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Abstract

Recommender Systems and Matchmaker Systems utilize Information Filter-
ing technologies in order to provide personalized information in the form of
recommendations of items or users with similar interests, based on a user’s
long-term information needs, which are in turn derived from personal data
and personal preferences. These systems are inherently privacy-critical be-
cause they essentially require personal data. Systems for sensitive domains in
particular are not likely to be widely accepted by users unless they preserve
the privacy of the user data they operate on. At the same time, Informa-
tion Filtering technology providers as well as information providers have to
be sufficiently motivated to develop and run privacy-friendly Recommender
Systems and Matchmaker Systems. In the optimal case, these systems are
multilaterally privacy-preserving in the sense that the privacy of all partici-
pating entities is preserved adequately.

This work describes an approach for distributed multilateral Privacy-
Preserving Information Filtering based on Multi-Agent System technology,
which due to the capabilities of agents is an obvious choice for realizing
distributed privacy-preserving Recommender Systems and Matchmaker Sys-
tems. As prerequisites, we introduce mechanisms for controlling the com-
munication capabilities of agents, which are mainly used in order to prevent
agents from disclosing private data, as well as a solution for transparent per-
sistence of data within Multi-Agent Systems, which is used in order to realize
generic interactions between agents in our approach. As the core of the work,
we specify two modules which allow the realization of privacy-preserving Rec-
ommender Systems as well as privacy-preserving Matchmaker Systems. The
underlying agent interactions are based on cryptographic protocols, which
protect participants against malicious adversaries attempting to obtain or
propagate private data. We describe and examine filtering techniques that
are suitable for our approach. We also describe a prototypical application
based on these building blocks, and we evaluate the overall feasibility of the
approach in terms of functional and non-functional requirements of privacy-
preserving Information Filtering technologies.
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Zusammenfassung

Empfehlungssysteme und Matchmaker-Systeme verwenden Technologien zur
Informationsfilterung, um personalisierte Informationen in Form von Empfeh-
lungen von Objekten oder Benutzern mit ähnlichen Interessen zu liefern. Die-
se Empfehlungen basieren auf langfristigen Informationsbedürfnissen eines
Benutzers, welche aus den persönlichen Daten und persönlichen Präferenzen
dieses Benutzers abgeleitet werden. Aufgrund dieses expliziten Bedarfs an
persönlichen Daten ist in derartigen Systemen die Privatheit der Benutzer
inhärent bedroht. Insbesondere in sensiblen Domänen werden diese Syste-
me wahrscheinlich nur auf breite Akzeptenz stoßen, wenn sie die Privat-
heit der zugrundeliegenden Benutzerdaten bewahren. Gleichzeitig müssen die
Anbieter von Technologien zur Informationsfilterung und die Anbieter der
zugrundeliegenden Informationen hinreichend motiviert sein, privatheitsun-
terstützende Empfehlungssysteme und Matchmaker-Systeme zu entwickeln
und zu betreiben. Optimalerweise berücksichtigen derartige Systeme die Pri-
vatheit aller beteiligten Parteien und sind somit mehrseitig privatheitsbe-
wahrend.

Diese Arbeit beschreibt einen Ansatz zur verteilten mehrseitigen privat-
heitsbewahrenden Informationsfilterung, basierend auf Multiagentensystem-
Technologie. Aufgrund der Fähigkeiten von Agenten liegt es nahe, diese
Technologie zur Umsetzung von verteilten Empfehlungssystemen und Match-
maker-Systemen einzusetzen. Als Grundlagen beschreibt diese Arbeit Mecha-
nismen zur Einschränkung der Kommunikationsfähigkeiten von Agenten und
eine Lösung für transparente Persistenz von Daten in Multiagentensystemen.
Erstere werden verwendet, um Agenten an der unkontrollierten Weitergabe
von privaten Daten zu hindern, während letztere verwendet wird, um gene-
rische Interaktionen zwischen den beteiligten Agenten zu ermöglichen. Den
Kern der Arbeit stellt die Spezifikation zweier Module dar, welche die Umset-
zung von privatheitsbewahrenden Empfehlungssystemen und Matchmaker-
Systemen ermöglichen. Die zugrundeliegenden Interaktionen zwischen Agen-
ten basieren auf kryptographischen Protokollen, welche von die beteiligten
Parteien zum Schutz vor böswilligen Angriffen verwendet werden, in denen
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versucht wird, private Daten zu erhalten oder weiterzuverbreiten. Die Arbeit
beschreibt und bewertet Filterverfahren, die unter den gegebenen Bedingun-
gen einsetzbar sind. Weiterhin beschreibt die Arbeit eine prototypische An-
wendung, welche auf diesen Modulen aufbaut, und evaluiert abschließend
den gesamten Ansatz, basierend auf den funktionalen und nichtfunktionalen
Anforderungen von Technologien zur privatheitsbewahrenden Informations-
filterung.
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Chapter 1

Introduction

The total quantity of information stored in electronic format is increasing
exponentially [80]. Consequently, human users accessing information are
increasingly threatened by information overload, i.e. by the fact that the
amount of information available on a specific topic cannot be handled man-
ually any more.

Information Retrieval (IR) technologies enable users to specify short-term
information needs e.g. via search engines, and receive a manageable amount
of relevant information meeting their information needs. In many cases, how-
ever, users have long-term information needs which are only met inadequately
by the use of IR technologies because the respective information changes dy-
namically. As an example, if a user intends to keep track of new publications
within a specific area, he would have to specify the same information need
over and over again when using a search engine, and he would have to filter
the results manually in order to determine which results actually have not
been received before.

Information Filtering (IF) technologies, as the name implies, are a so-
lution for this problem, because they enable users to specify long-term in-
formation needs and to receive the respective information in an manageable
manner: Utilizing IF-based Recommender Systems or Matchmaker Systems,
a user is provided with probably relevant information in the form of rec-
ommendations (e.g. of documents or other users) that are determined based
on information known about the user. This personal information is stored
in a user profile and may contain the user’s general preferences, ratings of
information obtained previously, or references to other users with similar
interests.

Shifting the task of filtering relevant information from the user to a soft-
ware system effectively eliminates the threat of information overload, but un-
fortunately introduces threats with regard to the privacy of the user: While
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the use of IR technologies such as search engines is generally not privacy-
critical because single queries cannot be used to obtain information about a
user1, the use of IF technologies is inherently privacy-critical because these
technologies explicitly require personal data.

This apparent discrepancy of personalization and privacy has to be over-
come if solutions based on IF technologies are to be widely accepted. While
users may be less concerned about their privacy in domains covered by ex-
isting Recommender Systems used e.g. in e-commerce applications, Recom-
mender Systems for more sensitive domains providing e.g. financial or health-
related information are not likely to be accepted unless they address privacy
threats. At the same time, providers have to be motivated sufficiently to offer
privacy-friendly Recommender Systems, which they may initially regard as
problematic because these systems cause customer data to be less accessible.

While there are several candidates for technologies which may be used
to realize a solution for privacy-preserving information filtering, this work
shows that Multi-Agent System technology is ideally suitable for realizing
a distributed system with the given requirements. Therefore, the solution
described in this work does not merely constitute the realization of an ab-
stract specification in the context of a Multi-Agent System (MAS) system,
but rather an approach which essentially requires the features provided by
MAS technology.

We summarize these aspects as the main motivation for this work:

� The main goal of this work is to provide a solution for Privacy-Pre-
serving Information Filtering in which the aspects of personalization
and privacy are no longer irreconcilable. Users intending to receive
personalized information should not have to give up their privacy with
regard to the personal data this information is based on.

� The solution should not preserve the privacy of the users at the cost of
reducing the privacy of the other participants, such as the information
provider. Rather, it should address the privacy of all participants and
thus achieve multilateral privacy.

� In addition to these goals, the work is also motivated by the idea of real-
izing a solution which highlights the capabilities of Multi-Agent System

1The privacy of users is at risk, however, when it is possible to link larger numbers of
queries to a single user, even when the respective user is not directly identifiable. As a
recent example, when AOL released 20 million pseudonymized search engine queries from
several hundreds of thousands of users in 2006, it was possible to reconstruct the identities
and information needs of users based on their queries.
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technology and shows the potential benefits of a wider propagation of
this technology.

1.1 Main Contributions

As its title implies, this work describes an approach for Privacy-Preserving
Information Filtering, which consists of five main parts as the main contri-
butions of this work:

� We introduce mechanisms for controlling the communication capabili-
ties of agents, which are mainly used in order to prevent agents from
disclosing private data.

� We introduce a mechanism for transparent persistence of data within
a MAS, which is used in order to realize generic interactions between
participants in our approach.

� We specify interactions and protocols used to realize privacy-preserving
Recommender Systems.

� We specify interactions and protocols used to realize privacy-preserving
Matchmaker Systems, i.e. systems determining users with similar in-
terests.

� We examine and describe filtering techniques that are suitable for our
approach.

Work and results related to this thesis has been published in the following
papers and articles:

� R. Cissée. An Architecture for Agent-Based Privacy-Preserving infor-
mation filtering. In Proceedings of the 6th International Workshop on
Trust, Privacy, Deception and Fraud in Agent Systems, 2003.[31].

� R. Cissée and S. Albayrak. An Agent-Based Approach for Privacy-
Preserving Recommender Systems. In E. H. Durfee, M. Yokoo, M.
N. Huhns, and O. Shehory, editors, 6th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2007),
Honolulu, Hawaii, USA, May 14–18, 2007, IFAAMAS, 2007.[32].

� J. Wohltorf, R. Cissée, and A. Rieger. Berlintainment: An Agent-
Based Context-Aware Entertainment Planning System. IEEE Com-
munications Magazine, 43(6), 2005.[117].
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The first publication mainly contains the initial ideas of this work. The
second publication summarizes the results of this thesis, focusing on the cen-
tral aspects of communication control and Recommender System function-
ality. The third publication primarily describes the prototypical application
in which our solution for PPIF has been utilized.

1.2 Structure of the Thesis

This thesis consists of the following four main parts, as shown in Table 1.1:

Table 1.1: Overview of the structure of the Thesis.
Part Chapter

I context
1 Introduction
2 Problem Description
3 Related Work

II approach

4 Privacy-Preserving Information Filtering
5 Basic Infrastructure
6 Transparent Persistence
7 The Recommender Module
8 The Matchmaker Module
9 Exemplary Filtering Techniques

III review
10 Evaluation
11 Conclusion & Outlook

IV details

A Specification of Ontologies, Roles and
Interactions

B Basic Infrastructure: Examples
C Exemplary Filtering Techniques: Examples

� The first part provides the context for our work. It comprises this chap-
ter as the introduction and the two following chapters: Chapter 2 de-
scribes the problems and states the requirements of Privacy-Preserving
Information Filtering (PPIF), by addressing the two areas of privacy
and Information Filtering separately and in combination. It provides
definitions used throughout the work, and lists requirements for PPIF.
As our solution for PPIF is realized via Multi-Agent System (MAS)
technology, it also provides definitions used in this context, and de-
scribes the central problem of malicious hosts in MAS systems. Chap-
ter 3 reviews related work in the areas of Privacy-Enhancing Technol-
ogies and Privacy-Preserving Technologies, and the state of the art in
privacy-preserving Information Filtering.
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� The second and main part describes our approach. It comprises a chap-
ter outlining the overall approach and implemention, and five chapters
describing the main components of our approach: Chapter 4 lists the
supported use cases and gives a high-level outline of our solution for
PPIF, based on two essential concepts, namely the concept of a trusted
environment for protecting privacy in Recommender Systems, and the
additional concept of an anonymous centralized model for protecting
privacy in Matchmaker Systems. It motivates the use of MAS technol-
ogy in this context, and describes the implementation of the approach
itself as well as the implementation of a prototypical application based
on the approach. Chapter 5 describes basic functionality for controlling
the communication capabilities of agents, and functionality for anony-
mous communication of agents. Chapter 6 describes an approach for
Transparent Persistence in Multi-Agent Systems (TPMAS). Chapter 7
describes functionality for realizing Recommender System functional-
ity. Chapter 8 describes functionality for realizing Matchmaker System
functionality. Chapter 9 describes exemplary filtering techniques that
are applicable in this context.

� The third part constitutes a review our approach. It comprises the
following two chapters: Chapter 10 evaluates our approach for Priva-
cy-Preserving Information Filtering. It discusses the coverage of the
non-functional and functional requirements by our approach and by
the implemented application. It also compares our approach with ap-
proaches based on trusted software, and provides usage guidelines for
applying the functionality specified in our approach. Chapter 11 con-
cludes the work by discussing the applicability of the approach in large-
scale real-world applications and by discussing directions for further
research.

� The forth part provides details of our approach. It comprises the fol-
lowing three appendices: Appendix A provides tables and diagrams
containing the formal specification of the components of our approach
for Privacy-Preserving Information Filtering. Appendix B illustrates
the interactions for controlling communication. Appendix C provides
a brief example for the algorithm used by a suitable filtering technique,
namely hierarchical agglomerative clustering via single-link clustering.

By mapping each main contribution of this work to the respective chapter
of the main part of the thesis, the structure of the second part directly
represents the main contributions of this work.
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1.3 Methodology and Notation Conventions

Analysis and design of the main components of our approach is kept as generic
as possible. We follow the Gaia methodology [120] for Agent-Oriented Soft-
ware Engineering and use AUML [11] as the modeling language for diagrams.
As utilizing all steps of the Gaia methodology in this work would be neither
illustrative nor practicable, we concentrate on the essential steps, i.e. mainly
the analysis and design phases.

1.3.1 Analysis Section

Each analysis section combines the analysis and architectural design phase
of the Gaia methodology. For every module, the analysis section contains
the ontologies in which the required domain knowledge is conceptualized
and specified. An ontology consists of categories and ontology functions
which may be applied to these categories. Categories contain attributes,
whereas each attribute has type, which may be a base type or a category type.
Categories may inherit attributes from other categories. For the notation of
ontologies, we use AUML-based diagrams.

Furthermore, the analysis section contains the role model describing the
participating roles and interactions. Roles are denoted as ExemplaryRole.
The responsibilities of a role are specified as lifeness expressions exemplary-
Rolei with i = 1, .., n. Internal activities are denoted as ExemplaryActivity.
Interactions are denoted as ExemplaryInteraction. An interaction consists of
single communication steps as protocol parts, denoted as intsi for the sender
role and intri for the receiver role in the interaction Int, with i = 1, .., n.
However, when specifying an interaction, we usually abstract from single
communication steps in the overall protocol and just indicate the following
three protocol parts:

IntI
def
= ints1.intrn

IntR
def
= intr1

IntP
def
= intsn
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Interactions may be interleaving. As an example, the lifeness expressions

firstRole = FirstIntI

secondRole = FirstIntR.SecondIntI .FirstIntP

thirdRole = SecondIntR.SecondIntP

imply that the actual communication steps may be carried out as follows:

firstRole = firstInts1.firstIntr2.firstInts3.firstIntr4

secondRole = firstIntr1.secondInts1.secondIntr2.firstInts2.

firstIntr3.secondInts3.secondIntr4.firstInts4

thirdRole = secondIntr1.secondInts2.secondIntr3.secondInts4

Interactions may be anonymous. A mechanism for anonymous interac-
tion realizing anonymity of the initiator as well as unlinkability of the single
communication steps is described in Chapter 5. A protocol part in which
the respective participant remains anonymous is indicated as Intanon

I . If the
interaction consists of more than the minimal two communication steps, sub-
sequent pairs of communication steps may be assumed to be unlinkable.

Interactions are visualized via AUML-based collaboration diagrams. Here,
instances of a specific role are denoted as “id:RoleName”, or as “id@platform-
id:RoleName”, if the platform configuration for the deployment of the agents
realizing the respective roles is relevant.

1.3.2 Design & Implementation Section

Each design section addresses the steps of the detailed design phase of the
Gaia methodology. Based on the role model, an agent model is specified.
Agents are denoted as ExemplaryAgent. Agent services are denoted as
ExemplaryAgentService. In most cases, the mapping of roles to agents and
interactions to agent services is rather straightforward and therefore not de-
scribed in detail. Details of the implementation of the parts of our approach
that are realized as agent services are omitted for the same reason. Instead,
we focus on implementation aspects only when the respective functionality
has not been specified in terms of ontologies, roles, and interactions as de-
scribed above.
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1.3.3 Cryptographic Protocols

For the cryptographic protocols used within our approach, a standard nota-
tion following [20] is used where each protocol step is written as

n : S → R : m

where n indicates the protocol step, S and R two principals, namely the
sender and receiver, and m the message.

Steps that may be carried out in parallel are denoted as na, nb, etc.
Anonymous communication is denoted as nanon(S) and nanon(R) for sender and
receiver anonymity respectively. A message contains data X = {x1, .., xp},
which is often processed by a specific function f (such as an encryption
function), i.e. m = f(X). A protocol step may be carried out iteratively for
the partial data of a message, in order to achieve unlinkability of the data.
This is denoted as

∀x∈ X : nx : S → R : f(x).

If there are subsequent iterations on the same data, as in the following
example

∀x∈ X : nx : A→ B : f(x)

∀x∈ X : (n+1)x : B → C : g(x),

the step (n + 1)xi
may be carried out as soon as the step nxi

is finished,
without the complete step n being required to have been completed.

Encryption functions are denoted as follows: The term fK(x) denotes a
statement x encrypted with a key K under a specific encryption function
f . If f is implicitly given, we use {x}K as a short expression. The term
f ′K(x) denotes a encrypted statement x decrypted with a key K under a
specific decryption function f ′. The protocols in this work are largely based
on symmetric encryption schemes, i.e. schemes where a single key is used
for both encryption and decryption2, so that f ′K({x}K) = x. In asymmetric
encryption schemes, a public key K is used for encryption, and a private
key K ′ for decryption, where the private key cannot be derived from the
public key in a feasible manner, so that f ′K′({x}K) = x. Conversely, a digital

2The actual key used for decryption may differ from the actual key used for encryption
as long as the keys are trivially related.
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signature s of statement x is usually obtained via encryption of its hash with
a private key, i.e. sK′(h(x)) = {h(x)}K′ . It is verifiable via the public key K
as f ′K({h(x)}K′) = h(x).

We denote the encryption of a set of statements X = {x1, .., xp} as
{X}K = ({x1}Kx1

, .., {xp}Kxp
). The keys Kx1 to Kxp may actually be the

same key, but different keys may have to be used depending on the protocol
and the encryption scheme. A secret key known only to principal A at the
start of the protocol is written as KA. A key shared between two principals
A and B is written as KAB.

An encrypted hash of message m is denoted as h(m), where h denotes a
cryptographic hash function, i.e. a function returning a fixed-size string for a
message of arbitrary length with the following additional properties:

� Preimage resistant: For a given h(m) and unknown m, it should be
hard (i.e. computationally infeasible) to find messages m′ with h(m′) =
h(m).

� Second preimage resistant: For a given m, it should be hard to find
messages m′ with h(m′) = h(m).

� Collision-resistant: It should be hard to find any two messages m and
m′ with h(m′) = h(m).

In order to be able to verify both the integrity and the authenticity of
a message, a keyed-Hash Message Authentication Code (HMAC) may be
generated, based on a cryptographic hash function and a secret key, via
HMACK(m) = h(K∗ + h(K∗ + m)) with K∗ being the key K padded
with extra zeroes as required by the hash function. Analogous to using
{m}K as a short expression for an encrypted message, we use {h(m)}K as
a short expression for a HMAC. We also use H(M) as a short expres-
sion for {h(m1), h(m2), .., h(mn)} with M = {m1,m2, ..,mn}. Note that
H(M) 6= h(M), because the latter expression denotes a single hash of a set
of messages, while the former expression denotes a set of hashes of single
messages.

9





Chapter 2

Problem Description

This work deals with privacy in the context of Information Filtering (IF). In
order to be able to describe problems and state the requirements of Priva-
cy-Preserving Information Filtering (PPIF), we first address these two areas
separately, and provide definitions used throughout the work. Subsequently,
we examine the intersection of the two areas and list requirements for PPIF.
As our approach for PPIF is realized via Multi-Agent System (MAS) tech-
nology, we also provide definitions used in this context, and describe the
central problem of malicious hosts in MAS systems. Thus, this chapter is
structured as follows: The following section deals with privacy in general.
Section 2.2 introduces concepts, definitions and architectures related to of
Information Filtering. Section 2.3 discusses the aspect of privacy in the con-
text of Information Filtering architectures, and states the requirements for
Privacy-Preserving Information Filtering. Section 2.4 deals with MAS tech-
nology. Section 2.5 summarizes the results of this chapter.

2.1 Privacy

In this section, we establish a definition of privacy that is used throughout
this work, and we give a short overview of different strategies for protecting
privacy, one of which we follow in this work.

2.1.1 Definitions

The term privacy describes a fundamental human right recognized by soci-
eties worldwide [43]. There is, however, no single universally accepted defi-
nition of privacy. Many different definitions of privacy have been proposed,
mainly because the concept of privacy encompasses different aspects whose
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importance cannot be quantified objectively, leading to either very broad or
extremely narrow definitions. Furthermore, different definitions arise from
attempts to distinguish between the related concepts of privacy, confiden-
tiality, and secrecy. In the following, we restrict the discussion to largely
accepted definitions that are most suitable in the context of this work.

The following definition is given by political scientist Alan Westin: “[Pri-
vacy is] the claim of individuals, groups, or institutions to determine for
themselves when, how, and to what extent information about them is com-
municated to others” [116]. It is extended and complemented by the defi-
nition given by psychologist Roger Ingham: “Privacy is concerned with the
claim that individuals or groups have to determine for themselves how, when
and to what extent certain aspects of their behavior are determined by oth-
ers, behavior in this context being generously defined” [63]. Taken together,
these definitions encompass most aspects of privacy. They agree on the fact
that privacy is related to the ability to create barriers between individuals
or groups on the one hand and the society or parts thereof on the other
hand. They focus, however, on different aspects of these barriers: They may
be used in order to prevent the dissemination of information (according to
Westin’s definition), i.e. as active privacy protection, or in order to protect
against intrusions (according to Ingham’s definition), i.e. as passive privacy
protection. In the first case, the initiative originates from the individual or
group trying to expand or at least maintain a barrier, while in the latter case
the initiative is taken by another party trying to breach a barrier.

There are two further aspects of privacy, which are largely orthogonal to
the aspects described above:

� Physical privacy is defined as “freedom from unauthorized intrusion”
[83], or, more precisely, as “a restriction on the ability of others to
experience a person through one or more of the five senses” [88]. It
has been recognized as a basic right by future Supreme Court justice
Brandeis as early as 1890 [115], defining it as the “right to be let alone”
in 1928 [105]. These definitions show that physical privacy is more
closely related to passive privacy.

� Informational privacy is often merged with concept of data protection.
It is best defined as a right to informational self-determination, au-
thorizing “each individual to determine on the circulation and the use
of his own personal data”1 [18], thus controlling the dissemination of
personal information. While sometimes a distinction is made between

1Translated from the definition “die Befugnis des Einzelnen, grundsätzlich selbst über
die Preisgabe und Verwendung seiner persönlichen Daten zu bestimmen.”
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individuals and organizations with regard to this aspect, it is in fact
reasonable to apply this definition to groups and organizations as well,
as in the definitions of Westin and Ingham given above. Another as-
pect of informational privacy is the “protection against intrusion by
unwanted information” [87]. Informational privacy is therefore more
closely related to active privacy.

Based on the given definitions, we define four aspects of privacy as shown
in Figure 2.1. The combinations of these aspects are roughly equivalent to
the four aspects of privacy as defined by Westin [116]:

� Solitude, i.e. the separation from direct or indirect observation and in-
terference by others, is related to the passive aspect of physical privacy.

� Intimacy, i.e. the ability to keep physical interactions and communica-
tion private, is related to the active aspect of physical privacy.

� Reserve, i.e. the decision not to reveal certain information to others, is
related to the active aspect of informational privacy.

� Anonymity, i.e. The avoidance of identification, is related to the passive
aspect of informational privacy. This relation, however, is less close
than the relations regarding the previous aspects.

Figure 2.1: Aspects of privacy.

In this work, we focus on informational privacy and disregard aspects
of physical privacy. Therefore, in the following the term “privacy” always
denotes informational privacy.
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2.1.2 Strategies for Protecting Privacy

The active protection of informational privacy is a non-trivial task, because
controlling the dissemination of information is almost impossible in scenarios
that require more complex actions than all-or-nothing approaches: Allowing
unrestricted access to information as the one extreme, or withholding infor-
mation entirely as the other extreme are approaches that may be accom-
plished in a straightforward manner. However, these approaches are insuffi-
cient in cases where the respective information actually has to be propagated
to certain other parties, but at the same time is intended to be kept under
some control with regard to further dissemination.

The main problem therefore is the following: How may a party prevent
further dissemination of information once it has lost the exclusive control over
this information? There are three main strategies addressing this problem:

� Legal Regulation: In most developed countries, legal regulations exist
that deal with the protection of privacy. As examples, we review the
current situation in the United States of America and the European
Union.

In the United States, privacy as a fundamental human right is not ex-
plicitly addressed in the Constitution. Specific aspects of privacy, how-
ever, are protected implicitly, e.g. by the Fourth Amendment (address-
ing the passive aspect of physical privacy), or the First Amendment
(addressing the active aspect of privacy). Currently the main founda-
tion for data protection and informational privacy in the United States
are the Principles of Fair Information Practices based on the Code of
Fair Information Practices [109] and further refined in OECD guide-
lines [89]. They are agreed upon by industry groups, privacy experts
and the United States government. The Fair Information Principles are
intended to limit data collection and to enable individuals to control
the dissemination of their personal information.

In the European Union, the key document addressing privacy is Direc-
tive 95/46/EC of the European Parliament, known as the European
Union Privacy Directive or European Union (EU) Data Protection Di-
rective [40], which binds member states of the European Union to ratify
laws implementing its requirements. The directive restricts the collec-
tion and processing of personal information, and prohibits the transfer
of personal information to entities for whom less strict legal regulations
apply, such as companies in non-member states. Additionally, the safe
harbor framework has been introduced to allow the transfer of personal
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data between the EU and the United States, comprising seven princi-
ples consistent with the Principles of Fair Information Practices. Some
member states of the EU have introduced more extensive privacy and
data protection regulations.

� Self-Regulation: Today, the processing of personal information collected
via the internet, i.e. by web sites accessed by users in the context of
e-Commerce, is mainly regulated by privacy policies posted on the re-
spective site. These privacy policies are generally not legally binding
and therefore constitute mechanisms within the area of self-regulation.
Comprehensive privacy policies should, according to the Fair Informa-
tion Principles, address at least the following principles:

– Notice/ Awareness: The user has to be noticed of the provider’s
privacy policy before any information about the user is collected.
If the user is not aware of the provider’s privacy policy, the fol-
lowing principles are meaningless.

– Choice/ Consent: The user has to be given the possibility to ex-
plicitly decline the collection and further dissemination of personal
information, i.e. the ability to opt-out, or preferably the possibility
to explicitly allow these actions, i.e. the ability to opt-in.

– Access/ Participation: The user has to be given means to access
all personal information collected about him and has to be able
to change or delete at least information that is inaccurate.

– Security/ Integrity: The collected personal information should be
stored securely without third parties being able to obtain it. Ad-
ditionally, the integrity of the information should be ensured.

– Enforcement/ Redress: The provider should act according to his
stated privacy policy. If there is no enforcement mechanism in
place (by legal regulation, external audits, certification or other
means), the privacy policy is merely an assertion of the provider
rather than an agreement between the two parties involved.

Privacy seal programs have been introduced in order to inform users
of the enforcement of privacy policies. Compared to standard privacy
policies, they have two advantages: The user may decide immediately
whether he wants to interact with a provider, based on the displayed
seals. If the user trusts the seal issuer, he does not have to deal with
the respective privacy policy itself, which is in many cases rather com-
plicated and hard to interpret for users who are not familiar with legal
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terminology. Furthermore, the user probably trusts an independent
seal issuer more readily than he would trust a single, perhaps formerly
unknown provider. It has been pointed out, however, that current seal
programs generally do not enforce sanctions against malicious providers
and are therefore largely ineffective [33].

� Technology: A wide range of Privacy-Enhancing Technologies and Pri-
vacy-Preserving Technologies have been suggested and implemented,
addressing different aspects of privacy in the context of various ap-
plications. These approaches are discussed in detail in the following
chapter.

For all practical purposes, all three approaches ultimately require some
amount of trust: The user whose privacy is to be protected has either to
trust in the responsible legislative, executive and judicial offices to actually
enforce legal regulations, prosecute violations, and abide by these regula-
tions; or he has to trust in the parties he interacts with to adhere to the
stated self-regulatory principles; or he has to trust in the technology that is
applied to work as specified. However, strategies based on technology may
(at least theoretically) not require trust, because the technologies used my
be examined and verified by the user (although in practice most users do
not have the required knowledge to do so). In this work we focus on privacy
protection through technology and therefore subsequently ignore the other
strategies.

2.2 Information Filtering

In this section, we provide definitions that are relevant in the context of In-
formation Filtering, we discuss the main types of IF architectures, and we
list the main problems of IF architectures.

2.2.1 Definitions

In the following, the definitions of the most important terms related to In-
formation Filtering are given.

� The term “Personalization” in its broadest definition denotes the adap-
tion of products or services to individual consumers or users, based on
the acquisition and analysis of personal information, i.e. information re-
lated to a single specific person. It is used mainly in the context of Web

16



Personalization (i.e. in the context of personalized web sites and person-
alized content provided via the World Wide Web) [70], but the underly-
ing concepts have been widely researched under the designation “User
Modelling and User-Adaptive Interaction” [71]. Related terms often
used synonymously are “Customer Relationship Management (CRM)”
and “1-to-1 Marketing”.

� The term “Information Filtering” denotes concepts and methods used
to provide personalized information. Systems dealing with other as-
pects of personalization, such as personalized user interfaces, do not
constitute IF systems. IF differs from the related field of Informa-
tion Retrieval in the following aspect: While the objective of IR sys-
tems, such as search engines, is the fulfillment of short-term information
needs, IF systems deal with long-term information needs. Therefore,
while IR systems are based on queries expressing an ephemeral infor-
mation need, IF systems are usually based on user profiles expressing
persistent information needs. An IF system may contain IR functional-
ity, e.g. for refining a long-term information need in a specific context,
resulting in a combination of both kinds of information needs. An ex-
emplary scenario is described in 4.1. Moreover, Information Filtering
is distinguished from the related field of Web Mining by the following
definitions: While Web Mining systems search for relevant informa-
tion across multiple web resources, IF systems operate on structured
information already at hand.

� The term “Recommender System” (synonymous with “Recommenda-
tion System”) originally denoted a system for Automated Collaborative
Filtering [96]. The definition, however, has been broadened and now
denotes “any system that produces individualized recommendations as
output or has the effect of guiding the user in a personalized way to
interesting or useful objects in a large space of possible options” [19].

� The term “Matchmaker System” (synonymous with “Matchmaking
System”) denotes a system aiming at introducing similar users to each
other [45]. In this context, similarity is usually determined via personal
user profiles which contain general preferences and additional data in-
dicating a user’s interests. It should be noted that especially in the
context of MAS architectures, the term sometimes denotes a different
kind of system, namely a system assisting users or agents in finding
and accessing certain resources [74]. We do not follow this definition
in this work.
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According to these definitions, an IF system can be classified as a Rec-
ommender System, a Matchmaker System, or as a Hybrid IF System, i.e. a
combination of both: A Matchmaker System may be combined with a Recom-
mender System, usually by generating personalized information via similar
users. A pure Recommender System may also determine similar users as an
intermediate step in the process of generating personalized information, but
does not introduce similar users to each other. In other words, it is possible
to generate personalized information via similar users, but it is not always
possible to determine similar users via personalized information. Regarding
Matchmaker Systems and Hybrid IF Systems, we additionally distinguish
between centralized and distributed approaches, depending on the prevalent
mode of interaction, as described below. Figure 2.2 shows the relation be-
tween these systems and the related areas.

Figure 2.2: A classification of Information Filtering systems (in
black) and related areas (in gray).

An IF system consists of three main kinds of abstract entities:

� The user, who intends to receive personalized information. Addition-
ally, users may provide feedback in order to improve the quality of the
IF system. The user entity directly or indirectly (e.g. via a user agent)
represents a human user2. In distributed IF systems, the user entity
also directly participates in the process of generating personalized in-
formation for a specific, different user entity.

2In some systems, additional artificial user entities are introduced: It has been sug-
gested, for example, to utilize software agents in order to simulate human users with the
goal of improving the quality of recommendations by creating additional ratings [59].
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� The provider, who provides the information based on which ultimately
personalized information is generated, and from which user profile items
are obtained. The provider entity usually represents a legal entity, such
as a company. In non-distributed IF systems, the provider entity also
directly participates in the process of generating personalized informa-
tion for a specific user entity.

� The filter, who provides filtering techniques as collections of algorithms
for generating personalized information. The filter entity usually rep-
resents a legal entity, such as a company.

Table 2.1 gives an overview of these and further terms used in the follow-
ing formal definitions.

Table 2.1: Terminology used in the context of Information Fil-
tering systems throughout this work.

Notation Term

u user entity
U the set of all user entities
p provider entity
f filter entity
s supplier entity, s ∈ {u, p}
i item
I a set of items
PR a profile
qIR(PR) constrained profile

(as result of IR-based query on a profile)
qIF (PR) partial profile

(as result of IF-based query on a profile)
m a profile model
ft filtering technique
FT the set of all filtering techniques
pp filtering technique algorithm (used

during the information processing stage)
ff filtering technique algorithm (used

during the information filtering stage)
pred a prediction of relevance
REC a set of recommendations
SU a set of similar user entities
RES a set of results

(recommendations or similar user entities)
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Because users generally do not want to re-enter personal information for
every single filtering process, and the amount of provider information often
prohibits the direct application of a filtering technique to large collections of
data, an IF system consists of two additional stages preceding the information
filtering stage itself. Thus, we define three separate stages in an IF system:

� Information Collection Stage: In the first stage, the data to be used
as the input for subsequent filtering processes is collected. This stage
is independent of the actual filtering technique. On the user side, a
user profile is generated and maintained based on interaction with the
user and/or observation of the user’s actions: The user profile contains
profile elements, which are items (provided by the provider or a different
source) that have been rated either explicitly by the user himself, or
implicitly by analyzing the user’s behavior. Items usually contain pairs
of attributes and values. The user profile may also contain general
preferences of the user, or additional information, such as personally
identifying information and demographic data. On the provider side, a
provider profile is provided (via an unspecified mechanism) containing
a (usually large) collection of items of a specific domain. The formal
definition of a profile is given in Equation 2.1. As entities supplying
profiles, both user entity and provider entity are subsumed as supplier
entities.

� Information Processing Stage: In the second stage, the data collected
in the first stage is processed further as a preparation for the final stage.
Based on the profile elements and an actual filtering technique, models
are created on the user and provider side. These models constitute an
additional part of the respective profile, which is therefore defined as
described by Equation 2.1.

PRs = Is ∪
⋃

ft∈FT

mIs,ft (2.1)

Simple filtering techniques may use the profile elements themselves as
input (on one side or on both sides), but in most cases models are
generated and maintained in order to reduce the complexity of the
final stage, or because the underlying algorithm explicitly requires a
model. In any case, the structure of the model depends on the filtering
technique to be applied. Exemplary models are neural networks, data
clusters, and decision trees. Based on the way the models are generated
and maintained, we distinguish between two main groups of filtering
techniques:
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– In feature-based approaches the models are generated and main-
tained separately for the user and provider side, based solely on
the features of the respective profile items. Data is not exchanged
between different profiles. Therefore, feature-based models are
defined as described by Equation 2.2.

mIs,ft = ppft(Is) (2.2)

– In collaboration-based approaches the models are generated and
maintained via a collaboration of entities, usually different user
entities and a provider entity. Provider models therefore contain
user profile data, and user models may contain provider profile
data as well. Therefore, collaboration-based models are defined
as described by Equation 2.3 and Equation 2.4.

mIu,ft = ppft(Iu, Ip) (2.3)

mIp,ft = ppft(Ip,
⋃
u∈U

Iu) (2.4)

� Information Filtering Stage: In the third and final stage, the filtering
technique is applied to two profiles (either to the profile items or to
models) in order to generate personalized information. The personal-
ized information is always generated for a user. The information the
personalized information is based on is supplied by a provider entity
or a different user entity, i.e. s = p or s = u′′. A process of this stage
generates one of the following four main kinds of results:

– A prediction of the relevance of a specific item for the given user.
In this case, the item in question has to be provided as additional
input to the filtering technique, and a filtering algorithm as defined
in Equation 2.5 is required. The supplier is the provider (in a
Recommender System or a non-distributed Hybrid IF System) or
a different, presumably similar user (in a distributed Hybrid IF
System). The prediction values are usually defined as a range of
possible values, where a higher value indicates a higher predicted
relevance. Additionally, the value reflects the relevance in relation
to other candidate items available to the supplier. Otherwise, a
supplier profile would not actually be required by the filtering
algorithm.

predu,s,ft,i = ffft(PRu, PRs, i) (2.5)
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– The top-n recommendations for a given user, i.e. a set of n items
(or less, e.g. in case the number of candidate items is smaller than
n) that are recommended to the given user because they have the
highest predicted relevance of all candidate items available to the
supplier that are not already contained within the user profile.
In this case, a filtering algorithm as defined in Equation 2.6 is
required. The supplier is the provider (in a Recommender System
or a non-distributed Hybrid IF System) or a different, presumably
similar user (in a distributed Hybrid IF System).

RECu,s,ft,n = ffft(PRu, PRs, n) =

{i ∈ (PRs \ PRu)| ∀X ⊆ (PRs \ PRu \ {i}) :

|X| < n ∨ ∃ x ∈ X : predu,s,ft,i > predu,s,ft,x}
(2.6)

In case of large supplier profiles, a model-based filtering algorithm
may be used instead, leading to results that may differ somewhat
from this definition.

– A prediction of the similarity of a specific user and the given user.
Similarity may be based on users’ features, preferences, or any
kind of data related to users. The user in question has to be pro-
vided as an additional input to the filtering technique. In this
case, a filtering algorithm as defined in Equation 2.7 is required.
The supplier is the provider (in a Matchmaker System) or a differ-
ent user (in a distributed Matchmaker system), which may either
be a candidate that is likely to be similar itself (i.e. s = u′′ = u′)
or a different user (i.e. s = u′′ 6= u′). For statements applying to
the prediction values, see above.

predu,s,ft,u′ = ffft(PRu, PRs, u
′) (2.7)

– The top-n similar users for a given user, i.e. a set of n users (or
less, e.g. in case the number of candidate users is smaller than n)
that are returned to the given user because they have the highest
predicted similarity value of all candidate users available to the
supplier. In this case, a filtering algorithm as defined in Equation
2.8 is required. The supplier is the provider (in a Matchmaker
System) or a different, presumably similar user (in a distributed
Matchmaker system).
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SUu,s,ft,n = ffft(PRu, PRs, n) =

{u′ ∈ U | ∀X ⊆ (U \ {u′}) :

|X| < n ∨ ∃ x ∈ X : predu,s,ft,u′ > predu,s,ft,x}
(2.8)

In case of large supplier profiles, a model-based filtering algorithm
may be used instead, leading to results that may differ somewhat
from this definition.

Table 2.2: Overview of Information Filtering systems and the
results provided.

supplier: s = p supplier: s = u′′

Recommender System/ distributed
Hybrid IF System Hybrid IF System

input: i predu,p,ft,i predu,u′′,ft,i

input: n RECu,p,ft,n RECu,u′′,ft,n

distributed
Matchmaker System Matchmaker System

input: u′ predu,p,ft,u′ predu,u′′,ft,u′

input: n SUu,p,ft,n SUu,u′′,ft,n

Table 2.2 summarizes the different kinds of IF systems and the results
they provide.

We note that Matchmaker Systems and Hybrid IF Systems require a
collaboration-based approach because they ultimately have to be based
either on a global provider profile containing information about users,
or on user profiles containing information about other users. Otherwise,
a large fraction of all user-user pairs would have to be compared in
order to find users that are actually similar, which is infeasible in real-
world applications containing a large number of users. Feature-based
approaches are only suitable for pure Recommender Systems, which by
definition cannot be based on collaborative approaches.

Finally, all four kinds of results may be produced based on the part
of a supplier profile returned as a result of a query on that profile. In
this case, which constitutes the combination of long-term and short-
term information needs described above, the given equations have to
be modified by substituting qIR(PRs) for PRs. We refer to this case as
the mixed IR/IF scenario.
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Queries on a profile may also occur during the actual filtering process.
We distinguish between both types of queries by denoting the former
queries as qIR(PR) and the results as constrained profiles, and the latter
queries as qIF (PR) and the results as partial profiles.

The main components of an IF architecture, including profiles and mod-
ules for the three stages described above, are shown in Figure 2.3 for the
Recommender System scenario, i.e. with a provider as the supplier in the
information filtering stage. The Matchmaker System scenario is largely anal-
ogous, with a second user replacing the provider.

Figure 2.3: The main components of an IF architecture. The
provider-side components (Data Storage and Results Analyzer)
are used as placeholders for provider functionality that is not fur-
ther specified here.

The two main groups of filtering techniques are classified further mainly
by the kind of profile data they are based on. There are three feature-based
approaches (and various combinations thereof):

� In Content-based Filtering approaches, results are generated by deter-
mining provider profile items that are similar to user profile items.
Similarity is determined either by comparing attributes of the respec-
tive items directly, or by creating and applying models that are based
on the attributes of items.
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� In Knowledge-based Filtering approaches, results are generated by ap-
plying domain-specific knowledge to the user profile items and deter-
mining relevant provider profile items based on this knowledge.

