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Abstract

In this dissertation we present interfaces and algorithms for the creation, modifi-
cation and optimization of surface meshes. After a short introduction, motivation,
and list of contributions, we describe the current state of the art in mesh creation
and modeling, and also give an overview of the mathematical tools that are used
throughout this dissertation.

For the simple creation of surface meshes, we present an interface for designing
freeform surfaces with a collection of 3D curves. The user first creates a rough
3D model by using a sketching interface. Unlike previous sketching systems, the
user-drawn strokes stay on the model surface and serve as handles for controlling
the geometry. The user can add, remove, and deform these control curves easily,
as if working with a 2D line drawing. The curves can have arbitrary topology;
they need not be connected to each other. For a given set of curves, the sys-
tem automatically constructs a smooth surface embedding by applying functional
optimization. Our system provides real-time algorithms for both control curve de-
formation and the subsequent surface optimization. We show that one can create
sophisticated models using this system that have not yet been seen in previous
sketching or functional optimization systems.

Thereafter, we present methods for the intuitive editing of surface meshes by
means of view-dependent sketching. In most existing shape deformation work,
editing is carried out by selecting and moving a handle, usually a set of vertices.
Our system lets the user easily determine the handle, either by silhouette selec-
tion and cropping, or by sketching directly onto the surface. An edit is carried
out by sketching a new, view-dependent handle position or by indirectly influenc-
ing differential properties along the sketch. Combined, these editing and handle
metaphors greatly ease otherwise complex shape modeling tasks.

To further simplify the editing process, we introduce an over-sketching interface
for surface mesh editing that automates the processes of determining both the
deformation handle, as well as the region to be deformed. The user sketches a
stroke that is the suggested position of part of a silhouette of the displayed surface.
The system then segments all image-space silhouettes of the projected surface,
identifies among all silhouette segments the best matching part, derives vertices in
the surface mesh corresponding to the silhouette part, selects a sub-region of the
mesh to be modified, and feeds appropriately modified vertex positions together
with the sub-mesh into a mesh deformation tool. The overall algorithm has been
designed to enable interactive modification of the surface — yielding a surface
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editing system that comes close to the experience of over-sketching 2D drawings
on paper.

Surface meshes created and edited with our tools — as well as scanned, con-
toured or simplified models — may contain triangles with bad aspect ratios and/or
significant noise. To improve this, we introduce a framework for triangle shape
optimization and feature preserving smoothing of triangular meshes that is guided
by vertex Laplacians, specifically, the uniformly weighted Laplacian and the dis-
crete mean curvature normal. Vertices are relocated so that they approximate pre-
scribed Laplacians and positions in a weighted least-squares sense; the resulting
linear system leads to an efficient, non-iterative solution. We provide different
weighting schemes and demonstrate the effectiveness of the framework on a num-
ber of detailed and highly irregular meshes; our technique successfully improves
the quality of the triangulation while remaining faithful to the original surface ge-
ometry, and it is also capable of smoothing the surface while preserving geometric
features.

In closing, we discuss our proposed solutions, present open questions related to
this dissertation and shape modeling in general, outline possible improvements,
and propose areas for further research.



Zusammenfassung

Diese Dissertation beschreibt Benutzerschnittstellen und Algorithmen fiir die
Erzeugung, Modifizierung und Optimierung diskreter Flichen. Nach einer kurzen
Einfiihrung, Motivation und Zusammenstellung der neuen Beitrige wird der ak-
tuelle Stand der Technik beziiglich der Erstellung und Modellierung diskreter
Flichen beschrieben, sowie ein Uberblick der verwendeten mathematischen
Werkzeuge gegeben.

Fiir das einfache Erzeugen diskreter Flichen wird eine Benutzerschnittstelle
fiir das Design von Freiformflachen unter Verwendung dreidimensionaler Kur-
ven prasentiert. Der Benutzer erzeugt ein grobes dreidimensionales Modell unter
Zuhilfenahme einer auf Freihand Skizzen basierenden Benutzerschnittstelle. An-
ders als in bisherigen Systemen bleiben die Skizzen und Striche des Benutzers auf
dem Oberflichenmodell bestehen, und dienen als kurvenférmige Griffe (Kontroll-
kurven) mit denen die Geometrie verdndert werden kann. Der Benutzer kann
diese Kontrollkurven sehr einfach hinzufiigen, entfernen und deformieren, als
wiirde man mit einer zweidimensionalen Linienzeichnung arbeiten. Den Kur-
ven kann eine beliebige Topologie zugrunde liegen; Sie miissen nicht verbunden
sein. Fiir eine gegebene Kurvenmenge wird durch die Optimierung eines Flichen-
funktionals automatisch eine interpolierende, glatte Flache konstruiert. Das Sys-
tem ist mit Echtzeit Algorithmen ausgestattet, sowohl fiir die Deformation von
Kontrollkurven als auch fiir die darauffolgende Flichenoptimierung. Es werden
anspruchsvolle Modelle die mit diesem System erstellt wurden prisentiert, welche
mit bisherigen skizzenbasierten Werkzeugen nicht moglich waren.

Daraufhin werden Methoden fiir das intuitive Editieren diskreter Flichen an-
hand von blickpunktsabhiingigen Skizzen vorgestellt. In den meisten existieren-
den Arbeiten zur Modelldeformation wird eine Editieroperation durch Auswahl
und Verschiebung eines Griffs durchgefiihrt. Ein Griff wird dabei i.d.R. als
Knotenmenge des Graphen reprisentiert. Im neuen System kann der Benutzer
diesen Griff entweder durch Auswahl und Zuschnitt einer Silhouette, oder durch
direktes Skizzieren auf die Flache auswéhlen. Editieroperationen werden danach
entweder durch das Skizzieren einer neuen, blickpunktsabhédngigen Griffposition,
oder durch das Variieren differentieller Eigenschaften entlang der Skizze ausge-
fiihrt. In Kombination vereinfachen diese Editier- und Griffmetaphern ansonsten
komplexe Flachenmodifikationen.

Vil
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Um den Prozess des Editierens weiter zu vereinfachen, wird eine skizzen-
basierte Benutzerschnittstelle vorgestellt, die das Auswéhlen von Griff und De-
formationsbereich auf der Modelloberfliche automatisiert. Der Benutzer skizziert
die neue Position eines Teils einer Silhouette in der aktuellen Ansicht. Darauthin
segmentiert das System alle Bildraumsilhouetten, identifiziert unter allen Silhou-
ettensegmenten das Segment, welches der Benutzerskizze am @hnlichsten ist,
leitet daraus die korrespondierenden Knoten der diskreten Fldche ab, wihlt eine
Region der Fliche zur Deformation aus, und stellt diese Informationen fiir ein
Flichendeformationswerkzeug zur Verfiigung. Insgesamt wurde dieser Algorith-
mus entwickelt, um eine interaktive Modifizierung der Fliache zu ermoglichen —
dabei wurde ein Flichendeformationswerkzeug entwickelt, welches dem zweidi-
mensionalen Skizzieren auf Papier sehr nahe kommt.

Sowohl diskrete Flichen die mit den vorgestellten Werkzeugen und Algo-
rithmen erstellt wurden, als auch eingescannte, abgetastete und vereinfachte
Modelle konnen Dreiecke mit schlechtem Seitenverhiltnis oder starkes Rauschen
beinhalten. Zur Verbesserung wird ein Verfahren zur Dreiecksoptimierung und
merkmalserhaltender Glittung vorgestellt, welches von uniform- und Kotangens-
diskretisierten Laplace Vektoren gesteuert wird. Knotenpunkte werden ver-
schoben, so dass sie vorgeschriebene Laplace Vektoren und Positionen im Sinne
der gewichteten kleinsten Fehlerquadrate approximieren. Das daraus resultierende
lineare Gleichungssystem lésst sich effizient 16sen. Es werden verschiedene Ver-
fahren zur Gewichtung bereitgestellt. Um die Effizienz des Verfahrens zu demon-
strieren werden eine Vielzahl von detaillierten und irreguldren Netzen hinsichtlich
Dreiecksform und Rauschen optimiert.

AbschlieBend werden die vorgestellten Losungen diskutiert, offene Fragen hin-
sichtlich dieser Dissertation und Flichenmodellierung im Allgemeinen prisen-
tiert, mogliche Verbesserungen skizziert, und Vorschldge fiir weiterfiihrende
Forschung gemacht.
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Chapter 1

Introduction

The creation and modification of 3D shapes and surfaces using digital computers
is a challenging problem. And while many interesting algorithms and systems
have been developed in the past — many of which are used in production environ-
ments — most people agree that there is generally no single correct solution. To
make this difficult problem even more complex, most interfaces and the associ-
ated algorithms for the creation and modification of 3D models depend heavily on
object representations, modeling metaphors, areas of application, and user skills
— to name only a few dependencies. The growing demand for digital assets in
film and video games, for example 3D characters and props for pre-visualization,
animation and rendering, motivates the evolution of the associated tools for their
creation and modification.

In this dissertation, we argue that existing modeling metaphors, while intuitive
and simple, can be limiting, especially for artistic and less tech-savvy users. We
will show that is indeed possible to leverage such a users creativity, without com-
promising the underlying mathematical rigor, simply by hiding these subtleties
behind easy-to-use interfaces and modeling metaphors.

Some intuitive interfaces for model creation exist, see for example Igarashi et
al.’s seminal work Teddy [IMT99], which has been used in PC software pack-
ages, various Sony Playstation and Nintendo Gamecube games, and served as an
inspiration for the character editor in Maxis upcoming SPORE [Wri06, Max07].
Interestingly, Teddy and other related interfaces and tools for model creation from
scratch oftentimes do not support subsequent editing and manipulation of the cre-
ated surface model.

Many existing professional tools for surface modeling and editing such as
Maya [May07] and 3Ds Max [dMO07], as well as some seminal research on mul-
tiresolution mesh editing [ZSS97] makes use of parametric patches or subdivision
surfaces, while another group of research tools casts the problem of surface editing
as the solution to a partial differential equation (PDE) on the continuously [MS92]
or discretely represented (e.g. triangulated) surface [WW94, KCVS98, BK04a,
Sor06]. The interface generally used is the so-called handle metaphor: the user
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selects (a) the surface region to be edited, also known as the region of interest
or ROI, and (b) a subset of this region, which serves as the deformation handle.
The user can thereafter apply an affine transformation to the handle vertices, and
the resulting surface is defined to minimize certain functions of its differentials.
While this methodology is more intuitive than simply moving single vertices at a
time, and also mathematically elegant, it may lack the freedom many artists have
been become accustomed to from traditional pen and paper design sessions.

Our goal in this dissertation is manifold. We are intrigued by the simplicity of
sketch-based interfaces, are generally in favor of discrete, piecewise smooth sur-
faces resulting from functional optimization, and also want to control the surface
deformation via some kind of handle. As a result, the interfaces and algorithms
presented in this dissertation all share the flexible handle metaphor. Whether the
handle is a model silhouette, a ridge or ravine, or even a user placed sketch, we
treat flexible curves as continuous entities. And this is not limited to model edit-
ing: in our solutions, the typical sketches used in generative systems such as Teddy
remain on the surface after model creation, and can be augmented by more user-
placed curve handles. Furthermore, whether the user prefers freeform sketching
to hint at a desired silhouette deformation, or pulling a vertex of a curve handle
embedded in the surface, our handles are always flexible — they are not limited to
affine transformations.

Interaction is of uttermost importance in a surface creation and modeling tool.
Recent developments on linear variational surface deformation [BSO7] and sparse
linear solvers [Tol0O3] have made possible the interactive editing of surfaces with
tens of thousands of vertices in real-time. We make use of these algorithms, and
augment them where necessary in our setting. In some cases though, linear varia-
tional surfaces are not sufficient, given the small set of curve constraints we wish
to support in our interfaces. Specifically, the resulting surface may concentrate
curvature near the curve constraints, due to the absence of normal constraints.
Note that this is a deliberate design decision: we do not want the user to supply
normals along the curves for reasons of simplicity. Instead, we perform nonlin-
ear surface optimization, which has been popularized in a few recent contribu-
tions [BPG06, HSL"06]. Since nonlinear optimization can potentially slow down
performance below interactive rates, we introduce some approximations to the ex-
act solution, which speed up our algorithm while still generating surfaces that are
visibly piecewise smooth.

Finally, should the surfaces still have badly shaped triangles, or excessive noise
from undesired detail editing, we can leverage our mathematical framework to
globally optimize the mesh, either by reshaping the triangles, smoothing out small
detail, or both. Our mesh optimization algorithm has also been successfully tested
on real world input from range scanners, 3D photography, and meshes with badly
shaped triangles resulting from mesh simplification [GH97].



1.1 Contributions

1.1 Contributions

In this dissertation we present methods for the creation, modification and opti-
mization of surface meshes, based on a unified modeling metaphor — the flexible
handle — and underlying mathematical framework — extended Laplacian surface
editing and general least-squares methods. Our main contributions are:

e An interface that enables the design of 3D models with 3D control
curves. We present an interface for designing freeform surfaces with a
collection of 3D curves. The user first creates a rough 3D model by using
a sketching interface. Unlike previous sketching systems, the user-drawn
strokes stay on the model surface and serve as handles for controlling the
geometry. The curves can have arbitrary connectivity.

o A fair surface definition based on curve constraints. For a given set of
curves, our system automatically constructs a smooth surface embedding
that interpolates the curves by applying functional optimization. To ensure
an interactive, responsive environment, we have developed a real-time non-
linear optimization algorithm to compute piecewise smooth surfaces, repre-
sented as triangle meshes.

e A detail preserving, real-time 3D curve editing and peeling interface.
Our curve deformation algorithm is based on discrete co-rotational methods.
The user can add, remove, and deform control curves easily, as if working
with a 2D line drawing. A deformation is carried out simply by dragging
single curve vertices.

e A sketch-based modeling interface that uses silhouettes and user-
sketches as input. We present methods for the intuitive editing of surface
meshes by means of view-dependent sketching. In most existing shape
deformation work, editing is carried out by selecting and moving a handle,
usually a set of vertices. Our system lets the user easily determine the
handle, either by silhouette selection and cropping, or by sketching directly
onto the surface. An edit is carried out by sketching a new, view-dependent
handle position or indirectly by influencing differential properties along the
sketch.

¢ An automation mechanism for sketch-based deformation. We introduce
an over-sketching interface for surface mesh editing that automates the pro-
cesses of determining both the deformation handle, as well as the region
to be deformed. The user sketches a stroke that is the suggested position
for part of a silhouette of the displayed surface. The system then segments
all image-space silhouettes of the projected surface, identifies among all
silhouette segments the best matching part, derives vertices in the surface
mesh corresponding to the silhouette part, selects a sub-region of the mesh
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to be modified, and feeds appropriately modified vertex positions together
with the sub-mesh into a mesh deformation tool.

e A global mesh optimization framework based on discrete Laplacians
and least-squares methods. We develop a framework for triangle shape
optimization and feature preserving smoothing of triangular meshes which
is guided by vertex Laplacians, specifically, the uniformly weighted Lapla-
cian and the discrete mean curvature normal. Vertices are relocated so that
they approximate prescribed Laplacians and positions in a weighted least-
squares sense; the resulting linear system leads to an efficient, non-iterative
solution.

1.2 Outline

This dissertation is organized as follows:

e Chapter 2 introduces the fundamental concepts and notations. Section 2.1
presents the current state of the art in interactive shape modeling, where
closely related to our own work. We outline the basics of least-squares
methods, including intuitive, simple derivations, in Section 2.2. An intro-
duction to discrete differential geometry (DDG) is given in Section 2.3, and
the chapter concludes with applications of least-squares methods and DDG
to shape modeling, specifically extended Laplacian surface editing, in Sec-
tion 2.4.

e Chapter 3 presents our mesh creation and modification tool FiberMesh.
Section 3.2 describes the small set of operations we have incorporated into
our user interface and their intended use, while Section 3.3 deals with the
algorithmic details of detail-preserving curve deformation and subsequent
real-time, nonlinear surface optimization. The chapter concludes with a
discussion, an informal user study, and results in Sections 3.4 and 3.5.

e Chapter 4 presents our sketch-based interface for detail-preserving feature
editing. Section 4.3 describes the oversketching and editing of object-space
silhouettes by placing positional constraints. The system is extended to the
indirect modeling of ridges, ravines and suggestive contours [DFRS03] by
embedding the user-sketch in the mesh, and subsequently modifying the
discrete differential properties of the surface along this sketch.

e Chapter 5 describes some extensions to Chapter 4. Specifically, we greatly
reduce the required user operations (Section 5.3) by fully automating both
handle and region-of-interest (ROI) selection. Section 5.4 give a detailed
description on image-space silhouette extraction and segmentation, handle
estimation by partial matching, and selection of the mesh sub-region to be
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modified. The resulting vertex sets and modified handle positions are used
in a mesh deformation tool.

e Chapter 6 presents a global mesh optimization framework for triangle
shape optimization and mesh smoothing. The method builds on our lo-
cal mesh optimization, presented in Section 4.4.1, but extends it to entire
meshes. After introducing the general idea in Section 6.4, the various
parameters and weights for global shape-preserving triangle optimization
are described in Section 6.5. Section 6.6 shows how the same underlying
framework can be leveraged to perform feature preserving mesh smoothing.

e Chapter 7 concludes this dissertation with a summary of the presented
work, a discussion of advantages and drawbacks of the proposed methods,
and an outlook on future work.

1.3 Publications and collaborations

The work presented in this dissertation is the result of international collaborations
and projects that have been published as follows:

e The overview of least-squares methods in Section 2.2 was previously pub-
lished in parts as a technical report under the title An As-Short-As-Possible
Introduction to the Least Squares, Weighted Least Squares and Moving
Least Squares Methods for Scattered Data Approximation and Interpola-
tion [Nea04].

e Section 2.4 on Laplacian surface editing and its extensions is taken from
presentations on the topic, inspired by the original publication [SLCO™04].
The presentations were held in various formats at ACM SIGGRAPH 2005
(Los Angeles, USA), the 2005 Summer School on Interactive Shape Mod-
eling (Darmstadt, Germany), the MPI Graphics Seminar September 2006
(Saarbriicken, Germany), and ACM GRAPHITE 2006 (Kuala Lumpur,
Malaysia).

e Our surface creation and modification tool presented in Chapter 3 was pub-
lished and presented as FiberMesh: Designing Freeform Surfaces with 3D
Curves [NISAO7] at ACM SIGGRAPH 2007 in San Diego, USA, in collab-
oration with Takeo Igarashi from The University of Tokyo, Japan, as well
as Olga Sorkine and Marc Alexa from TU Berlin, Germany.

e The feature editing technique presented in Chapter 4 was published and
presented as A Sketch-Based Interface for Detail-Preserving Mesh Edit-
ing [NSACOO05] at ACM SIGGRAPH 2005 in San Diego, USA, in collab-
oration with Olga Sorkine and Daniel Cohen-Or from Tel Aviv University,
Israel, and Marc Alexa from TU Darmstadt, Germany.
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e Automated sketch-based editing as described in Chapter 5 was published
and presented as SilSketch: Automated Sketch-Based Editing of Surface
Meshes [ZNAOQ7] at the Eurographics Workshop on Sketch-Based Interfaces
and Modeling in Riverside, USA, in collaboration with Johannes Zimmer-
mann and Marc Alexa from TU Berlin, Germany.

e The mesh optimization framework presented in Chapter 6 was published
and presented as Laplacian Mesh Optimization [NISA06] at ACM GRAPH-
ITE 2006 in Kuala Lumpur, Malaysia, in collaboration with Takeo Igarashi
from The University of Tokyo, Japan, as well as Olga Sorkine and Marc
Alexa from TU Berlin, Germany.

e The mathematical observations in Appendix A were published as a technical
report under the title A Note on Boundary Constraints for Linear Variational
Surface Design [NSO7], in collaboration with Olga Sorkine from TU Berlin,
Germany.



Chapter 2

Fundamentals

2.1

2.1.1

In this chapter we elaborate on the current state of the art in mesh creation and
editing. Furthermore, we introduce the basics of discrete differential geometry,
Laplacian surface editing, and the associated Least-Squares methods that are rel-
evant for this dissertation.

State of the Art

To provide sufficient context, this section attempts to give an overview of exist-
ing and ongoing work in various fields of interactive shape modeling. Specif-
ically, we describe work on sketch-based modeling and surface-based model-
ing techniques. Note that we only summarize research efforts that are closely
related to our own work. For other shape editing paradigms, such as para-
metric patches [Far90, GH95, SZBNO3], space deformations (also known as
free form deformations) [Bar84, SP86, Coq90, HHK92, MJ96, SF98, BKOS5,
JSW05, SMW06, ACWKO06, vFTS06, JMD*07], physically-based deforma-
tions [TPBF87, GM97, NMK™'06], volume sculpting [Wil90, Nay90, GH91,
WKO95, PFO1, FCG02, Bar02, JBS06], and other related work, we refer to the
original publications, as well as some surveys throughout this dissertation.

Sketch-based modeling

Sketch-based modeling can be traced back to Ivan Sutherland’s pioneering
work Sketchpad [Sut63]. While Sketchpad was mainly targeted at engineering
drawings, such as electrical circuit diagrams, trusses and bridges, it was also used
for artistic drawings in 2D. Specifically, the user could sketch (or trace) freeform
shapes, and explore variants by modifying and editing the sketches (see Figs. 9.9
and 9.10 in [Sut63]). More recently, this general principle was popularized in
the Computer Graphics community in the SKETCH paper [ZHH96]. SKETCH
presents the first interface, with which it is possible to create, place, edit, group,
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Figure 2.1: some gestures (left) and two scenes created with SKETCH [ZHH96].

and copy 3D geometry using simple scribbles and gestures (Figure 2.1). Most of
the scenes are inherently rectilinear, but SKETCH already incorporates the pos-
sibility to model surfaces of revolution, extrusions, and curved cylinders. On the
downside, its gesture-based nature makes it difficult to extend the interface further,
which is why the authors regard it as a proof-of-concept application [ZHH96].

