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I. MODEL

We consider a multiplex network with L layers each
consisting of N identical adaptively coupled phase oscil-
lators

dφµi
dt

= ω − 1

N

N∑
j=1

κµij sin(φµi − φ
µ
j + αµµ) (1)

−
L∑

ν=1,ν 6=µ

σµν sin(φµi − φ
ν
i + αµν),

dκµij
dt

= −ε
(
κµij + sin(φµi − φ

ν
j + βµ)

)
, (2)

where φµi ∈ [0, 2π) represents the phase of the ith os-
cillator (i = 1, . . . , N) in the µth layer (µ = 1, . . . , L)
and ω is the natural frequency. The interaction between
the phase oscillators within each layer is described by the
coupling matrix κµij ∈ [−1, 1]. The intra-layer coupling

weights obey equation (2). Between the layers the inter-
action is given by the fixed coupling weights σµν ≥ 0.
The parameters αµν can be considered as a phase lag of
the interaction [1].

II. EXISTENCE OF DUPLEX EQUILIBRIA IN
ADAPTIVE NETWORKS

Suppose we have two one-cluster states where each
is of either splay, antipodal, or double antipodal type
which form a duplex one-cluster (see Eq. (2) of the main
text) and φµi = Ω(αµµ, βµ)t+ χµt+ aµi (µ = 1, 2), where
Ω(αµµ, βµ) is given by

Ω =



cos(αµµ − βµ)/2 if R2(aµ) = 0 (Splay),

sinαµµ sinβµ if R2(aµ) = 1 (Antipodal),

with aµi ∈ {0, π}

cos(αµµ − βµ)/2− aµi ∈ {0, π, ψQ, (Double
1
2R2(a) cos(ψQ) ψQ + π} antipodal),

(3)
and the coupling weights are given by κµij = − sin(aµi −
aµj + βµ). We verify by direct insertion that φµi and κµij
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solve Eq. (2). For the given ansatz, Eq. (1) reads

Ω(α11, β1) + χ1

=
1

2
cos(α11 − β1)− 1

2
<
(
e−i(2a

1
i+α

11+β1)Z2(a1)
)

− σ12 sin(∆Ωt+ ∆χt+ a1i − a2i + α12), (4)

and

Ω(α22, β2) + χ2

=
1

2
cos(α22 − β2)− 1

2
<
(
e−i(2a

2
i+α

22+β2)Z2(a2)
)

+ σ21 sin(∆Ωt+ ∆χt+ a1i − a2i − α21). (5)

where ∆Ω = Ω(α11, β1)−Ω(α22, β2) and ∆χ = χ1 − χ2,
respectively. In order to obtain a phase-locked state, the
time-dependent part within the sin-function of the two
equations (4), (5) must vanish. Thus, φ = (φ1, φ2) is a
duplex equilibrium if

∆Ω + ∆χ = 0.

Since the values aµi are chosen such that in each layer we
already have a one-cluster of either splay, antipodal, or
double antipodal type, Eqs. (4), (5) can be rewritten as

χ1 = −σ12 sin(∆Ωt+ ∆χt+ a1i − a2i + α12),

χ2 = σ21 sin(∆Ωt+ ∆χt+ a1i − a2i − α21).

Thus the values of χµ are introduced to account for the
changes of the one-cluster frequencies of the monoplex
system due to the inter-layer coupling. Hence, ∆Ω +
∆χ = 0 is equivalent to

∆Ω = σ12 sin(a1i − a2i + α12)+

σ21 sin(a1i − a2i − α21)

for all i = 1, . . . , N . Note that ∆Ω is not necessarily zero
even if the phase-lag parameters for both layers agree.
They can still differ in the type of one-cluster state. The
former equation can be written as

∆Ω

C
= sin(a1i − a2i + ν) (6)

with

sin(ν) =
1

C

(
σ12 sin(α12)− σ21 sin(α21)

)
, (7)

cos(ν) =
1

C

(
σ12 cos(α12) + σ21 cos(α21)

)
,
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where

C =
√

(σ12)2 + (σ21)2 + 2σ12σ21 cos(α12 + α21).

Whenever (σ12)2 + (σ21)2 + 2σ12σ21 cos(α12 + α21) ≥ 0
and

(σ12)2 + (σ21)2 + 2σ12σ21 cos(α12 + α21) ≥ ∆Ω2, (8)

Eq. (6) has the two solutions a1i −a2i = arcsin(∆Ω/C)−ν
and a1i − a2i = π − arcsin(∆Ω/C) − ν. Considering the
inverse function arcsin : [−1, 1]→ [−π/2, π/2] applied to
Eq. (7) determines ν to be either ν′ or π−ν′, where ν′ :=
arcsin(sin(ν)) and sin(ν) as given in (7). The second
equation for cos(ν) then fixes ν to take one of the values.

