the next Section 6. In Section 7, we complement this analysis
with promising empirical computations.

The second type of valid inequalities lives in the first Chvátal closure, and hence may now contain
both types of variables,π andp. Unfortunately, due to space limitations we cannot illustrate in-depth
their respective contribution here.

5.1 Multi-circuit Cuts

We start by presenting new PESP cuts from the second Chvátal closureP (2) of P .
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Theorem 9.Let C0, . . . , Ck be oriented circuits with incidence vectorsγi. Let λi ∈ (0, 1) such
thatγ0 = λ1γ1 + · · · + λkγk. Finally, letβi be the right-hand sides in the cycle inequalities (5) of
C1, . . . , Ck. Then

γT
0p ≤ ⌊λ1β1 + ... + λkβk⌋ (9)

is a valid inequality forP (2).

The proof follows immediately from Theorem 3 together with the definition of the second Chvátal
closure. For some oriented circuits we may not be lucky at all, and (9) is the same as (5). However,
for other cycles, the right-hand side in (9) may be much smaller than the one in (5), see Remark 16 for
one such example. Since these cuts are obtained by representing an oriented circuit as the fractional
sum of multiple other circuits, we refer to (9) asmulti-circuit cuts.

Despite the fact that these inequalities are somehow straightforward, they are indeed useful. We
will illustrate this in a detailed example in the next section, where in particular we find that

P (1) 6= ∅ but P (2) = ∅.

5.2 Reversed-Arc Cuts

Here, we introduce one further new class of valid inequalities for the PESP, which stems from the
first Chv́atal closure. These inequalities were inspired by the results that we obtained by applying the
methods of Fischetti and Lodi [6].

Theorem 10.Let C be an oriented circuit, and take some backward arca0 = (i, j) ∈ C−. The
following inequality is valid forP (1)

πj − πi + (T − 1)pa0
+

∑

a∈C+

pa −
∑

a∈C−\a0

pa

≤

 1

T



(T − 1)ua0
+

∑

a∈C+

ua −
∑

a∈C−\a0

ℓa





 . (10)

Proof. We provide the vectorλ that combines (10) for some circuitC out of the initial matrixM . To
this end, fork ∈ {0, . . . , m} consider the arcak = (v, w) ∈ C. Then, the rowsk andm + k of the
matrixM correspond to the following two PESP inequalities

−πw + πv − Tpak
≤ −ℓak

,

πw − πv + Tpak
≤ uak

.

Finally, choosing the components of the coefficient vectorλ as

λk =






T−1
T

, k = m + c, whereac = a0,
1
T

, k = c, whereac ∈ C− \ {a0},
1
T

, k = m + c, whereac ∈ C+, and
0, otherwise

yields (10).

In fact, these inequalities emerge from cycle inequalitiesby reversing one of their backward arcs.
Hence, we refer to (10) asreversed-arc cuts. Observe that in some special cases, these inequalities can
coincide with what Lindner [14] calledchain cutting planes. However, for the latter Villumsen [19]
had to observe in practical computations that these have “noeffect” on the solution of his PESP
instances. In addition to Theorem 4, this is another motivation for us to focus in our exposition on
the multi-circuit cuts.
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[1, 5]6

[1, 5]6

[1, 5]6

[1, 5]6

[1, 5]6

[0, 1]6

[0, 1]6

[0, 1]6

[0, 1]6
[0, 1]6

Figure 3: An infeasible PESP instance on the wheel graphW6 with T = 6

6 PESP Instances on Wheel Graphs

We introduce a family of infeasible PESP instances, for which the first Chv́atal closure is still
nonempty. Since the pioneering work of Edmonds [5], we are not aware of too many explicit such
results. Here, even adding the change-cycle inequalities (7) does not change this status. Only adding
two appropriate multi-circuit cuts (9) provides a certificate for the infeasibility of these instances. Let
us annotate that these instances were inspired by an infeasible PESP instance which was studied by
Lindner [14] and whose constraint graph is the wheel graphW4 on four vertices.

