
Nonequilibrium Bose condensation in a

pumped dye-filled photonic cavity

vorgelegt von

M. Sc.

Martina Vlaho

ORCID: 0000-0002-1214-6790

an der Fakultät II ś Mathematik und Naturwissenschaften

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doctor rerum naturalium

- Dr. rer. nat.-

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Markus R. Wagner

Gutachter: Prof. Dr. André Eckardt

Gutachter: Prof. Dr. Jonas Ola Oscar Larson

Tag der wissenschaftlichen Aussprache: 22. April 2022

Berlin 2022





iii

Declaration of Authorship

I declare that this thesis is my own work and has not been submitted to this or any other

academic institution for any other degree or qualification.

Chapters 4 through 6 are adapted from my published papers (referenced in the chapters)

and all the writing, calculations and figure production was done by me.

I declare that I have acknowledged all main sources of help and appropriately referenced

the published work of others.





v

TECHNISCHE UNIVERSITÄT BERLIN

Abstract

Faculty II - Mathematics and Natural Sciences

Institute for Theoretical Physics

Nonequilibrium Bose condensation in a pumped dye-filled photonic cavity

by Martina Vlaho

An effectively two-dimensional photon gas trapped in a dye-filled microcavity can un-

dergo thermalization and equilibrium-like Bose-Einstein condensation. However, given

the inherently driven-dissipative nature of this system, it can exhibit a complex interplay

between the thermalizing influence of the environment given by the dye solution and the

pump and loss processes driving the system out of equilibrium. We first consider a ho-

mogeneously pumped photon gas and investigate how its steady state is affected when

varying the pump power, the cavity lifetime and the cutoff frequency. Depending on the

parameter regime, the selection of modes that acquire large occupation can be related ei-

ther to lasing of (typically multiple) modes or to a quasiequilibrium condensation in the

ground state. We calculate and explain the phase diagram of the system, with a particular

emphasis on the role played by mode competition that occurs in the regime of weak cavity

loss. We then consider the case where the system is driven asymmetrically (by a relatively

narrow off-centered pump beam) and find that it features a robust and controllable mech-

anism for two-mode emission. Namely, after the system starts lasing in the dominantly

pumped excited mode, in a second transition a photon condensate is formed in the ground

mode, when the pump power is increased further. This effect is a consequence of the redis-

tribution of excited dye molecules via the lasing mode in combination with thermalization.

We demonstrate how this effect can be controlled further by tailoring the effective trans-

verse potential for the photons. This allows for the threshold pump power to be tuned

by orders of magnitude. For this scenario we formulate a simplified, analytically solvable

model which gives a very good agreement, both qualitative and quantitative, with the full

original model.
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Chapter 1

Introduction

Following the first experimental realization of Bose-Einstein condensation (BEC) in very

dilute atomic gases [1, 2], BEC of quasiparticles, like exciton-polaritons has also been ob-

served [3ś8], which lead to the question of whether photons themselves can undergo a

similar quasiequilibrium transition.

Photons harmonically trapped in a dye-filled microcavity with appropriate characteristics

can be described as a 2-dimensional gas of bosons with a nonzero effective mass. This

system can be used as a platform for studying the interplay between driving and loss on

the one hand and thermalization (via the rovibrational relaxation of the dye molecules

interacting with the environment given by the solvent) on the other. While the former

process describes lasing [9], about a decade ago the regime where thermalization is the

dominant process, has been realized and equilibrium-like Bose condensation of photons

was observed in various systems [10ś17].

Unlike the Bose-Einstein condensate of an atomic gas, which was realized at a very low

critical temperature and in a microcanonical setup, a quasiequilibrium photon condensate,

forms at room temperature (above a critical photon number) and under grand-canonical

conditions. This inherently grand-canonical statistics of photon BECs [18] has been stud-

ied, as well as its spatial [19] and temporal features [20ś23]. A considerable amount of

work has also been done to clarify the delimitation of photon BECs from lasers [24ś28].

Other research in this area includes the investigation of thermo-optic interaction effects

[29] and the use of thermo-optic imprinting to create variable potentials for coupled pho-

ton condensates [30].

Given the inherently driven-dissipative nature of these systems, a complex interplay be-

tween the pump and loss processes driving the system out of equilibrium and the ther-

malizing influence of the environment (dye solution), emerges when tuning the various

control parameters. This non-equilibrium nature of these systems makes them an excel-

lent experimental platform for studying ordering under non-equilibrium conditions. The
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case of a symmetrically pumped system and its steady-state featuring multi-mode conden-

sates has been studied experimentally [16], as well as theoretically [31]. It was found that

excited cavity modes start to emit coherently together with the ground mode, when the

pump power and the photon loss are increased relative to the thermalizing coupling to the

dye. A complex network of different phases in parameter space is predicted, each of which

is characterized by different combinations of macroscopically populated modes [31].

Part of this thesis is also concerned with the case of a symmetrically (homogeneously)

pumped system, in which multi-mode condensates occur. We show how the limit of quasi-

equilibrium photon BEC is approached via mode competition when the photon cavity life-

time is increased. Moreover, we also discuss the role played by the cutoff frequency, i.e.

the ground-mode energy, in the formation of multi-mode condensates [32].

We then turn our attention to a nonequilibrium scenario, where the system is driven by

an off-centered pump beam. This scenario is shown to feature a robust mechanism for

controlled two-mode emission [33]. We find that the system undergoes two pump-power

driven nonequilibrium phase transitions. First, the system starts to lase in an excitedmode,

which is directly determined by the position of the pump spot. When the pump power is

increased further, the spatial redistribution of pump power mediated by this lasing mode

then triggers a second transition, where thermalization leads to the additional formation

of a macroscopically occupied ground mode.

We then exploit this effect for engineering controlled and robust two-mode emission by

tailoring the transverse potential landscape for the photons. Specifically, we choose an

asymmetric double-well potential and show that when pumping its upper minimum, the

second transition threshold can be shifted by orders of magnitude by tuning the system

close to or further away from interwell resonances. We also formulate a simplified, analyt-

ically solvable model, which reproduces the qualitative features of the numerical results

and also agrees with them quantitatively to a high degree.

This thesis is organized as follows. In chapter 2, we present a review of several topics

which are very relevant for the discussion following in the main part of this manuscript.

In chapter 3 we introduce the model system, described in terms of a Lindblad master equa-

tion, from which the rate equations for the photon mode populations ni, and the spatially

dependent fraction f(r⃗) of excited dye molecules are derived. We then discuss the con-

dition for mode selection, i.e. a mode acquiring macroscopic occupation, before ending

this chapter by explaining how this condition is connected to the locking of the chemical

potential as a BEC condition in the equilibrium limit.

In chapter 4 we discuss the numerical results for the case of a homogeneously pumped

photon gas. First we list all the parameter values corresponding to the relevant experi-

ments and used in the numerical simulations. Then we present a general condition for
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the threshold pump rate for a mode selection, which reduces to very simple expression

in the case of first selection. In the next section, we investigate the dependence of mode

selection on the so-called thermalization parameter, which is effectively a dimensionless

photon cavity lifetime. Here we observe and discuss the effects of mode competition and

deselection (loss of macroscopic occupation) [31], before presenting a phase diagram in a

parameter plane spanned by the pump rate and the thermalization parameter. We explain

the various phase boundaries and how the approach towards a quasi-equilibrium ground-

mode condensate manifests in the phase diagram. Moreover, we point out discrepancies

with respect to the previously computed phase diagram of Ref. [31]. In the final section of

this chapter we study how themode selection is affectedwhen tuning the cutoff-frequency.

The case of asymmetrically pumped system is investigated in chapter 5. Here we ob-

serve the effect of lasing-assisted ground-mode condensation. This two-mode emission is

explored further in chapter 6, where the harmonic trap is replaced with an asymmetric

double-well potential. We find that interwell resonances can be used to tune the threshold

for the ground-mode condensation over a wide range of pump power.

In chapter 7 we present a simplified model for the case discussed in the previous chapter

and which is solved analytically. It reproduces the qualitative features of the numerically

obtained solutions of the original model, and the quantitative agreement between the two

models is also very good. The full analytic solution of the toy model is given in appendix

A.
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Chapter 2

Review

The purpose of this chapter is to present a condensed recapitulation of several topics which

are important for the discussion following in the main part of this manuscript. We start

with a brief description of lasing and continue to review the phenomenon of Bose-Einstein

condensation in the next section. Finally, some key properties of the equilibrium-like pho-

ton condensate, first observed in Ref. [11], are discussed and derived.

2.1 Lasing

In contrast to other light sources, laser light is characterized by a high degree of both

spatial and temporal coherence. Lasers can be categorized by the type of active (łgain”)

medium. This is a material which is brought into an excited state and used to amplify light

through a process of stimulated emission, in which the output photons have the same di-

rection, wavelength and polarization as the stimulating ones. The main components of a

laser system are shown in Figure 2.1. Typically, the gain medium is placed in an optical

resonator with mirrors on each side. One of the them is partially transparent allowing

some of the light to escape (and form the laser beam). The emitted light is reflected inside

the resonator so that it can pass through the gain medium repeatedly and get amplified via

stimulated emission. Although the active medium amplifies any photons passing through

it, irrespective of their direction, only photons in a spatial mode supported by the res-

onator will pass through it more than once and obtain significant amplification. The gain

medium must also be łpumped” (supplied with energy by an external source) in order for

its constituent particles to be predominantly in an excited state (population inversion). The

rate of stimulated emission then exceeds the absorption rate. Usually, an electric current

(semiconductor lasers) or light at a different wavelength (solid-state lasers) is used as the

energy source. In a continuously pumped laser the processes leading to light amplifica-

tion are balanced by the loss mechanisms (e.g., through mirror transmission) and a steady

state (fixed point) can be achieved, where lasing appears above some minimal value of the
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Gain medium

Pump

Laser

beam

High reflector  Partial reflector

Figure 2.1: Basic components of a laser

pump power, called the lasing threshold [9]. Below this value of the pump power, the las-

ing mode (i.e., the cavity mode undergoing the lasing transition) is negligibly populated,

as are all the other modes. Above it, there is a macroscopic occupation in the lasing mode.