� In Utility-based Filtering approaches, results are generated by applying
a utility function, which describes a user’s general preferences, to the
provider profile items.

Additionally, there are two main collaboration-based approaches:

� In Collaborative Filtering approaches, similar users are identified based
on the rated items and general preferences of the respective user pro-
files. If recommendations are generated, they are based on the profile
items of similar users.

� In Demographic Filtering approaches, similar users are identified based
on the demographic data of the respective user profiles. Personal pref-
erences may additionally used to some extent in order to supplement
or infer demographic data. If recommendations are generated, they are
based on the profile items of similar users.

Combinations of pure feature-based approaches and collaboration-based
approaches are classified as collaboration-based approaches as well, according
to the definitions. The various approaches and combinations are described
in detail in [19].

2.2.2 IF Architectures

As defined above, IF architectures contain three abstract entities aggregat-
ing various components, and operate on various data (such as profiles and
results). Architectures differ, however, in the way the components and data
are controlled, and in the actual entities aggregating the abstract entities.
Existing IF architectures can be grouped into the following three main cate-
gories:

� In provider-controlled IF, the provider entity controls all components
and data including the user profile data, and aggregates the filter en-
tity as well. This architecture is the most common approach in research
prototypes as well as E-Commerce applications of Recommender Sys-
tems. Usually, all data is stored in a central database. This approach
allows personalized information to be generated in a highly efficient
manner, because all required information can be accessed directly and
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in a uniform way. At the same time, as a centralized architecture con-
stituting a single point of failure e.g. with regard to access to the user
profiles, it is characterized by inherent security risks. Figure 2.4 shows
this architecture.

Figure 2.4: A provider-controlled IF architecture.

� In privacy-enhanced IF, the privacy of the user is addressed by enabling
the user entity to store the user profile data locally, e.g. within a web
browser plug-in or as part of a personal agent. Apart from this mod-
ification, the provider-controlled IF architecture model is used. This
approach allows the user entity to determine the personal information
that is collected. Figure 2.5 shows this architecture.

� In user-controlled IF, the user entity not only controls the user pro-
file, but aggregates the filter entity as well. Thus, the architecture
basically resembles the privacy-enhanced approach, with the status of
user and provider reversed: In order to generate results, the user en-
tity uses data from the provider profile. This approach is primarily
used in collaboration-based approaches that are largely independent
of a specific information provider. In this case a second user entity
replaces the provider entity as supplier of the additional data. Com-
pared to provider-centric approaches, however, its complexity is gener-
ally rather high: Additional infrastructure aspects have to be addressed
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Figure 2.5: A privacy-enhanced IF architecture.

because more complex software on the user side is required, as well as
an advanced communication network (such as a peer-to-peer network).
Figure 2.6 shows this architecture.

2.2.3 Main Problems

IF systems have not gained widespread acceptance. There are various Rec-
ommender Systems and Matchmaker Systems available, usually as part of
e-commerce applications3, but they are generally limited to specific domains
in which privacy and quality aspects in particular are less relevant, such as
entertainment as opposed to health or finance, and they often constitute an
additional service rather than core functionality. We identify the following
four problems as the main limitations resulting in the lack of acceptance of
IF systems:

� Privacy: Personalization and privacy are often seen as contrary and ir-
reconcilable: Regardless of the chosen approach, personal information
is always required as a basis for personalized information. Many users,

3Popular examples include online shops such as amazon.com, and internet radio sta-
tions such as last.fm.
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Figure 2.6: A user-controlled distributed IF architecture.

however, are reluctant to provide this information. None of the archi-
tectures described above offer a solution for multilateral privacy, i.e. a
solution in which the privacy of all participating entities is protected:

– The main drawback of provider-controlled IF is the lack of user
privacy: The user entity cannot determine the personal informa-
tion that is collected. Furthermore, even if the provider entity
ensures and actually attempts to protect the privacy of the user
information4, this cannot be verified or enforced by the user en-
tity. Therefore, the user entity cannot prevent the propagation or,
more generally, the unintended use of private data.

– The privacy-enhanced IF approach allows the user entity to ini-
tially control the propagation of his personal information by de-
ciding which entities to grant access to this data. However, as
the provider entity ultimately still has to be allowed to access the
user profile in order to provide personalized results, the user entity
still cannot prevent the propagation and unintended use of private
data.

– The user-controlled IF approach is problematic with regard to
provider privacy, if the provider entity participates actively in the

4Approaches for protecting the privacy of user data on the provider side are discussed
in Section 3.1.4.
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actual IF processes, because in this case the provider entity loses
control over its profile. In the case of a distributed system, user
privacy is still not protected completely because private data is
exchanged between users.

The privacy of the filter entity, who may regard the details of the
algorithms used by the filtering techniques as private data, is not pro-
tected by any of the approaches described here. We consider the lack
of privacy to be the most important problem in IF architectures, and
therefore it is the primary focus of this work. It is discussed in detail
in the following section.

� Quality: Recommender Systems often return unsatisfying results be-
cause they are largely based on unfounded assumptions about the user
and his information needs. In particular, the metrics used to determine
which items to recommend to a user are inadequate in many cases [82],
because they lead to returning obvious recommendations that are very
similar to user profile elements, and neglect the aspect of serendipitous
(unexpected) recommendations. Basically, metrics often tend to ignore
the fact that the user may not always be interested in the elements
with the highest prediction [122].

� User Effort: Users are often not willing to spend any amount of time
learning to interact with unknown software or interfaces. Instead, they
prefer to obtain results of lesser quality immediately, even if they would
profit more from the former course of action in the long term. This
behavior, the Production Paradox, is a significant aspect of the Paradox
of the Active User as defined in [26]. In the context of Recommender
Systems, this behavior is encountered in the fact that users are often
not willing to explicitly provide the information their profile is based
upon, e.g. by rating recommendations. Thus, Recommender Systems
that depend largely on explicit user feedback discourage many potential
users.

� Provider Bias: Commercial IF architectures ultimately focus on real-
izing the provider’s goals, which may be contrary to the users’ goals:
While providers may offer personalized information with the ulterior
motives of customer retention (a user may use the respective service
in the future because he already put a certain amount of effort into
creating his user profile) and customer data aggregation, these aspects
have generally negative implications for users. The notion expressed
by the term “Customer Relationship Management” is challenged by
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the fact that customers generally reject the idea of relationships with
corporations.

To summarize, we identify the following main reasons for a lack of accep-
tance of existing IF-based systems: Lack of privacy, lack of quality, required
user effort, and provider bias. Based on these problems, we arrive at require-
ments of a PPIF architecture in Section 2.3.4. Other problems in IF systems,
such as security aspects, obviously have to be addressed as well, but are less
specific to IF systems and therefore not discussed here.

2.3 Privacy & Information Filtering

In this section, we discuss the aspect of privacy in the context of IF architec-
tures. In the following, we show that privacy is in fact the main problem in
IF architectures, we introduce the concept of multilateral privacy, and dis-
cuss different aspects of privacy that have to be considered when designing
an architecture for PPIF. Finally, we state the requirements for Privacy-Pre-
serving Information Filtering.

2.3.1 Privacy as the Main Problem

Privacy is often stated to be the primary problem in IF architectures [24, 77].
This statement is, however, somewhat at odds with the actual behavior of a
large number of users who can be classified as privacy pragmatists willing to
waive privacy in return for other benefits or incentives [107]. Only a small
number of users are privacy fundamentalists aiming at keeping all personal
information private, regardless of its actual sensitivity. A comprehensive
overview of surveys dealing with users’ privacy concerns in the context of
personalization is given in [108]. It observes widespread differences between
stated preferences and the actual behavior of users. Nevertheless, the con-
flict of privacy and personalization is shown to be a significant problem in
personalized electronic commerce applications, and the need for solutions is
stressed.

The currently observed user behavior, however, has to be assessed in the
context of existing IF architectures, which do not realize their full potential,
mainly because they are restricted to the specific domains, as the following
examples indicate.

� E-commerce: most current Recommender Systems assist a potential
buyer only by recommending products of a relatively low value, such
as books as opposed to cars, houses, or stock.
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� Lifestyle: Current Recommender Systems are largely restricted to
entertainment-related domains such as movies and music, ignoring e.g.
healthcare and wellness-related products.

� Knowledge: Current Recommender Systems offer personalized news-
letters for politics, local news, or sports, but they generally disregard
the areas of academic publications, as well as financial and economic
information.

In future IF systems offering these kinds of information, perhaps even in an
integrated manner, users can be expected to be much more concerned about
their privacy, basically because of the large amount and sensitive character
of the personal information required in these cases, as opposed to current
solutions.

2.3.2 Multilateral Privacy

In IF architectures which aim at becoming widely accepted, privacy aspects
related to all main entities should be addressed:

� Protecting the user privacy is the most obvious problem, because the
goals of privacy protection and personalization are inherently conflict-
ing: By definition, users have to provide personal information in order
to obtain personalized information.

� Protecting the provider privacy is a problem that is sometimes ne-
glected, especially if the term “privacy” is only applied to individuals.
Obviously, the provider information cannot be protected completely, at
least in Recommender Systems, because recommendations are based on
provider information. Nevertheless, an information provider is likely to
be concerned about the dissemination of his information, which is his
principal asset. It would be detrimental, for example, if competitors
would be able to extract and re-create the entire provider information
in a feasible way, e.g. via using artificial user profiles as means for
retrieving a large number of recommendations.

� Protecting the filter privacy is a problem that is generally ignored in the
literature. It seems reasonable, however, to regard the filter algorithms
themselves as a valuable asset that should be protected, mainly because
the quality of personalized information and thus probably the commer-
cial viability of the overall system directly depends on the quality of
the filtering techniques.
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We therefore use the term “Multilateral Privacy”, analogous to the term
’Multilateral Security’ introduced in [94], in association with a system in
which the privacy of all participating entities is addressed, with no entity
taking precedence over another.

2.3.3 Measuring Privacy

The requirement “privacy protection” as such is rather vague and cannot be
measured objectively for a given IF system. Therefore, it has to be specified
further, in particular with regard to the following aspects:

� Against what kind of adversary does private information have to be
protected?

� What kind of threats have to be countered?

� To what extent has private information to be protected?

We discuss these aspects in the following sections.

2.3.3.1 Adversary Model

From the viewpoint of one entity or participant of an IF system, any other
participant may be an adversary attempting to access and/or propagate pri-
vate information in a way that has not been agreed upon. We distinguish
between the following types of participants5:

� An honest participant carries out all actions exactly as specified and
announced. Even in systems consisting entirely of honest participants,
threats with regard to private information exist, as described below.

� An honest-but-curious adversary (sometimes referred to as “semi-hon-
est”) carries out all actions as specified and announced, but tries to
gain additional information by arbitrary means, e.g. by analyzing the
exchanged information. As an example, an honest-but-curious provider
entity in a IF system based on a centralized architecture returns rec-
ommendations as specified, but it may use the user profile data for
additional purposes.

5The terminology has been introduced in [56] in the context of Secure Multi-Party
Computation, for which see Section3.1.2, but it is applicable in this broader context as
well.
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� A malicious adversary tries to gain additional information by means
that violate the protocols agreed upon. As an example, a malicious
provider entity in a IF system based on a centralized architecture may
not even return any result data, or he may deliberately return incorrect
data in order to induce the user to provide additional private informa-
tion.

It should be noted that an honest participant may be forced to deviate from
the protocol agreed upon as a reaction to a detected threat. Following [121],
we classify a role as an honest defending party in this case.

The honest-but-curious adversary model is obviously weaker than the
malicious adversary model, and thus protecting private information against
an honest-but-curious adversary is generally easier than protecting private
information against a malicious adversary. If prevention fails, however, it
may conversely be easier to at least detect a malicious action as a noticeable
deviation from the protocol, while an honest-but-curious adversary may be
harder to detect because the results are indistinguishable from the results
provided by an honest participant.

Furthermore, while the honest-but-curious adversary model is in many
cases sufficiently realistic because the adversary may be interested in correct
results as well, or because a malicious adversary is detected at some point
in time, in the context of Information Filtering both kinds of adversaries
should be assumed. However, we consider it to be sufficient for participants
to be able to detect malicious adversaries, instead of aiming at an architecture
preventing them completely, because a probable risk of detection should deter
malicious adversaries in most cases.

2.3.3.2 Threats

There are different threats with regard to private information that is propa-
gated to a recipient, e.g. from the user entity to the provider entity. In [45],
the following five main threats are identified:

� Deception by the recipient: The recipient of private information uses
the information for other purposes, or purposes exceeding those stated
or agreed upon.

� Mission creep: The recipient initially adheres to his stated policy with
regard to private information, but expands the original purposes over
time, without re-negotiating with or even notifying the respective party.

� Accidental disclosure: The recipient propagates private information ac-
cidentally, e.g. via discarded hardware.
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� Disclosure by malicious intent: Private information is stolen by a third
party with malicious intents.

� Forced disclosure: The recipient is legally forced to propagate private
information, e.g. via a subpoena.

Not all of these threats are equally important in an IF architecture. In a
Recommender System for restaurants, for example, the threat of forced dis-
closure seems somewhat far-fetched, considering the character of the private
information.

It should be noted that with the exception of the first threat, all threats
may emerge even in systems that initially contain only honest participants.
Countering the first threat, which may originate from honest-but-curious as
well as malicious adversaries, goes a long way towards countering the other
threats. Therefore, an IF architecture realizing multilateral privacy should
primarily focus on the threat of deception by the recipient.

2.3.3.3 Degrees of Privacy

As stated above, an all-or-nothing approach with regard to privacy is imprac-
tical in IF architectures, because a certain amount of information has to be
propagated by definition. Therefore, we define an acceptable degree of pri-
vacy that privacy-preserving IF architectures should provide. This sufficient
degree of privacy is characterized by the following aspects:

� Computational vs. Information-Theoretic Privacy: Information can be
considered as private either if it is computationally infeasible for a sec-
ond party to obtain it, or if it is theoretically impossible for a second
party to obtain it. The first case, i.e. the case of computational pri-
vacy, relies on (unproven but widely accepted) intractability assump-
tions used e.g. as the foundation of an encryption scheme. The second
case, i.e. the case of information-theoretic privacy, does not rely on
these kinds of assumptions and therefore even prevents an adversary
with unbounded computing power to obtain the information. While
information-theoretic privacy is obviously stronger, it is generally im-
practical to achieve. We therefore consider computational privacy to
be sufficient in the context of privacy-preserving IF architectures.

� Aspects of Anonymity: If an entity cannot be associated with its pri-
vate information by a second party, it is considered to be anonymous in
this regard. An infrastructure for anonymous communication supports
anonymity but may not ensure it unconditionally, because it does not
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address the problem that the communicated information itself may be
sufficient for identifying an entity. Therefore, in IF architectures a user
profile may be anonymous in the sense that the respective user entity
is not directly identifiable, but the user’s identity may still be deduced
indirectly by combining profile elements. In some cases, even a small
number of apparently uncritical profile elements may be combined suc-
cessfully in order to identify a user, e.g. if the respective user profile
can be determined to be the only one containing that specific combi-
nation of elements6. Therefore, anonymous communication in itself is
not sufficient. Additionally, private information is exposed even when a
user cannot be identified. This is problematic especially in cases where
valuable, i.e. non-trivial and interesting information may be deduced
from a specific combination of elements in a user profile (e.g. a success-
ful stock portfolio or a list of related work pointing to scientific work
in progress or a pending patent ). These issues are discussed in detail
in [77]. We conclude that in privacy-preserving IF it should neither be
possible to associate user entities with profile items, nor a profile item
with other profile items. Provider and filter entities, however, are not
required to remain anonymous.

� Unlinkability vs. Unobservability: In the optimal case, private informa-
tion is unobservable, i.e. an adversary cannot even determine whether
the respective information exists at all. In IF architectures, user profile
information is unobservable if another entity cannot determine whether
a specific profile item is actually contained in any user profile at all.
Private information is observable but unlinkable if an adversary is able
to determine that the respective information exists, but cannot asso-
ciate it with certainty with any participant or other information, i.e.
if he cannot determine a link. According to the privacy spectrum de-
fined in [95], unlinkability with regard to private information is further
classified by the following categories:

– Beyond Suspicion: From the adversary’s point of view, all theo-
retically possible links have the same probability. Therefore, he
cannot rationally suspect a specific participant or other informa-
tion to be associated with the respective information.

– Probable Innocence: From the adversary’s point of view, there may
exist links with a probability higher than that of other links. Still,

6As an example, a large majority of United States citizens may be identified correctly
based on just three attributes: Zip code, birth date and gender [106].
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for any given link, its probability is smaller than 0.5, i.e. it is more
likely that the link does not actually exist.

– Possible Innocence: From the adversary’s point of view, a link
exists with a probability 1 ≥ p ≥ 0.5, i.e. the possibility that the
link does not actually exist cannot be ruled out.

Obviously, if private information can be associated with certainty with
a specific participant or other information, unlinkability is no longer
given and the information is exposed. All categories of the privacy
spectrum are summarized in Table 2.3 with regard to user privacy in
IF architectures. We consider the “probable innocence” degree of un-
linkability to be sufficient for user privacy in the context of privacy-
preserving IF architectures under the condition that the probability
is close to 1/|U | for all theoretical links, i.e. the “beyond suspicion”
degree is almost reached.

Regarding provider privacy, all information that is not provided directly
via recommendations should be unobservable. Regarding filter privacy,
the filter algorithm, if regarded as one single element of information,
should be unobservable as well: It is obviously observable that some
filtering technique is applied, but it should not be observable that a
specific filtering technique is applied.

� Privacy of the Returned Information: Finally, it has to be considered
whether the returned information should be regarded as private as well,
i.e. whether e.g. the provider entity should be allowed to obtain the rec-
ommendations generated for a given user entity. This course of action
has the following advantages: The provider entity receives feedback
about the information that it provides, which may be useful for improv-
ing the quality of the information, and for adding further information in
areas that are highly demanded. Additionally, it may reduce the com-
plexity of the underlying filtering technique algorithms, because the re-
quirements with regard to privacy are somewhat relaxed. On the other
hand, allowing the provider entity to obtain result data compromises
the privacy of the user profile information at least indirectly, because
the provider entity may attempt to infer user profile information via the
recommendations. Determining an optimal trade-off between these as-
pects is problematic and depends on the given scenario. Therefore, we
do not resolve this issue at this point and merely observe that a privacy-
preserving IF architecture should preferably support both approaches
and reach a decision in particular cases e.g. through negotiation be-
tween the participants. As a minimal requirement, result data should
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Table 2.3: The categories of the privacy spectrum according to
[95] with regard to user privacy in IF architectures. I ′ is the set
of all observed elements, c is a constant. The given probabilities
reflect the adversary’s point of view.

User-Element Element-Element
Association Association

Unobservability: I ′ = ∅ I ′ = ∅
Absolute Privacy
Unlinkability: ∀u ∈ U : ∀i′ ∈ I ′ :
Beyond Suspicion prob(i ∈ PRu) prob(∃ PR : {i, i′} ⊆ PR)

= c = c
Unlinkability: ∀u ∈ U : ∀i′ ∈ I ′ :
Probable Innocence prob(i ∈ PRu) prob(∃ PR : {i, i′} ⊆ PR)

≤ 0.5 ≤ 0.5
Unlinkability: ∀u ∈ U : ∀i′ ∈ I ′ :
Possible Innocence prob(i ∈ PRu) prob(∃ PR : {i, i′} ⊆ PR)

< 1 < 1
Exposure ∃u ∈ U : ∃i′ ∈ I ′ :

prob(i ∈ PRu) prob(∃ PR : {i, i′} ⊆ PR)
= 1 = 1

not compromise a user’s anonymity. As a maximal requirement, a de-
gree of unlinkability similar to the degree of unlinkability reached with
regard to profile elements should be reached. Predictions are consid-
ered to be unproblematic as long as they cannot be linked to a specific
user.

To summarize, a privacy-preserving IF architecture requires a degree of
privacy characterized by the following aspects:

� computational privacy;

� unlinkability of private user information and the respective user, and
of private user information elements among themselves;

� regarding user privacy, a degree of unlinkability assuring probable in-
nocence with a sufficiently low probability threshold;

� regarding provider and filter privacy, unobservability (with the excep-
tion of returned information);

� (optionally) user privacy with regard to returned information.
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2.3.4 Requirements

The functional requirements of a comprehensive Privacy-Preserving Informa-
tion Filtering system are the same as in any other comprehensive IF system,
and follow directly from the definitions given above:

� The system should provide sufficient functionality for realizing the three
stages introduced in Section 2.2.1, namely the information collection
stage, the information processing stage and the information filtering
stage.

� The system should be able to return all different kinds of result data
defined in Section 2.2.1, namely predictions of the relevance of specific
items, top-n recommendations of items, predictions of the similarity of
specific users, and top-n similar users for a given user. In other words,
the system should be able to provide Recommender System function-
ality as well as Matchmaker System functionality. As non-distributed
Matchmaker Systems and non-distributed Hybrid IF Systems would be
difficult to realize in a privacy-preserving manner, we explicitly do not
require the system to be able to provide the respective functionality,
which is not strictly required anyway to cover all kinds of result data.

� Regarding filtering techniques, the system should be able to support
feature-based approaches as well as collaborative approaches.

Additionally, we define several non-functional requirements of a Priva-
cy-Preserving Information Filtering system. As described in Section 2.2.3,
we identify the following main reasons for a lack of acceptance of existing
IF-based systems: Lack of privacy, lack of quality, required user effort, and
provider bias. The first two can be expressed directly as requirements. The
issue of user effort is partially covered by introducing the requirement of
broadness, i.e. by requiring a solution to be applicable in various domains
and in combination with a wide range of filtering techniques, because in
this case the user is able to re-use his personal profile and has to enter in-
formation only once for different providers. The aspect of provider bias is
addressed indirectly by the other requirements, and by acceptance aspects
discussed below. Finally, privacy-preserving IF systems must not disregard
performance issues: While some trade-offs with regard to performance are to
be expected and may be acceptable, the overall performance of the resulting
systems should be comparable to the performance of centralized systems,
because otherwise it would be infeasible to deploy the resulting systems in
real-world scenarios, or they would not be accepted by users because of us-
ability issues. Therefore, we also introduce the requirement of performance.
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Security requirements such as the requirement of secure communication, or
protection against denial-of-service attacks, are not listed explicitly because
they are already covered, from the respective entity’s point of view, by the
requirements regarding privacy.

We define the requirements as follows:

� User Privacy (Ru): No linkable information about user profiles should
be acquired permanently by any other entity or external party, includ-
ing other user entities, apart from observations of single profile elements
which can be linked to a specific user or to other observed profile ele-
ments with negligible probability. The adverb “permanently” is used
here to specify that private information related to a specific user may
be acquired by another entity temporarily as long as it is not prop-
agated or processed further and as long as it is removed completely,
resulting in a state identical to a hypothetical state in which it had
never been acquired. Result data, i.e. recommendations, predictions,
or similar users should be regarded as private in this sense as well, if
possible. If the returned information is not private, user profile infor-
mation that can be deduced directly from returned information may be
propagated as well. User anonymity per se is not required but may be
provided optionally. While these requirements are obviously somewhat
weaker than theoretically possible from the user’s point of view (the
optimal protection is reached by requiring unobservability of user pro-
file information), they constitute a realistic compromise because user
privacy can still be considered to be protected adequately while the
relaxed requirements enable feasible solutions in terms of complexity
and quality, and allow the provider to obtain some feedback about the
provided information.

� Provider Privacy (Rp): No information about provider profiles, with the
exception of the returned information, should be acquired permanently
by other entities or external parties at all, i.e. provider information
remains unobservable. Additionally, the propagation of information is
entirely under the control of the provider. Thus, it is ensured that
the provider may prevent e.g. the automatic large-scale extraction of
information.

� Filter Privacy (Rf ): The algorithms used by the filter entity should
not be acquired permanently by any other entity or external party.
General information about the algorithm may be provided by the filter
in order to allow other entities to reach a decision on whether to apply
the respective filtering technique.
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� Quality (Rqq): The quality of the returned information should be close
to the level of quality achieved in traditional IF approaches (although
a small decrease in quality may be acceptable as a trade-off).

� Broadness (Rbb): The architecture should not be restricted to single
information domains, specific filtering techniques, or specific persistent
storage mechanisms. It should be easily adaptable to various domains
and environments in order to facilitate fast and efficient development.

� Performance (Rpp): The computational complexity and latency of the
realized solution should be close to the performance achieved in tradi-
tional IF approaches (although a small decrease in performance may
be acceptable as a trade-off).

In addition to non-functional requirements, we also introduce the follow-
ing acceptance aspects:

� User Acceptance (Au): A system meeting all requirements listed above
may still not achieve a high degree of user acceptance, e.g. if users do
not trust the underlying technology, or if the system lacks usability.

� Provider Acceptance (Ap): Furthermore, a system meeting all require-
ments listed above may not be commercially viable or valuable in any
other way for the providers of the system and the filtering techniques,
e.g. if no viable business model is found or if the costs of running the
system are too high.

These acceptance aspects have to be kept in mind when addressing the
requirements, because otherwise the resulting systems would only be of theo-
retical interest. Acceptance is generally achieved to a large degree by meeting
the respective privacy requirement. Provider acceptance of user-controlled
approaches is expected to be somewhat lower because these approaches may
not allow the provider to obtain any information about users at all.

2.4 Multi-Agent Systems

Multi-Agent System technology are one possible choice for realizing a dis-
tributed PPIF architecture. Section 4.2.3 discusses this choice in more de-
tail. In this section, we provide definitions of the main concepts of MAS
technology, describe the basic functionality required for our approach, and
discuss the problem of malicious hosts and possible solutions thereof.
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2.4.1 Definitions

There is no universally accepted definition for the terms agent and Multi-
Agent System. The IEEE Computer Society standards organization Foun-
dation for Intelligent Physical Agents (FIPA) provides a set of specifications
covering most aspects of MAS architectures (see [46, 47, 49, 48] for the most
general specifications). Our approach is generally applicable to all architec-
tures complying with these specifications and the following basic definitions:

� An agent is a software-based entity operating autonomously, reactively,
and pro-actively. It has the ability to interact with other agents via a
special Agent Communication Language (ACL). Autonomy here de-
notes the ability of an agents to carry out complex tasks independently,
i.e. without the intervention of other agents or humans, while having
control over its own actions and internal state, e.g. through running
on its own internal execution thread. Reactivity denotes the ability
of an agent to respond to changes detected in its environment. Pro-
activeness denotes the ability of an agent to act not only reactively,
but also on its own initiative, e.g. triggered by its internal state. This
definition closely follows [118]. An agent basically contains program
code that enables it to operate according to this definition, knowledge,
i.e. basically a set of data, and its internal state.

� An agent service is a specific task an agent may carry out internally
or on behalf of another agent. In order to enable other agents to use
its services, an agent usually has to announce these services by provid-
ing an abstract description in a well-defined format, i.e. based on an
common ontology.

� An agent platform is the runtime environment of a group of agents.
Agent platforms provide infrastructure functionality, such as yellow
pages services for agent service discovery, and white pages services
listing existing agents themselves. Additionally, agents on an agent
platform are usually protected against threats originating from other
agents on the same or any other platform, or from other external en-
tities. The life cycle of an agent begins with the agent being created
on a specific platform, and ends with the agent (or the entire platform
he is located on) being terminated. Additionally, mobile agents have
the ability to migrate from one platform to another, by transporting
their program code, knowledge and internal state. An agent platform
is provided by an host entity.
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� A Multi-Agent System is the entirety of agents and agent platforms
either deployed in the context of an application as a distributed problem
solving system, or deployed with different and possibly conflicting goals
in a more abstract common context as an open system [120].

2.4.2 Basic Functionality

Our approach requires a MAS with certain basic features and functional-
ity which are largely implicit in the definitions given above: All interactions
between agents are carried out via agent services. In order to exchange a mes-
sage between a sender agent and a receiver agent, an agent service is used
where the sender is the service user and the receiver is the service provider.
The agent service is realized by both participants following a specific pro-
tocol, i.e. a user protocol on the service user side and a provider protocol
on the service provider side. For basic interactions, the user protocol may
be as simple as sending initial data and receiving the result data, but more
complex user protocols may be required for complex interactions. Regarding
unobservability of interactions, it should be possible to hide the content of
an interaction from all possible observers, namely other agents, the agent
platform itself as well as external entities. The fact that an interaction takes
place may however be observable, e.g. by the agent platform. Agents should
be able to control the access to the services they offer, which is done e.g.
by using an Service Control List mechanism. An agent’s program code and
knowledge is considered private information that should not be accessible by
other parties without the agent’s consent. Regarding platform management
functionality, we assume a special agent realizing a PlatformManager-
Role that provides at least interactions for creating and terminating agents,
and for migrating mobile agents. All agents realize a generic AgentRole
which allows them to use services offered by agents realizing more specific
roles.

2.4.3 Malicious Hosts

Features of agents such as autonomy and the capability to contain private
information in the form of knowledge suggest the use of agents as personal
agents, i.e. agents acting on behalf of a human user (or, more generally,
abstract entity) and containing private information of the respective user or
entity. In this context, the security risks of agents operating on a platform
provided by a potentially untrustworthy host have to be addressed: While
the protection of hosts against agents, and of agents against other agents
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in the same environment are relatively straightforward issues that may be
addressed adequately (see e.g. [99]), the problem of protecting agents against
malicious hosts is more complicated (see [111] for a survey). In addition to
threats not necessarily originating from the host, such as threats related to
communication of mobile agents, there are two main threats related to the
following aspects of an agent running on a remote platform:

� Privacy: The host may attempt to obtain the program code and/or
knowledge of an agent without interfering with the execution of the
agent. In this case, the host is regarded as honest-but-curious with
respect to the general threat model.

� Integrity: The host may attempt to tamper with the agent code and/or
data during the execution of the agent. In this case, the host is regarded
as malicious with respect to the general threat model.

In the context of personal agents, these threats directly affect the privacy
of the user or entity represented by the personal agent. Apart from relying
on trusted hosts, several approaches have been suggested to counter these
threats, which are discussed in Section 3.3.2.

2.5 Summary

This chapter provides definitions that are used throughout this work. Based
on these definition, the main problems of IF systems in general and the prob-
lem of privacy in IF systems in particular are described, and requirements
for a Privacy-Preserving Information Filtering architecture are derived from
this problem description.

Regarding definitions, this work focuses on informational privacy as one
of several aspects of privacy (Section 2.1.1), and focuses on privacy protec-
tion via technology as one of several strategies for protecting privacy (Sec-
tion 2.1.2). It deals with IF systems in the form of Recommender Systems,
Matchmaker Systems, and Hybrid IF Systems, which provide functionality
for three separate stages, namely the information collection stage, the infor-
mation processing stage, and the information filtering stage. In the latter
two stages, filtering techniques are used that are group into feature-based
approaches and collaboration-based approaches (Section 2.2.1).

As part of the problem description, we describe different existing types
of IF architectures (Section 2.2.2), and list the main problems of IF sys-
tem (Section 2.2.3), out of which we highlight privacy as the main problem
(Section 2.3.1).
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We introduce the concept of multilateral privacy (Section 2.3.2), which
we specify further in the context of IF systems by defining realistic adver-
sary models (Section 2.3.3.1), by describing various threats to privacy (Sec-
tion 2.3.3.2), and by defining a degree of privacy that reflects the interests of
the involved entities adequately and at the same time is realistically achiev-
able (Section 2.3.3.3). Subsequently, we list all requirements of a Privacy-
Preserving Information Filtering architecture (Section 2.3.4).

As our solution is based on Multi-Agent System technology, we define the
main concepts of MAS technology (Section 2.4.1); we list basic functionality
required for our approach (Section 2.4.2); and we describe the problem of
malicious hosts in MAS systems as the central problem related to privacy in
a MAS context (Section 2.4.3).

Table 2.4: An overview of existing IF architectures in relation
to the requirements and acceptance aspects of Privacy-Preserving
Information Filtering. A requirement is fully met (indicated by
“X”), partially met (indicated by “�”), or not met at all (indicated
by “–”). Acceptance is indicated in an analogous manner. Note
that the ratings do not always indicate the best value theoretically
possible for the respective architecture, but an average value.

Privacy Other Accep-
Requirements Requirements tance
Ru Rp Rf Rqq Rbb Rpp Au Ap

provider-controlled IF – X – � X X – X
privacy-enhanced IF � X – � � � � X
user-controlled IF � X – � � – � �

(collaboration-based)

Table 2.4 summarizes the problems of existing IF architectures by listing
the existing approaches for provider-controlled, privacy-enhanced and user-
controlled IF in relation to the coverage of the requirements and acceptance
aspects. In the following chapter, work related to the area of Privacy-Pre-
serving Information Filtering is discussed based on the definitions provided
in this chapter, and existing approaches are evaluated in the same manner.
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Chapter 3

Related Work

In this chapter, we review the state of the art in privacy-preserving Infor-
mation Filtering, including related approaches and building blocks thereof.
Work related to specific areas of our approach that is not directly relevant
for the overall approach, such as specific algorithms for filtering techniques,
is discussed in the respective chapters.

The chapter is structured as follows: The first section discusses Priva-
cy-Enhancing Technologies (PETs) as the fundamental building blocks of
privacy-preserving architectures, including basic concepts and functionality
used by these PETs. Section 3.2 discusses Privacy-Preserving Technologies
(PPTs) as privacy-preserving approaches for related areas, such as Private
Information Retrieval and privacy-preserving data mining, as well as privacy-
preserving Information Filtering architectures, i.e. approaches comparable to
our architecture for Privacy-Preserving Information Filtering. Each section
contains evaluation of the respective areas in the context of PPIF. Figure 3.1
gives an overview of the different groups of related work and their relation-
ships, i.e. the ways they build upon each other. These two sections comprise
the state of the art of privacy-preserving Information Filtering.

Section 3.3 discusses related work in the area of Multi-Agent System
(MAS) technology that is directly relevant for our solution, i.e. related work
dealing with anonymous communication and the problem of malicious hosts.
Section 3.4 summarizes the chapter by giving an overview of the applicability
of the different approaches with regard to Privacy-Preserving Information
Filtering.
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Figure 3.1: Areas of research in PETs and PPTs. As indicated
by the lines between areas, PPTs build upon the functionality
provided by PETs, which in turn use basic concepts and function-
ality.

3.1 Privacy-Enhancing Technologies

Privacy-Enhancing Technologies have been researched under this designation
for more than a decade. It should be noted that the designation is not used
in all related work: There is a large amount of related work e.g. in the areas
of anonymous communication and secure multi-party computing that is not
explicitly labeled as PETs. Surveys of the field are given e.g. by [55] and
[54].

In the following, we distinguish between PETs and PPTs by defining Pri-
vacy-Enhancing Technologies as basic building blocks which, while they may
be used directly for a specific purpose, such as anonymous communication,
have to be combined with other functionality in order to realize Privacy-Pre-
serving Technologies used within applications for broader purposes, such as
PPIF. In other words, in a complex scenario a single Privacy-Enhancing
Technology (PET) may be used to enhance privacy, as the name implies, but
is not sufficient for preserving privacy under all circumstances.

In addition to work on the theoretical foundations, research in the area
currently focuses on four main areas:

� Anonymous communication over the internet and in peer-to-peer net-
works, including work on traffic analysis and related issues, such as
anonymous web browsing, is discussed in Section 3.1.1.

� Protocols for Secure Multi-Party Computation are discussed in Sec-
tion 3.1.2.
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� Trusted Computing mechanisms and applications are discussed in Sec-
tion 3.1.3.

� Other provider-side technologies for privacy enforcement, such as en-
terprise privacy policies and DRM-related approaches, are discussed in
Section 3.1.4.

Research on privacy-enhanced applications, e.g. in the areas of face recog-
nition, public transport, ubiquitous computing, and e-learning is not directly
relevant in the context of Privacy-Preserving Information Filtering and there-
fore not discussed further here.

3.1.1 Anonymous Communication

With regard to user acceptance and prevalence, PETs for anonymous com-
munication are arguably the most successful group of PETs to date. They
are usually realized in the form of tools for anonymous e-mail and brows-
ing, but may address related issues, such as anonymous communication in
peer-to-peer networks as well.

The following terminology is adapted from [91]1: A sender sends messages
to a single recipient or a group of recipients via a communication network.
An attacker is interested in obtaining information about these messages, e.g.
about communication patterns, and may attempt to manipulate the commu-
nication. The content of the messages themselves is usually not considered in
this context, because it is expected to be encrypted and therefore protected
against attacks. In this aspect, the concepts discussed in the following have
to be distinguished from the concepts introduced in Section 2.3.3.3, where we
focus on the actual information, i.e. the content of the messages. However,
as indicated by the use of similar terminology, such as “unobservability” and
“unlinkability”, in both contexts, the respective concepts are largely analo-
gous. In the context of anonymous communication, we distinguish between
the following concepts:

� Anonymity is a feature of an entity (a sender or recipient) who is not
identifiable within a set of entities of the same type, the anonymity set.

� Unlinkability is a feature of a number of entities or messages who appear
no more related after an attacker’s observation than they are based on
his prior knowledge. Anonymity may therefore be defined in terms of
unlinkability:

1An extended version of this work is available online as version v0.31 via the URL
<http://dud.inf.tu-dresden.de/literatur/Anon%5FTerminology%5Fv0.31.pdf>.
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– Sender Anonymity is established in systems where, out of the sets
of all senders and messages, there exists no sender and message
that can be linked.

– Recipient Anonymity is defined in an analogous manner for recip-
ients and messages.

– Relationship Anonymity is defined in an analogous manner for
senders and recipients. It is a weaker notion of anonymity be-
cause it is implied by sender anonymity as well as by recipient
anonymity.

� Unobservability is a feature of entities who cannot be distinguished
from any other entity of the same type. Analogous to the definitions
above, Sender Unobservability, Recipient Unobservability, and Rela-
tionship Unobservability are defined. It should be noted that unobserv-
ability always implies anonymity. Sometimes the term Untraceability
is used synonymously.

� Pseudonymity is a feature of entities who use one or more pseudonyms
for identification.

In the following, we review the main groups of solutions, which mainly
focus on achieving sender and/or relationship anonymity. They may be ex-
tended by various methods (such as dummy traffic, or the use of steganog-
raphy) to achieve a certain degree of unobservability. Exemplary approaches
for recipient anonymity are broadcast mechanisms and Private Information
Retrieval schemes, for which see Section 3.2.3.

3.1.1.1 Mix networks

The most basic approach for anonymity through unlinkability is the use of
relays, also known as proxies, for all communication in order to hide the
actual sender and/or recipients. Simple proxies, however, are vulnerable
to traffic analysis threats. Mix networks (first suggested by [28]) address
this problem by providing a number of proxies as mixes. Each messages
is routed through various mixes, and each mix withholds messages until a
certain amount of messages have been collected, and then re-encrypts and
propagates messages in permutated order.

Subsequent Research on mix networks has generally segmented into two
groups of approaches: High-latency approaches, such as the Mixminion ap-
proach [36], aim to minimize breaches of anonymity by introducing large and
variable latencies, and are therefore less suitable for immediate communi-
cation, such as web browsing. On the other hand, low-latency approaches,
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such as onion routing [57] and its more recent modifications [39], aim at
anonymizing network traffic itself.

While mix networks have been studied extensively (see e.g. [39] for an
overview), they have been observed [23] to largely rely on insufficient crypto-
graphic constructions, which has led to a large number of schemes that have
been broken and modified, sometimes repeatedly. Nevertheless, existing ap-
plications for anonymous communication are mainly based on mix networks.

3.1.1.2 DC-Nets

While mix networks may be used to provide computational privacy (as de-
fined in Section 2.3.3.3), DC-Nets are an alternate approach providing in-
formation-theoretic privacy as well as sender unobservability. DC-Nets have
been introduced in [27]. The name is derived from the so-called dining cryp-
tographers problem, which illustrates anonymous communication via a simple
scenario: Three or more entities intend to receive a message (in the most ba-
sic case with a length of one bit) sent by one of the entities who intends to
remain anonymous. The entities arrange themselves as a ring, i.e. a circular
linked list, and each entity shares a secret bit with each of his two neigh-
bors. Starting with a designated entity and a result bit set to zero, each
entity in turn combines the two secret bits obtained from its neighbors, the
message itself (in case the entity is the sender), and the result bit via the
XOR-operation. Once this operation has been carried out by all entities, the
result bit represents the message, without any information about the identity
of the sender having been revealed.

In more general terms, the protocol realizes a superimposed sending of
a message on a ring network, with each message bit requiring one round
of communication around the ring for superimposing the message, and one
round for broadcasting the result. Obviously, all entities are required to act
in a non-malicious way, as a malicious entity may easily alter the message or
disrupt the protocol. The main drawback of DC-Nets is the communication
complexity which makes their use infeasible for real-world multi-user systems.

3.1.2 Secure Multi-Party Computation

Secure Multi-Party Computation (SMPC) protocols are the main building
block for interactions involving two or more entities who intend to exchange
some information while keeping related information private. The concept has
been introduced in [119] as secure two-party computation and later general-
ized in e.g. [56]. An SMPC protocol involves n entities with inputs I1 . . . In
and a function f = (f1, .., fn) for computing outputs O1 . . . On, based on
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these inputs, i.e. a function denoted by

(I1, .., In) 7→ (O1 = f1(I1, .., In), .., On = fn(I1, .., In)).

Privacy is preserved by the protocol if the information an entity obtains
during the protocol does not exceed the information the respective entity
could derive from its own input and from the output of the protocol.

In this definition, all information is regarded as sensitive with regard to
privacy. If additional information can be obtained, the respective protocol is
therefore not privacy-preserving in a strict sense. It may still be sufficient,
however, if the disclosed information does not actually violate the privacy
of a participating entity. While the respective protocol may be optimized in
terms of complexity by allowing additional information to be disclosed, it is
generally more difficult to prove its sufficiency with regard to privacy.