We consider one fixed period timeT ≥ 6 for any of the instances that we are right about to define.
Let n ≥ 4 be some even number and consider the wheel graphWn, see Figure 3 for an example
with n = 6. We set the feasible intervals of the spoke arcs to[0, 1]T , while we require[1, T − 1]T for
the remaining outer arcs.

We start investigating this class of instances by first giving a simple proof for the infeasibility of
these instances. Hereafter, we establish thatP (1) 6= ∅, butP (2) = ∅.

Lemma 11.Let T ≥ 2 andn ≥ 4 be an even number. The PESP instance that is defined on the wheel
graphWn with feasible intervals[0, 1]T on the spokes and[1, T − 1]T on the arcs of the outer circuit
is infeasible.

Proof. We may assume w.l.o.g. thatπh = 0, whereh is the hub vertex inWn. The constraints on
the spokes restrict theπ values of the other vertices to{0, 1}. The constraints on the remaining arcs
require these two values to be used alternatingly around theouter circuit ofWn. Since we chosen to
be even, the outer circuit has an odd number of vertices. But this is not compatible with theπ values
of all the vertices on the outer circuit taking the values zero and one alternatingly.

The next lemma slightly simplifies the argumentation in the proof of the main theorem of this
section, namely thatP (1) is not empty.

Lemma 12.Consider some coefficient vectorλ ≥ 0. Letλa andλa−1 correspond to two components
whose PESP inequalities refer to the very same arca and definec := min{λa, λa−1}. Deriveλ′

from λ by subtractingc from the components of both,a anda−1. Now, if λ′TM ≤
⌊
λ′Tb

⌋
then

λTM ≤
⌊
λTb

⌋
.

Proof. First, observe that(λ − λ′)TM = 0. Second,(λ − λ′)Tb = c · (−ℓa + ua) ≥ 0. Thus,
rounding down cannot provide any negative value. Finally, because of⌊a⌋ + ⌊b⌋ ≤ ⌊a + b⌋ we may
add(λ − λ′) to λ′ while keeping any valid inequality valid.

8



As a consequence, for investigatingP (1) we may assume w.l.o.g. that in any (relevant) valid
inequality forP (1) none of the arcs shows up with both its inequalities for its respective lower and
upper bounds.

Theorem 13.P (1) 6= ∅. In particular, all the cycle inequalities (5) and reversed-arc cuts (10) are valid
for the same particular vector, in the case ofT ≥ 6.

Proof. Before starting, in the vectorp we distinguish the components that correspond to then −
1 spoke arcs from the components that correspond to then−1 arcs of the outer circuit,pT = (pT

s , pT
c).

Moreover, with1 we denote the all-one vector of appropriate dimension. Our goal is to establish that

y1 := (πT, pT
s , pT

c) = (0T,
1

2T
· 1T,

1

2
· 1T) ∈ P (1). (11)

To this end, letλTMx ≤
⌊
λTb

⌋
be an arbitrary valid inequality ofP (1), whereM andb are as

defined in (3) and (4), respectively. We have to checky1 against this general inequality.
For ease of notation we rewrite the coefficient vectorλ asλT = (λT

1, λ
T
2, λ

T
3, λ

T
4), whereλ1 and

λ3 refer to the rows that correspond to the spokes, whileλ2 andλ4 refer to the rows that correspond
to the outer circuit of the wheel graphWn. Moreover,λ3 andλ4 refer to the initial PESP-inequalities
that define the upper boundsua, but λ1 andλ2 refer to the initial PESP-inequalities that define the
lower boundsℓa, after having multiplied these with minus one.

Using these definitions, we find that

uTMy1 = (λT
1, λ

T
2, λ

T
3, λ

T
4) · (−

1

2
· 1T,−

T

2
· 1T,

1

2
· 1T,

T

2
· 1T)T

= −
1

2
||λ1||1 −

T

2
||λ2||1 +

1

2
||λ3||1 +

T

2
||λ4||1

and
⌊
λTb

⌋
=

⌊
(λT

1, λ
T
2, λ

T
3, λ

T
4) · (0

T,−1 · 1T, 1 · 1T, (T − 1) · 1T)T
⌋

= ⌊−||λ2||1 + ||λ3||1 + (T − 1)||λ4||1⌋ .