The condition (8) is a relation between all parameters
of the system which has to be fulfilled for the existence of
duplex relative equilibria. Note that for any given inter-
layer coupling σ12 6= 0 and α12 + α21 6= ±π/2 or ±3π/2
there exists a minimum coupling weight σ21 < ∞ such
that the lifted one-clusters exist. In case of unidirectional
coupling, i.e., σ12 = 0, the condition gives the minimum
weight σ21 ≥ ∆Ω.

III. ROBUSTNESS OF THE PHASE CLUSTERS
FOR INHOMOGENEOUS NATURAL

FREQUENCIES

In the main text, we investigate a system of identi-
cal oscillators. There the existence of particular phase
cluster states of double-antipodal type is demonstrated.
In order to show that these states are also present in
a system of heterogeneous phase oscillators, we modify
Eqns. (1), (2) as follows:

dφµi
dt

= ωµi −
1

N

N∑
j=1

κµij sin(φµi − φ
µ
j + αµµ) (9)

−
L∑

ν=1,ν 6=µ

σµν sin(φµi − φ
ν
i + αµν),

dκµij
dt

= −ε
(
κµij + sin(φµi − φ

ν
j + βµ)

)
. (10)

For the numerical analysis of system (9)–(10), we con-
sider randomly uniformly distributed natural frequencies
on the interval [−∆ω,∆ω]. To check for the robustness
of the phase cluster presented in the inset of Fig. 3 of
the main text, the following steps are performed. We fix
a random realization of a uniform distribution. For any
inter-layer coupling strength σ = σµν we take the final
state from the simulation with ωµi = ωνi = 0 (i.e., those
obtained from Fig. 3 in the main text) as initial condi-
tion. We perform an adiabatic continuation of the state
by running the simulation for t = 5000 and increasing
the width of the distribution ∆ω with a stepsize of 0.01.
This is done until ∆ω reaches 0.5. The continuation is
performed for each value of σ and for 10 different real-
izations of the uniform distribution. Afterwards, we first
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FIG. 1. The figure shows the range ∆ω vs where duplex one-
cluster states in general (gray) and of the form presented in
Fig. 3 of the main text (red) can be found. For this the sys-
tem (9), (10) is integrated numerically for 10 different random
uniform distributions of the natural frequencies in the interval
[−∆ω,∆ω]. The results are obtained by adiabatic continua-
tion starting with the phase clusters found for ∆ω = 0 (see
Fig. 3 of the main text). Duplex one-cluster states of double
antipodal type with (a) σ = 0.5, ∆ = 0.02 and (b) σ = 0.5,

∆ = 0.07 are shown as insets. Parameters: α11/22 = 0.3π,
α12/21 = 0.05, β1 = 0.1π, β2 = −0.95π, ε = 0.01, and
N = 12.

check whether the final state has still the same form as
the one presented in Fig. 3 of the main text. For this, we
calculate the second moment order parameter for both
states in each layer individually, determine the difference
of the order parameters for both layers, and set the up-
per limit to 0.01. States with a difference of less than the
limit are considered to possess the same form. Secondly,
we check whether the final state is still a phase-locked
state, i.e, all oscillators are frequency-synchronized. The
range and the boundaries up to which the final state is
still a duplex one-cluster state with or without the form
from Fig. 3 of the main text are presented in Fig. 1. For
the boundaries and the range the mean value over the 10
realizations is determined and the error bars indicate the
standard deviation.

It is clearly visible that duplex one-cluster states of
double-antipodal type are still present for a considerable
range of heterogeneity ∆ω of the natural frequencies. In
the inset Fig. 1(a) we present a duplex one-cluster double-
antipodal state of the same form as shown in Fig. 3 of the
main text. The phases are distorted slightly due to the
frequency distribution but the double-antipodal configu-
ration is still clearly visible. The inset Fig. 1(b) shows
another one-cluster state of double-antipodal type. How-
ever, due to the frequency mismatch the phase distribu-
tion becomes different compared with the one presented
in Fig. 3 of the main text.