Generic SMPC protocols model the function to be computed as a com-
binatorial circuit, and carry out comparatively small sub-protocols for every
gate of the circuit. While theoretically applicable to a large class of func-
tions, generic protocols are often practically infeasible because of large input
sizes and the fact that complex functions have to be modeled as complex cir-
cuits, leading to inefficient protocols. Nevertheless, applications for realizing
generic Secure Multi-Party Computation protocols have been introduced [81]
and may be used for simple functions.

The following examples for simple functions are given in [34] in the context
of Privacy-Preserving Data Mining, which is discussed in Section 3.2.2:

� Secure Sum: For values a1 . . . an distributed between multiple partici-
pants, the sum of the values is basically computed in the following way
if it is to be known to lie in the range [0..n]: A designated first par-
ticipant adds a random number to his local value and propagates the
result, among all participants, with each participant adding his own
local value. In each step, n is subtracted from the result if it is greater
than n. Finally, the first participant subtracts the random value and
thus obtains the actual result.

� Secure Set Union: For sets A1 . . . An distributed between multiple par-
ticipants, the union A1 ∪ .. ∪ An is computed by each participant en-
crypting, via a commutative encryption scheme2 , all items of his own
set, and the encrypted items of all other sets, received from the other
participants. At the end of the process, each item has been encrypted

2In commutative encryption schemes, the results is not affected by the order in which
encryption or decryption function are applied, i.e. {{m}K1}K2 = {{m}K2}K1.
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n times, and because of the commutativity of encryption equal result
values imply equal items. Thus, duplicates may be removed, and the
resulting union set of encrypted items is decrypted by each participant
in turn, resulting in the union set of decrypted items.

� Secure Size of Set Intersection: For sets A1 . . . An distributed between
multiple participants, the size of the intersection set A1∩ ..∩An is com-
puted by each participant encrypting, via a commutative encryption
scheme, all items of his own set, and the encrypted items of all other
sets, received from the other participants. At the end of the process,
each item has been encrypted n times, and because of the commuta-
tivity of encryption equal result values imply equal items. Therefore,
the size of the intersection set may be determined by each participant
simply by counting the number of encrypted items appearing in each
of the sets.

� Scalar Product: Apart from general approaches based on secure multi-
party computation, which are not efficient, the problem of determining
the scalar product of vectors in a privacy-preserving way has only been
addressed for two parties, with various complex solutions e.g. based on
the use of random vectors and matrices.

Private Information Retrieval schemes, described in Section 3.2.3, may
also be based on SMPC protocols, because they basically realize the function

(i, {x1, .., xn}) 7→ (xi, λ),

i.e. the first entity retrieves xi for a given i, while the second entity learns
nothing at all.

3.1.3 Trusted Computing

Trusted computing aims at realizing trusted systems by increasing the secu-
rity of open systems (i.e. systems which are accessed by various groups of
entities, where entities of one group do not necessarily trust entities of other
groups) to a level comparable with the level of security that is possible in
closed systems (i.e. systems which are accessed by a single group of entities
that trust each other). It is based on a combination of tamper-proof hard-
ware and various software components. A trusted computing architecture
has to address two aspects: Integrity of the system, which is achieved by
ensuring the system cannot be tampered with in any way, and authenticity
of the system, which is achieved by ensuring that a remote party can be
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convinced of the integrity of the system. The aspects are realized by three
main mechanisms:

� Secure Bootstrapping ensures the system is initialized resulting in a
state that adheres to a given security policy, e.g. by booting into a
trusted operating system.

� Strong Isolation prevents the initialized system from being tampered
with, and prevents applications from tampering each other.

� Remote Attestation certifies the integrity of software run on the system
to a remote party.

A secure bootstrapping mechanism (described e.g. in [7]) basically enables
a system to measure its own integrity during the boot process, and terminate
the process if the integrity is compromised, via a chain of identity checks: A
tamper-proof hardware device, the trusted module, starts the boot process by
recomputing the hash of the BIOS, and compares this value with a hash of the
BIOS signed with the private key of the trusted module and stored within it.
The private key itself is embedded in the trusted module, and the respective
public-private key-pair is certified by a Certificate Authority (CA)3. If the
values match, the BIOS has not been tampered with, and control is passed
to it. The process is continued by the BIOS and the next layer in the chain
in a similar manner, and by subsequent layers up to the operating system.
Thus, each layer certifies the next layer in the chain, by signing a hash
of its executable image, and its public key. When the process is completed
successfully, the system is guaranteed to have booted into a trusted operating
system.

Secure bootstrapping alone does not allow a remote party to verify the
integrity of the boot process. This is addressed either by extending the pro-
cess to authenticated boot, which we do not describe here, or through remote
attestation. In other words, secure bootstrapping restricts the software that
may actually run on a system, while remote attestation reports which soft-
ware runs on a system. It is up to the remote party to decide how to deal
with the information given.

The basic mechanism of remote attestation, however, is similar to the
secure bootstrapping mechanism described above: An application is attested
by the operating system signing a hash of the executable of the application.

3It should be noted that for this reason, trusted computing requires a trusted third
party essentially certifying that the trusted module works as specified. This holds even
when a central CA is replaced by a more flexible mechanism enabling direct anonymous
attestation [16].

52



This certificate is sent to the remote party, along with all other certificates of
the chain starting at the trusted module and ending at the operating system.
The remote party verifies each certificate (thus verifying the integrity of the
boot process as well), and checks the corresponding hashes against a list of
approved soft- and hardware. Remote attestation should result in a secret
shared between the application and the remote party, otherwise it cannot
be ensured that the attested application is actually executed. We discuss
problems and their suggested solutions related to remote attestation in the
following section.

Finally, strict isolation is handled by the trusted operating system. Vir-
tual machine monitors may be used in order to abstract from the actual
hardware, and leverage strict isolation by running applications in different
virtual machine monitors [51].

3.1.3.1 Semantic Remote Attestation

According to [60], the basic remote attestation process has the following
problems:

� Program behavior is not attested: The only information provided is
that a certain executable is running. It is up to the remote party to
determine whether this executable actually runs as specified, or it has
to be trusted. Both alternatives are obviously problematic especially
in cases where sensitive information is involved. Even if the executable
is actually intended to act non-maliciously, it may fail to do so because
of bugs or design flaws. In any case, it is impossible for the average
human user to analyze an executable.

� Inflexibility: Remote attestation is carried out once, before the exe-
cutable starts to run. Therefore, information about its runtime state
or input data cannot be provided.

� Management issues: Updates or patches of executables result in dif-
ferent hashes. The remote party has to update its list of approved
executables accordingly, again with the problem that program behav-
ior is not attested. The problem is exacerbated by the fact that in many
cases multiple patches and updates exist and are applied in various or-
der, resulting in a large number of different executables. Additionally,
the number of executables that have to be approved is increased by the
fact that platform-specific binaries are attested, i.e. the same software
on different operating systems results in different executables.
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� Revocation: A problem inherited from public-key cryptography is the
revocation of certificates, which cannot be addressed easily in an effi-
cient way. To make sure a certificate is valid, Certificate Revocation
Lists would have to be checked for every attestation process.

In semantic remote attestation [60], some of these problems are addressed
by using language-based techniques in combination with a virtual machine
approach, with the goal of attesting program behavior rather than particular
executables. Instead of the trusted operating system attesting the executable
of an application, the virtual machine, which is capable of executing platform-
independent code, attests various properties of an application running within
it. This is possible because in order to be executable within a virtual machine,
the respective code contains high-level information which may be used for
attestation.

3.1.3.2 Applications

Trusted computing is most often discussed in relation with Digital Rights
Management (DRM), i.e. as a mechanism for realizing provider privacy by
limiting users’ access to information. There is, however, a large number of
other potential applications, including mechanisms for realizing user privacy:
Some example applications, including peer-to-peer networks, distributed fire-
walls, and distributed computing in general, are listed in [51]. Other obvi-
ous potential applications are MAS architectures supporting mobile agents,
anonymous remailers, PPIF, and other PPTs.

In trusted computing, tamper-proof hardware is used only for the boot-
strapping process. Related approaches use a secure coprocessor as tamper-
proof hardware for additional tasks (see e.g. the Private Information Retrieval
(PIR) schemes discussed in Section 3.2.3). This course of action focuses more
on prevention of tampering, while trusted computing focuses on detection of
tampering. Remote attestation, however, is often not addressed explicitly by
these approaches, and they require customized tamper-proof hardware.

3.1.4 Privacy Enforcement

In this section, various approaches for privacy enforcement are discussed.
They are based on the assumption that a given provider of information ser-
vices intends to actually protect the privacy of his customers, i.e. the users,
and thus does not act in a malicious manner. A basic requirement for pri-
vacy enforcement is the following: Privacy policies of providers as well as
privacy preferences of users have to be expressed in a structured form, i.e. in
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a form that allows the user preferences to be processed and applied to the
user profile data automatically, according to the respective privacy policy.
The Platform for Privacy Preferences Project specification [90] meets this
requirement by defining a syntax and semantics for privacy policies, as well
as mechanisms for associating privacy policies with web resources. It does
not offer support for actual provider-side enforcement of privacy policies.

A basic kind of enforcement make take place at the user side, through
programs which for example fill out web-based forms according to the user’s
preferences and the respective web site’s privacy policy. User-side enforce-
ment can only be used to restrict the information a provider receives, but
not to control further dissemination of this information. The latter aspect is
addressed by provider-side enforcement, which aims at protecting sensitive
data by various means, listed as follows:

� Hippocratic Databases: In analogy to the hippocratic oath, which pro-
tects the privacy of patients, a mechanism for protecting user data
in databases is described in [2]. Basically, database records are ex-
tended by adding privacy metadata, derived from the information a
user has specified in a Platform for Privacy Preferences Project (P3P)
profile and the provider’s privacy policy. Based on the privacy meta-
data, sophisticated access control mechanism are implemented. Ad-
ditional tools are utilized to detect unusual and potentially privacy-
critical queries, and to record an audit trail for each query.

� Enterprise P3P: A similar approach is described in [69], resulting in a
Platform for Enterprise Privacy Practices in which every data object
is enhanced by metadata information specifying the respective access
policy. Thus, data may be handled according to a privacy policy and a
user’s preferences at all stages of an enterprise process, not only in the
context of a database.

� RAIC-based dynamic adaption: A component-based approach is de-
scribed in [72] resulting in an architecture based on a Redundant Array
of Independent Components where a simple component provides func-
tionality adapted to specific privacy constraints, e.g. a specific filtering
technique in an IF context. Suitable components are selected for each
process based on the current privacy constraints, such as the privacy
preferences of the current user.

With regard to the privacy threats listed in Section 2.3.3.2, privacy en-
forcement primarily deals with the threat of accidental disclosure.
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3.1.5 Evaluation

While Privacy-Enhancing Technologies are useful building blocks, each group
of PETs described in this section is, in itself, not sufficient for realizing a
privacy-preserving IF architecture in a feasible way, because an IF system
based on a single group of PETs does not meet all requirements listed in
Section 2.3.4:

� Anonymous communication between user and provider may not prevent
the provider from identifying the user via the user’s profile data, and
it may allow the provider to obtain private information by aggregating
profile data. The other non-functional requirements would not be af-
fected decisively by the use of anonymous communication. Because of
its prevalence as a PET, it is generally accepted by users. Providers,
however, may not accept it as readily because they usually prefer to be
able to identify the user they are interacting with.

� Secure multi-party computation protocols are infeasible for large quan-
tities of data and complex functions, such as filtering technique algo-
rithms. Additionally, they cannot be used if the function to be com-
puted is to be kept private as well, which is required for filter privacy.
These PETs is not likely to affect acceptance aspects decisively.

� Trusted computing by itself is not sufficient for realizing a generic
privacy-preserving IF architecture, mainly because of practical issues
related to remote attestation of an application meeting the requirement
of broadness (these issues are discussed in detail in Section 10.2), and
because of a lack of user acceptance with regard to trusted computing
in general.

� Privacy enforcement mechanisms at the provider side do not protect
sensitive user data against malicious providers. These PETs is not
likely to affect the other requirements and acceptance aspects decisively.

Table 3.2 summarizes the evaluation of all PETs in the context of all
work related to PPIF. To recapitulate, functionality from different groups
of PETs has to be combined with additional functionality in order to realize
the goal of Privacy-Preserving Information Filtering.

3.2 Privacy-Preserving Technologies

In this section, we discuss Privacy-Preserving Technologies as work that is
related to our approach. While these PPTs are not directly applicable for
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PPIF, mainly because they are intended for different purposes, they are nev-
ertheless relevant because the problems and concepts introduced are similar
to those of PPIF. Furthermore, we discuss related work in privacy-preserving
IF architectures.

3.2.1 Peer-Oriented Approaches

Peer-oriented approaches are protocols based on Secure Multi-Party Com-
putation that allow a group of similar entities, i.e. entities characterized
by having equivalent goals and uniform private data structures, to accom-
plish various tasks related to Information Retrieval and Information Filtering.
Hence, these approaches are not applicable in scenarios containing entities
with different goals (such as user and provider). In the following, we discuss
two exemplary peer-oriented approaches. For other approaches, see e.g. [22].

3.2.1.1 Privacy-Preserving Indexing

In this scenario, described e.g. in [13], a document collection is shared among
multiple entities, e.g. in a peer-to-peer file-sharing setting, and a global index
is to be created in order to enable documents to be retrieved in a more
efficient way than by asking each entity whether it may be able to provide
the document in question. However, the participating entities do not wish
their entire partial collections to be known globally, and they intend to be
able to decide whether to provide a document, based on the entity requesting
the document. The protocol suggested in [13] basically introduces a number
of false positives for each document equal to the number of true positives
(the entities actually sharing the respective document). The global index
contains all false and true positives, and thus the probability that an entity
listed in the index as sharing a specific document actually does so is 0.5. In
terms of unlinkability (see Section 2.3.3.3), this solution therefore provides
an unlinkability degree close to “probable innocence”. However, the privacy-
preserving construction of the index turns out to be problematic in the case
of colluding malicious entities.

3.2.1.2 Privacy-Preserving Clustering

Another peer-oriented approach closely related to Information Filtering is
privacy-preserving clustering, in which two or more entities aim at construct-
ing a global model of clusters of private data. Apart from relying on a trusted
third party, there are two basic approaches:
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� Data Perturbation: Before the clustering algorithm is applied, noise is
added to the underlying data.

� Secure Multi-Party Computation: The clustering algorithm is based on
a SMPC protocol.

Perturbation-based approaches are described e.g. in [84]. In [66], an SMPC-
based approach for privacy-preserving clustering is described which is based
on the k-means clustering algorithm for two parties under the assumption of
a honest-but-curious adversary, which utilizes a privacy-preserving protocol
for computing cluster means. Two approaches for the protocol itself are
described: A protocol for oblivious polynomial evaluation [86], and a protocol
for homomorphic encryption [14].

3.2.2 Privacy-Preserving Data Mining

Data mining, also known as Knowledge Discovery in Databases (KDD), deals
with the acquisition of non-obvious, potentially useful information, via an
automatic extraction of previously unknown patterns from large amounts of
data usually stored within databases. This is generally achieved by building
models aggregating the raw input data. The output generated by a data min-
ing process is a classifier or rule describing the previously unknown pattern.
In addition to applying standard machine-learning techniques to generate the
output, algorithms based on association rule mining are often used (see [62]
for a survey), producing association rules, which describe relations between
sets of items expressing statements of the form “users who bought item x
and y also bought itemz”.

Privacy-Preserving Data Mining aims at preserving the privacy of users
providing the input data, basically via two distinct approaches:

� Partial privacy: The model on which data mining processes are to
be applied may contain sensitive information, but this information is
hidden in the output.

� Complete privacy: Sensitive information is hidden even in the model
itself, though it may be contained within the input data.

Based on the classification given in [112], we distinguish between the
following three classes of approaches for preserving privacy:

� Heuristic-based approaches are utilized to obtain partial privacy, i.e.
they are applied when output is generated from a model.
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� Cryptography-based approaches are utilized to obtain complete privacy.
They are applied to create a model by secure multi-party computation,
based on input that has not to be revealed itself.

� Reconstruction-based approaches are utilized to obtain complete pri-
vacy. They allow the perturbation of the input data, resulting in a
model containing no sensitive information. Because this model is based
on perturbed data, the actual model has to be reconstructed from it.

3.2.2.1 Heuristic-Based Approaches

Heuristic-based approaches aim at preventing certain patterns in the respec-
tive data set, such as rules based on sensitive information. In the case of
association rule mining, the problem is formalized as follows: Given a set of
rules R and a subset Rh ⊂ R, the underlying data set D has to be trans-
formed to a data set D′ in a way that allows the mining of rules R, but
not of Rh. In other words, heuristic based approaches aim at limiting pos-
sibilities for data mining. For this reason, and because they only achieve
partial privacy, they are not relevant as related work with regard to PPIF,
and therefore not discussed further here.

3.2.2.2 Cryptography-Based Approaches

Cryptography-based approaches based on secure multi-party computation
have first been suggested in [78]. Generic solutions are not applicable for
privacy-preserving data mining in a feasible manner, because large data sets
and complex algorithms are involved. Therefore, specific protocols for secure
multi-party computation have to be designed.

In [78], a secure two-party computation protocol for the a decision tree
learning algorithm is described realizing the function

(D1, D2) 7→ (ID3(D1 ∪D2), ID3(D1 ∪D2)),

i.e. given two participants with separate databases D1 and D2, each partici-
pant obtains a decision tree based on the joint database. The communication
complexity of this protocol is shown to be reasonably close to the commu-
nication complexity of a non-private protocol for distributed computation of
the decision tree.

In [34], basic operations are described as a toolkit for realizing various effi-
cient data mining algorithms, as listed in Section 3.1.2. Using a combination
these basic operations, algorithms for association rule mining in horizontally
partitioned data (transactions are distributed between participants) [68] and
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for association rule mining in vertically partitioned data (each transaction
is distributed between participants) [110] are described. While the result-
ing data mining techniques are not secure multi-party computations in the
strict sense, because intermediate information is disclosed in addition to the
output, they are shown to still preserve privacy to a large extent, by en-
suring controlled disclosure of information. In other words, the information
disclosed in intermediate stages of the algorithm may be regarded as being
not sensitive, e.g. because it may give only a very general idea about the
underlying data.

3.2.2.3 Reconstruction-Based Approaches

The original privacy-preserving data mining approach described in [3] is a
reconstruction-based approach using a value distortion mechanism in which
input data attribute values are perturbed by adding a random value (based on
a uniform or gaussian distribution). In the reconstructed model, the original
data distribution is reconstructed with sufficient accuracy, i.e. the decision
tree classifiers generated as output based on the reconstructed model are
similarly accurate to classifiers generated based on a model created from
non-perturbed data.

A related approach [44] deals with creating association rules based on
a reconstructed model. Recommender systems are explicitly stated as a
possible application. The association rules are created based on randomized
transactions, i.e. transactions in which each original items is replaced with
a certain probability. Again, the resulting association rules are sufficiently
accurate to be used instead of rules based on non-perturbed transactions.

3.2.3 Private Information Retrieval

Private Information Retrieval deals with retrieving information via a query
mechanism, usually from a database, without revealing information about the
query and the retrieved results itself to the entity providing the information.
It has been introduced in [30]. Formally, the problem is expressed as follows:
Given a database D as a binary string x of length n, i.e. D = x1 · · ·xn, a
user has an index i and wishes to obtain xi, without the entity hosting the
database obtaining i or xi. In a more general definition, the database con-
tains more complex database records with a fixed maximal length. Obviously,
retrieving the entire database constitutes a trivial solution to this problem.
This approach has communication complexity of O(n) and is therefore in-
feasible for large databases. Additionally, it may violate the privacy of the

60



information provider. In the following, we discuss various classes of schemes
for PIR. Table 3.1 gives an overview of the discussed approaches.

Table 3.1: An overview of suggested Private Information
Retrieval schemes. Each solution is shown with its communication
complexity.

information-
theoretic privacy

computational
privacy

k-server schemes [30] [29]
O(n1/3) O(nε)

(O(n) computational [6]
complexity) O(n1/(2k−1)

single-server schemes trivial solution [75]
O(n) O(nεlog n)

(O(n) computational [21]
complexity) O(logdn)

single-server n/a [104]
hardware-based schemes optimal
(up to O(1) on-line [8]
computational complexity) optimal

The first approaches to PIR are based on replicating the database by
distributing copies of the original database on different servers:

� In [30], a two-server PIR is described that has a communication com-
plexity of O(n1/3).

� In [6], this solution is generalized to a k-server PIR scheme with com-
munication complexity O(n1/(2k−1).

� In [29], a two-server solution with an improved communication com-
plexity O(nε) for any ε > 0 is described. The improved complexity is
reached by replacing the goal of information-theoretic privacy with the
goal of computational privacy, as defined in Section 2.3.3.3.

In all multi-server approaches, the respective providers are assumed not
to collude, acting in a non-honest manner. This requirement turns out to
be rather unrealistic, mainly because it is difficult to enforce, even more so
as the respective entities have to communicate and thus know each other
in order to keep the databases consistent. Therefore, later approaches are
based on single-server schemes and achieve computational privacy rather
than information-theoretic privacy (which in single-server PIR schemes can
only be reached via the trivial approach):
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� In [75], the first single-server PIR scheme is described, relying on an
intractability assumption. The communication complexity isO(nεlogn)
for any ε > 0. Basically, the approach is based on encrypting the query
and applying the encrypted query to the database in a way that the
provider is not able to recognize either the query or the result.

� In [21], a single-server PIR scheme with polylogarithmic communication
complexity O(logdn) with d > 1 is described, based on a different
intractability assumption. This communication complexity is close to
optimal, because retrieving a bit from a binary string in the non-private
case has a communication complexity of O(logn).

Single-server solutions, however, require a computational complexity of
O(n), because the server has to access all data in every single PIR process,
because otherwise information could be obtained via observing which data is
actually accessed. For this reason, the single-server solutions described above,
while theoretically viable, are considered impractical with regard to real-
world large-scale databases. Therefore, most recent approaches are hardware-
based, i.e. they require tamper-proof hardware:

� In [104], a secure coprocessor is used as a tamper-proof device for stor-
ing and propagating the relevant database record, based on an en-
crypted query received from the user. As in earlier approaches, all
records are read from the database, and therefore the computational
complexity is still in O(n).

� In [8], the previous approach is optimized by storing all original data-
base records in encrypted and permutated form via the secure coproces-
sor. Thus, no longer all records have to read from the database, because
observing the retrieval of an encrypted records does not give any infor-
mation about the original record4. After a constant number of queries,
the secure coprocessor switches to a different set of encrypted and per-
mutated records. Because the preprocessing of encrypted databases in
done off-line, i.e. independent of actual queries, on-line computa

Finally, there are the following approaches closely related to PIR:

4If only one record would be read for every query, however, subsequent queries would
be revealed to be different if different encrypted records were read. Therefore, for the k-th
query, all k − 1 records previously accessed have to be read again, and a random record
has to be read for duplicate queries.
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� Private Information Storage: The problem of Private Information Stor-
age, i.e. the unobservable storage of data in a remote database, is similar
to the problem of PIR, and analogous solutions have been suggested
e.g. for multi-server schemes and hardware-based schemes. We omit a
detailed discussion of these approaches here, because they are not di-
rectly relevant for the field of Privacy-Preserving Information Filtering.

� Symmetrically-Private Information Retrieval: If the privacy of the da-
tabase provider has to protected in addition to the privacy of the user,
a Symmetrically-Private Information Retrieval (SPIR) scheme is re-
quired. The privacy of the database is protected if a user does not
receive any information in addition to the result of the query. Starting
with [53], there are a number of approaches addressing this problem
explicitly. In hardware-based PIR schemes, it is usually addressed im-
plicitly, because only the query result is returned to the user anyway.

3.2.4 Privacy-Preserving IF Architectures

Related work in privacy-preserving IF architectures focuses on distributed
architectures, i.e. on collaboration-based approaches. The main problem in
distributed IF architectures is how to determine for a given user either the
most similar users themselves or at least potential candidates for recommen-
dations. In [85], the following five approaches are suggested:

� Random Discovery: A file-sharing protocol or similar mechanism is
used for finding and contacting other users. This approach is not very
efficient because a discovered user will only be similar coincidentally
and therefore a large number of other users has to be contacted.

� Transitive Traversal: The Random Discovery approach is improved by
the the following approach: A given user asks another user that is
known to be similar for a list of further similar users, and contacts
these, because they are expected to be similar to the given user as well.
In this approach, a new user has still to contact other users randomly.

� Centralized Model Generation: A trusted central server stores all ob-
jects themselves, and all user ratings of these objects, in a single model.
This approach is obviously critical with regard to privacy, because sen-
sitive information is stored centrally and trust is required to a large
extent unless the sensitive information is protected via other mecha-
nisms.
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� Distributed Model Generation: Using an approach similar to a secure
voting scheme, such as a secure blackboard, a global model may be
created in a privacy-preserving manner. Apart from the complexity,
the main drawback of this approach is the fact that it cannot be used to
determine similar users in addition to the recommendations themselves,
because global models abstract from user-user relationships.

� Distributed Model Storage: In peer-to-peer networks with a determin-
istic overlay routing system, the network itself may be used as a dis-
tributed storage system for user-object relationships. This approach is
problematic with regard to privacy as well, because each user has to
make a list of rated objects available for other users.

A number of solutions have been suggested along these main approaches:

� Competitive Recommender Systems: In [9] a distributed algorithm
based on the competitive recommender systems approach [41] is in-
troduced that is based essentially on random discovery: A recommen-
dation is generated for a user by iteratively retrieving an item and
determining its rating as a recommendation, until an item with a suffi-
ciently high rating is found. An item is retrieved either randomly from
the provider, or by asking a random user for a recommendation, the
decision being based on a random coin flip. The complexity of this
algorithm is largely dependent on the assumption that the number of
types is small or even constant with regard to the number of users,
and on the assumption that the number of users belonging to a type is
significantly larger than the number of users not belonging to any type,
because otherwise a large average number of iterations is required for
each user.

� Yenta: In [45], an agent-based approach is described in which user
agents representing similar users are discovered via the transitive traver-
sal approach. A hill-climbing algorithm is applied in order to find a
user agent with maximal similarity. The problems inherent to this
approach, namely the issues of local maxima and isolated groups of
agents are mentioned, but, somewhat surprisingly, stated to be negli-
gible. Privacy is preserved through pseudonymous interaction between
the agents and adding obfuscating data to personal information, re-
sulting in a “probable innocence” degree of unlinkability. More recent
related approaches are described e.g. in [79].
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� PocketLens: As described in [85], all five approaches are implemented
as reference architectures for the PocketLens algorithm, a neighbor-
hood-based algorithm for distributed collaborative filtering. The real-
ized architectures are characterized by the respective drawbacks listed
above.

� Alambic: The Alambic system [4] is based on a centralized model gen-
eration approach in which the privacy of the model is preserved by a
combination of mechanisms. It is described in detail below.

� Cryptography-Based Collaborative Filtering: Various cryptography-
based approaches [24][25] generating a global model in a distributed
way have been suggested. They are described in detail below.

� Reconstruction-Based Collaborative Filtering: Various reconstruction-
based approaches [93][92] generating a central model in a privacy-
preserving way have been suggested. They are described in detail be-
low.

Finally, it should be noted that other aspects not related to privacy have
to be addressed as well when designing a distributed IF architecture: In
[113], an agent-based distributed recommender system with the focus on
utility rather than privacy is described, i.e. the main problem addressed is
how to enable agents decide when and to whom to provide recommendations.
It is concluded that agent with similar profiles may profit from exchanging
recommendations, but no mechanism for determining likely candidates is
given apart from random interaction of agents, which is rather inefficient.
Privacy aspects are explicitly not addressed.

The approaches most relevant as work related to our approach are dis-
cussed in detail in the following.

3.2.4.1 Alambic

The Alambic system [4] proposes a mechanism for privacy-preserving demo-
graphic filtering which may be generalized in order to support other kinds of
filtering techniques. While its description strongly suggests that the archi-
tecture is based on MAS technology, this is not stated explicitly. Basically,
the filter is realized as an independent entity which is to some degree con-
trolled by the provider (all communication with other entities is controlled
and monitored by the provider, by unspecified means), but at the same time
protected against manipulations (through code encryption and obfuscation,
or alternatively by utilizing tamper-proof hardware). The provider model
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contains clusters of users with a similar demographic background, where
each cluster is assigned indexes of the provider profile elements themselves.
The provider model is exclusively controlled and accessed by the filter role.
It is updated based on feedback of users.

In a filtering process, the user profile is encrypted via the filter role’s
public key as protection against the provider entity. The encrypted profile is
sent from the user role to the provider entity, where it is stored for unspecified
reasons. It is then propagated to the filter entity, where it is decrypted and
subsequently compared with the cluster centroids in order to determine the
best matching cluster. The indexes of profile elements associated with the
best matching cluster are encrypted twice via a symmetric encryption scheme,
first with a secret key shared with the provider entity (as protection against
the user entity), and then with a secret key shared with the user entity via
the encrypted profile (as protection against the provider entity).

The encrypted indexes are returned to the user entity, presumably again
via the provider entity. Finally, the actual recommendations are determined
via the indexes, either directly by the provider role itself, or via a more
complex PIR-based protocol between user and provider entity which keeps
the actual recommendations hidden from the provider. Again, details of the
protocol are unspecified. All user interaction with the system is anonymous.
The specific algorithm used for determining clusters is not specified, because
it is irrelevant for the overall privacy-preserving architecture.

3.2.4.2 Cryptography-Based Collaborative Filtering

In [24], a distributed privacy-preserving architecture for a recommender sys-
tem based on collaborative filtering via Singular Value Decomposition is de-
scribed. In this approach, recommendations are generated via a public model
aggregating the distributed user profiles without containing explicit informa-
tion about user profiles themselves. A similar approach based on factor anal-
ysis is described in [25]. Both approaches are based on secure multi-party
computation.

The overall complexity is O(m n log n) for n users and m different items
contained within the user profiles, which is reasonable close to the lower
bound of Ω(m n). The model is structured as a matrix P with Pij being
the rating of user i for item j, which is zero if the item has not been rated,
and greater than zero otherwise. This matrix is not known to any partici-
pant. Recommendations are generated via the public matrix A, computed
via SMPC, with A being a global linear approximation of P .

All computation is distributed between the users. An honest majority of
users is assumed, i.e. a fraction α > 1/2 of all involved computers are assumed
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to be uncorrupted. The approach assumes two services: A blackboard in the
form of a write-once, read-many storage system, and a trusted source of
random bits. The protocol itself, which we do not present here, is largely
based on a scheme for secure e-voting described in [35]. It uses homomorphic
encryption5 in order to handle sums of encrypted vectors without exposing
the underlying data itself.

3.2.4.3 Reconstruction-Based Collaborative Filtering

In [93], a distributed privacy-preserving architecture for a recommender sys-
tem based on collaborative filtering via Singular Value Decomposition is de-
scribed, i.e. an architecture very similar to the one described above. The main
difference is the following: Privacy is preserved through random perturba-
tion instead of secure-multi party computation. A similar approach based on
correlation of users is given in [92]. In the first approach, a global model is
created based on vectors representing the single user profiles in which all data
has been perturbed by adding random values to the vector elements, based on
a given distribution. A significant trade-off between privacy and accuracy is
observed: Obviously, using a small amount of perturbation is insufficient for
preserving privacy because the modified vector closely resembles the origi-
nal vector. On the other hand, a large amount of perturbation decreases
the overall accuracy because the vector elements become indistinguishable
from random noise. Determining the optimal trade-off is problematic be-
cause while accuracy can be expressed in terms of mean absolute error of
the model created from the perturbed data, privacy is generally more diffi-
cult to quantify. Based on the method suggested in [1], a privacy measure
is used indicating how closely an original value can be estimated based on
the perturbed value: The privacy loss P (X|Z) is the fraction of privacy of a
variable X that is lost by revealing the variable Z. Privacy of a variable itself
is expressed based on its differential entropy, i.e. a measure of uncertainty in
the values of the variable. Using these measures for privacy and accuracy,
an optimal trade-off may be determined.

3.2.5 Evaluation

Unlike single PETs, the Privacy-Preserving Technologies discussed in this
section are sufficient for preserving privacy in specific application domains,
sometimes under certain realistic assumptions. While there is a compara-
tively small amount of related work describing PPTs for Information Filter-

5Homomorphic encryption schemes basically allow operations on encrypted data to be
carried out in a meaningful manner.

67



ing, the related approaches discussed here are also relevant in the context of
PPIF because they may used as parts of the overall architecture:

� Peer-oriented approaches methods may be used as part of a filtering
technique in collaboration-based approaches, i.e. for clustering users
in order to determine similar users. While feature-based approaches
may also be based on clustering of profile elements, in this case the
clustering itself generally does not have to be performed in a privacy-
preserving manner because the underlying information does not refer
to more than one participant.

� Privacy-preserving data mining approaches are relevant because data
mining methods may be used for creating provider profile models in
collaboration-based approaches, e.g. by deriving association rules based
on user feedback.

� Private Information Retrieval schemes are intrinsically very relevant in
the context of PPIF because the filtering process may rely on queries
on a large dataset. Apart from performance issues, however, proposed
solutions in this area are currently of a more theoretical nature and
cannot easily be applied to real-world database management systems.

However, these approaches may not be used by themselves for realizing
Privacy-Preserving Information Filtering, because the respective IF system
would not meet all requirements listed in Section 2.3.4:

� By definition, Peer-oriented approaches methods are only suitable for
collaboration-based approaches and thus do not even meet all func-
tional requirements. Even ignoring this aspect, they do not address
filter privacy, and are characterized by a high complexity, leading to
problems with regard to performance and/or broadness.

� Privacy-preserving data mining approaches do not address filter pri-
vacy, and protect the privacy of the user only up to the information
processing stage, but not in the information filtering stage. They are
additionally characterized by quality issues (perturbation-based ap-
proaches) or performance issues (approaches based on Secure Multi-
Party Computation).

� Private Information Retrieval schemes do not address provider privacy
in the context of IF, nor filter privacy. As largely theoretical ap-
proaches, they do not meet the requirement of adequate performance
in realistic scenarios.
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Acceptance is achieved to a large degree by meeting the respective privacy
requirement.

Table 3.2 summarizes the evaluation of these PPTs in the context of all
work related to PPIF. To recapitulate, the PPTs discussed in this section
provide useful functionality for parts of PPIF architectures but cannot be
used by themselves in order to realize these architectures.

Finally, we evaluate the existing approaches for distributed PPIF archi-
tectures. These approaches are usually restricted to specific filtering tech-
niques and are only suitable for collaboration-based approaches and thus
do not meet all functional requirements. With regard to the non-functional
requirements, they are characterized by the following drawbacks:

� Non-model-based approaches, such as the competitive recommender
systems approach and Yenta, are infeasible for real-world applications,
mainly due to the complexity involved in the task of determining sim-
ilar users. They do not address filter privacy, and are restricted to
specific filtering techniques, which is problematic with regard to the
requirement of broadness.

� The PocketLens approach is characterized by the drawbacks listed in
the discussion of the five main approaches for determining similar users,
which are problematic either with regard to user privacy, or with re-
gard to performance. Furthermore, the PocketLens approach does not
address filter privacy.

� The Alambic system is the approach most closely related to our archi-
tecture. While basically viable, two aspects are insufficiently addressed,
namely the protection of the filter against manipulation attempts (the
technology-based solutions are only described in an abstract way, while
a solution based on an additional trusted party only moves the under-
lying problem to a different level), and the prevention of collusions
between the filter and the provider (the suggested solution again re-
lies on a trusted third party). In other words, the approach does not
address filter privacy, and it only insufficiently addresses user privacy.

� All Cryptography-Based Collaborative Filtering approaches are largely
theoretical, i.e. they often have not even been fully implemented. Fur-
thermore, they require the participation of all users, especially for up-
dating the model, a course of action that is somewhat inefficient for a
large number of users. Additionally, the suggested approaches cannot
be used to realize a Matchmaker System, because similar users are not
determined as such, and they do not address filter privacy.
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� The described Reconstruction-Based Collaborative Filtering approach
deals only with the privacy-preserving generation of the model, it does
not address the problem of obtaining recommendations in a privacy-
preserving manner. Therefore, only the information procession stage
of an entire IF process is covered. As in the case of perturbation-
based approaches for privacy-preserving data mining, the requirement
of quality is problematic, and, as in all approaches discussed in this
section, filter privacy is not addressed.

Acceptance is achieved to a large degree by meeting the respective pri-
vacy requirement. Provider acceptance of these approaches is expected to
be somewhat lower, though, because these approaches may not allow the
provider to obtain any information about users at all.

Table 3.2 summarizes the evaluation of these distributed PPIF architec-
tures in the context of all work related to PPIF. To recapitulate, none of
the distributed PPIF architectures discussed in this section, which meet the
non-functional requirements to a larger extend than single PETs or PPTs,
constitutes a generic framework suitable for various kinds of filtering tech-
niques and for realizing feature-based and collaboration-based Recommender
Systems as well as Matchmaker Systems.

3.3 Privacy in Multi-Agent Systems

In this section, we discuss work related to privacy aspects of architectures
based on Multi-Agent System technology. After a brief overview of ap-
proaches for anonymous communication between agents, we describe pro-
posed solutions dealing with the problem of malicious hosts in MAS archi-
tectures.

3.3.1 Anonymous Communication

A MAS architecture requiring anonymous communication of agents may
adapt general solutions for anonymous communication, as described in Sec-
tion 3.1.1. Theoretic foundations for reasoning about anonymity and infor-
mation hiding in MAS architectures are given by [61]. Furthermore, the
following MAS-specific approaches for anonymous communication have been
suggested:

� In [73], an approach for anonymous communication of mobile agents
based on onion routing (see Section 3.1.1.1) is described which is is
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based on the JADE6 multi-agent platform. Every agent platform con-
sists of dedicated onion agents providing a data forwarding service (thus
representing the mixes) which communicate via an Agent Communi-
cation Language, and an additional manager agent monitoring these
agents.

� In [15], the anonymizing service provided by the AgentScape7 frame-
work is described. It is realized as a simple router, i.e. a proxy agent
(see Section 3.1.1.1) relaying communication between two agents that
intend to remain anonymous.

Both approaches may be adapted to other MAS architectures in a straight-
forward manner.

3.3.2 Protection against Malicious Hosts

As discussed in Section 2.4.3, the protection of agents against malicious
hosts is a central requirement in MAS architectures consisting of personal
agents representing different entities that regard each other as potentially
non-honest. The solutions addressing this problem have been suggested:

� Code encryption: As described in [98], the code of a mobile agent my
be protected by using an encrypted function computing the result for
input provided by the host. While the host obtains the result of the
function, he is not able to obtain the original function itself. He may,
however, still attack the mobile agent by re-running it and attempting
to obtain information about the function by using different inputs.
These kinds of attacks may be prevented by requiring communication
with a trusted third party during the computation of the result [5].

� Data Encryption: In addition to encrypting a function as part of a
mobile agent’s algorithm, the data of an agent may be encrypted as
well, and all operations of the agent on an untrusted platform may be
carried out on the encrypted data itself, without the need for decrypting
the data. This approach requires a homomorphic encryption scheme,
e.g. a scheme based on the ElGamal cryptosystem [42].

� Code Obfuscation: Code obfuscation in the context of MAS is the trans-
formation of an agent’s code into a form that is hard to understand or

6Available via the URL <http://jade.tilab.com/>.
7Available via the URL <http://www.agentscape.org>.
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to reverse-engineer by attackers, but at the same time results in equiv-
alent behavior of the agent executing the obfuscated code, compared
to an agent executing the original code. A comprehensive overview is
given e.g. in [37]. It has been shown [10] that there is no general obfus-
cation method that always results in a perfectly obfuscated program
which reveals nothing about the underlying algorithm. Research in the
area continues, however, because in practice less-than-ideal obfuscation
may be acceptable: In the case of mobile agents, an obfuscation scheme
deterring or delaying attacks for a certain amount of time could still be
useful for protecting mobile agents against manipulations while they
are running on an untrusted platform.

� Recording and Tracing Approaches: A number of other approaches have
been suggested which mainly aim at detecting malicious hosts, without
the possibility of preventing attacks. A survey of these approaches
is given in [64]. They are based on recording the itinerary of mobile
agents visiting a number of mobile platforms, and detecting possible
malicious hosts by inconsistencies in the recordings [97], or by tracing
the execution of an agent in a non-repudiable log file [114].

� Trusted Computing: While the approaches outlined above may be suf-
ficient in specific scenarios, the only approach suitable for protecting
mobile agents against malicious hosts in a generic way appears to be the
use of secure hardware, e.g. through trusted computing, as described
in Section 3.1.3. Via remote attestation, a platform may be ensured to
be incapable of acting in a malicious way, e.g. by realizing the virtual
machine approach for semantic remote attestation described in [60].

The drawbacks of these approaches are discussed in the following section.

3.3.3 Evaluation

While the solutions for anonymous communication in MAS architectures con-
stitute adequate solutions, the proposed approaches dealing with the problem
of malicious hosts are characterized by several drawbacks:

� Code encryption: The main drawback of this approach is that mainly
because of complexity issues, it can be applied efficiently only to basic
algorithms, such as algorithms for evaluating polynomial expressions.
As in the case of secure multi-party computation (see Section 3.1.2,
it is infeasible for complex algorithms such as filtering techniques for
Information Filtering.
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� Data Encryption: Data encryption in itself is sufficient for protecting
data of a mobile agent, as long as the data is static in the follow-
ing sense: The data should be obtained before the agent migrates to
the untrusted platform, and decrypted only after the agent has left it.
Unencrypted data received through communication while the agent is
running on the untrusted platform should not be combined with the
encrypted data in any way. This restriction implies that most mobile
agent scenarios cannot use this approach, because they usually involve
communication of the mobile agent, except for simple remote comput-
ing scenarios.