In particular, for the pointy1 the initial inequalityλTMy1 ≤
⌊
λTb

⌋
is equivalent to

−||λ2||1 + ||λ3||1 + (T − 1)||λ4||1 − ⌊−||λ2||1 + ||λ3||1 + (T − 1)||λ4||1⌋ (12)

≤
1

2
||λ1||1 +

(
T

2
− 1

)
||λ2||1 +

1

2
||λ3||1 +

(
T

2
− 1

)
||λ4||1 (13)

=
1

2
(||λ1||1 + ||λ3||1) +

(
T

2
− 1

)
(||λ2||1 + ||λ4||1). (14)

In order to prove that (12-13) is valid, observe first that theleft-hand side (12) has values in the
interval[0, 1). So, we first identify some coefficient vectorsλ for which (14) is at least one. Hereafter,
we investigate the remaining vectorsλ.

From Lemma 12,λ ≥ 0, λTM being integer, and the coefficients of the periodical offsets p

having value|T |, we conclude that for each componenti of λ we haveλi = k
T

, with k = 0, 1, 2, . . . .

Case “||λ2||1 + ||λ4||1 ≥ 3
T

”. We find immediately that (14) is at least as large as3
2 − 3

T
. Now,

recall that we chose the period timeT ≥ 6, and in particular (14) is at least one, establishing the
theorem in this case.
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Figure 4: A triangle inWn with T = 6

Case “||λ2||1 + ||λ4||1 = 1
T

”. In other words, the Chv́atal-Gomory coefficient vectorλ does only
involve exactly one inequality of one arca = (i, j) of the outer circuit ofWn. In this case we are not
aiming at showing that (12-13) was indeed valid. Rather, we enumerate all the eight relevant valid
inequalities ofP (1) that involve the arca as the only arc of the outer circuit.

For that the requirement ofλTM being integer is fulfilled, in particular for the node variablesπ,
some of the initial PESP constraints in whichπi or πj appear must have non-zero components in the
coefficient vectorλ. Because of||λ2||1 + ||λ4||1 = 1

T
, these must correspond to the spokes(h, i)

and(h, j), whereh denotes the hub of the wheel graphWn, see Figure 4 for an illustration.
Depending on whether we use the lower bound or the upper boundinequalities of the spokes,

w.l.o.g. the CG-multipliers are either1
T

or T−1
T

.
First, if we choose twice the1

T
, we end with the two standard cycle inequalities (5) for this

triangle,
0 ≤ pa − p(h,j) + p(h,i) ≤ 1. (15)

For the valuesps ≡ 1
2T

andpc ≡ 1
2 that we chose in our particular vectory1, these inequalities are

of course valid, because0 ≤ 1
2 ≤ 1.

Second, if for the spokes we chose once the value1
T

and once the valueT−1
T

, we obtain the
following four reversed-arc cuts,

1 ≤ πj − πh + pa + (T − 1)p(h,j) + p(h,i) ≤ 1 (16)

0 ≤ πi − πh − pa + p(h,j) + (T − 1)p(h,i) ≤ 0, (17)

which are valid for our choice ofy1, too.
Last, takingT−1

T
as the coefficient for both spokes yields

0 ≤ πj − πi + pa + (T − 1)p(h,j) − (T − 1)p(h,i) ≤ 1. (18)

Also these two inequalities are valid for the vectory1 as defined,0 ≤ 1
2 ≤ 1.

To summarize, in the case of||λ2||1 + ||λ4||1 = 1
T

we considered all the eight relevant valid
inequalities ofP (1) and verified that the vector(πT, pT

s , p
T
c ) = (0T, 1

2T
· 1T, 1

2 · 1T) is valid for any of
them.

Case “||λ2||1 + ||λ4||1 = 2
T

”. We distinguish between several subcases. First, we may havetwo
non-incident arcsa1 anda2 of the outer circuit being involved in the cut that is defined by the coeffi-
cient vectorλ. But then we are done, because we are in fact twice in the case of ||λ2||1 + ||λ4||1 = 1

T
.

