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Abstract

We investigate the polyhedral structure of the PeriodicrEv&cheduling Problem (PESP),
which is commonly used in periodic railway timetable optation. This is the first investigation
of Chvatal closures and of the Catal rank of PESP instances.

In most detail, we first provide a PESP instance on only twaeyavhose Chatal rank is
very large. Second, we identify an instance for which we prov¢ ithia feasible over the first
Chvatal closure, and also feasible for another known promiokass of known valid inequalities,
which we reveal to live in much larger Céatal closures. In contrast, this instance turns out to be
infeasible already over the second @tal closure. We obtain the latter result by introducing new
valid inequalities for the PESP, the multi-circuit cuts.

In the past, for other classes of valid inequalities for tESP, it had been observed that these
do not have any effect in practical computations. In contthe new multi-circuit cuts that we
are introducing here, indeed show some effect in the cortipaotathat we perform on several
real-world instances — a positive effect, in most of the sase

1 Introduction

It has been only recently that combinatorial optimizatioeeed the practice of service design in
public transport. The 2005 timetable of Berlin Undergroismthe first optimized timetable that was
put into service [9]. It had been computed with integer pangming techniques, namely profiting
from several different classes of valid inequalities. Toddso the Dutch railways are operating a
timetable that was designed with the help of techniques ftombinatorial optimization and con-
straint programming [7]. Both projects build upon the PeicdEvent Scheduling Problem (PESP).

The PESP, in its pure formulation of a feasibility probleradtbeen introduced by Serafini and
Ukovich [18] and it generalizes the vertex coloring probldm particular, for the two most natural
optimization problems that are investigated on top of th&€ BEMAXSNP-hardness has been estab-
lished [8, 9]. In practice, this results in the following tgal behavior of MIP solvers on medium to
large sized instances. Known valid inequalities are ablddse60-90% of the initial gap between
the integer optimum value and the optimum value of the LPxaglan. Still, solving this tightened
IP risks to take several hours, if it is solvable at all.

There are of course much larger transportation networksaotice, which are beyond the com-
putational limits of the methods that were used so far. Asrsequence, at present there are several
other research groups trying to tackle the periodic railtiiaetabling problem, and they are sharing
the PESP as their model of choice [2, 17, 19]. For instandyrivsen put the polyhedral approach
that was suggested by Lindner [14] into practical compaietifor the commuter train network of
Copenhagen. Unfortunately, he had to make the observétain t
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“the chain cuts [14] have no effect on the solution” [19].

This is one motivation for us to have a closer look at the petiral structure of the feasible region
of PESP instances. We do so by following the methodology ltlaatbeen suggested recently by
Fischetti and Lodi [6] for optimizing over the first Catal closure. Notice that one of the first
instances to which they applied their method was the “harBINB instancet i nt ab1”, which is

in fact a PESP model [10].

As a motivation, we first generalize an infeasible PESP int&a- which is due to Lindner [14] —
to a family of instances that are defined on wheel graphs. tti@®e6 we will prove that these
instances are feasible over the first @tal closure. Still worse, even the change-cycle inedealit
that have been introduced by Nachtigall [15], of which int&et4 we prove that, in general, they lie
in much larger Chatal closures, are not suited to certify infeasibility. Hetheless, the techniques
of Fischetti and Lodi suggested that these particular mt&ta might be infeasible already over the
secondChvatal closure. Indeed, by expoiting problem-specific insighthe second Chatal closure
we identify general new valid inequalities for the PESP {®ec5) by which we prove that these
particular instances are infeasible. We call these newual@tgs themulti-circuit cuts

In Section 7 we add multi-circuit cuts to the IP formulati@iseveral timetabling instances that
we took from practice. Although we have to admit that the Itssare not fully striking, on many
instances we observe a perceptible speed-up in the sotirtienIn turn, on more complex instances,
for which up to now no optimal solution has been found, our meis from the second Chtal
closure might indeed yield better railway timetables.

2 An P for PESP

Initially, the Periodic Event Scheduling Problem (PESR][thas been stated as a pure feasibility
problem. We are given a directed graph= (V, A), which may feature (anti-) parallel arcs. For each
arca, there are defined some lower bouycand some upper bound,. The PESP then asks whether
for the given fixed period timé&’, the instance admits @eriodically) feasible node potential €
[0,7)",ie.,

(mj —mi — L) mod T < ug — 4y, Va=(3,5) € A (1)

In a railway timetabling context, the valdeéis the period time of the railway system, e &), minutes.
A nodei represents an arrival or departure of some specific dirdicteéh the network, and we must
assign a time value; to this event. For instance, in the current timetable, tiheatliCE trains from
Berlin to Karlsruhe leave Berlin main stati®3 minutes past the hour. Finally, in the constraint
parameterd and v one may encode lower and upper bounds on time durations toeesafety
requirements, transfer quality requirements, as well asyother things [11].

In a mixed-integer linear programming formulation, the miodoperator in (1) is resolved by
introducing integer variables, for the arcs, which we denofeeriodical offsets Furthermore, we
penalize any slack on the lower bournjsn a linear objective function,

min - 3, vea Walmj — m 4+ 1T'pa)
st m—mi+Tp, > L, Va = (i,j) € A

5 — T + Tpa < Uq, Va = (Zaj) €A (2)
m; €10,7T), VieV
Pa € 7, Va € A.