A representative of a direct and mostly gesture-free sketch-based modeling
system was presented by Igarashi and co-workers in form of the highly popu-
lar Teddy [IMT99]. With Teddy, simple free form shapes can be sketched onto
an empty canvas, simply by providing the silhouette of the desired shape (Fig-
ure 2.2, left). The system then automatically extrudes (inflates) the 2D silhouette,
resulting in a rotund 3D shape. Since the mesh creation and extrusion procedure
is inherently heuristic, the mesh turns out to be quite irregular and can contain
badly shaped triangles (Figure 2.2, right). Teddy supports numerous modeling
operations, such as create, cut, and extrude, which all have the property that they
are applied immediately after the user places a stroke. Note that this differs signif-
icantly from work on optimization-based reconstruction [LS96, MKLO5], where

Figure 2.2: A Teddy modeling session (left), some results (middle), and a wireframe mesh
(right) [IMT99].
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Figure 2.3: A ShapeShop modeling session (left) and some results [SWSJOS5].

the user draws the entire 2D (wireframe) shape, and the system then solves a
global optimization problem to infer 3D vertex positions. The interfaces and al-
gorithms presented throughout this dissertation share the immediate nature of the
Teddy modeling operations.

To alleviate some of the problems associated with meshing, Karpenko and co-
workers proposed the use of variational implicits [TO99] instead of directly cre-
ating and manipulating meshes [KHRO2]. Their system also includes an overs-
ketching tool [Bau94, FRSS04]. Concurrently, Igarashi and Hughes presented
an algorithm that beautifies Teddy meshes using an extension of skin [MCCH99]
based on implicit quadratic surface fitting.

A similar multi-view modeling tool was presented by Bourguignon and co-
workers [BCCDO04]. In the Relief system the users strokes in a single, fixed view
are interpreted as both the 2D shape outline as well as the displacement map, from
which depths of new and existing vertices are inferred.

To enable more complex modeling tasks than Teddy [IMT99] or sketching
variational implicits [KHRO02], Schmidt and co-workers utilize hierarchical im-
plicit volume models, also known as blob-trees [BW99], in their ShapeShop
tool [SWSJO5]. Since complex shapes are constructed using blending and CSG
operators, and the entire construction hierarchy is maintained throughout con-

Figure 2.4: The process of inferring a smooth embedding from a complex sketch [KHO06].
The image on the far right shows the model from a differen viewpoint.
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Figure 2.5: Three different reference/target sketch configurations demonstrated by Kho
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and Garland [KGO5].

struction, any individual operation can be edited or removed independently (Fig-
ure 2.3). See also the early work of Bloomenthal and Wyvill on interactive
techniques for implicit modeling [BW90].

Karpenko and Hughes developed the SmoothSketch method [KHO6] with which
a smooth surface can be inferred from a silhouette curve that includes cusps and
T-junctions (where the contour is occluded). The proposed algorithm infers the
hidden contours, and computes a smooth embedding based on these contours (Fig-
ure 2.4). In the work of Kara and Shimada [KS07], a smooth surface is computed
between a network of previously sketched boundary curves. Unlike SmoothS-
ketch, these curves can be sketched (and modified) from multiple viewpoints.
Note that both [KHO06] and [KS07] require the user to sketch multiple, potentially
disjoint curves, and explicitly notify the application that a modification and/or
creation operation is to be applied.

While most of the described sketch-based modeling applications above are tar-
geted primarily towards model creation from scratch (to various extents), Kho
and Garland [KGOS5] provide a mesh editing and deformation tool. Specifically,
the user sketches a reference stroke onto the model, from which a subset of ver-
tices to be displaced is inferred, and then provides a target stroke, resulting in a
mesh deformation that is computed from the turning angles of both reference and
target sketch (Figure 2.5).
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2.1.2 Surface-based modeling techniques

Early finite element and functional optimization
methods

In the early 90’s, the first physically motivated, surface based modeling tools were
established in the Computer Graphics research community. These tools were an
attempt to introduce a higher degree of flexibility to the surface modeling process —
for example, compared to modifying control points for a set of parametric patches.

Deformable curve and surface finite elements were introduced by Celniker
and Gossard [CG91], motivated by Terzopoulos and co-workers pioneering work
on physically-based modeling [TPBF87]. In their work, curves and meshes
deform to minimize specific energy functionals, subject to user provided con-
straints and loads (Figure 2.6). This basic paradigm, finding a suitable represen-
tation/discretization for a curve/surface and deforming it such that it minimizes a
certain energy functional subject to user-provided constraints, is the key ingredient
to all surface-based modeling methods.

Figure 2.6: Deformable finite elements for shape design [CG9I1].

Moreton and Sequin extend this approach to Bézier patches [MS92]. From
a given 3D network of connected line segments and continuity constraints, the
algorithm computes a network with minimal variation of curvature (MVC). This
network is thereafter used to initialize Bézier patch boundaries for the result-
ing minimal variation of curvature surface (MVS) with tangent continuity. Both
curve network and surfaces are computed using nonlinear optimization tech-
niques. Rhoades presents a bending operator, with which parametric patches can
be edited by deforming (or bending) the normal field, and optimizing control
points, such that the surface normals are close to the desired normals [Rho93].

A similar approach is described by Welch and Witkin [WW94], the main differ-
ence being that their shape is represented as a triangle mesh. The system allows
the construction of surfaces of arbitrary topology, and furthermore performs inner

11
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Figure 2.7: Creating a torus from a sheet of triangle mesh and user-provided (positional)

12

constraints (= yellow lines) [WW94]. The resulting variational shape approxima-
tion is designed to minimize squared principal curvatures.

fairing and resampling of the surface on the fly (Figure 2.7). Outer fairing is per-
formed by functional optimization, specifically Laplacian smoothing [Fie88]. To
maintain interactivity for reasonably sized meshes, the optimization is carried out
per vertex, instead of solving a global error minimization problem.

Multi-resolution methods

Multi-resolution mesh editing is a surface editing paradigm that has become
widely popular since its introduction in 1997 [ZSS97]. The idea has been adapted
and applied in various settings, such as multiresolution signal processing on
meshes [GSS99]. The basic principle is to represent the mesh in a multi-
resolution hierarchy, perform an editing operation (displacement of faces/vertices)
on a coarse version of the mesh, and propagate this editing operation throughout
the hierarchy, up to the finest mesh. Operations of this nature tend to modify the
global shape, while maintaining local characteristics. Kobbelt and co-workers
have extended this paradigm by designing the edit of the base-mesh to minimize
curvature [KCVS98] (Figure 2.8). This is achieved through variational principles
and discrete fairing [Kob0O, Tau95].

In Figure 2.8 the black line defines the region of the mesh which is to be edited,
and the white line is the user handle. The mesh is first smoothed in this region
(center left), and the difference (the detail) between the two left meshes is stored
with respect to local frames. After the user changes the position of the white
handle curve, the boundary constraints for curvature minimization change, and
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Figure 2.8: The principle of multi-resolution modeling [Kob0O]. See text for details.

therefore the base surface undergoes a smooth deformation (center right). Adding
the stored detail information yields the result on the far right.

Schneider and Kobbelt describe a geometric fairing method for irregularly sam-
pled meshes, which they use in the context of free-form surface design [SKO1].
This algorithm is described in more detail in Section 3, since it inspired our
own variational approach for surface fairing. Essentially, they use a tessel-
lation independent discretization of mean curvature, also known as the cotan
weights [PP93a], and iteratively minimize a nonlinear fourth order partial dif-
ferential equation, resulting in a smooth surface that satisfies up to G' boundary
conditions.

Linear variational methods

Inspired by the use of differential coordinates — also known as discrete Laplacians
— for local mesh morphing and editing [Ale03], Sorkine and co-workers developed
a general framework for detail-preserving surface editing [SLCO™04]. After the
user transforms a handle on the mesh, the system deforms the region of interest
(ROI) such that the deformed Laplacian vectors are as-close-as-possible to the
original Laplacians in the least-squares sense (Figure 2.9). This formulation leads
to a single sparse linear system that can be solved efficiently. Note that Lapla-
cian surface editing is fundamentally different from the multi-resolution methods

Figure 2.9: Laplacian surface editing [SLCO™04].

13
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described above, since detail is incorporated into the optimization process, in-
stead of being previously filtered out. The problem which arises, is that discrete
Laplacians are not invariant w.r.t. global rotations of the mesh. To overcome this
issue, Sorkine and co-workers implicitly compute linearized rotations for each
Laplacian, an assumption which only holds for small rotations, yet is necessary to
maintain the linear system property. Some recent work has been dedicated to com-
putation of per-vertex similarity transformations [FATO7]. Also, Laplacian surface
editing paradigms have been successfully applied to volumetric graphs [ZHS105].
For more details on Laplacian surface editing, see Section 2.4. In a similar vein,
Botsch and Kobbelt accelerate their multi-resolution modeling system by using a
quadratic energy functional, leading to a linear system of equations for the min-
imizers, while also incorporating boundary continuity interpolation between C°
and C2. [BK04a].

Concurrently with Laplacian surface editing, and motivated by developments in
Poisson image editing [PGBO03], Yu and co-workers presented a mesh editing tool
based on gradient field manipulation [YZX04]. After the user transforms a given
handle on the mesh, the transformation is smoothly propagated away from the
handle. These individual per-face transformations create a disjoint mesh, which
comprises the guidance vector field (= the resulting per-face gradient vectors).
Solving the Poisson equation for each of the three coordinate functions conceptu-
ally stitches the mesh back together. In the original publication, the transformation
propagation schemes are all based on geodesic distance, but more elaborate meth-
ods have been explored [ZRKSO05].

Lipman and co-workers introduced the notion of linear rotation-invariant coor-
dinates for meshes [LSLCOO05], based on discrete forms defined on the mesh.
Editing operations are carried out by manipulating vertex positions as well as
local frame orientations, which is why this technique is also known as moving
frame manipulation [LCOGLO7]. The surface reconstruction algorithm described
in [LSLCOO0S5] consists of solving two sparse linear systems: one for the rela-
tionship between local frames of adjacent vertices, and one for computing vertex
positions from the local frames. Shi and co-workers have accelerated this algo-
rithm significantly using multigrid methods [SYBFO06].

An alternative formulation in 2D, minimizing triangle shape distortion, is the
key ingredient to the shape manipulation system presented by Igarashi and co-
workers [IMHO5a]. In search of a single quadratic error functional, which would
lead to a single linear system, they prove that such a functional does not exist,
and therefore split the problem into a rotation and scale part, each with its own
quadratic error functional. The solution is then obtained by solving two linear
systems sequentially. Using this method, interesting 2D animations can be created
with only a few constraints (Figure 2.10).

For more details on linear variational surface deformation methods, see the re-
views by Sorkine and Botsch [Sor06, BSO7].
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Figure 2.10: Animating a frog with three constraints by moving a single vertex [[IMHO5a].

Recent nonlinear optimization methods

There is a recent trend in the Computer Graphics community to revert to non-
linear optimization for surface-based modeling algorithms, instead of linearizing
rotations, using quadratic error functionals exclusively, or other viable approxi-
mations. This development can be attributed to recent developments on multi-
resolution/multi-grid methods, sparse linear solvers, and dimensional model re-
duction.

Based on a set of angles and lengths relating a vertex to its immediate neighbors,
Scheffer and Kraevoy introduce pyramid coordinates [SK04], which are nonlinear
in the vertex positions, but invariant under rigid transformations. These coordi-
nates encode the local shape around each vertex, and are preserved throughout
editing operations.

Huang and co-workers formulate an energy functional with a linear projection
constraint, and nonlinear Laplacian, skeleton, and volume constraints [HSL*06].
To overcome the slow convergence and numerical instability of the iterative non-
linear solver, they project the deformation energy and constraints onto a control
mesh (a subspace) using mean value coordinate interpolation [JSW05]. Com-
bined with multi-resolution techniques, this speeds up the algorithm significantly,
enabling interactive response times for meshes up to 170K vertices.

In their PriMo system, Botsch and co-workers model physically accurate de-
formation behavior inspired by thin shells, by embedding the surface in a layer
of coupled volumetric prisms [BPG06]. The resulting nonlinear elastic energy is
minimized very efficiently using a combination of local and global shape match-
ing techniques on a multigrid hierarchy. This results in a system that runs at
interactive rates (= 1 fps) for meshes with 180K triangles.

Our surface reconstruction algorithm presented in Chapter 3 falls into the cate-
gory of nonlinear optimization methods.

15
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Least-squares methods

Least-squares and weighted least-squares methods are commonplace tools used
in a wide variety of applications. For a beautiful and illustrative introduction,
see Strang’s lecture notes [Str98]. Since the methods and algorithms described
throughout this dissertation make heavy use of these tools, we describe them in
sufficient detail. First, we use calculus to derive the linear system of equations for
the global least-squares approximation of function values from scattered data us-
ing multivariate polynomials of some degree. Scattered data refers to an arbitrary
set of points in R that carry scalar quantities (i.e. a scalar field in d dimensional
parameter space). Thereafter, the linear system of equations, also known as the
normal equations, is derived using linear algebra, specifically by orthogonal pro-
jection onto a subspace. Later, in Section 2.4, we describe how this formulation
can be utilized in our setting: computing geometry from a set of linear constraints
that are to be satisfied in the least-squares, or a weighted least-squares sense.

Least-squares approximation

Problem Formulation. Given N points located at positions p; in R? where i €
[1...N] (for R, p = [x,y,z]7). We wish to obtain a globally defined function
b(p) that approximates given scalar values b; at points p; in a least-squares sense
with the error functional Jrg = ¥, ||b(p;) — b;|*>. Thus, we pose the following
minimization problem

bmir‘lJ ZHb(Pi) —bill?, 2.1

m 1

where b is taken from Hi, the space of polynomials of total degree m in d
spatial dimensions, and can be written as

b(p) =a(p)"x=a(p) x, (22)
where a(p) = [a1(p),...,ax(p)]” is the polynomial basis vector and x =
[x1,... ,xk]T is the vector of unknown coefficients, which we wish to obtain as

a result of minimizing (2.1). Here are some examples for polynomial bases:
(a) form=2andd =2, a(p) = [1,x,y,x%,xy,y*]” (bivariate, quadratic)
(b) for a linear fitin R® (m = 1, d = 3), a(p) = [1,x,y,2]" (trivariate, linear)
(c) for fitting a constant for arbitrary d, a(p) = [1] (multivariate, constant)

In general, the number k of elements in a(p) (and therefore in x) is given by
k= Im! e [Levos, FMO3].

mld!
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2.2.2 Solution by calculus

We can minimize Equation 2.1 by setting the partial derivatives of the error func-
tional Jzg w.r.t. the unknown coefficients to zero, that is VJ; g = 0 where V =
[0/0x1,...,0/0x]T, which is a necessary condition for a minimum. By taking
partial derivatives with respect to the unknown coefficients xi, .. .,x;, we obtain a
linear system of equations (LSE) from which we can compute x

dJps/0x; =0: Zza1 p)[a(pi)’x—b]=0
dJps/0x; =0: ZZaz p)la(p) x—b]=0
aJLS/akaOI ZZak p, X b] 0.

In matrix-vector notation, this can be written as
ZZa pi)| T'x—b] =

22[3 p)a(p))'x—a(p;)b;] = 0.

Dividing by the constant and rearranging yields the following LSE

z:a'pl pl X“}:a'pl iy (2.3)

which is solved as

X = Za p/)a 1Za (pi)b (2.4)

If the square matrix Azg = Y, a(p;)a(p;)” is nonsingular (i.e. det(Ars) # 0),
substituting Equation 2.4 into Equation 2.2 provides the fit function b(p). For
small k (k < 5), the matrix inversion in Equation 2.4 can be carried out explicitly,
otherwise numerical methods are the preferred tool, see [PTVF92] !. In our ap-
plications, we often use TAUCS [Tol03] 2 and Newmat 3.

Example. Say our data points live in R? and we wish to ﬁt a quadratic bivariate
polynomial (d = 2, m = 2) and therefore a(p) = [1,x,y,x%,xy,y?]T (see above),

lat the time of writing this dissertation, [PTVF92] was available online in pdf format through
http://www.nr.com/

2http://www.tau.ac.il/~stoledo/taucs/
3http://www.robertnz.net/nm_intro.htm

17
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Figure 2.11: Fitting bivariate, quadratic polynomials to 2D scalar fields: the top
row shows the two sets of nine data points (see text), the bottom row
shows the least squares fit function. The coefficient vectors [xi,...,xg]"
are [—0.834,-0.25,0.75,0.25,0.375,0.75]7 (left column) and [0.334, 0.167,
0.0,-0.5,0.5,0.0]".

then the resulting LSE looks like this

(1 ox oy X xy vy | [xd] [ 1]
xi o xFoxyi x xyi oxyi| (%o X;
) R O (e Al S o A
AR A A R I
Xi¥i XpYi XiYi X Vi XjYp o XiY; X5 XiYi
RO R B 57 |

Consider the set of nine 2D points P; ={(1,1), (1,-1), (-1,1), (-1,-1), (0,0), (1,0),
(-1,0), (0,1), (0,-1)} with two sets of associated function values b} ={1.0, -0.5,
1.0, 1.0, -1.0, 0.0, 0.0, 0.0, 0.0} and bl-2 ={1.0, -1.0, 0.0, 0.0, 1.0, 0.0, -1.0, -1.0,
1.0}. Figure 2.11 shows the fit functions for the scalar fields b} and b?.

18
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2.2.3 Solution by projection onto a subspace

For a different but also very common notation, note that the solution for x in
Equation 2.3 solves the following (generally over-constrained) LSE, where each
row represents a single, linear constraint

a’ (p1) b
: X = S
a’ (pw) by
or simply Ax = b, (2.5)

in the least-squares sense, using the normal equations

ATAx = ATp
£ = (ATA)"'ATD. (2.6)

Figure 2.12: Solving Ax = b in the least-squares sense by orthogonal projection of b into
the column space C(A) of A. In this example, C(A) is represented as the plane
spanned by the column vectors a; and a, of the matrix A = [a; a;].

The derivation is rather elegant, see Figure 2.12. Given a matrix A with columns

aj,...,a,, any point p in the column space C(A) of a matrix A can be represented
as a linear combination of the columns with coefficients x1,...,x, as
p=a;x;+ax+...+a,x, =Ax. 2.7

For general, overconstrained systems, the solution vector b from Equation 2.5 is
not in C(A), as shown in Figure 2.12, and Ax = b has no solution. In other words,
since we generally have more linear constraints than unknowns, the matrix A has
more rows than columns, and unless these constraints are linearly dependent, b is
not in the column space of A.

19
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On the other hand, if we replace b with p in Equation 2.5, where p is the orthog-
onal projection of b onto C(A), we obtain the LSE Ax = p, which has a solution
x =X, and p = AX. This can be illustrated with Figure 2.12: it is obvious that every
vector b has a part in the column space, and a perpendicular part in the nullspace
of A, denoted as p and e respectively. Since Ax = b = p + e has no solution, we
simply remove e and solve Ax = p instead.

Furthermore, note that for any x, the error between Ax and the solution b is

Ib— Ax|? = [[p— Ax|? + | 2.8)

by Pythagorean theorem. Since p = AX, by choosing x to be X we reduce the term
p — Ax to zero, and thereby minimize the squared length of b — Ax =e.

As shown, the error vector e = b — AX is orthogonal to the subspace. to compute
X, we utilize this fact, and set the inner products of all column space with the error
vector to zero

al(b—A%) = 0, (2.9)

which can also be written as

T
_al_

: b—Ax| = [0]| =AT(b—A%)=ATb-ATA% (2.10)
T
J— an J—

Rearranging yields the normal equations 2.6. Note though, that ATA is only
invertible if and only if A has full column rank (= linearly independent columns).

Weighted least squares

Any row in Equation 2.5 represents a single, linear constraint, and these con-
straints can be individually weighted. For this we construct the diagonal matrix
of weights W, where w;; is the scalar weight for constraint i, and plug it into the
least-squares system as

WAx = Wb
ATW?Ax = ATW?
x = (ATW?A)"1ATW?p. (2.11)

Equation 2.11 is known as weighted least-squares. As described above, AT W?A
is invertible if and only if WA has full column rank. For any W where this is the
case, Equation 2.11 yields a unique solution.
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2.3 Discrete differential geometry

2.3.1

Discrete differential geometry deals with the discrete analogon to the differential
geometry of curves and surfaces [do 76]. For an excellent and applied introduc-
tion, see the course notes of Grinspun et al. [GDP'06].

Looking at the surface fairing techniques described in Section 2.1.2, most of
which use quadratic, or higher order energy functionals of the general form

Ek(S) :/Fk(Su...mSu..‘uv;-~-7Sv...v)7 (2.12)

where the expressions S, represent partial derivatives of order k with respect to a
surface parametrization S : Q — R3, which is locally nearly isometric [BKO4a].
To generate a smooth discrete or continuous surface, one derives the following
differential equation

=0 x€Q\dQ (2.13)
L*(x) =b;(x) x € 8Q (2.14)

by applying variational calculus to Equation 2.12, and solves the resulting linear
or higher order differential equation, with respect to given boundary conditions
b;(x). In Equations 2.13 and 2.14, L is the Laplace operator of order k. In some
settings, such as ours, is is necessary to discretize the Laplace operator, since the
underlying surface representation is triangle mesh. Therefore, in this section we
will elaborate on discrete Laplacian operators, both for curves as well as surfaces,
and point out key observations that are used throughout this dissertation.

Piecewise linear curves

For the optimization and fairing of piecewise linear (PWL) curves, we will employ
both first order

LO =V;—Vi (2.15)

and second order differentials
Li=vi— — Vi. (2.16)
LY

First order differentials are simply the edge vectors in the PWL curve and encode
arc length. Second order differentials are vectors pointing from v; to the centroid
of the two adjacent vertices (in a curve, N; is always < 2) and encode the notion of
detail, which can be interpreted as a curvature-like value (Figure 2.13). The vector
in Equation 2.16 is also known as the uniformly weighted, discrete Laplacian
vector, or graph Laplacian vector. As we will show in Section 3.3.1, it can be

21



Chapter 2 Fundamentals

Figure 2.13: Discrete 1st and 2nd order differentials of a piecewise linear curve.

beneficial to minimize the difference between neighboring first order differentials,
since for smooth, nearly straight curves, second order differentials vanish.