A similar result, as it is shown in Fig. 1, is obtained if
we consider a Gaussian instead of an uniform distribution
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FIG. 2. The figure shows the standard deviation ρ where
duplex one-cluster states in general (gray) and of the form
presented in Fig. 3 of the main text (red) can be found. For
this the system (9), (10) is integrated numerically for 10 dif-
ferent random normal distributions of the natural frequencies
with standard deviation ρ and zero mean. The results are
obtained by adiabatic continuation starting with the phase
clusters found for ρ = 0 (see Fig. 3 of the main text). A du-
plex one-cluster state of double antipodal type with σ = 0.5,
∆ = 0.02 is shown as an inset. Parameters: α11/22 = 0.3π,
α12/21 = 0.05, β1 = 0.1π, β2 = −0.95π, ε = 0.01, and
N = 12.

of frequencies, see Fig. 2.

IV. MULTIPLEX NETWORKS AND THEIR
DECOMPOSITION

In this section, we provide important tools and theo-
rems to find the spectrum of multiplex networks.

Theorem 1. Let R be a commutative subring of CN×N
and let M ∈ RL×L. Then,

detCM = detC (detRM) .

The proof can be found in Ref 2. This rather abstract
result allows for a very nice decomposition for pairwise
commuting matrices and yields a useful tool to study the
local dynamics in multiplex systems.

Proposition 2. Let M ∈ CN×N be a unitary diago-
nalizable matrix with M = UDMU

H where U , UH and
DM are a unitary, its adjoint and a diagonal matrix, re-
spectively. Let further DM be the set of simultaneously
diagonalizable matrices to M , i.e., the set of all matrices

which commute pairwise and with M . Then,

det

A11 · · · A1L

...
. . .

...
AL1 · · · ALL

 =

det

(∑
σ∈SL

[
sgn(σ)

L∏
µ=1

DAµ,σ(µ)

])
(11)

where Aµν ∈ DM for µ, ν = 1, . . . , L and SL is the set of
all permutations of the numbers 1, . . . , L.

Proof. Consider any A,B ∈ DM , then they are simulta-
neously diagonalizable with M and hence A = DAU

H

and B = UDBU
H with the same U . Thus, all Aµν can

be diagonalized with the same U . Since U is unitary,i.e.
(detU)2 = 1, we find

det

A11 · · · A1L

...
. . .

...
AL1 · · · ALL

 = det

DA11
· · · DA1L

...
. . .

...
DAL1

· · · DALL


by applying the block diagonal matrices diag(U, · · · , U)
and diag(UH , · · · , UH) from the left and right, respec-
tively. The set of diagonal matrices with usual matrix
multiplication and addition form a commutative sub-
ring of CN×N . Applying Theorem 1 and using the well-
known determinant representation of Leibniz, the expres-
sion (11) follows.

Remark 3. The set DM consists of all matrices which
commute with M and all the other elements of DM . In
particular, the identity matrix IN ∈ DM for any M ∈
CN×N .

In the following, we apply the last result to a duplex
and triplex system and connect the local dynamics on the
one-layer network to the multiplex case. We specify our
consideration by defining two special multiplex systems.

Definition 4. Suppose A,B,C ∈ CN×N and mij ∈ C
(i, j = 1, . . . , 3). Then, the 2N × 2N block matrix

M (2) =

(
A m12I

m21I B

)
(12)

and the 3N × 3N block matrix

M (3) =

 A m12I m13I
m21I B m23I
m31I m32I C

 (13)

are called (complex) duplex and triplex network, respec-
tively.

Suppose we know how to diagonalize the individual
layer topologies. The next result shows how the eigenval-
ues of the individual layers are connected to eigenvalues
of the multiplex system. This will be done for the duplex
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and triplex network. For the proof of our following state-
ment, we provide two different proofs. The first approach
makes use of Schur’s decomposition [3, 4] which will be
used, later on, in order to derive the characteristic equa-

tions. In particular, any m×m matrix M =

(
A B
C D

)
in

the 2× 2 block form can be written as

M =

(
Ip BD−1

0 Iq

)(
A−BD−1C 0

0 D

)(
Ip 0

D−1C Iq

)
.

(14)

With this, a simplified form of the determinant of a 2×2

block matrix M =

(
A B
C D

)
is derived, namely

det(M) = det(A−BD−1C) · det(D), (15)

An extension of the first approach to any number of lay-
ers in the network can be found by induction but is very
technical, see [5]. The second approach uses Proposi-
tion 2 which allows for a straightforward extension to
any number of layers in a multiplex network.