Other formulations for this problem had been stated in tenfnso-called tension variableg, =

m; — m;, or evenperiodic tension variables, = w; — m; + T'p,, See e.g. [4, 11]. Observe that we
always have/, < z,. In particular, the resulting MIPs, in which we can make tloelen potential
variablesr redundant, already perform considerably better [13]. tedir performance can even be
enhanced—and it has tol—by adding valid inequalities. la $pirit, in the remainder of the paper



we illustrate the limits of known valid inequalities, andrmduce new classes of valid inequalities,
which let us go beyond.

In Section 4, when we provide a relatively large lower boundhe Chwatal rank of PESP polyhe-
dra, we will also find it most convenient to make use of thequid tension variables,. Throughout
the other parts of this article, however, we stay with (2)isTis because we consider this formulation
being more accessible, in particular for the newcomer, eisaistraightforward computation to adapt
the classes of valid inequalities that we identify theretteoequivalent mixed-integer programming
formulations of the PESP.

The following lemma reveals that we are in fact dealing witinepinteger programs.

Lemma 1 ([16)). If ¢, u, andT are integers, then in (2) w.l.o.g. we may replagec [0,7") with
LTS {0,,T—1}

Proof. Consider an optimum solutiofr™®, p*) of (2). Now, fix the vectop*. The resulting problem
is a linear optimization problem with twice the node-arddence matrix of the constraint gragh

as constraint matrix, which is thus totally unimodular. ithe right-hand side is integer, the LP has
some integer optimum solutiorf, and(#°, p*) is feasible for (2) and not worse than the optimum
solution(7*, p*). O O

Note that the periodical offset variablgg are either binary, or may in addition take the value
two, provided that,, > [“=] T. Nevertheless, w.l.0.g. we forget about any explicit boangny
of the variables in (2), and just keep their integrality regunents.

3 Chvatal Closures
Let M be anm x n matrix and consider the general rational polyhedron
P={z| Mz <b}.
The (first) Chvatal closureP’ of P is characterized by
P’ = {z|\"Mx < [\"b], forall A > 0 with \TM integet.

Also, setP(®) := P and recursively defin@(*!) = (P(®)’. In integer programming, we are
interested in thénteger hull P; of P,

Pr:=conv{z € Z" | Mz < b}).
The following is a key theorem in integer programming.
Theorem 2([3]). For each rational polytop® there exists some integesuch thatP*) = P;.

Note that in the sequel, we will switch backro= |V| andm = |A|.
Now, denote byB the node-arc incidence matrix of a PESP constraint giapfihen, consider
the matrix

—-BT =TI,
M'_{ BT T~Im]’ ®)
wherel,, refers to then-dimensional unit matrix. Together with the right-handesigkctor
—/
=[] @

the convex hull of the feasible solutions of (2) is nothing By.
Also for the PESP, several studies of its polyhedral stmechave been conducted [14, 15, 16].
In the sequel, we summarize some of their results and redata to the general concept of Gital



closures. To this end, define aniented circuitC = CTUC™ as a subset of the arcs &f such
that reorienting the elements 6f~ would result in a directed circuit. The arcsdh™ are called the
forward arcs and the arcs i’~ are thebackward arcsIn particular, we distinguish the two oriented
circuits that map onto the same circuit in the underlyingitetded graph.

The following valid inequalities for PESP have been ideadifby Odijk [16].

Theorem 3 ([16]). Let D be the constraint graph of a PESP instance and consider soemted
circuit C'in D. Then thecycle inequality

Zpa—zpag{z%— %J (5)

aceC+ aceC— aceCt acC—

is valid for (2). More precisely, the cycle inequalitieseidy show up in the first Claval closureP (")
of the LP-relaxation” of a PESP-polytopé’;.

Proof. We combine these inequalities from the ones in (2). To this &r each forward arc i@,
multiply the less-than inequality of its upper boungwith % Similarly, for each backward arc i,
multiply the greater-than inequality of its lower boufdwith —%, which translates into a positive
coefficient in the vecton. It is a simple observation that the node variabtesll cancel out in a
telescope sum. Finally, we round down the right-hand sidkddmain (5). O O

Both, the potential strength of the cycle inequalities amel key role of the periodical offset
variablesp are reflected by the following theorem.

Theorem 4([16]). An instance of PESP is feasible, if and only if there existgagervectorp such
thatp satisfiesall the cycle inequalities.