One of the simplest phenomenological models of laser dynamics is given by the following

system of coupled nonlinear differential equations for the number of excited atoms (or

molecules) N of the gain medium and the number of photons n in the lasing mode [34]

ṅ = gnN − κn

Ṅ = P − ΓN − gnN
(2.1)

Here, g is the gain coefficient of stimulated emission (relative to absorption), κ is photon

loss rate (e.g., through mirror transmission) and P is the pump rate. The gain term gnN

is proportional to n due to stimulated emission of the lasing mode, while the spontaneous

emission into this mode is neglected. The decay rate of spontaneous emission into other

(non-lasing) modes is given by Γ.

Solving for the steady state leads to two qualitatively different regimes. Below the lasing

threshold given by

Pth = κΓ/g, (2.2)

the number of laser photons remains zero in the approximation where spontaneous emis-

sion is neglected, while the number of excited atoms increases linearly with the pump rate

N = P/Γ. Above the lasing threshold N remains fixed at value Nth = κ/g, because any

łsurplus” of excited atoms is converted into laser photons (so-called clamping of the gain).

That is, Pth marks the onset of lasing and the number of laser photons is given by

n =
P

κ
− Γ

g
, P > Pth. (2.3)
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0 1 2

P/Pth

1

Laser photons g n/Γ

Excited atoms g N/κ

Figure 2.2: Number of laser photons n (solid blue line) and number of excited
atoms N (dashed orange line) vs pump rate P .

In figure 2.2 the number of laser photons n (solid blue line) and the number of excited

atoms N (dashed orange line) are shown as a function of pump rate P .

2.2 Bose-Einstein condensation of ideal bosonic gas

A system of non-interacting bosons will be distributed into the energy eigenstates accord-

ing to the Bose-Einstein distribution. That is, the average number of bosons occupying a

state i is given by

ni =
1

eβ(εi−µ) − 1
, (2.4)

where β is the inverse temperature 1/kBT , µ is the chemical potential and εi the energy

of state i. Given that ni > 0 ∀i, it follows that the chemical potential must be µ ≤ ε0

and in particular, µ → ε0 (the so-called locking of the chemical potential) corresponds

to a divergent occupation in the ground mode. For simplicity, we can choose the lowest

energy to be zero, ε0 = 0.

The total number N of bosons is

N =
∑

i

ni ∼=
∫ ∞

0
g(ε)n(ε)dε, (2.5)



8 Chapter 2. Review

where g(ε) is the density of states. This approximation, where the entire sum over states

is replaced with an integral, implies an infinitesimally small contribution of each value ε

to the total particle number, including ε = 0, corresponding to the ground state. This is

no longer valid at low temperatures, at which bosons start to increasingly accumulate in

the ground state. Therefore, this contribution of the lowest state must be separated from

the integral and we get [35]

N = n0 +N ′ =
z

1− z
+

∫ ∞

0

g(ε)dε

eβε/z − 1
, (2.6)

where n0 = z/(1 − z) is the number of bosons in the ground state and the so-called

fugacity z = eβµ is introduced for convenience.

If we insert the density of states for massive free particles in 3-dimensional (3D) space 1,

g(ε) ∼ √
ε, expand the integrand and integrate term by term, we finally get

N =
z

1− z
+
V

λ3
F (z), (2.7)

where λ = h/
√
2πmkBT is the thermal de Broglie wavelength of particles with mass m

at temperature T and a function of fugacity

F (z) =
∞
∑

m=1

zm

m3/2
(2.8)

has been introduced. When z → 1, the number of particles outside the ground mode N ′

is at most

N ′ =
V

λ3
F (1) =

V

λ3
ζ(3/2) ≈ 2.612

V

λ3
, (2.9)

where ζ is the Riemann zeta function. We now define a temperature Tc such that

N = 2.612
V

λ3c
, (2.10)

where λc is the thermal de Broglie wavelength at temperature Tc. Then the number of

particles in the ground mode is

n0 = N −N ′ ≈ N

[

1−
(

T

Tc

)3/2
]

. (2.11)

Therefore, if T is even slightly below the critical temperature Tc, a significant fraction of

the total number of bosons will be in the lowest state, whereas for temperatures above Tc,

1The density of states is obtained via the usual łparticle in a box” treatment for free particles.
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Figure 2.3: Condensate fraction as a function of temperature for a 2D har-
monic (solid blue line) and a 3D box potential (dashed orange line).

n0/N will be negligibly small [see Fig. 2.3 showing the condensate fraction n0/N (dashed

orange curve) as a function of T ]. This phase transition to a macroscopically occupied

bosonic ground state is called Bose-Einstein condensation (BEC). Here we have considered

the density of particlesN/V to be some fixed number from which the critical temperature

can be calculated via equation (2.10). Alternatively, for a given temperature (e.g., room

temperature), a critical particle density is obtained from the same equation.

For the case of massive bosons trapped in a 2-dimensional (2D) harmonic potential, which

is considered in the following sections on photon BEC, we now proceed analogously to

obtain an estimate of a critical temperature (or equivalently, a critical particle number).

The energy spectrum of an isotropic 2D harmonic potential is

εn = ℏΩ(n+ 1), (2.12)

where Ω is the harmonic oscillator frequency. The degeneracy of the n-th energy level is

n+ 1 and the gap between the equidistant levels is ℏΩ. Thus, the density of states is

g(ε) = 2
n+ 1

ℏΩ
= 2

ε

(ℏΩ)2
, (2.13)

where a factor of 2 is included to account for the polarization of light (photon helicity).

Again, we separate the total number of particles into two contributions, n0 andN
′ for the

ground state and all the excited states, respectively

N = n0 +

∫ ∞

0

g(ε)dε

eβε/z − 1
= n0 +

2

(βℏΩ)2

∫ ∞

0

x dx

ex/z − 1
, (2.14)
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where a substitution x = βε is made in the last equality. Expanding the integrand and

integrating term by term gives N ′ as the following series (function of z)

N ′(z) = 2

(

kBT

ℏΩ

)2 ∞
∑

m=1

zm

m2
(2.15)

A critical particle number Nc is now obtained when taking the limit z → 1. We get

Nc = N ′(1) = 2

(

kBT

ℏΩ

)2

ζ(2) =
π2

3

(

kBT

ℏΩ

)2

, (2.16)

while the condensate fraction n0/N has the following temperature dependence [36]

n0
N

= 1−
(

T

Tc

)2

, (2.17)

which is shown in Fig. 2.3 (solid blue curve).

2.3 Properties of equilibrium-like photon condensate

It took seven decades after the theoretical prediction of Bose-Einstein condensation [37]

for the first experimental realization of this phenomenon. It was achieved with a very

dilute atomic gas cooled down below a critical temperature T ≃ 170 nK and under micro-

canonical conditions [1]. In contrast, a quasiequilibrium photon condensate, which was

realized 15 years later [11], emerges at room temperature (above a critical photon num-

ber) and under grand-canonical conditions. Some important properties of this system are

discussed in the remainder of this chapter.

2.3.1 Chemical potential of light and Kennard-Stepanov law

It is well known that the chemical potential of black-body radiation is zero [35]. Given that

the number of photons in a black cavity changes as a result of absorption and emission

events on the cavity walls, there is no constraint that the photon number needs to be

conserved and the corresponding Lagrange multiplier, the chemical potential, must be set

to zero. However, this vanishing chemical potential is not an inherent property of a photon

gas, but a consequence of the fact that matter (walls of the black cavity) is not explicitly

included in the description of an equilibrium state of a photon gas inside the cavity. Strictly

speaking, since photons do not interact with each other, they cannot achieve equilibrium
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by themselves [38].

Let us now consider a situation where photons are in a highly reflective cavity filled with

some medium consisting of atoms or molecules, which can absorb and emit the photons.

A dynamical equilibrium between the photons (γ), excited (M↑) and ground-state atoms

or molecules (M↓), can be represented by the following łchemical” equation 2

M↓ + γ ⇄ M↑. (2.18)

At constant temperature and volume (pressure), the equilibrium state corresponds to a

minimum in the Helmholtz (Gibbs) free energy X , implying that

dX =
∑

i

µidNi =
∑

i

∂X

∂Ni
dNi = 0, (2.19)

because the changes in temperature and volume (pressure), dT and dV (dp), are zero. Here,

dNi is the change in particle number of species i = {γ, ↓, ↑} and µi is the corresponding

chemical potential. From Eq. (2.18) it follows that dNγ = dN↓ = −dN↑, which inserted

into Eq. (2.19) gives the following condition

µγ + µ↓ = µ↑. (2.20)

This replaces the requirement that µγ = 0 for the case of black-body radiation (or the

requirement dN = 0 for a system with a single particle type and its number conserved).

Therefore, the photon chemical potential is no longer necessarily zero in this scenario and

it will depend of the energy gap between the excited and ground-state atoms (molecules).