If the goal is to obtain a true estimate of discrete curvature at a PWL curve
vertex, it is obvious that Equation 2.16 does not suffice. This is illustrated in
Figure 2.14: if the curve {v;_1,Vv;,v;1} is scaled anisotropically in the direction
of Vi_1 Vi11, for any scaling factor, the curve {Vv_,,v;, v} 41} generates to the same
uniform discrete Laplacian vector. Clearly, these different configurations have
different discrete curvatures.

Figure 2.14: Both configurations v and v’ generate the same uniform discrete Laplacian

22

L.

Grinspun at al. [GDP"06] define the mean curvature normal for a PWL curve
as the gradient of length L

kh=VL= 2singﬁ, 2.17)

where 0 is the turning angle between two adjacent curve segments, fi is the unit
normal, and K is the curvature 1/R. The notion that all curvature lives in the
vertices is derived from the discrete Gaull map, where edges map to points, while
vertices map to arcs. This notion of discrete curvature has the nice property that
the total signed curvature (= the sum of turning angles) obeys the turning number
theorem, which states that for a closed curve, the total signed curvature is an
integer multiple of 27.
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Furthermore, for irregularly sampled PWL curves, the orientation of the uni-
form Laplacian vector does not provide the curve normal (Figure 2.15, left).

Vit1
Vi-1 _
”-O—

Figure 2.15: Obtaining the normal orientation for a piecewise linear curve. See text for

2.3.2

details.

In such cases, it is necessary to modify the uniform weights in Equation 2.16 as
Ll,w:Vi_ Z WijVj, (2.18)
JEN;

where )’ jw;; = 1. The weights are computed from the opposite edge length: for
Figure 2.15 (right), denote the lengths of segments v; v, and V; v;,_1 as a and b
respectively, then the weights of vertices are computed as

a b
Wiit] = —.
a+b LT b

Wii—1 =

Note that this is identical to the summation of arc-length weighted edge normals.

Piecewise linear surfaces

Laplacian operators can easily be defined for discrete surfaces (in our case, trian-
gle meshes) as well. These 3-vectors have various names in the literature, such as
detail- or differential-coordinates, as well as detail vectors.

The equivalent of the uniform Laplacian operator on a mesh is defined as

1
Li,=vi— — . 2.19
e = Vi N jezz\'f,-Vj @1

Similar to the curve setting, this vector does not point in normal direction for
irregularly sampled surfaces (Figure 2.16, left), yet has the property, that it only
depends on the mesh connectivity. In other words, the weights 1/|N;| are identical
for any two geometries, since they only depend on the number of adjacent vertices.

There have been numerous efforts to quantify the notions of Gaussian and mean
curvature for discrete surfaces, and many of these are based on the work of Pinkall
and Polthier [PP93a].
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Voronoi
Cells

Barycentric
Cells

Figure 2.16: Left: the 1-ring around a vertex and the discrete quantities associated with it.
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Right: area estimates for the center vertex.

To obtain a Laplacian vector that points in normal direction, we can use the
cotangent weights [PP93a, DMSB99]

LLC =V;— Z WiV (220)
JEN;
where the weights
wij = cott.+ cot3 (2.21)

for each adjacent vertex are computed from the angles shown in Figure 2.16 (left).
Unlike Equation 2.19, since we need to compute angles, these weights depend on
the mesh geometry. This vector is generally known as the cotangent (or cotan)
Laplacian.

Meyer at al. [MDSBO3] present a robust method for computing discrete mean
curvature normals for each vertex. By computing an area estimate for each vertex
(Figure 2.16, right) one can scale the cotangent Laplacian as

1

L., — =xnh 2.22

| 2A1 ) ( )

resulting in the mean curvature normal kf. Note that ki is shown flipped in Fig-
ure 2.16 for illustration purposes.



2.3 Discrete differential geometry

We will make use of the following three observations throughout this dissertation

1. The uniform Laplacian has a tangential component, while the cotangent
Laplacian does not (Figure 2.17, left). We use this in Chapters 4 and 6 for
tangential smoothing (improvement of inner fairness) of triangle meshes by
solving a global least-squares problem.

2. For nearly equal edge lengths, the uniform Laplacian L, , is a viable ap-
proximation of the cotangent Laplacian L . (Figure 2.17, right). We will
use this approximation to speed up our computations in Chapter 3

3. The cotangent Laplacian L . is equal to the mean curvature normal multi-
plied by a vertex area estimate. L . is also known as the integrated mean
curvature [WBH™07]. In other words, given a scalar mean curvature, a nor-
mal orientation, and an area estimate around a vertex, one can reconstruct
the cotangent Laplacian (this is used in Chapter 3).

Vi

Kn

Figure 2.17: For an irregularly sampled surface, the uniform (L; ,) and cotangent (L )
Laplacian vectors generally differ (left), since L , has a tangential component t,
while L; . points in normal direction. For nearly equal edge lengths, Ly , ~ L ..
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2.4 Laplacian surface editing

The feature editing tools presented in Chapters 4 and 5 do not rely on a specific
mesh deformation technique. Our methods generate three sets of vertices: the
region of interest (ROI) R, the static anchors S C R, and the handle vertices H C R,
including a displacement vector for each handle vertex in H. There are many mesh
deformation tools that rely on these input parameters. In our implementations, we
use Laplacian surface editing [SLCO™04, LSCOL04] for the following reasons:

e Laplacian surface editing uses linear constraints and generates a surface that
satisfies these linear constraints in the least-squares sense. We add various
linear constraints in our formulations, and using Laplacian surface editing
makes it simple to incorporate them into the existing system matrix.

e Both the local (Chapter 4) as well as the global (Chapter 6) tangential
smoothing approaches use the uniform Laplacian operator to solve for new
vertex positions, and we can reuse the factorization of the Laplacian matrix
when experimenting with the various parameters for these procedures. This
significantly speeds up computations.

e In Chapter 6 we present a general framework for triangle shape optimiza-
tion and mesh smoothing, and show that both Laplacian surface editing and
least-squares meshes [SCO04, SCOITOS5] are special cases of this frame-
work.

2.4.1 Basic formulation

Given n vertices and their 1-rings (Figure 2.18, left) one can construct either uni-
form or cotan Laplacian vectors for each coordinate function x, y and z in R> using
an n X n matrix that encodes the appropriate Laplacian weights (see Figure 2.18,
right, and Section 2.3.2).

Figure 2.18: Left: the 1-ring around a vertex and the cotan (yellow) and uniform (green)
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Laplacian vectors. Right: computing the cotan Laplacians using matrix-vector
multiplication for a single, scalar coordinate function.
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N

Figure 2.19: Left: the 3n x 3n linear system for all coordinate functions in R3. Right: incor-
porating linearized rotations potentially adds 7; coefficients in all matrix blocks.

To construct Laplacian vectors for all three coordinate functions simultane-
ously, we only need to copy the L matrix twice (Figure 2.19, left).

The inverse operation, constructing the mesh from its Laplacian vectors, is not
(yet) possible: the matrix L in Figure 2.18 has rank n — 1 and is not invertible,
since any global translation of the mesh results in the same Laplacian vectors. By
fixing a single vertex though, the matrix becomes invertible, and we can uniquely
reconstruct the mesh from its Laplacian coordinates.

Unfortunately, while Laplacian coordinates are invariant w.r.t. global trans-
lation, they are not invariant under general affine transformations of the mesh:
simply rotating the 1-ring results in a different orientation of the Laplacian vec-
tor. Sorkine and co-workers linearize small rotations and uniform scaling using
a skew-symmetric matrix, and incorporate the matrix coefficients into the linear
system. The process is rather involved, and details can be found in [SLCO™04].
In any case, the system can now only be solved for all coordinate functions simul-
taneously, since the coefficients are no longer only in the block diagonal matrices
(Figure 2.19, right).

Once the system of linear constraints is set up for the Laplacian vectors, adding
positional constraints simply amounts to adding three rows (one for each coor-

fix

[ D
T

Figure 2.20: Adding positional constraints to the system (left) and the corresponding linear
constraints (right).
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Figure 2.21: Adding editing constraints to the system (left) and the corresponding linear

2.4.2
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constraints (right).

dinate function) to the system, which we denote as Ax = b. This is shown in
Figure 2.20, where the 3-vector ¢; encodes the position of the fixed vertex in R>.
The overall system Ax = b becomes invertible, and we can compute vertex po-
sitions as x = A*b = (ATA)~!'ATb, where A* is known as the moore-penrose
pseudoinverse [PenS5].

To carry out a detail-preserving edit, the user might want to alter the position
of a vertex, or a set of vertices. To implement this edit, we again add three rows
to the system matrix. The difference is, that instead of using the original vertex
position on the right hand side vector b, we instead use the vertices displaced
position. Figure 2.21 illustrates the vertex sets mentioned above: in this case, the
set R consists of all vertices, while S and H contain the fixed and edited vertex
respectively. For general edits, this matrix is no longer invertible, and there is
no exact solution to Ax = b, since the (sub)space of meshes does not contain a
solution that satisfies both the Laplacian and positional constraints. The idea is
to solve the system in the least-squares sense by projecting b onto the subspace
of meshes (Section 2.2), thereby obtaining a mesh X with small error. In practice,
we construct the normal equations AT A% = ATb and solve for unknown vertex
positions X = (ATA)flATb (Equation 2.6). Note that since user interaction only
modifies the right hand side b (the edited vertex positions), we can factorize the
matrix AT A once, and only need to perform fast back-substitution while the user
drags the handle.

Extensions

For our feature editing tools (Chapters 4 and 5), we have found that it is beneficial
to not only constrain vertex positions, but rather any position on the mesh. Since
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Figure 2.22: Adding other linear editing constraints to the system.

on-edge or on-face positions can be represented as a linear combination of the
adjacent vertices, adding these linear constraints to the system is, yet again, adding
lines to the matrix A and the right hand side b, and solving in the least-squares
sense (Figure 2.22).

Thanks to the power of least-squares techniques, our extended Laplacian sur-
face editing framework is not limited to vertex constraints. We have implemented
a tool, by which the user can scale the magnitude of the Laplacian vectors. This
editing operation creates sharp ridges and ravines, as we show in Chapter 4. For
the linear system, this means removing the coefficients related to (linearized) ro-
tations and scales, and instead prescribing the magnitude of the Laplacian vector
on the right hand side (Figure 2.23).

Figure 2.23: Scaling Laplacian vectors.
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==l

8

8)’
5,

fix fix

Figure 2.24: Tangential smoothing. See text for details.
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We leverage global least-squares for one-step tangential smoothing in Chap-
ter 6. As described in Section 2.3, the uniform Laplacian has a tangential com-
ponent, while the cotan Laplacian does not. This component is depicted as the
dark red difference vector between uniform and cotan Laplacian in Figure 2.24
(middle). If we set up the linear system, such that L, X = &.,s4x, Subject to bound-
ary constraints, we are forcing the uniform Laplacian to be equal to the cotan
Laplacian (Figure 2.24, left). This can be interpreted as a form of tangential (or
Laplacian) smoothing, and improves inner fairness (= triangle shapes) of the mesh,
while retaining local features (Figure 2.24, right).

Finally, all the above systems can be modified by weighting the linear con-
straints non-uniformly. Using a diagonal matrix of weights W, where w;; is the
scalar weight for constraint i, and plugging it into the least-squares system yields
x = (ATW?A)~'ATW?b, as described in Section 2.2. This principle is used
widely in our work — specifically, for approximate sketching (Chapters 4 and 5)
and feature preserving mesh smoothing (Chapter 6).



Chapter 3

Designing Freeform
Surfaces with 3D Curves

3.1

Introduction

Current tools for free-form design, and the resulting design process, can be
roughly categorized into two groups. The group of professional modeling pack-
ages makes use of parametric patches or subdivision surfaces [May07, dMO07],
where the user has to lay out the coarsest level patches in an initial modeling
stage, and then modify control points to generate details. Because it is difficult for
inexperienced users to generate the control structure for an intended shape from
scratch, a group of research tools [IMT99, IH03, SWSJ05, KH06, KS07] as well
as in-game character editors [Max07, Gin0O7] are built around intuitive modeling
metaphors such as sketching, trying to hide the mathematical subtleties of surface
description from the user. However, some of these tools lack a high-level control
structure, making it difficult to iteratively refine the design, or re-use existing
designs.

We try to bridge the gap by using curves, a universally accepted modeling
metaphor, as an interface for designing a surface. Notice that curves appear in
both tools mentioned above: they appear as parameter lines, or seams where lo-
cally parameterized patches meet; they are sketched to generate or modify shape,
or they are extracted from the current shape and used as handles. Also note that
traditional design is mostly based on drawing characteristic curves.

Yet, design is a process. We cannot expect a user to draw the control (or char-
acteristic) curves of a shape into free space. Our first fundamental idea is to let
the user define control curves by drawing them onto the shape in its current
design stage. These curves can be used as handles for deformation right after
their definition, as in other tools, or at any other time in the design process. Of
course, the effect of control curves can be modified (i.e. smooth vs. sharp edge),
they can be removed from the current design, and there are no restrictions on their
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Figure 3.1: Modeling results using FIBERMESH. The user interactively defines the control
curves, combining sketching and direct manipulation, and the system continuously
presents fair interpolative surfaces defined by these curves (blue = smooth curve,
red = sharp curve).
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placement and topological structure. Specifically, they may be connected to or
intersect other curves, or not; this is more general than recent developments for
parameterized surfaces [SZBNO03, SWZ05]).

The second fundamental principle is that the shape is defined by the control
curves at any stage of the design process. While we found it important to serve
the process of construction, and this is also what defines the topology of the sur-
face, the result should be independent of when a control curve was modified. We
achieve this by defining the surface to minimize certain functions of its differen-
tials [MS92, WW94], while constraining it by the control curves.

It is crucial that both the modification of curves as well as the computation of
surface geometry allow for an interactive and smoothly responding system. For
this we build on the recent advances in discrete Laplacian [SLCO"04, YZX 104,
BKO04a] and other higher order or non-linear functionals for surface process-
ing [HSL 06, BPG06, WBH'07].

Uniquely combining interface metaphors (Section 3.2) with geometry process-
ing techniques (Section 3.3), our contributions are

e A fair surface definition based on curve constraints, and an accompanying
functional optimization algorithm that runs at interactive rates.

e A detail preserving, real-time 3D curve editing and peeling interface, and a
curve deformation algorithm based on discrete co-rotational methods.

e The generation and smooth embedding of initial surface components by
sketching a planar control curve on a canvas.

¢ An interface that enables the design of 3D models with 3D control curves.
The user’s 2D sketching operations turn into 3D curves, and they serve as
handles for subsequent editing.

Welch and Witkin [WW94] propose an interactive modeling system where the
user can cut up surfaces and paste them together, while the system continuously
generates a fair interpolative surface. They demonstrate the capability of the ap-
proach by showing topologically non-trivial shapes such as branching surfaces and
a Klein bottle. Our work extends this approach, allowing the user to design more
practical models such as 3D characters (Figure 3.1), by introducing a high-level
user interface for curve control.

Discrete differential surface representations are an active research area [Sor06].
One of the key driving forces is the use of highly efficient sparse linear solvers [Tol03,
Dav04]. They can efficiently solve matrix systems of tens of thousands of entries,
which makes it possible to process interesting 3D meshes in real-time. Most
efforts have been dedicated to the editing of existing 3D models. The work de-
scribed in this chapter is an attempt to apply these techniques and tools to surface
creation from scratch.
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3.2 User interface

From the user’s point of view, our system can be seen as an extension to a freeform
modeling system based on silhouette sketching, such as Teddy [IMT99]. The
user interactively draws the silhouette of the desired geometry and the system
automatically constructs a (rotund) surface via functional optimization, such that
its silhouette matches the user’s sketch. However, unlike previous systems, the
user’s original stroke stays on the model surface and serves as a handle for further
geometry control. The user can manipulate these curves interactively and the
surface geometry changes accordingly. In addition, the user can freely add and
remove control curves on the surface. These extensions enable the design of far
more elaborate shapes than those possible with sketching alone. Figure 3.2 shows
an overview of the process.

.. A. L.

sketch created sketch

Jeo g b

curve added rotated result

Figure 3.2: An example modeling sequence.
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In a sense, our modeling process is similar to traditional modeling methods,
such as parametric patches and subdivision surfaces: the user also defines nets of
curves and the system automatically generates a smooth surface based on these.
An advantage of our interface, is that the user does not need to worry about the
topology of the curves. Traditional methods require the user to cover the entire
surface with triangle or quad regions. Our method is much more flexible: curves
need not be connected to other curves and much fewer curves can represent simple
geometry. It is also important that, instead of providing individual points as an
interface, our interface treats curves as continuous entities. We believe this can
help smooth the "skill transfer" from 2D drawing to 3D modeling.

Various interactive modeling methods have been proposed in research con-
texts, including direct 3D editing [PFO1], spatial deformation operations [SF98,
ACWKO06, vFTS06] and surface based deformation tools [ZSS97, KCVS98].
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Figure 3.3: Sketching operations (from top to bottom): creation, cut, extrusion and tunnel.

3.2.1

These modeling methods provide reduced degrees-of-freedom handles (curves
and control meshes) for surface control. The user can focus on the high-level con-
trol and the system automatically maintains aesthetic consistency. Our approach
is unique in that we use curves also as the definition of the surface, not only as
temporal handles for deformation.

Our current modeling interface consists of five tools (modes): sketching tool,
deformation tool, rubbing tool, erasing tool, and type change tool. The user
switches between these tools via menu selection or a keyboard shortcut.

Sketching tool

Our system provides five kinds of sketching operations: creation, cut, extrusion,
tunnel (Figure 3.3), and add-control-curve (Figure 3.4). When the user draws a
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Figure 3.4: Adding control curves: open stroke (top), closed stroke (middle) and cutting
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stroke (bottom). The user needs to click after drawing a stroke to make it a control
curve in the cases of closed stroke and cutting stroke.

closed stroke on a blank canvas, the system automatically inflates the closed area
and presents an initial 3D model. The user draws a stroke crossing the model
to cut it. Drawing a closed stroke on the object surface followed by a silhouette
stroke creates an extrusion. If the user draws another closed loop on the opposite
side of the surface, the system generates a tunnel. These operations are borrowed
from the original Teddy system, but the difference is that the user’s original strokes
stay on the model surface as control curves. These control curves literally define
the surface shape (as positional constraints in the surface optimization), and the
user can modify the shape by deforming these control curves. New control curves
can be added by drawing an open stroke on the object surface, drawing a closed
stroke followed by clicking, and by drawing a cutting stroke followed by clicking
(Figure 3.4). The last method is very useful during the early stages of model
creation, since it allows the user to quickly generate a convenient handle to adjust
the amount of inflation (or fatness).

The control curves are divided into two types: smooth curves (blue) and sharp
curves (red). A smooth curve constrains the surface to be smooth across it, while
a sharp curve only places positional constraints with C? continuity. These types
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Figure 3.5: Pulling a curve. The deformed curve segment is determined by how much of it

3.2.2

3.2.3

the user peels off.

are automatically assigned to the newly added curves according to the sketching
operation the user applied. The creation operation generates a smooth curve that
corresponds to the silhouette. A cutting operation generates a sharp curve. An ex-
trusion generates one sharp curve along the base, and one smooth curve along the
silhouette. When the user paints a new curve on the surface, it is initially defined
as a smooth curve. The type of these curves can be freely changed afterwards
using the type change tool.

Deformation tool

The deformation tool lets the user grab a curve at any point and pull it to the de-
sired location. The curve deforms accordingly, preserving local details as much
as possible (see Figure 3.5 and Section 3.3.1). Editing operations are always ap-
plied to the control curves, not directly to the surface. If the user wants more
control, new control curves must be added on the surface. Explicit addition of
control curves exposes the surface structure in a clear way, and the curves serve
as a convenient handle for further editing.

We use a peeling interface for the determination of the deformed curve segment
(region of interest, ROI) [IMHOS5a]. The size of the curve segment to be deformed
is proportional to the amount of pulling. The more the user pulls, the larger the
deformed curve segment becomes. This frees the user from manually specifying
the ROI before starting deformation and enables dynamical adjustment of the ROI
during deformation. This peeling effect propagates to the other curves connected
to the deformed curve, which allows the user to deform a larger area of the surface.

Rubbing tool

The rubbing tool is used for smoothing a curve. As the user drags the mouse
back and forth (rubs) near the target curve, the curve gradually becomes smooth.
The more the user rubs, the smoother the curve becomes (Figure 3.6). This tool
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QOO

Figure 3.6: Rubbing (smoothing) a curve.

Figure 3.7: Erasing a control curve (left: before erasing, middle: immediately after erasing,

3.2.4
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right: after surface optimization).

is very important because the curves resulting from sketching can contain noise,
and localized deformation can also introduce jaggy parts. It might be possible
to automatically apply denoising after each user interaction, but it is not clear to
which extent smoothing should be applied. Our rubbing tool provides an intuitive
and convenient interface for specifying the target area to apply smoothing to, as
well as the amount of smoothing. A similar, gesture-based smoothing operator for
implicit surfaces is presented by Galyean and Hughes [GH91]. Our current imple-
mentation moves each vertex being rubbed one by one so that it locally improves
inner and outer fairness.

Erasing tool and type change tool

The erasing tool works as a standard curve segment eraser: the user drags the
cursor along a control curve to erase it. This is equivalent to removing constraints
that define the surface. The system optimizes the surface when the user finishes
an erasing operation (releases the mouse button, Figure 3.7). The type change tool
is for changing the type of a control curve. Like the erasing tool, the user drags
the cursor along a curve to change the property. If the curve is a sharp curve,
it converts it to a smooth curve (or curve segment), and vice versa. As with the
erasing tool, the system updates the surface geometry according to the property
change and presents the result after the user finishes the operation (releases the
mouse button, Figure 3.8).
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Figure 3.8: Changing the curve type (left: before the change, middle: immediately after

the change, right: after surface optimization).

3.3 Algorithm

3.3.1

To implement the described interface we propose an algorithm that consists of two
main steps: curve deformation and surface optimization. The additional steps,
mesh construction and remeshing (Section 3.3.3), only occur at the end of the
modeling operations creation, extrusion, cut, and deformation.

Instead of solving for both curve positions and fair surface simultaneously, we
have found that decoupling the curve deformation from the surface optimization
step is fast, intuitive, produces aesthetically pleasing results, and supports our
fundamental principle of defining shape by control curves. The user first deforms
(pulls) the curve(s) using the deformation tool (Section 3.3.1), after which the new
curve positions are fed to the surface optimization step as positional constraints
(Section 3.3.2). During curve pulling, these two operations are performed sequen-
tially to achieve interactive updates of both the curves and the surface they define.