This is why we are seeking stronger valid inequalities imteof the periodical offset variables
In the next theorem we show that doing so we need to investiyat second Clatal closure. This
will be the main topic from Section 5 on. There, we start byhlighting that there exist some
oriented circuit”' in which the upper bound in (5) can even be decreased, stilgbalid for Py,
of course. In fact, Lindner [14] proved that the coefficienftanyvalid inequality for the PESP that
only features periodical offset variablgshave to constitute a circulation in the constraint grapst. L
us already mention that in Section 4 we provide an expli@bpthat the Chatal rank of a PESP
instance may be at Iea%t

Denote by the polyhedron that is defined by taking all the inequalifiesn P(!) that do not
feature any of the node variables

Theorem 5.Then, the cycle inequalities (5) constitute the completzdption ofQ, where
Q = {p| p satisfies all cycle inequalities ()

idea. Basically, the proof makes use of the decomposition of aeget circulation into oriented
circuits. However, due to space limitations we have to omitfer details here. O O

Notice that we are aware of instances on whizkoesnot equal the projection aP(!) onto the
periodical offset variableg. In particular, there thg-part of some reversed-arc cut, which is defined
in the next section, is necessary to certify the emptineg¥ bf while Q # 0.

4 A Lower Bound on the Chvatal Rank of PESP

In this section we present the change-cycle inequalitiésclwwere introduced by Nachtigall [15].
We provide a PESP-instance on two vertices, on which thegehaycle inequalities appear first in
the %-th Chvatal closure, wher@' denotes the period time. To the best of our knowledge, thiseis

4
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Figure 1: A feasible PESP instance on fheircuit Cs with 7' = 6

strongest explicit lower bound on the Gital rank of PESP. Unfortunately, due to space limitations
we have to omit details of the proof here.

Before formulating the change-cycle inequalities, weddtrce a few notation. Lef’ be some
oriented circuit in the constraint graph of a PESP-instakide sum the periodic tension values of the
forward arcs it ™ and the periodic tension values of the backward aresini.e.,

T = Z g and T = Z L.

aceC+t aeC—
Analogously, we define
(7= Ly, and (7= > L.
acC+ acC—

Last, we define the slope and the ordinate intercept of the line that induces the change-cycle
inequality as
T

wherez := [L(¢F —(7)].
Theorem 6 ([15]). The following change-cycle inequalities

x> pxrt v @)
are valid for (2).

Notice that a similar inequality, which involves the uppeuhdsu, of the arcs, is valid, too.
Moreover, it had been observed in [12, Fig. 5.1] that chanyg#e inequalities (7) are in a sense
complementary to cycle inequalities (5).

In the remainder of this section we provide a two verticetaimse of PESP, of which we prove
that its Chiatal rank isg. In particular, the change-cycle inequality (7) of thistarece does only
appearin thef——th Chvatal closure. To this end, I&tbe a fixed period time and consider the following
PESP-instance on two vertices: ligtandas be two parallel arcs, whetlg, = £, u,, = (37) —1,
4y, = 0,andu,, =T — 1. See Figure 1 for the example that corresponds to the pennedt = 6.

In particular, in terms of periodic tension variableswe are dealing with the following polytope

T
P = {(xauwazvz)-r‘g Sxal S <2T> _1> 0 Swag ST_L Loy — Lay :TZ}, (8)

where the variable is in fact a shorthand fas,, — p.,. Observe that’; corresponds to the convex
hull of this PESP instance’s solutions.

Proposition 7.Consider the poin®; = (£ +i- %, i- 1, 1). Then@, € PY \ P~ for all
e {l,..., %}. Moreover, fori < % the points@); violate the change-cycle inequality (7). In
particular, the change-cycle inequality (7) cannot be ggted prior to theg—-th Chvatal closure.
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Figure 2: A visualization of a change-cycle inequality f&3P, and its relation to Chtal closures,
hereT =6

sketch.In this context, the situation can be inspected best by @kmiahe redundancy of the equa-
tion z,, — z,, = T’z to only consider the projection into the,, z-plane. In this space, the relevant
inequalities of P are the initial inequalityr,, > % as well asz < %xal, which is obtained by
plugging0 < z,, into z,, — z,, = Tz. Observe that the poirft,,,z)" = (£,0)T makes the
former inequality tight, whilgz,,, 2)T = (T,1)" makes the latter inequality tight. In Figure 2, the
corresponding half-spaces are drawn in red, while our aligngoal, the change-cycle inequality (7),
is drawn in green.

Then, here we can only summarize that by going from onea@tilosureP*—1) to the subse-
quent oneP"), both these inequalities are “rotated” around the po(%tso and(7,1)T, respec-
tively, such that the poinf); become tight. O

Corollary 8. The Chiatal rank of PESP is at leat

5 New Valid Inequalities for the PESP

The next section will reveal the need for new valid ineqiedifor the PESP: There, we present an
instance for which all cycle inequalities (&hd change-cycle inequalities (7) are valid, although the
instance is infeasible. Also, in practical computationdiag these two types of valid inequalities we
typically close no more tha60-90% of the initial gap between the IP optimum and its LP relaxatio
and the resulting refined IPs still risk to be hard to solvasThwhy here, we identify two new types
of valid inequalities for the PESP polyhedron.

The first one is defined exclusively on the periodical offseiablesp. By Theorem 5 we know
that these cannot stem from the first @kal closure of the feasible regidh of the LP relaxation
of (2). In more detail, we specify situations in which we magcrkase the right-hand side of the
cycle inequalities (5). And with these new inequalities, ca@ easily prove the infeasibility of the
instance that we discuss in depth in the next Section 6. Itide¢, we complement this analysis
with promising empirical computations.