Such a scenariowas used to achieve a quasiequilibriumBose-Einstein condensation of pho-

tons [11]. It involved a highly reflective microcavity filled with a dye solution and photons

which interact with the dye molecules [photochemical reaction (2.18)]. The molecule in

the ground-state becomes excited by absorbing a photon of frequency ω, as shown in the

lower panel of Fig 2.4. The frequency of the bare electronic transition (zero-phonon line)

is denoted by ωzpl. The two electronic states of the dye molecule have an additional struc-

ture, labeled S↓ and S↑, corresponding to rovibrational states of the lower (ei ∈ S↓) and

upper manifold (ef ∈ S↑). There are multiple pairs (i, f), which correspond to any given

transition frequency ω, i.e., those that satisfy the relation

ef − ei = ℏω − ℏωzpl. (2.21)

2The energy of optical photons is well above thermal energy at room temperature, which makes the con-
version of ground-state molecules into excited ones by thermal fluctuations negligible.
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Figure 2.4: Upper panel: absorption and fluorescence spectra of a dye solu-
tion. Lower panel: photochemical reaction between the photons, the ground-
state and the excited-state molecules. The molecule in the ground-state be-
comes excited by absorbing a photon of frequency ω. The two electronic
states of the dye molecule have an additional structure, labeled S↓ and S↑,
corresponding to rovibrational states. The frequency of the bare electronic
transition (zero-phonon line) is denoted by ωzpl.
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The dye solution is characterized by broad absorption and fluorescence spectra (see upper

panel of Fig 2.4) and satisfies the Kennard-Stepanov law [10, 39, 40]

B↓(ω)

B↑(ω)
=
w↓
w↑
e−βℏ(ω−ωzpl), (2.22)

where B↑(ω) and B↓(ω) are the Einstein coefficients of absorption and stimulated emis-

sion, respectively, while w↓ and w↑ are the statistical weights corresponding to the rovi-

bronic sublevels of the ground (↓) and excited state (↑)

w↓ =
∑

i∈S↓

e−βei ; w↑ =
∑

i∈S↑

e−βef . (2.23)

Due to frequent collisions between the dye and the solvent molecules, these rovibronic

states of the dye molecules (S↑ and S↓ manifolds in Fig. 2.4) are thermally populated. That

is, the corresponding probabilities are given by

pi =
e−βei

w↓
; pf =

e−βef

w↑
. (2.24)

More precisely, these rovibrational states are, to a very good approximation, thermally

distributed, because the rovibrational relaxation of dye molecules, resulting from frequent

collisions with the solvent molecules and happening at the łthermalization rate” κT < ps,

is much faster than the radiative decay of S↑ (rate at which photons are emitted by the dye

molecules, κR ≲ ns) [41, 42]. This rate is in turn sufficiently large compared to the photon

loss rate κ (rate at which the photons leave the cavity due to various loss mechanisms 3).

That is, the dye molecules absorb and re-emit the photons several times before they leak

out of the cavity, resulting in their thermalization to the rovibrational temperature of the

dye (room temperature).

In such a case as this (electronic two-level system with rovibronic sublevels), the Einstein

coefficients B↓(ω) and B↑(ω) at a given frequency ω are defined as the averages over all

pairs (i, f) that match this transition frequency, i.e. those that satisfy the equation (2.21).

Using this condition, it follows that

pf =
e−βℏ(ω−ωzpl)

w↑
e−βei =

w↓
w↑
e−βℏ(ω−ωzpl)pi. (2.25)

We then get
B↓(ω)

B↑(ω)
=

∑

i,f pfBf→i
∑

i,f piBf←i
=
w↓
w↑
e−βℏ(ω−ωzpl), (2.26)

3Losses happen as a result of nonradiative decay, imperfect mirror reflectivity and optical modes not con-
fined within the cavity.
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where the equalityBf→i = Bf←i has also been used. This concludes the derivation of the

Kennard-Stepanov law [42].

In addition to providing a thermalizing environment, dye molecules also act as a particle

reservoir for the photons in the sense that photons (γ) are exchanged between the elec-

tronic ground (↓) and excited state (↑) of the molecules, so that the three species are in

a dynamic equilibrium and equation (2.20) for the corresponding chemical potentials is

satisfied [42]. It follows that the photon fugacity is given by

z = eβµγ =
eβµ↑

eβµ↓
. (2.27)

Taking into account that the lowest energies in the S↓ and S↑ manifold are ei=0 = 0 and

ef=0 = ℏωzpl, respectively (see Fig. 2.4), the partition function of a single dye molecule is

given by

Z = w↓e
βµ↓ + w↑e

−β(ℏωzpl−µ↑). (2.28)

It follows that the probability ratio to find a dye molecule in the excited vs. ground state

is
P↑
P↓

=
w↑e

−β(ℏωzpl−µ↑)

w↓e
βµ↓

=
f

1− f
, (2.29)

where f is the fraction of excited dye molecules in the solution. Inserting this result into

Eq. (2.27), we get the expression for photon fugacity

z =
w↓
w↑

f

1− f
eβℏωzpl , (2.30)

where w↓/w↑ is a frequency-independent proportionality factor. Therefore, in dynamical

equilibrium, the ratio of the number of excited and ground-state dye molecules determines

the chemical potential of photons, as well as the energy gap ℏωzpl of the electronic tran-

sition.

2.3.2 Grand-canonical number fluctuations in photon BEC

If the chemical potential µγ of photons is fixed and determined by the ratio f/(1− f), as

explained above, the number of photons is then allowed to fluctuate around its average

value set by µγ . If the temperature is fixed as well, this corresponds to a grand-canonical

ensemble. When a photon gets absorbed by a dye molecule, it leaves the system (photon

gas) and łenters the reservoir” (excited molecules) 4. In a lot of physical systems a choice

4The total number of photons and excited molecules should be conserved. Given the presence of mirror
losses, this is achieved via steady pumping with an external laser, which compensates these losses.
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of ensemble is merely a matter of convenience, because relative fluctuations in various

observables vanish in all of them in the thermodynamic limit. In the case of BECs, how-

ever, the grand-canonical treatment predicts fluctuations on the order of the total particle

number. This is derived as follows.

The grand-canonical partition function for a system of non-interacting bosons is

ZG =
∏

i

∞
∑

N=0

eβN(µ−εi), (2.31)

where εi are the eigenenergies. The corresponding free energy is the grand potential

ΩG = −kBT lnZG, (2.32)

from which the ensemble average of the particle number ⟨N⟩ is calculated via

⟨N⟩ = −
(

∂ΩG

∂µ

)

T,V

, (2.33)

while the variance (∆N)2 (fluctuations in particle number) is given by

(∆N)2 = ⟨N2⟩ − ⟨N⟩2 = kBT

(

∂⟨N⟩
∂µ

)

T,V

= −kBT
(

∂2ΩG

∂µ2

)

T,V

(2.34)

Given that the system is non-interacting, to each eigenstate i corresponds a separate grand

potential Ωi
G given by

Ωi
G = −kBT ln

(

∞
∑

N=0

eβN(µ−εi)

)

= kBT ln
(

1− eβ(µ−εi)
)

. (2.35)

It follows that the particle number variance in that state is

(∆ni)
2 = ⟨n2i ⟩−⟨ni⟩2 = −kBT

(

∂2Ωi
G

∂µ2

)

T,V

=
eβ(εi−µ)

(eβ(εi−µ)−1)2
= ⟨ni⟩(⟨ni⟩+1). (2.36)

We see that for any given state i, the particle number ni fluctuates on the order of its mean

value ⟨ni⟩. In particular, in the case of a Bose-Einstein condensate (when the total particle

numberN exceeds a critical valueNc), we get that the number fluctuations in the ground

state are on the order of the total particle number

∆n0 ≃ ⟨n0⟩ ≃ N. (2.37)

The validity of grand-canonical ensemble lies on the assumption that the reservoir is much
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larger than the system. Therefore, the size of particle number fluctuations (and the rele-

vance of grand-canonical statistics) is expected to increase with the size of the particle

reservoir relative to the system size. This dependence was investigated in Ref. [18] both

theoretically and experimentally using a Hanbury-Brown-Twiss setup [43]. Changing the

type of dye solution (thus changing its transition frequency), as well as the dye concentra-

tion, allowed the effective reservoir size to be varied over three orders of magnitude. Large

number fluctuations of the order of the total particle number and extending deep into the

condensed phase were observed in the case of a sufficiently large effective reservoir. As

expected, it was also found that the relative fluctuations gradually vanish as the reservoir

size is reduced.
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Chapter 3

System and model

The system in which the equilibrium-like Bose-Einstein condensation of photons was first

observed [11] is schematically illustrated in Fig. 3.1. It shows a single longitudinal pho-

tonic mode within a cavity filled with an organic dye solution and pumped by an external

laser beam. The separation between the cavity mirrors is roughly a micrometer, which

results in a large spacing between adjacent longitudinal photonic modes, so that at room

temperature, only one of these modes, specified by its longitudinal quantum number q (as

shown in the figure) is coupled to the electronic transition of the dye. Here, q is a positive

integer in the boundary condition

kz(r) =
qπ

D(r)
, (3.1)

where r =
√

x2 + y2 is the distance from the optical axis, kz(r) is the longitudinal compo-

nent of the photon wave vector k⃗ and the separationD(r) between the spherically curved

q
z

x

Dye

MirrorPump beam

Figure 3.1: Schematically illustrated experimental setup containing an optical
microresonator filled with a dye solution and pumped with an external laser.
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mirrors (with radius of curvature R) is given by (see the left panel of Fig. 3.2)

D(r) = D0 − 2(R−
√

R2 − r2). (3.2)

The photon energy is given by the dispersion relation

E = ℏc̃|⃗k| = ℏc̃
√

[kz(r)]2 + k2r ≈ ℏc̃

(

kz +
k2r
2kz

)