Curve deformation

The user interface for curve deformation is a usual direct manipulation method:
the user grabs and drags a point on a curve, and the curve deforms smoothly
within the peeled ROI. The current implementation always moves the grabbed
point parallel to the screen.

The algorithm we use is a variant of detail-preserving deformation meth-
ods using differential coordinates [Sor06], combined with co-rotational meth-
ods [Fel07]. Geometry is represented using differential coordinates, and the
final result is obtained by solving a sequence of linear least-squares prob-
lems, subject to boundary (positional) constraints. The main challenge in this
framework is the computation of appropriate rotations for the differential coor-
dinates. One approach is to explicitly compute rotations beforehand, typically
by smoothly interpolating the prescribed orientation constraints defined by the
user [YZX 104, LSLCO05, ZHS™05, ZRKS05]. These methods are not appli-
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cable in our setting because the user should only need to drag a vertex without
specifying rotations. Another approach is to implicitly compute rotations as a lin-
ear combination of target vertex positions [SLCO™04, FAT07]. Our technique is
similar to these methods, but we explicitly represent rotation matrices as separate
free variables. This is due to the fact that neighboring vertices along a curve are
nearly collinear and inappropriate for deriving rotations from them.

Conceptually, what we want to solve is the following error minimization prob-
lem

argmin{ZHL(Vi) —R§;|*+ Z lvi —vill*+
v.R i

ieCy

Y R -R2+Y ||R,~—R;||%},

i,jeE i€eC,

(3.1)

where L(-) is the differential operator, v; represents the vertex coordinates, R;
represents rotations associated with these vertices in the deformed curve, || - ||¢
is the Frobenius norm, E is the set of curve edges, C; and C, are the sets of
constrained vertices, and primed values are given constraints. The first term mini-
mizes the difference between the resulting differential coordinates and the rotated
original differential coordinates d;. The second term represents positional con-
straints (we use three constrains: two at the boundary of the ROI and one at the
handle). The third term ensures that the rotations are smoothly varying along the
curve [ACPO3, SP04, FAT07], and the last term represents rotational constraints
(we use two constraints at the boundary of the ROI). These four terms also need
to be appropriately weighted to obtain visually pleasing results. We have omitted
these weights in the above equation for simplicity.

A problem with this approach is that R is not linear. Unconstrained transfor-
mation includes shearing, stretching, and scaling, which is undesirable for our
application. Similar to [SLCO™04], we therefore use a linearized rotation matrix
to represent small rotations. In order to accommodate large rotations, we itera-
tively compute the gross rotation by concatenating small delta rotations obtained
by solving a linear system at each step.

In summary, what we solve in each step is the following minimization problem

argmin{ Z IL(v:) — RS ||* + Z lvi — Vi[> +
i

v,r ieCy (32)
Z ||I‘l'Ri—l’jRj||12:+ Z ||riRi_R;||127}7
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where R; is the gross rotation obtained from the previous iteration step and fixed
in each minimization step. r; is a linearized incremental rotation represented as a
skew symmetric matrix with three unknowns

1 —riz riy
r, = riz 1 —Tix
—Tliy Tix 1
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Figure 3.9: Rotated local coordinate frames (red) after curve deformation by pulling a
single vertex.

As a whole, this minimization problem amounts to the solution of a sparse linear
system and it returns optimal vertex positions and delta rotations r;. We update
target gross rotations as R; < r;R;, and also orthonormalize them using polar
decomposition [FAT07]. Figure 3.9 shows the resulting gross rotations obtained
using three iterations of this algorithm.

One remaining issue is the choice of differential coordinates L. We have tested
two options: first order differentials (Lg) and second order differentials (L)

1
—ZVJ'.

Lo=vVi—Vi-1, L1=Vz‘—|N'|
HjeN;

L seems to be the popular choice for surface deformation. However in our case,
we found that L; is not appropriate for the estimation of rotations because it al-
most always degenerates (i.e. is close to zero) in a smooth curve. On the other
hand, L always has certain length in an appropriately sampled curve and serves
as a reliable guide for estimating rotations. One problem with Ly based geome-
try computation is that it causes C' discontinuities on the boundaries of the ROL
Therefore, we first use L for the iterative process of rotation estimation, and then
switch to L for computing the final vertex positions using the estimated rotations.
This combination is a bit complicated, but gives the best results in our experi-
ments.

Physically inspired methods, such as PriMo [BPG06], have become very popu-
lar in the context of surface modeling. For comparison and experimentation pur-
poses we have implemented a variant of PriMo tailored to 3D curves; each curve
segment defines a (3D) prism. While PriMo is an excellent choice for the simula-
tion of physically plausible deformation, we found it to be unsuitable for our curve
editing tool. When the curve is compressed it shows undesirable buckling, while
when stretched it loses local detail. Both phenomena result from length preserva-
tion, inherent to all physically inspired curve deformation algorithms. In contrast,
our uniform discretization of the Laplacian (L) tolerates some anisotropic scaling
(see Figure 2.14 in Section 2.3). For a comparison of our method to PriMo, see
Figure 3.10.
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Figure 3.10: Comparison of our curve deformation to a physically based approach inspired

by PriMo.

3.3.2 Surface optimization
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It is important to provide real-time visual feedback to the user during control curve
deformation. This constraint necessitates the use of a fast surface optimization al-
gorithm. An intuitive choice appears to be some discrete surface defined as the so-
lution of a sparse linear system [Sor06, BS07] (see Section 2.1.2 for an overview
on linear variational methods). If we kept the system matrix constant during inter-
action, updating the positions would only require back-substitution, which is very
fast. Unfortunately, in our setting we have encountered a shortcoming inherent
to these algorithms, which is due to the absence of normal constraints along the
curves. Specifically, if the positional constraints lie in a subspace, the solution will
also be constrained to lie in this subspace. In our tool, the initially sketched curve
is planar, so the resulting mesh geometry is also planar, see Figure 3.11. We prove
this property for the constructions of [BK04a] and [SCO04] in Appendix A. Even
in the presence of non-planar positional constraints, surfaces from [SCO04] or the
linearized thin plate surfaces of [BK04a] seem to concentrate curvature near the
curves, see Figure 3.12 (left column).

The problem could be solved by asking the user to specify normal constraints
for the curves. In most mesh editing tools, normal constraints are implemented by
fixing n-rings of adjacent vertices. We have not considered this as an option, since
it is our strict design goal to keep the interface simple. Instead, we have chosen to
implement a solution which generates a fair surface S that interpolates the control
curves by means of nonlinear functional optimization, also known as (nonlinear)
variational surface design. There are a variety of possible objective functions to
choose from. Welch and Witkin [WW94] compute surfaces that minimize the
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Figure 3.11: The results of least-squares meshes (left) and our non-linear solution (right)
for a planar curve.

integral of squared principle curvatures K; and K,
E,= /S(K% +13) dA, (3.3)

which is also known as thin-plate energy, while Bobenko and Schroder’s [BS05]
surfaces minimize the closely related Willmore energy

Ew= [0~ ) da, (3.4)

implemented as a flow. They use this flow for smoothing and hole filling. Moreton
and Séquin’s [MS92] surfaces minimize variation of curvature

2 2
E, :/ (d‘f”) ¥ (d‘f”) dA, 3.5)
s\dé; dé
which is the integral of (squared) partial derivatives of normal curvature K, w.r.t.
the directions é1, é, of principal curvatures.

Each objective function has its own strengths and weaknesses, which also heav-
ily depend on how it is implemented. Based on these previous results and our own
experiences, we chose to compute a surface, which results from a sequence of
optimization problems. This is inspired by a surface construction method pre-
sented by Schneider and Kobbelt [SKO1]. The partial differential equation (PDE)
governing fairness in their work is defined as AgH = 0, where Ap is the discrete
Laplace-Beltrami operator, and H = (k| +K»)/2 is the mean curvature. Their ba-
sic idea is to factorize this fourth order problem into two second order problems
and solve them sequentially. First they compute target mean curvatures (scalars)
that smoothly interpolate the curvatures specified at the boundary, and then move
the vertices, one vertex at a time, to satisfy the target curvatures.

However, the second stage of their technique is not fast enough to provide inter-
active updates of the geometry when the user pulls the curve. In addition, we are
lacking curvature information at the boundaries. Our idea for a faster computation,
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:

Figure 3.12: Least squares mesh (= linearized thin plate surface A’x = 0, left) and the
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results of our nonlinear solution (right).

is to cast both second order problems as sparse linear systems that use a constant
system matrix. This allows factoring the matrices once and then performing only
back-substitution during the iterations.

In particular, in the first second-order system we replace the geometry depen-
dent Laplace-Beltrami operator by the uniformly discretized Laplace operator and
solve the following least-squares minimization problem

argmin{Z\IL(Ci)|\2+Z\ICi—C§||2}7 (3.6)

where L(-) denotes the discrete graph Laplacian, to obtain a set of smoothly vary-
ing Laplacian magnitudes (LMs) {c;}, which approximate scalar mean curvature
values. The first term requires that the neighboring LMs vary smoothly and the
second term requires the LMs at all vertices to be near the current LM ¢/. In the
first iteration we set target LMs only for the constrained curves using the scalar
curvatures along these curves. Unlike [SKO1], where the curvature is fixed at the
boundary, these initial target LMs are likely to change in subsequent iterations.
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To obtain a geometry that satisfies these target LMs we use the uniformly
discretized Laplacian as an estimator of the integrated mean curvature nor-
mal [WBH"07]. The integrated target Laplacian 8; = A; - ¢; - n; per vertex is
given as the product of an area estimate A; for vertex i, the target LM ¢; and
an estimate of the normal n; from the current face normals (see Section 2.3.2).
Then new positions could then be computed by solving the following global
least-squares system

argmin{Z|]L(vi)—5i|\2—l—ZHV,-—VH|2}, (3.7)
v i i€C

where the first term requires that the vertex Laplacians are close to the integrated
target Laplacians, and the second term places positional constraints on all vertices
in the control curve set C.

However, our assumption that the uniformly discretized Laplacian is a reason-
able estimate for the integrated mean curvature normal does not hold when the
edges around a vertex are not of equal length. Rather than using a geometry de-
pendent discretization, which would require recomputation of the system matrix
in each iteration, we try to achieve equal edge lengths by prescribing target edge
vectors. For this, we first compute desired scalar edge lengths, similar to the com-
putation of desired target LMs, by solving

argmin{ZHL(e,-)HZ—l—ZHe,——e;Hz}, (3.8)

for a smooth set {e¢;} of target average edge lengths, from the current set of the
average lengths ¢} of edges incident on vertex i. Again, we start the iterations by
using only the edge lengths along the given boundary curve. Note that the matrix
for this linear system is identical to the system for computing target LMs, so that
we can re-use the factored matrix.

From these target average edge lengths, we derive target edge 3-vectors 1;; for
a subset B of the edges in the mesh

Nij = (eit+e;)/2-(vi—v;)/[[Vi— vl (3.9)

Using this set of target edge vectors, we modify the linear system in Equation 3.7
to derive the updated vertex positions as follows:

argmin{ Z IL(vi) — &>+ Z lvi —vilI* +
v 7

icC

y Hvi—vj—mjuz}.

(i,j)€B

(3.10)

We have found that it is sufficient to only constrain edges incident to the con-
strained curves, because setting the uniformly discretized Laplacian equal to vec-
tors in normal direction automatically improves inner fairness at all free vertices
(for a detailed description, see Chapter 6).
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Figure 3.13: A single iteration of our surface optimization algorithm.
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The two-step process, consisting of solving for target LMs and edge lengths
and then updating the positions, is repeated until convergence. In practice, we
observed that the computation converges rather quickly, in approximately 5 to
10 iterations. The system needs to repeatedly solve a few sparse linear systems,
but the expensive matrix factorizations are required only once at the beginning
(because left-hand side matrices remain unchanged during iteration). The system
only needs to run back-substitutions during the iterations, which is very fast. See
Figure 3.13 for an overview of one iteration.

While the algorithm described above is stable and robust, it is not entirely in-
dependent of tessellation, since we use the uniformly weighted graph Laplacian
as an approximation of the integrated mean curvature normal to avoid matrix fac-
torization in every iteration. To overcome this, we could compute a minimal en-
ergy surface as Schneider and Kobbelt [SKO1] propose. As an experiment with
a non-linear solution that is independent of surface tessellation, we have imple-
mented the inexact Newton method for Willmore flow described in [WBH™'07].



3.3 Algorithm

VALAVAYANA

<7
e Y,

Figure 3.14: Initial mesh generation. The sketch curve (left) is resampled, smoothed (2nd

3.3.3

from left) and intersected with a regular triangular grid (3rd from left), resulting
in the mesh topology used for surface optimization (right).

We have found that our algorithm tends to generate very similar results if the dis-
cretization is near-regular and that, as expected, there are situations where unequal
edge lengths along the fixed boundaries would benefit from the discretization-
independent solution. However, not only are these techniques significantly slower
to an extent that makes them unsuitable for most interactive editing situations, we
have also encountered that the solution can become unstable when using insuffi-
cient boundary constraints, that is, curves without normals (this is expected and
mentioned in [WBHT07]).

Meshing and re-meshing implementations

The system generates a new mesh after the creation, cut, and extrusion operations.
In the case of cut, the system flattens the intersection (it is always developable)
and generates a 2D mesh inside of it. In the cases of creation and extrusion, the
system generates a 2D mesh on the image plane within the region surrounded by
the input stroke. The system first resamples the input stroke and then smoothes it
by moving each vertex to the mid point of adjacent vertices. It is possible to skip
this process, but the resulting mesh is nicer for our purpose because it ends up gen-
erating more triangles in high curvature areas. The resampled stroke is intersected
with a regular triangular grid mesh, and each point of the resampled stroke is con-
nected to the nearest grid vertex. Both front and back sides are created from the
same 2D mesh and stitched together at the common boundary (Figure 3.14). Note
that this merely defines the mesh connectivity, not the actual geometry, which is
computed subsequently as described in the previous section.

As the geometry is changed by the user, it may become necessary to remesh
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the surface. One possible approach is to interleave mesh topology updates and
vertex position updates as in [WW94]. Unfortunately, our surface optimization
algorithm heavily relies on pre-factorization of the Laplacian matrix, which is de-
fined by mesh topology. If the mesh topology changes during optimization, the
factorization must be computed again, which is a significant overhead. There-
fore, we apply remeshing only when a large change occurs, and use a constant
topology mesh during (continuous) deformation and surface optimization to pro-
vide real-time feedback. Specifically, we apply remeshing after each sketch-based
modeling operation, and when the user releases the mouse button after a deforma-
tion (pulling) operation. We use a modified version of explicit remeshing [SGO03]
in our system.

Results

Figure 3.15 shows shapes that are difficult to model with implicit representa-
tions [TO02, KHRO02, SWSJ05]. CSG operations allow the user to represent
closed sharp curves along a boundary [SWSJO05], but it is problematic to rep-
resent an open sharp curve starting in the middle of a smooth surface. It is also
difficult to represent point sharp (e.g., the tip of a cone) using the standard implicit
representation. Both can be modeled with our system (Figure 3.15). Markosian
et al. [MCCH99] show that it is possible to include some creases on the surface
by tracing the implicit surface with an explicit mesh, but the basic geometry is
defined by a user-defined polygonal skeleton, not by surface curves.

Figures 3.16 and 3.17 show some more complex results obtained with our mod-
eling tool. While the models shown in Figure 3.1 each took a trained user ap-
proximately 5-10 minutes to create, those depicted in Figures 3.16 and 3.17 took
between 10 minutes (arm) and 1 hour (torso). See the accompanying video for
more details on the construction process.

We have conducted an informal user study to test FIBERMESH. We trained
first-time novice users for approximately 10-15 minutes, and then let them create
some models (Figure 3.18). We also asked a professional 2D animation artist to

Figure 3.15: Open sharp curve (left) and point-sharp curve (right).
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Figure 3.16: Some results obtained using FIBERMESH.

evaluate our system (Figure 3.19). To quote the artist:

"One great thing about this system is that one can start doodling with-
out having a specific goal in mind, as if doodling on paper. One can
just create something by drawing a stroke, and then gradually de-
form it guided by serendipity, which is very important for creative
work. Traditional modeling systems (parametric patches and subdi-
vision surfaces) require a specific goal and careful planning before
starting to work on the model, which can hinder the creative process."

Furthermore, we have learned that (a) FIBERMESH indeed supports the skill trans-
fer from traditional 2D sketching to 3D modeling, (b) while the system does re-
quire some practice, the amount is reasonable and acceptable and (c) creating
separate models first and then merging, as well as animation tools would be very
useful.

Our current implementation is written in Java running on the Windows platform.
Mesh processing routines are written in Java, but sparse matrix solvers are written
in native code (linked via JNI). We are testing the system on an Intel Pentium M
1GHz machine, where it runs in interactive rates. Factorization takes less than a
second, and interactive curve deformation (including surface optimization) works
in 10-15 fps in most of our examples (600-2000 vertices). We currently process
the entire mesh as a single system throughout the deformation, which causes some
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Figure 3.17: Some fishy results obtained with the FIBERMESH tool.

3.5
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slowdown when the model becomes complicated. Note though, that it is straight-
forward to handle larger meshes by editing only a subset of the mesh, while fixing
the rest.

Discussion

Our current implementation uses a curve only as a series of positional constraints.
However, we can expect that curves have more information. For example, when
an artist defines a shape with curves, it is often the case that these curves indicate
the principal curvature direction of the surface. It is also natural to expect that the
character lines form curvature extrema. It might be possible to obtain better (more
intuitive and aesthetically pleasing) surfaces by taking these issues into account
during optimization. One interesting direction to explore would be to create a quad
mesh that follows the direction of the curves. Quad meshes naturally represent
principal curvature directions and would make it possible to handle minimum and
maximum principal curvatures separately. Quad meshes are also desirable when
the user wants to export the resulting model from our system and continue editing
it in a standard modeling package.

Multi-resolution (hierarchical) structure would be necessary to construct more
complicated models than those shown in this chapter. Our current implementation
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Figure 3.18: Results obtained from first-time novice users. Model creation took 10, 10 and
20 minutes, respectively.

can successfully handle individual body parts such as torso, finger, and face, but
the construction of an entire body consisting of these parts would require some
mechanism to handle the part hierarchy. One interesting approach would be to al-
low the user to add a "detailed mesh" on top of a "base mesh" as in multi-resolution
approaches. Traditional multi-resolution meshes require fixed mesh topology, but
our optimization framework might be able to introduce a topologically more flex-
ible structure.

In a similar vein, we exclusively focused on surface-based control (curves on
the surface) in this work. However, in practical modeling purposes, a skeleton
based approach might be better in some cases, such as a modeling of simple tube-
like arms and legs. Welch and Witkin [WW94] actually combined surface-based
control and skeleton based control. It might be interesting to explore further into
this direction, especially in the context of character animation.
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Figure 3.19: Creations from a professional 2D animation artist. Modeling took 10, 20 and
20 minutes, respectively.
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Chapter 4

A Sketch-Based Interface
for Detail-Preserving
Mesh Editing

4.1

Introduction

A few strokes suffice to sketch the main features of a shape. This is why designers
still prefer using pen and paper to invent and communicate, and explains the great
success of sketch-based shape modeling approaches, such as SKETCH [ZHH96]
and Teddy [IMT99]. In this work, we add to the existing toolbox of sketch based
shape modeling techniques. Our contribution is a tool for sketching significant
shape details on already existing coarse or detailed shapes. We believe the im-
portant first step of creating the basic shape from scratch is essentially solved:
either based on sketching (apart from the pioneering works mentioned above, see
also [CHZ00, KHRO02, IHO3, BCCDO04] and our contribution in Chapter 3) or us-
ing other modeling techniques. Ideally, a sketch-based modeling system for 3D
shapes should use the very same sketches that designers would draw on a piece of
paper to convey the shape. What are these lines? As pointed out by Hoffman and
Singh [HS97], the human visual system uses silhouettes as the first index into its
memory of shapes, making everyday objects recognizable without color, shading
or texture, but solely by their contours. In the area of non-photorealistic rendering
(NPR), silhouettes have been used extensively [GGO1] and recently they have been
extended to suggestive contours: curves on the shape that might be silhouettes in
nearby views [DFRS03]. The apparent presence of a feature line in a picture of
a shape results from an abrupt change in illumination. Apart from view depen-
dent features for which this happens or might happen in a nearby view, change of
illumination generally correlates with curvature. Lines of curvature extrema (i.e.
ridges and ravines) have, therefore, also been used in NPR for conveying shape.
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Figure 4.1: With a few strokes we have greatly increased the expressiveness of the CAMEL

54

model (bottom left). See Figure 4.2 for details.

We come to the conclusion that sketching a shape is inverse NPR. Con-
sequently, we design a sketch-based modeling interface using silhouettes and
sketches as input, and producing contours, or suggestive contours, and ridges /
ravines. The user can sketch a curve, and the system adapts the shape so that the
sketch becomes a feature line on the model, while preserving global and local
geometry as much as possible. As the requested properties of the sketch cannot
or should not always be accommodated exactly, users only suggest feature lines.