The second type of valid inequalities lives in the first &tal closure, and hence may now contain
both types of variables; andp. Unfortunately, due to space limitations we cannot illatrin-depth
their respective contribution here.

5.1 Multi-circuit Cuts
We start by presenting new PESP cuts from the seconé@t@helosureP(?) of P.



Theorem 9.Let Cy, ..., Cy be oriented circuits with incidence vectoys Let A\; € (0,1) such
thatyg = A\iv1 + - -+ + A\eye. Finally, let3; be the right-hand sides in the cycle inequalities (5) of
Ci,...,Cx. Then

P < AP+ oo + M) 9)

is a valid inequality forP(2).

The proof follows immediately from Theorem 3 together wiik tlefinition of the second Chtal
closure. For some oriented circuits we may not be lucky atalil (9) is the same as (5). However,
for other cycles, the right-hand side in (9) may be much sen#tlian the one in (5), see Remark 16 for
one such example. Since these cuts are obtained by represantoriented circuit as the fractional
sum of multiple other circuits, we refer to (9) amulti-circuit cuts

Despite the fact that these inequalities are somehow ktfargvard, they are indeed useful. We
will illustrate this in a detailed example in the next segtiarhere in particular we find that

PO 2£p  but PP =g

5.2 Reversed-Arc Cuts

Here, we introduce one further new class of valid inequeifor the PESP, which stems from the
first Chvatal closure. These inequalities were inspired by the tethét we obtained by applying the
methods of Fischetti and Lodi [6].

Theorem 10.Let C' be an oriented circuit, and take some backwardagre= (i,j) € C~. The
following inequality is valid forP(")

7y —mi+ (T —=Dpag+ D Pa— D Pa

acC+ aeC—\ao
1
<7 (T =gy + >, ua— Y La]- (10)
aceCt aeC—\ag

Proof. We provide the vectok that combines (10) for some circuit out of the initial matrixA/. To
this end, fork € {0,...,m} consider the are;, = (v,w) € C. Then, the rows andm + k of the
matrix M correspond to the following two PESP inequalities

—Tw + Ty — Tpak < _gakv
T — Ty + ija;c S uak -

Finally, choosing the components of the coefficient vegtas

%, k = m + ¢, wherea,. = ao,
N — %, k = ¢, wherea, € C~ \ {ao},
b % k =m + ¢, wherea, € C*, and
0, otherwise
yields (10). O O

In fact, these inequalities emerge from cycle inequalttgseversing one of their backward arcs.
Hence, we refer to (10) asversed-arc cutsObserve that in some special cases, these inequalities can
coincide with what Lindner [14] calledhain cutting planesHowever, for the latter Villumsen [19]
had to observe in practical computations that these haveefigzt” on the solution of his PESP
instances. In addition to Theorem 4, this is another matiaafor us to focus in our exposition on
the multi-circuit cuts.



Figure 3: An infeasible PESP instance on the wheel gi&plwith 7" = 6

6 PESP Instances on Wheel Graphs

We introduce a family of infeasible PESP instances, for Witite first Chwatal closure is still
nonempty. Since the pioneering work of Edmonds [5], we ateam@re of too many explicit such
results. Here, even adding the change-cycle inequalifieddes not change this status. Only adding
two appropriate multi-circuit cuts (9) provides a certifecéor the infeasibility of these instances. Let
us annotate that these instances were inspired by an infed#SP instance which was studied by
Lindner [14] and whose constraint graph is the wheel gridfaton four vertices.

We consider one fixed period timé> 6 for any of the instances that we are right about to define.
Letn > 4 be some even number and consider the wheel ghaphsee Figure 3 for an example
with n = 6. We set the feasible intervals of the spoke ard8 o], while we requird1, T — 1] for
the remaining outer arcs.

We start investigating this class of instances by first giharnsimple proof for the infeasibility of
these instances. Hereafter, we establish iat # (), but P(2) = ¢

Lemma 11.LetT > 2 andn > 4 be an even number. The PESP instance that is defined on thé whee
graphW,, with feasible interval$0, 1] on the spokes and, T' — 1] on the arcs of the outer circuit
is infeasible.

Proof. We may assume w.l.o.g. that, = 0, whereh is the hub vertex id¥,,. The constraints on
the spokes restrict the values of the other vertices {0, 1}. The constraints on the remaining arcs
require these two values to be used alternatingly aroundutes circuit oflV,,. Since we chose to

be even, the outer circuit has an odd number of vertices.Hsitg not compatible with the values

of all the vertices on the outer circuit taking the valuezand one alternatingly. O O

The next lemma slightly simplifies the argumentation in tiheop of the main theorem of this
section, namely thaP(!) is not empty.

Lemma 12.Consider some coefficient vector> 0. Let A\, and\,-: correspond to two components
whose PESP inequalities refer to the very samedaand definec := min{\,, \,-1}. Derive \
from )\ by subtracting: from the components of botla, anda=*. Now, if NTM < {/\’TbJ then

ATM < [ATb].
Proof. First, observe thag\ — \')TM = 0. Second,(A — \)Tb = ¢ (=4, + u,) > 0. Thus,
[b] <

(
rounding down cannot provide any negative value. Finakygause ofa| + |b] < |a + b] we may
add(A — ) to \ while keeping any valid inequality valid. O |



As a consequence, for investigatiij!) we may assume w.l.o.g. that in any (relevant) valid
inequality for P() none of the arcs shows up with both its inequalities for ispeetive lower and
upper bounds.