� Code Obfuscation: Code obfuscation in itself is insufficient for protect-
ing the privacy of mobile agents against non-honest hosts, because the
respective attacks are not limited to the duration of the execution of
the mobile agent.

� Recording and Tracing Approaches: These approaches do not actually
protect the privacy of mobile agents, which makes them infeasible for
many scenarios including Privacy-Preserving Information Filtering.

� Trusted Computing: As described above, trusted computing appears
to be the only approach suitable for protecting mobile agents against
malicious hosts in a generic way.

To recapitulate, privacy aspects in MAS architectures are largely cov-
ered by related work. Therefore, we do not provide additional approaches
addressing these aspects in this work, but rather build upon the existing
solutions.

3.4 Summary

This chapter discusses different areas of related work, namely Privacy-En-
hancing Technologies (Section 3.1) and Privacy-Preserving Technologies (Sec-
tion 3.2), including approaches for distributed Privacy-Preserving Informa-
tion Filtering. It also discusses work related to aspects of privacy in Multi-
Agent Systems (Section 3.3). We summarize the evaluation of the various
areas of work related to PPIF (i.e. Section 3.1.5 and Section 3.2.5) in Ta-
ble 3.2, based on the non-functional requirements defined in Section 2.2.3.
To recapitulate, no single solution is sufficient for realizing an architecture
for Privacy-Preserving Information Filtering meeting all functional and non-
functional requirements.
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Table 3.2: An overview of existing PETs, PPTs, and approaches
for PPIF in relation to the requirements and acceptance aspects
of Privacy-Preserving Information Filtering. A requirement may
be fully met (indicated by “X”), partially met (indicated by “o”),
or not met at all (indicated by “–”). Acceptance is indicated
in an analogous manner. Note that the ratings do not always
indicate the best value theoretically possible for the architecture
utilizing the respective technology, or the respective architecture
for distributed PPIF, but a realistic average value.

Privacy Other Accep-
Requirements Requirements tance
Ru Rp Rf Rqq Rbb Rpp Au Ap

PETs
Anonymous Communication – X – � � � X –
SMPC X X – � – – � �

Trusted Computing X X X � – � – �

Privacy Enforcement – X – � � � � �

PPTs
Peer-Oriented Approaches � X – � – – � �

SMPC-based PPDM – X – � – – – X
Perturbation-based PPDM – X – – – � – X
Private IR X � – � � – � �

Distributed PPIF
Random Discovery-based � X – � – – � �

PocketLens � X – � – – � �

Alambic � X – � – � � �

Cryptography-based X X – � – – � �

Reconstruction-based X X – – – � � �

At first glance, out of all related work, trusted computing seems to be
the most suitable approach for PPIF. Consequently, a straightforward course
of action would be to take an existing comprehensive IF system and to the
respective architecture based on trusted computing. As discussed in Sec-
tion 10.2, this approach is problematic mainly with regard to the requirement
of broadness and the aspect of user acceptance. Therefore, even if the IF sys-
tem is to be based on trusted computing, a different approach is required.
We describe this approach in the following chapter.
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Chapter 4

Privacy-Preserving Information
Filtering

This chapter gives an overview of our approach for Privacy-Preserving In-
formation Filtering. It focuses on the general idea and main concepts of our
solution, and omits all details of the approach, which are covered by the
following chapters.

This chapter is structured as follows: The following section lists the sup-
ported use cases, which are directly derived from the functional requirements
listed in Section 2.3.4. Section 4.2 gives a high-level outline of our solution
for PPIF. Based on two essential concepts, namely the concept of a trusted
environment for protecting privacy in Recommender Systems (Section 4.2.1),
and the additional concept of an anonymous centralized model for protecting
privacy in Matchmaker Systems (Section 4.2.2), we motivate the use of MAS
technology in this context (Section 4.2.3) and introduce the components of
our approach that realize these concepts via MAS technology (Section 4.2.4).
In Section 4.3, we briefly describe the implementation of the approach itself
as well as the implementation of a prototypical application based on the
approach. Section 4.4 summarizes the chapter.

4.1 Use Cases

As defined in Section 2.2.1, we distinguish between the following kinds of IF
systems, each fulfilling a distinct goal:

� A Recommender System generates recommendations and predictions of
items.

� A Matchmaker System determines similar users.
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� A Hybrid IF System generates recommendations and predictions of
items via determining similar users.

A comprehensive IF approach should provide functionality that is sufficient
for realizing these kinds of systems. In other words, an approach for PPIF
should provide functionality for realizing the following four main use cases:

� The use case “get prediction for item” with interactions resulting in
predu,s,ft,i, i.e. the predicted relevance of item i for a given user u,
based on the profile of the supplier s (which may be a provider or
another user), and the filtering technique ft.

� The use case “get recommendations” with interactions resulting in
RECu,s,ft,n, i.e. the top-n recommendations with parameters as above.

� The use case “get prediction for user” with interactions resulting in
predu,s,ft,u′ , i.e. the predicted similarity of user u′ with parameters as
above.

� The use case “get similar users” with interactions resulting in SUu,s,ft,n,
i.e. the top-n similar users with parameters as above.

We note that each use case actually consists of two partial use cases,
one in which the complete supplier profile is used, and one in which a con-
strained supplier profile is used, containing elements returned as a result of
a query on the supplier profile: The latter use case constitutes the mixed
IR/IF scenario, the IR-related part of which is not considered as privacy-
critical, because it is assumed not to be directly related to the user profile
data. A plausible scenario for this use case is the following example: A user
wants to receive recommendations from a movie recommender, but the rec-
ommendations should be restricted to movies being shown on a specific day
on television or in cinemas in a specific city. In this case, the respective
queries usually return a more manageable part of the supplier profile, such
as 200 out of 20.000 movies.

Additionally, these use cases may be split up further depending on the
actual degree of user privacy (see Section 2.3.3.3), which is basically defined
via the result data the supplier obtains:

� Completely Linkable Result Data: All result data is linkable to the user.
Consequently, it is internally linkable as well.

� Semi-Linkable Result Data: The result data is internally linkable, but
not to the user. As an example, the supplier may determine whether
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two recommendations belong to one set of recommendations generated
for a single user, but the user himself remains anonymous. This case
does not apply to the prediction-based use cases, because the concept
of unlinkability does not apply to single elements.

� Semi-Private Result Data: The result data is internally unlinkable, and
it is not linkable to a user as well.

� Completely Private Result Data: The supplier does not obtain any
result data.

We subsume the first two cases under the designation Linkable Result
Data, and the last two cases under the designation Private Result Data.

In addition to these use cases, a comprehensive approach for PPIF should
also provide functionality for the following use cases related to the first two
stages of an IF process, as described in Section 2.2.1:

� The use case “update profile elements”, in which an entity adds ele-
ments to the respective profile, or removes elements from it during the
Information Collection stage.

� The use case “update profile model”, in which the model for a profile is
updated based on added or removed elements during the Information
Processing stage.

Table 4.1 summarizes all six use cases described above, which we refer
to as main use cases in the following. Other use cases providing aggregated
by these main use cases are referred to as partial use cases. As they are not
directly relevant for the outline of our solution, they are not listed here.

4.2 Outline of the Solution

We propose an approach for agent-based Privacy-Preserving Information Fil-
tering suitable for realizing Recommender Systems, Matchmaker Systems,
and Hybrid IF Systems. The approach meets all requirements stated in
Section 2.3.4 and may be used to realize all use cases introduced above, as
shown in Section 10.1.

In the following outline of our solution, we focus on the information filter-
ing stage and disregard the two preceding stages, mainly because they are no
more critical with regard to privacy as they typically involve fewer entities:
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Table 4.1: Main use cases covered by our approach for PPIF.

main use case
supplier

result data

profile
compl. semi-

private
linkable linkable

information collection stage
update profile elements n/a n/a (no result data)

information processing stage
update profile model n/a n/a (no result data)

information filtering stage
get prediction for item complete X n/a X
get prediction for item query result X n/a X
get recommendations complete X X X
get recommendations query result X X X
get prediction for user complete X n/a X
get prediction for user query result X n/a X

get similar users complete X X X
get similar users query result X X X

� A process of the information collection stage only involves a single
entity, namely the user or the provider entity, depending on the profile
data to be collected.

� A feature-based process of the information processing stage involves two
entities, namely the user or the provider entity, depending on the profile
data to be processed, and the filter entity. As noted in Section 2.2.1,
these processes occur in Recommender Systems only.

� A collaboration-based process of the information processing stage typ-
ically involves all three abstract entities. As noted in Section 2.2.1,
these processes occur in Matchmaker Systems and Hybrid IF Systems.

� A process of the information filtering stage involves all three abstract
entities.

Additionally, processes of the first two stages do not return sensitive result
data, as in the final stage. Therefore, the concepts of a solution for the
information filtering stage are likely to be applicable for the other stages as
well (Section 7.2.2.1 and Section 7.2.2.2 show that this is in fact the case).

We begin the outline by addressing the most problematic aspect in Priva-
cy-Preserving Information Filtering, namely the apparent paradox of provid-
ing private information in order to obtain personalized information without
losing control over the provided private information.
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4.2.1 Trusted Environment

The requirements state that no private information should be acquired per-
manently by other entities. The basic idea for realizing the privacy-related
requirements in Recommender Systems is already suggested implicitly by
the use of the adverb “permanently” in this context: While it is obviously
important that permanent acquisition is prevented, temporary acquisition
of private information may be allowed and therefore used to full capacity.
Thus, the use case “get recommendations” is realized as follows on the most
abstract level: User and supplier entity both propagate the respective profile
data to the filter entity. The filter entity provides recommendations (either to
both entities, or only to the user entity), and deletes all private information
afterwards.

There are basically two approaches for realizing an acquisition of private
information that is in fact only temporary:

� Trusted Software: The respective entity is trusted or known - e.g.
through validation via trusted computing mechanisms - to remove the
respective information as specified;

� Trusted Environment: The respective entity operates in an environment
that is trusted or otherwise known to control the communication and
lifecycle of the entity to an extent that the removal of the respective
information may be achieved regardless of the attempted actions of the
entity itself. Additionally, the environment itself is trusted or otherwise
known not to act in a malicious manner in this context (e.g. it cannot
extract and propagate the respective information itself).

Our solution is based on a trusted environment because, although it is more
complex than the trusted software approach, the trust issues are resolvable
more easily in this approach, basically because a trusted environment may be
realized in a more generic way. We address this issue in detail in Chapter10.2.

According to this decision, we specify the abstract information filtering
protocol for the use case “get recommendations (linkable result data)” as
shown in Figure 4.1: The filter entity deploys a Temporary Filter Entity
(TFE) operating in a trusted environment. The user entity deploys an ad-
ditional relay entity operating in the same environment. These additional
entities are short-lived, i.e. they are terminated after a specified number of
tasks. Through mechanisms provided by this environment, the relay entity
is able to control the communication of the TFE, and the supplier entity is
able to control the communication of both relay entity and the TFE. Thus,
it is possible to ensure that the controlled entities are only able to propagate
recommendations, but no other private information.
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In the first stage (Step I.a to Step I.c of Figure 4.1), the relay entity
establishes control of the TFE, and thus prevents it from propagating user
profile information. User profile data is propagated without participation
of the supplier entity from the user entity to the TFE via the relay entity.
In the second stage (Step II.a to Step II.c of Figure 4.1), the supplier entity
establishes control of both relay and TFE, and thus prevents them from prop-
agating supplier profile information. Supplier profile data is propagated from
the supplier entity to the TFE via the relay entity. In the third stage (Step
III.a to Step III.e of Figure 4.1), the TFE returns the recommendations via
the relay entity, and the controlled entities are terminated. Taken together,
these steps ensure that all private information is acquired temporarily only
by the other main entities. The use case “get prediction for item (linkable re-
sult data)” is realized via a similar protocol, in which the result data contains
the prediction instead of recommendations.

The use cases “get recommendations (private result data)” and “get pre-
diction for item (private result data)” are realized by a protocol based on
similar steps (see Figure 4.2), but including an additional relay entity de-
ployed by the supplier, which is basically required for validating the result
data before it is propagated to the user. In the case of linkable result data,
this task is carried out by the supplier entity itself, which is not possible in
the case of private result data, because the supplier entity may not obtain
result data directly.

Figure 4.1: The abstract privacy-preserving information filter-
ing protocol for the use cases returning linkable result data. All
communication across the environments indicated by dashed lines
is prevented with the exception of communication with the con-
trolling entity.
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Figure 4.2: The abstract privacy-preserving information filter-
ing protocol for the use cases returning private result data. All
communication across the environments indicated by dashed lines
is prevented with the exception of communication with the con-
trolling entity.

While these protocols may also be applied in distributed Matchmaker
Systems, in this case another central problem has yet to be addressed, namely
the challenge of determining user candidates in an efficient manner.

4.2.2 Anonymous Centralized Model

In order to meet the privacy-related requirements in Matchmaker Systems,
the protocols introduced above may be applied, with a different user consti-
tuting the supplier entity in the interactions. Determining similar users in
general, however, is difficult if the number of users is too large to efficiently
carry out this protocol for each pair of users. As described in Section 3.2.4,
there are various approaches for determining suitable candidates from the
set of all users. Our solution is based on a combination of the mechanisms
of random discovery, transitive traversal, and central model generation.

In order to preserve privacy, all information related to users is stored
anonymously in a centralized model: A user adding a specific item to his
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profile may announce this anonymously, which allows the provider of the
centralized model to store the relationship of item and pseudonym. By using
a different pseudonym for each user-element relation stored in the central
model, unlinkability of users and items as well as of the items among them-
selves is realized. Subsequently, a given user may obtain the information
that the profiles of other users contain a specific item, but is given only
a pseudonymous communication address for contacting the candidate user.
Obviously, a mechanism for anonymous communication is required for this
solution.

The provider of the centralized model does not necessarily have to be iden-
tical with the provider of the underlying data. In most scenarios, however,
a single entity is likely to constitute both providers, because maintaining a
centralized model allows the provider to obtain some feedback regarding the
prevalence of items in user profiles, which may be useful information. Other
entities are less likely to be sufficiently motivated to provide a centralized
model.

The protocol for the use case “get similar users” is defined as follows: The
user entity anonymously receives anonymous candidates from the provider,
which may be selected randomly or based on his profile elements. The user
entity interacts with the candidates in order to determine the similarity of
the respective profiles, or in order to obtain additional candidates with whom
he interacts in the same manner. Over time, the most similar users are found
with high probability. The user may also receive candidate users randomly,
or from other similar users.

4.2.3 Use of MAS Technology

As outlined in the previous sections, our approach for Privacy-Preserving
Information Filtering is based on a distributed system in which the main
abstract entities of user, provider and filter are modeled as distinct enti-
ties which control the respective private information exclusively. Thus, only
interactions involving more than one entity have to be considered as privacy-
critical. If communication control as described above is actually realized,
and the entities are protected against external threats, sensitive information
may actually be protected and a PPIF architecture may be realized. This
approach requires a participating entity to have the following five main abil-
ities:

� The ability to perform certain well-defined tasks (such as carrying out
a filtering process) with a high degree of autonomy, i.e. largely indepen-
dent of other entities (e.g. because the entity is not able to communicate
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in an unrestricted manner);

� The ability to be deployable dynamically in a well-defined environment;

� The ability to communicate with other entities;

� The ability to achieve protection against manipulation attempts;

� The ability to control and restrict the communication of other entities;

As defined in Section 2.4.1, MAS architectures are an ideal solution for
realizing the approach, because they provide agents as entities actually char-
acterized by autonomy, mobility and the ability to communicate, as well
as agent platforms as environments providing means to realize the security
of agents. In this context, the issue of malicious hosts, i.e. host attacking
agents, has to be addressed explicitly. Additionally, existing MAS architec-
tures generally do not allow agents to control the communication of other
agents, i.e. this specific ability is not covered as such. It is possible, however,
to expand MAS architecture in order to provide agents with this ability. For
these reasons, our approach is based on a MAS architecture. Concluding the
outline, we give a high-level overview of the architecture and lists its main
components.

4.2.4 Main Components

Continuing the depictions of existing IF architectures in Section 2.2.2, Figure
4.3 shows a high-level overview of the architecture for PPIF for the non-
collaboration-based scenario. In addition to the MAS architecture itself,
which is assumed as given, the architecture in general consists of the following
five main components providing the required functionality:

� Because MAS architectures generally do not provide functionality for
controlling the communication of agents, nor for anonymous commu-
nication, a component realizing this functionality is provided, namely
the Infrastructure Module described in Chapter 5.

� In order to facilitate the use of different data storage mechanisms,
and to provide a uniform interface for accessing persistent information,
which may be utilized for monitoring critical interactions involving po-
tentially private information e.g. as part of queries, a component for
transparent persistence is provided, namely the TPMAS Module de-
scribed in Chapter 6.
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Figure 4.3: The proposed architecture for Privacy-Preserving
Information Filtering.

� Functionality for realizing the Recommender System use cases “get
prediction for item” and “get recommendations” is provided within
the Recommender Module component described in Chapter 7.

� Functionality for realizing the Matchmaker System use cases “get pre-
diction for user” and “get similar users” is provided within the Match-
maker Module component described in Chapter 8.

� Finally, while these components may generally be used in connection
with various filtering techniques that are not restricted to specific do-
mains, the protocols impose certain other restrictions on the actual fil-
tering techniques. Therefore, Exemplary Filtering Techniques are pro-
vided as a separate component described in Chapter 9 in order to show
that the requirements may actually be met by choosing appropriate
filtering techniques.

Figure 4.4 gives an overview of the five main components.
All non-functional requirements listed in Section 2.3.4 are addressed by

these components, with different components focusing on different require-
ments:

� The requirement of user privacy is primarily addressed by the In-
frastructure Module providing foundations for privacy protection, the
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Figure 4.4: The five main components of the PPIF architecture.
Additional parts required for the architecture but not directly
contributed by this work are grayed out.

Recommender Module providing privacy-preserving protocols, and the
Matchmaker Module protecting the privacy of users as participants in
a distributed Matchmaker System.

� The requirement of provider privacy is primarily addressed by the In-
frastructure Module and the Recommender Module, analogous to user
privacy.

� The requirement of filter privacy is primarily addressed by the Infras-
tructure Module and the Recommender Module, analogous to user pri-
vacy.

� The requirement of quality is addressed by the Exemplary Filtering
Techniques providing result data, and the Matchmaker Module provid-
ing users that are probably similar to a given user. In both cases, the
provided information should be of high quality.
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� The requirement of broadness is addressed by the TPMAS Module
providing a uniform interface for accessing persistent information, and
by Exemplary Filtering Techniques which are not restricted to a specific
domain.

� The requirement of performance is primarily addressed by the Exem-
plary Filtering Techniques, because the filtering process itself is most
critical with regard to performance. All other components take this
requirement into account as well.

The algorithms used in the Exemplary Filtering Techniques component
take the privacy requirements into account as well. Table 4.2 gives an
overview of these relationships.

The trusted environment introduced above encompasses the MAS archi-
tecture itself and the Infrastructure Module. In other words, these com-
ponents have to be trusted to act in a non-malicious manner to rule out
the possibility of malicious hosts. Explicit trust with regard to the other
components is not required because they operate within the trusted environ-
ment and are thus prevented from acting in a malicious manner. Finally, it
should be noted that while we have chosen a specific MAS architecture for
the implementation, the specification of the approach is applicable to any
FIPA-compliant MAS architecture.

Table 4.2: The five main components of our approach for PPIF
in relation to the requirements. A components provides primary
functionality (indicated by “X”), auxiliary functionality (indi-
cated by “�”), or no explicit functionality (indicated by “–”) with
regard to a specific requirement.

Privacy Other
Requirements Requirements
Ru Rp Rf Rqq Rbb Rpp

Infrastructure Module X X X – – �

TPMAS Module – – – – X �

Recommender Module X X X – – �

Matchmaker Module X – – X – �

Exemplary FTs � � � X X X

4.3 Implementation

We have implemented our approach for Privacy-Preserving Information Fil-
tering based on JIAC IV [50, 101, 100], a FIPA-compliant MAS architecture.
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JIAC IV integrates fundamental aspects of autonomous agents regarding
pro-activeness, intelligence, communication capabilities and mobility by pro-
viding a scalable component-based architecture. Additionally, JIAC IV offers
components realizing management and security functionality, and provides
a methodology for Agent-Oriented Software Engineering. In the context
of PPIF, JIAC IV stands out among other MAS architectures as the only
security-certified architecture, as it has been certified by the German Federal
Office for Information Security according to the Evaluation Assurance Level
3 of the Common Criteria for Information Technology Security standard [52].

JIAC IV offers several security features in the areas of access control for
agent services, secure communication between agents, and low-level security
based on Java security policies [99]. Access control for agent services is based
on authenticated users or X.509 certificates associated with agents. JIAC IV
offers also means to secure the communication channel between agents. This
is either achieved by using the SSL protocol on the transport level or, if
this not possible, e.g. because a FIPA-compliant exchange of speech acts via
the Agent Communication Channel is required, by using an application level
protocol similar to SSL in order to protect speech acts. X.509 certificates are
used for access control and for protecting the communication channel, based
on a public key infrastructure [17]. Finally, Java security mechanisms [58]
are used to protect agents from attacks performed by other agents within
the same Java Virtual Machine. Java security mechanisms are also used
to represent human users as subjects within the Java Authentication and
Authorization architecture [76].

We have implemented all components listed above, following the decisions
made in the analysis and design phase, which are described in the following
chapters. As a proof of concept, and in order to evaluate performance and
quality under real-life conditions, we have also used our approach within the
Smart Event Assistant, a MAS-based Recommender System which integrates
various personalized services for entertainment planning in different German
cities, such as a restaurant finder and a movie finder [117]. Additional ser-
vices, such as a calendar, a routing service and news services complement
the information services. An intelligent day planner integrates all function-
ality by providing personalized recommendations for the various information
services, based on the user’s preferences and taking into account the loca-
tion of the user as well as the potential venues. All services are accessible
via mobile devices as well1. Figure 4.5 shows a screenshot of the intelligent

1The Smart Event Assistant was accessible online in different versions until 2007
via the URL <http://www.smarteventassistant.de>. It is currently being redeveloped
and extended as the Smart Personal Assistant, which is accessible online via the URL
<http://www.smartassistantsolutions.de>.
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Figure 4.5: Screenshot of the Smart Event Assistant, a privacy-
preserving Recommender System supporting users in planning
entertainment-related activities.

day planner’s result dialog. The Smart Event Assistant is entirely realized
as a MAS system providing, among other functionality, various filter agents
and different service provider agents, which together with the personal user
agents utilize the functionality provided by our approach.

We describe typical scenarios of the Smart Event Assistant in more detail
in Section 10.1.2.4, where we evaluate the performance of our approach. Due
to resource restrictions with regard to the Smart Event Assistant project, we
did not have the time to deploy the system in a trusted environment, i.e.
based on a trusted computing infrastructure, which therefore remains future
work.

4.4 Summary

This chapter gives an overview of our approach for Privacy-Preserving Infor-
mation Filtering. From the requirements listed in Section 2.3.4, we derive a
number of use cases which have to be realized by a comprehensive architecture
for PPIF (Section 4.1). We outline our solution for PPIF, which is based on
a trusted environment that is used to control the communication capabilities
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of entities deployed in this environment. Based on this trusted environment,
we specify protocols for realizing the Recommender System-related use cases
in a privacy-preserving manner (Section 4.2.1). We describe an anonymous
centralized model of user-item relationships which is used for realizing the
Matchmaker System-related use cases in a privacy-preserving manner (Sec-
tion 4.2.2). We list the required abilities of entities operating in this context,
and motivate the use of MAS technology by mapping these required abil-
ities to the capabilities of agents and agent platforms (Section 4.2.3). We
list the components of our approach, which address the given requirements
(Section 4.2.4). We give a short overview of JIAC IV as the foundation of
our implementation, and introduce the Smart Event Assistant as a prototyp-
ical application utilizing our approach (Section 4.3). The following chapters
describe the components of our approach in detail.
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Chapter 5

Basic Infrastructure

This chapter describes basic functionality for controlling the communication
capabilities of agents, and functionality for anonymous communication of
agents. We subsume both kinds of functionality in a single chapter because in
both cases communication capabilities of agents are addressed, and because
the functionality may be realized most efficiently by extending the respective
MAS architecture itself.

The chapter is structured as follows: Section 5.1 briefly motivates the
Infrastructure Module. Section 5.2 describes the ontologies, roles and in-
teractions of the module, while Section 5.3 describes the agents and agent
services realizing these interactions. Section 5.4 concludes the chapter with
a summary.

5.1 Motivation

As noted in Section 4.2.4, the ability to control the communication of agents
is generally not a feature of existing Multi-Agent System architectures but
at the same time a central feature of our approach for agent-based Privacy-
Preserving Information Filtering.

Anonymous communication is required for several interactions in our ap-
proach mainly in order to achieve unlinkability of user-related data. Depend-
ing on the actual scenario, solutions for sender anonymity as well as receiver
anonymity are required.

We therefore provide the respective functionality within the Infrastruc-
ture Module, as specified in the following sections.
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5.2 Analysis

This section describes the ontologies, roles and interactions of the Infrastruc-
ture Module. For the sake of readability, all tables and diagrams containing
the formal specification may be found in Appendix A.1. Usually the analy-
sis phase and thus the specification of interactions abstracts from agents and
platform configurations. However, in this case it is necessary to refer to these
concepts because of the reflective nature of the interactions.

When utilizing this module, it should be noted that the concepts of com-
munication control and anonymous communication are mutually exclusive,
because agents on a controlled platform are always identifiable when com-
municating, and thus cannot communicate anonymously.

The functionality required for controlling communication cannot be real-
ized based on regular agent services and/or components, because an agent on
a platform is usually not allowed to interfere with the actions of other agents
in any way. Otherwise, the security of agents would be severely compromised.
Therefore, additional infrastructure providing the required functionality has
to be added to the MAS architecture itself.

Controlling the communication capabilities of an agent is realized by re-
stricting its incoming and outgoing communication channels to specific plat-
forms or agents on external platforms as well as other possible communication
channels, such as the file system. These restrictions are stated via rules, sim-
ilar to rules used by a firewall, which become effective only if the respective
agent consents. Consent is required because otherwise the overall security
would be compromised, as attackers could easily block various communica-
tion channels. Our approach does not require controlling the communication
between agents on the same platform, and therefore this aspect is not ad-
dressed1. Consequently, all rules addressing communication capabilities have
to be enforced across entire platforms, because otherwise a controlled agent
could simply use a non-controlled agent on the same platform as a relay for
communicating with agents residing on external platforms.

Obviously, an agent on a controlled platform should not be able to migrate
freely to other platforms, because in that case control could be lost. Because
migration is initiated by communicating with a remote platform manager
agent, it is made impossible implicitly with the following non-critical ex-
ception: An agent on a controlled platform may still be able to migrate to

1While also depending on the actual MAS architecture utilized, this would typically
be more complicated or even impossible to realize, because intra-platform agent commu-
nication is usually based on channels that are more difficult to control than inter-platform
communication channels, such as communication within a single Java Virtual Machine as
opposed to TCP/IP-based communication.
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platforms it is allowed to communicate with.
Agents attempting to migrate onto a controlled platform should be made

aware of this fact, or incoming migration should be prohibited altogether.
The same applies to agents attempting to create additional agents on a con-
trolled platform. Because these aspects are not directly relevant for the
scenarios discussed in this work, we will not address them further.

The functionality for anonymous communication may either be realized
based on regular agent services and/or components, or by adding additional
infrastructure providing the required functionality to the MAS architecture
itself (see Section 3.3.1 for related work in this area). In any case, some kind
of relay is required because sender and receiver (i.e. agent service user and
provider) cannot communicate directly without compromising anonymity.

5.2.1 Ontologies

Rules for controlling communication are expressed via the ontology “Com-
munication Rules”, for which see Section A.1 in the appendix. Basically, a
rule specifies a controller (i.e. the controlling agent itself), a sender (i.e. the
platform that is controlled) and receivers (a set of agents and/or platforms
to be excepted from communication blocking).

For every controlled platform, a set of activated rules contains the rules
which are applicable to the respective platform. Activated rules may con-
tain different controlling agents. From the set of activated rules, which may
be contradictory, a single effective rule is generated consisting of two parts.
The first part is applied in order to decide which communication attempts to
block, while the second part is applied in order to decide which platforms an
agent on a controlled platform may control in turn. Generally, the effective
rule is determined by creating the intersection of the sets of exceptions of
each single activated rule. As an example, if the first activated rule states
that communication with all platforms except P1 and P2 is to be blocked,
and the second activated rule states that communication with all platforms
except P2 and P3 is to be blocked, the effective rule in this case states that
communication with all platforms except P2 is to be blocked. All rules orig-
inating from agents on a specific platform are collected as a set of foreign
rules.

Because a controlling agent is expected to intend to communicate with
agents on the controlled platform, it is excepted from communication block-
ing in the first part of the effective rule. In cases where two or more different
agents control one platform, only the activated rules related to the first agent
are considered when determining the first part of the effective rule in order
to ensure that the first controller is able to communicate with the controlled
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platform. For the second part of the effective rule, however, all activated
rules are considered2.

All information related to sender and receiver anonymity is expressed via
the ontology “Anonymity”, for which see Section A.1 in the appendix. Sender
anonymity requires a pseudonym to be used for the sender, the agent address
of the actual interaction partner, information about the interactions that are
to be anonymized, and information related to the required degree of unlinka-
bility, i.e. whether all single interaction steps should be unlinkable. Receiver
anonymity requires a pseudonym to be used for the receiver, the actual agent
address of the receiver, and information about the interactions that are to
be anonymized. Depending on the implementation of the anonymizer, it
may be infeasible to provide a mechanism for continuous receiver anonymity,
mainly because there may be a large number of potential receivers for each
actual interaction which would have to reachable continuously. Therefore, a
time slot may be given optionally indicating the time periods in which the
anonymizer should actually facilitate anonymous interaction. In both cases,
an optional attribute may be used to indicate the required multiplicity, i.e.
whether the respective interaction should be carried out anonymously once,
a fixed number of times, or an unlimited number of times.

5.2.2 Roles and Interactions

This section describes the roles and interactions of the Infrastructure Module.
For the role schemas, see Appendix A.1. Table 5.1 provides an overview of
the roles.

5.2.2.1 Communication Control

A role with special privileges exceeding those of regular roles, namely the
SupervisorRole, is required for actually enforcing control of the commu-
nication capabilities of specific agents. On every platform hosting agents
which are potential candidates for controlled agents, there has to be an agent
realizing this role. Similar to the agent realizing the PlatformManager-
Role itself, the agent realizing the SupervisorRole has to be trusted to
act non-maliciously, i.e. to carry out all tasks as specified without trying to
obtain additional information. In other words, these agent have to be part
of the trusted environment described in Section 4.2.1.

To simplify matters, both roles may be realized by one single agent. We
model controlling agents in the interactions described below as agents real-

2This is done in order to avoid subsequent complications in more complex situations,
as described in Appendix B, Example 4.
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Table 5.1: The roles participating in the Infrastructure Module.
short name/ aggregated by

role name user provider filter

SupervisorRole SR(U) SR(P)
Responsible for actually controlling the communication capa-
bilities of agents realizing the ControllableAgentRole,
and for handling request for control regarding agents on re-
mote platforms.

ControllableAgentRole CAR(U) CAR(P)
Provides functionality that allows a ControllerRole to
obtain the consent to control the agent realizing this role un-
der certain circumstances.

AnonymizerRole AR(U) AR(P)
Provides functionality for anonymous communication.

AgentRole *(U) *(P)
Does not provide specific functionality. Participates in inter-
actions with other roles.

izing a generic AgentRole, because they do not have to provide specific
functionality, and controlled agents as agents aggregating the Control-
lableAgentRole. The agent realizing the PlatformManagerRole
and the agent realizing the SupervisorRole itself are always exempt from
communication blocking, because they have to communicate with other plat-
forms in order to carry out their respective tasks.

For clarity, we point out that the term “controlling agent” always refers
to the agent that initiated the control, while the agent realizing the Super-
visorRole is responsible for actually enforcing control.

To keep the complexity of the process of adding and handling rules man-
ageable, a group of platforms is always blocked uniformly, i.e. each agent
on any platform within the group may communicate with any other agent
located on a platform within the group, with the controlling agent unless
otherwise restricted, but with no one else. Therefore, a controlling agent
may only to specify a group of platforms he intends to block, without being
able to add additional restrictions, which would only complicate matters un-
necessarily. Consequently, agents on a controlled platform are blocked from
communication with any agent outside the respective group of controlled
platforms, with the exception of the controlling agent itself.
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Basic Interactions To facilitate controlling the communication of agents,
the four basic interactions RestrictCommunication, CheckRule, ActivateRule,
and AcquireConsent are provided as specified in Table A.1, Table A.2, Table
A.3, and Table A.4 of the appendix. The partial use case “restrict communi-
cation” representing a typical scenario based on these interactions is shown
in Figure 5.1. It should be noted that if consent is withheld by at least
one role, further interactions are not carried out, and no rules are added or
activated anywhere.

Figure 5.1: Collaboration Diagram for the partial use case “re-
strict communication”.

It may appear unnecessary to involve the supervisor, which is the agent
realizing the SupervisorRole, on the controlling agents’s own platform in
the process, instead of allowing the respective role to directly interact with
the supervisor on the platform to be controlled. This direct interaction is not
allowed because it would not allow scenarios based on cascading control, as
described below. Furthermore, an agent’s own supervisor checks the second
part of its effective rule in order to determine whether the agent may control
the remote platform as intended, and it checks for attempts to block the same
group of platforms more than once by checking its foreign rules. Thus, poten-
tially unsuccessful attempts to restrict communication are detected without
unnecessary inter-platform interactions. A detailed example highlighting the
use of these basic interactions, and the effect of multiple activated rules on
the effective rule is given in Appendix B.
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Revoking Control Revoking control by removing rules that have already
been activated is required for several reasons: The tasks of controlling a
group of platforms may have to be transferred from one agent to another,
or a group of controlled platforms may have to be enlarged or downsized.
Furthermore, a rule may have been activated as a precautionary act that
subsequently turns out to be unnecessary, or a platform may have to be con-
trolled temporarily only, e.g. because sensitive information handled by an
agent on the platform has expired. Therefore, the interactions RevokeControl
and RevokeRule are provided as specified in Table A.5 and A.6 of the ap-
pendix. The partial use case “revoke control” representing a typical scenario
based on these interactions is shown in Figure 5.2 . When revoking control,
the effective rules are determined based on the remaining active rules. The
agents on the controlled platform are not required to consent. Only the con-
trolling agent itself may revoke control. Again, Appendix B illustrates these
interactions via an example. Similar to restricting communication, control
is always revoked with respect to a group of platforms. Therefore, it is not
possible to revoke control for a single platform within a group of controlled
platforms directly. Instead, communication has to be restricted explicitly
for a new group consisting of the remaining platforms, and in a second step
control may be revoked on the original group of platforms. For convenience,
an additional interaction could combine both steps, but this interaction is
not strictly required and thus optional.

Cascading Control A scenario not addressed by the interactions intro-
duced so far is the cascading control scenario in which an agent intends to
control a platform containing agents which in turn control further platforms.
In this case, these further platforms are added to the groups of platforms to
be controlled, by returning the respective information as an additional output
of the CheckRule interaction. The rules regarding these additional platforms
are activated without acquiring consent of the respective agents, because they
have already consented to be controlled. Instead, these agents are notified of
the cascading control via the interaction InformAboutCascadingControl speci-
fied in Table A.7 of the appendix, because this information may help agents
to determine whether to carry out a specific protocol for which cascading
control is required. The partial use case “restrict communication (cascad-
ing control)” representing a typical scenario based on cascading control is
shown in Figure 5.3. The initiator of the interaction RestrictCommuni-
cation is informed about all platforms that are controlled in addition to
the group given as input. From this point onwards, no distinction is made
between platforms controlled through cascading control and platforms con-
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Figure 5.2: Collaboration Diagram for the partial use case “re-
voke control”.

trolled regularly. Therefore, revoking control of a platform does not affect
the activated rules regarding this platform even if they have been established
through cascading control. Again, Appendix B provides an example for this
scenario.

Additional Management Functionality As described above, control-
ling a certain agent is only possible by controlling an entire platform. There-
fore, a large number of platforms is required in scenarios containing a large
number of separate processes that have to be executed by agents controlled
by different controlling agents. For example, in the Recommender System
use cases of our PPIF approach, the optimal solution with regard to privacy
and security is to use one separate platform for each process of the infor-
mation filtering stage. For real-world applications aiming at a large number
of users, the number of required platforms is therefore much larger than the
usual number of platforms in a deployed system based on MAS architecture,
which is typically relatively small due to the amount of resources required to
run a platform.

For these reasons, it is infeasible to control at platform permanently, or
in fact longer than for the time period that is sufficient for carrying out a
small number of interactions. If control is short-lived, a controlled platform
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Figure 5.3: Collaboration Diagram for the use case “restrict
communication (cascading control)”.

may be terminated or recycled and the respective resources may be re-used
by subsequent for further tasks. An additional positive effect of short-lived
control is that it further minimizes security risks. Short-lived control of a
platform implies that the agents located on that platform are short-lived
as well, because they will usually not be allowed to migrate away from a
platform that is to be terminated, as this would result in a loss of control.
Therefore, an agent consenting to be controlled implicitly consents to be
terminated at any time as well.

The interactions for terminating controlled agents, RevokeControlAndTer-
minate and RevokeRuleAndTerminate, specified in Table A.8 and A.9 of the
appendix, are very similar to the interactions defined above, with the ad-
ditional result that the agents on the respective platforms are terminated
either immediately after control is revoked or at a later time, depending on
the following conditions: There must be no other remaining activated rule re-
garding the same controller, and the controller who started the service must
be the first in the list of controllers. If the agents are not terminated imme-
diately, an activated rule is added and evaluated whenever activated rules
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are removed via the interactions RevokeControl and RevokeControlAndTer-
minate, in order to terminate the agents at the appropriate point of time.
Additionally, when a platform controlled by more than one agent is actually
terminated, other supervisors are notified via the interaction InformAbout-
Termination specified in Table A.10 of the appendix. This interaction is also
used in the cascading control scenario in order to inform the supervisors of
platforms controlled by an agent to be terminated, in order to enable them
to remove the respective activated rules as well. The partial use case “revoke
control and terminate” representing a typical scenario based on these inter-
actions is shown in Figure 5.4. Again, Appendix B illustrates this scenario.
The interactions TerminateAgents and TerminateAgent are regarded as stan-
dard platform management interactions and therefore not specified further
here.

Figure 5.4: Collaboration Diagram for the partial use case “re-
voke control and terminate”.

Finally, an agent may actively request to be controlled by another agent,
mainly in order to be able to carry out a protocol requiring this control
at a certain point. The respective interaction RequestControl is provided as
specified in Table A.11.

An aspect not addressed further in this work is the following: It may
become necessary to enforce termination of platforms from a global platform
manager’s point of view, in cases where the controlling agents deliberately or
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accidentally fail to release control. This could be handled by using a time-out
after which platforms are terminated automatically, or by using an incentive
or billing mechanism that makes it desirable for a controlling agent to release
control as soon as possible.

5.2.2.2 Anonymous Communication

The required functionality for anonymous communication is realized via an
abstract AnonymizerRole. An agent requiring sender anonymity for a
specific interaction relays that interaction through the AnonymizerRole,
by interacting with it as if it where the actual interaction partner, i.e. the
AnonymizerRole is the interaction partner in the interaction with the ac-
tual initiator, and the initiator in the interaction with the actual partner.
The main interaction is preceded by the initiator providing the required in-
formation via the interaction SetupAnonymizer specified in Table A.12 of the
appendix. The same interaction is used for realizing receiver anonymity, basi-
cally via the same relay mechanism. In this case, the agent requiring receiver
anonymity is the partner in the main interaction, i.e. the roles of initiator
and partner are reversed.

5.3 Design & Implementation

The design of the functionality for controlling communication and for anony-
mous communication is rather straightforward, because roles are mapped di-
rectly to agents and interactions to agent services as shown in Table 5.2 and
Table 5.3 respectively, the only exception being the interactions CheckRule
and ActivateRule, which are realized within a single agent service, because
they are always used in conjunction. The implementation of agents, agent
services and internal components is similarly straightforward and therefore
omitted here. The remaining issue that has to be addressed with regard
to communication control is the implementation of the actual control mech-
anism. As JIAC IV is based on Java, we utilize methods provided via the
Java Security Manager as part of the Java security model. Thus, the super-
visor agent is enabled to define custom security policies, thereby granting or
denying other agents, which are executed as threads in the JVM, access to
resources such as files or sockets for TCP/IP-based communication. Apart
from denial of service attacks in which agents may attempt to disrupt the ex-
ecution of other agents on the same platform by seizing a large amount of the
available resources, all other malicious actions and communication attempts
may be blocked via this mechanism.
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Table 5.2: The mapping of interactions to agent services.
Interaction Table Agent Service
RestrictCommunication A.1 RestrictCommunication
CheckRule A.2 ImplementRule
ActivateRule A.3
AcquireConsent A.4 AcquireConsent
RevokeControl A.5 RevokeControl
RevokeRule A.6 RevokeRule
InformAboutCascadingControl A.7 InformAboutCascadingControl
RevokeControlAndTerminate A.8 RevokeControlAndTerminate
RevokeRuleAndTerminate A.9 RevokeRuleAndTerminate
InformAboutTermination A.10 InformAboutTermination
RequestControl A.11 RequestControl
SetupAnonymizer A.12 SetupAnonymizer

Table 5.3: The mapping of roles to agents.
Role Agent
AgentRole unspecified
ControllableAgentRole unspecified
SupervisorRole SupervisorAgent
AnonymizerRole AnonymizerAgent

As noted above, the SupervisorAgent and the agent realizing the Plat-
formManagerRole have to be part of a trusted environment, which may
be realized e.g. based on a trusted computing infrastructure. As part of
the deployment phase, however, the trusted environment does not affect the
implementation phase and is therefore not discussed further at this point.