, (3.3)

where c̃ is the speed of light in the dye medium, kr =
√

k2x + k2y is the transverse com-

ponent of the wave vector and a paraxial approximation kr ≪ kz was used to obtain

the last equality. This approximation is used when the rays of light make small angles

to the optical axis and lie close to it throughout the system. In the experimental setup

discussed here, the optical axis is the z-axis and therefore, the small-angle requirement

means kr/kz ≪ 1. This is satisfied given that kr/kz ∼ D0/rmax ≃ 10−3 [10]. Inserting

equations (3.1) and (3.2) into the dispersion relation (3.3) and using the fact that r/R≪ 1 1,

we obtain an effective 2-dimensional harmonic potential for the photons in the transverse

direction r⃗ = (x, y)

E ≈ mphc̃
2 +

(ℏkr)
2

2mph
+

1

2
mph Ω2r2, (3.4)

withΩ = c̃
√

2/D0R as the harmonic oscillator frequency andmph as the effective photon

mass, which is nonzero due to the presence of a frequency cutoff, c̃|⃗k| ≥ c̃kz(0). The

corresponding łrest mass” term in Eq. 3.4 is given by

Ez,0 = mphc̃
2 = ℏc̃kz(0). (3.5)

By introducing variation in the effective shape of the mirror 2, different kinds of trapping

potentials for the photons can be created. One particularmethod of doing this [30] is elabo-

rated on in Chapter 6. A sketch of a such a reshaped mirror corresponding to a double-well

potential for the photons, is shown on the right panel of Fig. 3.2. The effective mirror sep-

arationD(r) is no longer given by equation (3.2). Instead, the optical wavelength now has

two local maxima, corresponding to local minima in the effective potential. Inserting the

condition (3.1) on the wave vector into the general expression for the photon energy (3.3),

1This approximation is valid given that r < 1mm is much smaller than the radius of the spherically
curved mirrors R ≃ 1m [10].

2We use the word łeffective” here, because it is not necessary to physically deform the mirror in order to
produce a different effective potential for the photons. The only requirement is that a variation in the optical
wavelength is produced via some technique, like the one mentioned in Chapter 6.
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λ'>λ

q = const.

0D

r

D(r)

R

Figure 3.2: Left panel: spherically curved mirrors (with radius of curvature
R) separated byD(r), which depends on the distance r from the optical axis.
Right panel: reshaping of the mirrors produces a different potential. The re-
quirement that the boundary conditions imposed by the cavity are locally sat-
isfied, results in a variation of the optical wavelength, and correspondingly,
the effective potential experienced by the photons.

we get

Eeff (r) ≈ ℏc̃

(

kz(r) +
k2r

2kz(r)

)

= ℏc̃

(

qπ

D(r)
+
k2r D(r)

2qπ

)

= mphc̃
2 +

(ℏkr)
2

2mph
+

4
∑

n=1

Cn(0)r
n +O(5),

(3.6)

where an expansion in r/R≪ 1 is made in the last equality. By tuning the system param-

eters, the expansion coefficientsCn(0) can be achieved which correspond to a double-well

potential, for instance.

In the case of spherically curved mirrors the transverse photonic modes ψi(r⃗) (Fig. 3.3) are

the eigenfunctions of the two-dimensional harmonic potential. They are characterized by

a pair of harmonic oscillator quantum numbers in x and y direction, i = (νx, νy), and have

energies Ei = ℏ[Ωx(νx + 1/2) + Ωy(νy + 1/2)] with oscillator frequencies Ωx and Ωy .

In the following, we assume Ωx and Ωy to be almost identical, Ωx ≡ Ω and Ωy = 0.99Ω.

This slight anisotropy of the trap is a realistic assumption and is required for eliminating
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Figure 3.3: Photon mode densities |ψnx,ny
(x)|2 projected onto the x axis. For

simplicity, only modes (nx, 0), with nodes only along x direction, are shown.

the coherent mixing of otherwise degenerate modes i 3. The harmonic oscillator length

d associated with Ω is used as a natural unit of length. The total energy of the cavity

mode i is then given by εi = ℏωi = Ei + Ez,0, where Ez,0 is defined in Eq. 3.5. As

already mentioned, other photonic modes corresponding to different potential landscapes

can also be considered and realized experimentally. This is done in Chapter 6 for the case

of an asymmetric double-well potential.

3.1 Master equation

The system can be modeled by the master equation [19, 44] for the state characterized by

the electronic degrees of freedom of the dye molecules j as well as the photon modes i

ρ̇ = −i
[

∑

i

δia
†
iai, ρ

]

+







∑

i

κL[ai] +
∑

j

(

PjL[σ+j ] + ΓL[σ−j ]
)







ρ

+







∑

i,j

(

Ri,j
↑ L[aiσ+j ] +Ri,j

↓ L[a†iσ−j ]
)







ρ, (3.7)

where L [X] ρ = XρX† − 1
2

{

X†X, ρ
}

are the standard Lindblad terms. The various

processes contained within this master equation are schematically illustrated in Fig. 3.4.

Each dye molecule has its position (labeled by j) in a two-dimensional space given by

3In any real experiment, there will be a slight anisotropy to break the degeneracy, resulting in a definite
set of photon modes. In the isotropic case, however, any orthonormal set of linear combinations of modes
within a degenerate subspace is an equally valid choice and choosing any particular set would be arbitrary.
Therefore, to avoid any ambiguity, we choose the slightly anisotropic case in our simulations.
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Figure 3.4: Illustration of the model showing all of the processes contained
in the dissipative part of the Lindblad master equation.

the transverse directions (perpendicular to the optical axis of the cavity), r⃗ = (x, y). Its

electronic states are modeled as a two-level system with the corresponding raising and

lowering operators σ±j = (σxj ± σyj )/2. To each photon mode i corresponds the creation

(annihilation) operator a†i (ai), while δi = ωi−ωzpl is its frequency relative to the splitting

of the two-level system (zero-phonon line) ωzpl. The presence of the detunings δi (as

opposed to the mode frequencies ωi) in the master equation, results from a shift to a frame

rotating with the zero-phonon frequency. The rate of spontaneous losses, where the dye

molecules emit photons into non-cavity modes 4, is given by Γ. The photon-cavity lifetime

is finite, due to loss mechanisms (like the mirror losses), which happen at a rate κ, assumed

to be mode independent. These are processes where photons leave the system (photon

gas) without going into the particle reservoir (electronic excitations of the dye molecules).

Therefore, the system needs to be (continuously) pumped with an external laser in order

to stabilize the average photon number. The corresponding spatially dependent pump rate

is denoted by Pj ≡ P (r⃗).

As mentioned in Chapter 2, the rovibrational states of the dye molecules in a solution re-

lax rapidly to equilibrium (the corresponding rate is much larger than the rate of radiative

decay). As a result, their occupation numbers need not to be taken into account explicitly.

Instead, this effect is described via the rates Ri,j
↑,↓ = ρ|ψi(r⃗j)|2Ri

↑,↓. They depend on po-

sition r⃗j , the number density of the molecules ρ and the frequency ωi of mode i, through

the absorption (↑) and emission (↓) rates Ri
↑,↓, which characterize the dye solution. They

satisfy the Kennard-Stepanov law [10, 39, 40]. That is, their ratio is proportional to the

4We define cavity modes as all the modes corresponding to a single longitudinal mode number q, which
populate the cavity and are considered explicitly in the master equation (rate equations). All the other modes
are called non-cavity modes.
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Boltzman factor

Ri
↓/R

i
↑ = Ce−βℏ(ωi−ωzpl), (3.8)

enabling the thermalization of photon gas. Here, C is a frequency-independent propor-

tionality factor. The coupling between the dye molecules and the photons is only present

in the dissipative part of the master equation. This approximation is justified by the very

broad emission and absorption spectra of the dye [19, 44] (see upper panel of Fig. 2.4).

3.2 Derivation of the rate equations from the master equa-

tion

From the master equation a closed system of semiclassical equations of motion can be

derived [19, 31, 44] for the photon mode populations ni = ⟨a†iai⟩, and the fraction f(r⃗) ≡
fj of excited dye molecules at position r⃗. The quantity fj has the following relation to the

Pauli operators

fj =
1 + ⟨σzj ⟩

2
= ⟨σ+j σ−j ⟩ . (3.9)

The expectation value of an observableQ is given by ⟨Q⟩ = Tr(Qρ), where ρ is the density

matrix. The observables cosidered here are a†iai and σ
z
j . In the following derivation of the

rate equations for ⟨a†iai⟩ and ⟨σzj ⟩, we use the freedom to interchange operators which

commute and to perform cyclic permutations under the trace operator. We also use the

following commutation relations

[ai, a
†
j ] = δij ,

[σzj , σ
±
j ] = ±σ±j .