Proposition 5. Suppose A,B,C ∈ CN×N , they com-
mute pairwise, and are diagonalizable with diagonal ma-
trices DA, DB , DC and unitary matrix U . Then, the
eigenvalues µ for the multiplex networks M (2) and M (3)

can be found by solving the N quadratic

µ2 − ((dA)i + (dB)i)µ+ (dA)i(dB)i −m12m21 = 0
(16)

and cubic polynomial equations

µ3 + a2,iµ
2 + a1,iµ+ a0,i = 0, (17)

respectively, with

a2,i = − ((dA)i + (dB)i + (dC)i)

a1,i = (dA)i(dB)i + (dA)i(dC)i + (dB)i(dD)i

−m12m21 −m13m31 −m23m32

a0,i = m12m21(dC)i +m13m31(dB)i +m23m32(dA)i

− (dA)i(dB)i(dC)i −m12m23m31 −m13m32m21

and (dA)i, (dB)i, and (dC)i the respective diagonal ele-
ments of DA, DB, and DC .

Proof. Since A,B,C are diagonalizable and com-
mute, Proposition 2 can be applied to both matrices
M (2),M (3). Anyhow, for the matrix M (2) we will provide
another proof using Schur’s decomposition.

The determinant is an antisymmetric multi-linear
form. Thus, we can write

det
(
M (2) − µI2N

)
= det

(
A− µIN m12 · IN
m21 · IN B − µINm

)
= (−1)N det

(
m12 · IN A− µIN
B − µIN m21 · IN .

)

By assumption A and B are both diagonalizable with
respect to the unitary transformation matrix U , and so
are A− µI and B − µI. This allows us to write

det

(
m12 · IN A− µIN
B − µIN m21 · IN .

)
= det

(
m12IN DA − µIN

DB − µIN m21IN

)
we apply the block diagonal matrices diag(U, · · · , U) and
diag(UH , · · · , UH) from the left and right, respectively.
Now, using Schur’s decomposition (14) the determinant
can written as

det

(
m12IN DA − µIN

DB − µIN m21IN

)
= nN det

(
m− 1

n
(DA − µIN ) (DB − µIN )

)
= det (m12m21IN − (DA − µIN ) (DB − µIN )) .

The last expression together with det
(
M (2) − µI2N

)
= 0

yields the N quadratic equations (16).
Using that (A− µI), (B − µI), (C − µI) commute pair-

wise, Proposition 2 can be applied. We find

det
(
M (3) − µI3N

)
=

det ((DA − µIN ) [(DB − µIN )(DC − µIN )−m23m32IN ]

−m21 [m12(DC − µIN )−m13m32IN ]

+m31 [m12m23IN −m13(DB − µIN )])

The last expression together with det
(
M (3) − µI3N

)
= 0

yields the N cubic equations (17).

Let us briefly discuss some special cases for both the
duplex and triplex network. Consider a duplex network
with master and slave layer, i.e., either m12 = 0 or m21 =
0. Then, the quadratic equations (16) yield

(µ− (dA)i) (µ− (dB)i) = 0. (18)

As shown in Proposition 2, the eigenvalues for special
triplex networks can be found by solving cubic equations.
For the solution even closed forms exist. Despite this, the
explicit form of the solutions is rather tedious, in general.
However, if we consider A = B = C and a ring-like
inter-layer connection between the networks, i.e., m12 =
m23 = m31 = 0, then equation (17) has the following
solutions for all j = 1, . . . , N

µ1 = −(dA)j + (m13m32m21)
1/3

,

µ2 = −(dA)j +
1

2
i(i +

√
3) (m13m32m21)

1/3
,

µ3 = −(dA)j −
1

2
(i +
√

3) (m13m32m21)
1/3

,
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where i denotes the imaginary unit. In analogy to equa-
tion (18), a decoupling for the eigenvalues can be found.
Consider three pairwise commuting matrices A,B,C,
and the structure between the layers is a directed chain,
i.e., m12 = m13 = m31 = m23 = 0 , then

(µ− (dA)i) (µ− (dB)i) (µ− (dC)i) = 0. (19)

In the following section, the theory is applied to deter-
mine the stability of phase clusters in adaptive networks.