The remaining issue that has to be addressed with regard to anonymous
communication is the implementation of the anonymizer itself. While theo-
retically any approach used for anonymous communication on the Internet
may be mapped to a MAS context, resulting in an agent-based mix net-
work, onion routing approach or a similar system (see Section 3.1.1 and
Section 3.3.1 for related work in this area), we have chosen a simple proxy
mechanism mainly because details of the anonymizer are out of the scope of
this work.

The anonymizer therefore is implemented as a simple component, which
may actually be part of the agent that intends to communicate anonymously,
instead of a separate agent. The anonymizer component creates and termi-
nates the actual relay agents as requested. The relay agents offer and execute
the services that are to be used anonymously. Because they are deployed and
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controlled by the agent that intends to communicate anonymously, they are
trusted implicitly, and a trusted third party is not required. Currently, the
code for the relay agents has to be created manually, based on the respective
service to be relayed. It is conceivable, however, to automatize this process
and create the respective code dynamically at least for services without a
user protocol.

5.4 Summary

This chapter describes basic functionality for controlling the communication
capabilities of agents, and functionality for anonymous communication of
agents because these kinds of functionality are generally not a feature of
existing Multi-Agent System architectures but at the same time a central
requirement of our approach for agent-based Privacy-Preserving Information
Filtering.

We motivate the need for communication control and anonymous com-
munication as additional functionality in MAS architectures for PPIF (Sec-
tion 5.1). We specify ontologies containing the basic concepts, namely rules
for communication control, sender anonymity, and receiver anonymity (Sec-
tion 5.2.1). Regarding communication control, we specify roles and basic
interactions for establishing and revoking control, interactions for cascad-
ing control, and interactions for additional management functionality (Sec-
tion 5.2.2.1). Regarding anonymous communication, we specify a role and an
abstract interaction (Section 5.2.2.2). Regarding the design and implemen-
tation of the specified functionality, we list agents and agent services, and we
discuss the implementation of the actual control mechanism and the imple-
mentation of the anonymizer (Section 5.3). In the appendix, we give several
examples illustrating the aspects of communication control (Appendix B).

The modules realizing the main use cases of our approach are based on
functionality described in this chapter as well as functionality related to
accessing persistent information in a well-defined manner, which is described
in the following chapter.
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Chapter 6

Transparent Persistence

This chapter describes an approach for Transparent Persistence in Multi-
Agent Systems (TPMAS). It should be noted that it is possible to use this
approach in any scenario involving the use of large amounts of persistent data,
as it is not adapted especially for Privacy-Preserving Information Filtering.
As motivated below, however, our approach for PPIF strongly benefits from
a transparent persistence management mechanism, and therefore we include
it here as a main component of the approach.

The chapter is structured as follows: Section 6.1 motivates the TPMAS
Module. Section 6.2 describes the ontologies, roles and interactions of the
module, while Section 6.3 describes the agents and agent services realizing
these interactions. Section 6.4 concludes the chapter with a summary.

6.1 Motivation

Information Filtering in general is based on data that has to be stored per-
sistently: It deals with users’ long-term information needs, and therefore the
respective user profile data has to be stored persistently. As in Information
Retrieval, the provider data usually consists of large data sets that are rel-
atively static1, and is therefore best managed by using a persistent storage
mechanism as well.

In standard Information Filtering architectures, the filter entity is not re-
alized as independent from the provider entity. Therefore, the provider may
use a specific persistent storage mechanism, which is usually a Relational
Database Management System (RDBMS), and may utilize filtering tech-
niques operating directly, e.g. via JDBC, on the data store. This straightfor-

1Static in the sense that while single items are usually added and removed constantly,
the bulk of the provider data is kept permanently for a comparatively long time.
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ward approach has the advantage that it may be optimized for performance
easily. It is visualized in Figure 6.1 as “Standard Architecture”.

Figure 6.1: The motivation for a transparent and generic per-
sistence mechanism in the context of PPIF. The topmost layer
visualizes the data flow in a standard IF architecture. The layer
below visualizes the additional operations introduced by our PPIF
approach, and the bottommost layer shows subsequent optimiza-
tions leading to our final approach.

6.1.1 Persistence Interface

In our approach for Privacy-Preserving Information Filtering, the filter entity
is actually independent from the provider entity. Therefore, the respective fil-
ter role cannot operate directly on the provider’s data store, and an interface
for accessing persistent information is required. Apart from functionality for
retrieving profile data during the information filtering stage (i.e. read-only ac-
cess to the persistent data), the interface should also provide functionality for
storing and retrieving data to facilitate creating and updating profile models
during the information collection stage and the information processing stage.
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Though these models are dependent on the specific filtering technique, they
cannot be stored internally by the filter role, because the temporary filter
entities accessing these models are short-lived. Therefore, the profile models
have to be stored by the user and provider role respectively.

Because the structure of a profile model is entirely dependent on the spe-
cific filtering technique, and filtering techniques may be based on arbitrary
structures, it is not advisable to realize a persistence interface by providing
various dedicated interaction for specific model structures (e.g. interactions
with the goal of training a neural network, updating a decision tree or car-
rying out a clustering algorithm), because these interactions would always
be potentially incomplete. Instead, the persistence interface should provide
generic functionality for storing and removing data. Because the profiles
and profile models, especially those on the provider side, are usually rather
large, they should not have to be dealt with as a whole. Therefore, the
persistence interface should also provide services for retrieving, storing and
updating parts of a profile. The resulting data flow is visualized in Figure
6.1 as “Unoptimized PPIF”.

6.1.2 Generic Transparent Persistence

In the Privacy-Preserving Information Filtering approach, the retrieval of
potentially sensitive information is monitored by controlling the communica-
tion of agents. As an example, when retrieving parts of the provider profile
within a filtering process, the controlling agent associated with the user role
has to make sure no sensitive information about the user profile is used
within the respective query. Therefore, a uniform query structure should be
used regardless of the actual persistent storage mechanism (which may be a
RDBMS, a file system, or something else). Otherwise, the controlling role
would have to be adjusted to every single storage mechanism used.

While for the controller any uniform structure would be acceptable, a
transparent persistence interface is preferable for the filter: It should be pos-
sible to persist the objects handled by the filter, and to use these objects
when creating queries, rather than having to transform these objects into
some other uniform structure within the filter. Otherwise, the mapping pro-
cess would become needlessly complicated, as both the filter and the provider
would have to carry out transformations. In the case of transparent persis-
tence, transformations only have to be carried out by the provider. This
aspect of transparent persistence is visualized in Figure 6.1 as the part of the
final architecture “PPIF with TPMAS” related to the filter.

Finally, it should be possible to exchange the actual persistent storage
mechanism without having to adjust any of the interactions. In the context
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of Object-Oriented Software Engineering2, this is achieved via using a per-
sistence mechanism such as the Java Data Objects (JDO) specification [65].
This aspect of generic persistence is visualized in Figure 6.1 as the part of
the final architecture “PPIF with TPMAS” related to the provider.

6.2 Analysis

This section describes the ontologies, roles and interactions of the TPMAS
Module. For the sake of readability, all tables and diagrams specifying these
components may be found in Appendix A.2.

6.2.1 Ontologies

We do not use a special category for persistent objects, rather, it should be
possible to treat objects of all categories defined in arbitrary ontologies as
persistent objects. Therefore, ontologies defining certain categories may be
used without need for adjustments. For reasons of access management and
in order to keep a large number of persistent objects manageable, persistent
objects are stored in groups, namely contexts. Every operation is applied to
a single context, rather than globally to all persistent objects3. A context is
referred to via a unique identifier.

Access control of contexts is supported by a simple authorization ap-
proach in which each context is assigned three authorization tokens for var-
ious access rights (read only access, read/write access, and full access in-
cluding the right to create and terminate a context). These tokens may be
propagated at the discretion of the agent that has created the respective
context. More complex access control mechanisms, such as Role-Based Ac-
cess Control, are not strictly required for our approach and are therefore not
described here. If actually required, they may be added easily on top of the
existing mechanism.

Apart from the categories required to create complex queries, which are
collected in a separate ontology described below, only a few other basic cat-
egories are required for storing and retrieving persistent objects. For the
respective ontology “Transparent Persistence”, see Section A.2 of the ap-
pendix.

2Object-Oriented Software Engineering concepts are actually applicable in this case
within the larger context of Agent-Oriented Software Engineering because the interactions
between the provider agent and the data storage are not agent-based, and the internal
functionality of agents is realized in an object-oriented manner.

3The analogous element in a database management system is a single database.
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When retrieving objects from a context containing a potentially large
number of objects, it is advisable to keep the size of the list of returned objects
as small as possible, instead of retrieving a large list of perhaps only partially
relevant objects. Therefore, the structure of the query construct used within
the respective interaction should support complex queries, i.e. it should be
possible to express queries in a manner similar to other query languages,
such as SQL or JDOQL, the query language used in the JDO specification.
For this purpose, an ontology-based query structure is provided which allows
conjunctive and disjunctive queries on all attributes of the objects stored
within a context. For the respective ontology “Query Construct”, see again
Section A.2 of the appendix.

6.2.2 Roles & Interactions

This section describes the roles and interactions of the TPMAS Module. For
the role schemas, see Appendix A.2. Table 6.1 provides an overview of the
roles. The only role actually specified in the TPMAS approach is the role
providing, via transparent persistence, access to the actual persistent storage
mechanism, namely the TPMASProviderRole. Because any role may use
the services offered by this role, a designated service user role does not have
to be specified and we use a generic AgentRole for the specification.

Table 6.1: The roles participating in the TPMAS Module.
short name/ aggregated by

role name user provider filter

TPMASProviderRole TPMAS(U) TPMAS(P)
Provides transparent access to a persistent storage mecha-
nism.

AgentRole *(U) *(P)
Does not provide specific functionality. Participates in inter-
actions with other roles.

Two kinds of interactions are provided: Interactions operating on the
context level, and interactions operating on the object level. Within the first
group, the interactions CreateContext and TerminateContext for creating and
terminating contexts are provided as specified in Table A.16 and Table A.17
of the appendix. Within the second group, the interaction ModifyObjects
for storing, updating and removing objects within a contexts is provided
as well as the interaction RetrieveObjects for retrieving objects, based on a
query, as specified in Table A.18 and Table A.19 of the appendix. Because

109



each interaction only involves the TPMASProviderRole and a generic
AgentRole, we omit collaboration diagrams here.

6.2.3 Internal Functionality

It does not make sense to entirely specify the internal functionality of the
TPMASProviderRole at this point, because it largely depends on the
actual MAS architecture on the one hand, and the actual persistent storage
mechanisms on the other hand. However, as m different MAS architectures
and n different persistent storage mechanisms would require m · n different
solutions, it seems appropriate to reduce this number by introducing further
functionality. Using a mechanism for transparent persistence, the number of
different solutions is in fact reduced to m, i.e. one per actual MAS architec-
ture.

We therefore utilize the Java Data Objects (JDO) specification [65]4 as
the basis for the mechanism for transparent persistence. As many MAS ar-
chitectures are based on Java, this choice is obvious and at the same time
not too restrictive. There are various open source and commercial implemen-
tations of the JDO specification, which are interchangeable. Therefore, our
approach is not limited to one specific JDO implementation, and we do not
have to choose one at this point.

The JDO specification contains the following main components:

� PersistenceCapable interface: For Java objects that are to be made
persistent, the respective classes have to implement this interface in
order to provided the required functionality in the form of fields and
methods. In most JDO implementations, the required code is added
automatically by enhancing the respective classes.

� PersistanceManager interface: Persistence managers implementing this
interface manage groups of persistent objects and provide functionality
for adding and removing persistent objects via transactions.

� Query interface: JDO implementations provide, via this interface, map-
pings from queries expressed in JDOQL to queries expressed in the
query language of the persistent storage mechanism (e.g. SQL).

For classes implementing the PersistentCapable interface, XML-based
metadata files have be supplied specifying how a class is to be persisted,

4The specification was originally developed under the Java Community Process as Java
Specification Request (JSR) 12, and released in 2002 as JDO 1.0. An extension to the
JDO specification has been developed as JSR 243, and released in 2006 as JDO 2.0.
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and which fields are to be made persistent. This information is used when
storing persistent objects, and most JDO implementations also provide tools
that generate, based on this information, the actual structures persistent
objects are stored in (e.g. tables within a relational database).

There are other solutions for transparent persistence of Java objects which
could be used alternatively to achieve transparent persistence within MAS
architectures. They are, however, usually less generic with regard to the per-
sistent storage mechanism (as an example, object-relational mapping tools,
such as Hibernate [12] or the Java Persistence API as part of the Enterprise
Java Beans (EJB) 3.0 specification [67] require a Relational Database Man-
agement System as the persistent storage mechanism). Therefore, we have
chosen the JDO specification as the most suitable solution for our approach.

6.3 Design & Implementation

This section describes the agents and agent services of the TPMAS Module,
as well as internal functionality.

6.3.1 Agents & Agent Services

The design of the functionality for transparent persistence is rather straight-
forward, because roles are mapped directly to agents and interactions to
agent services as shown in Table 6.2 and Table 6.3 respectively. The im-
plementation of agents, agent services and internal components is similarly
straightforward and therefore omitted here.

Table 6.2: The mapping of interactions to agent services.
Interaction Table Agent Service
CreateContext A.16 CreateContext
TerminateContext A.17 TerminateContext
ModifyObjects A.18 ModifyObjects
RetrieveObjects A.19 RetrieveObjects

Table 6.3: The mapping of roles to agents.
Role Agent
AgentRole unspecified
TPMASProviderRole TPMASProviderAgent
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6.3.2 Internal Functionality

In order to facilitate the utilization of a JDO implementation within a MAS
architecture, we provide the following functionality:

� Functionality for dynamically creating a Java class for a category of
an ontology, and a bidirectional mapping of objects of this Java class
to objects of the category. MAS architectures may use Java classes
themselves as ontology categories, without using a separate language
in which ontologies are expressed. In this case, the functionality obvi-
ously does not have to be actually implemented. However, other MAS
architectures, such as JIAC IV, use a separate language for specifying
ontologies. Therefore, in this case Java classes have to be created dy-
namically. A dynamically created Java class representing a category
of an ontology contains fields matching the attributes of the category
(thus, a mapping of the base types defined in the respective ontology
language to Java base types is required), a constructor with the cat-
egory attributes as input parameters, and, for the reverse mapping,
methods with the category attributes as return parameters.

� Functionality for creating all required metadata information and files
for a given category. Metadata information is normally not created
automatically in order to give the developer greater control over the
data storage schema and the way objects are made persistent. Because
this course of action is usually not required in our approach, we actually
create all metadata information automatically, which turns out to be a
rather straightforward task. It should be noted, though, that ontology
objects may also be mapped to already existing elements stored in a
persistent storage mechanism. In this case, the respective metadata has
to be created manually, based on the structure of the stored elements.

Figure 6.2 shows the main tasks carried out by our TPMAS implementa-
tion and a JDO implementation for handling persistent objects and queries,
including all aspects of the previous list. Note that the tasks related to
preparing a context, while shown separately from the tasks related to storing
an object, are carried out, if necessary, immediately before storing an object
and not as part of a separate agent service. Therefore, they are hidden from
the service user who does not have to keep track of whether a context has
already been prepared for storing objects of a certain category.
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Figure 6.2: Overview of tasks provided by the TPMAS Module
implementation and a JDO implementation for handling persis-
tent objects and queries.
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6.4 Summary

This chapter describes an approach for Transparent Persistence in Multi-
Agent Systems (TPMAS) which is a main component of our approach for
Privacy-Preserving Information Filtering, but at the same time may be used
independently in any scenario involving the use of large amounts of persistent
data.

We motivate the concept of transparent persistence by showing that our
approach for PPIF requires a persistence interface and benefits from generic
transparent persistence (Section 6.1). We specify ontologies containing the
basic concepts (Section 6.2.1). We specify roles and basic interactions for
handling contexts and objects (Section 6.2.2), and we discuss internal func-
tionality required for our approach (Section 6.2.3). Regarding the design
and implementation of the specified functionality, we list agents and agent
services (Section 6.3.1), and we discuss the implementation of the internal
functionality (Section 6.3.2).

With the functionality described in this and the previous chapter as a
foundation, we are now able to describe the modules realizing the main use
cases of our approach in the following chapters.
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Chapter 7

The Recommender Module

This chapter describes functionality provided by the Recommender Module,
i.e. it primarily addresses the use cases “get prediction for item” and “get
recommendations”, as defined in Section 4.1. Moreover, it addresses the
use cases related to the first two IF stages, namely the use cases “update
profile elements” and “update profile model”. In addition to the use of
the Recommender Module functionality in a Recommender System context,
this chapter also covers its use in a Hybrid IF System context, because the
interactions are largely similar in both cases.

The chapter is structured as follows: Section 7.1 briefly motivates the
Recommender Module. Section 7.2 describes the ontologies, roles and in-
teractions of the module, while Section 7.3 describes the agents and agent
services realizing these interactions. Section 7.4 concludes the chapter with
a summary.

7.1 Motivation

The Recommender Module constitutes one of the two core modules of our
approach for Privacy-Preserving Information Filtering: Together with the
Matchmaker Module, it addresses all use cases defined in Section 4.1. It
provides primary functionality related to the requirements of user privacy,
provider privacy and filter privacy (see Table 4.2). Thus, the need for func-
tionality described in this chapter is motivated directly by the outline of our
solution given in Section 4.2, as the abstract IF protocols introduced in the
outline are realized via agent interactions, i.e. as part of agent services.
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7.2 Analysis

This section describes the ontologies, roles and interactions of the Recom-
mender Module. For the sake of readability, all tables and diagrams specify-
ing these components may be found in Appendix A.3.

7.2.1 Ontologies

The main ontology of this module, namely the ontology “Information Filter-
ing” shown in Figure A.5 of the appendix, contains categories and attributes
that are directly derived from the definitions given in Section 2.2.1. These
are explained further in the context of the interactions they are used in.

7.2.2 Roles and Interactions

This section describes the roles and interactions of the Recommender Mod-
ule. For the role schemas, see Appendix A.3. The main abstract entities
(user entity, provider entity, and filter entity) introduced in Section 2.2.1 are
split into and mapped to different roles, each providing specific functionality
as described in Table 7.1. The roles InterfaceRole, ProfileManager-
Role, RelayRole, and TPMASProviderRole are aggregated by the
user entity as well as by the provider entity. The roles TFERole and TFE-
FactoryRole are exclusively aggregated by the filter entity.

Interactions are defined according to the three stages of Information Fil-
tering in the following sections. In these steps, all participating roles are
assumed to act in an honest or at least honest-but-curious manner, i.e. they
follow the specified protocols (see Section 2.3.3.1 for definitions of adversary
models). Roles aggregated by the same abstract entity are assumed to always
act in an honest manner with regard to each other, i.e. in interactions within
the respective abstract entity. Additionally, these interactions are considered
to be unobservable with regard to other roles aggregated by different entities1.
Thus, threats related to privacy have to be considered whenever interactions
between roles aggregated by different abstract entities take place. Additional
threats emanating from roles acting in a malicious manner are discussed and
addressed in Section 7.3.1. They do not have to be considered here because
it turns out that they are addressable by refining the single protocol steps of
interactions, from which we abstract in the analysis phase.

The TPMASProviderRole only interacts with the ProfileMan-
agerRole of the respective abstract entity, via the interactions specified

1As discussed in Section 2.4.2, we consider this condition to be fulfilled in the underlying
MAS architecture
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Table 7.1: The roles participating in the Recommender Module.
short name/ aggregated by

role name user supplier filter

InterfaceRole IR(U) IR(S)
Responsible for interaction with human users or other soft-
ware.

ProfileManagerRole PMR(U) PMR(S)
Responsible for the management of a profile, which may be
accessed through this role only. Provides agents realizing the
RelayRole. Responsible for controlling agents agents of
other main abstract entities realizing the RelayRole.

RelayRole RR(U) RR(S)
Responsible for controlling agents of other main abstract en-
tities realizing the RelayRole and the TFERole.

TPMASProviderRole TP(U) TP(S)
Provides transparent access to a persistent storage mecha-
nism.

TFERole TFE
Carries out tasks of the information processing stage and the
information filtering stage.

TFEFactoryRole FF
Provides agents realizing the TFERole.

in Section 6.2.2. We omit this interactions, which may be mapped to the
interactions of the ProfileManagerRole in a straightforward manner, in
the following.

7.2.2.1 Information Collection Stage

The information collection stage deals with interactions related to creating
and updating profiles. Because the basic profile data associated with a given
abstract entity does not depend on a specific filtering technique, and is not
directly related to a second entity, there are actually no threats related to
privacy that have to be addressed. As an example, a human user may add
his favorite movie to his personal profile via a Graphical User Interface (GUI)
provided by the InterfaceRole of his personal agent in an unobservable
way, i.e. even without the entity that originally provided the related informa-
tion noticing. The user may subsequently remove the movie from his profile,
or add movies from other sources in the same way. The information provider
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profile is updated in a similar manner, though usually on a larger scale and
via an API rather than a GUI.

Therefore, this stage requires only basic interactions addressing the use
case “update profile elements”, namely the interactions UpdateProfile and
QueryProfile , which provide functionality for updating and querying profiles
as specified in Table A.21 and Table A.22 of the appendix. Figure 7.1 il-
lustrates these interactions via the partial use case “create user profile” as a
special case of the main use case “update profile elements”.

Figure 7.1: Collaboration Diagram for the partial use case “cre-
ate user profile” as a special case of the main use case “update
profile elements”.

It may seem unnecessary to specify these additional interactions as we
have specified similar interactions for transparent persistence in the previous
chapter. These interactions are in fact used by the ProfileManagerRole
in order to store profiles persistently. They are not used directly, however,
because of additional functionality (for which see Section 7.2.2.2) provided by
the ProfileManagerRole, which is partly triggered by the interactions
of the Information Collection stage. Additionally, this course of action keeps
the overall architecture flexible, because the relation between profiles and
contexts is not fixed and may be arranged by the ProfileManagerRole
as it sees fit2, and it keeps the interface for the interaction partner simple
because it does not have to deal with managing contexts and access control
data.

2For example, a large profile may be stored across multiple databases and therefore
in different contexts, which may even be managed by different agents implementing the
TPMASProviderRole. These details are likely to be irrelevant for the respective service
user.
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7.2.2.2 Information Processing Stage

The raw profile data collected in the first stage may be used directly as input
for a filtering technique in the Information Filtering stage. More complex
filtering techniques, however, require a further processing of the collected
data, resulting in models structuring the profile data in a certain way. Models
may be used on both user profile and provider profile data, or only on data
of a single profile, again depending on the filtering technique.

Different filtering techniques, such as minor variations of the same main
technique, may use the same profile model. Therefore, the ontology “Infor-
mation Filtering” groups filtering techniques by the profile model they are
based on. In order to be able to create and maintain a model at this stage,
the filtering technique to be applied in the following stage has to be known. If
different filtering techniques are to be applied, different corresponding mod-
els have to be maintained. In principle, the required models could be created
as a first step of the Information Filtering stage itself, but this approach is
usually infeasible due to the complexity of the process combined with the
fact that the Information Filtering stage may be initiated directly by a hu-
man user waiting for the results, which makes it more time-critical than the
preceding stages.

Nevertheless, for all but the most basic models, the algorithm used to
create and maintain the profile models should be considered part of the fil-
tering technique itself and is therefore provided by the filter entity. Thus,
two entities are involved in each process of the Information Processing stage,
and privacy aspects have to be addressed3. The filter entity is responsible,
via functionality provided by the a TFERole, for creating and updating
the profile models. The agent realizing this role is located on a platform
controlled by a user or a provider entity, depending on the profile on which
a model is to be created or updated. Interactions specified in Section 5.2
are used for controlling the platform. The agent realizing the TFERole
is created via a manager role, the TFEFactoryRole, via the interaction
ObtainTFE specified in Table A.23 of the appendix. Figure 7.2 illustrates the
respective partial use case “set up temporary filter entity”.

Due to the complexity of the process, it is advisable to create and update
large profile models independent of the actual information filtering process
itself. Therefore, it is necessary for the respective abstract entity to announce
an intended future use of a certain group of filtering techniques to its Pro-
fileManagerRole in order to trigger the creation of the respective model.

3Note that while all three abstract entities are involved in collaboration-based processes
of the Information Processing stage, we do not have to address this complication in the
context of Recommender System functionality, for reasons discussed in Section 2.2.1.

119



Figure 7.2: Collaboration Diagram for the partial use case “set
up temporary filter entity”.

For this reason the interaction SetUpdatePolicy specified in Table A.24 of the
appendix is provided by the ProfileManagerRole. It allows its initiator
to define a profile model update policy and a group of filtering techniques to
be used on a the respective profile or group of profiles.

Additionally, the ProfileManagerRole acts as a relay between the
TFERole and the TPMASProviderRole that handles the persistent
storage of the profiles. Therefore, similar to the profile management inter-
actions introduced in Section 7.2.2.1, the additional interactions UpdatePro-
fileModel and QueryProfileModel are provided as specified in Table A.25 and
Table A.26 of the appendix. These interactions are required at this stage
because the TFERole realized by an agent on a controlled platform cannot
communicate with the TPMASProviderRole directly (unless the con-
troller agent itself realizes this role as well) and therefore a relay is required.

Finally, for creating and modifying a profile model, the interaction Mod-
ifyProfileModel is provided as specified in Table A.27 of the appendix. This
interaction is initiated by the ProfileManagerRole, based on the respec-
tive update policy: If a profile is to be updated immediately, the interaction
is triggered whenever the interaction UpdateProfile is carried out. If a profile
is to be updated periodically, it is triggered by an internal timer. If an update
policy implies that a new profile model has to be created, it is started imme-
diately as well. Figure 7.3 illustrates the respective main use case “update
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profile model”.
In each case, the ProfileManagerRole is responsible for supplying

the appropriate profile elements. In the first case, they may be carried over
directly from the respective profile management service. In the second case,
the ProfileManagerRole either has to keep track of all elements received
after the last profile model update or, as is done in the third case as well,
use the interaction RetrieveObjects to obtain the appropriate elements.

These interactions are sufficient if the TFERole is assumed to be honest
or at least honest-but-curious, because there is no way to propagate private
information outside the specified interactions.

Figure 7.3: Collaboration Diagram for the main use case “up-
date profile model”.

If the filter entity considers the generated model to contain sensitive infor-
mation, such as data that could be analyzed in order to obtain information
about the algorithm used by the respective filtering technique, the model
should be regarded as private data of the filter entity and subsequently it
should be protected accordingly. As described in more detail in the context
of exemplary filtering techniques in Chapter 9, this may be achieved by en-
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crypting the model before it is propagated from the filter entity to another
entity.

7.2.2.3 Information Filtering Stage

The final stage providing the information filtering process itself uses the
data collected and processed in the preceding two stages and compares two
profiles in order to generate recommendations or a prediction for a given
item. Three different abstract entities are involved in this stage: The user
entity, a supplier entity which may be a provider entity (in a Recommender
System context) or a different user entity (in a Hybrid IF System context4),
and a filter entity. Therefore, it is the most complex stage with regard to
privacy threats.

The TFERole introduced in the previous section is used in this stage
to carry out the actual filtering process. It is neither required nor possible
to actually use the same agent for both tasks, because the respective agent
is terminated at the end of the information processing stage. With regard
to functionality, the TFERole actually aggregates two partial roles, one
used in the Information Processing stage and one used in the Information
Filtering stage, because different algorithms may be used in these stages.
However, the partial roles have to dovetail in order for the actual filtering
technique to be applicable to the generated profile models. Apart from the
actual algorithm applied, they are utilized in similar manners. Therefore, we
subsume these partial roles as the TFERole.

Based on the outline of the information filtering process described de-
scribed in Section 4.2, we describe the essential interaction steps for the use
cases based on linkable result data and private result data (including the
Hybrid IF System scenario) in Table 7.2 and Table 7.3 respectively.

For the Hybrid IF System scenario, we assume the result data to be
completely private, mainly because there is no reason why the supplier, who
in this case represents another user, should obtain the result data which
is part of his user profile and as such no new information. Therefore, the
protocol outlined in Table 7.3 could be used in this case. However, in order to
provide an additional incentive for the supplier to participate in the process
at all, additional result data should returned by the TFERole which is
actually relevant for the supplier, such as recommendations taken from the
user profile. While this could be achieved by applying the protocol with the
roles of user and supplier reversed, it is easier and more efficient to propagate

4While this chapter focuses on Recommender System functionality, the introduced
protocols may also be used in a Hybrid IF System, as described in Section 8.2.2.3. For
this reason, we describe them in a generalized form here.
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Table 7.2: The essential interaction steps of the information fil-
tering stage for the use cases based on linkable result data, based
on the abstract protocol shown in Figure 4.1. In the case of semi-
linkable result data, the user entity roles have to remain anony-
mous in all interactions with roles of other entities.

Step Sender → Receiver Message part of interaction

I.a RR(U) restricts communication of TFE
I.b PMR(U)→ RR(U) PRu QueryProfileModel
I.c RR(U)→ TFE PRu QueryProfileModel

II.a PMR(S) restricts communication of RR(U), TFE
II.b PMR(S)→ RR(U) PRs QueryProfileModel
II.c RR(U)→ TFE PRs QueryProfileModel

III.a TFE → RR(U) RES GetResultsAsUser
III.b RR(U)→ PMR(S) RES GetResultsAsSupplier
III.c PMR(S)→ PMR(U) RES GetResults
III.d RR(U) terminates TFE
III.e PMR(S) terminates RR(U)

all result data in a single protocol. In this case, the result data contains
specific information for the user and the supplier, i.e. RES = RESu∪RESs.

Because the TFERole uses sensitive information related to two different
abstract entities in this stage, it has to be controlled by both entities, or,
more precisely, by each entity as soon as the respective sensitive information
is provided. As described in Section 5.2, effective control by more than one
controller can only be established through cascading control, i.e. one of the
controllers has to be controlled in turn.

We therefore introduce an additional role, the RelayRoleUser. This role,
which is aggregated by the abstract user entity, controls the TFERole and
is in turn controlled by the ProfileManagerRoleProvider. This second
control is established after the TFERole has received all user profile data
required for the filtering process. This is done for the following reason: If
control of the RelayRoleUser would be established at the beginning of the
filtering process, the user profile information would have to be communicated
via the ProfileManagerRoleSupplier, and the privacy of the user could
not be preserved. Using this construction, however, there is no way for the
TFERole to receive user profile data after a certain point, and especially
not after having received supplier profile data. This limitation has to be
taken into account when designing or selecting suitable filtering techniques,
and is therefore addressed in Chapter 9. For use cases based on private result
data, an additional RelayRoleSupplier is required for the result propagation,
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Table 7.3: The essential interaction steps of the information fil-
tering stage for the use cases based on private result data, based
on the abstract protocol shown in Figure 4.2. In the case of semi-
private result data, all user roles must remain anonymous in in-
teractions with other roles.

Step Sender → Receiver Message part of interaction

I.a RR(U) restricts communication of TFE
I.b PMR(U)→ RR(U) PRu QueryProfileModel
I.c RR(U)→ TFE PRu QueryProfileModel

II.a RR(S) restricts communication of RR(U), TFE
II.b PMR(S)→ RR(S) PRs QueryProfileModel
II.c RR(S)→ RR(U) PRs QueryProfileModel
II.d RR(U)→ TFE PRs QueryProfileModel

III.a PMR(U) restricts communication of RR(S), TFE
III.b TFE → RR(U) RES GetResultsAsUser
III.c RR(U)→ RR(S) RES GetResultsAsSupplier
III.d RR(S)→ PMR(U) RES GetResults
For semi-private result data:
repeat 3.5 ∀ res ∈ RES:
III.e PMR(U)→ PMR(S) res ExchangeResults
For completely private result data:
III.e omitted
For the Hybrid IF System scenario:
III.e PMR(U)→ PMR(S) RESs ExchangeResults
III.f RR(U) terminates TFE
III.g RR(S) terminates RR(U)
III.h PMR(U) terminates RR(S)

as described in Table 7.3.

The additional interactions required in this stage, namely the interac-
tions GetResultsInternally, GetResults, GetResultsAsSupplier, GetResultsAsUser,
ExchangeResults, and ObtainRelay are specified in Table A.28, Table A.29, Ta-
ble A.30, Table A.31, Table A.32, and Table A.33 of the appendix. Finally,
the interaction ShareKeys as specified in Table A.34 of the appendix is used
by roles aggregated by the same abstract entity for exchanging keys used in
encryption schemes. It is included here because while it is not required as
long as only honest and honest-but-curious participants are assumed, is is
required in case of malicious participants, as described in Section 7.3.1.

Figure 7.4 illustrates the use cases “get recommendations” and “get pre-
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Figure 7.4: Collaboration Diagram for the main use cases “get
recommendations” and “get prediction for item”, based on link-
able result data in a Recommender System context.

diction for item”, based on linkable result data in a Recommender System
context. Figure 7.5 illustrates the same use cases, based on private result
data in a Recommender System context.

Query Data Propagation As indicated by its name, the RelayRoleUser

has to act as a relay for interactions initiated by the TFERole. It par-
ticipates in the interactions QueryProfile and QueryProfileModel as well, but
instead of interacting directly with a TPMASProviderRole (as the Pro-
fileManagerRole does), it relays the queries by interacting with the Pro-
fileManagerRole of the other abstract entity.

In the Hybrid IF System scenario, where the supplier represents a dif-
ferent user entity, entire user profiles may be retrieved independent of each
other because they are generally rather small. In the Recommender System
scenario, however, retrieving an entire provider profile is often infeasible due
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Figure 7.5: Collaboration Diagram for the main use cases “get
recommendations” and “get prediction for item”, based on private
result data in a Recommender System context.

to its size. This may not apply to the mixed IR/IF scenario in which a
constrained provider profile is used that is obtained via an additional non-
privacy-critical query. Regular queries on the supplier profile (including the
supplier profile models), however, are potentially critical with regard to user
privacy, because the TFERole may use parts of the user profile within the
query structure. This course of action should not be prevented completely,
because it is actually the only feasible way to obtain a partial supplier pro-
file containing the relevant parts of a supplier profile, short of retrieving the
entire profile, as the relevant parts are expected to be those that have some
relation to the user profile.

When querying the supplier profile, the respective filtering algorithms
have to take user privacy into account and use either unlinkable user profile
elements in the query, or no user profile elements as such at all. Exemplary
filtering techniques for both approaches are given in Chapter 9. In the case
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Table 7.4: The Phase II interaction steps of the information fil-
tering stage for scenarios based on unlinkable queries and for the
use cases based on linkable result data. The RelayRoleUser has
to remain anonymous in all interactions with the ProfileMan-
agerRoleSupplier.
Step Sender → Receiver Message part of interaction

repeat II.a to II.e ∀ pr ∈ PRu:
II.a TFE → RR(U) q(pr) QueryProfileModel
II.b RR(U)→ PMR(S) q(pr) QueryProfileModel
II.c PMR(S)→ RR(U) {PPq(pr)}KP

QueryProfileModel

II.f PMR(S) restricts communication of RR(U), TFE
II.g PMR(S)→ RR(U) KP QueryProfileModel
II.h RR(U)→ TFE PPq(PRu) QueryProfileModel

of honest and honest-but-curious participants we assume the TFERole to
actually use a privacy-preserving approach for querying. Threats originating
from a malicious TFERole are addressed in Section 7.3.1.2.

Unlinkable queries have to be realized through anonymized interaction:
The RelayRole sends single queries to the ProfileManagerRoleSupplier

(or the RelayRoleSupplier in case of private result data), and receives the
respective results. Because agents on controlled platforms cannot commu-
nicate anonymously, these interactions have to be carried out before control
of the RelayRole is established. In order to protect the provider data, it
is send in encrypted form by the ProfileManagerRoleSupplier, who pro-
vides the key only after control has finally been established, i.e. after the
final anonymous interaction. Taken together, these steps (as listed in Table
7.4 and Table 7.5) replace the steps of Phase II of the abstract protocol.

The unlinkability of single queries obviously depends on the number of
parallel interactions of different agents realizing the RelayRole with one
supplier: If only one single filtering process takes place in a given time period,
unlinkability is not achieved. Unfortunately, it is difficult for the user to come
up with a realistic estimation of this number. There are three approaches
for increasing the degree of unlinkability in case a low number of parallel
interactions is suspected:

� The time period may be increased by deliberately delaying the single
interactions. While the probability of parallel interactions rises with
increasing length of the time period, this approach also results in in-
creasing response times, which may be critical in case the user actively
waits for results.
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Table 7.5: The Phase II interaction steps of the information fil-
tering stage for scenarios based on unlinkable queries and for the
use cases based on private result data. The RelayRoleUser has
to remain anonymous in all interactions with the ProfileMan-
agerRoleSupplier.
Step Sender → Receiver Message part of interaction

repeat II.a to II.c ∀ pr ∈ PRu:
II.a TFE → RR(U) q(pr) QueryProfileModel
II.b RR(U)→ RR(S) q(pr) QueryProfileModel
II.c RR(S)→ PMR(S) q(pr) QueryProfileModel
II.d PMR(S)→ RR(S) {PPq(pr)}KP

QueryProfileModel
II.e RR(S)→ RR(U) {PPq(pr)}KP

QueryProfileModel

II.d RR(S) restricts communication of RR(U), TFE
II.e PMR(S)→ RR(S) KP QueryProfileModel
II.f RR(S)→ RR(U) KP QueryProfileModel
II.g RR(U)→ TFE PPq(PRu) QueryProfileModel

� Additional interactions based on dummy queries may be initiated by
the RelayRole.

� Entire dummy interactions of the type GetResults may be initiated by
the ProfileManagerRoleUser. This approach may be problematic
with regard to the overall performance.

In the following, we assume that the number of parallel interactions is
sufficiently large, which is a realistic assumption for systems handling a large
number of users.

Result Data Propagation In both main use cases, the results, i.e. recom-
mendations, similar users, or a prediction, have to be propagated along the
cascade of controllers. In the Recommender System scenario, the supplier
may obtain the personalized information as well, mainly in order to improve
the quality of its information, based on data about information in high de-
mand. In the distributed Hybrid IF System scenario, result information is
usually not propagated to the other participating entity because it is neither
required nor would it generally be possible to realize unlinkability in this
case, because a user generally participates in parallel interactions to a much
smaller extent compared to a provider.

As described in Section 4.1, there are four different cases with regard to
the propagation of result data, which are realized by adjusting the steps of
Phase III of the information filtering protocol:
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� Completely Linkable Result Data: In this scenario, no adjustments are
required.

� Semi-Linkable Result Data: In this scenario, the ProfileManager-
RoleUser has to remain anonymous in all interactions with the Pro-
fileManagerRoleSupplier. The interaction steps as such do not have
to be adjusted.

� Semi-Private Result Data: In this scenario, the result data is propa-
gated to the ProfileManagerRoleUser via an additional relay, the
RelayRoleSupplier. In single anonymous interactions, the Profile-
ManagerRoleUser propagates the result data to the ProfileMan-
agerRoleSupplier.

� Completely Private Result Data: In this scenario, the final interaction
step between ProfileManagerRoleUser and ProfileManager-
RoleSupplier is omitted.

Other protocols are conceivable, especially for the scenarios based on pri-
vate result data. By encrypting the result data, it would be possible to forgo
the ProfileManagerRoleSupplier. It will turn out, however, that these
alternatives are less suitable in the case of malicious participants, which is
addressed in the following section. Therefore, they are not examined further
at this point.

7.2.3 Summary

In the analysis phase, we have defined basic interactions addressing all threats
originating from honest-but-curious participants in our approach by counter-
measures as shown in Table 7.6. These basic interactions have to be refined
further in order to address threats originating from malicious participants.
We combine this refinement with other tasks of the design phase, which is
discussed in the following section.

7.3 Design & Implementation

This section describes the agents and agent services of the Recommender
Module. The interactions defined in the previous sections have to be refined
further in order to address threats originating from malicious participants,
as well as other aspects. It turns out that the interactions as such are suf-
ficient, but the interaction steps have to be extended in many cases. The
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Table 7.6: Threats in PPIF with honest-but-curious partici-
pants, and countermeasures in our approach.

permanent
by user by supplier by filter

acquisition of

user profile
does not acquire TFERole

data
n/a linkable data is controlled

permanently by user

supplier profile
RelayRoleUser TFERole

data
is controlled n/a is controlled
by supplier by supplier

only acquired as
TFERole

result data n/a
specified

is controlled
by user

following section describes extensions as countermeasures for various threats
originating from malicious participants. Subsequent sections describe exten-
sions addressing other aspects, and also the agents and agent services.

7.3.1 Threats and Countermeasures

Malicious participants may deviate from the specified protocols in any con-
ceivable way either in order to propagate private information related to an-
other participant, or in order to alter or disrupt the overall interaction for
other reasons. Because there is no possible way for malicious participants
on controlled platforms to communicate with external parties, we are able
to restrict the discussion of threats originating from malicious participants
to the interactions taking place along the cascade of controllers up to the
initiator, i.e. to interactions between roles as defined in the Section 7.2.2 of
this chapter as shown in Figure 4.1 and Figure 4.2 for the use cases based on
linkable result data and private result data respectively.