(3.10)
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Using the Lindblad master equation (3.7), we find that the equation for ṅi is, term by term

(=m is themth term in the master equation):

d⟨a†iai⟩
dt

=1 − i
∑

m

δmTr
[

(a†iai)(a
†
mam)ρ− (a†iai)ρ(a

†
mam)

]

= 0

d⟨a†iai⟩
dt

=2 − κ

2

∑

m

Tr
[

(a†iai)(a
†
mam)ρ+ (a†iai)ρ(a

†
mam)− 2(a†iai)amρa

†
m

]

=2 − κ

2

∑

m ̸=i

Tr
[

(a†iai)(a
†
mam)ρ+ (a†iai)(a

†
mam)ρ− 2(a†iai)(a

†
mam)ρ

]

− κ

2
Tr
[

(a†iai)(a
†
iai)ρ+ (a†iai)(a

†
iai)ρ− 2a†ia

†
iaiaiρ

]

=2 − κTr
[

a†i [ai, a
†
i ]aiρ

]

=2 − κTr
[

a†iaiρ
]

= −κ ⟨a†iai⟩ = −κni

d⟨a†iai⟩
dt

=5 −
∑

m,j

Ri,j
↑

2
Tr
[

(a†iai)(a
†
mam)(σ−j σ

+
j )ρ+ (a†iai)ρ(a

†
mam)(σ−j σ

+
j )− 2a†iaiamσ

+
j ρa

†
mσ
−
j

]

=5 −
∑

m,j

Ri,j
↑

2
Tr
[

(a†iai)(a
†
mam)ρ(σ−j σ

+
j ) + (a†mam)(a†iai)ρ(σ

−
j σ

+
j )− 2a†ma

†
iaiamρ(σ

−
j σ

+
j )
]

=5 −
∑

j

Ri,j
↑

2
Tr
[

(a†iai)(a
†
iai)ρ(σ

−
j σ

+
j ) + (a†iai)(a

†
iai)ρ(σ

−
j σ

+
j )− 2a†ia

†
iaiaiρ(σ

−
j σ

+
j )
]

=5 −
∑

j

Ri,j
↑ Tr

[

a†i [ai, a
†
i ]ai(σ

−
j σ

+
j )ρ

]

=5 −
∑

j

Ri,j
↑ Tr

[

(a†iai)(σ
−
j σ

+
j )ρ

]

=5 −
∑

j

Ri,j
↑ ni(1− fj)

d⟨a†iai⟩
dt

=6 −
∑

m,j

Ri,j
↓

2
Tr
[

(a†iai)(ama
†
m)(σ+j σ

−
j )ρ+ (a†iai)ρ(ama

†
m)(σ+j σ

−
j )− 2a†iaia

†
mσ
−
j ρamσ

+
j

]

=6 −
∑

j

Ri,j
↓

2
Tr
[

(a†iai)(aia
†
i )ρ(σ

+
j σ
−
j ) + (aia

†
i )(a

†
iai)ρ(σ

+
j σ
−
j )− 2(aia

†
i )(aia

†
i )ρ(σ

+
j σ
−
j )
]

=6 −
∑

j

Ri,j
↓

2
Tr
[

[a†i , ai]aia
†
iρσ

+
j σ
−
j + aia

†
i [a
†
i , ai]ρσ

+
j σ
−
j

]

=6
∑

j

Ri,j
↓

2
Tr
[

2aia
†
iρσ

+
j σ
−
j

]

=6
∑

j

Ri,j
↓ (ni + 1)fj
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To obtain a closed system of equations, in the last equation for each term we used a fac-

torization (semiclassical approximation)

⟨a†iaiσ+j σ−j ⟩ = ⟨a†iai⟩ ⟨σ+j σ−j ⟩ = nifj ,

⟨a†iaiσ−j σ+j ⟩ = ⟨a†iai⟩ ⟨σ−j σ+j ⟩ = ni(1− fj),
(3.11)

where the expectation values of products of observables a†iai and σ
±
j σ
∓
j are replaced by

the product of expectation values. In other words, the state of the photons is assumed to

be uncorrelated with the state of the dye molecules.

Collecting together all of the terms, we get the equation of motion for ni

dni
dt

= −κni −
∑

j

Ri,j
↑ ni(1− fj) +

∑

j

Ri,j
↓ (ni + 1)fj . (3.12)
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Analogously, the rate equation for ⟨σzj ⟩ is, term by term

d⟨σzj ⟩
dt

=3 − Pj

2
Tr
[

σzj (σ
−
j σ

+
j )ρ+ σzj ρ(σ

−
j σ

+
j )− 2σzjσ

+
j ρσ

−
j

]

=3 − Pj

2
Tr
[

σzj (σ
−
j σ

+
j )ρ+ (σ−j σ

+
j )σ

z
j ρ− 2σ−j σ

z
jσ

+
j ρ
]

=3 − Pj

2
Tr
[

[σzj , σ
−
j ]σ

+
j ρ+ σ−j [σ

+
j , σ

z
j ]ρ
]

=3 − Pj Tr
[

−σ−j σ+j ρ− σ−j σ
+
j ρ
]

=3 2Pj ⟨σ−j σ+j ⟩
=3 2Pj(1− fj)

d⟨σzj ⟩
dt

=4 − Γ

2
Tr
[

σzj (σ
+
j σ
−
j )ρ+ σzj ρ(σ

+
j σ
−
j )− 2σzjσ

−
j ρσ

+
j

]

=4 − Γ

2
Tr
[

σzj (σ
+
j σ
−
j )ρ+ (σ+j σ

−
j )σ

z
j ρ− 2σ+j σ

z
jσ
−
j ρ
]

=4 − Γ

2
Tr
[

[σzj , σ
+
j ]σ

−
j ρ+ σ+j [σ

−
j , σ

z
j ]ρ
]

=4 − ΓTr
[

(σ+j σ
−
j )ρ+ (σ+j σ

−
j )ρ

]

=4 − 2Γfj

d⟨σzj ⟩
dt

=5 −
∑

i

Ri,j
↑

2
Tr
[

σzj a
†
iσ
−
j aiσ

+
j ρ+ σzj ρa

†
iσ
−
j aiσ

+
j − 2σzj aiσ

+
j ρa

†
iσ
−
j

]

=5
∑

i

2Ri,j
↑ ⟨(a†iai)(σ−j σ+j )⟩

=5
∑

i

2Ri,j
↑ ni(1− fj)

d⟨σzj ⟩
dt

=6 −
∑

i

Ri,j
↓

2
Tr
[

σzj aiσ
+
j a
†
iσ
−
j ρ+ σzj ρaiσ

+
j a
†
iσ
−
j − 2σzj a

†
iσ
−
j ρaiσ

+
j

]

=6 −
∑

i

2Ri,j
↓ ⟨(a†iai + 1)(σ+j σ

−
j )⟩

=6 −
∑

i

2Ri,j
↓ (ni + 1)fj

Again, we collect together all of the terms to obtain the equation of motion for fj

dfj
dt

=
1

2

d⟨σzj ⟩
dt

= Pj(1− fj)− Γfj +
∑

i

Ri,j
↑ ni(1− fj)−

∑

i

Ri,j
↓ (ni + 1)fj . (3.13)

Finally, using the substitution

Ri,j
↑ =ρ|ψi(r⃗j)|2Ri

↑,

Ri,j
↓ =ρ|ψi(r⃗j)|2Ri

↓,
(3.14)
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in equations (3.12) and (3.13), we obtain a set of coupled rate equations

ṅi = −κni + (ni + 1)Ri
↓ρGi − niR

i
↑ρ (1−Gi), (3.15)

ḟ(r⃗) = [1− f(r⃗)](P (r⃗) +
∑

i

Ri
↑|ψi(r⃗)|2ni)

− f(r⃗)[Γ +
∑

i

Ri
↓|ψi(r⃗)|2(ni + 1)]. (3.16)

Here we have introduced a so-called gain 5 of mode i, which is quantified by its overlap

with the fraction f(r⃗) ∈ [0, 1] of excited dye molecules,

Gi[f(r⃗)] =

∫

|ψi(r⃗)|2f(r⃗) dr⃗ ∈ [0, 1]. (3.17)

We proceed to explain the meaning of the various terms in the rate equations. In the first

equation (3.15), we see that the number of photons in a given mode i can increase due to

both stimulated and spontaneous emission, thus the corresponding change is proportional

to (ni+1), as well as the emission rateRi
↓ and the density of excitedmolecules in the spatial

region of the mode, given by ρGi. A decrease in ni happens as a result of absorption by

the dye molecules and the corresponding term is proportional to the number of photons

ni available to be absorbed, as well as the absorption rate Ri
↑ and the density of ground-

state molecules in the spatial region of the mode ρ (1−Gi). Photons also escape through

mirror transmission, which is incorporated by the term−κni. In the second rate equation

(3.16) the number of excitedmolecules increase (decrease) by absorbing (emitting) a photon

and the corresponding absorption and emission terms are given by
∑

iR
i
↑|ψi(r⃗)|2ni and

∑

iR
i
↓|ψi(r⃗)|2(ni +1), respectively. A positive change in f(r⃗) also happens as a result of

pumping the ground-state molecules, incorporated by the term [1 − f(r⃗)]P (r⃗), whereas

spontaneous emission into non-cavity modes, given by f(r⃗)Γ contributes to a negative

change in f(r⃗).

3.3 Phenomenological quasi-derivation of the rate equations

Equations (3.15) and (3.16) can be understood intuitively as an extension of the familiar rate

equation applied to an electronic transition (two-level system) of an atom or a molecule.

They contain three processes (absorption, stimulated and spontaneous emission) with the

corresponding Einstein coefficients (proportional to the rates of each process) [45]. This

5This quantity is proportional to the usual definition of the gain as the measure of the difference between
stimulated emission and absorption. For simplicity, we refer to it as the gain throughout the manuscript.
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rate equation for the average number of excited molecules N↑ =
∫

dr⃗ f(r⃗) reads

Ṅ↑ = B↑(N −N↑) ρω −B↓N↑ ρω −A↓N↑, (3.18)

where N is the total number of molecules, B↑, B↓ and A↓ are the Einstein coefficients

of absorption, stimulated and spontaneous emission, respectively, while ρω is the spectral

energy density of the radiation field at the frequency ω of the electronic transition. This

quantity can be decomposed as ρω = uωnω , where nω is the average number of photons

with frequency ω, while uω is the spectral energy density per photon. The transition fre-

quencyω of the two-level system can be understood as the previously defined zero-phonon

frequency ωzpl. The absorption of photons increases the number of excited molecules and

the corresponding termB↑(N−N↑) ρω depends on the number of ground-state molecules

N − N↑, available to be excited. Similarly, the two emission terms are proportional to

the number of excited molecules N↑ and affect a negative change in it. The terms cor-

responding to processes induced by electromagnetic radiation (absorption and stimulated

emission) also depend on the spectral energy density ρω .