Second, we may have just one arc of the outer circuit being involved. The two cycle inequali-
ties (5) that emerge from multiplying all its three initial constraints with2

T
are in fact nothing but

just scaled versions of (15). Hence, here we need to considervalid inequalities in which some of
the initial constraints are multiplied with2

T
, while others are multiplied withT−2

T
. The counterparts

of (16) and (17) read

1 ≤ πj − πh + 2pa + (T − 2)p(h,j) + 2p(h,i) ≤ 2

−1 ≤ πi − πh − 2pa + 2p(h,j) + (T − 2)p(h,i) ≤ 0.

10



For the particular pointy1 these terms evaluate to32 and−1
2 , respectively, and all the four inequalities

are thus feasible. The same holds for the counterpart of (18), wherey1 yields one, which is feasible
in

0 ≤ πj − πi + 2pa + (T − 2)p(h,j) − (T − 2)p(h,i) ≤ 2.

Last, what we still have to investigate is the case in that twoconsecutive arcsa1 anda2 of the
outer circuit are activated by the coefficient vectorλ. Due to their orientation inWn, in the valid
inequality that is induced byλ, both arcs contribute either with their PESP inequalities that define
their lower bounds, or both contribute with their PESP inequalities that define their upper bounds. In
particular, theπ variable of their common vertex has coefficient zero in the cut.

Hence, we are in a situation that is quite similar to the one that we already discussed in the case
of ||λ2||1+||λ4||1 = 1

T
. The only difference is that for the outer arcs we are now summing twicetheir

lower or upper bounds in the inequalities. We summarize the relevant computations by providing the
eight resulting valid inequalities – using the same notation as in the previous case – in which the
reader will have no difficulty to verify thaty1 is indeed feasible,

1 ≤ pa1
+ pa2

− p(h,j) + p(h,i) ≤ 1,

1 ≤ πj − πh + pa1
+ pa2

+ (T − 1)p(h,j) + p(h,i) ≤ 2,

−1 ≤ πi − πh − pa1
− pa2

+ p(h,j) + (T − 1)p(h,i) ≤ 0, and

0 ≤ πj − πi + pa1
+ pa2

+ (T − 1)p(h,j) − (T − 1)p(h,i) ≤ 2.

This concludes the last case for the coefficient vectorλ and thus establishes (11).

Proposition 14.The change-cycle inequalities (7) are valid for the PESP instance that we consider
on the wheel graphsWn.

sketch.We must omit the full proof due to space limitations. Nevertheless, let us compute the relevant
quantities of the particular fractional solution

y1 = (πT, pT
s , pT

c ) = (0T,
1

2T
· 1T,

1

2
· 1T) :

For a spoke arca, here, the periodic tension variable isxa = 1
2 , and for any other arca, its periodic

tension variable isxa = T
2 . In the most interesting case, namely the case of a triangle,cf. Figure 4

for an illustration in the case ofT = 6, the integer variablez of this triangle evaluates to12 . And with
these values, the reader might not have any difficulties to compute the slopeµ = − 1

T−1 and ordinate

intersectν = T
T−1 , and thus verify that the corresponding change-cycle inequality (7) is tight. For

longer circuits, there is even some positive slack.

Theorem 15.P (2) = ∅. In particular, two multi-circuit cuts (9) certify the emptiness ofP (2).

Proof. We apply Theorem 9 to the outer circuitC of the wheel graphWn. We combine it linearly by
summing over all the|C| oriented4-circuits that contain two consecutive edges ofC.

Let Ci be one of these4-circuits. Consider the cycle inequalities (5) ofCi and of its opposite
counterpartC−1

i ,

p1 + p2 + p3 − p4 ≤

⌊
1

T
(1 + (T − 1) + (T − 1) − 0)

⌋
=

⌊
2T−1

T

⌋
= 1, (19)

−p1 − p2 − p3 + p4 ≤

⌊
1

T
(0 − 1 − 1 + 1)

⌋
=

⌊
−1
T

⌋
= −1, (20)

wherep1 andp4 are the periodical offset variables that we introduced for the two spokes ofCi. In
other words,p1 + p2 + p3 − p4 = 1.
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For that the oriented circuitsCi linearly combineC, we have to multiply each of them with12 .
Recall that we selectedn to be even, thus|C| = n−1 being odd. Doing so for their initial orientation,
using (19) we find that