As there is no critical interaction between roles aggregated by the same
abstract entities, the opportunities for deviations are limited: Attempts to
establish an additional channel for propagating private information are easily
detected and stopped, basically because these attempts would be registered
as obvious deviations from the protocol. Therefore, critical malicious at-
tempts are limited to the following two main aspects, which are discussed in
the following sections: Altering queries on the supplier profile, and altering
result data. We discuss modifications to the protocols which address these
threats in the following, starting with the description of various protocols as
building blocks for secure message forwarding.
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7.3.1.1 Secure Message Forwarding

We introduce two generic protocols for secure message forwarding as building
blocks that are applied in the following sections in order to eliminate threats
based on altered result data and the use of subliminal channels.

Consider a scenario involving three entities A, B, and C. A and C are
not able to communicate directly, but both are able to communicate with
B, whom they do not trust. A and C, however, have been able to exchange
unlimited information, including a shared key KAC , earlier. B has a secret
key KB. A intends to propagate the message m to C, which has to be done
via B. B may know the content of the message, but should not be able
to alter it. On the other hand, B will only forward the message if it can
be certain that no additional information is propagated via any subliminal
channel (such as a key used by A). The message m itself is not considered
to contain any hidden information. This restriction is somewhat problematic
because it is conceivable that A and C have previously agreed on some code
to be used in the message. However, B may modify the original message prior
to the actual protocol steps until he is convinced that it does not contain any
hidden information.

This scenario is generally known as the prisoners’ problem [102], because
a real-life analogy consists of two prisoners intending to communicate, which
has to be done via a warden who insists on being able to access all messages
in unencrypted form and will only forward messages if they contain infor-
mation he has approved. The prisoners, on the other hand, want to prevent
the warden from modifying the messages in an undetectable manner. The
prisoners’ problem has been introduced to motivate the use of subliminal
channels [102], whereas in our solution for secure message forwarding the
goal is to prevent the participants from using subliminal channels.

The most straightforward protocol for secure message forwarding is a
protocol based on digital signatures, as listed in Table 7.7. However, digital
signature schemes have been shown to contain subliminal channels [103] and
are therefore unsuitable in this context.

We provide the following solution for a secure message forwarding pro-
tocol (designated SMF1): As listed in Table 7.8, a keyed-Hash Message Au-
thentication Code (HMAC) of the message m is propagated by A in addition
to the message itself in order to prevent undetectable modifications of the
message (Step a). The HMAC is encrypted by B with a secret key, and the
encrypted HMAC is propagated, along with a hash of the key (Step c). The
key KAC is sent to B in order to allow B to verify that the HMAC is not
used as a subliminal channel, i.e. that it is actually an encrypted hash of the
message m (Step d). Finally, the message itself is propagated by B, along
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Table 7.7: A protocol for secure message forwarding based on
digital signatures. sK(x) indicates a message x signed via a private
key K. The corresponding public key may be used to verify the
signature.

Step Sender → Receiver Message

a A→ B m, sKA
(h(m))

b B checks m
c B checks h(m) via public key KA′

d B → C m, sKA
(h(m))

e C checks h(m) via public key KA′

with the key KB, which allows C to verify that the message has not been
altered (Step f).

Propagating the hash of the key KB prevents B from altering the message
to m′ after Step d, which would be undetectable otherwise because B could
choose a key KB′ so that {{h(m)}KAC

}KB
= {{h(m′)}KAC

}KB′ . The key
KAC cannot be used as a subliminal channel: If A and C agree on a number
of different keys KACn before the first step of the protocol, and A uses a
specific key KACi

in order to propagate additional information, C has to try
out various keys until a valid hash is obtained. This is not possible because
C has to propagate KAC before he obtains the encrypted hash. Thus, C
would have to guess the correct key.

Table 7.8: A protocol for secure message forwarding (SMF1)
based on a HMAC.

Step Sender → Receiver Message

a A→ B m, {h(m)}KAC

b B checks m
c B → C h(KB), {{h(m)}KAC

}KB

d C → B KAC

e B decrypts and checks h(m)
f B → C m,KB

g C checks h(KB)
h C decrypts and checks h(m)

Obviously, the keys KB and KAC may only be used once, which is un-
fortunate because it adds to the complexity of the communication required
for key exchange. This drawback has to be put up with in order to achieve
secure message forwarding. The encryption scheme used for encrypting the
hash obviously has to be secure against known-plaintext attacks, because
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otherwise B may be able to obtain KAC after Step a and subsequently al-
ter m in an undetectable way. Additionally, the encryption scheme must
not be commutative, i.e. a scheme where {{m}KA

}KB
= {{m}KB

}KA
cannot

be used for this protocol: In this case, B could alter m to m′ and choose
a key KB′ so that {m}KB

= {m′}KB′ and, because of the commutativity,
{{m}KAC

}KB
= {{m′}KAC

}KB′ . By propagating KB′ instead of KB, B would
cause C to unknowingly decrypt m′ instead of m.

We additionally provide a slightly modified protocol (SMF2), listed in
Table 7.9, in which the message itself is encrypted, instead of using an HMAC.
This solution has a slightly lower communication complexity, but a higher
computational complexity (as shown in Table 7.10). It is somewhat less
suitable for cascading secure message forwarding involving more than three
participants, but more suitable for secure iterative message forwarding, as
described in the following. This modified protocol does not suffer from the
vulnerabilities mentioned above, i.e. a commutative encryption scheme may
be used here as well as an encryption scheme vulnerable against known-
plaintext attacks (although both options are generally not recommended).

Table 7.9: A protocol for secure message forwarding (SMF2)
based on a symmetric encryption scheme.

Step Sender → Receiver Message

a A→ B {m}KAC

b B → C h(KB), {{m}KAC
}KB

c C → B KAC

d B decrypts and checks m
e B → C KB

f C decrypts m
g C checks h(KB)

Cascading Secure Message Forwarding A generalized case of the pro-
tocol for secure message forwarding is the following: A message is to be
forwarded securely along a cascade of participants A1, B1, .., An−1, Bn−1,
An, Bn (with Bn being optional), in which each Ai shares keys with and
trusts the other Aj, but does not trust any Bk, and vice versa. Every par-
ticipant along the cascade has to be able to verify the message m, but must
not be able to modify it. This is achieved by repeating the protocol steps
introduced above for every three consecutive participants. For SMF1, this is
especially efficient because the final step of the iteration i−1 may be merged
with the first step of the iteration i, resulting in a reduced communication
complexity because m only has to be propagated once. For SMF2, no such
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Table 7.10: A comparison of the protocols for secure message
forwarding in terms of communication complexity and computa-
tional complexity. The size of hashes and keys is constant and
therefore almost insignificant in relation to the size of messages.
The same applies with regard to the computational complexity
of encrypting and decrypting hashes vs. messages. I(x) denotes
information of size x.

SMF1 SMF2

communication complexity

# of I(m) 2 2
# of I(h) 3 1
# of I(K) 2 2

computational complexity

# of encryptions of I(m) – 2
# of decryptions of I(m) – 4
# of encryptions of I(h) 2 –
# of decryptions of I(h) 4 –
# of hashing operations on I(m) 3 –
# of hashing operations on I(K) 2 2

optimization is possible. Additionally, when used in this way, the restrictions
described above regarding vulnerability against known-plaintext attacks and
commutativity apply to SMF2 as well.

Secure Iterative Message Forwarding Another generalized case of the
protocol for secure message forwarding is the following: A intends to forward
a number of messages to C via B, but B must not be able to withhold the
propagation of message mi and still obtain subsequent messages mi+x at
the same time. SMF1 cannot be used for this task without modifications,
because A would not be able to decide whether to start another iteration of
the protocol. SMF2, on the other hand, may be used for this task because
if C does not receive the information required to obtain mi, he may refuse
to proceed with subsequent iterations, which prevents B from being able to
decrypt mi+x. Finally, the protocol for cascading secure message forwarding
may be combined with the protocol for secure iterative message forwarding.
The protocol listed in Table 7.11 constitutes an example.
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7.3.1.2 Altering Queries

Based on the protocols for secure message forwarding, we are now able extend
the interactions described above in order to counter malicious threats.

Queries on a profile are relayed through the RelayRole associated with
the opposing participating entity. The RelayRole therefore has to de-
cide whether a query is used as specified, i.e. to retrieve data in a privacy-
preserving way, or whether the query is used instead to propagate private
information. In the most straightforward case, a complete profile is returned
and the respective query does not contain any specific information at all. If
single profile elements are used within queries, unlinkable interactions may
be carried out as described in Section 7.2.2.3. In all other cases, the decision
becomes more complicated. Ultimately, if the user does not trust the fil-
ter completely, filtering techniques based on more advanced query structures
should not be used because the possibility of using the queries as subliminal
channels cannot be ruled out completely.

7.3.1.3 Altering Result Data in Recommender Systems

Depending on the use case, the result data consists of a set of recommenda-
tions or similar users, or a single prediction of the relevance of an item. In
the Recommender System scenario, participants may attempt to alter this
result data for various purposes. In order to prevent a successful execution
of these attempts, the interaction steps are extended as explained below and
as listed in Table 7.11, Table 7.12, and Table 7.13. Result data may be with-
held maliciously by the TFERole or any RelayRole. While this cannot
be prevented, it constitutes neither a serious nor a probable threat, because
the respective main abstract entity would not benefit from this action and
therefore the motivation for deviating from the protocol in this manner is
considered to be low. Other threats are examined in detail in the following.

TFERole Alters Result Data The TFERole may attempt to propa-
gate private user information via the result data, or otherwise alter the result
data in a way that is unfavorable for the user entity. As the filter entity would
not benefit directly from this action, it makes sense only if filter and supplier
collude, or if the filter entity intends to cause suspicion of a possible collusion,
a scenario that seems somewhat far-fetched.

The TFERole may also alter the result data in a way that results in the
user obtaining incorrect data, while the supplier obtains correct data, e.g. by
returning result data according to a previously defined code (such as a code
in which a recommendation x actually stands for recommendation y, or a
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Table 7.11: The extended protocol steps for the propagation of
result data in the Recommender System scenario, for the case of
completely linkable result data. For semi-linkable result data, the
ProfileManagerRoleUser has to remain anonymous in inter-
actions with the ProfileManagerRoleSupplier. Apart from this
modification, the same steps may be used.

Step Sender → Receiver Message part of interaction

[O.a to O.c: Key sharing]
O.a TFEF → TFE KA ShareKeys
O.b TFEF → PMR(S) KA ShareKeys
repeat O.c ∀ res ∈ RES:
O.c PMR(U)→ RR(U) KDres ShareKeys

[Phase I and Phase II as above]

[III.a to III.i: SMF1 with modified final step for RES]
III.a TFE → RR(U) RES, {H(RES)}KA GetResultsAsUser
III.b RR(U) analyzes RES
III.c RR(U) creates secret key KB
III.d RR(U)→ PMR(S) h(KB), {{H(RES)}KA}KB GetResultsAsSupplier
III.e PMR(S)→ RR(U) KA GetResultsAsSupplier
III.f RR(U) decrypts and checks h(RES)
III.g RR(U)→ PMR(S) KB GetResultsAsSupplier
III.h PMR(S) checks h(KB)
III.i PMR(S) decrypts H(RES) (cannot check it yet)

[III.j to III.r: SMF2 ∀res ∈ RES]
repeat III.j ∀ res ∈ RES:
III.j RR(U)→ PMR(S) {res}KDres GetResultsAsSupplier
III.k PMR(S) creates secret key KEres

repeat III.l ∀ res ∈ RES:
III.l PMR(S)→ PMR(U) h(KEres), {{res}KDres}KEres GetResults
repeat III.m to III.r ∀ res ∈ RES:
III.m PMR(U)→ PMR(S) KDres GetResults
III.n PMR(S) decrypts and analyzes res
III.o PMR(S) checks H(RES) from above w.r.t h(res)
III.p PMR(S)→ PMR(U) KEres, complete data(res) GetResults
III.q PMR(U) decrypts res
III.r PMR(U) checks h(KEres)

III.s RR(U) terminates TFE
III.t PMR(S) terminates RR(U)
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Table 7.12: The extended protocol steps for the propagation of result
data in the Recommender System scenario, for the case of semi-private
result data. The user must remain anonymous in Step III.t and Step III.u.

Step Sender → Receiver Message part of interaction

[O.a to O.d: Key sharing]
O.a/b TFEF → TFE/RR(S) KA ShareKeys
O.c PMR(S)→ RR(S) KC (session-independent) ShareKeys
O.d PMR(U)→ RR(U) KD ShareKeys

[Phase I and Phase II as above]

III.a PMR(U) restricts communication of RR(S), TFE

[III.b to III.j: SMF1 for RES]
III.b TFE → RR(U) RES, {h(RES)}KA GetResultsAsUser
III.c RR(U) analyzes RES
III.d RR(U) creates secret key KB
III.e RR(U)→ RR(S) h(KB), {{h(RES)}KA}KB GetResultsAsSupplier
III.f RR(S)→ RR(U) KA GetResultsAsSupplier
III.g RR(U) decrypts and checks h(RES)
III.h RR(U)→ RR(S) RES,KB GetResultsAsSupplier
III.i RR(S) analyzes RES
III.j RR(S) checks h(KB); decrypts and checks h(RES)

[III.k to III.q: SMF1 with modified final step for RES]
III.k RR(U)→ RR(S) {H(RES)}KD GetResultsAsSupplier
III.l RR(S) creates secret key KE
III.m RR(S)→ PMR(U) h(KE), {{H(RES)}KD}KE GetResults
III.n PMR(U)→ RR(S) KD GetResults
III.o RR(S) decrypts and checks h(RES)
III.p RR(S)→ PMR(U) KE GetResults
III.q PMR(U) checks h(KE)

repeat III.r to III.w ∀ res ∈ RES:
III.r RR(S)→ PMR(U) res GetResults
III.s PMR(U) decrypts and checks h(res)
III.t PMR(U)→ PMR(S) res ExchangeResults
III.u PMR(S)→ PMR(U) complete data(res), {h(res)}KC ExchangeResults
III.v PMR(U)→ RR(S) {h(res)}KC GetResults
III.w RR(S) decrypts and checks h(res)

III.x RR(U) terminates TFE
III.y RR(S) terminates RR(U)
III.z PMR(U) terminates RR(S)
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Table 7.13: The extended protocol steps for the propagation of
result data in the Recommender System scenario, for the case of
completely private result data.

Step Sender → Receiver Message part of interaction

[O.a to O.c: Key sharing]
O.a/b TFEF → TFE/RR(S) KA ShareKeys
O.c PMR(U)→ RR(U) KD ShareKeys

[Phase I and Phase II as above]

III.a PMR(U) restricts communication of RR(S), TFE

[III.b to III.j: SMF1 for RES]
III.b TFE → RR(U) RES, {h(RES)}KA GetResultsAsUser
III.c RR(U) analyzes RES
III.d RR(U) creates secret key KB
III.e RR(U)→ RR(S) h(KB), {{h(RES)}KA}KB GetResultsAsSupplier
III.f RR(S)→ RR(U) KA GetResultsAsSupplier
III.g RR(U) decrypts and checks h(RES)
III.h RR(U)→ RR(S) RES,KB GetResultsAsSupplier
III.i RR(S) analyzes RES
III.j RR(S) checks h(KB), decrypts and checks h(RES)

[III.k to III.r: SMF1 for RES]
III.k RR(U)→ RR(S) {h(RES)}KD GetResultsAsSupplier
III.l RR(S) creates secret key KE
III.m RR(S)→ PMR(U) h(KE), {{h(RES)}KD}KE GetResults
III.n PMR(U)→ RR(S) KD GetResults
III.o RR(S) decrypts and checks h(RES)
III.p RR(S)→ PMR(U) RES,KE GetResults
III.q PMR(U) checks h(KE)
III.r PMR(U) decrypts and checks h(RES)

III.s RR(U) terminates TFE
III.t RR(S) terminates RR(U)
III.u PMR(U) terminates RR(S)
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prediction k for a prediction k + m). While there does not seem to be any
way to prevent this, it affects the quality and consistency of the result data
and therefore will probably be noticed. Additionally, it does not immediately
threaten user privacy.

These threats do not apply to the case of completely private result data,
because in that case the result data is acquired permanently by the user
entity only. In the case of semi-private, semi-linkable or completely linkable
result data, the following solution applies:

As the RelayRoleUser receives all result data before it is acquired per-
manently by the supplier, it is able to check the result data for suspicious
information. While some attempts may be detected immediately, e.g. if user
profile elements are used as recommendations, more sophisticated attempts
based on subliminal channels have to be detected as well. The possibility
of subliminal channels within the result data used to propagate private in-
formation increases with the complexity of the result data. For example, a
vector containing several floating point decimals may be used more easily for
encoding information than single boolean values. Because recommendations
are always a subset of the supplier profile data, it is sufficient to return a short
identifier as a recommendation, based on which the user may subsequently
obtain the complete element.

For the same reason, predictions should be taken from a limited range of
possible values, instead of allowing arbitrary values. Taken together, these
steps minimize the possibilities for subliminal channels. The interaction
between the ProfileManagerRoleSupplier and the ProfileManager-
RoleUser is extended by a final step in which the complete recommendation
is returned if necessary. To prevent the supplier from returning arbitrary
information as the complete recommendation, the identifier should be mean-
ingful in itself, i.e. a string expressing a recognizable movie title would be
preferable to an apparently arbitrary number.

Furthermore, the TFERole may attempt to propagate private supplier
information via the result data, or otherwise alter the result data in a way
that is unfavorable to the supplier, in a similar way as described above. This
only makes sense if filter and user collude, or if the filter intends to cause
suspicion of a possible collusion. In this case, the following solution applies:

As either the RelayRoleSupplier or the ProfileManagerRoleSupplier

receives all result data before it is acquired permanently by the user, it is
able to check the result data for suspicious information, in a similar manner
as described above. The use of subliminal channels by the TFERole (such
as h(RES) or KA) is prevented implicitly by using the protocol for secure
message forwarding. Table 7.14 summarizes the threats and countermeasures
discussed in this paragraph.
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Table 7.14: Countermeasures against the TFERole as a mali-
cious participant. The user entity has to be able to analyze the
results before they are obtained by the supplier entity (perma-
nently or temporarily), and the supplier entity has to be able to
analyze the results before they are permanently obtained by the
user entity. This is actually accomplished in all protocols as sum-
marized here.

linkable semi-private compl. private
internal action result data result data result data

(see Table 7.11) (see Table 7.12) (see Table 7.13)

user entity RR(U) RR(U) RR(U)
analyzes result data via Step III.b Step III.c Step III.c
supplier entity obtains/ PMR(S) RR(S) RR(S)
analyzes result data via Step III.n Step III.i Step III.i
user entity obtains PMR(U) PMR(U) PMR(U)
result data via Step III.q Step III.r Step III.p

Other Roles Alter Result Data The RelayRoleUser may attempt to
propagate private supplier information via the result data, or otherwise alter
the result data in a way that is unfavorable to the supplier. In order to
prevent a successful execution of this attempt, the result data is propagated
via the protocol for secure message forwarding SMF1 (Step III.a to Step III.i
in Table7.11, Step III.b to Step III.j in Table 7.12, and Step III.b to Step III.j
in Table 7.13).

If the TFERole and the RelayRoleUser collude, this threat obviously
is not preventable at this stage. In this case, the supplier still is able to react
in the same manner as described above for the threat originating from the
TFERole. In all other cases, however, it is more efficient to rely on the
encryption than having to analyze the returned data.

The RelayRoleSupplier or the ProfileManagerRoleSupplier may at-
tempt to propagate private user information via the result data, or otherwise
alter the result data in a way that is unfavorable to the user. In order to
prevent a successful execution of this attempt, the result data is propagated
via the protocol for secure message forwarding SMF2 (Step III.j to Step III.r
in Table 7.11, and the protocol for secure message forwarding SMF1 respec-
tively (Step III.k to Step III.q in Table 7.12, and Step III.k to Step III.r in
Table 7.13). In particular, the iterative disclosure of result data in Step III.j
to Step III.r in Table 7.11 prevents the ProfileManagerRoleSupplier from
withholding result data. Similarly, the protocol part consisting of Step III.r
to Step III.w in Table 7.12 prevents the ProfileManagerRoleUser from
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withholding or altering result data, because this would be noticed by the
RelayRoleSupplier, which subsequently would be able to halt the protocol.

7.3.1.4 Altering Result Data in Hybrid IF Systems

In the Hybrid IF System scenario, participants may attempt to alter result
data for various purposes largely analogous to the cases described above. In
order to prevent a successful execution of these attempts, the interaction
steps are extended as listed in Table 7.15.

7.3.1.5 Completion of Iterative Disclosure

A minor but potentially problematic threat arises in protocols based on an
iterative disclosure of result data: While a participant withholding the entire
result data would cause the respective protocol to stop, withholding the final
part of the result data (e.g. the final recommendation) does not have any
direct consequences because the sender does not subsequently receive any
additional information anyway.

If both participants act strictly rationally, this problem does not only
affect the final part of the result data, but ultimately the entire result data,
because a participant who cannot expect to receive data in step n may choose
not to carry out step n − 1, and thus no participant would be sufficiently
motivated even to begin the protocol.

We discuss this threat for the different scenarios and cases:

� In the cases of completely linkable data and semi-linkable data in the
Recommender System scenario, this threat is less problematic because
it only applies to the ProfileManagerRoleSupplier (Step III.p in Ta-
ble 7.11), who can be expected to carry out the protocol as specified in
order to gain the trust of the users.

� In the case of semi-private result data, this threat is less problematic
because while the ProfileManagerRoleUser may actually withhold
the final result data (Step III.t in Table 7.12), this does not lead to
the ProfileManagerRoleSupplier withholding the previous data, be-
cause the interactions are unlinkable from the point of view of the
ProfileManagerRoleSupplier.

� In the case of completely private result data in the Recommender Sys-
tem scenario, the threat does not apply because there is no iterative
disclosure.
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Table 7.15: The extended protocol steps for the propagation of
result data in the Hybrid System scenario, for the case of com-
pletely private result data.

Step Sender → Receiver Message part of interaction

[O.a to O.e: Key sharing]
O.a/b TFEF → TFE/RR(S) KA ShareKeys
O.c PMR(S)→ RR(S) KC ShareKeys
repeat O.c ∀ res(U) ∈ RES(U):
O.d PMR(S)→ RR(S) KFres(U) ShareKeys
O.e PMR(U)→ RR(U) KD ShareKeys

[Phase I and Phase II as above]

III.a PMR(U) restricts communication of RR(S), TFE
III.b RR(S)→ RR(U) KC GetResultsAsSupplier
repeat III.c ∀ res(U) ∈ RES(U):
III.c RR(S)→ RR(U) KFres(U) GetResultsAsSupplier

[III.d to III.k: SMF1 for RES]
III.d TFE → RR(U) RES, {h(RES)}KA GetResultsAsUser
III.e RR(U) analyzes RES; creates secret key KB
III.f RR(U)→ RR(S) h(KB), {{h(RES)}KA}KB GetResultsAsSupplier
III.g RR(S)→ RR(U) KA GetResultsAsSupplier
III.h RR(U) decrypts and checks h(RES)
III.i RR(U)→ RR(S) RES,KB GetResultsAsSupplier
III.j RR(S) analyzes RES
III.k RR(S) checks h(KB); decrypts and checks h(RES)

[III.l to III.r: SMF1 for RES ′ =
⋃
res′ with res′

def
= {res(S)}KC , {res(U)}KFres(U)

]

III.l RR(U)→ RR(S) {h(RES ′)}KD GetResultsAsSupplier
III.m RR(S) creates secret key KE
III.n RR(S)→ PMR(U) h(KE), {{h(RES ′)}KD}KE GetResults
III.o PMR(U)→ RR(S) KD GetResults
III.p RR(S) decrypts and checks h(RES ′)
III.q RR(S)→ PMR(U) RES ′, KE GetResults
III.r PMR(U) checks h(KE); decrypts and checks h(RES ′)

repeat III.s to III.t ∀ res′ ∈ RES ′:
III.s PMR(U)→ PMR(S) {res(S)}KC ExchangeResults
III.t PMR(S)→ PMR(U) KFres(U) ExchangeResults

III.u RR(U) terminates TFE
III.v RR(S) terminates RR(U)
III.w PMR(U) terminates RR(S)
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� In the case of completely private result data in the Hybrid System
scenario, the threat may be countered by letting the initiating user
represented by the ProfileManagerRoleUser decide on the size of
the result data (i.e. the number n of recommendations to be returned),
and by keeping this number secret from the other user represented by
the ProfileManagerRoleSupplier. Thus, the ProfileManager-
RoleSupplier cannot withhold (Step III.t in Table 7.15) without risking
to miss information about further result data.

If the result data consists of a single prediction, the iterative disclosure
procedure is reduced to a single iteration which is even more problematic.
Therefore, if predictions are to be returned instead of recommendations, the
result data should contain a number of predictions for different items instead
of a single prediction. If this is done, the countermeasures described above
apply here as well.

7.3.1.6 Reaction to Detected Threats

Finally, all roles involved in the interactions have to be able to react in an
appropriate manner if they detect deviations from the protocol. While the
ProfileManagerRole may just abort the overall interaction and log or
otherwise report the attempted deviation, the RelayRole is more restricted
in this regard, because it cannot communicate freely. As an example, if the
RelayRole in the Recommender System scenario detects or suspects a col-
lusion between the other roles involved, it cannot report to the ProfileM-
anagerRoleUser. It may still abort the overall interaction, but in this case
the supplier may divert suspicion by announcing that a different problem
caused the interruption of the overall interaction.

Therefore, a RelayRole should be allowed to establish an additional
channel in order to propagate some kind of status flag to the ProfileM-
anagerRoleUser. If only a few bits are used for this channel, it is likely to
be too small to be used as a feasible subliminal channel, but wide enough to
communicate one of a number of status flags previously agreed upon. If the
meaning of status flags is changed in each overall interaction, the supplier
cannot modify the status flag in an undetectable way. Additionally, the Re-
layRole should continue to interact with the supplier even when it detects
a deviation in order to ensure that the result flag is actually propagated, but
at the same time it should deviate itself from the protocol in order to prevent
the acquision of private information, e.g. by replacing encrypted result data
with random noise.
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7.3.2 Other Requirements

Apart from privacy requirements, interactions may be extended for other
reasons, e.g. in order to improve the performance of the system:

In the mixed IR/IF scenario, recommendations may be generated in two
ways:

� The user may apply the IR-related query to recommendations retrieved
in the usual manner. However, this approach is likely to result in an
small or even empty set of recommendations, because few or no matches
may be found in the candidate set of recommendations, which is usually
itself rather small.

� The supplier may apply the IR-related query to his profile, and gener-
ate recommendations from the result set. While this approach cannot
utilize a pre-computed profile model, it is actually more feasible be-
cause the relevant part of the provider profile can be expected to be
small enough to be propagated completely to the TFRRole.

Therefore, the interaction GetRecommendations has to be extended by
using the IR-related query as an additional input parameter.

Furthermore, especially in this case repeated interactions between a given
user and supplier within a short time period are likely because the user may
send various IR-related queries5. In this case, it is not required to repeat all
interactions for each single filtering process, because the agents on controlled
platforms may be re-used. Interactions may be extended accordingly to al-
low this re-use of agents. We omit the details of the extended interactions
because they are not directly relevant for the overall architecture. It should
be noted, however, that re-using the RelayRole rules out the possibility of
anonymous interactions for querying the provider profile.

7.3.3 Agents and Agent Services

Based on the extended interactions described in the previous sections, we
are now able to define the agent services. In most cases, interactions are
mapped to agent services in a straightforward manner, as shown in Table
7.16. Interactions with similar input and output are aggregated as one agent
service, because they can be regarded as having the same effect. Depending
on the actual interaction, different protocols are used within the respective
service.

5In the regular scenario, repeated interactions only make sense when at least one profile
changes, which happens only intermittently.
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Table 7.16: The mapping of interactions to agent services.
Interaction Table Agent Service

Information Collection Stage
UpdateProfile A.21 UpdateProfile
QueryProfile A.22 QueryProfile

Information Processing Stage
ObtainTFE A.23 ObtainTFE
SetUpdatePolicy A.24 SetUpdatePolicy
UpdateProfileModel A.25 UpdateProfileModel
QueryProfileModel A.26 QueryProfileModel
ModifyProfileModel A.27 ModifyProfileModel

Information Filtering Stage
GetResultsInternally A.28 GetResults
GetResults A.29
GetResultsAsSupplier A.30
GetResultsAsUser A.31
ExchangeResults A.32 ExchangeResults
ObtainRelay A.33 ObtainRelay
ShareKeys A.34 ShareKeys

Roles are aggregated by agents in a similarly straightforward manner, as
shown in Table 7.17. While it may be advisable to aggregate various roles be-
longing to the same abstract entity (such as the TPMASProviderRoleUser

and the ProfileManagerRoleUser) for performance reasons, we use sep-
arate agents in order to keep the architecture flexible.

Table 7.17: The mapping of roles to agents.
Role Agent
InterfaceRoleUser InterfaceAgentUser
InterfaceRoleProvider InterfaceAgentProvider
ProfileManagerRoleUser PMAgentUser
ProfileManagerRoleProvider PMAgentProvider
RelayRoleUser RelayAgentUser
RelayRoleProvider RelayAgentProvider
TFEFactoryRole TFEFactoryAgent
TFERole TFEAgent

Communication within agent services is encrypted by mechanisms pro-
vided by the respective MAS architecture, unless the service is considered not
to require encryption, either because no sensitive information is communi-
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cated, or because the respective data is already encrypted for other reasons,
as described above.

7.3.4 Implementation

As we have only specified agents and agent services for this module, the
implementation is straightforward and therefore most details are omitted
here. Advanced Encryption Standard (AES) is used as the symmetric en-
cryption scheme and HMAC-SHA-1 as the MAC based on a cryptographic
hash function. These algorithms may easily be replaced with similarly suited
algorithms.

For load balancing and improved performance, the provider entity may
use a different agents providing the same functionality, i.e. realizing the same
role, such as a number of PMAgentProvider agents. In this case, the
load balancing must be actually carried out internally, e.g. by using a single
PMAgentProvider manager agent distributing the actual load. It must not
be realized by providing a dedicated PMAgentProvider agent whenever a
user initiates a filtering process because in this case an honest-but-curious
provider may link anonymous communications with the PMAgentProvider
as recipient to a specific user. In the basic implementation, load balancing
is not addressed.

7.4 Summary

This chapter describes functionality provided by the Recommender Module
addressing the use cases “get prediction for item” and “get recommenda-
tions”, as well as the use cases “update profile elements” and “update profile
model”, as defined in Section 4.1. In addition to the use of the Recommender
Module functionality in a Recommender System context, it also covers its
use in a Hybrid IF System context.

We briefly motivate the need for the Recommender Module (Section 7.1).
We specify an ontology containing the basic concepts (Section 7.2.1). We
specify roles and basic interactions for the three stages information collec-
tion, information processing, and information filtering, and address threats
arising from honest-but-curious participants, in particular in the context of
query data propagation and result data propagation (Section 7.2.2). Regard-
ing the design and implementation of the specified functionality, we address
threats arising from malicious participants by specifying two basic protocols
for secure message forwarding (Section 7.3.1.1). Based on these protocols, we
address the threats of altering queries (Section 7.3.1.2), altering result data
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(Section 7.3.1.3 and (Section 7.3.1.4), and threats in the context of iterated
disclosure of results (Section 7.3.1.5). We briefly discuss how roles should re-
act when a threat is detected (Section 7.3.1.6), and how interactions have to
be extended in order to meet other requirements (Section 7.3.2). Finally, we
list agents and agent services (Section 7.3.3), and we discuss implementation
details (Section 7.3.4). The following chapter addresses the remaining main
use cases of our approach.
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Chapter 8

The Matchmaker Module

This chapter describes functionality provided by the Matchmaker Module, i.e.
it primarily addresses the use cases “get prediction for user” and “get similar
users”, as defined in Section 4.1. It uses functionality of the Recommender
Module described in the previous chapter.

The chapter is structured as follows: Section 8.1 briefly motivates the
Matchmaker Module. Section 8.2 describes the ontologies, roles and interac-
tions of the module, while Section 8.3 describes the agents and agent services
realizing these interactions. Section 8.4 concludes the chapter with a sum-
mary.

8.1 Motivation

The Matchmaker Module is one of the two core modules of our approach for
Privacy-Preserving Information Filtering. Together with the Recommender
Module, it addresses all use cases defined in Section 4.1. It provides primary
functionality related to the requirement of user privacy (see Table 4.2). Thus,
the need for functionality described in this chapter is motivated directly by
the outline of our solution given in Section 4.2, as the abstract IF protocols
introduced in the outline are realized via agent interactions, i.e. as part of
agent services.

8.2 Analysis

This section describes the ontologies, roles and interactions of the Match-
maker Module. For the sake of readability, all tables and diagrams specifying
these components may be found in Appendix A.4.
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8.2.1 Ontologies

The main ontology of this module, the ontology “Distributed Information
Filtering” shown in Figure A.6 of the Appendix, complements the ontology
introduced in the previous chapter. It contains categories and attributes for
distributed Matchmaker Systems and distributed Hybrid IF Systems that
are explained further in the context of the interactions they are used in.

8.2.2 Roles and Interactions

The Matchmaker Module utilizes the roles introduced in Table 7.1, and one
additional role as described in Table 8.1. For the role schema, see Ap-
pendix A.4.

Table 8.1: The roles participating in the Matchmaker Module.
short name/ aggregated by

role name user provider filter

InterfaceRole


see Table 7.1

ProfileManagerRole
RelayRole

TPMASProviderRole
TFERole

TFEFactoryRole

CentralizedModelManagerRole CMMR(P)
Responsible for the management of relations between profile
elements and references to user entities.

Analogous to the Recommender Module, we initially assume all partici-
pating roles to act in an honest or at least honest-but-curious manner, and
address threats emanating from roles acting in a malicious manner in Sec-
tion 8.3.1.

8.2.2.1 Determining Potentially Similar Users

In distributed collaboration-based IF approaches, similar users are deter-
mined by comparing user profiles. In our approach, the user profiles are
distributed among the user entities. Therefore, similar users have to be
determined in a distributed manner as well. Assuming the Information Fil-
tering process of determining the similarity of two specific users as given,
the straightforward approach of determining all similar users would be to
apply this Information Filtering process to all combinations of two users. In
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systems with a large number of users, however, it is obviously infeasible to
carry out the Information Filtering process for every pair of users, because
the overall complexity would be quadratical in the number of users not even
taking into account the fact that the process has to be repeated periodically
because profile elements and thus similarities change over time. Therefore,
the Information Filtering process should only be carried out for pairs of users
who can be expected to be similar with a probability that is at least above
average. This section introduces interactions for determining such candidate
pairs. Other approaches are discussed in Section 3.2.4.

Candidate pairs are determined during the information collection and
information processing stage. They are stored in the user profile models of
the respective candidate users. We determine candidate pairs by considering
two users as potentially similar if they have profiles containing the same
profile element, or similar profile elements.

An entity keeping track of the profile elements of different user profiles
would be able to determine overlaps and thus potentially similar users. In our
approach, however, all user profile information is stored in a decentralized
way by the user agents. Therefore, an additional role realizing this task is
introduced, namely the CentralizedModelManagerRole. While this
role could be associated with any abstract entity, the provider entity is the
most obvious entity for aggregating this role, mainly because it already man-
ages the items that are potential user profile elements. Additionally, the
provider entity may be sufficiently motivated to carry out the tasks assigned
to this role because the respective interactions allow the provider entity to
collect general information about the dissemination of the information it pro-
vides, such as statistics of the most popular items, i.e. items appearing in a
large number of user profiles.

In relation to a given profile element, the CentralizedModelMan-
agerRole stores references to users who have added this element to their
respective profiles within a profile model as part of the information processing
stage. As a user entity may add an element to its profile without interact-
ing with any other role, the user entity itself is responsible for announcing
the operation to the CentralizedModelManagerRole, as an additional
interaction within the main use case “update profile model”. The Cen-
tralizedModelManagerRole utilizes a filtering technique in order to
determine references to other user entities who have announced this element
or similar elements, and notifies the user entity as an additional interaction
within the main use case “update profile model”. The other user entities do
not have to be notified by the CentralizedModelManagerRole, be-
cause they will be contacted by the user entity itself if it actually intends to
determine similar users. The respective interaction AnnounceProfileElement
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Figure 8.1: Collaboration Diagram for the partial use case “an-
nounce profile element” as part of the main use case “update pro-
file model”.

is specified in Table A.40 of the appendix.

The obvious problem arising from the introduction of the Centralized-
ModelManagerRole is the privacy of the user entities, i.e. the fact that
user profile data is stored in a centralized way by a potentially honest-but-
curious role. This problem is addressed by the following solution: The refer-
ence to the user entity stored by the CentralizedModelManagerRole
does not contain data that may be used to actually identify the respective
user entity. Instead, a pseudonym is stored which may be used to contact
the respective entity. Furthermore, different pseudonyms have to be used by
a given user entity for different profile elements, because otherwise the com-
plete user profile could be reconstructed by searching for all profile elements
associated with the same pseudonym. The mechanism for anonymous com-
munication introduced in Section 5.2 is used to contact the user entity via its
pseudonym. In other words, the user entity has to utilize an Anonymizer-
Role in order to achieve receiver anonymity when contacted by potentially
similar user entities, and for achieving sender anonymity when announcing
the respective profile element. The interaction between the different roles is
shown in Figure 8.1.

Due to the fact that all data stored in the centralized model is anonymized,
all threats originating from an honest-but-curious provider entity may be ad-
dressed adequately, because there is no way for the provider entity to obtain
additional private information. Threats originating from malicious partici-
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pants are addressed in the design phase described in Section 8.3.

8.2.2.2 Determining the Actual Similarity

Determining the actual similarity of two users is a rather straightforward
task. In fact, we have already described all required interactions in the
previous chapter, because the use case “get prediction for user” is basically
realized via the same interaction protocol as the use cases “get prediction for
item” and “get recommendations”, with the following differences:

� The supplier entity is actually realized by a second user entity, instead
of a provider entity.

� User profiles are usually small enough to be processed entirely. There-
fore, the RelayRole does not have to actually analyze queries (as long
as it ascertains that no private data is used within the query structure).

� The filtering technique is primarily applied in order to determine the
overall similarity of the two user profiles. It may additionally provide
recommendations and/or predictions within the same interaction. Ob-
viously, recommendations are generally only likely to be relevant in
cases of high similarity. Filtering techniques may be designed in a way
that allows their use for both goals. We give an example of a suitable
filtering technique in the following chapter.

The use case “get similar users” is realized by carrying out the interactions
of the use case “get prediction for user” for each candidate user, whereas the
top-N most similar users are retained.

As we utilize no additional interactions for determining the actual sim-
ilarity of users, no additional threats originating from honest-but-curious
participants in this contexts have to be addressed.

8.2.2.3 Hybrid IF System Functionality

A Hybrid IF System generates recommendations and predictions of items via
determining similar users. It may be realized simply by combining Match-
maker System functionality and Recommender System functionality. In our
approach, the functionality described above allows a user to find other similar
users. Recommendations or predictions of item relevance may be obtained
from a similar user by carrying out the interactions described in the previous
chapter, with the similar user representing the supplier. Both steps may also
be combined by returning recommendations or predictions of item relevance

153



in addition to the value indicating the similarity of users, which reduces the
number of interactions between users. In this case, the additional result data
should only be returned if the users are actually similar, because otherwise
the result data cannot be expected to be relevant. It should also be noted
that while result data from two user profiles could theoretically be generated
via the same filtering techniques that are used in the pure Recommender
System context, using adjusted filtering techniques in this context may be
more advantageous with regard to quality.

8.3 Design & Implementation

This section describes the agents and agent services of the Matchmaker Mod-
ule. The interactions defined in the previous sections have to be refined
further in order to address threats originating from malicious participants,
as well as further requirements. The following section describes extensions
constituting countermeasures for various threats originating from malicious
participants. Subsequent sections describe extensions addressing further re-
quirements, and finally the agents and agent services.

8.3.1 Threats and Countermeasures

The introduction of the CentralizedModelManagerRole creates new
possibilities for critical malicious actions. A malicious entity acting as a user
entity may attempt to reconstruct the user profile of other user entities by
the following course of action: The malicious entity adds a large number of
elements to its user profile, and thus receives a subsequently large number
of references to potentially similar user entities. By determining the similar-
ities of the respective user entities (which are initially only known via their
pseudonyms), the malicious entity may subsequently be able to link different
pseudonyms to one single user entity, namely in cases where the similar-
ity value and/or the generated recommendations and predictions are exactly
identical. Once different pseudonyms are linkable to a single user entity, the
respective profile elements become linkable as well, and thus a user profile
may be reconstructed.

This threat is basically prevented by blurring the returned similarity
value, making it impossible to link similarities1. Recommendations should

1As an example, if similarity is expressed as a continuous value between 0% and 100%,
two separate similarities of 89.1327% probably indicate the same actual user, while using
discrete values such as 0%, 5%, 10%, etc. would not allow to draw the same conclusion for
two similarities of 90%, because the value will apply to many different users.
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only be returned in cases of high similarity and non-suspicious foreign user
profiles. User profiles containing only a few elements, or an exceedingly large
number of elements, should be considered suspicious as they are likely not
to belong to a regular, i.e. honest user entity.

Malicious actions with regard to the propagation of the similarity value
itself do not have to be addressed explicitly, because it may be treated as
a special kind of recommendation in this respect, and the mechanisms de-
scribed in Section 7.3.1.3 apply, with the following exception: There is ac-
tually no way to prevent a ProfileManagerRole from withholding the
similarity value itself. Because the similarity value alone does not give any
useful information, this threat is negligible.