V. REGIONS OF SYNCHRONIZATION IN
ADAPTIVE MULTIPLEX NETWORKS

For an arbitrary duplex equilibrium of the form φµi =
Ωt + aµi with a1k = (0, 2πN k, . . . , (N − 1) 2π

N k)T and a2k =

a1
k − ∆a we start with the linearized system (3) of the

main text. This can also be written in the block matrix
form


˙δφ1

˙δφ2

˙δκ1

˙δκ2

 =

 A1 m1IN B1 0
m2IN A2 0 B2

C1 0 −εIN2 0
0 C2 0 −εIN2


δφ

1

δφ2

δκ1

δκ2



with (δφµ, δκµ)
T

= (δφµ1 , . . . , δφ
µ
N , δκ

µ
11, . . . , δκ

µ
1N ,

δκµ21, . . . , δκ
µ
NN )

T
, the matrices Aµ, Bµ, and Cµ follow

from system (4) of the main text, and m1,m2 ∈ R. With
the help of Schur’s decomposition the characteristic equa-
tion for the linearized system takes the form

(λ+ ε)2(N
2−N) = 0

det

(
(λIN −A1) (λ+ ε)−B1C1 −(λ+ ε)m1IN

−(λ+ ε)m2IN (λIN −A2) (λ+ ε)−B2C2

)
= 0. (20)

The second equation has the block matrix form which is
required from Proposition 5. All blocks can be diagonal-
ized and commute since they all possess a cyclic struc-
ture; compare Lemma 4.1 of [6]. Thus, we are allowed to

apply Proposition 5 which we use in order to diagonalize
the matrix in Eq. (20). For the diagonalized matrix we
find the following equations for the diagonal elements µi

(λ+ ε)2m1m2 − (p1i (λ;α11, β1, α12, σ12)− µi)(p2i (λ;α22, β2, α21, σ21)− µi) = 0 (21)

where i = 1, . . . , N , pµi (λ;αµµ, βµ) is a second order poly-
nomial in λ which depends continuously on α and β as
well as functionally on the type of the one-cluster state.
For every i ∈ {1, . . . , N}, these equations will give us two
eigenvalues µi,1 and µi,2 for the matrix in Eq. (20) de-
pending on λ and the system parameters. Thus, we can
write Eq. (21) as

(µi − µi,1(λ;α,β,σ)) (µi − µi,2(λ;α,β,σ)) = 0

where α,β,σ represent all system parameter chosen for
(1)–(2). In order to find the eigenvalue λ of the linearized
system (20) one of the eigenvalues µ has to vanish. This
means that we have to find λ such that Eq. (21) equals

µi (µi − µi,2(λ;α,β,σ)) = 0

which is equivalent to finding λ such that the following
quartic equation is solved

p1i (λ;α11, β1, α12, σ12)p2i (λ;α22, β2, α21, σ21)− (λ+ ε)2m1m2 = 0. (22)

Note that here the diagonal elements of A1 are slightly
different from those in Prop. 4.2 of [6] but they do
not affect the result, i.e., the diagonal element equals

ρi(α
11, β1)−m1(α12). The same holds true for A2. Thus,

with the two possible eigenvalues ρi,1,2(αµµ, βµ) for the
monoplex system from Corr. 4.3 of [6] one finds the fol-
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lowing quartic equation which give the Lyapunov expo- nents for the lifted duplex one-cluster

[(
λ− ρi,1(α11, β1)

)
·
(
λ− ρi,2(α11, β1)

)
+m1(λ+ ε)

]
×[(

λ− ρi,1(α22, β2)
) (
λ− ρi,2(α22, β2)

)
+m2(λ+ ε)

]
− (λ+ ε)2m1m2 = 0. (23)

In the case of a duplex antipodal one-cluster state given
by Eq. (2) of the main text with a1i ∈ {0, π} and a2i =
a1i −∆a, Eq. (3) possesses the following set of Lyapunov
exponents

SDuplex = {−ε, (λi,1, λi,2, λi,3, λi,4)i=1,...,N}

where λi,1,...,4 solve the following N quartic equations

(λ+ ε)2m1m2 −
[(
λ− ρ1i,1

)
·
(
λ− ρ1i,2

)
+m1(λ+ ε)

]
×[(

λ− ρ2i,1
) (
λ− ρ2i,2

)
+m2(λ+ ε)

]
= 0, (24)

withm1 ≡ σ12 cos(∆a+α12), m2 ≡ σ21 cos(∆a−α21) and
the eigenvalues ρµi,1,2 ≡ ρi,1,2(αµµ, βµ) for the monoplex
system

SMonoplex =
{

(0)1 , (−ε)(N−1)N+1 ,

(ρ1)N−1 , (ρ2)N−1
}

(25)

where ρ1 and ρ2 solve ρ2 +
(
ε− cos(α11) sin(β1)

)
ρ −

ε sin(α11 + β1) = 0. Here, the multiplicities for each
eigenvalue are given as lower case labels. The proof and
the results for other clusters can be found in [6, 7].

Using the Lyapunov exponents of the duplex antipodal
clusters, the stability for duplex antipodal states can be
found. The results are presented in Fig. 4 (in the main
text).
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