Theorem 13.P() £ (). In particular, all the cycle inequalities (5) and reversed cuts (10) are valid
for the same particular vector, in the case®f> 6.

Proof. Before starting, in the vectgr we distinguish the components that correspond torthe
1 spoke arcs from the components that correspond te the arcs of the outer circuip™ = (p!,p]).
Moreover, withl we denote the all-one vector of appropriate dimension. @af ig to establish that

.fTTTiTL_Tl_T (1)
U '_(71- 7ps’pc)_(072T 132 I)EP . (11)

To this end, let\TMz < |ATh| be an arbitrary valid inequality aP(Y), whereM andb are as
defined in (3) and (4), respectively. We have to chgckgainst this general inequality.

For ease of notation we rewrite the coefficient vectas\T = (AT, A1, AT, A1), where); and
A3 refer to the rows that correspond to the spokes, wkiland ), refer to the rows that correspond
to the outer circuit of the wheel grapkr,. Moreover,\3 and\, refer to the initial PESP-inequalities
that define the upper bounds, but A\; and A, refer to the initial PESP-inequalities that define the
lower bound¥,,, after having multiplied these with minus one.

Using these definitions, we find that

1 T 1 T
uTMyl = (A-{a )‘;Aga )‘1) : (_5 : 1T7 _5 ' ]-Ta 5 : ]-Ta 5 : ]-T)T

1 T 1 T
= —§\|/\1\|1—§||)\2||1+§|\)\3||1+§||/\4|\1
and
LATbJ = \‘()\-lrv )\'2|'7 >‘-Ll’;—a )‘1—) : (OT7 -1 ]-Tvl . 1T7 (T - 1) : ]'T)TJ
= [l + A3l + (T = D[ Aal]1] -

In particular, for the poing; the initial inequalityA™ My, < |ATb| is equivalent to

~all + [Pall + (= DIl - L=lPell +Pall + =Dl @2)
1 T 1 T
< giball+ (5= 1) lnall+ gl + (3 - 1) Il @9
1 T
= o+l + (5 = 1) Qell + all). )

In order to prove that (12-13) is valid, observe first that lsfe-hand side (12) has values in the
interval[0, 1). So, we first identify some coefficient vectorsor which (14) is at least one. Hereafter,
we investigate the remaining vectors

From Lemma 12)\ > 0, A\TM being integer, and the coefficients of the periodical offget
having valudT|, we conclude that for each componeiwf A we have\; = % withk =0,1,2,....

Case ‘{[A2||1 + [|[Aa][1 > 2" We find immediately that (14) is at least as largedas 2. Now,

recall that we chose the period tirfie > 6, and in particular (14) is at least one, establishing the
theorem in this case.



Figure 4: A triangle inlV,, with T' = 6

Case ‘{|A2]|1 + |[\4]l1 = " In other words, the Clatal-Gomory coefficient vector does only
involve exactly one inequality of one agic= (3, j) of the outer circuit ofi¥/,,. In this case we are not
aiming at showing that (12-13) was indeed valid. Rather, mengerate all the eight relevant valid
inequalities ofP(!) that involve the are as the only arc of the outer circuit.

For that the requirement off M being integer is fulfilled, in particular for the node vartiedor,
some of the initial PESP constraints in whichor 7; appear must have non-zero components in the
coefficient vector\. Because of|\z||; + [|[\4]|1 = #, these must correspond to the spokes)
and(h, j), whereh denotes the hub of the wheel graiph,, see Figure 4 for an illustration.

Depending on whether we use the lower bound or the upper bim@gghalities of the spokes,
w.l.o.g. the CG-multipliers are eithe or T2

First, if we choose twice tth, we end with the two standard cycle inequalities (5) for this
triangle,

0 < pa—=DPhy) +Pwni <1 (15)

For the valuep, = % andp, = 1 that we chose in our particular vectgr, these inequalities are
of course valid, becauge< ; < 1.
Second, if for the spokes we chose once the va}luand once the valuémT@l, we obtain the

following four reversed-arc cuts,

1 <7 =7 +pa+ (T = D)png) + Phi) < (16)
0 <7 —7h—Pa+Dhy)+ (T —=1pny< 0, (17)
which are valid for our choice af;, too.
Last, taking’~! as the coefficient for both spokes yields
0<mj—mi+pat(T—1Dpny)— (T —Dpmn <1 (18)

Also these two inequalities are valid for the vecggras defined) < % <1.

To summarize, in the case ff:|[1 + |[\]|1 = 7 we considered all the eight relevant valid
inequalities of (") and verified that the vectdr ™, pT, pT) = (07, 5 - 17, 1 - 17) is valid for any of
them.