Using the identity A↓/B↓ = uω , equation (3.18) can be rewritten in the form

Ṅ↑ = B↑(N −N↑)uωnω −B↓N↑ uω(nω + 1). (3.19)

If we now consider the case where the two-level system has a rovibrational substructure,

we need to sum over all the transitions between different rovibrational states of the ground

and the excited electronic levels that contribute to a change in N↑. These transitions cor-

respond to absorption and emission of photon modes i, with a quasi-continuous spectrum

εi. We switch to a more convenient notation,

nω → ni,

uω → ui,
(3.20)

and the Einstein coefficients are now also frequency dependent

B↑ → Bi
↑,

B↓ → Bi
↓.

(3.21)

If we allow for spatially dependent molecular excitations and introduce driven-dissipative

conditions, i.e., pumping with rate P (r⃗) and spontaneous loss into other modes (rate Γ),

the final equation describing the dynamics of N↑(r⃗) reads

Ṅ↑(r⃗) = P (r⃗)N↓(r⃗)− ΓN↑(r⃗) +N↓(r⃗)
∑

i

Bi
↑ui(r⃗)ni −N↑(r⃗)

∑

i

Bi
↓ui(r⃗)(ni + 1),

(3.22)

where ui(r⃗) is now a spatially dependent spectral energy density per photon at frequency
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ωi and N↑(r⃗) is the number density of excited molecules at position r⃗. The latter can

be written as N↑(r⃗) = ρf(r⃗), where ρ is the total density of dye molecules and f(r⃗) is

their excited fraction. Likewise, the number density of ground state molecules isN↓(r⃗) =
ρ{1− f(r⃗)}.

The corresponding rate equation for the average photon mode occupations ni, including

the loss process with rate κ is

ṅi = −κni + (ni + 1)Bi
↓

∫

ui(r⃗)N↑(r⃗) dr⃗ − niB
i
↑

∫

ui(r⃗)N↓(r⃗) dr⃗, (3.23)

where a sum is taken over all the points in space where a change inN↑(r⃗) affects the mode

occupations.

In the energy basis we have ui(r⃗) ∝ |ψi(r⃗)|2, where ψi(r⃗) are the eigenfunctions cor-

responding to the effective potential imposed by the cavity mirrors. The frequency de-

pendent proportionality factor can be absorbed by the Einstein coefficients to form the

absorption and emission rates, Ri
↑ and R

i
↓. This leads to a final form of the system of

equations, which matches Eqs. (3.15), (3.16), derived from a microscopic theory.

3.4 Mode selection

In the following discussion we will use the general term łBose selected” for modes acquir-

ing macroscopic occupation, which subsumes both equilibrium Bose condensation as well

as non-equilibrium processes leading to a macroscopic occupation of bosonic modes [26,

27, 46, 47].

Setting the right-hand side of Eq. (3.15) to zero, it follows that a steady state population ni

is given by

ni =

(

Ri
↑

Ri
↓

(1−Gi)

Gi
− 1 +

κ

Ri
↓ρGi

)−1

. (3.24)

When a mode i becomes macroscopically occupied (łBose selected”), the contribution of

spontaneous emission to this macroscopic population ni becomes negligible (ni+1 ≈ ni).

This allows us to find a sharply defined threshold value Gth
i of the gain at which the łse-

lection” happens. It is obtained by setting the term in the brackets to zero (corresponding

to a divergent occupation). We get

Gth
i =

Ri
↑ + κ/ρ

Ri
↑ +Ri

↓

=
Ri
↑/R

0
↑ + 1/ξ

Ri
↑/R

0
↑ +Ri

↓/R
0
↑

, (3.25)
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where we have isolated the thermalization parameter [19, 31]

ξ = R0
↑ρ/κ (3.26)

as a dimensionless measure of the coupling between the photons and the dye relative to

the cavity loss. For a sufficiently large density ρ, the collisions between the dye molecules

and the solvent molecules are frequent enough that photons can thermalize via multiple

absorptions and emissions within their cavity lifetime 1/κ [11, 48]. Therefore, the degree

of thermalization increases with both ρ and 1/κ. One of the requirements of an effective

thermalization in the system is also that the absorption at the ground mode is not too low,

making R0
↑ a reasonable choice in this definition. However, it is somewhat arbitrary and

it does not affect the results, given that the same quantity is divided from the absorption

and emission ratesRi
↑,↓ to obtain the dimensionless form of the rate equations used in the

numerical calculations. Once a mode is selected, the gain Gi is clamped [9] at (or, more

precisely, slightly below) the threshold valueGth
i . Namely, when increasingGi further, ni

would diverge at Gi = Gth
i and assume unphysical negative values for Gi > Gth

i .

Inserting the Kennard-Stepanov law (3.8), Eq. (3.25) can be written in the form

Gth
i =

1 +R0
↑/(R

i
↑ξ)

1 + Ce−β(εi−ℏωzpl)
. (3.27)

3.5 Equilibrium limit

In the case of equilibrium Bose-Einstein condensation, this łdivergent” (macroscopic) oc-

cupation in the ground mode happens when the chemical potential approaches the value

of ground mode energy. This locking of the chemical potential can be shown to be equiv-

alent to the above defined clamping of the gain Gi in the limit ξ → ∞ for the case of

homogeneous excitation field f(r⃗) = const. ≡ f . Equation (3.24) then reduces to the

Bose-Einstein distribution

ni =
(

eβ(εi−µ) − 1
)−1

, (3.28)

where we have used the Kennard-Stepanov law [Eq. (3.8)] and identified the chemical

potential µ of the photon gas to be given by [42]

eβµ = Ceβℏωzplf/(1− f), (3.29)

as derived in Chapter 2. Here f/(1 − f) is a spatially homogeneous ratio of the num-

ber of excited and ground-state dye molecules. In the limit where the chemical poten-

tial approaches the ground-state energy, µ → ε0 (onset of BEC), Eq. (3.29) becomes

Ce−β(ε0−ℏωzpl) = (1 − f)/f . It follows that f = Gth
0 = 1/(1 + Ce−β(ε0−ℏωzpl)), which
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is exactly the selection threshold condition for the ground mode given by Eq. (3.25) when

the photon cavity lifetime 1/κ ∝ ξ → ∞. Therefore, in the equilibrium limit, which does

not require pumping in order to stabilize the average photon number, the locking of the

chemical potential is equivalent to the clamping of the gain.
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Chapter 4

Homogeneously pumped photon

gas

In this chapter, which is adapted from [32], we consider the case of a homogeneously

pumped system, P (r⃗) = const = P 1.

The equations of motion (3.15), (3.16) derived in Chapter 3 form a large system of coupled

nonlinear differential equations. To obtain numerically the steady-state solution, we use

the parameter values which correspond to the experiments of Refs. [10, 24, 30]. We choose

a slightly anisotropic harmonic trap, as defined in Chapter 3, with Ω/2π = 4 THz. As

mentioned in Chapter 3, due to the large spacing between successive longitudinal modes,

only one of these modes occupies the cavity at room temperature. That is, the energy

spacing ∆ε = ℏc̃π/D0 ≈ 3 eV is much larger than the thermal energy kBT ≈ 0.026 eV.

The ground-mode (cutoff) frequency is set to ωc = ε0/ℏ = 2π · 515 THz and the zero-

phonon frequency (dashed vertical line in Fig. 4.1) is ωzpl/2π = 555 THz. From the

measured absorption and fluorescence spectra of the Rhodamine 6G dye [19], we obtain

the corresponding ratesRi
↑,↓ as fitted functions of the frequency εi/h [19, 49] using a cubic

smoothing spline, as shown in Fig. 4.1. The values of the absorption and emission rates

across the whole frequency range are determined by setting the absorption rate of the

ground mode to R0
↑/d

2 = 1 kHz. The density of dye molecules is set to ρ = 108/d2 and

the thermalization parameter ξ lies between 0.01 and 100, where ξ = 25 corresponds to

the mean experimental value of the photon loss rate κ ≈ 4 GHz. The rate of spontaneous

losses into non-cavity modes is set to Γ = 0.2 GHz.

We kept 28 modes (corresponding to 7 energy levels) in our numerical calculations. The

value of the frequency spacing Ω between the modes was chosen large enough, while

also achievable experimentally [30], so that increasing the number of modes considered

1The pump can also be modeled as a very wide Gaussian beam, to more accurately correspond to the
experiment. This introduces only minor quantitative changes into the work presented here, without affecting
any of the qualitative results.
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Figure 4.1: Fitted absorption and emission rates (solid lines) vs. frequency
εi/h. The rates are fitted to experimental data (crosses) [19, 49] using a cubic
smoothing spline. The frequency range of the relevant cavity modes is indi-
cated by the shaded gray area with a sharp cutoff at ωc = ε0/ℏ.

would not produce a significant effect on the results. That is, any additional modes would

remain unselected across the whole pump-rate range and would not affect the transition

thresholds of the selected modes. We used the LSODA algorithm and set a sufficiently

large time interval to achieve convergence to a steady state for the range of parameters

used. The initial condition was set to a zero mode-population vector for the lowest value

in a range of pump rates P , and adapted to the current solution at each successive value

of P . We also solved the steady-state equation directly via a root finding algorithm to

confirm that both methods produce exactly the same results.