∑

a∈C

pa ≤

⌊
|C| ·

1

2
· 1

⌋
=

⌊
n − 1

2

⌋
n odd
=

n

2
− 1, (21)

because the periodical offset variablesp of all the spokes cancel out. Similarly, summing (20) for all
their opposite counterpartsC−1

i yields

∑

a∈C

−pa ≤

⌊
|C| ·

1

2
· (−1)

⌋
=

⌊
−n + 1

2

⌋
n odd
= −

n

2
. (22)

Finally, multiplying (22) with minus one and comparing it to(21) yields n
2 ≤ n

2 − 1 and thus
reveals that indeedP (2) = ∅.

Remark 16. It is highly interesting to compare the resulting pair of inequalities (9) to their initial
counterparts (5) inP (1):

P (1) :
⌈
(n − 1) 1

T

⌉
≤

∑
a∈C

pa ≤
⌊
(n − 1)T−1

T

⌋
vs.

P (2) : n
2 ≤

∑
a∈C

pa ≤ n
2 − 1.

Hence, in a sense on the wheel graph instances the multi-circuit cuts propagate toP (2) the rounding
benefit that particular cycle inequalities achieved already in P (1).

This is our main motivation for the separation heuristic that we apply in the next section.

7 Computational Results

For the PESP, we investigate the change in the solution behavior of CPLEX 11, when adding multi-
circuit cuts (9) to its IP models. To this end, we need to separate these cuts. In Remark (16) we
observed that if we combine valid inequalities (5) of the first Chvátal closure in which the rounding
was strong, i.e.,b − ⌊b⌋ ≈ 1 − ε, then, in the second Chvátal closure we can achieve much stronger
multi-circuit cuts (9) than their corresponding cycle inequalities (5) in the first Chv́atal closure.

In most detail, we generate multi-circuit cuts (9) in the following way.

1. Build an initial IP model of an optimization instance of PESP.
Actually, instead of immediately using (2) we are using a purely tension-based formulation here, because
in [13] it was reported that these performed best.

2. Generate valid inequalities for this IP.
These are cycle inequalities (5) and change-cycle inequalities (7). For the separation heuristic we made
the same experience as Nachtigall, namely that consideringthe fundamental circuits subject to a minimum
spanning tree with the periodic tension values of the current LP relaxation as weights, empirically is the
most efficient deterministic solution heuristic. Denote the resulting LP by LP1.

3. Store “strong” cycle inequalities in a poolP.
While computing LP1, we record for each cycle inequality (5) that we generate itsrounding benefitβ :=

b − ⌊b⌋, no matter whether it is added to LP1 or not. If β is larger than some threshold value – we used
β ≥ 0.7 – then this cycle inequality is added to a poolP of “strong” cycle inequalities.

12
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Figure 5: The subregions of Lower Saxony and Westfalia (north-western part of Germany) of which
we distill our three test instances

4. Add multi-circuit cuts (9) to LP1.
After Steps 2 and 3 have been accomplished, denote byx∗ the optimum fractional solution of the final
LP relaxation LP1. To cut this pointx∗ off with some multi-circuit cut (9), we formulate the Chvátal-
Gomory IP, that Fischetti and Lodi proposed in [6], for the cycle inequalities (5) inP. Since the cycle
inequalities already live in the first Chvátal closure, this way we are exploring parts of the second Chvátal
closure. We iterate this CG-procedure until for some subsequent linear program LP2 (LP1 plus some
multi-circuit cuts) its optimal solution can no more be separated by this procedure, or a time limit applies.

5. Solve the IP.
In LP2, switch on the integrality requirements on the periodical offset variablesp and let CPLEX 11 solve
this (mixed) integer linear program.

Data. We investigate the performance of the multi-circuit cuts (9) on several real-world data sets.
Unfortunately, there is still not available any public library of real-world periodic railway timetabling
instances. Hence, we need to resort on instances that have been available at our institute, e.g., some
that had already been used in [8, 10]. In particular, all are subnetworks of the German passenger
railway network.