Case ‘{|A2||1 + [|A\4][1 = 2”.  We distinguish between several subcases. First, we maythave
non-incident arca, andas of the outer circuit being involved in the cut that is defingttloe coeffi-
cient vector\. But then we are done, because we are in fact twice in the ¢dse B, +|[\4||, = +.
Second, we may have just one arc of the outer circuit beinglved. The two cycle inequali-
ties (5) that emerge from multiplying all its three initiadrestraints with% are in fact nothing but
just scaled versions of (15). Hence, here we need to congalierinequalities in which some of
the initial constraints are multiplied wit%, while others are multiplied wit@. The counterparts

of (16) and (17) read

1 <mj—7h+2pa + (T = 2)P(n,j) + 2P(n.i)
—1 <M =7 = 2pa + 20(h ) + (T = 2)P(h5)

IA A

10



For the particular poing, these terms evaluate goand—%, respectively, and all the four inequalities
are thus feasible. The same holds for the counterpart of {lt&8rey; yields one, which is feasible
in

0<mj—7i+2ps + (T = 2)pnz) — (T = 2)pns) < 2.

Last, what we still have to investigate is the case in that ¢mesecutive arce; anda, of the
outer circuit are activated by the coefficient vector Due to their orientation ifV,,, in the valid
inequality that is induced by, both arcs contribute either with their PESP inequalitiest define
their lower bounds, or both contribute with their PESP iradifjies that define their upper bounds. In
particular, ther variable of their common vertex has coefficient zero in thie cu

Hence, we are in a situation that is quite similar to the o We already discussed in the case
of [|A2][1 4[| A4]|1 = #. The only difference is that for the outer arcs we are now singtwicetheir
lower or upper bounds in the inequalities. We summarizeghevant computations by providing the
eight resulting valid inequalities — using the same norats in the previous case — in which the
reader will have no difficulty to verify thaj; is indeed feasible,

1< Day T Pay — D(h,5) T P(h,i) <1,
1< Tj = Th + Pay + Pay + (T — 1)pn gy + P(nsi) <2,
-1< T — Th — Pa; — Pas +p(h,,j) + (T - 1)p(h,i) <0, and

0< m —mi+Pay +Pa + (T = Vpjy— (T —Dpniy <2
This concludes the last case for the coefficient vestand thus establishes (11). O O

Proposition 14.The change-cycle inequalities (7) are valid for the PESRaimee that we consider
on the wheel graph§’,,.

sketch.We must omit the full proof due to space limitations. Nevelss, let us compute the relevant
quantities of the particular fractional solution
y = (Tl ph) = (07, ok 17, LT
1 yFPsr Ve ) 2T 9 2 .
For a spoke ara, here, the periodic tension variablezis = % and for any other arg, its periodic
tension variable is;, = % In the most interesting case, namely the case of a trianfjl€jgure 4
for an illustration in the case &f = 6, the integer variable of this triangle evaluates t§. And with

these values, the reader might not have any difficulties topede the slopg = —ﬁ and ordinate
intersec’_ru = % an_d thus verify that_t_he corresponding change-cycle iakltyu7) is tight. For
longer circuits, there is even some positive slack. O O

Theorem 15.P(?) = (). In particular, two multi-circuit cuts (9) certify the enipess of P(?).

Proof. We apply Theorem 9 to the outer circditof the wheel grapi/,,. We combine it linearly by
summing over all théC| oriented4-circuits that contain two consecutive edgesof

Let C; be one of thesd-circuits. Consider the cycle inequalities (5) @f and of its opposite
counterparC; *,

P12+ ps = pa < H(H(T—MHT—U—O)J =5]= 1 (19)

_pl_pz_p3+p4g{%(o_l_unJ _2 = -1 (0

wherep,; andp, are the periodical offset variables that we introduced fiertivo spokes of’;. In
other wordsp; + ps + p3 — ps = 1.
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For that the oriented circuits); linearly combineC, we have to multiply each of them wit%m
Recall that we selectedto be even, thug”| = n—1 being odd. Doing so for their initial orientation,
using (19) we find that

1 n—11n, n
S il 1] = |5 - (21)

acC

because the periodical offset variabjesf all the spokes cancel out. Similarly, summing (20) for all
their opposite counterpar ' yields

R e e e @2)

acC

Finally, multiplying (22) with minus one and comparing it (1) yields3 < % — 1 and thus
reveals that indee®(®) = (). O O

Remark 16.It is highly interesting to compare the resulting pair ofdaoalities (9) to their initial
counterparts (5) iP(1):

PUL [mni] £ Xhs DT v
acC

P2 . 5 < > pa< 57— L
acC

Hence, in a sense on the wheel graph instances the mullitaitats propagate t&(?) the rounding
benefit that particular cycle inequalities achieved alysadP(!). O

This is our main motivation for the separation heuristid thea apply in the next section.

7 Computational Results

For the PESP, we investigate the change in the solution Ehaf\CPLEX 11, when adding multi-
circuit cuts (9) to its IP models. To this end, we need to sspathese cuts. In Remark (16) we
observed that if we combine valid inequalities (5) of thetf@®&vatal closure in which the rounding
was strong, i.eh — |b] ~ 1 — ¢, then, in the second Chtal closure we can achieve much stronger
multi-circuit cuts (9) than their corresponding cycle inatities (5) in the first Chatal closure.

In most detail, we generate multi-circuit cuts (9) in thddaling way.