It might seem obvious to let users alter contours, or ask for a line in space to be a
feature line. Interestingly, our concurrent goals of preserving the global and local
geometry during the edit while using feature lines for defining the edit are diffi-
cult to implement using traditional approaches: typical sketching tools [IMT99,
KHRO02, FRSS04] do use silhouettes, however, they create only smooth shapes.
Some operations of sketching techniques might preserve geometric detail, how-
ever, they are not based on inserting feature lines into the shape [DE03, KGO5].
In general modeling environments, such as space deformation techniques (e.g.,
[SP86, SF98]) and multi-resolution or subdivision mesh modeling approaches
[ZSS97, KCVS98, BLZ00], it can be difficult to incorporate the displacement of
a feature curve: these approaches provide a basis that spans a space of shapes; the
requested displacement has to be translated into coefficients of this basis. In gen-
eral, this might be impossible, and an approximate solution typically leads to a dif-
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Figure 4.2: Our mesh editing tool in action. First row [(1)-(3)]: First, we open the mouth of
the CAMEL model (1) by detecting an object silhouette, and sketching an approx-
imation of the lip shape we want (2) (See Section 4.3). Note that in (2) the yellow
curve is the original object silhouette, the green curve is the user sketch, and the
dark blue region is the result of a previously placed sketch. By sketching directly
onto the model (3) we produce a handle (yellow) by which we can lift the eyebrow
with the green sketch. Second row [(4)-(6)]: For the creation of sharp features we
sketch the feature line (4) and then scale the affected Laplacians to produce either
aravine (5) or aridge (6) (See Section 4.4.2). Third row [(7)-(9)]: If we are not yet
satisfied with the ridge in (6), we can edit the newly created object contour using
our silhouette tool (7). Sketching a ravine under the eye by geometry adjustment
(See Section 4.4.1) is shown in (8) and (9). Fourth row [(10)-(12)]: Finally, we
sketch a subtle suggestive contour near the corner of the mouth in (10) and (11)
(See Section 4.4.3), resulting in the SCREAMING CAMEL model (12), shown in
Figure 4.1.
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ficult inverse problem (see also Botsch and Kobbelt [BK04a]). Our idea becomes
realizable through the recent trend to cast mesh modeling problems as discrete
Laplace or Poisson models [Ale03, BK04a, SLCO™04, YZX 04, SP04, Sor06].
Within this framework, it is easy to displace a set of edges (e.g., sketch a new
position of an identified contour) while preserving the geometric details of the
surface as much as possible. However, most of the feature lines we want to use
have specific differential properties, either absolute or relative to the viewing di-
rection, and they might not coincide with edges on the mesh. We therefore extend
the framework of Laplace/Poisson mesh modeling in the following ways: (a) we
accommodate constraints on the normals and the curvature; (b) we allow con-
straints to be placed on virtual vertices (vertices placed on edges that only serve
to implement the constraints but are never added to the mesh); (c) we incorporate
a tangential mesh regularization which moves edges onto sharp features while
ensuring well-shaped triangles.

This mesh modeling framework together with a user-interface mostly based
on sketching suggested feature lines onto or around a shape, indeed, yields an
intuitive shape modeling technique.

Mesh modeling framework

The basic idea of the modeling framework is to satisfy linear modeling constraints
(exactly, or in the least squares sense), while preserving differential properties of
the original geometry. This technique has recently been presented in various fash-
ions and we only briefly explain the main concepts. For more detailed explana-
tions see the references given below and Section 2.4. One way of deriving these
linear constraints is to ask that the Laplacian of the original geometry be preserved
in the least squares sense [Ale03, LSCOLO4]. Let the mesh be represented as a
graph G = (V,E), consisting of vertices V and edges E. Let V = (v, vy,...,V,),
Vi = (Vip,Viy, Vi) € R? be the original geometry and A the Laplace operator, then
the deformed geometry V' is defined by the constrained minimization

V' = argmin || AV — AW|?, (4.1)
W

where the vertices might be weighted differently to trade-off between modeling
constraints and the reproduction of original surface geometry. Note that this is
equivalent to solving a linear system of the form AV’ = b in the least squares sense.
If the original surface was a membrane, the necessary constraints for the mini-
mizer lead to A2V’ = 0, which has been advocated by Botsch and Kobbelt [BK04a]
in the context of modeling smooth surfaces. If, in contrast, the original surface
contained some detail, the right-hand side is non-zero and we arrive at a variant of
the discrete Poisson modeling approach of Yu et al. [YZX104].

The modeling operation is typically localized on a part of the mesh. This part
of the mesh is selected by the user as the region of interest (ROI) during the in-
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teractive modeling session (with a lasso tool). The operations are restricted to this
ROI, padded by several layers of anchor vertices. The anchor vertices yield posi-
tional constraints v; = v; in the system matrix A, which ensure a gentle transition
between the altered ROI and the fixed part of the mesh. Based on the constraints
formulated so far, local surface detail is preserved if parts of the surface are trans-
lated, but changes with rotations and scales. One way of dealing with this is to
define local rotations per vertex a priori. Lipman et al. [LSCOLO04] compute these
rotations from a smoothed solution of Eq. 4.1, Yu et al. [YZX04] let the user
specify a few constraint transformations and then interpolate them over the sur-
face. However, we would like to incorporate the treatment of directions into the
modeling phase so that some of the details have a fixed (normal) orientation, while
others may rotate. Thus, we adopt the approach of Sorkine et al. [SLCO"04], who
define the local rotations and scales by comparing one-rings between V and V’.
However, we discretize the Laplace operator using cotangent weights as recom-
mended by Meyer et al. [MDSBO03]. The conditions to be satisfied lead to an
overdetermined system of linear equations of the form AV’ = b, which we solve
in the least squares sense according to the normal equations AT AV' = ATb. For
information on how to derive the rows resulting from Eq. 4.1 see [SLCO"04] and
Section 2.4.

We extend this framework towards constraints on arbitrary points on the mesh.
Note that each point on the surface is the linear combination of two or three ver-
tices. A point on an edge between vertices i and j is defined by one parameter
as (1—A)vi+Av;, 0 <A< 1. Similarly, a point on a triangle is defined by two
parameters. We can put positional constraints ¥;; on such a point by adding rows
to the system matrix A of the form

(I=MVi, + M) =i, (4.2)

Furthermore, we extend the framework by using other forms of differentials to
achieve some additional effects. Let d; be the Laplacian of v;, the result of apply-
ing the discrete Laplace operator to v;, that is

8,’ =V;— Z WijVj, (43)
{i,j}€E

where }.1; nepwij = 1, and the weights w;; are determined using the cotangent
weights [MDSBO3]. An important benefit of this weighting is that §; points in the
normal direction, and the length ||3;|| is proportional to the mean curvature around
vertex i. This allows us to prescribe a certain normal direction and/or curvature 9
for a vertex, simply by adding a row to A of the form

vi— Y, wivi =38 (4.4)
{ijteE

Setting the normal direction is necessary for contours and suggestive contours,
setting the curvature — for ridges or ravines.
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To access the tangential location of vertices, we use the uniform operator as a
discrete Laplacian and relate it to the cotangent weighted Laplace operator. We
exploit this for regularizing the mesh in tangential direction, by asking that

V;—a’l-_1 Z V}:V,'— Z Wijvj, 4.5)
{i,j}€E {i,j}€E
where d; is the degree of vertex i. The rationale behind this operation is this: the
uniformly weighted operator generates a tangential component, while the cotan-
gent weighting does not. Asking that they are equivalent is essentially solving the
Laplace equation but only for the tangential components. The result is a mesh
with well shaped triangles, preserving the original mean curvatures as long as the
tangential offset is not too large. Note that we typically restrict this operation to
small regions, so that large tangential drift cannot occur.
In the following sections, we explain how to use these basic building blocks for
satisfying user-defined feature lines on a mesh.

Silhouette sketching

Our goal 1s to identify areas of the model that are easily recognized, and for which
our memories hold vast databases of possible variations, and then apply these
variations by sketching them. The idea is simple yet effective: after defining a
region of interest on the surface and a camera viewpoint, we select (and trim) one
of the resulting silhouettes, and then sketch a new shape for this silhouette (see
Figure 4.3).

For the computation of silhouettes on polygonal meshes, various methods
are available, see [Her99]. We have chosen to use object space silhouettes,
and include the ability to switch between edge silhouettes (mesh edges, for
which one adjacent face is front-facing and one is back-facing) and smooth
surface silhouettes [HZ00]. Hertzmann and Zorin [HZ00] determine the sil-
houette on mesh edges e = (v;,v;) by linearly interpolating corresponding ver-
tex normals n;,n;: a silhouette point p= (1 —A)v;+Av; on e has to satisfy
((1=A)n;+2An;)- (p—c) =0, where ¢ is the viewpoint. Silhouette points on
edges are connected by segments over faces.

During editing, the user first picks one of the connected components, and then
interactively adjusts the start and end point by dragging them with the mouse.
Note that degenerate silhouette edge paths might lead to multiply connected
curves, resulting in non-intuitive user interaction. Smooth silhouettes [Her99]
remedy this problem on smoothly varying surfaces, and only for models with
distinct sharp features (such as CAD models), mesh edges are used as silhouettes.
In any case, the selected silhouette segment is represented as a set of points q; on
the mesh.

After selecting a silhouette segment, the user sketches a curve on the screen,
representing the suggested new silhouette segment. The sketch is represented as
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Figure 4.3: Sketching a very recognizable ear silhouette: we detect, select, crop and pa-
rameterize an object silhouette (yellow, the green and red balls represent begin
and end vertices respectively), and then sketch a new desired silhouette (green).

a polyline in screen space. The vertex locations s; on this polyline result in con-
straints on mesh vertices as follows: First, silhouette vertices (; are transformed
to screen space (the first two components contain screen space coordinates, while
the third contains the z-value). Then, both curves are parameterized over [0, 1]
based on edge lengths of the screen space polylines. This induces a mapping from
q; to {s;}, defining a new screen space position ¢ (note that q; retains the z-value

of q,-).

The new position ¢ in screen space is transformed back to model space and
serves as a positional constraint. Note that when using smooth surface silhou-
ettes, on-edge constraints have to be used (see Eq. 4.2). Additionally, varying
the weighting of positional constraints along the silhouette against Laplacian con-
straints leads to a trade off between the accurate positioning of silhouette vertices
under the sketch curve, and the preservation of surface details in the ROI. To
achieve this, we simply multiply the affected rows in A and b with the selected
weighting factor. For example, the result in Figure 4.3 follows the sketch closely,
whereas the sketch in Figure 4.4 only hints at the desired lip position.
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Figure 4.4: Sketching an approximate CAMEL lip by reducing the weights on the positional
constraints for silhouette vertices.

This method works well even for moderately noisy and bumpy surfaces and
preserves details nicely (see Figure 4.5). Note that for very noisy surfaces, object
space silhouette paths and loops may become arbitrarily segmented, in which case
our silhouette sketching method is no longer applicable. In such cases, sketch edit-
ing can be performed relative to any user-defined curve sketched manually onto
the surface, as was done for lifting the eyebrows of the CAMEL, see Figure 4.2(3).

The matrix AT A is computed and factored once for each ROI and silhouette
curve selection, and we simply solve for each sketch by back substitution [Tol03].
Some editing results in Figure 4.1 were obtained by using the silhouette editing
capabilities of our system: sketching larger ears, opening the mouth and modify-
ing the nose contour.

Figure 4.5: Editing the bumpy ARMADILLO leg: although the silhouette (yellow) in the
ROI (blue) has substantial depth variation and the desired silhouette (green) is
smooth, properly weighting the positional constraints retains the surface charac-
teristics after the edit.
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4.4 Feature and contour sketching

4.4.1 Geometry adjustment

Suppose we intend to create a potentially sharp feature where we have drawn our
sketch onto the mesh. To create a meaningful feature (i.e. aridge, ravine or crease)
on a mesh, we must first adjust the mesh geometry to accommodate such a feature
directly under the sketch, since in our setting the sketch need not run along an
edge path of the mesh. To illustrate this, see Figure 4.6(a), where the sketch path
{si} (green) follows the edges on the left, but runs perpendicular to them on the
right. By applying repeated subdivision we could have locally adjusted the mesh
resolution, but for situations similar to the one in Figure 4.6(a), many levels of
subdivision would be necessary to properly approximate the sketch with an edge
path. Another option would be to cut the mesh along the sketch; however, we have
found a simpler method that avoids increasing the mesh complexity, yields nice
feature lines and well-shaped triangles while retaining the original mesh topology.
In detail:

1. The triangles in the ROI are transformed to screen space; triangles intersect-
ing {s;} are gathered (Figure 4.6(a), dark triangles) and the begin and end
mesh vertices are identified.

2. An edge path V, = (v,,,Vp,,...,Vp,) that is close to {s;} is computed by
solving a weighted shortest path problem in the edge graph of the ROI. The
weight for each edge is the sum of its vertices’ screen space distance to
{si}. The resulting edge path vertices are generally not on, but close to {s;}
(shown in red in Figure 4.6(a)).

3. The path vertices V,, are mapped onto closest edges of the sketch path {s;}
in screen space; corresponding z-values are computed from restricting each
vertex to move on its tangent plane, as defined by the original vertex normal
(Figure 4.7, left). The resulting edge path closely follows the sketch curve
(Figure 4.6(b)), yet may introduce badly shaped triangles.

We improve triangle shapes by relaxing vertices close to the sketch so that their
uniform Laplacian equals the cotangent Laplacian in the least squares sense (See
Figure 4.7, right, and Section 4.2). For the vertex relaxation we must solve a linear
system, much like the actual editing solver, but with constraints given by Eq. 4.5.
Obviously, the edge path vertices must remain under the sketch path during this
procedure. To ensure this, while also giving the edge path vertices a valid degree
of freedom, we add them as positional constraints (Section 4.2), and additionally
add averaging constraints of the form

V,—EV_ —=v, =0, (4.6)
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Figure 4.6: Creating a ravine-like crease: in (a) the green sketch given by the user is ap-
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proximated by the red edge path on the original geometry. We adjust the geometry
to lie directly under the sketch by orthogonal projection along the tangent plane
(b), and then relax the area around the sketch (c). Now we can create the crease by

scaling the Laplacians along the edge path (d), resulting in a sharp feature, even
for this coarsely sampled surface.



4.4 Feature and contour sketching
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Figure 4.7: Adjusting edge path vertices to lie under the sketch curve (left): an object-space

4.4.2

edge path vertex v, is projected to v, in screen space, from there orthogonally pro-
jected onto v on the sketch curve, and then projected back onto the tangent plane
defined by the normal at v,, yielding the new vertex position v,.. Relaxing the
sketch region (right): to ensure a good triangulation after adjusting the geometry,
we perform a relaxation of the edge-path vertices (allow them to move along the
sketch path) and nearby vertices by constraining 0; ;»; form tO Oi corangent 1 the least
squares sense. Qualitatively, this moves v; and v; to v} and v}, while keeping v,
under the sketch.

for all vertices in V, excluding the begin and end vertices. The averaging con-
straint loosens the positional constraint, allowing edge path vertices to move be-
tween their adjacent vertices in the path. Adjusting the ratio of weights between
positional and averaging constraints leads to a trade-off between accurately ap-
proximating the sketch, and some possibly desired path smoothing.

We have experienced no detrimental effects when applying this procedure on
meshes that approximate the underlying smooth surface well, even in areas of
high curvature. Also, small changes might be tolerable, as this region will be
subsequently edited.

After the geometry adjustment step, the surface is prepared for editing opera-
tions in the vicinity of the sketch.

Sharp features

To create a sharp feature along the edge path, we adjust the Laplacians of path
vertices when constructing the A matrix by prescribing the Laplacian transform
for sketch vertices without flexibility to rotate or scale (i.e., as in Eq. 4.4). Since
we discretize the Laplacian using the cotangent weights, we can simply scale the
Laplacians of edge path vertices, resulting in a ridge or ravine, depending on the
sign. If the Laplacian evaluates to zero, as is the case for flat surfaces, we instead
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scale the surface normal and prescribe it as the new Laplacian. As described in
Section 4.3, we factor the matrix AT A once we have selected a sketch, and can
then quickly evaluate the results of varying scales by dragging the mouse up and
down. The creation of a sharp ridge is shown in Figure 4.6(d). Alternatively, we
can add some amount to the Laplacians, making the change absolute rather than
relative. This works well in regions with high curvature variation along the sketch.
We have found it to be very convenient to create a ridge using our modeling
framework, and thereafter treat it as a silhouette from a different camera position
and edit it as outlined in Section 4.3. This technique was applied in the creation
of the wavy ridge along the nose of the CAMEL model in Figures 4.1 and 4.2(7).

Smooth features and suggestive contours

Applying the editing metaphor described in the previous section can only create
sharp features. To enable smooth features or suggestive contours, we need to in-

Figure 4.8: Top: view dependent vertex segmentation and rotation axis assignment. Bot-
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tom left: scaling all Laplacians in the sketch region by the same factor produces
smooth ridges and ravines. Bottom right: rotating all Laplacians by an angle of
—m/2 w.r.t. the blue rotation axes results in a suggestive contour.
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4.5

fluence the Laplacians of more vertices than only those lying on the edge path.
Additionally, for suggestive contours, we intend to manipulate curvature in the
viewing direction. Thus, we need to rotate the Laplacians w.r.t. an axis that is
orthogonal to both viewing and normal vectors. After performing the geometry
adjustment of Section 4.4.1, given the viewing position ¢, we gather and segment
vertices within a user-defined sketch region around the edge path as follows (Fig-
ure 4.8, top):

e For each path vertex v, with normal n, (the yellow vectors in Figure 4.8)
we compute the radial plane r; that passes through v, with plane normal
n,, = (v, —¢) X n,, (the blue vectors in Figure 4.8). Now we can segment
the vertices in the sketch region Vs = (vy,,Vs,, ..., Vy,) such that each sketch
region vertex is associated with one such plane (ergo, each vertex in V;
belongs to one edge path vertex).

e Each vertex in Vj is assigned to the radial plane it is closest to, where the dis-
tance of vy; to plane r; is measured as d; = orthod ist(r;, Vg j) +dist(v,, Vsj).
Here, orthodist measures orthogonal distance to the plane, and dist is the
Euclidean distance between v, and vy;. We take Euclidean distance into
account to avoid problems that occur when two different path vertices have
similar radial planes, and furthermore to limit the support of the sketch re-
gion.

In Figure 4.8 (top image), we show one such segmentation, where the edge path
vertices are highlighted with red circles and the segmentation is color coded (i.e.
all vertices of the same color are associated with the path vertex of that color).

Once we have this segmentation, one possible operation is to uniformly scale
(or add to) the Laplacians of all sketch region vertices. Complementing the sharp
features of Section 4.4.2, this operation gives us smooth bumps and valleys (Fig-
ure 4.8, bottom left). By setting the Laplacians to zero we can flatten specific
regions of the mesh.

An alternative editing behavior results from rotating all Laplacians w.r.t. their
respective rotation axes (given by above segmentation) by a user-defined angle,
determined by dragging the mouse left or right. Note that rotation by 7 is identical
to scaling by minus one. For angles in the ranges [0,7) and (7,27| we create
varying radial curvature inflection points (Figure 4.8, bottom right), resulting in
suggestive contours [DFRS03] such as the cheekbone shown in Figure 4.9. Note
that these inflection points are not necessarily directly under the sketch, since
they result from the Laplacian surface reconstruction and the boundary constraints
around the ROI.

Discussion

Generating plausible and visually pleasing shapes and deformations is far from
trivial: while our capability to derive a mental model from everyday shapes around
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Figure 4.9: Adding a strong cheekbone to the MANNEQUIN model by sketching a sugges-
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tive contour.

us is well developed, we fail to properly communicate this to a machine. This is
why we have to model in a loop, constantly correcting the improper interpretation
of our intentions.

The quality of shape editing, therefore, depends on two factors: the time re-
quired by the system to update the shape after user commands and how well the
shape change reflects our mental model of that process. The update time is a po-
tential bottleneck in our approach, as the necessary matrix factorization and back
substitution depend on the number of vertices and not the complexity of the edit
operation. For example, ROI sizes of 5.5K/12K/33K vertices require 0.7/2.5/7.0
seconds for factorization and 0.035/0.07/0.25 seconds for back substitution on an
Intel P4/2.0 GHz. On the other hand, we believe we have improved the match
between the mental model and shape updates, though this is obviously hard to
quantify.

From a user’s point of view, our system is similar to other sketch-based editing
interfaces [IMT99, KHRO02, DE03, KGO05], while it differs algorithmically: the
above methods are based on space warps and variational implicits, whereas our
representation is aimed at surface detail preservation. Our method inherits the
simplicity of the user interface, and enables the creation of interesting and useful
surface edits, both for inexperienced users and modeling professionals.



4.5 Discussion

Figure 4.10: Some results: a deformed FANDISK with a few more sharp features, a rather
surprised MANNEQUIN with more than just an extra contour around the eye, and
droopy-eared, big-nose BUNNY with large feet.
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Chapter 5

Automated
Sketch-Based Editing of
Surface Meshes

5.1

Introduction

The process of generating 3D shapes in engineering or content creation typically
goes through several design reviews: renderings of the shapes are viewed on pa-
per or a screen, and designers indicate necessary changes. Oftentimes designers
sketch replacements of feature lines onto the rendering. This information is then
taken as the basis of the next cycle of modifications to the shape.

We present a surface mesh editing system motivated by design reviews: given
nothing but the over-sketch of a feature line, it automatically deforms the mesh
geometry to accommodate the indicated modification. Building on existing mesh
deformation tools [SLCO"04, NSACOO05] (see Section 2.4 and Chapter 4), the
main feature of this chapter is the automatic derivation of all necessary parameters
that these systems require as input in real-time.

In particular, Laplacian Surface Editing [SLCO™04], but also most other recent
mesh deformation techniques (e.g., [YZX 04, BPG06]) require the selection of:
handle vertices, the displacement for these handle vertices and a region of interest
(ROI), representing the part of the mesh to be modified to accommodate the dis-
placed handle vertices. For our system, we need to compute this information from
the over-sketched feature line alone; and we do this in fractions of a second. The
steps described below comprise our system (see also Figure 5.1) — breaking down
the problem into these steps and performing each step in few milliseconds are the
main contributions:
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Figure 5.1: Algorithm pipeline. Top row, from left to right: a) user-sketch, b) image-space
silhouettes, c) retained silhouettes after proximity culling, d) handle estimation;
Bottom row, left to right: e) correspondences and ROI estimation by bounding
volumes, f) setup for Laplacian Surface Editing, g) and h) deformation result.
Note that the user only sees a), g) and h).

1. Based on the screen projection of the shape, a subset of pixels lying on
potential feature lines is identified. These pixels are then segmented and
converted to image-space polylines as the set of candidate feature lines.

2. The user-sketch is matched against all polylines to find the corresponding
part on a feature line.

3. Based on the correspondence in image-space, a set of handle vertices in
the surface mesh is selected. The image-space projection of these vertices
covers the detected part of the feature line.

4. New positions for the handle vertices are derived from the displacements
in image-space between the projection of the handle vertices and the user’s
sketch; these are the necessary displacements.