4.1 Threshold pump rate

The general condition for the selection threshold pump rate P th
i of mode i can be obtained

by inserting Eq. (3.16) into the definition of the gain (3.17) and setting it equal to Gth
i . We

get [31]

Gth
i =

∫

dr⃗ |ψi(r⃗)|2
P +

∑

j∈S R
j
↑ |ψj(r⃗)|2 nj

Γ + P +
∑

j∈S(R
j
↑ +Rj

↓) |ψj(r⃗)|2 nj
, (4.1)

where the sums in the integrand are over all of the modes which have already been Bose-

selected at lower pump rates. Again, the sharpness of transitions allows us to omit the

contributions of spontaneous emission to the mean occupations, which are negligible once

a mode is selected.
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Figure 4.2: Threshold pump rate Pth of the first selection as a function of the
thermalization parameter ξ and the energy Ei of the modes.

This equation would allow us, in principle, to iteratively determine each selectedmode and

the corresponding threshold pump rate, if the populations of all the already selectedmodes

are known as a function of the pump rate P . Namely, at each value of ξ, the selected mode

is the one for which the Eq. (4.1) holds for the lowest value of P . However, an analytic

expression can only be obtained for the first selection. Here, the approximate value of the

threshold P th
i can be obtained by setting all nj to zero (i.e. neglecting the coupling to the

still weakly occupied photonic modes). Equation (4.1) then reduces to

Gth
i =

P

Γ + P
. (4.2)

Solving this equation for P and inserting the condition (3.25), we get the first-selection

threshold pump rate P th
i as a function of the thermalization parameter ξ

P th
i =

Gth
i

1−Gth
i

Γ =
Ri
↑ +R0

↑/ξ

Ri
↓ −R0

↑/ξ
Γ. (4.3)

It follows that the first-selected mode is the one with the lowest threshold gain Gth
i (ξ).

In Fig. 4.2 the threshold pump rate P th
i is shown as a function of ξ and the mode energy

Ei (blue surface). The orange line on this surface follows the minimal P th
i at each value

of ξ. We see that only for very small values of the thermalization parameter, ξ ≲ 0.1,

this is not the ground mode. This follows from Eq. (3.25) when taking into account the

shapes of the absorption and emission spectra (see Fig. 4.1). In particular, by looking at

the second equation we see that the ξ-independent denominator always favors the ground

mode which has the largest Boltzmann factor, whereas the nominator contains the relative

absorption rate of mode i, Ri
↑/R

0
↑, modulated by the thermalization parameter. When the

latter is sufficiently large, ξ ≳ 0.1, this term becomes negligible compared to 1, and the

selected mode is determined solely by the ground-mode favoring Boltzmann factor. On the
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Figure 4.3: The left panel shows the mode populations ni as functions of
pump rate P for two values of the thermalization parameter, ξ = 0.03 (a) and
ξ = 20.1 (c). Only one of the modes in an almost identically behaving sym-
metric pair is labeled. The right panel, (b) and (d), shows the corresponding
spatial distributions of excited dye molecules f(x) for the chosen values of P
(vertical lines in the left panel).

other hand, in the high loss regime, ξ ≲ 0.1, excited modes with higher relative absorption

rate can łwin out", i.e. have the smallest threshold gain.

4.2 Tuning the photon cavity lifetime andmode competition

Let us now discuss how the selection of modes is influenced by the thermalisation pa-

rameter ξ, or equivalently the photon cavity lifetime 1/κ. Numerically obtained photon

mode populations as functions of the pump rate are shown in Fig. 4.3 for two values of

the thermalization parameter ξ. The colors correspond to the modes as shown in Fig. 3.3

and only modes with varying shapes are shown with different colors, e.g. symmetric pairs

like (2,1) and (1,2) are depicted with the same color (brown), but a different linestyle (solid

vs. dashed). These same colors are used consistently in all the figures of this chapter. As

expected from Fig. 4.2, for the low value ξ = 0.03 (Fig. 4.3a), multiple quasi-degenerate

excited modes (2,0), (0,2) and (1,1), colored green and red, respectively, are selected at prac-

tically identical threshold pump rate. This is followed by further selection of modes with

higher energy, while the ground mode (0,0) remains unselected.

When ξ is sufficiently large, as shown in Fig. 4.3c, the ground mode is the first one to get

selected at a much lower value of P . However, as P is increased further, eventually also

modes (6,0) and (0,6) get selected, as opposed to the energetically favorable selection of the
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Figure 4.4: Spatial distributions of excited dye molecules f(x) close above
the first selection threshold P th for 4 values of the thermalization parameter
ξ. The corresponding threshold gain Gth is marked by a horizontal blue line
of the same style.

first excited modes (1,0) and (0,1), which according to Eq. (3.25) possess a lower threshold

gain Gth
i .

In order to explain this, we plot the fraction of excited dye molecules f(x) ≡ f(x, 0) in

Fig. 4.3d for three chosen values of P (indicated by vertical lines of the same style in the

left panel). We see that once P is increased above the first selection threshold, the shape

of f(x) reflects the clamping of the gain in the central region, which overlaps with the

selected ground-state mode. This clamping in the center of the trap then suppresses the

selection of further low-energy modes, whose wave functions have a large weight in the

trap center. This mechanism of mode repulsion explains why after the ground mode, the

next modes to be selected posses six excitation quanta. Likewise, Fig. 4.3b shows that after

the first selection f(x) reflects the shape of the selected excited modes for the scenario of

Fig. 4.3a.

To see more clearly how the shape of f(x) and with that the mode competition changes

with ξ, we plot its value at P = 0.02 for 4 values of ξ (Fig. 4.4). This pump rate is slightly

above the first selection threshold P th and only the ground mode is selected in each case.

It follows from Eqs. (3.25) and (4.3) that a higher value of ξ lowers the first selection thresh-

old and the corresponding gain gets clamped at a lower valueGth, indicated by horizontal

blue lines for each ξ in Fig. 4.4. We see that with increase of ξ the excited dye molecules are

clamped both at a lower value and in a wider spatial region, therefore becoming progres-

sively more inaccessible to modes close in energy to the ground mode. In other words,

when the gain is clamped at lower values, not enough molecules can be excited in the

region of overlap between the ground mode and following excited modes. We can say

that successive modes (those with largest overlap) łcompete" for gain in the same spa-

tial domain and block each other from being selected together in the regime of higher P.
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Figure 4.5: Population ni (a) and gain Gi (c) of modes i vs. pump rate P for
ξ = 1.8. Only one of the modes in an almost identically behaving symmetric
pair is labeled. Dotted horizontal lines indicate threshold valuesGth

i to which
the gain is clamped at selection. The middle panel (b) shows the zoomed-in
gain of modes (2,0) and (0,2), which are deselected when the clamped gain
starts to drop below Gth

(2,0) and G
th
(0,2), respectively.
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When the thermalization parameter is increased even further to ξ = 20.1 (Fig. 4.3d) f(x)

is locked to an even lower threshold value of the gain Gth
0 (dashed blue line) in an even

wider middle region. In this way, when increasing ξ, a quasi-equilibrium steady state is

approached, where the gain clamping is equivalent to locking of the chemical potential.

The fact that f(x) is free to increase with the pump power in the outer spatial region

until gain saturation is reached (no more dye molecules available to excite) reflects the

non-equilibrium nature of the system.

Another observation that we can make from Fig. 4.3 is that, while the modes (6,0) and (0,6)

are selected in high P regime, all the other modes with the same energy (like (3,3), (4,2),

(5,1) etc.) remain unselected due to the key influence of the dye excitation profile on the

behavior of modes. This is another indicator of the non-equilibrium nature of this state

(even though at lower P where only (0,0) is selected, this state can hardly be distinguished

from the equilibrium photon BEC (of a finite system), as will be discussed below in more

detail).

In Fig. 4.5, at an intermediate value of the thermalization parameter ξ = 1.8, we can also

observe the phenomenon of łdeselection". Namely, we can see that the green-coloredmode

pair (2,0) and (0,2) gets deselected, as the purple-colored one, (3,0) and (0,3) is selected

(Fig. 4.5a) [henceforth for brevity, mode pairs {(i, j), (j, i), i ̸= j} are denoted simply

as łmode pair (i, j)”]. Fig. 4.5(c) depicts the corresponding gain Gi of each mode (solid

curves) as a function of the pump rate. The threshold values of the gain Gth
i are shown

as the dashed horizontal lines. One can see that each mode selection [Fig. 4.5(a)] is ac-

companied by gain clamping [Fig. 4.5(c)]. Decondensation of photonic modes was already

discussed in Ref. [31] and a similar effect was predicted in a system of driven-dissipative

polariton condensate [50]. This is another manifestation of the above-mentioned compe-

tition between successive modes which have a large spatial overlap. It happens when not

enough dye molecules are pumped to their excited states in the combined region of mode

density for both mode pairs to stay selected. Once, after the ground mode, the mode pair

(2,0) is selected, f(r⃗) can only increase in a very restricted way, such that it stays clamped

close to bothG(0,0) andG(2,0) (dotted lines in Fig. 4.5c). This restriction still allows for the

selection of the mode pair (3,0). However, the more particles this third selected pair ac-

quires, the more attractive it becomes for further photons due to bosonic enhancement (i.e.

stimulated emission). This non-linear effect leads to a competition with the energetically

slightly favored (2,0) modes, which eventually causes the decondensation of the latter. This

is accompanied by the łdeclamping" of its gain, which is better visible in Fig. 4.5b showing

the zoom-in around Gth
(2,0).