1. Build an initial IP model of an optimization instance of &/
Actually, instead of immediately using (2) we are using aghutension-based formulation here, because
in [13] it was reported that these performed best.

2. Generate valid inequalities for this IP.
These are cycle inequalities (5) and change-cycle ineiipgl(i7). For the separation heuristic we made
the same experience as Nachtigall, namely that considér@afyindamental circuits subject to a minimum
spanning tree with the periodic tension values of the ctilt®rrelaxation as weights, empirically is the
most efficient deterministic solution heuristic. Denote tasulting LP by LP.

3. Store “strong” cycle inequalities in a paBl
While computing LR, we record for each cycle inequality (5) that we generateitsiding benefits :=
b — |b], no matter whether it is added to LBr not. If 3 is larger than some threshold value — we used
£ > 0.7 —then this cycle inequality is added to a p@dbf “strong” cycle inequalities.
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Hannover

Figure 5: The subregions of Lower Saxony and Westfalia frarestern part of Germany) of which
we distill our three test instances

4. Add multi-circuit cuts (9) to LI
After Steps 2 and 3 have been accomplished, denote"lie optimum fractional solution of the final
LP relaxation LR. To cut this pointz™ off with some multi-circuit cut (9), we formulate the Cémal-
Gomory IP, that Fischetti and Lodi proposed in [6], for theleyinequalities (5) ifP. Since the cycle
inequalities already live in the first Chtal closure, this way we are exploring parts of the second@h
closure. We iterate this CG-procedure until for some sulseglinear program LP(LP; plus some
multi-circuit cuts) its optimal solution can no more be sepad by this procedure, or a time limit applies.

5. Solve the IP.
In LP2, switch on the integrality requirements on the periodidtslet variablep and let CPLEX 11 solve

this (mixed) integer linear program.

Data. We investigate the performance of the multi-circuit cutsd@ several real-world data sets.
Unfortunately, there is still not available any public Bloy of real-world periodic railway timetabling
instances. Hence, we need to resort on instances that hemeaailable at our institute, e.g., some
that had already been used in [8, 10]. In particular, all atenstworks of the German passenger
railway network.

More precisely, we consider three regions within Lower $gxand Westfalia: Harz (H), Ost-
friesland (O), and Ostwestfalen-Lippe (L), see Figure 9.tihése networks are operated at a period
time of two hours. Together with the standard time precigiat is used by Deutsche Bahn AG, and
which is0.1 minutes, in our models this yields = 1200. It is a general observation that cycle in-
equalities (5) tend to be stronger, if the spaps- ¢, of the PESP constraints are smaller. Obviously,
multi-circuit cuts (9) inherit this property. Hence, if & new valid inequalities bear any compu-
tational benefit, we hope to reveal it on instances wheravagilcapacity is rather scarce. This is
done by modeling the complete passenger traffic in the réspeegions (regional and long-distance
trains), and by considering single tracks. The sizes ofékalting PESP instances, after eliminating
redundancies such as contracting fixed arcs with zero spamgported in Table 1. There, in the
column “tight arcs” we counted the number of atcwith relatively small span, i.ey, — ¢, < 1—TO.

In the column “width”, we provide a (rough) upper bound on $iee of the Branch-and-Bound tree
that had already been considered in [13], which is the proofuihie possible number of values over
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Table 1: Size of our test instances. Herés the cyclomatic numbgid| — |V| + 1, i.e., the number
of integer variables in the tension-based IP models thatppé/d13].

Instance name service lines |V |A| v tight arcs width
Harz 1 (H1) 17 54 309 256

Harz 2 (H2) 16 30 308 279

Harz 3 (H3) 12 43 226 184

Harz 4 (H4) 22 58 432 375

Harz 5 (H5) 15 55 332 278

Ostfriesland 1 (O1) 10 77 281 205 58  10%?
Ostfriesland 2 (02) 13 107 380 274 86 10'2%8
Ostwestfalen-Lippe 1 (L1) 12 60 295 236 45 1008
Ostwestfalen-Lippe 2 (L2) 12 65 289 225 48 10''2
Ostwestfalen-Lippe 3 (L3) 13 66 357 292 49 10

Table 2: Computational Results of adding multi-circuit<(®) to PESP IP models. Boldface
entry indicates that the shortest solution time is achidyeadding multi-circuit cuts (9) (LP bounds
indexed to “intopE100”, time in seconds)

pure IP model IP+(5) +(7) IP+(5) +(7) +(9)
Instance LP bound opt time LP bound opt time # cuts (9) LP boundopt time
H1 4.4 325 86.0 75 2 86.0 42
H2 35.6 850 83.0 263 15 83.0 349
H3 4.3 64 77.8 13 64 81.0 12
H4 40.8 3059 86.8 2255 1 86.8 2727
H5 4.1 2921 56.7 1221 17 58.9 1663
Ol 12.3 216 84.8 197 18 85.3 79
02 16.7 338 84.4 365 25 85.0 187
L1 27.2 141 89.0 94 25 89.2 69
L2 11.2 203 94.7 71 22 94.7 56
L3 19.0 2652 90.3 1010 20 90.7 1226

all the integer variables.