5. A part of the surface mesh around the handle vertices, computed by region
growing, is defined as the ROI.

Note that in steps 3,4, and 5 we compute the necessary input for shape defor-
mation, while steps 1 and 2 are required to identify the input, based only on the
user-sketch.
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5.2 Related work and system design

Sketch-based interfaces are a very popular method for creation and deformation of
3D surface meshes [IMT99, KSvdP07, KSO7]. Deriving the parameters for mesh
deformation from sketches only is not new: Kho and Garland [KGO0S5] derive ROI
and handle vertices from sketching onto the projected shape, essentially implying
a skeleton for a cylindrical part. A second stroke then suggests a modification
of the skeleton, and the shape is deformed according to the deformed skeleton.
However, according to Hoffman and Singh [HS97], we recognize objects mainly
by a few feature lines, namely silhouettes and concave creases. Since the process
of paper-based sketching relies exactly on these features, we feel it is more natural
to use them as the basis for our over-sketching mesh deformation tool. Note that
this line of thought is congruent to Chapter 4: we have enhanced Laplacian Sur-
face Editing techniques to work in the setting of prescribing new silhouettes. In
particular, this requires positional constraints defined on mesh edges and finding
the correspondence between a pre-selected silhouette of the mesh and the over-
sketched silhouette. In Chapter 4 the user manually selects the ROI and a part of
one of the silhouettes as a pre-process. In the work presented in this chapter, all
these manual selections are now automated; the user only provides a single stroke,
from which handle and ROI are estimated (Figures 5.1 and 5.2).

ROI ROI

Handle

i

Target |

Op

Handle

Target |

Op

Target

Handle

Op

Figure 5.2: Required user interaction (from left to right): Chapter 4 [NSACOO05], Kho and

Garland [KGO05], and our approach .

We have also observed that computing silhouettes from the mesh representation
(i.e. in object-space) has problems: the silhouette path on the mesh might fold
onto itself when projected to image-space — specifically, a point of the silhouette
in image-space could map to several pieces of the silhouette on the mesh. As a
result, the mapping from the sketch to handle vertices could be ill-defined. More
generally, the complexity of the silhouette path on the surface is not necessarily
reflected in its image-space projection, making a reasonable mapping from the
sketch to vertices on the mesh difficult.

Because of these problems we detect silhouettes in image-space, and then try
to identify vertices in the mesh that would map onto the detected region in image-
space. Image-space silhouettes are usually obtained using edge detection filters
on the depth map and/or normal map of the shape [Her99]. Typically, the conver-
sion from raster-based edge pixels to vector-based polylines is then achieved by
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Ao

Figure 5.3: Depth map discontinuities (left), Normal map discontinuities (2nd left), com-

bined discontinuities (3rd left), flat shaded scene (right)

applying some morphological operations (e.g. thinning) and finally tracing (e.g.
chain codes). We have decided to restrict the set of feature lines to discontinuities
in the depth map. This approach shows a feasible trade-off between quantity of
feature lines vs. their significance (see Figure 5.3).

Matching a segment of a silhouette in image-space to the user-sketch requires
a metric, defining the distance between polylines. This metric should resem-
ble human perception of similarity. We have found that the important features
are proximity to the candidate feature lines and intrinsic shape (see Figure 5.4).
By intrinsic shape we mean similarity regardless of position and orientation in
space. To maximize this intrinsic shape similarity we use a method by Cohen and
Guibas [CG9IT].

We determine the handle mesh vertices corresponding to the silhouette segment
by selecting vertices that are close to the handle in image-space. The displace-
ments for these vertices are derived from displacements in image-space.

We consider defining the ROI as a form of mesh segmentation, for which var-

Figure 5.4: Handle estimation due to the similarity of handle candidate (red) and targeted
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deformation (green).



5.3 Interface

2.3

2.4

5.4.1

ious geometry-based methods are described (see [KT03, JLCWO06]), and even
image-based approaches are conceivable (see [HIBJT96, PP93b]). Whereas
image-based approaches obviously suffer from occlusion, geometry-based meth-
ods are only restricted by the requirement for interactive response times. Gener-
ally, topologically growing the ROI from the handle vertices is a feasible method.

Once we have defined handle vertices, their transformed target positions and
the region of interest, the application of Laplacian surface editing is straightfor-
ward. Note that the user only provides 2D input and we have found that preserv-
ing the scale in depth leads to more intuitive results than scaling isotropically in
3D. Interestingly, several of the refinements of Laplacian Surface Editing (such
as [SLCO™04]) favor isotropic scaling. For this reason, here we use an approach
in the spirit of [LSCOLO04], where local transformations of each frame are esti-
mated a priori. As previously, we like to stress that other mesh deformation tools
could be used as well.

Interface

Our user interface consists of a single rendering window with an orthogonal pro-
jection, embedded controls for navigation, and the capability of drawing viewport-
aligned strokes (enabled by default). Holding some meta key activates the embed-
ded navigation controls, with which the user can drag the mesh along the hori-
zontal and vertical axis, rotate it by tapping beside it and dragging the mouse, and
scale the current projection by clicking and dragging two invisible sliders on the
left and right screen boundaries.

If the user has determined an appropriate view, placing a sketch near the silhou-
ette implies a deformation. The system identifies the appropriate parameters (see
following sections) and then displays the result. The user has the option to approve
this deformation or to apply refinements by oversketching the new silhouette path.

Algorithm

The user sketches the desired deformation result as a view-dependent polyline.
This polyline simply consists of tracked mouse events, and we apply the Douglas-
Peucker algorithm [DP73] to obtain a simplified version. In the following sections
we detail the steps of our algorithm.

Image-space silhouettes

In this section, we describe how to retrieve image-space 2D polylines that describe
discontinuities in the depth map (and therefore silhouettes) of the scene using two
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steps of detection and extraction. We developed a method that exploits the prop-
erties of a synthetic scene (= absence of noise) to speed up our algorithm, rather
than relying on well established methods like the Canny edge detector [Can86] or
morphological operations.

Silhouette detection

We determine discontinuities in the depth map by applying a 4-neighborhood
Laplacian edge detection filter on each pixel p, along with some threshold 6 ,:

sil(p) := D%, [depth(p)] > 6, (5.1)

We retrieve only edge pixels that describe the foreground of a discontinuity,
since we define the depth range of the scene to (near, far) [0, 1] and use 0, as
a threshold for the signed filter response. Depending on the choice of 8, (we
recommend 0.005), the binary images retrieved consist of continuous silhouette
paths (Figure 5.5, left). Note though, that these paths can be more than a single
pixel wide, especially in areas of high curvature.

Figure 5.5: Depth map with binary overlay from Equation 5.1 (left), degenerated silhouette
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feature (top, right), silhouette caused by a surface crease (bottom, right)

Silhouette extraction

For the subsequent handle estimation (Section 5.4.2), we need to convert the sil-
houette pixel paths into a set of image-space polylines. Aiming for simplicity and
speed, we developed a greedy segmentation algorithm that relies only on local
criteria for silhouette tracing.



5.4 Algorithm

The basic idea of tracing connected components of the silhouettes is that sil-
houette pixels in the image are neighbors on a silhouette segment if they have
similar depth. In other words, two neighboring silhouette pixels a and b are depth
continuous if

cont(a,b) = ||depth(a) —depth(b)|| < 6,. (5.2)

Remember that the silhouette pixels form a path that could be wider than a
single pixel, making the conversion to a poly-line ambiguous. Some approaches
use the morphological operation of thinning to correct this problem. However,
applying morphological operations on the binary silhouette image may result in
silhouette paths that are continuous in 2D, but discontinuous in depth. This is
illustrated in Figure 5.6b: the silhouette terminates on pixel f, if n7 is removed by
erosion, and ||depth(f.) — depth(ng)|| exceeds 0. In this case, n7 is exactly the
pixel that stitches the silhouette together. Instead of developing depth sensitive
morphological operations , we solve this issue by using a local tracing criterion.

The idea for the local tracing is to favor silhouette paths with lower curvature in
image-space — that is, straight silhouettes are favored over ones with sharp corners.
The criterion is implemented as a priority map relative to the direction from which
we entered the current silhouette pixel (see Figures 5.6 and 5.7: a smaller number
in the mask around f, indicates higher priority). Based on the priority mask,
silhouette edge paths are formed by selecting from depth continuous silhouette
pixels.

However, correctly identifying endpoints of silhouette paths requires extra at-
tention. A silhouette path ends in surface creases; and it might appear to end in
sharp creases of the silhouette (see Figure 5.5). It also ends in image-space when
the silhouette is obstructed by another part of the surface, in which case it connects
to another silhouette (see Figure 5.7). Our basic tracing algorithm would correctly

Figure 5.6: Tracing the silhouette path near a degenerate feature (from left to right): a) Ele-
phant’s ear, b) tracing step (f. — n7) with priority map, neighborhood index
(bottom left) and a degenerate feature in light grey (which is removed in a pre-
processing step), c) final silhouette path, d) extracted silhouette.
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Figure 5.7: Maintaining depth map gradient orientation. Path A shows how our tracing
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algorithm maintains depth map gradient orientation with respect to the tracing di-
rection (gradients shown as arrows per pixel) . If we disregard these gradients, the
tracing algorithm will track a bogus silhouette, in this case path B, due to the pre-
ferred tracing direction. Note though, that the silhouette part from path B, which
is missing in path A, will be a separate silhouette segment after all silhouettes have
been traced.

identify endpoints in surface creases, however, it might also classify sharp cor-
ners as endpoints and could connect unconnected parts of the silhouettes if they
happen to have almost similar depth. To avoid terminating in sharp corners, we
remove the tips of silhouettes. Note that surface creases are surrounded by pix-
els with almost similar depth in the depth image, while tips of the silhouette are
not (see Figure 5.5). So we remove tips by repeatedly removing silhouette pixels
if they have less than two depth continuous 8-neighbors in the depth image (see
Figure 5.6, second image). As an additional criterion for identifying connected
silhouette pixels we use consistency of the surface normals along the silhouette
(see Figure 5.7). As we are only interested in the orientation of the normals, it is
sufficient to consider the gradients of the depth map.

In detail, our silhouette extraction algorithm creates silhouette polylines S :
{(v1,d1);-..,(va,dy)} described by vertices v; € R? and depth values d; € R, by



5.4 Algorithm

5.4.2

scanning the binary silhouette image row by row, and extracting feature paths for
any encountered silhouette pixel f : (v.,d.) according to the following algorithm:

1. Create S = ().
2. Append f, to S.

3. Determine next silhouette pixel f,, where
a) f,is adjacent to f;,
b) f, is depth continuous to f, according to Equation5.2,

¢) f, maintains the orientation of depth map gradients w.r.t. the current
tracing direction (see Figure 5.7), and

d) the tracing direction turn caused by f;, is minimal.

4. Mark f. as a non-silhouette pixel.
5. Assign f, to f,.
6. Repeat on 2. until f. = NIL.

Note that a) and b) are determined by Equations 5.1, and 5.2 respectively,
whereas c) ensures continuity of the normals along the silhouette paths (Fig-
ure 5.7). Furthermore, d) is the tracing criterion, navigating the tracing algorithm
through silhouette paths wider than a single pixel.

Since scanning the silhouette image row by row typically encounters a silhou-
ette somewhere inside its path, the tracing algorithm is applied twice for any initial
pixel, in opposite directions.

Handle estimation

To derive the actual handle polyline (a subset of all silhouette polylines), we intro-
duce an estimation metric which reflects the likelihood that an arbitrary silhouette
segment is a good handle w.r.t. the user-sketch (target polyline). As pointed out
before, this scoring function relies on both proximity and similarity.

First, we substitute the silhouette polylines by simplified delegates (polylines as
well, see [DP73]), and reduce the silhouettes by culling according to a proximity
criterion (see Figures 5.1b and 5.1c¢).

The criterion on similarity is derived from the Polyline Shape Search Problem
(PSSP) described by Cohen and Guibas [CG97]. First, we compute Turning Angle
Summaries (TASs) {(so,%0), ..., (Sn, %) } from the edges {eo, ..., } of the target and
silhouette polylines by concatenating tuples of edge lengths s; and cumulative
turning angles ¢;, where

si=|leill, = { L(ei—1,e;)+ti—1 ifi>0 )
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scale a, shift B
- |

rotation y

-1 /2 \ 4

S

Figure 5.8: Top: the short, green target polyline, red silhouette, and best-match (blue/thick)
shown as a subset of the red silhouette polyline. Bottom: arclength vs. cumula-
tive turning angle representations of target P'(s), silhouette ®(s), and best-match
polylines (bottom).

Please note that these summaries lack the representation of absolute coordi-
nates, but they do retain the polyline arclength. Furthermore, rotating a poly-
line relative to its head results in a shift of its TAS along the turning angle axis,
whereas isotropic scaling results in stretching its TAS along the arclength axis (see
Figure 5.8).

We match the target polyline onto a single silhouette polyline, described by
its (isotropic) scale o and position (shift) B, by matching their Turning Angle
Summaries (Figure 5.8). The match result Mpgsp : (o, B, ¥, Rimoa) is described
by a prescribed o and 3, an optimal rotation 7y, and the matching score R,;;,4-
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5.4.3

Optimal rotation and matching score are computed by a modified version of the
scoring function from [CG97]. Using finite sums of differences, /1 and I, describe
the linear and squared differences between the piecewise constant TASs ¥(s) of
the target and @(s) of the sihouette polylines (Figure 5.8):

= [, (o))

(5.4)
h(o,B) —/M ((E)(s)—‘P(S_B>)2ds
pA(02 =g o .
Given the arclength [ of the target polyline, we compute optimal rotation
I
= VY« a7 = —, 5.5
v=Y(p) =, (5.5)

and matching score

Rumod (00, B) = — <12(0°’ b) (Il(a’ B))2>. (5.6)

ol ol ol

Cohen and Guibas retrieve matches for all segments (o, 3) by using a topolog-
ical sweep algorithm [EG86] to match the respective Turning Angle Summaries
in scale/position space. However, since this approach needs O(m?n?) time for m
silhouette edges and n target edges, we decided to probe only a discrete number of
sample segments in Equation 5.6 in O(m + n) time per segment. Specifically, we
match the target polyline to sample segments of a silhouette polyline by discretely
sampling o and [ respectively.

For the proximity criterion we compute the distances of corresponding end-
points of the two polylines, retrieving a near and far value Prox;eq,, Proxqr. Then
we apply a final scoring function on the obtained per-silhouette match results:

R :=1/(1+w1Proxuear +waProx s, + W3R*m0d)2 5.7

Iterating over all silhouettes, we select the segment with the highest score, and
extract the deformation handle from the respective full-res silhouette by using
(at,B) of its matching record Mpgsp.

Finding handle/target correspondences

Given the polylines of deformation handle and target, we need to determine the
corresponding mesh vertices and their transformed positions respectively.

Using both the image-space handle pixels, as well as the corresponding depth
map, we construct an object-space bounding volume for each handle pixel (see
Figure 5.9). A mesh vertex is classified as a handle vertex if it lies in the union of
these bounding volumes.
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3 pixels

Figure 5.9: Mesh vertices that are classified as handle members (blue circles) using one
bounding volume (red box) for each image-space handle pixel. Left: view from
the editor, right: view from top (silhouette indicated as a red line in both views).

Figure 5.10: Mapping of handle relative arclength position s and diplacement d (red) onto
the target polyline (green).

The transformed positions for these handle vertices are computed by mapping
their handle-relative positions onto the target polyline. Specifically, we determine
the position (s, d) for each handle vertex, where the arclength position s is given by
its orthogonal projection of length d. Both handle and target polylines are parame-
terized uniformly in [0, 1] and the target position (s, d’) is scaled accordingly (see
Figure 5.10).
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5.4.4 ROI estimation

To complete the deformation setup, we have to select the final ROI of the mesh
according to some context sensitive criterion. We grow the ROI from the handle
vertices. To control the expansion, we constrain the ROI to lie within a union of
bounding volumes, which consists of one volume per handle vertex.

R

s | T

Figure 5.11: Automatic ROI selection (from left to right): a) After the user places a sketch,

9.5

the handle is estimated and correspondences are established. b) From these corre-
spondences, the ROl is grown within the union of spheres, starting from the handle
vertices (dark/red region, lower lip). ¢) Shows this for the camel lip example. d)
We use the obtained vertex sets handle, transformed handle and ROI as input to
the Laplacian surface editing algorithm. See text for more details.

Specifically, we create a union of spheres, where each sphere center is located
at the position of the respective handle vertex. Each sphere radius is set to the
Euclidean distance dj, ; between handle vertex and its transformed position. We
have experimented with a variety of functions ry = f(dj, ), but have found that
using ry = dj, 5 already yields satisfying results: when the user sketch is far from
the handle, using a larger sphere results in a larger ROI, yielding more deformable
material (Figure 5.11), which is a reasonable heuristic. To determine the ROI, we
define the handle vertices to be the initial ROI vertex set, and grow this set by
subsequently adding vertices of the mesh that are (a) adjacent to the current ROI
border, and (b) are inside the union of spheres.

Results

The modeling session shown in Figure 5.12 illustrates ease of use: after the user
places a stroke, the system responds interactively, presenting a deformation that
generally corresponds to the users intent. All algorithmic details, which are shown
in various figures in this chapter, are absent from the actual user interface.

Table 5.1 shows some timings obtained on a Intel Core 2 Duo 6600 processor
with 2.4 GHz and 2GB memory. Extracting and segmenting the image-space
silhouettes (column Sil) takes between 5-20% of the processing time. Handle
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| Model | Feature | Sil*) | Handle®) | ROI | FacLSE | SolLSE*) | Sum | LSE size |
| Bunny | Bar | 109 | 297 | 15| 1032 | 500 | 1953 | 4911% |
| CamelHead | Lip [ 110 | 250 | 15| 250 | 140 [ 765 | 1533% |
Mannequin | Nose 188 219 | 15 485 156 | 1063 | 2013?
Ear 94 62| 16 609 156 | 937 [ 3627

’ all timings in msec; *) unoptimized code ‘

Table 5.1: Some timings of our system.

5.6

¥ IV ¥ ]

estimation and finding handle/target correspondence (column Handle) depends
on the density of silhouettes, as well as the number of model vertices (=5-25%
overall). The column LSE size shows the dimensions of the sparse linear system
(= number of ROI vertices), which is factored (FacLSE) and solved (SolveLSE)
every time the user places a new stroke. This works interactively for ROIs up to a
few thousand vertices. Of course we can also reuse the factorization as described
in Chapter 4. Note that in all cases, our algorithms (Sil + Handle + ROI) use less
time than LSE setup, factorization and solve (FacLSE + SolveLLSE).

Discussion

Each of the steps in our approach presents a trade-off between fidelity and speed.
And while the requirement of real-time interaction certainly restricts the algo-
rithmic possibilities, it should also be clear that almost all over-sketches are po-
tentially ambiguous, even in the case of communication among humans — so it
is unlikely that an algorithm could consistently guess correctly according to the
user’s expectation.

We find that the extraction and segmentation of feature lines (silhouettes) works
in almost all practical cases. It might be interesting to extend the extraction to dis-
continuities in the normals of the shape, or even to more subtle feature lines such
as suggestive contours [DFRS03]. Another set of feature lines, though invisible
from the rendering but known to more experienced users, are the projections of
skeleton curves used in models rigged for animation. The information deduced by

i (.2 62

Figure 5.12: The MANNEQUIN modeling session.
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our system could then be fed into modeling systems controlled by skeletons.

Figure 5.13: Left: ambiguous handle estimation at the CAMEL’s tail. Right: unnatural
deformation of the ELEPHANT’s leg due to the limitation of Laplacian surface
editing regarding large rotations.

Matching the user-sketch against the feature lines works nicely, however, it
might be interesting to experiment with different functions for measuring prox-
imity and shape similarity to overcome ambiguous handle estimations (see Fig-
ure 5.13 left). More fundamentally, matching is performed only against connected
segments of the feature lines. The user might want to sketch something that the
system has identified as different parts of the feature lines. It is unclear to us how
to extend the matching process to this case.

The scores gathered when finding the best matching part of a curve could also
be used to improve the subsequent steps of determining the ROI and computing
the necessary deformation. For example, the rotation and scale for the best match
could be used in the mesh deformation tool.

The RO is selected based on proximity between user-sketch and feature line in
image-space. This turned out to be simple and effective, yet it disregards apparent
features of the shape. We believe the results could be improved by including
information such as curvature and other features in image-space into our region
growing approach. Another way of improving on the selection of the ROI would
be to involve the user, perhaps by defining a special stroke indicating parts that
may not move.

Looking at the deformation example in Figure 5.13 (right), it is clear that Lapla-
cian surface editing is not a universally applicable deformation tool. However, it
should be feasible to use the information gathered by the handle estimation such
as rotation and scale of the best handle match in the deformation step.

Finally, as the system is almost generic with regard to the type of surface rep-
resentation and the deformation tool, it would be very interesting to also try this
approach in other settings.
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Chapter 6

Laplacian Mesh
Optimization

6.1 Introduction

Polygonal, and specifically triangular meshes are ubiquitous in computer graph-
ics. Whether they have been generated by hand, from real world data, or by other
means, obtaining a well-behaved mesh with respect to sampling rate and triangle
quality is of great importance for a variety of applications. Our goal is to establish
a simple and efficient framework, with which we can optimize triangle shapes,
or smooth an input mesh, solely by means of vertex relocation, while maintain-
ing both sampling rate and connectivity. The underlying assumption is that the
input mesh is the ground truth: the sampling rate and connectivity information
hold all information on the underlying smooth shape (possibly with implicitly de-
fined or user-tagged sharp features). Furthermore, since our technique could be
easily incorporated into existing sampling and connectivity optimizing algorithms
(such as [Tur92, HDD 93, SG03, BK04b]), we have chosen to focus on vertex
relocation.

Our framework is inspired by recent methods that compute vertex positions as
the weighted least-squares solution to positional and Laplacian constraints. In
particular, several methods try to preserve all original vertex Laplacians while im-
posing new positions for a few vertices [LSCOL04, SLCO"04, YZX04], which
allows detail preserving modeling. Prescribing new vertex Laplacians has several
additional applications: a smooth surface has a Laplacian with small magnitude.
This observation has lead Sorkine and co-workers to represent the geometry of a
mesh by assuming the vertex Laplacians vanish and additionally fixing the posi-
tions of a few control vertices [SCO04, SCOITO05]. By prescribing vertex Lapla-
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Figure 6.1: Original HORSE mesh (left) triangle shape optimization (middle) and feature
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preserving smoothing (right)

cians with modified magnitude or direction, we achieve a variety of modeling
effects in our sketch-based tool (Chapter 4). We explain some of these techniques
in Section 6.3.