8.3.2 Other Requirements

Apart from privacy requirements, interactions may be extended for other
reasons, e.g. in order to improve the performance of the system:

As described in Section 5.2, using relay agents for achieving receiver
anonymity is problematic because these relay agents are not as short-lived
as relay agents used for achieving sender anonymity, basically because the
receiver usually does not decide when the communication takes place. There-
fore, in a straightforward realization of the interaction introduced above, each
user entity has to create and maintain one additional agent per user profile
element. However, the total number of agents would be rather large in sys-
tems with a large number of users and comprehensive user profiles (O(s · u)
for u users with an average number of elements s). This number could be
reduced to O(u), which is manageable because there are already O(u) agents
associated with user entities anyway, by the following approach:

Based on the average user profile size (which may be determined via the
CentralizedModelManagerRole), a correspondingly large number of
time slots are introduced, and each potential user profile element is assigned
a time slot. User entities announce user profile elements only during the
respective time slot, and thus have to keep the respective agents realizing
the functionality for receiver anonymity alive only during that time slot.

If the suggested approach is still considered infeasible for a specific imple-
mentation, other solutions may be used without having to change the overall
architecture: Solutions related to mix networks or similar anonymizer ap-
proaches (for which see Section 3.1.1) may be successfully applied in this
case, although it should be noted that they would introduce additional trust
issues.

155



8.3.3 Agents and Agent Services

Based on the extended interactions described in the previous sections, we
are now able to define an additional agent service. As in most other cases,
the respective interaction is mapped to the agent service in a straightforward
manner, as shown in Table 8.2. Roles are aggregated by agents in a similarly
straightforward manner, as shown in Table 8.3.

Table 8.2: The mapping of interactions to agent services.
Interaction Table Agent Service

AnnounceElement A.40 AnnounceElement

Table 8.3: The mapping of roles to agents.
Role Agent
CentralizedModel- CentralizedModel-
ManagerRole ManagerAgent

8.3.4 Implementation

As we have only specified agents and agent services for this module, the
implementation is straightforward and therefore its details are omitted here.

8.4 Summary

This chapter describes functionality provided by the Matchmaker Module
addressing the use cases “get prediction for user” and “get similar users”,
as defined in Section 4.1. In addition to the use of the Matchmaker Module
functionality in a distributed Matchmaker System context, it also covers its
use in a distributed Hybrid IF System context.

We briefly motivate the need for the Matchmaker Module (Section 8.1).
We specify an ontology containing the basic concepts (Section 8.2.1). We
specify roles and basic interactions, and address threats arising from honest-
but-curious participants 8.2.2). Regarding the design and implementation of
the specified functionality, we address threats arising from malicious partici-
pants (Section 8.3.1), and we discuss how interactions have to be extended in
order to meet other requirements (Section 8.3.2). Finally, we list agents and
agent services (Section 8.3.3). The following chapter describes exemplary
filtering techniques that may be used in our approach.
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Chapter 9

Exemplary Filtering Techniques

This chapter describes exemplary filtering techniques that may be used by
the Recommender Module and the Matchmaker Module. These filtering
techniques are provided as building blocks to be utilized by the filter entity.
While the modules described in the previous chapters provided ontologies,
interactions and ultimately agents and agent services, this chapter deals with
functionality to be used internally, i.e. within a single agent.

As the Gaia methodology is not applicable to internal functionality, the
section of this chapter are structured differently than the sections of the pre-
vious chapters. Section 9.1 briefly motivates exemplary filtering techniques.
Section 9.2 describes the general requirements of filtering techniques that are
to be applied in our approach for Privacy-Preserving Information Filtering,
and Section 9.3 describes three exemplary filtering techniques meeting these
requirements. Section 9.4 concludes the chapter with a summary.

9.1 Motivation

In the previous chapters, the filtering techniques used by the Recommender
Module and the Matchmaker Module have been largely treated as black
boxes, i.e. we have assumed that filtering techniques exist which are may be
utilized within the information processing stage and the information filtering
stage in a way that meets all functional and non-functional requirements.

In this chapter, we break down the requirements regarding the use of a
specific filtering technique, and we describe exemplary filtering techniques in
order to show that these requirements may actually be met.
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9.2 Analysis

This section lists the requirements for filtering techniques to be used in the
context of Privacy-Preserving Information Filtering. It should be noted that
our approach does not require a single filtering technique to be applicable in
the context of each of the four main use cases, or each of the sub-cases for
the propagation of result data (as defined in Section 4.1). However, all use
cases should be covered by at least one filtering technique.

As discussed in Section 2.2.1, there are two main groups of filtering tech-
niques, namely feature-based and collaboration-based filtering techniques.

Feature-based filtering techniques are less problematic with regard to pri-
vacy because the respective profiles do not contain private data associated
with other users. There are, however, feature-based approaches that are not
directly applicable: Learning-based approaches in which the filter entity uses
the data obtained during a specific filtering process (or data provided by
the user as feedback) in order to refine further filter processes are obviously
problematic because our approach does not allow any additional data to be
propagated by the Temporary Filter Entity. Therefore, if these approaches
are to be used the feedback has to be obtained outside of the PPIF part of
the respective system, e.g. by using the same filtering technique in a non-
privacy-preserving context.

Collaboration-based filtering techniques are generally problematic be-
cause they are based on data obtained by combining and analyzing elements
from different user profiles. They may still be used either by again obtaining
the data outside of the PPIF part of the respective system, or by combining
a feature-based and a collaboration-based approach, e.g. as described as our
solution for Matchmaker Systems in Chapter 8. In the latter case, however,
the actual algorithm used to create the centralized model during the infor-
mation processing stage, as well as the actual algorithm used to generate
result data based on two profiles during the information filtering stage, are
feature-based filtering techniques.

There are two main aspects that have to be considered for filtering tech-
niques to be applied in our approach:

� Influence of supplier profile data on obtained user profile data: The
protocols described in Chapter 7 are only applicable if the utilized
filtering algorithm does not have to retrieve user profile data based on
obtained supplier profile data, because as soon as supplier profile data
has been obtained, no further user profile data may be obtained in a
privacy-preserving manner. While the protocols could be extended to
facilitate an iterative propagation of user and supplier profile data, this
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is usually unnecessary because the user profile is expected to be small
enough to be propagated as a whole.

� Influence of user profile data on obtained supplier profile data: In prac-
tice, the applicability of a specific filtering technique largely depends on
the size of the provider profile, including the models maintained during
the information processing stage: While the user profile is typically
small enough to be propagated entirely, there are different options for
the propagation of the provider profile, in case the supplier is actually
a provider entity (and not a different user entity):

– Complete Propagation: Propagating the entire provider profile is
usually infeasible, due to its size. The situation is analogous to the
Private Information Retrieval scenario described in Section 3.2.3,
i.e. propagating the entire provider profile constitutes a trivial
solution that is theoretically applicable for all filtering techniques.

– Constrained Propagation via IR: In the mixed IF/IR scenario,
only a small part of the provider profile has to be propagated, the
elements of which are based on a non-privacy-preserving IR query.

– Partial Propagation via Unlinkable Queries: In all other cases, the
relevant parts of the provider profile have to be retrieved based on
user profile data. As described in Section 7.2.2.3, the respective
queries are privacy-critical and should therefore be propagated in
an unlinkable manner. Depending on the size of the user profile,
this approach is rather time-critical.

– Partial Propagation via Refinement: A different approach is based
on the fact that the provider entity may obtain any information
during the profile propagation process as long as it is information
that may be deduced from the recommendations themselves af-
ter the filtering process. If, for example, the item i is returned
as a recommendation, the prior propagation of the part of the
provider profile containing the 100 items most similar to i does
not allow the provider to deduce additional information about the
user profile. In other words, this strategy refines a large num-
ber of provider profile items to a comparatively small number of
recommendations without using user profile elements within the
respective queries. This strategy is obviously not applicable in the
case of completely private result data. In the case of semi-private
result data, only single recommendations may be generated dur-
ing a specific filtering process. It is therefore most suitable in the
case of linkable and semi-linkable result data.
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Filtering techniques to be applied in our approach should be able to
deal with at least one of the latter strategies in addition to the trivial
solution of complete propagation.

In the following section we specify filtering techniques meeting these re-
quirements.

9.3 Design & Implementation

In this section, we describe three exemplary filtering techniques that meet the
requirements given above. The first filtering technique is not based on profile
models and therefore applicable for the use cases “get recommendations” in
a Hybrid IF System, “get prediction for item”, and “get prediction for user”,
because these use cases require a comparatively small amount of supplier
profile data and therefore may be realized without profile models. The other
two filtering techniques are model-based and therefore primarily applicable
for the main use case “get recommendations” in a Recommender System.

All filtering techniques are ultimately based on determining the similarity
of two single items. It should be noted that the actual item similarity algo-
rithm may be chosen freely without affecting the other parts of the respective
filtering technique. In particular, this aspects enables the filter entity to ac-
tually preserve the privacy of its sensitive data, because the filter entity may
adjust or alter the item similarity algorithm independent of the other entities.

The model-based filtering techniques are used for the information process-
ing stage in the context of the partial use case “announce profile element” as
well: The centralized model of candidate users is based on item similarity as
well, and therefore the models created via the filtering techniques described
below may be used in this context.

9.3.1 Item Similarity Algorithm

As its name implies, the item similarity algorithm ft1 is directly based on
item similarity. The similarity of two items i1 and i2 which are contained
in a profile is determined by a function sim(i1, i2). Following [38], we use a

cosine-based similarity function, i.e. given the vectors ~I1 and ~I2 containing
the attribute values of i1 and i2 respectively, the similarity of these items is
defined by Equation 9.11.

1In the original algorithm, the vectors contain user-related data, which is infeasible in
our approach. The algorithm, however, is applicable as long as the vectors contain any
kind of comparable data.
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simft1(i1, i2) = cos(~I1, ~I2) (9.1)

A prediction of the relevance of an item i is generated by comparing
the given item with all items of the user profile and returning the largest
similarity, as defined by Equation 9.2. It should be noted that no provider
profile items have to be propagated in this case apart from the item i, which
is assumed to be given.

predu,s,ft1,i = max(simft1(i, i1), .., simft1(i, in)) with

{i1, .., in} = PR(u)
(9.2)

The top-n recommendations in a Hybrid IF System are generated by by
determining the pairwise similarity of all items of the two respective user
profiles, and by returning the n most similar items that are not already con-
tained in the user profile of the entity initiating the interaction, as defined
by Equation 9.3. In case of small or largely equal profiles, less than n rec-
ommendations may be returned.

RECu,u′,ft1,n =

{i ∈ (PRu′ \ PRu)| ∀X ⊆ (PRu′ \ PRu \ {i}) :

|X| < n ∨ ∃ x ∈ X : predu,u′,ft1,i > predu,u′,ft1,x}
(9.3)

A prediction of the similarity of a user is generated by determining the
pairwise similarity of all items of the two respective profiles, and by returning
the average similarity of items based on the pairwise similarities, as defined
by Equation 9.4.

predu,u′,ft1,u′ =
m∑

r=1

n∑
s=1

simft1(ir, js) with

{i1, .., im} = PR(u) and (9.4)

{j1, .., jn} = PR(u′)

This filtering technique is applicable in our approach because the user pro-
file data may be propagated independent of and prior to the supplier profile
data. The supplier profile data is propagated completely in the Matchmaker
System-related use cases, which is feasible because in there cases the supplier
represents a second user with a comparatively small profile, and it does not
have to be propagated at all in the use case “get prediction for item”, because
no additional supplier profile data is required in this case.
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Thus, the requirements of user privacy and provider privacy are addressed
adequately. As the filtering technique is not based on profile models, filter
privacy is addressed adequately as well, because no other entity obtains any
information about the filtering algorithm itself. The requirement of quality
is met because the output of this filtering technique in a Privacy-Preserv-
ing Information Filtering context is the same as its output in a regular IF
context. The requirement of broadness is met because the filtering technique
is not domain-specific. The requirement of performance is met because the
same algorithms are used as in the context of a regular IF system.

To summarize, the item similarity algorithm may be applied in our ap-
proach for Privacy-Preserving Information Filtering. As its implementation
is straightforward, details are omitted here.

9.3.2 Item-based Top-N Recommendation Algorithm

In the following, we use the filtering technique described in [38] as an ex-
emplary representative for the class of non-collaborative, non-learning-based
filtering techniques.

The item-based top-N recommendation algorithm ft2 is based on a pro-
vider model created during the information processing stage. The k items
with highest similarity values with regard to i2 are contained in the set TOPi2 ,
excluding i2 itself. Similarity is determined via the similarity function intro-
duced above. The provider model is constituted by a matrix M containing
item similarities according to Equation 9.5 (for performance reasons, all but
the k highest values are set to zero for each column of the matrix).

mIp,ft1 = M with

Mi1,i2 = simft2(i1, i2) · |{i1} ∩ TOPi2|
(9.5)

The items contained in the user profile are modeled as a vector ~U with
non-zero values for items contained in the user profile according to Equation
9.6.

mIu,ft1 = ~U with

~Ui = |{i} ∩ PRU |
(9.6)

Recommendations are generated by obtaining the vector ~x = M · ~U ,
which contains sums of similarity values for all items i: The value ~xi is the
sum of the similarity values of item i with all items contained in the user
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profile. Based on ~x, the N items with the highest values that are not already
contained in the user profile are returned as recommendations.

This filtering technique is applicable in our approach because the user
profile data may be propagated independent of and prior to the provider
profile data. The provider profile data may be propagated as follows:

� Complete Propagation: Propagating the entire model is obviously pos-
sible. Its size is in O(I) as long as k is chosen independent of |I|, which
is optimal (a complete model should at least contain information about
all profile elements, and thus its size cannot be smaller than O(I)) but
still infeasible for large provider profiles.

� Constrained Propagation via IR: If only a part of the provider profile is
selected in a non-privacy-preserving way as described above, only the
rows of the matrix M containing the respective elements have to be
propagated, and the complete matrix may be reconstructed afterwards
by using zero values in the remaining rows. Thus, the propagated part
of the provider model may be reduced to a manageable size.

� Partial Propagation via unlinkable queries: The values of the columns
of the matrix M corresponding to zero values in the vector ~U do not
contribute to the sums contained in the vector ~x. Therefore, the com-
plete matrix may be reconstructed after obtaining single columns of the
matrix M via unlinkable queries by using zero values in the remaining
columns. Thus, this approach is applicable for this filtering technique
as well.

� Partial Propagation Via Refinement: The filtering technique is not
suitable for this strategy, because the provider profile cannot be re-
constructed or traversed iteratively.

While the requirements of user privacy and provider privacy are thus
addressed adequately, the filtering technique has to be adapted in order to
address the requirement of filter privacy: If the filtering algorithm is regarded
as sensitive data, the provider profile model has to be protected because it
contains similarity values results of the part of the filtering algorithm used
during the information processing stage. By accessing these similarity values,
the provider entity could be able to reconstruct the item similarity algorithm,
or it could use the data in order to carry out filtering processes by itself.
Therefore, the provider profile model has to be encrypted by the filter entity
before it is propagated to the provider entity for storage. The model cannot
be encrypted as a whole, as this would prevent the propagation of parts of the
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models in the context of constrained or partial propagation. Therefore, the
rows of the matrix M are encrypted separately, without changing their order,
so that the provider is still able to provide the requested data. Nevertheless,
the model should be re-encrypted completely whenever items are added or
removed, because all other approaches, such as only encrypting altered ele-
ments of the matrix M individually, would allow the provider entity to obtain
additional information. The requirement of quality is met because the out-
put of this filtering technique in a Privacy-Preserving Information Filtering
context is the same as its output in a regular IF context. The requirement of
broadness is met because the filtering technique is not domain-specific. The
requirement of performance is met in the approaches based on constrained or
partial propagation because the same algorithms are used as in the context
of a regular IF system, and the additional operations required for encryption
and decryption of the model do not change the overall complexity class.

To summarize, the item-based top-N recommendation algorithm may be
applied in our approach for Privacy-Preserving Information Filtering. As its
implementation is straightforward, details are omitted here.

9.3.3 Hierarchical Clustering-based Algorithm

As the item-based top-N recommendation algorithm is not suitable for the
provider profile propagation strategy of partial propagation via refinement,
we introduce a different algorithm which utilizes this strategy. Taken to-
gether, the two algorithms cover all propagation strategies. Hierarchical
clustering algorithms are ideally suited for approaches determining recom-
mendations in an iterative manner, because of the structure of the underlying
model. We describe a hierarchical agglomerative clustering-based algorithm
as a representative of this class of algorithms.

As the name implies, hierarchical clustering algorithms create a hierarchy
of clusters containing similar elements, resulting in a tree representing the
element set, which in our case is the provider profile. The leaves of this tree
are single profile elements as clusters of size one. In our case, the algorithm
ft3 creates a tree via single-link clustering, i.e. by iteratively merging the
two most similar clusters, where cluster similarity is defined via item simi-
larity, and thus the two clusters containing the two most similar items are
considered to be most similar2. These items are additionally defined as the
cluster representatives. The process is repeated until all items are merged

2Other clustering approaches, such as complete-link clustering or average-link clus-
tering, could also be used here. The only differ with regard to the definition of cluster
similarity.
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into one single cluster representing the root of the tree. An example is given
in Appendix C.

Recommendations are determined by iterating through the tree, from the
root upwards, by selecting in each single step the cluster whose representa-
tive is most similar to a given user profile element (or a group of user profile
elements). Once a cluster of sufficiently small size is reached, its elements
may be used either directly as recommendations, or as candidates for recom-
mendations from which, via additional similarity measurements, the actual
recommendations are determined.

This filtering technique is applicable in our approach because the user
profile data may be propagated independent of and prior to the provider
profile data. The provider profile data may be propagated as follows:

� Complete Propagation: Propagating the entire model is obviously pos-
sible. Its size is in O(I), as there are 2 · |I| − 1 clusters (or somewhat
less if only clusters of at least size k are maintained). Again, this value
is optimal but still infeasible for large provider profiles.

� Constrained Propagation via IR: If only a part of the provider profile
is selected in a non-privacy-preserving way as described above, either
the clustering process has to be carried out for the constrained profile,
which may be infeasible due to time constraints, or a model based on
the complete tree has to be used, whereas items not contained in the
constrained profile are simply ignored, which may lead to results of
lower quality. Therefore, the filtering technique is less suitable for this
strategy.

� Partial Propagation via unlinkable queries: Unless combined with the
following strategy, the filtering technique is not suitable for this strategy
either, because the model is based on clusters of items rather than on
single items. Otherwise, the only way to use this strategy would be
to carry out at least part of the filtering process at the provider side,
which is contrary to our view of the filter entity as independent of other
entities.

� Partial Propagation Via Refinement: The filtering technique is ideally
suitable for this strategy, because it may be carried out iteratively by
requesting the respective cluster representatives via separate queries.
The queries do not reveal any additional information because they do
not contain user profile elements, and they refer to clusters that may
be reconstructed via the recommendations themselves, as described in
the example given in Appendix C.
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As in the case of the filtering technique utilizing the item-based top-N rec-
ommendation algorithm described above, this filtering technique has to be
adapted as well in order to address the requirement of filter privacy. Again,
the provider profile model has to be encrypted by the filter entity before it
is propagated to the provider entity for storage. To facilitate constrained
or partial propagation of the profile, each cluster has to be encrypted sep-
arately. Over time, an honest-but-curious provider may be able to deduce
the contents of specific clusters based on the generated recommendations.
As this knowledge would still not enable the provider to carry out the filter-
ing process by itself, we consider it to be less privacy-critical. In any case,
a concerned filter entity may offset this threat by re-encrypting the com-
plete model periodically, a task which is necessary anyway whenever items
are added or removed to the profile. Complete filter privacy may only be
achieved by combining the two approaches for partial propagation. The re-
quirement of quality is met because the output of this filtering technique in
a Privacy-Preserving Information Filtering context is the same as its output
in a regular IF context. The requirement of broadness is met because the
filtering technique is not domain-specific. The requirement of performance is
met because the same algorithms are used as in the context of a regular IF
system, and the additional operations required for encryption and decryption
of the model do not change the overall complexity class.

To summarize, the hierarchical agglomerative clustering-based algorithm
may be applied in our approach for Privacy-Preserving Information Filtering.
As its implementation is straightforward, details are omitted here.

9.4 Summary

This chapter describes exemplary filtering techniques that may be used by the
Recommender Module and the Matchmaker Module. We briefly motivate the
need for providing exemplary filtering techniques (Section 9.1). We discuss
the main aspects that have to be considered for filtering techniques to be
applied in our approach (Section 9.2). We describe three exemplary filtering
techniques, namely an item similarity algorithm (Section 9.3.1), an item-
based top-N recommendation algorithm (Section 9.3.2), and a hierarchical
agglomerative clustering-based algorithm (Section 9.3.3), and show that they
meet all requirements, as summarized in Table 9.1. The following chapter
evaluates our approach in general and in the context of the prototypical
application described in Section 4.3.
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Table 9.1: An overview of the introduced exemplary filtering
techniques in relation to the requirements and acceptance aspects
of Privacy-Preserving Information Filtering for the use cases real-
ized via the respective filtering technique. A requirement is fully
met (indicated by “X”), partially met (indicated by “�”), or not
met at all (indicated by “–”). Acceptance is indicated in an anal-
ogous manner. The term “propagation” refers to the propagation
of the supplier profile.

Privacy Other Accep-
Requirements Requirements tance
Ru Rp Rf Rqq Rbb Rpp Au Ap

item similarity algorithm ft1
complete propagation X X X X X X X X
without propagation X X X X X X X X

item-based top-N recommendation algorithm ft2
complete propagation X X X X X – X �

constrained prop. via IR X X X X X X X X
partial prop. via queries X X X X X � X �

partial prop. via refinement n/a

hierarchical agglomerative clustering-based algorithm ft3
complete propagation X X X X X – X �

constrained prop. via IR X X X � X � X X
partial prop. via queries X X – X X X X �

partial prop. via refinement X X � X X X X X



168



Chapter 10

Evaluation

This chapter evaluates our approach for Privacy-Preserving Information Fil-
tering. It is structured as follows: Section 10.1 discusses the coverage of the
non-functional and functional requirements by our approach and by the im-
plemented application. Section 10.2 compares our approach with approaches
based on trusted software. Section 10.3 evaluates the applicability of the
functionality specified in our approach and provides usage guidelines. Sec-
tion 10.4 concludes the chapter with a summary.

10.1 Coverage of Requirements

In this section, we show that our approach meets all functional and non-
functional requirements listed in Section 2.3.4. In addition to a theoretical
evaluation, we also discuss results obtained from evaluating the prototypical
application that we have implemented based on our approach, as described
in Section 4.3. It should be noted, though, that most non-functional require-
ments (such as the requirement of privacy) cannot be quantified easily, and
some of them (such as the requirement of broadness) cannot be quantified
at all, and therefore we cannot actually measure the extent to which these
requirements are met in the prototypical application. With regard to these
requirements, we have to rely on the theoretical evaluation.

10.1.1 Functional Requirements

In the following, we review the functional requirements and show that they
are actually met by our approach. As shown in Table 10.1, not all required
functionality has actually been implemented for the prototypical application,
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mainly because the application focuses on Recommender System functional-
ity rather than Matchmaker System functionality.

� The system should provide sufficient functionality for realizing the in-
formation collection stage, the information processing stage and the
information filtering stage of an IF system. This requirement is met by
our approach, because it provides for the respective main use cases:

– The information collection stage is covered by functionality for
the main use case “update profile elements”, as described in Sec-
tion 7.2.2.1.

– The information processing stage is covered by functionality for
the main use case “update profile model”, as described in Sec-
tion 7.2.2.2.

– The information filtering stage is covered by functionality for the
main use cases “get prediction for item”, “get recommendations”,
“get prediction for user”, and “get similar users”, as described in
Section 7.2.2.3 and Section 8.2.2.

The respective functionality has been implemented in the prototypical
application, with the exception of functionality for the use cases “get
prediction for user” and “get similar users”.

� The system should be able to return all different kinds of result data
defined in Section 2.2.1, namely predictions of the relevance of specific
items, top-n recommendations of items, predictions of the similarity
of specific users, and top-n similar users for a given user. In other
words, the system should be able to provide Recommender System
functionality as well as Matchmaker System functionality. As described
above, the different kinds of result data are covered by the different use
cases of the information filtering stage, and thus this requirement is
met by our approach, as described in Section 7.2.2.3.

� Regarding filtering techniques, the system should be able to support
feature-based approaches as well as collaborative approaches. This re-
quirement is met by our approach, because the Recommender Module
utilizes feature-based approaches, while the Matchmaker Module uti-
lizes collaboration-based approaches for the generation of the central-
ized model. Two exemplary feature-based approaches, both of which
have been implemented in the prototypical application, are described
in Chapter 9.
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Table 10.1: Coverage of the functional requirements of an IF
architecture by our approach for PPIF and the implemented pro-
totypical application. A requirement is covered (indicated by “X”)
or not covered (indicated by “–”).

functional covered by implemented
requirement our approach in application

information collection stage X X
information processing stage X X
information filtering stage X X
item predictions X X
recommendations X X
user similarity predictions X –
similar users X –
feature-based filtering techniques X X
collab.-based filtering techniques X –

10.1.2 Non-functional Requirements

In the following, we show that in addition to the functional requirements,
the non-functional requirements are also actually met by our approach. We
also discuss acceptance aspects here because they are closely related to non-
functional requirements. As shown in Table 10.2 and Table 10.5, not all
specified functionality has actually been implemented for the prototypical
application. The part of the functionality that has been implemented, how-
ever, is sufficient for evaluating the quantifiable requirements, such as per-
formance.

10.1.2.1 Privacy

The requirement of privacy is mainly met by keeping private data under
the control of the respective entity. Other entities may only access the data
temporarily, without being able to propagate the data to any other entity
or in any other way that would cause the first entity to lose control of the
further dissemination of its private data.

This solution is basically realized via mechanisms for communication con-
trol, as described in Section 5.2.2.1, which are applied in the interactions of
the Recommender Module in order to protect privacy against threats orig-
inating from honest-but-curious adversaries, as described in Section 7.2.2.
The respective protocols are extended by steps for secure message forward-
ing in order to protect privacy against threats originating from malicious
adversaries, as described in Section 7.3. Communication control and the
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extended protocols have been implemented in the prototypical application.
Communication control has to be based on a trusted environment, which may
be realized via a trusted computing infrastructure but is not implemented
in the prototypical application. This solution applies to all entities and thus
addresses user privacy, provider privacy, and filter privacy.

In parts of protocols where communication control is not applicable or
insufficient, the requirement of privacy is additionally addressed via anony-
mous communication and encryption of private data, as described in the
following for the different main abstract entities:

� User privacy: Privacy of the user entity is additionally preserved via
anonymous communication in the following areas of our approach:

– Query data propagation: User profile data has to be propagated
to the provider entity in case of large provider profiles. Unlinka-
bility of user and profile elements as well as unlinkability of profile
elements among themselves is achieved by propagating single ele-
ments via anonymous interactions, as described in Section 7.2.2.3.
This is not required for the scenarios of the prototypical appli-
cation, as described in Section 10.1.2.4, and therefore not imple-
mented.

– Result data propagation: User profile data may be reconstructed
from the result data, which is propagated to the provider entity
unless the partial use case “completely private result data” is re-
alized. In case of semi-linkable or semi-private result data, recon-
struction is prevented by propagating result data via anonymous
interactions, as described in Section 7.2.2.3. The prototypical ap-
plication realizes the partial use case “completely linkable result
data”, and therefore the other partial use cases are not imple-
mented in the prototypical application.

– Determining Potentially Similar Users: The Matchmaker Module
determines potentially similar users via a centralized model con-
taining user profile data. As in the case of query data propaga-
tion, unlinkability is achieved via anonymous communication, as
described in Section 8.2.2.1. As noted above, Matchmaker System
functionality is not implemented in the prototypical application.

� Provider privacy: Privacy of the provider entity is additionally pre-
served via data encryption in the area of query data propagation of our
approach: As described above, anonymous communication is used to
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protect the user privacy in this context, which implies that communi-
cation control cannot be used to protect provider profile data, which
is propagated to the user entity within the respective interactions, be-
cause controlled agents cannot communicate anonymously. In order to
protect the privacy of the provider profile data up to the point in time
when the respective user agent may be controlled, the data is encrypted
by the provider entity as described in Section 7.2.2.3. As noted above,
this is not required for the scenarios of the prototypical application,
and therefore not implemented.

� Filter privacy: Privacy of the filter entity is additionally preserved via
data encryption in the area of information processing of our approach:
As described in Section 7.2.2.2, the provider profile model may allow
an honest-but-curious entity to obtain information about the filtering
algorithm, or even to carry out subsequent filtering processes by itself.
In order to protect the privacy of the filtering algorithm in this context,
the model is encrypted by the filter entity as described in Section 9.3
in the context of exemplary filtering techniques. This is implemented
in the prototypical application.

Table 10.2: Coverage of the privacy requirements of an IF ar-
chitecture in our approach for PPIF and the implemented proto-
typical application. A requirement is covered (indicated by “X”)
or not covered (indicated by “–”).
non-functional requirement/ covered by implemented
solution our approach in application

privacy (all entities)
communication control X X
extended protocols X X
trusted environment X –
user privacy
anonymous communication X –
provider privacy
data encryption X –
filter privacy
data encryption X X

To summarize, the requirement of privacy is met by our approach via a
combination of communication control, anonymous communication and data
encryption, as shown in Table 10.2.
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10.1.2.2 Quality

While the requirement of quality is quantifiable and thus could be evaluated
practically e.g. by comparing the quality of recommendations provided by the
prototypical application with the quality of recommendations provided by a
regular IR system within the same domain, it is actually sufficient to evaluate
this requirement theoretically: As described in Chapter 9, the algorithms the
filtering techniques are based on are the same algorithms that are used in
a regular IF system, and therefore the quality of the result data does not
change compared to a regular IF system.

10.1.2.3 Broadness

The requirement of broadness implies that the architecture should not be
restricted to single information domains, specific filtering techniques, or spe-
cific persistent storage mechanisms. It is met by our approach due to the fact
that the specification of functionality does not bring about any restrictions of
this kind. In particular, the Infrastructure Module, the Recommender Mod-
ule and the Matchmaker Module are designed in a domain-independent way.
The TPMAS Module described in Chapter 6 provides a transparent persis-
tence interface which allows the use of arbitrary persistent storage mecha-
nisms. Domain-specific filtering techniques may be used for domain-specific
applications based on our approach, but, as shown in Chapter 9, domain-
independent filtering techniques may be applied effectively.

10.1.2.4 Performance

The requirement of performance is theoretically met by our approach, be-
cause the introduced protocols do not change the computational complexity
class or the communication complexity class with regard to profile data and
results, compared to a regular IF approach, as the amount of information
propagated and processed in each case is in the same class. However, as
exemplary shown in Table 10.3 for a typical use case, there is a substantial
amount of additional interactions and computations which are constant with
regard to profile data and results, but obviously affect the performance in
practice considerably.

Therefore, we also evaluate performance based on the implement proto-
typical application described in Section 4.3, i.e. the Smart Event Assistant.
In this application, recommendations are provided in two ways, based on an
item-based top-N recommendation algorithm: A push service delivers new
recommendations to the user in regular intervals (e.g. once per day) via email
or SMS. Because the user is not online during these interactions, they are
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Table 10.3: The performance of a typical privacy-preserving
filtering process realizing the use case “get recommendations”
with linkable result data, assuming honest-but-curious partici-
pants, compared to the performance of the respective non-privacy-
preserving process.

# main computations # main interactions
non-

privacy-
non-

privacy-
privacy-

preserving
privacy-

preserving
preserving preserving

Phase I
create agent – 2 – 2
restrict comm. – 1 – 3
propagation PRU – – 1 3

Phase II
restrict comm. – 2 – 6
propagation PRS – – 1 3

Phase III
filtering algorithm 1 1 – –
propagation RES – – 1 3
terminate agent – 2 – 6

less critical with regard to performance and the protracted duration of the
information filtering process is acceptable in this case. Recommendations
generated for the intelligent day planner service, however, have to be deliv-
ered with very little latency because the process is triggered by the user, who
expects to receive results promptly. In this scenario, the overall performance
is substantially improved by setting up the relay agent and the TFE agent
offline, i.e. prior to the user’s request, and by the fact that the interactions
are based on the mixed IR/IF scenario, and thus the relevant part of the
provider profile may be propagated in an efficient manner: Because the user
is only interested in items, such as movies, available within a certain time
period and related to specific locations, such as screenings at cinemas in a
specific city, the relevant part of the provider profile is usually small enough
to be propagated entirely. As these additional parameters are not seen as
privacy-critical (because they are not based on the user profile, but rather
constitute a short-term information need), the relevant part of the provider
profile may be propagated as a whole, with no need for more complex in-
teractions. Thus, even a higher number of elements may be retrieved in an
efficient manner, because only a single query and a single interaction iteration
is required.
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Taken together, these improvements result in a filtering process that,
according to our evaluation, takes about three times as long as the respective
non-privacy-preserving filtering process, which we regard as an acceptable
trade-off for the increased level of privacy. Table 10.4 shows the results of
the performance evaluation in more detail.

Table 10.4: The performance of typical privacy-preserving filter-
ing processes in the Smart Event Assistant, compared to the per-
formance of the respective non-privacy-preserving process. In the
non-privacy-preserving version, a filter agent retrieves the profiles
directly from a database and propagates the result to a provider
agent.

push scenario day planning scenario
non-

privacy-
non-

privacy-
privacy-

preserving
privacy-

preserving
preserving preserving

profile size (retrieved items/total amount of items)
user profile 25/25 25/25
provider profile 125/10,000 500/10,000

elapsed time in filtering process (in seconds)
agent creation etc. n/a 2.2 n/a offline
database access 0.2 0.5 0.4 0.4
profile propagation n/a 0.8 n/a 0.3
filtering algorithm 0.2 0.2 0.2 0.2
result propagation 0.1 1.1 0.1 1.1
overall time 0.5 4.8 0.7 2.0

To summarize, the requirement of performance is met by our approach
for different scenarios, as shown in Table 10.5 together with the other non-
privacy-related requirements.

10.1.2.5 User Acceptance

With regard to user acceptance, we consider our approach to be sufficiently
acceptable in terms of usability, mainly because the user interactions are
largely the same as in a regular IF system. Compared to other conceivable
approaches for Privacy-Preserving Information Filtering, such as centralized
approaches based on trusted computing, the user is expected to trust an ap-
plication based on our approach to a higher degree, because the concept of a
personal user agent containing and protecting personal data may be immedi-
ately more comprehensible than the concept of privacy protection via trusted
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Table 10.5: Coverage of the requirements of quality, broadness,
and performance in our approach for PPIF and the implemented
prototypical application. A requirement is covered (indicated by
“X”) or not covered (indicated by “–”).

non-functional requirement/ covered by implemented
solution/ scenario our approach in application

quality
standard IF filtering techniques X X
broadness
transparent persistence X X
domain-independent protocols X X
domain-independent filtering techniques X X
performance
use cases in general � –
recommendations for offline user X X
mixed IR/IF scenario X X

computing technology. While it should be noted that our solution is based
on a trusted environment which is likely to be realized via trusted computing
as well, it may still be more acceptable especially if the trusted environment
is provided by an independent party and used for various additional tasks.

10.1.2.6 Provider Acceptance

We consider provider acceptance to be the greatest challenge of our ap-
proach. As long as users continue to accept and use non-privacy-preserving
Recommender Systems and Matchmaker Systems, providers are not likely
to embrace approaches for Privacy-Preserving Information Filtering mainly
because they obtain less information about users, and have to provide addi-
tional resources. However, as discussed in Section 2.2.3, this may change in
case of more complex applications, or in case of applications for more sensi-
tive domains, such as healthcare-related or financial Recommender Systems.
Ultimately, in order to acquire and retain large numbers of users for these
kinds of applications, providers will have to trade-off information about users
for user acceptance, and thus are expected to accept approaches for PPIF
perforce at least in specific scenarios.
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10.2 Trusted Software Approaches

As described in Section 4.2.1, our solution is based on a trusted environment
in a Multi-Agent System technology context, which implies that the prob-
lem of malicious hosts has to be addressed. As discussed in Section 3.3.2, a
trusted computing infrastructure is the only viable technology-based solution
for this problem, and therefore our approach is based on a trusted computing
infrastructure. Furthermore, as described in Section 3.1.3, trusted computing
has been suggested as a Privacy-Enhancing Technology and could be applied
to a regular IF system in a rather straightforward way, resulting in system
realizing Privacy-Preserving Information Filtering via the trusted software
approach. In this section, we discuss the drawbacks of approaches based on
trusted software, and show that our approach based on a trusted environ-
ment, while somewhat more complex, is in fact more suitable with regard to
the requirements for Privacy-Preserving Information Filtering.

10.2.1 Broadness

The main problem of a solution for PPIF based on trusted software is its
lack of broadness: a software is trusted by a user in the context of trusted
computing when the user is able to verify, via examination, that the software
works as specified, and when the user is able to verify, via remote attestation,
that the instance of the software deployed by the provider actually matches
the examined software and is actually running within a trusted computing
infrastructure. Both aspects are problematic because they have to be carried
out for each single version of each single system in which the user participates.
Typically, the user himself does not have the knowledge or the resources to
examine software, and thus has to rely on third parties for this task. In
any case, the examination has to be carried out whenever some part of the
respective software, including the filtering algorithms in the context of IF, is
patched, upgraded or replaced.

In contrast, in a solution based on a trusted environment, only a com-
paratively small part of the overall system has to be examined and attested.
Other parts of the system, such as filtering algorithms or the protocols used in
the interactions, may be changed without changing the trusted environment
itself.

10.2.2 Provider Acceptance

Furthermore, a solution based on a trusted environment may be more ac-
ceptable for providers basically because the trusted environment could be
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used for various other tasks and applications involving mobile agents: As
discussed in Section 11.2, it could actually be used to realize applications
from most areas of related work. Furthermore, as all applications based on
mobile agents ultimately require a trusted environment, it seems to be realis-
tic to assume that there is a greater chance that such a trusted environment
is actually realized, as compared to the chance that trusted software for a
large number of very specific tasks is actually realized.

10.3 Usage Guidelines

In this section, we evaluate the main use cases of our approach including par-
tial use cases with regard to applicability. While the provided functionality
may be combined arbitrarily, not all combinations are equally viable espe-
cially with regard to performance, nor are they all equally useful. Therefore,
in a real-world system based on our approach, we do not expect all combina-
tions to be available. In any case, even privacy-aware users are probably not
interested in having to decide whether the received result data should be e.g.
semi-linkable or semi-private. We give the following usage guidelines, based
on typical scenarios in Recommender Systems and Matchmaker Systems:

� Recommender System; use case “get recommendations” based on the
complete provider profile: This use case is generally not that time-
critical with regard to performance, because it addresses a long-term
information need of a user and is based on relatively static profiles (in
the sense that profile updates are expected to take place in intervals
that are much longer (e.g. several hours) than the time required to carry
out a filtering process (e.g. a few seconds). Subsequently, the use case is
not based on immediate user input and can be realized without human
user interaction. At the same time, the result data generated in this use
case would allow honest-but-curious participants to deduce information
about the user profile to a larger extent than in the context of other
use cases, and therefore the result data is highly privacy-critical. We
therefore suggest to use the protocol for semi-private or completely
private result data in this case, and propagate a partial provider profile
based on unlinkable queries.

� Recommender System; use case “get recommendations” based on a
constrained provider profile that represents the result of a query in the
mixed IR/IF scenario: This use case is more time-critical because the
query based on which the constrained profile is determined is expected
to have been created via interaction with a human user waiting for
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results. At the same time, the result data may not be as privacy-critical
as in the scenario described above, basically because it may reflect the
user profile to a lesser degree, depending on the query and the number of
results obtained. If, for example, the constrained profile only contains
items that would never have been suggested as recommendations if the
complete profile had been used, the result data may not allow other
entities to correctly deduce information about the user profile. We
therefore suggest to use the protocol for completely linkable or semi-
linkable result data in this case, and propagate the entire constrained
provider profile.

� Matchmaker System; use case “get similar users”: This use case again
addresses a long-term information need of a user that is based on rel-
atively static profiles, and is therefore not considered as time-critical
with regard to performance. Furthermore, it is also not highly privacy-
critical, again because the result data may not reflect the respective user
profiles closely. Users may also trust other users to a larger degree than
provider, i.e. other users are usually expected to act non-maliciously.
We therefore suggest to use the protocol for completely linkable or
semi-linkable result data in this case, and propagate the entire supplier
profile.

All other combinations of use cases occur less often in real-world IF sys-
tems and are therefore omitted here.

10.4 Summary

This chapter evaluates our approach for Privacy-Preserving Information Fil-
tering. We discuss the coverage of the non-functional and functional require-
ments by our approach and by the implemented application (Section 10.1),
and show that all requirements are addressed adequately. We compare our
approach with approaches based on trusted software (Section 10.2), and show
that approaches based on a trusted environment meet the requirements to
a higher degree. Finally, we evaluate the applicability of the functionality
provided by our approach (Section 10.3) and provide usage guidelines for
applications based on our approach. The following chapter concludes this
work and outlines future directions of research.
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Chapter 11

Conclusion & Outlook

This work describes an agent-based approach for Privacy-Preserving Infor-
mation Filtering. This approach utilizes mechanisms that allow entities to
control the communication capabilities of other entities, combined with an
infrastructure for anonymous communication and data encryption. Based
on these building blocks, a trusted environment providing functionality for
the various stages of Information Filtering is realized. We describe how this
functionality may be used for obtaining multilateral privacy in the context
of Information Filtering, i.e. privacy of all participating entities. The ap-
proach provides functionality for privacy-preserving Recommender Systems,
distributed Matchmaker Systems, and combinations thereof. It utilizes fun-
damental features of agents such as autonomy, adaptability and the abil-
ity to communicate, which make agents uniquely suitable for representing
the entities participating in Privacy-Preserving Information Filtering. As
a proof of concept, an in order to be able to evaluate the approach practi-
cally, especially with regard to performance, we have implemented the Smart
Event Assistant as a prototypical application supporting users in planning
entertainment-related activities in a privacy-preserving manner.