More precisely, we consider three regions within Lower Saxony and Westfalia: Harz (H), Ost-
friesland (O), and Ostwestfalen-Lippe (L), see Figure 5. All these networks are operated at a period
time of two hours. Together with the standard time precisionthat is used by Deutsche Bahn AG, and
which is0.1 minutes, in our models this yieldsT = 1200. It is a general observation that cycle in-
equalities (5) tend to be stronger, if the spansua − ℓa of the PESP constraints are smaller. Obviously,
multi-circuit cuts (9) inherit this property. Hence, if these new valid inequalities bear any compu-
tational benefit, we hope to reveal it on instances where railway capacity is rather scarce. This is
done by modeling the complete passenger traffic in the respective regions (regional and long-distance
trains), and by considering single tracks. The sizes of the resulting PESP instances, after eliminating
redundancies such as contracting fixed arcs with zero span, are reported in Table 1. There, in the
column “tight arcs” we counted the number of arcsa with relatively small span, i.e.,ua − ℓa ≤ T

10 .
In the column “width”, we provide a (rough) upper bound on thesize of the Branch-and-Bound tree
that had already been considered in [13], which is the product of the possible number of values over
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Table 1: Size of our test instances. Here,ν is the cyclomatic number|A| − |V | + 1, i.e., the number
of integer variables in the tension-based IP models that we apply [13].

Instance name service lines |V | |A| ν tight arcs width
Harz 1 (H1) 17 54 309 256
Harz 2 (H2) 16 30 308 279
Harz 3 (H3) 12 43 226 184
Harz 4 (H4) 22 58 432 375
Harz 5 (H5) 15 55 332 278
Ostfriesland 1 (O1) 10 77 281 205 58 1099

Ostfriesland 2 (O2) 13 107 380 274 86 10128

Ostwestfalen-Lippe 1 (L1) 12 60 295 236 45 10108

Ostwestfalen-Lippe 2 (L2) 12 65 289 225 48 10112

Ostwestfalen-Lippe 3 (L3) 13 66 357 292 49 10145

Table 2: Computational Results of adding multi-circuit cuts (9) to PESP IP models. Aboldface
entry indicates that the shortest solution time is achievedby adding multi-circuit cuts (9) (LP bounds
indexed to “intopt̂=100”, time in seconds)

pure IP model IP + (5) + (7) IP + (5) + (7) + (9)
Instance LP bound opt time LP bound opt time # cuts (9) LP boundopt time
H1 4.4 325 86.0 75 2 86.0 42
H2 35.6 850 83.0 263 15 83.0 349
H3 4.3 64 77.8 13 64 81.0 12
H4 40.8 3059 86.8 2255 1 86.8 2727
H5 4.1 2921 56.7 1221 17 58.9 1663
O1 12.3 216 84.8 197 18 85.3 79
O2 16.7 338 84.4 365 25 85.0 187
L1 27.2 141 89.0 94 25 89.2 69
L2 11.2 203 94.7 71 22 94.7 56
L3 19.0 2652 90.3 1010 20 90.7 1226

all the integer variablesz.

Results. We summarize our computational results in Table 2. There, wecompare three different
policies for solving PESP instances. First, take the pure initial model as is, with no problem-specific
valid inequalities being added. Its LP relaxation admits a trivial optimal solution: simply takeπ ≡ 0
andpa := ℓa

T
. When reporting on values of refined LP relaxations, we scalethe values such that this

trivial solution has value zero, and the optimum value is100.1 Second, we add cycle inequalities (5)
plus some change-cycle inequalities (7), as described above. Last, we also add multi-circuit cuts (9).

We start by giving the optimum solutions of the respective (refined) LP relaxations in the columns
“LP bound”. Next to this, we put the solution time under standard settings of CPLEX 11 on an Intel
Core2 with 2.13 GHz and a 2GB RAM running Linux. In the last butthird column we report how
many multi-circuit cuts (9) could be found by the separationheuristic that we sketched above, and
which was based on [6].