We take these ideas a step further and use positional and Laplacian constraints
for all vertices. Figure 6.2 illustrates our basic idea. Constraining all vertices
with both positions and vertex Laplacians leads to a simple, flexible, and power-
ful framework for mesh optimization (Section 6.4). Inspired by our local trian-
gle shape optimization, which we use to embed the user drawn sketches into the
mesh (Chapter 4), we show that in this framework all triangles can be optimized
at the same time (Section 6.5). Figure 6.3 shows that fixing only a few vertices
(as in Chapter 4) would not suffice. Similarly, the idea of Sorkine and Cohen-
Or [SCO04] to generate fairly smooth meshes by constraining a few positions
and assuming the vertex Laplacians vanish turns into a global mesh smoothing
technique. This idea is detailed in Section 6.6. Figure 6.1 demonstrates both
techniques. Furthermore, by adjusting the weights on the different terms of the
optimization it is possible to preserve sharp features, if this is desired. Sec-
tions 6.5 and 6.6 introduce several weighting schemes for the positional as well as
the Laplacian constraints and discuss the variety of effects that can be achieved.

Related work

Since our framework performs vertex relocation for both triangle shape op-
timization and smoothing, we briefly list recent work in these fields that is
most related to our approach. An extensive overview is beyond the scope of
this dissertation, but can be found on remeshing [AUGAOS5] and geometric sig-
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S L

4

LS- Mesh [SCO04] Chapter 4 [NSACOO05] This Chapter

({2

Figure 6.2: Left: Sorkine and Cohen-Or [SCO04] reconstruct the surface from a subset of
control vertices (red). Middle: in Chapter 4 we constrain the boundary vertices
(red), and optimize internal triangle shapes. Right: in the work presented in this
chapter, we constrain all vertices and optimize triangle shapes and/or smooth the
mesh, with optional feature preservation.

nal processing [Tau0OO]. More recent surveys on mesh smoothing are available
in [HPO5], [BSO5] and [CCO5].

Vertex relocation for remeshing. Repositioning vertices is generally treated as a
subproblem in the context of remeshing [AUGAOQS], motivated by the need to im-
prove triangle shapes with respect to one or more of the extensively studied qual-
ity metrics [PBO3]. There are quite a few algorithms that circumvent the problem
of relocating original mesh vertices entirely, by resampling the surface [Tur92]
using a global parameterization of the mesh [AMD02, AECDIO3]. Remeshing
algorithms, which perform connectivity optimization with vertex relocation, con-
struct a global or a per-vertex, local parameterization, and use this parameteri-
zation to lift the vertex to the original surface after relocation in the parameter
domain [VRKSO01, SG03, VRS03, SAG03]. When exact error bounds are not re-
quired, the relocated vertex can also be simply projected back onto its original tan-
gent plane [BK04b], instead of constructing a parameterization. What is common
to most of these algorithms (except for the "pure” halftoning approach [AMDO02]),
is that they are inherently iterative, that is, they apply the relocation step-by-step,
one vertex at a time, until some stoppage criterion is reached. In contrast, all ver-
tex relocations in our system result from the unique solution of one sparse linear
system.
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Figure 6.3: Least squares mesh [SCO04] (middle) and our detail preserving triangle shape

88

optimization from Chapter 4 (right) of the ARMADILLO (left), each with the same
set of 40 control vertices (red).

Mesh smoothing. The bulk of existing work in mesh smoothing deals with
discrete filter design. Taubin’s [Tau95] pioneering work introduces a two-step
Laplacian operator to inflate the mesh after smoothing, thereby reducing shrink-
age. Desbrun et al. [DMSB99] use implicit integration with Fujiwara [Fuj95] or
cotangent weights [PP93a] for scale-dependent, unconditionally stable smooth-
ing, which leaves triangle shapes and sizes mostly unchanged (also known as
mean curvature flow or MC flow for short). This approach is extended to han-
dle anisotropy and to preserve features by Meyer et al. [MDSBO03], and further
improved to prescribed MC flow by Hildebrandt and Polthier [HPO5]. Recently,
researchers have applied the bilateral filter, known from image processing, to
discrete surfaces [FDCOO03, JDDO03]. Our approach to mesh smoothing differs
significantly from all of these methods. We rely on the least-squares meshes al-
gorithm [SCOO04] to perform inner (triangle shape) and/or outer (surface smooth-
ness) fairing, while applying soft positional constraints to all mesh vertices —
where the weights depend on, for example, discrete curvature distribution — to
retain specific features. Our optimization technique has similarities with the geo-
metric fairing of Schneider and Kobbelt [SKO1]; their method is oriented towards
freeform surface design and thus prescribes positional constraints only to the
boundary vertices, whereas our technique optimizes an existing mesh geometry
and/or triangle quality. Other mesh fairing work includes discrete smooth interpo-
lation (D.S.I.) by Mallet [Mal89] and the constrained version thereof [LM99],
which is related to our own work, since they also fit a mesh to given data
points in the least-squares sense. The main difference is that, like Schneider
and Kobbelt [SKO01], they do not generally constrain all vertices, as is the case in
our technique. For another related constraint-based fairing method, see [HPO7].
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6.3 Basics and notation

The mesh is represented as a graph G = (V,E), with vertices V and edges E,
where V= [vI' vl .. V1T v; = [vir, vy, vie]T € R3 is the original geometry, and
V' denotes the displaced geometry. Furthermore, §; is the Laplacian of v;, the

result of applying the discrete Laplace operator to v;

5= ), wlj(v,-—vi):[ Y Wijvj]—vi, 6.1)

{i,j}€E {i,j}€E

where }.r; nepwij = 1, and the choice of weights

0,
Wi =" (6.2)
Y Y liker O
defines the nature of §;. Some popular choices are
®;j = cot 0.+ cot B, (6.4)

where (6.3) are the uniform and (6.4) the cotangent weights. The angles used in
these equations are shown in Figure 6.4. In the remainder of this chapter, we will
refer to the uniform and cotangent Laplacians with normalized weights as J, and
d. respectively. To obtain the Laplacians for the entire mesh, we use the n x n
Laplacian matrix L, with elements

-1 i=j
Lij = Wij (laj) cE s (65)
0 otherwise

and we denote as L, and L. the Laplacian matrices with uniform and cotangent
weights respectively. With Vg = [vi4,v24, ..., vpa] ,d € {x,y,2}, the n x 1 vector
containing the x,y or z coordinates of the n vertices, we can compute the x, y and z
coordinates of the Laplacians Ay = [814,824,- - -,0,4]7,d € {x,y,z} separately as

Ag=LV,. (6.6)

The uniform Laplacian of v; points to the centroid of its neighboring vertices, and
has the nice property that its weights do not depend on the vertex positions. The
cotangent Laplacian is known to be a good approximation of the surface normal,
although the weights can become negative and depend on the vertex positions.
When properly scaled by the Voronoi region (see Figure 6.4)

ZAE ). (cot otcor B)(vj—vi), (6.7)

Kin; = §; ¢ = v
Y {i.j}eE
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as described by Meyer et al. [MDSBO03], we obtain the discrete mean curvature
normal K;n;, which is the unit length surface normal n; scaled by the discrete mean
curvature K;. Furthermore, we will use Equation 6.7 to discretize the Laplacian
matrix L, denoted as L, in the context of mesh smoothing (Section 6.6).

We now describe two interesting applications, which will lead to our optimiza-
tion in Section 6.4.

Figure 6.4: Left: uniform (red) and cotangent (green) Laplacian vectors for a vertex v;

90

and its (in this case planar) 1-ring, as well as the angles used in Equation 6.4 for
one v;, Bottom right: the effect of flattening v; into the 1-ring plane. While the
cotangent Laplacian vanishes, the uniform Laplacian generally does not. Right
top: the Voronoi region A(v;) around a vertex.

Least squares meshes. Sorkine and Cohen-Or [SCO04] demonstrate how a mesh
can be reconstructed from connectivity information alone, using a small subset
C C V of m geometrically constrained vertices (anchors). They solve for x, y and
z positions (V/; = [V ,Vh,,...,vi |7 ,d € {x,y,z}) separately by minimizing the
quadratic energy

IL V2 + Y wilviy —vaal?, (6.8)
seC

where the v, are the stored anchor positions and the w? are weighting factors.
In practice, with the anchors as the first m vertices (w.l.0.g.), the (n+m) x n
overdetermined linear system AV/, =b

L, ;L 0
[ Lixm | 0 } Vd B |: V(lm)d :| 9

is solved in the least squares sense using the method of normal equations V/, =
(ATA)~'ATb. Note that the first n rows of AV/, = b are the Laplacian constraints,
while the last m rows are the positional constraints. The reconstructed shape is
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6.4

generally smooth, with the possible exception of small areas around anchor ver-
tices. The minimization procedure moves each vertex to the centroid of its 1-ring,
since the uniform Laplacian L, is used, resulting in good inner fairness.

Detail preserving triangle shape optimization. In Chapter 4, we show how a
least squares optimization can improve triangle quality in a small mesh region (in-
cluding boundary constraints) with negligible vertex drift. Essentially, we modify
the linear constraints in Equation 6.9 as

L A
u__ |y = | Pde | 6.10
|: Lusom | O :| d [ V(lm)d :| ( )

where the uniform Laplacian of each new vertex position is asked to resemble
its undeformed cotangent Laplacian as closely as possible. The idea here is that
while the uniform Laplacian has a tangential component, the cotangent Laplacian
does not (see also [DMSB99]), and thus the optimization attempts to remove the
tangential components, while preserving the the surface details in the normal di-
rection. As shown in Figure 6.3, this method fails to preserve the overall shape
when the region is large, or there are insufficient boundary constraints, but works
well for local modifications. We have experimented with the anchor selection pro-
cess of Sorkine and Cohen-Or [SCOITOS5] for Equation 6.10, an iterative process,
which, although fast, still introduces a significant computational overhead. Yet,
while this attempt did produce fairly good results after many iterations, it lead us
to the "all vertices are anchors" approach, which requires no selection process,
and will be described and discussed in the next sections.

Global vertex relocation framework

We propose a modification of Equations 6.9 and 6.10, which generalizes both
least-squares meshes [SCO04] and detail preserving triangle shape optimiza-
tion [NSACOO05], and gives rise to two interesting applications. Our general
2n X n system AV/, = b is

WL, [ Wi
{w,, ]vd_ {vad]. 6.1

The main modification is that we no longer have a subset of positional constraints,
instead, all vertices appear both as Laplacian, and positional constraints. As we
will describe in more detail further below, we can modify the result of the opera-
tion and introduce a good trade-off between triangle quality and geometric error
by (non-)uniformly weighting the positional constraints with the diagonal matrix
W,,. In some cases, it will also be beneficial to weight the Laplacian matrix L
and the corresponding right-hand side f with the diagonal matrix Wy. In general,
larger weights in W, enforce positional constraints and thus preserve the original
geometry, which can be useful for high-curvature regions and sharp features. On

91



Chapter 6 Laplacian Mesh Optimization

the other hand, larger weights in W, enforce regular triangle shapes and/or sur-
face smoothness. As we describe in the following sections, solving the general
system in Equation 6.11 results in

e detail preserving triangle shape optimization, when setting L =L, and f = Ay,

e mesh smoothing, when setting L. = L« or L, (outer fairness) or L = L,, (inner and
outer fairness) and f = 0.

6.5 Global triangle shape optimization

92

Our goal here is to optimize triangle shapes. We measure our success with the
radius ratio [PB03], mapped to [0, 1] as

f = 212, (6.12)
where R and r are the radii of the circumscribed and inscribed circles respectively.
This way, t; = 1 indicates a well shaped, #; = 0 — a degenerate triangle. To perform
this optimization, we discretize L. in Equation 6.11 using the uniform Laplacian
Ly, set f on the right hand side to A, ., and use W, = I, similar to Equation 6.10.
A straightforward, yet naive choice, is to use uniform weights W, = W50 = s1,
where s denotes an arbitrary positive scalar. While this does somewhat improve
the overall triangle quality (see Figure 6.5(b)), and has the lowest geometric error
(Hausdorff distance to (a) [CRS98]), we can do better in terms of triangle quality.

It can be observed that large geometric error is likely to occur in the vicinity of
vertices with high discrete mean curvature K. Therefore, a more sensitive choice of
weights is a linear curvature-to-weight transfer function (Figure 6.5(a), bottom),
which maps discrete mean curvature ¥; to weight w; for each vertex, resulting in
W, = Wiinear- More precisely, given the minimal and maximal discrete mean
curvature over the mesh, K;;; and K.y, we linearly map the interval [Kin, Kinax]
to [0,s] (Figure 6.5(c)). Since the values for K can be very large for a small set
of vertices, we truncate these outliers before computing the linear mapping. The
threshold value ¥; is computed using a simple box plot test [Tuk77], and works
well for all models we have encountered. The weights of vertices where K > K
are clamped to s.

As can be seen in Figures 6.5 (b) and (c), while using W, constrains low
curvature vertices excessively, Wy;,..,- has a tendency to give them too much free-
dom, and therefore also has relatively high geometric error. Since we wish to take
the relative frequency of mean curvature into account, we have chosen to use the
cumulative density function (cdf) of K (Figure 6.5(a)) to map from ¥; to weight
w; € [0,s], resulting in W, = W_4. In detail, given the normalized distribution
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(a) original (17k)

(b) constant weights

rel. freq.

mean curvature
distribution (k)
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Figure 6.5: Comparison of triangle optimization weights. Top row: a 17k vertices AR-
MADILLO mesh (left), with the same two close-ups used in (b)-(g) and the tri-
angle quality distribution (see Equation 6.12) (center), the distribution function
of discrete mean curvature c¢(X), the associated cumulative density function (cdf)
C(X), and the three weighting functions, used in (b)-(g) to map from curvature to
positional weight for each vertex (right). Each optimized mesh (b)-(g) shows its
triangle quality distribution, its mean (f,e4,) and minimal (z,,;,) triangle quality, as
well as the Hausdorff distance (dist) to the original mesh (a) with respect to the

bounding box diagonal.
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6.5.1

6.5.2

94

function of mean curvature ¢(k) for a mesh (Figure 6.5(a)), we compute the cdf
C(X) as

C(®) = /0 S t) dr. (6.13)

shown in Figure 6.5(a) (in practice, C(K) is precomputed as a discrete sum over
the vertex curvatures). The rationale behind using C(X) is that if we have a mesh
with a large amount of low curvature vertices (such as the ARMADILLO in Fig-
ure 6.5), these vertices should be assigned a larger weight than they would have
if Wyinear was used, thus reflecting the need to retain the detail in these regions
and reduce vertex drift. As can be seen from the values in Figure 6.5(d), using
W4y is somewhere between W ousr and Wjpeqr, and is a good trade-off between
triangle quality and geometric error. The cumulative density function also has the
advantage of implicitly dealing with outliers without the need to compute K.

Tangent plane constraints

To further reduce the geometric error, planar (2D) constraints can be incorporated
in our system. Essentially, we add the following term to the energy in Equa-
tion 6.8:

i |n,~-(v;—V,-)|2. (6.14)
i=1

This term penalizes displacement perpendicular to the tangent plane defined by the
original vertex position v; and the local surface normal n; given in Equation 6.7,
assuming a first order approximation of the surface around v;. Since constraints
of this form require solving for x, y and z positions simultaneously, we need to
couple the 2n x n system (Equation 6.11) for each coordinate x, y and z into a
single 6n x 3n system, and add n constraints of the form

ni-V;:n,‘-Vl', (6.15)

resulting in a 7n x 3n system. Although this involves significant computational
overhead, Figure 6.5(e) shows that tangent plane constraints reduce geometric
error and have nearly the same mean triangle quality compared to cdf weights
alone (Figure 6.5(d)).

Triangle quality modulation

The quality of meshes for numerical simulations, such as the Finite Element
Method (FEM), is heavily influenced by #,,;,, the minimal triangle quality. To
maximize f,,, the positional weights W, are modulated with the diagonal matrix
W;, where the entry w;; for vertex v; is set to the minimal triangle quality ¢ of
its adjacent triangles. This way, if there is a triangle with small ¢ attached to v;
it will be allowed to move more than without the modulation. The effect for cdf
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and linear weighting can be observed in Figures 6.5(f) and (g): triangle quality
has improved, especially around the ear of the ARMADILLO. The cost for this
improved triangle quality is increased geometric error, which can be a worthwhile

trade-off if a large #,,;, is required by the application.

6.5.3 Sharp features

For meshes with distinct sharp features — edges (1D) and corners (0D) — the
method described so far produces visible artifacts (Figure 6.6(b) and (c)). Clearly,
what we want is that vertices on edges only move along the edge (1D constraint),
while corners remain fixed in place (OD constraint). This requires solving an
3n x 3n system, as in Section 6.5.1. We have found a very simple solution that
achieves a similar effect, and only requires solving an n X n system; by reduc-
ing the weight on the Laplacian constraint of high curvature vertices (and using
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Figure 6.6: Triangle optimization on an input mesh (a) with distinct sharp features. Using
linear weights (b) breaks the sharp features, and using (2D) tangent plane con-
straints (c) cannot resolve the problem, since these features would require 1D or
zero dimensional (positional) constraints. Instead, we reduce the weight on Lapla-

cian constraints of feature vertices (d).
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W, = Wiinear), feature vertices are no longer inclined to move, and their neighbor-
ing triangles will be optimized by their non-feature 1-ring vertices. Specifically,
we use Wy, = sT — Wy, in Equation 6.11 (when using weights Wy, € [0, 5])
and scale all values to [0,1]. The result of this modification can be seen in Fig-
ure 6.6(d), where all feature vertices remain in place, while vertices in planar
regions are moved towards their respective 1-ring centroids.

Mesh smoothing

Sorkine and Cohen-Or [SCO04], propose a procedure for smooth hole filling by
fitting a thin-plate surface (L?V’, = 0, for infinitely large anchor weights), while si-
multaneously improving the triangle quality of the fitted mesh. Since only bound-
ary vertices are constrained, the fitted surface is smooth without detail or fea-
tures. Our framework (Section 6.4) can be easily adjusted to perform global mesh
smoothing, optionally with feature preservation, simply by setting f = 0, and ad-
justing the positional- (W) and Laplacian (W) weights. Also, we can perform
simultaneous inner and outer fairing with L,,, or outer fairing alone with L, or L «.
Note that using the non-normalized L discretization is similar to the curvature
flow approach [DMSB99]: the weights on Laplacian smoothness constraints are
scaled by discrete mean curvatures.

To make the magnitude and behavior of our smoothing procedure user-tuneable
in a simple and intuitive way, we utilize and adjust three parameters.

e Positional weights. The weighting matrices Weonsr, Wiinear and Wegy
introduced in Section 6.5 are applied in the setting of mesh smoothing.
These either uniformly smooth the mesh, shown in Figure 6.7(b) and (e),
or attempt to retain features by placing more (positional) weight on high
curvature vertices, as seen in Figure 6.7(c) and (f).

e Scale factor. While the scale factor s was set to s = 1 for all of Section 6.5,
we can now use this scaling to adjust the overall amount of smoothing.
Compare the top and bottom rows of Figure 6.7, where the scale factors
differ by an order of magnitude.

e Laplacian weights. To further increase feature preservation, practically any
function that reduces the weight Wy on Laplacian smoothness constraints
of feature vertices can be applied. In this work we have experimented
with Gaussian falloffs, and variants of the function used in Section 6.5.3
to automatically deduce Wy from the mean curvature cdf (see Figures 6.8
and 6.7(d) and (g)), but many other choices are conceivable, for example
user-tagged feature vertices.



6.6 Mesh smoothing

(b) constant weights (s = 0.1) (c) cdf weights (s = 0.2) (d) cdf + Laplacian weights (s = 0.2)

(e) constant weights (s = 0.01) (f) cdf weights (s = 0.02) (g) cdf + Laplacian weights (s = 0.02)

Figure 6.7: Comparison of smoothing weights. Columns 2 and 3 are generated using the
weight functions introduced in Section 6.5, with different scaling factors s. The
right column shows the effect of reducing the weights on the (Laplacian) smooth-
ness constraints of high curvature vertices. All results in this figure were generated
with L. = L,,. In the pdf, please zoom in on the insets to see the differences.
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Figure 6.8: Smoothing a pyramid. Top row: original DOUBLEPYRAMID and the noisy ver-

98

sion. Bottom row: Using W, = W;,.,, alone smoothes out sharp features, while
additionally reducing the weights on Laplacian constraints of feature vertices re-
covers most of the original shape.

The results of using these three parameters are shown in Figure 6.7, where the
full ARMADILLO model is smoothed. Note how varying the weights and the scale
factor results in certain feature preservation, which can be seen in the closeup of
the snout and teeth. For a detailed analysis of using W ., with varying s, see
Section B. A typical example of feature preserving smoothing is shown in Fig-
ure 6.8. The original DOUBLEPYRAMID model in the upper left is contaminated
with Gaussian noise, shown in the upper right. In the lower left the result of us-
ing Wyn0qr 1s shown, where the edges are visible, albeit heavily smoothed. If we
additionally use Laplacian weights W, thereby relaxing Laplacian constraints as
described above, we can successfully recover most of the original model.

The results shown in Figures 6.7 and 6.8 use L = L, resulting in a coupling
of inner and outer fairness. While this works well for regularly sampled meshes,
it has been pointed out by Desbrun et al. [DMSB99] that this no longer holds for
irregularly sampled meshes, and unwanted object deformation can occur. This ef-
fect is somewhat reduced in our framework, thanks to positional constraints, yet
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(c) cotangent Laplacian L (d) weighted Laplacian WL

Figure 6.9: Comparison of uniform (b) and cotangent (c) discretization of the L. matrix. In
(d), Laplacian constraints LCV; = 0 are relaxed on feature vertices.

we can also decouple inner and outer fairness simply by using L. or L. As in
other work on curvature flow, this moves each vertex along its normal, while leav-
ing the tangential component unchanged. The effect is clearly visible, when com-
paring Figure 6.9 (b) and (c); while the mesh in (b) has nicely shaped triangles,
the triangle shapes in (c) mostly reflect the original triangulation in a smoothed
version. Note that L. can also be coupled with the feature preserving Laplacian
weighting matrix Wy, (Figure 6.9(d)). For an analysis of the least-squares smooth-
ing algorithm see appendix B.