Results. We summarize our computational results in Table 2. Therecamepare three different
policies for solving PESP instances. First, take the put@&imodel as is, with no problem-specific
valid inequalities being added. Its LP relaxation admitsvéat optimal solution: simply taker = 0
andp, := % When reporting on values of refined LP relaxations, we steevalues such that this
trivial solution has value zero, and the optimum valu#(ie.! Second, we add cycle inequalities (5)
plus some change-cycle inequalities (7), as describedealh@st, we also add multi-circuit cuts (9).

We start by giving the optimum solutions of the respectiedified) LP relaxations in the columns
“LP bound”. Next to this, we put the solution time under stambisettings of CPLEX 11 on an Intel
Core2 with 2.13 GHz and a 2GB RAM running Linux. In the last thitd column we report how
many multi-circuit cuts (9) could be found by the separatieuristic that we sketched above, and
which was based on [6].

To summarize, in contrast to what Villumsen [19] had to obsdor the chain-cutting planes,
which were due to Lindner [14], multi-circuit cuts (9) indEleave an effect on the solution behavior
of CPLEX 11 on PESP instances. First of all, on each instadB&EX is (still, see below) better off
when fed with the full machinery of additional valid ineqigls, compared to not adding any cuts
at all. Unfortunately, there are some instances, on whiclingdmulti-circuit cuts (9) cause longer
solution times, compared to the (5)+(7) setting. Neveebg| in the majority of the cases, multi-

1in the tension-based IP (see [13]) we add cycle inequaliigas bounds on the integer variables, which typicallydgel
values slightly larger than zero, e §:25%.
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circuit cuts (9) yield an improved solution behavior. Ineei cases, the solution time drops by more
than40%.

Additional Comments. Let us close by commenting on two interesting effects. FirsTable 2,

we voluntarily decided to consider the pure LP bounds imktédhe dual bound that CPLEX is able

to achieve in its root node preprocessing. This is mainlyivat#d by the fact that the LP bounds
are conceptually better accessible, compared to the relsalpowerful “black box”. Yet, consider
the instance O2. For this, Table 2 contains entries6df% and85.0% for the LP bounds with and
without cuts, respectively. But after the root node prepssing of CPLEX 11, the respective values
get together as close 88.0% and85.4%. Now, compare these values to the root node preprocessing
of CPLEX 8.1, which is the version that had been used in amekte computational study on other
railway timetabling instances [13R8.6% and85.3%. Similar observations can be made for the
respective solution times.

This illustrates the improvements that more recent vessafrCPLEX are able to achieve in the
preprocessing of PESP IP models. Could this be a consequoétimfact that pure PESP IP models
have been included in the MIPLIB [1, 10], in combination witbw general IP insight, e.g., the one
reported in [6]? Here, it might be interesting to recall théchetti and Lodi called the PESP IP
models in the MIPLIB “very hard”. ..

Nevertheless, although the preprocessed dual boundsagetlr ¢b each other, problem-specific
insight, e.g., in form of the new multi-circuit cuts (9) thaé just introduced here, may still cut the
solution time by roughly one half.

Second, and last but not least, we point out the high seitgithat the models show with respect
to certain specific multi-circuit cuts (9). As an example,tbe instance H2 we had to make the
following observation. With just inequalities (5) and (Bibg added, a solution time of 263s can be
observed, cf. Table 2. Then, adding just the fingt multi-circuit cuts (9) that our separation heuristic
found, the solution time is cut by more thad% to less than 70s. But adding the next two such cuts,
we end with a solution time of even 392s. In other words, if ua pdded the first two cuts, instead
of all the 25 that we were able to separate, in Table 2 we coaNe heplaced the value 349s in the
H2 row with only 70s. ..

On the one hand, this underlines that multi-circuit cutsrféled have some effect. On the other
hand, this asks for an understanding on which particulas ofi¢hese cuts are the “right” ones.

8 Conclusions

We introduced multi-circuit cuts as new valid inequalitfes the Periodic Event Scheduling Prob-
lem (PESP). These live in its second @kad closure. For a particular family of infeasible PESP
instances, we managed to prove that its first @&alvclosure is nonempty. And even adding all
change-cycle inequalities, of which we further proved thaeneral they appear only in much larger
closures, does not turn the status to infeasible. Henczaifirst theoretical merit of the multi-circuit
cuts to certify infeasibility of these particular instasc€omplementary to this, in our computational
study, we observed that multi-circuit cuts are likely toueel the solution time of CPLEX 11 on PESP
IP models.

We admit that up to now, our separation has not really beeadtuiMore theoretical insight is
needed to distinguish between helpful multi-circuit catsd unproductive ones. We are very much
confident that with such an additional insight, adding jhst helpful multi-circuit cuts willalways
improve on the two other settings that we considered in Tablén addition, practically efficient
separation heuristics for multi-circuit cuts are requijr@dparticular if we want to use these cuts in
a branch-and-cut context, too. But also any further newselaisf valid inequalities from whichever
Chvatal closure will be equally welcome — given that they havae@positive) effect on the solution
behavior of CPLEX 11.
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To summarize, of course multi-circuit cuts are not the enthefstory in the solution of PESP
instances. However, we feel that these are one step forwaréipromising direction.
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