To summarize, in contrast to what Villumsen [19] had to observe for the chain-cutting planes,
which were due to Lindner [14], multi-circuit cuts (9) indeed have an effect on the solution behavior
of CPLEX 11 on PESP instances. First of all, on each instance,CPLEX is (still, see below) better off
when fed with the full machinery of additional valid inequalities, compared to not adding any cuts
at all. Unfortunately, there are some instances, on which adding multi-circuit cuts (9) cause longer
solution times, compared to the (5)+(7) setting. Nevertheless, in the majority of the cases, multi-

1In the tension-based IP (see [13]) we add cycle inequalities(5) as bounds on the integer variables, which typically yields
values slightly larger than zero, e.g,5–25%.
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circuit cuts (9) yield an improved solution behavior. In several cases, the solution time drops by more
than40%.

Additional Comments. Let us close by commenting on two interesting effects. First, in Table 2,
we voluntarily decided to consider the pure LP bounds instead of the dual bound that CPLEX is able
to achieve in its root node preprocessing. This is mainly motivated by the fact that the LP bounds
are conceptually better accessible, compared to the resultof a powerful “black box”. Yet, consider
the instance O2. For this, Table 2 contains entries of16.7% and85.0% for the LP bounds with and
without cuts, respectively. But after the root node preprocessing of CPLEX 11, the respective values
get together as close as82.0% and85.4%. Now, compare these values to the root node preprocessing
of CPLEX 8.1, which is the version that had been used in an extensive computational study on other
railway timetabling instances [13]:28.6% and85.3%. Similar observations can be made for the
respective solution times.

This illustrates the improvements that more recent versions of CPLEX are able to achieve in the
preprocessing of PESP IP models. Could this be a consequenceof the fact that pure PESP IP models
have been included in the MIPLIB [1, 10], in combination withnew general IP insight, e.g., the one
reported in [6]? Here, it might be interesting to recall thatFischetti and Lodi called the PESP IP
models in the MIPLIB “very hard”. . .

Nevertheless, although the preprocessed dual bounds get closer to each other, problem-specific
insight, e.g., in form of the new multi-circuit cuts (9) thatwe just introduced here, may still cut the
solution time by roughly one half.

Second, and last but not least, we point out the high sensitivity that the models show with respect
to certain specific multi-circuit cuts (9). As an example, onthe instance H2 we had to make the
following observation. With just inequalities (5) and (7) being added, a solution time of 263s can be
observed, cf. Table 2. Then, adding just the firsttwomulti-circuit cuts (9) that our separation heuristic
found, the solution time is cut by more than73% to less than 70s. But adding the next two such cuts,
we end with a solution time of even 392s. In other words, if we just added the first two cuts, instead
of all the 25 that we were able to separate, in Table 2 we could have replaced the value 349s in the
H2 row with only70s. . .

On the one hand, this underlines that multi-circuit cuts (9)indeed have some effect. On the other
hand, this asks for an understanding on which particular ones of these cuts are the “right” ones.

8 Conclusions

We introduced multi-circuit cuts as new valid inequalitiesfor the Periodic Event Scheduling Prob-
lem (PESP). These live in its second Chvátal closure. For a particular family of infeasible PESP
instances, we managed to prove that its first Chvátal closure is nonempty. And even adding all
change-cycle inequalities, of which we further proved thatin general they appear only in much larger
closures, does not turn the status to infeasible. Hence, it is a first theoretical merit of the multi-circuit
cuts to certify infeasibility of these particular instances. Complementary to this, in our computational
study, we observed that multi-circuit cuts are likely to reduce the solution time of CPLEX 11 on PESP
IP models.

We admit that up to now, our separation has not really been tuned. More theoretical insight is
needed to distinguish between helpful multi-circuit cuts,and unproductive ones. We are very much
confident that with such an additional insight, adding just the helpful multi-circuit cuts willalways
improve on the two other settings that we considered in Table2. In addition, practically efficient
separation heuristics for multi-circuit cuts are required, in particular if we want to use these cuts in
a branch-and-cut context, too. But also any further new classes of valid inequalities from whichever
Chvátal closure will be equally welcome – given that they have some (positive) effect on the solution
behavior of CPLEX 11.
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To summarize, of course multi-circuit cuts are not the end ofthe story in the solution of PESP
instances. However, we feel that these are one step forward into a promising direction.
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Gap of Strictly Fundamental Cycle Bases in Planar Grids

2006/05 Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Köhler, and Heiko Schilling:Length-
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