.7 Discussion

Our framework can optimize triangle shapes and smooth meshes with results sim-
ilar to existing methods, but has the advantage that the solution is well-defined and
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(c) smoothing with W, and L, (d) feature preserving smoothing with W, ¢
(inner and outer fairness) and W L, (inner and outer fairness)

Figure 6.11: TWEETY results.

we suggest the following combinations.

¢ Smooth models. Models, for which the mean curvature distribution is fairly
smooth, such as the ARMADILLO model used throughout this chapter, gen-
erally benefit from using W, for triangle shape optimization, since details
in mid-range curvature regions are retained, the overall geometric error is
low, and it produces a good distribution of triangle shapes. For smoothing,
W, nicely preserves detail in high curvature regions to a certain degree,
which can be improved by additionally reducing weights on specific Lapla-
cian smoothness constraints with Wj..

e CAD models. CAD models, or models with mostly flat surfaces and some
sharp features, are weighted with Wy, in Figures 6.6 and 6.8. Using
W.4r has little effect in these cases, since the associated cdf has a high
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(c) smoothing with W, and L% (d) feature preserving smoothing with
ch f and WLLC
(outer fairness only, inner (outer fairness only, inner
fairness untouched) fairness untouched)

Figure 6.12: SQUIRREL results.

weight value for the numerous low (or zero) curvature vertices. This fixes
these vertices in place, where they should actually be allowed to move freely
in their tangent plane. The situation is similar for the smoothing application;
here, we wish to de-noise the planar regions, thus necessitating a low weight
on the positional constraints of these vertices, while holding feature curves
and points in place, again making W, the better choice.

We ran the algorithm on some real world noisy data, and a few more meshes
with bad triangle shapes. For the ANGEL dataset, acquired using 3D photogra-
phy [BP98], using W, r and W L. succeeds in removing the noise while retaining
the prominent features around the nose and eyes (Figure 6.10). The improvement
in triangle quality on the TWEETY model in Figure 6.11 is clearly visible, while a
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6.7 Discussion

significant change in (flat) shading is not. Figures 6.11 and 6.12 illustrate the com-
ponents of our algorithm: the original mesh (a) can be optimized with respect to
triangle shapes (b) and adaptively smoothed with curvature dependent positional
weights W ;¢ (¢) and reduced Laplacian weights W, (d). Note that while in
Figures 6.11(c),(d) both inner and outer fairness is improved, Figures 6.12(c),(d)
leave inner fairness untouched, since L and L. decouple the fairness criteria.

We have not explicitly treated the issue of volume preservation, but the simple
fact that the original mesh geometry is a substantial part of the result, and can be
granularly controlled with W,, reduces shrinkage significantly.

We would like to stress the fact that all these optimizations based on adjusting
the weight matrices W, and Wy have no adverse effect on timing. Itis conceivable
that better feature detection could steer the weighting, leading in turn to better
feature preservation, again at no additional cost (in the optimization computation).
Consequently, we are interested in improved automated feature detection in our
ongoing work. Other potential avenues for future work are volume preservation
by analyzing (and adjusting) the spectral properties of the system matrix, and
preservation of higher order discrete surface properties.
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Chapter 7

Conclusion

7.1

Creating 3D shapes and characters from scratch is still an inherently difficult task.
We think of this as the human/computer I/O problem: digital computers are ex-
cellent in both input (mouse, keyboard, video-in, etc.) as well as output (moni-
tor, printer, projector, etc.) of data, while, at least to this day, humans are only
equipped with a video-in (= visual sensory system), yet lack an appropriate video-
out interface to digital computers. It is therefore nontrivial to convey a mental
model of shape — that is, transfer the mental model into a format that can be
digitally processed and displayed using commodity computer/graphics hardware.
Many previous attempts rely on the fact that the user has some domain knowledge
and/or is familiar (to a certain degree) with the intricate mathematical subtleties of
the modeling tool, thus rendering these systems unusable for inexperienced users.
The work presented in this dissertation eases the use of 3D modeling tools for
first-time users, and expands the possibilities for experienced modelers. By uti-
lizing various abstractions, such as silhouettes, ridges, ravines, and other general
surface curves — and their 2D projections — we have strived to make our modeling
interfaces feel more like traditional 2D painting, sketching, and manipulation. We
like to think of our abstractions as flexible handles, as described in Chapter 1.

Contributions

Designing Freeform Surfaces with 3D Curves allows creating initial model
components by sketching the silhouette onto an empty canvas, adding connected
components by extrusion, and changing the topology by tunneling and merging.
The model can subsequently be modified by either adding / removing / smooth-
ing control curves, changing curve properties, or deforming existing curves. We
think of these curves as flexible handles, as mentioned in the introduction (Chap-
ter 1). The underlying discrete polyline and triangle-mesh representations are hid-
den from the user, and while our curve and surface optimization algorithms rely
on this representation, the interface does not. Overall, this interface bridges the
gap between traditional 3D modeling tools, such as parametric patches and sub-
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division surfaces, where initial patch layout can be problematic, and sketch-based
modeling systems, where detailed, careful editing of initial surface components
has not yet been fully explored. To achieve real-time response for reasonably
sized meshes, we have implemented fast curve and surface optimization algo-
rithms based on minimizing discrete differential properties of the curves and sur-
faces. The surface construction and curve deformation methods we present utilize
recent insights in the fields of discrete differential geometry and numerical linear
algebra. These insights had previously been used in the context of mesh editing.
Our system is the first to apply contemporary discrete differential geometry to 3D
model creation from scratch.

Feature Oversketching and Manipulation enables simple modification of ex-
isting meshes by leveraging the human index of possible shapes [HS97]. Ask-
ing the user to generate a specific shape by transforming a vertex, or even sets
of vertices, is a potentially ill-posed problem. On the other hand, our silhouette
editing tool, another instance of our flexible handle metaphor, leverages the vast
cultural knowledge on shapes and their silhouettes. This allows any user to mod-
ify the silhouette of a 3D model, which we see as a first step towards a human
video-out. Furthermore, we extend the existing Laplacian surface editing frame-
work [SLCO™04] to accommodate feature scaling, with which the user can create
ridges and ravines anywhere on the surface. Finally, we automate the entire pro-
cess of silhouette oversketching: the user only needs to find an appropriate 2D
view of the 3D model and place a sketch, thereby hinting at the desired silhouette
modification. Using partial matching and guided mesh segmentation techniques,
our system automatically finds the model silhouette segment corresponding to the
user-sketch, as well as the subregion on the mesh that undergoes deformation.
This system comes very close to mimicking 2D oversketching, while presenting a
smooth 3D model edit as a result.

Laplacian Mesh Optimization exposes a small set of intuitive parameters, with
which the user can perform — local or global — detail preserving triangle shape
optimization or mesh smoothing. The proposed framework (Section 6.4) gen-
eralizes both least-squares meshes [SCO04] (also known as geometry-aware
bases [SCOITO0S5]), as well as our local detail preserving triangle shape optimiza-
tion described in Chapter 4. To ensure a good trade-off between inner fairness
and geometric error w.r.t. to the original mesh, we introduce various weighting
schemes for the positional constraints, which are modeled as transfer functions
from discrete mean curvature to scalar weight, and show that simply using the cu-
mulative distribution function of discrete mean curvature over the (sub)mesh is a
good (and fully automatic) choice. Our mesh smoothing algorithm, also a special
case of the general framework, formulates mesh smoothing as the unique solution
to a least-squares problem. Since this formulation incorporates non-uniformly
weighted positional constraints, as well as Laplacian smoothness constraints, it
is easy to combine these weights, such that shrinking is minimal and prominent
features are preserved.
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7.2 Future directions

Character and Shape Animation. The most obvious extension we see, is uti-
lizing our flexible handle metaphor for character and shape animation. One pos-
sibility would be to use the same set of sketches an illustrator uses to convey
motion in static imagery [McC94]. One could also use 2D image space fea-
tures to track animations from given sequences [JT95], similar to Bregler and
co-workers [BLCDO02]. In this setting, user sketches could be used to modify fea-
tures and shapes in specific keyframes of the animation sequence, from which new
2D/3D animation sequences could be synthesized. A first foray into applying this
idea to 3D editing is given by Kraevoy and co-workers [KSvdP07]. This principle
could be extended to spatial keyframing [IMHOSb]. We also see great potential in
automatically generating skeletons and skin-weights (also known as rigging), and
allowing the user to deform the skin directly, and indirectly by sketching skeletal
animations. For recent developments in this field, see [BPO7, SLSK07, YBSO07,
WSLGO7, WPPO7]. We are furthermore considering the use of multi-body hier-
archies for such an animation and skinning tool.

Deforming and Sketching other Features. Currently, our tools allow the user
to deform silhouettes, and create ridges and ravines. It seems straightforward
to let the user deform these ridges and ravines as well, and this is possible if
the user modifies the view such that a ridge becomes a silhouette. Unfortunately,
since there is already much ambiguity in the user sketch, adding to the selection of
possible modification handles in our automatic modeling tool makes things worse.
Instead, we would like to make only the most prominent and likely features from
the sets of silhouettes and surface creases modifiable, thereby creating a tractable
problem with little to no ambiguity, yet a good range of flexibility. Other ideas
include sketching features onto the surface, such as cross hatches (e.g. [HZ00])
to indicate directions of principle curvature, and optimize the surface such that
it incorporates these features. Perhaps a quad-mesh based surface representation
would be more suitable for this task [LPW 06, PLW07].

Multiresolution Editing. To reduce the computational complexity of our sur-
face optimization algorithm, we would like to include multiresolution editing
paradigms to the system. We are considering the possibility of non-conforming
mesh hierarchies: at runtime, the user sketches a detailed mesh on top of the base
mesh, which is stored in local coordinate frames — in the spirit of traditional mul-
tiresolution modeling [ZSS97, KCVS98] — yet is not connected to the base mesh.
edits and deformations can then be carried out on each level individually, without
modifying the other levels. Once the user is done with the modeling session, the
mesh is stitched together, starting from the base mesh all the way up the hierarchy.
This method was considered for the model creation tool presented in Chapter 3,
but was dropped due to time constraints. Nevertheless, we would like to revisit
the idea.
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Application to other Curve and Surface Representations. Currently, our rep-
resentations are all mesh and polyline based. It might be interesting to apply the
interface principles and the flexible handle metaphor to other surface representa-
tions, such as points [ABCO103, ZPKG02, AA06], implicit surfaces [SWSJO03]
and space-warps [DE03, LKG103].



Appendix A

A Note on Boundary
Constraints for Linear
Variational Surface
Design

In the process of creating FiberMesh [NISAO7] (see Chapter 3), we have im-
plemented both Least-Squares Meshes (LSM) [SCO04, SCOITO0S] and the
Botsch/Kobbelt (BK) framework [BKO4a] for fair surface computation. In 2D
MATLAB implementations, this works fine as long as the positional constraints
(also known as the anchors) are not collinear, as we can see from the examples in
Figure A.1.
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Figure A.1: MATLAB examples where anchor points (red crosses) are not collinear. The
red dotted line is the LSM solution, while the red, blue and green solid lines are
the BK solutions for k = 1, k = 2 and k = 3 respectively.
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Figure A.2: Degenerate MATLAB examples with two (left) or 3 collinear anchors (right).
Color coding as in Figure A.1

When the anchors lie in a linear subspace (such as a line in 2D), all other ver-
tices of this shape are forced to lie in this subspace as well (see Figure A.2).
Intuitively, this means that all vertices are computed as affine combinations of
the anchor vertices (see Figure A.3). In the following, we show that the linear
solutions of [SCO04] and [BKO04a] both have this property, which makes them
unsuitable for inflating a mesh defined by a planar curve: in a 2D sketching tool
we will generally have constraints that lie on a plane (the two anchors in Fig-
ure A.2 can be seen as the cross section of a planar 2D sketch). Adding positional
constraints perpendicular to the sketch plane works, which is analogous to imple-
menting higher order boundary constraints, yet requires manual placement, which
is a nontrivial task in a 3D modeling environment (see Figure A.1 for the cross
section analogy).
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Figure A.3: MATLAB LSM example with three adjacent anchor points. The weights are
high, therefore the smoothness constraints cannot be met (right, first three indices).
Note that the horizontal dashed line is the sum of the three bases.
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A1

Least-squares meshes

Suppose we have connected mesh topology M with n vertices. Denote by L the
Laplacian matrix with L(1,...,1)I = 0,; all rows of L sum up to zero. Some k
vertices are tagged as anchor vertices; w.l.0.g. assume that the anchors are vertices
{1,2,...,k}. In [SCO04] the positions of all vertices are obtained as the solution
of the following least-squares problem

argmin ( L )x—(on) 2
X Lisck | 0 X} (A.1)
—argmin ||Ax — b||*
X
where Ij» is the k by k identity matrix and x|, = (x},...,x})T is the vector of

prescribed anchor positions. While the matrix L has rank n — 1, the rectangular
matrix A involved in the least-squares problem above has full column rank after
adding a single positional constraint (or more). Therefore, we can write the least-
squares solution explicitly as

x= (ATA) "' A”b. (A2)
Observation A.1.1. The solution to Equation A.2 is an affine combination of the
anchor positions X.

Proof. First we expose the structure of the vector ATb of length n, which has
anchor positions in the first k entries, and zeros elsewhere

1 0 X/
ATp = (LT | kK )( ”):( k ) A3
( 00—k)xk X} 0, @a-3)

It is easy to see that:

ATA = (LTL+ ( Lo | 0 )) : (A.4)
0 |0
Denote 1, = (1,...,1)!. Since L1, = 0,, also L"L1,, = 0,,. Thus:
(ATA)1, = (L L—|—( ot ) )= o, (A.5)

Let us multiply the last equation by (AT A)~! on the left side:

(ATA) "1 (ATA)L, = (ATA)™! ( (l)k_k )

1,=(ATA)"! ( (l,k_k ) (A.6)

The last equality tells us that the sum of the first k elements of each row of
(ATA)~!isequal to 1. These multiply the first k elements of A”b in Equation A.2,

which shows that the solution x is an affine combination of the anchors x’.
O]
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In [BKO4a] the anchors are interpolated instead of approximated. Therefore, we
are dealing with disjoint sets of vertices (in contrast to [SCO04] where the anchors
are a subset of all vertices). We denote the set of k fixed vertices as F, the set of
n free vertices as P and N = n+ k. Note that the fixed vertices are only required
to enforce boundary constraints around the free region, since their positions are
known a priori (their smoothness constraints are also dropped from the system, as
we will see below).

First, the N x N Laplacian matrix L is raised to the desired power p (where p =1
for the membrane, p = 2 for the thin-plate and p = 3 for the minimum variation
solution). W.L.o.g. assume that the k fixed vertices have indices 1,...,k in the
system, and the free vertices have indices k+ 1,...,N, then for the smoothness

constraint we have
F
p _
L ( p ) =0. (A7)

The smoothness constraints on vertices in F are removed from the system by omit-
ting the first k rows of L”, resulting in the n X N matrix AP. By adding the bound-
ary conditions back to the system, we arrive at the formulation used in [BK04a]

) (v) - GEEG) (7)o

This is for notational convenience only. Here, we use Ag for the upper left n x k
matrix and A’IZ for the upper right n X n matrix. By dropping the bottom k rows of
Equation A.8 and rearranging we get

P = (AD)"' (—~AR)F = BF. (A9)

The n x k matrix Bpg can be interpreted as the matrix of basis functions. This
basis suffers from the subspace property, which is equivalent to saying that the
basis vectors (the columns of Bgg) sum to 1.

Observation A.2.1.
(AD) ' (AR 1 =1,. (A.10)

Proof. We know that the rows of A” sum to zero, since these are rows of the
original Laplacian matrix. This can also be written as

(AR) 1+ (Ap) 1, =0,. (A.11)
Rearranging and multiplying from the left with (AB) ™! yields
~1
1, = (AD)7'(-AD) 1 (A.12)

which shows that the bases in [BK04a] sum to 1 on each mesh vertex.
[



Appendix B

Analysis of the
Least-Squares
Smoothing Algorithm

In this Section we outline the connection to signal theory, specifically Wiener
filters [Wie49], and Tikhonov regularization [Tik63].

Let M be a triangular mesh with n vertices. Denote by x = (x,...,x,)7 the
x-coordinates of M’s vertices (similarly for y and z). A widely used class of
Laplacian operators L on meshes have the general form:

Lix)= Y, wijlxi—x)),

JEN(i)

where N (i) is the set of 1-ring vertices. The Laplacian can be represented by an
n-by-n matrix L, such that the off-diagonal entries are w;; when there is an edge
between i and j and zero otherwise; the diagonal entries are simply the row sums.
Prominent weighting schemes are the uniform weights w;; = 1 and the cotangent
weights [PP93a, DMSB99]; the latter allow better approximation of the surface
Laplace-Beltrami operator. If the weighting scheme is symmetric and w;; > 0,
which we assume in the following (we use uniform weights), then L is symmetric
positive semidefinite and has an orthonormal eigenbasis V = {vy,..., v, } with cor-
responding eigenvalues 0 = A; < A, < ... <A,. The eigenvectors corresponding
to small eigenvalues are smooth, low frequency functions, and those correspond-
ing to large eigenvalues are highly oscillatory. In fact, when the mesh is a regular
grid, the Laplacian eigenbasis (LEB) is the discrete cosine basis (DCB). The LEB
is viewed as an extension of DCB for irregular meshes [Tau95]. Since the eigen-
basis V is orthonormal, the mesh geometry can be represented in this basis as

n
X= Zai,xviv
i=1
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with coefficients a; , = ViTX, obtained by simple projection (same for the y and
z functions). By truncating the high-frequency components, we can obtain a
smoothed version of M’s geometry:

k
x=Y (v/x)v;, k< n, (B.1)
i=1

where the value of k determines how much high-frequency detail we want to
preserve. Lévy [Lév06] shows several results of this smoothing approach. Com-
puting the spectral decomposition is, however, very time-consuming and may be
impractical for typical detailed meshes. In his seminal work, Taubin [Tau95] has
shown that an approximation of this smoothing result can be obtained by explicitly
iterating X,,+1 = (I — AL)X,,. Such filtering, as well as the implicit fairing algo-
rithm [DMSB99] leads to shrinking of the shape volume, and volume restoration
steps must be interleaved with the smoothing steps. Our non-iterative smoothing
approach presented in Chapter 6 realizes smoothing by minimizing the following
energy functional:

xsmooth:arg171in(HLX’H2+WZHX’—XH2), (B.2)
X
where X is the original mesh geometry. The magnitude of the weight w determines
the amount of smoothing. The optimization (B.2) tries to simultaneously satisfy
the smoothness condition (i.e. minimize the discrete Laplacian magnitude) and to
retain the original mesh geometry. As a result, the smoothed mesh has negligible
volume loss; the optimization can be solved very efficiently using sparse linear
solvers.
The quadratic optimization problem (B.2) can be formalized as the least-squares
solution of the following over-determined linear system Ax’ = b:

()4-(%)

where [ is the n-by-n identity matrix and 0,, denotes the column vector of n zeros.
The least-squares solution of the system above can be obtained using the normal
equations X' = (ATA)~'ATb since A has full column rank:

= (1) en()-

= (24w (wx) . (B.3)

This simplified formula was obtained by considering that L = LT and performing
block-matrix multiplication. Note that Equation B.3 represents an instance of
Tikhonov regularization [Tik63].

What can we say about the solution X’? Let us analyze the matrix in Eq. (B.3),
that is, (L?> +w?I)~'. We know that L has the spectral decomposition L =V -



diag(Aq,...,A,) - VT, where V is orthogonal; the matrix L? has the same eigen-
vectors and squared eigenvalues: L? =V -diag(A?,...,A2) - VT Interestingly, the
matrix B = (L2 —|—w21) also has the same eigenvectors, and its eigenvalues are
incremented by w?:

Bv; = (L2+W21) Vi :L2Vi+W2V,' :7\,[~2V,'+W2V,' = (7\.,2—|—W2)V,'.
1

|
w2’ A w?
the solution X’ = B~ !'w?x in Eq. (B.3) can be written as follows:

The matrix B~! =V - diag < ) -VT exists since w > 0. Therefore

2

. wvlx R

X = V-diag(—) : =Y 5——=(vix)v;.
AZ +w? -~ l;k%erZ :

WV, X

This shows that the smoothed solution x’ is a combination of the Laplacian eigen-

. . . 2 2 .
vectors with modified coefficients —*— v/ x, where the —»*— are the Wiener
A 4w? A 4w

filter coefficients [Wie49] (see [PSZ01] for another applicaltion of Wiener filter
coefficients). When w approaches infinity, we have x’ = x because

w2 1
W—00 kl-z—i—wz W—00 7\.l-2/w2+1

On the other hand, when w is small, the low-frequency components are preserved
and the high-frequency components are attenuated: for small i, A; is very small (in
the order of ®(n~!-) for typical meshes, see [GMO00]) and thus w?/(A? +w?) =~ 1;
in contrast, the last A; are relatively large (A; > 1 and in particular, A,, is in the order
of twice the maximal vertex degree of the mesh), and therefore w? /(A7 +w?) < 1.
The smaller w is, the more the high-frequency components are attenuated. This is
indeed the behavior observed in the practical experiments in Chapter 6.

This analysis shows that the optimization of a particular quadratic energy can
lead to a mesh smoothing algorithm whose properties are very similar to classic
spectral smoothing, while the computational effort is significantly lower. Fig-
ure B.1 visually supports our results by comparing the smoothing outcomes of
both schemes.
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original SPECTRAL LS SPECTRAL LS
k=120 w=0.5 k=450 w=2.0

Figure B.1: Comparison between L-eigenbasis truncation and least-squares smoothing,
denoted as SPECTRAL and LS, respectively (uniformly-weighted Laplacian was
used). The value of k denotes the number of eigenfunctions used in the spectral re-
construction (see Eq. (B.1)), and w is the weight used for least-squares smoothing.
It can be observed that very similar smoothing results are obtained.
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