This chapter concludes the work by discussing the applicability of the ap-
proach in large-scale real-world applications (Section 11.1) and by discussing
directions for further research and development (Section 11.2).

11.1 Applicability

If our approach is to be successfully applied in a large scale real-world Rec-
ommender System or Matchmaker System, the following aspects have to be
addressed:

� An industrial-strength MAS technology is required as a robust foun-
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dation for the implemented functionality. Application providers are
only expected to accept the use of MAS technology in the context of a
commercial application if it achieves a level of maturity with regard to
stability, required maintenance effort, support and ease of development
that is comparable to other technologies. Because most current MAS
technologies have been developed within a research context, they have
not been widely used in commercial applications yet.

� Feedback obtained from users of the Smart Event Assistant indicates
that most users are indifferent to privacy in the context of entertain-
ment-related personal information. Therefore, in order to achieve a
high degree of user acceptance especially in view of expected minor
performance trade-offs, the application should probably focus on infor-
mation of a more privacy-critical domain, such as healthcare-related or
financial information.

� Finally, in order to further increase user acceptance, the personal agent
containing and controlling the private user data should be physically as-
sociated with the respective user: Rather than operating on a platform
running on a server supplied by the application provider, the personal
agent should operate on a platform running on a device owned by the
user, even though the former approach is also feasible if the agent op-
erates within a trusted environment at all times. The latter approach
is probably realized best by utilizing mobile devices, because a mobile
device is available to the respective user in more situations than e.g. his
PC. This approach requires the respective MAS technology to be de-
ployed on a number of different mobile devices with different operating
systems, which is not possible with current MAS technologies.

To summarize, we consider the degree of maturity of current MAS tech-
nologies to be the biggest obstacle with regard to a successful real-world
application based on our approach.

11.2 Future Work

We envision two main areas of future work, namely the further implementa-
tion of our approach and possible generalizations of our approach addressing
related problems:

� As noted in Section 10.1, not all functionality described in this work
has actually been implemented. While the functionality that has been
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implemented is sufficient as proof of concept, in a complete framework
for Privacy-Preserving Information Filtering based on our approach
the trusted environment has to be realized via mechanisms for trusted
computing, which remains future work. Matchmaker System function-
ality and an infrastructure for anonymous communication has to be
implemented as well. Finally, in our implementation we have mainly
focused on enabling agents to carry out the protocols as specified. In
the optimal case, however, agents should additionally be able to actu-
ally analyze the data obtained via the interactions in order to detect
possible threats originating from malicious participants.

� Our approach of realizing multilateral privacy via communication con-
trol in a trusted environment could be applied to other problems related
to PPIF as well. As discussed in Chapter 3, Secure Multi-Party Com-
putation protocols have been suggested for a number of tasks in various
Privacy-Enhancing Technologies and Privacy-Preserving Technologies.
in these cases, the respective computation could be carried out by a
controlled agent within a trusted environment, which is feasible with
regard to communication complexity unless the number of parties is
large.

We consider the latter area to be especially relevant, because the respec-
tive solutions would further highlight the broad applicability of our approach,
as opposed to approaches based on trusted software.
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Appendix A

Specification of Ontologies,
Roles and Interactions

This appendix provides tables and diagrams containing the formal specifica-
tion of the components of our approach for Privacy-Preserving Information
Filtering.

A.1 Basic Infrastructure

This section contains specification related to the Infrastructure Module de-
scribed in Chapter 5.

A.1.1 Ontologies

Figure A.1 shows the categories of the ontology “Communication Rules”.
Figure A.2 shows the categories of the ontology “Anonymity”.

A.1.2 Interactions

The basic interactions of the roles participating in communication control are
specified in the following tables: Table A.1 describes the interaction Restrict-
Communication. Table A.2 describes the interaction CheckRule. Table A.3
describes the interaction ActivateRule. Table A.4 describes the interaction
AcquireConsent.

Usually the analysis phase and thus the specification of interactions ab-
stracts from agents and platform configurations. However, in this case it is
necessary to refer to these concepts because of the reflective nature of the
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Figure A.1: The categories of the ontology “Communication
Rules”.

Figure A.2: The categories of the ontology “Anonymity”.
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interactions. Therefore, the terms “local” and “remote” refer to platform
configurations with regard to agents realizing the respective roles.

Table A.1: The interaction RestrictCommunication.
Initiator: AgentRole
Partner: SupervisorRole (local)
Input: Platforms to be controlled
Output: Status information
Description: Interaction for restricting communication. As

a result, the given platforms are controlled as
far as possible.

Table A.2: The interaction CheckRule.
Initiator: SupervisorRole
Partner: SupervisorRole (remote)
Input: Rule to be activated
Output: Status Information (indicating whether all

agents have consented), further platforms to
be controlled

Description: Interaction for checking whether a rule may
be activated.

Table A.3: The interaction ActivateRule.
Initiator: SupervisorRole
Partner: SupervisorRole (remote)
Input: Rule to be activated
Output: Status information
Description: Interaction for activating a rule.

Table A.4: The interaction AcquireConsent.
Initiator: SupervisorRole
Partner: ControllableAgentRole (local)
Input: Rule to be activated
Output: Consent or rejection
Description: Interaction for acquiring consent to controlling

the respective agent.

Interactions for revoking control are specified in the following tables: Ta-
ble A.5 describes the interaction RevokeControl. Table A.6 describes the
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interaction RevokeRule. An additional interaction for cascading control is
specified in Table A.7, which describes the interaction InformAboutCascad-
ingControl.

Table A.5: The interaction RevokeControl.
Initiator: AgentRole
Partner: SupervisorRole (local)
Input: Platforms that are no longer to be controlled
Output: Status information
Description: Interaction for revoking control. As a result,

the effective control of platforms is revoked as
far as possible

Table A.6: The interaction RevokeRule.
Initiator: SupervisorRole
Partner: SupervisorRole (remote)
Input: Rule to be revoked
Output: Status information
Description: Interaction for revoking a rule. As a result,

the rule is revoked if possible.

Table A.7: The interaction InformAboutCascadingControl.
Initiator: SupervisorRole
Partner: ControllableAgentRole (local)
Input: Rule to be activated
Output: Status information
Description: Interaction for notifying an agent on a con-

trolled platform with regard to cascading con-
trol.

Interactions related to additional management functionality are speci-
fied in the following tables: Table A.8 describes the interaction RevokeCon-
trolAndTerminate. Table A.9 describes the interaction RevokeRuleAndTermi-
nate. Table A.10 describes the interaction InformAboutTermination. Table
A.11 describes the interaction RequestControl.

An interaction related to anonymous communication is specified in Table
A.12, which describes the interaction SetupAnonymizer.
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Table A.8: The interaction RevokeControlAndTerminate.
Initiator: AgentRole
Partner: SupervisorRole (local)
Input: Platforms that are no longer to to be con-

trolled
Output: Status information
Description: Interaction for revoking control and terminat-

ing the respective platforms. As a result, the
effective control of the platforms is revoked as
far as possible, and agents on the platforms
are terminated as far as possible.

Table A.9: The interaction RevokeRuleAndTerminate.
Initiator: SupervisorRole
Partner: SupervisorRole (remote)
Input: Rule to be revoked
Output: Status information
Description: Interaction for revoking a rule and terminat-

ing the respective platform. As a result, the
rule is revoked if possible, and the platform is
terminated or marked for termination.

Table A.10: The interaction InformAboutTermination.
Initiator: SupervisorRole
Partner: SupervisorRole (remote)
Input: Terminated platform
Output: Status information
Description: Interaction for informing about the termina-

tion of a platform. As a result, the respective
foreign rules are updated by removing rules
regarding the terminated platform.

Table A.11: The interaction RequestControl.
Initiator: AgentRole (local)
Partner: AgentRole (remote)
Input: Request for control of a platform
Output: Status information
Description: Interaction for requesting control of a plat-

form. An agent may request control in order
to be able to proceed with a specific protocol.
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Table A.12: The interaction SetupAnonymizer.
Initiator: AgentRole
Partner: AnonymizerRole
Input: Information required for establishing sender

and/or receiver anonymity
Output: Status information
Description: Interaction for setting up an anonymizer. As a

result, the anonymizer is ready for anonymiz-
ing communication.

A.1.3 Role Model

Table A.14 describes the role schema for the SupervisorRole. Table A.15
describes the role schema for the ControllableAgentRole. Table A.13
describes the role schema for the AnonymizerRole.

Table A.13: The role schema for the AnonymizerRole.
Description: Provides functionality for enabling anonymous com-

munication
Protocols: SetupAnonymizerR,P

Activities: SetupAnonymizerInternally
Lifeness: ar1

ar1 = (SetupAnonymizerR.SetupAnonymizerInternally.SetupAnonymizerP )ω
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Table A.14: The role schema for the SupervisorRole.
Description: Provides functionality for controlling the communica-

tion capabilities of agents
Protocols: RestrictCommunicationR,P , CheckRuleR,P,I , Acti-

vateRuleR,P,I , AcquireConsentI , RevokeControlR,P ,
RevokeRuleR,P,I , TerminateAgentsI , RevokeCon-
trolAndTerminateR,P , RevokeRuleAndTerminateR,P,I ,
InformAboutTerminationR,P,I

Activities: CheckRules, AddActivatedRule,
DetermineEffectiveRule, CheckForeignRules,
RemoveForeignRules, RemoveActivatedRule

Lifeness: cr1, cr2, cr3, cr4, cr5, cr6, cr7, cr8

cr1 = (RestrictCommunicationR.CheckRules.CheckRuleI*.
ActivateRuleI*.RestrictCommunicationP )ω

cr2 = (CheckRuleR.(AcquireConsentI* ‖
InformAboutCascadingControlI*).CheckRuleP )ω

cr3 = (ActivateRuleR.AddActivatedRule.DetermineEffectiveRule.
ActivateRuleP )ω

cr4 = (RevokeControlR.CheckForeignRules.RevokeRuleI*.
RemoveForeignRules*.RevokeControlP )ω

cr5 = (RevokeRuleR.RemoveActivatedRule.DetermineEffectiveRule.
TerminateAgentsI*.RevokeRuleP )ω

cr6 = (RevokeControlAndTerminateR.CheckForeignRules.
RevokeRuleAndTerminateI*.RemoveForeignRules*.
RevokeControlAndTerminateP )ω

cr7 = (RevokeRuleAndTerminateR.RemoveActivatedRule.
DetermineEffectiveRule.(TerminateAgentsI‖
InformAboutTerminationI*).RevokeRuleAndTerminateP )ω

cr8 = (InformAboutTerminationR.RemoveActivatedRule.
DetermineEffectiveRule.(TerminateAgentsI‖
InformAboutTerminationI*).InformAboutTerminationP )ω

Table A.15: The role schema for the ControllableAgent-
Role.

Description: Provides functionality for agents on controllable plat-
forms

Protocols: AcquireConsentR,P

Activities: CheckConsent
Lifeness: car1

car1 = (AcquireConsentR.CheckConsentI*.AcquireConsentP )ω
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A.2 Transparent Persistence

This section contains specification related to the TPMAS Module described
in Chapter 5.

A.2.1 Ontologies

Figure A.3 shows the categories of the ontology “Transparent Persistence”.
Figure A.4 shows the categories of the ontology “Query Construct”.

Figure A.3: Diagram for the categories of the ontology “Trans-
parent Persistence”.

A.2.2 Interactions

The interactions of the roles participating in the TPMASModule are spec-
ified in the following tables: Table A.16 describes the interaction Create-
Context. Table A.17 describes the interaction TerminateContext. Table A.18
describes the interaction ModifyObjects. Table A.19 describes the interaction
RetrieveObjects.

A.2.3 Role Model

Table A.20 describes the role schema for the TPMASProviderRole.
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Figure A.4: Diagram for the categories of the ontology “Query
Construct”.
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Table A.16: The interaction CreateContext.
Initiator: AgentRole
Partner: TPMASProviderRole
Input: Identifier of the context to be created
Output: Context object including information for au-

thorization (if the context could be created),
status information

Description: Interaction for creating a context. As a result,
the context is created (if possible).

Table A.17: The interaction TerminateContext.
Initiator: AgentRole
Partner: TPMASProviderRole
Input: Identifier of the context to be terminated,

password for full access
Output: Status information
Description: Interaction for terminating a context. As a

result, the context is terminated (if possible).

Table A.18: The interaction ModifyObjects.
Initiator: AgentRole
Partner: TPMASProviderRole
Input: Identifier of the context to be accessed, pass-

word for read/write access, operation to be
carried out (store objects, update objects, or
remove objects), list of objects

Output: Status information
Description: Interaction for accessing a context. As a re-

sult, the given operation is carried out (if pos-
sible).

Table A.19: The interaction RetrieveObjects.
Initiator: AgentRole
Partner: TPMASProviderRole
Input: Identifier of the context to be accessed, pass-

word for read-only access, query construct
Output: Status information
Description: Interaction for retrieving objects from a con-

text. As a result, the given query is executed
(if possible).
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Table A.20: The role schema for the TPMASProviderRole.
Description: Provides functionality for transparent persistence in

MAS architectures
Protocols: CreateContextR,P , TerminateContextR,P , ModifyOb-

jectsR,P , RetrieveObjectsR,P

Activities: CreateContext, TerminateContext, ModifyObjects,
RetrieveObjects

Lifeness: tpmas1, tpmas2, tpmas3, tpmas4

tpmas1 = (CreateContextR.CreateContext.CreateContextP )ω

tpmas2 = (TerminateContextR.TerminateContext.
TerminateContextP )ω

tpmas3 = (ModifyObjectsR.ModifyObjects.ModifyObjectsP )ω

tpmas4 = (RetrieveObjectsR.RetrieveObjects.RetrieveObjectsP )ω
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A.3 The Recommender Module

This section contains specification related to the Recommender Module de-
scribed in Chapter 7.

A.3.1 Ontologies

Figure A.5 shows the categories of the ontology “Information Filtering”.

A.3.2 Interactions

The interactions of the Information Collection stage are specified in the fol-
lowing tables: Table A.21 describes the interaction UpdateProfile. Table A.22
describes the interaction QueryProfile.

Table A.21: The interaction UpdateProfile.
Initiator: InterfaceRole
Partner: ProfileManagerRole
Input: A list of elements, the identifier of the profile,

the operation to be carried out (store objects,
update objects, remove objects).

Output: Status information.
Description: Interaction for updating a profile. As a re-

sult, the profile managed by the ProfileM-
anagerRole is created or updated using the
given elements.

Table A.22: The interaction QueryProfile.
Initiator: InterfaceRole, TFERole
Partner: ProfileManagerRole
Input: A query to be applied, the identifier of the

profile.
Output: Elements matching the query (if there are

any).
Description: Interaction for querying a profile.

The interactions of the Information Processing stage are specified in the
following tables: Table A.23 describes the interaction ObtainTFE. Table A.24
describes the interaction SetUpdatePolicy. Table A.25 describes the interac-
tion UpdateProfileModel. Table A.26 describes the interaction QueryProfile-
Model. Table A.27 describes the interaction ModifyProfileModel.
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Figure A.5: Diagram for the categories of the ontology “Infor-
mation Filtering”.
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Table A.23: The interaction ObtainTFE.
Initiator: ProfileManagerRole, RelayRole
Partner: TFEFactoryRole
Input: The name of a filtering technique, the target

platform. Optionally, key sharing data.
Output: Status information.
Description: Interaction for obtaining a TFE. As a result,

a TFE agent capable of carrying out the given
filtering technique is created on the given plat-
form, if possible.

Table A.24: The interaction SetUpdatePolicy.
Initiator: InterfaceRole
Partner: ProfileManagerRole
Input: A group of filtering techniques, an update pol-

icy specifying whether to update the profile
model periodically, immediately whenever the
profile itself changes, or not at all (because the
filtering technique is not applied any more).

Output: Status information.
Description: Interaction for implementing update policy,

which is done as the result.

Table A.25: The interaction UpdateProfileModel.
Initiator: TFERole
Partner: ProfileManagerRole
Input: A list of elements, the identifier of the profile

model, the operation to be carried out (store
objects, update objects, remove objects).

Output: Status information.
Description: Interaction for updating a profile model. As a

result, the profile model managed by the role
is created or updated using the given elements.
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Table A.26: The interaction QueryProfileModel.
Initiator: TFERole, RelayRole
Partner: ProfileManagerRole, RelayRole
Input: A query to be applied, the identifier of the

profile model.Alternatively, request for a key
to decrypt previously received query results

Output: Elements matching the query (if there are
any). The elements may be encrypted. Al-
ternatively, requested decryption key.

Description: Interaction for querying a profile model.

Table A.27: The interaction ModifyProfileModel.
Initiator: ProfileManagerRole
Partner: TFERole
Input: A list of elements, the identifier of the profile

model, the operation to be carried out (store
objects, update objects, remove objects).

Output: Status information.
Description: Interaction for modifying a profile model. As a

result, the profile model is created or updated
using the given elements.

The interactions of the Information Processing stage are specified in the
following tables: Table A.28 describes the interaction GetResultsInternally.
Table A.29 describes the interaction GetResults. Table A.30 describes the
interaction GetResultsAsSupplier. Table A.31 describes the interaction Ge-
tResultsAsUser. Table A.32 describes the interaction ExchangeResults. Table
A.33 describes the interaction ObtainRelay. Table A.34 describes the inter-
action ShareKeys.

A.3.3 Role Model

Table A.35 describes the role schema for the InterfaceRole. Table A.36
describes the role schema for the ProfileManagerRole. Table A.37 de-
scribes the role schema for the TFEFactoryRole. Table A.38 describes
the role schema for the TFERole.
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Table A.28: The interaction GetResultsInternally.
Initiator: InterfaceRoleUser

Partner: ProfileManagerRoleUser

Input: The name of the filtering technique,
the address of the agent realizing the
ProfileManagerRoleSupplier, (optionally)
an item.

Output: A list of recommendations or a prediction for
the given item, status information.

Description: Interaction for obtaining personalized infor-
mation.

Table A.29: The interaction GetResults.
Initiator: ProfileManagerRoleUser

Partner: ProfileManagerRoleSupplier,
RelayRoleSupplier

Input: The name of the filtering technique, (option-
ally) an item.

Output: A list of recommendations or a prediction for
the given item, status information

Description: Interaction for obtaining personalized infor-
mation.

Table A.30: The interaction GetResultsAsSupplier.
Initiator: ProfileManagerRoleSupplier,

RelayRoleSupplier

Partner: RelayRoleUser

Input: The name of the filtering technique, (option-
ally) an item.

Output: A list of recommendations or a prediction for
the given item, status information.

Description: Interaction for obtaining personalized infor-
mation.
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Table A.31: The interaction GetResultsAsUser.
Initiator: RelayRoleUser

Partner: TFERole
Input: The name of the filtering technique, (option-

ally) an item.
Output: A list of recommendations or a prediction for

the given item, status information.
Description: Interaction for obtaining personalized infor-

mation.

Table A.32: The interaction ExchangeResults.
Initiator: ProfileManagerRoleUser

Partner: ProfileManagerRoleSupplier

Input: A list of recommendations or a prediction for
a given item.

Output: Status information.
Description: Interaction for exchanging personalized infor-

mation.

Table A.33: The interaction ObtainRelay.
Initiator: ProfileManagerRoleUser,

ProfileManagerRoleSupplier

Partner: ProfileManagerRoleSupplier,
ProfileManagerRoleUser

Input: The target platform.
Output: Status information.
Description: Interaction for obtaining a relay. As a result,

an agent implementing the respective Relay-
Role is created on the given platform, if pos-
sible.
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Table A.34: The interaction ShareKeys.
Initiator: ProfileManagerRoleUser,

ProfileManagerRoleSupplier, TFE-
FactoryRole

Partner: ProfileManagerRoleSupplier,
RelayRoleUser, RelayRoleSupplier, TFE-
Role

Input: Keys to be shared.
Output: Status information.
Description: Interaction for sharing keys to be used in en-

cryption schemes.

Table A.35: The role schema for the InterfaceRole.
Description: Provides functionality for user interaction (via a GUI

or an API).
Protocols: SetUpdatePolicyI , UpdateProfileI , GetResultsInternallyI

Activities: ReceiveCommand
Lifeness: i1
i1 = ( ReceiveCommand.(UpdateProfileI ‖ SetUpdatePolicyI ‖ GetRe-
sultsInternallyI))ω
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Table A.36: The role schema for the ProfileManagerRole.
Description: Provides functionality for accessing and modifying

profiles and profile models.
Protocols: UpdateProfileR,P , SetUpdatePolicyR,P , QueryProfile-

ModelR,P , UpdateProfileModelR,P , GetResultsInter-
nallyR,P , GetResultsR,P,I , ExchangeResultsR,P,I , Obtain-
RelayR,P,I , ShareKeysR,P,I , CreateContextI , ModifyOb-
jectsI , ObtainTFEI , RetrieveObjectsI , ModifyProfile-
ModelI , GetResultsAsSupplierI , CreateAgentI , Restrict-
CommunicationI , RevokeControlAndTerminateI

Activities: CheckProfileInformation, UpdateProfileInformation,
SetUpdatePolicy, CheckUpdatePolicy, UpdateStatistics,
StoreKeys

Lifeness: pmr1, pmr2, pmr3, pmr4, pmr5, pmr6, pmr7, pmr8,
pmr9, pmr10

pmr1 = ( UpdateProfileR.CheckProfileInformation.CreateContextI*.
UpdateProfileInformation*.ModifyObjectsI .pmr3.UpdateProfileP )ω

pmr2 = ( CheckUpdatePolicy.ObtainTFEI .*RetrieveObjectsI*.
ModifyProfileModelI*.RevokeControlAndTerminateI*)
pmr3 = ( QueryProfileModelR.CheckProfileInformation.
RestrictCommunicationI*.RetrieveObjectsI*.QueryProfileModelP )ω

pmr4 = ( UpdateProfileModelR.CheckProfileInformation.
ModifyObjectsI*.UpdateProfileModelP )ω

pmr5 = ( SetUpdatePolicyR.SetUpdatePolicy.SetUpdatePolicyP )ω

pmr6 = ( GetResultsInternallyR.ObtainRelayI*.
GetResultsI .RevokeControlAndTerminateI*.ExchangeResultsI*.
GetResultsInternallyP )ω

pmr7 = ( GetResultsR.ObtainRelayI .ObtainTFEI .*
GetResultsAsSupplierI .RevokeControlAndTerminateI .UpdateStatistics.
GetResultsP )ω

pmr8 = ( ExchangeResultsR.UpdateStatistics.ExchangeResultsP )ω

pmr9 = ( ObtainRelayR.CreateAgentI .ShareKeysI .ObtainRelayP )ω

pmr10 = ( ShareKeysR.StoreKeys.ShareKeysP )ω
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Table A.37: The role schema for the TFEFactoryRole.
Description: Provides agents realizing the TFERole
Protocols: ObtainTFER,P , CreateAgentI , ShareKeysI

Activities:
Lifeness: tfef1

tfef1 = ( ObtainTFER.CreateAgentI .ShareKeysI .ShareKeysI .
ObtainTFEP )ω

Table A.38: The role schema for the TFERole.
Description: Provides a filtering algorithm to be applied in the In-

formation Processing stage and the Information Fil-
tering stage.

Protocols: ModifyProfileModelR,P , GetResultsAsUserR,P ,
ShareKeysR,P , QueryProfileModelI , UpdateProfile-
ModelI

Activities: StoreKeys
Lifeness: tfe1, tfe2, tfe3

tfe1 = ( ModifyProfileModelR.QueryProfileModelI .
UpdateProfileModelI .ModifyProfileModelP )ω

tfe2 = ( GetResultsAsUserR.QueryProfileModelI .QueryProfileModelI .
GetResultsAsUserP )ω

tfe3 = ( ShareKeysR.StoreKeys.ShareKeysP )ω

Table A.39: The role schema for the RelayRole.
Description: Relays interactions during the Information Filtering

stage.
Protocols: GetResultsR,P , GetResultsAsSupplierR,P,I , QueryPro-

fileModelR,P , ShareKeysR,P , GetResultsAsUserI ,
ObtainTFEI , RestrictCommunicationI , RevokeCon-
trolAndTerminateI

Activities: StoreKeys
Lifeness: r1, r2, r3

r1 = ( GetResultsR.ObtainRelayI .ObtainTFEI .GetResultsAsSupplierI .
RevokeControlAndTerminateI .GetResultsP )ω

r2 = ( GetResultsAsSupplierR.GetResultsAsUserI .
RevokeControlAndTerminateI .GetResultsAsSupplierP )ω

r3 = ( QueryProfileModelR.RestrictCommunicationI*.
QueryProfileModelI .QueryProfileModelP )ω

r4 = ( ShareKeysR.StoreKeys.ShareKeysP )ω
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A.4 The Matchmaker Module

A.4.1 Ontologies

Figure A.6 shows the categories of the ontology “Distributed Information
Filtering”.

Figure A.6: Diagram for the categories of the ontology “Dis-
tributed Information Filtering”.

A.4.2 Interactions

The interactions of the Matchmaker Module are specified in Table A.40,
which describes the interaction AnnounceProfileElement.

Table A.40: The interaction “AnnounceProfileElement”.
Initiator: ProfileManagerRoleUser

Partner: CentralizedModelManagerRole
Input: User profile element.
Output: References to other user entities which have

announced the same element.
Description: Interaction for announcing a profile element.
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A.4.3 Role Model

Table A.41 describes the role schema for the CentralizedModelMan-
agerRole.

Table A.41: The role schema for the CentralizedModelMan-
agerRole.

Description: Manages relations of pseudonymized users and profile
elements.

Protocols: AnnounceProfileElementR,P , ModifyProfileModelI ,
Activities: DetermineOtherUsers

Lifeness: cmm1

cmm1 = ( AnnounceProfileElementR.ModifyProfileModelI .
DetermineOtherUsers.AnnounceProfileElementP )ω
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Appendix B

Basic Infrastructure: Examples

This appendix illustrates the interactions for controlling communication spec-
ified in Section 5.2.2.1. We give examples for interactions in the order they
are specified, starting with the four basic interactions of the use case “Re-
strict Communication”, as shown in Figure 5.1. The examples build on each
other, i.e. the global state at the end of one example is the global state at
the start of the next example. Figure B.1 gives an overview of the controlled
platforms after each example.

B.1 Basic Interactions

The agent A1 on platform P1 intends to control the agents on platforms
P2 and P3, neither of which is controlled yet. He uses the interaction Re-
strictCommunication offered by the supervisor S1 on its local platform P1.
The supervisor S1 creates two rules, one for each target platform, and uses
the service CheckRule offered by each supervisor on the respective target
platform. These supervisors in turn ask all agents on the respective target
platforms to consent, via the interaction AcquireConsent. In our example,
all agent actually consent, and subsequently the rules are activated, via the
service ActivateRule, and the effective rules are determined. Service usage is
ended by providing status information, and the supervisor S1 updates itself
by adding the two foreign rules. Finally, all rules are in place as shown in
Table B.1.

In the second example, the agent A1 decides to restrict communication
further and intends to control the platform P2. This effectively leads to agents
on both platforms P2 and P3 being able only to communicate with A1 itself,
as shown in Table B.2. While the supervisor S3 still allows communication
with P2, this is blocked by the supervisor S2 itself.
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Table B.1: Example 1: Restrict Communication (I)
Action: A1 controls P2, P3

Rules of S1:
foreign A1 controls P2, exceptions: P3, A1

A1 controls P3, exceptions: P2, A1

activated -
effective -

Rules of S2:
foreign -
activated A1 controls P2, exceptions: P3, A1

effective block communication with exceptions: P3, A1

block attempts to control with exceptions: P3

Rules of S3:
foreign -
activated A1 controls P3, exceptions: P2, A1

effective block communication with exceptions: P2, A1

block attempts to control with exceptions: P2

Table B.2: Example 2: Restrict Communication (II)
Action: A1 controls P2

Rules of S1:
foreign A1 controls P2, exceptions: P3, A1

A1 controls P3, exceptions: P2, A1

A1 controls P2, exceptions: A1

activated -
effective -

Rules of S2:
foreign -
activated A1 controls P2, exceptions: P3, A1

A1 controls P2, exceptions: A1

effective block communication with exceptions: A1

block all attempts to control

Rules of S3 remain unchanged.
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Table B.3: Example 3: Restrict Communication (III)
Action: A2 controls P3, P5

Rules of S1 remain unchanged.

Rules of S2 remain unchanged.

Rules of S3:
foreign -
activated A1 controls P3, exceptions: P2, A1

A2 controls P3, exceptions: P5, A2 (not evalu-
ated for first part of the effective rule)

effective block communication with exceptions: P2, A1

block all attempts to control

Rules of S4:
foreign A2 controls P3, exceptions: P5, A2

A2 controls P5, exceptions: P3, A2

activated -
effective -

Rules of S5:
foreign -
activated A2 controls P5, exceptions: P3, A2

effective block communication with exceptions: P3, A2

block attempts to control with exceptions: P3

In the third example, the agent A2 on platform P4 intends to control the
platforms P3 and P5. Because P3 is already controlled by a different agent,
the respective rule is not evaluated when determining the effective rule for
this platform. Irrespective of this, the platform P5 is controlled in the usual
way. The outcome of this step is shown in Table B.3.

B.2 Revoking Control

Continuing the overall scenario with a fourth example, the agent A1 intends
to revoke control of the platforms P2 and P3. Its control of the platform P2

alone is not affected by this revocation, because it is specified via a different
rule. The activated rules related to the group of platforms P2 and P3 are
removed, and the effective rules are updated. While the platform P3 is no
longer controlled by A1, it is still controlled by the agent A2, who is now the
first controller and therefore may actually communicate with the platform.
The outcome of this step is shown in Table B.4.
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Table B.4: Example 4: Revoke Control
Action: A1 revokes control of P2, P3

Rules of S1:
foreign A1 controls P2, exceptions: A1

activated -
effective -

Rules of S2:
foreign -
activated A1 controls P2, exceptions: A1

effective block communication with exceptions: A1

block all attempts to control

Rules of S3:
foreign -
activated A2 controls P3, exceptions: P5, A2

effective block communication with exceptions: P5, A2

block attempts to control with exceptions: P5

Rules of S4 remain unchanged.

Rules of S5 remain unchanged.

This example also illustrates why the second part of the effective rule is
used when deciding on an attempt to control a platform: If an agent would
be allowed to control platforms excepted in the first part of the effective rule,
an agent on platform P3 would have been allowed to control platform P2

after the third example, because the activated rule related to the controller
A2 is not evaluated when determining the first part of the effective rule.
This would lead to a conflict when revoking control of the platform A3, as in
this example, because in that case an agent on P3 would control a platform
outside the group of controlled platforms, which is not possible.

B.3 Cascading Control

In the fifth example, A2 on P4 intends to control the platform P1. Because
an agent on P1 controls another platform P2, control is extended to this plat-
form, through cascading control. The outcome of this step is shown in Table
B.5. Note that the resulting rules are the same as in a scenario where the
agent A2 intends to control the platforms P1 and P2 directly, because there
is no need for additional types of roles for cascading control scenarios. Con-
sequently, there is no equivalent to the cascading control scenario when rules
are revoked. If, for example, the agent A1 revokes control of the platform P2,
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the agent A2 still controls the platform, which makes sense because sensitive
information may have been passed between agents on platform P1 (which the
agent A2 originally intended to control) and P2 (which the agent A2 did not
explicitly intend to control).

Table B.5: Example 5: Cascading Control
Action: A2 controls P1, P2

(P2 through cascading control)

Rules of S1:
foreign A1 controls P2, exceptions: A1

activated A2 controls P1, exceptions: P2, A2

effective block communication with exceptions: P2, A2

block attempts to control with exceptions: P2

Rules of S2:
foreign -
activated A1 controls P2, exceptions: A1

A2 controls P2, exceptions: P1, A2 (not evalu-
ated for first part of the effective rule)

effective block communication with exceptions: A1

block all attempts to control

Rules of S3 remain unchanged.

Rules of S4:
foreign A2 controls P3, exceptions: P5, A2

A2 controls P5, exceptions: P3, A2

A2 controls P1, exceptions: P2, A2

A2 controls P2, exceptions: P1, A2

activated -
effective -

Rules of S5 remain unchanged.

B.4 Additional Management Functionality

We conclude with an example illustrating the usage of the additional man-
agement services. As an alternate operation to revoking control in the forth
example, the agent S1 instead decides to revoke control and terminate the
platforms P2 and P3. Because the agent still controls P2 separately, this plat-
form is not terminated immediately, but an activated rule is added stating
that the platform P2 will be terminated as soon as this separate control is
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revoked (even if it is then revoked without explicitly terminating the plat-
form). The platform P3 is controlled by another agent, A2, but the agent A1

is the first controller and therefore the platform is terminated immediately.
The supervisor S4 of the platform P4 (the platform A2 is located on) is noti-
fied and updates its foreign rules accordingly. Additionally, the supervisors
of all platforms appearing in the removed foreign roles (in this case, S5) are
notified as well and update their activated and effective rules accordingly.
The outcome of this step is shown in Table B.6.

Table B.6: Example 4a: Revoke Control and Terminate
Action: A1 revokes control of and terminates P2, P3

Rules of S1:
foreign A1 controls P2, exceptions: A1

activated -
effective -

Rules of S2:
foreign -
activated A1 controls P2, exceptions: A1

A1 has initiated termination of P2 (termina-
tion is carried out as soon as there are no other
activated roles regarding A1)

effective block communication with exceptions: A1

block all attempts to control

Platform supervised by S3 has been terminated.

Rules of S4:
foreign A2 controls P3, exceptions: P5, A2

A2 controls P5, exceptions: P3, A2

A2 controls P1, exceptions: P2, A2

A2 controls P2, exceptions: P1, A2

activated -
effective -

Rules of S5:
foreign -
activated A2 controls P5, exceptions: A2

effective block communication with exceptions: A2

block all attempts to control
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Figure B.1: Controlled platforms after each of the given exam-
ples. Platforms are symbolized by parallelograms and labeled Pn,
agents are labeled An. Control is indicated by an arrow pointing
from the controller to the group of controlled platforms. Commu-
nication across solid lines is blocked (except for communication
with the controller), dotted lines do not block communication in
general, only attempts to control further platforms.
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Appendix C

Exemplary Filtering
Techniques: Examples

This appendix provides a brief example for hierarchical agglomerative clus-
tering via single-link clustering, as described in Section 9.3.3. Given a set of
elements S = {A,B,C,D,E, F,G}, where each element has two attributes
representing its coordinates in a two-dimensional space as shown in the left
part of Figure C.1, the squared distances of the elements are computed as
shown in Table C.1. The similarity of two elements is defined as their dis-
tance. At the beginning of the clustering process, each elements constitutes
a single cluster.

Figure C.1: HAC Example:The positions of the elements and
the resulting tree.

215



Table C.1: HAC Example: The similarity matrix containing the
squared distances of the elements.

A B C D E F G

A - 5 50 61 37 40 89
B 5 - 65 74 34 25 98
C 50 65 - 1 17 50 9
D 61 74 1 - 16 49 4
E 37 34 17 16 - 9 20
F 40 25 50 49 9 - 53
G 89 98 9 4 20 53 -

In each step of the clustering process, the two clusters with the most
similar elements are merged and the similarity matrix is updated, as shown
in Table C.2, Table C.3, Table C.4, Table C.5, and Table C.6.

Because cluster representatives are defined as the most similar items be-
tween two agglomerated clusters, the cluster representative cannot be deter-
mined for clusters that are not yet agglomerated, unless they contain only
a single element. The cluster representative candidates are given in paren-
theses. As an example, in Step 1 the cluster [CD] is created, because the
elements C and D have the smallest distance and are therefore most simi-
lar. The cluster representative of [CD] cannot be determined yet, but, as
indicated in the respective row of Table C.2, it is element C if the cluster is
ultimately agglomerated with a cluster containing A or B, and element D
otherwise.

Table C.2: HAC Example: The similarity matrix after step 1.
C and D are agglomerated into [CD].

A B [CD] E F G

A - 5 50 37 40 89
B 5 - 65 34 25 98

[CD] 50 (C) 65 (C) - 16 (D) 49 (D) 4 (D)
E 37 34 16 - 9 20
F 40 25 49 9 - 53
G 89 98 4 20 53 -

The final Step 6 agglomerates all elements into a single cluster. It has
to be actually carried out in order to determine the cluster representatives
of the final two sub-clusters. Once the tree has been built completely, as
shown in the right part of Figure C.1, new elements may be classified by
traversing the tree via iteratively selecting the cluster whose representative

216



Table C.3: HAC Example: The similarity matrix after step 2.
[CD] and G are agglomerated into [[CD]G].

A B [[CD]G] E F

A - 5 50 37 40
B 5 - 65 34 25

[[CD]G] 50 (C) 65 (C) - 16 (D) 49 (D)
E 37 34 16 - 9
F 40 25 49 9 -

Table C.4: HAC Example: The similarity matrix after step 3.
A and B are agglomerated into [AB].

[AB] [[CD]G] E F

[AB] - 50 (A) 34 (B) 25 (B)
[[CD]G] 50 (C) - 16 (D) 49 (D)

E 34 16 - 9
F 25 49 9 -

Table C.5: HAC Example: The similarity matrix after step 4.
E and F are agglomerated into [EF ].

[AB] [[CD]G] [EF]

[AB] - 50 (A) 25 (B)
[[CD]G] 50 (C) - 16 (D)

[EF] 25 (F) 16 (E) -

Table C.6: HAC Example: The similarity matrix after step 1.
[[CD]G] and [EF ] are agglomerated into [[[CD]G][EF ]].

[AB] [[[CD]G][EF]]

[AB] - 25 (B)
[[[CD]G][EF]] 25 (F) -
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is most similar to the new element. As an example the element H shown in
the left part of Figure C.1 with squared distances as shown in Table C.7 is
classified as follows:

� Choose cluster [[[CD]G][EF ]], because H is more similar to cluster
representative F than to B.

� Choose cluster [EF ], becauseH is more similar to cluster representative
E than to D.

� Choose cluster E, because H is more similar to cluster representative
E than to F .

Table C.7: HAC Example: The similarity vector of the new
element H.

A B C D E F G

H 104 97 34 25 17 32 13

In some cases, an element is misclassified as belonging to a cluster c
although it is actually more similar to an element of a different cluster c′. In
our example, this occurs because H is actually closer to G. In the context of
Recommender System functionality, we expect these errors to be generally
uncritical.

We conclude the example by discussing privacy aspects. If the provider
of the data receives the result E, he does not obtain any additional infor-
mation regarding H by also receiving the clusters containing E because they
constitute information that is known by the provider anyway as long as the
provider is able to access the model. Therefore, E may be obtained without
giving away H, and without having to retrieve all data, by requesting cluster
representatives iteratively and determining similarities independent of the
provider of the data.
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Appendix D

List of Acronyms

Acronoyms marked with an asterisk are used in this work only. All other
acronyms are commonly used.

ACC Agent Communication Channel

ACL Agent Communication Language

AES Advanced Encryption Standard

AOSE Agent-Oriented Software Engineering

AUML Agent Unified Modeling Language

API Application Programming Interface

BIOS Basic Input/Output System

CA Certificate Authority

CRLs Certificate Revocation Lists

CRM Customer Relationship Management

DRM Digital Rights Management

EAL3 Evaluation Assurance Level 3

EJB Enterprise Java Beans

EU European Union

FIPA Foundation for Intelligent Physical Agents
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GUI Graphical User Interface

HMAC keyed-Hash Message Authentication Code

IEEE Institute of Electrical and Electronics Engineers

IF Information Filtering

IR Information Retrieval

JAAS Java Authentication and Authorization

JDBC Java Database Connectivity

JDO Java Data Objects

JDOQL Java Data Objects Query Language

JIAC IV Java Intelligent Agent Componentware, Version IV

JSR Java Specification Request

JVM Java Virtual Machine

KDD Knowledge Discovery in Databases

MAC Message Authentication Code

MAS Multi-Agent System

OECD Organisation for Economic Co-operation and Development

OOSE Object-Oriented Software Engineering

P3P Platform for Privacy Preferences Project

PC Personal Computer

PET Privacy-Enhancing Technology

PETs Privacy-Enhancing Technologies

PIR Private Information Retrieval

PKI public key infrastructure

PPDM Privacy-Preserving Data Mining *

PPIF Privacy-Preserving Information Filtering *
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PPTs Privacy-Preserving Technologies *

RAIC Redundant Array of Independent Components

RBAC Role-Based Access Control

RDBMS Relational Database Management System

RFID Radio Frequency Identification

SCL Service Control List

SOA Service-Oriented Architecture

SPIR Symmetrically-Private Information Retrieval

SMF1 Secure Message Forwarding Protocol 1 *

SMF2 Secure Message Forwarding Protocol 2 *

SMPC Secure Multi-Party Computation

SMS Short Message Service

SQL Structured Query Language

SSL Secure Sockets Layer

SVD Singular Value Decomposition

TCP/IP Transmission Control Protocol/Internet Protocol

TFE Temporary Filter Entity *

TPMAS Transparent Persistence in Multi-Agent Systems *

XML Extensible Markup Language
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