38 Chapter 4. Homogeneously pumped photon gas

10−1 100 101

Thermalization factor ξ

10−2

10−1

100

101

T
h
re
sh
o
ld

p
u
m
p
ra
te

P
t
h
/
Γ (0, 0)

(1, 1)

(2, 1)

(2, 2)

(4, 0)

(4, 1)

(3, 3)

(5, 1)

P th(ξ)

(1, 0)

(2, 0)

(3, 0)

(3, 1)

(3, 2)

(5, 0)

(4, 2)

(6, 0)

P th(ξ → ∞)

Figure 4.6: Phase diagram showing three main regions. The white region has
no selected modes, only the ground mode is selected in the blue region, and
there aremultiple selections in the gray one. Colored dots (crosses) are numer-
ical points indicating selections (deselections) of the corresponding modes.
The dotted line is the lower (upper) phase boundary, interpolating between
the points of first (second) selection. The pump rate at which the two phase
boundaries meet is the minimal P for which the ground mode is selected. Be-
low this pump rate (łlasing phase"), the phase boundaries are indistinguish-
able, because multiple quasi-degenerate higher energy modes are selected at
almost exactly the same P . The analytical result for the first selection thresh-
old (Eq. (4.3)), is shown with a solid black line. In the high ξ regime, this phase
boundary approaches the dashed horizontal line, showing the high thermal-
ization limit of Eq. (4.3) P th(ξ → ∞). The three dotted vertical lines mark
the cuts through the phase diagram shown in Fig 4.3 and Fig 4.5.
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4.3 Phase diagram

After having discussed the role of mode competition for the selection of excited cav-

ity modes, let us now compute the phase diagram of the system in the parameter plane

spanned by the pump rate and the thermalization parameter. Figure 4.6 shows a phase

diagram where the various phases are characterized by which modes are selected. There

are no macroscopically occupied modes in the white region. Only the ground mode is

selected in the blue region, whereas in the gray one, there are multiple selected modes.

Colored dots (crosses) are numerical points indicating selections (deselections) of the cor-

responding modes. The lower and upper phase boundaries (dotted lines) are obtained by

interpolating between the points of first (second) selection. Below the value of ξ at which

both boundaries meet, the mode which become selected first is not the ground state any-

more. Below this point, the two phase boundaries are indistinguishable, because multiple

quasi-degenerate higher energymodes are selected at almost exactly the sameP . The solid

black line indicates the analytical result for the first selection threshold, given by Eq. (4.3)

and shown with the orange line in Fig. 4.2. It closely matches the numerical result, espe-

cially in the high ξ regime, where it approaches the high thermalization limit of Eq. (4.3)

P th(ξ → ∞)/Γ = R0
↑/R

0
↓ (dashed horizontal line).

We note that our phase diagram differs from the one obtained in Ref. [31]. Namely, in

agreement with the analytical prediction (4.3), we find that the threshold pump rate for

the first selection process decreases as a function of the thermalization parameter, while

it increases in Ref [31].

In the regime of low ξ, where the photon cavity lifetime is too short for photons to effec-

tively thermalize, there are multiple high energy modes selected closely together instead

of the ground mode, and these transitions to macroscopic occupation represent the limit

where the operation of the system would typically be considered as that of a laser. Given

that drive and thermalization are both present in this system, Bose condensation cannot be

sharply distinguished from lasing. Nevertheless, this phase diagram still clearly shows the

trend of going from the lasing limit towards the BEC limit as the thermalization parameter

is ramped up.

The second phase boundary separates the blue region with only the ground state selected

from the gray one, where also excited modes have acquired a large occupation. With

increasing ξ, the separation between the P th
0 of the ground mode selection and the P th

j of

the next selected mode j increases together with its energy Ej , due to mode competition

explained above. In this way, a limit of quasi-equilibrium photon BEC is approached for

large ξ and pump powers well below the second selection threshold.

To support this claim, in Fig. 4.7 we compare the Bose-Einstein (BE) distribution ln(1 +

1/ni) = βεi−µ (straight orange line) with the distribution of numerically obtained mode
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Figure 4.7: Numerical mode population ni (blue dots) vs mode energy Ei

compared to the thermal distribution (orange straight line) below, close above
and far above the first selection thresholdP th when ξ = 1 ⇒ P th = 0.0065Γ
(left panels) and ξ = 100 ⇒ P th = 0.0044Γ (right panels).

populations ni (blue dots), for P close and far above the first selection threshold P th. Left

panel corresponds to ξ = 1, and the right one to ξ = 100, for which only the ground mode

is selected. As expected, for higher ξ, the match between the numerical points and the

thermal distribution is better, particularlywhenP is only slightly above the threshold,P ≳

P th. Here the small deviations are only due the fact that the absorption and emission rates

fitted to measured data (Fig. 4.1) do not satisfy the Kennard-Stepanov relation (Eq. (3.8))

exactly, but only to a very good approximation. As P is raised significantly above P th, the

numerically obtained populations start to deviate from the BE distribution, particularly

those of higher modes. This is expected, even though at the very high value of ξ, no other

mode is selected atP ≫ P th except the groundmode. The reason for this is that outside of

the increasingly wide central region of the trap where the gain is clamped, f(x) can still

increase with P . Therefore, the occupation of modes with a high density there (higher

energy modes) can increase as well, moving away from the thermal distribution.

4.4 Tuning the cutoff frequency

Let us finally discuss how the physics of the mode selection changes, when considering a

variation of the cutoff frequency ωc (or equivalently, the detuning from the zero-phonon

line). The cutoff frequency corresponds to the ground-mode energy and can be tuned ex-

perimentally by varying the longitudinal frequency ωL via the cavity length. It determines

the absorption and emission rates, thus affecting also the degree of thermalization. This
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has been studied experimentally for the case of a continuous wave (CW) [10] and pulsed

laser pump [24], as well as in theoretical work [20].
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Figure 4.8: Population ni of modes i vs. pump rate P for ξ = 1. The cutoff
frequency is ωc/2π = 490 THz (a), ωc/2π = 515 THz (b) and ωc/2π =
525 THz (c). The inset of panel (c) contains the same result extended to high
P regime, showing that only the ground mode is selected before the gain is
saturated.

In Fig. 4.8 we show the numerical results for the photon populations ni for three different

values of the cutoff frequency, while keeping the thermalization parameter fixed at ξ = 1.

Changing the cutoff frequency, i.e. the ground-mode energy, corresponds to shifting the

frequency range of cavity modes (sketched by the gray shaded area in Fig. 4.1) to the left

or right. This affects the threshold gain Gth
i of each mode (Eq. (3.25)). For sufficiently

low cutoff frequency ωc/2π = 490 THz (Fig. 4.8a), the absorption and emission rates no

longer satisfy the Kennard-Stepanov law. Instead of the ground mode, now an excited

mode pair (3,0) has the lowest value of Gth
i and it is selected first, closely followed by

additional excited modes, while the groundmode remains unselected. In the case of higher

ωc/2π = 515 THz (same value used for all the rest of our results), the ground mode

is selected first, followed by the selection of several excited modes, as seen in Fig. 4.8b.
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Figure 4.9: The upper panels correspond to the case of a wide Gaussian pump
profile and show the mode populations ni vs. P (a) and f(x) for the chosen
values of P (b), indicated by the vertical lines in the left panel. The same
quantities are shown in the lower panels (c, d) for the case of a constant pump
profile. In both cases the thermalization parameter is ξ = 4.

Compared to Fig. 4.8a, the threshold pump rate P th of the first selection has increased.

When the cutoff frequency is shifted even further to ωc/2π = 525 THz, only the ground

mode is selected before the gain is saturated (Fig. 4.8c) and no further selections can occur.

This is shown in the inset, where the P axis is extended by 2 orders of magnitude. In this

case the Kennard-Stepanov law still holds, but the corresponding P th andGth are now the

highest. It should be pointed out that in the actual experiment, as the cutoff frequency is

varied, the photon cavity lifetime also varies significantly [24]. In the case of here chosen

ωc values, this means that ξ should increase with ωc
2. However, this would only enhance

the effect of increase in photon thermalization, observed from (a) to (c) panel in Fig. 4.8.

We end this chapter by comparing the results obtained using a constant pump rate (as used

throughout this chapter) with the ones produced when the pump has a wide Gaussian

profile, corresponding to the experiments [11]. More precisely, it has the form p(r⃗) =

P gµ,σ(r⃗), where gµ,σ(r⃗) is a normalized 2D off-centered Gaussian with standard deviation

σ = 4 d and mean µ = (0, 0). In Fig. 4.9 we show the steady-state mode populations ni

as functions of P on the left, and the corresponding f(x) for the chosen values of P on

2Alternatively, we could consider (a), (b) and (c) to correspond to different cavities, which have the same
photon loss rate κ at the given cutoff frequencies.
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the right, marked by the vertical lines in the left panels. The thermalization parameter

is set to ξ = 4. The case of a wide Gaussian pump profile is shown in the upper panels

(a, b), while the lower ones show the case of a constant pump rate for comparison. We

can see that only minor quantitative differences are present. Namely, the threshold values

of P are slightly shifted and f(x) reflects the Gaussian pump profile in the outer region

(upper panel), while the shape in the middle, reflecting the clamping of the gain, is almost

identical in both cases.





45

Chapter 5

Off-centered pump beam

This chapter, as well as the following one, is adapted from [33]. Here we explore an alter-

native non-equilibrium scenario, where the interplay between driving and thermalization

is controlled by an off-centered and (relatively) narrow pump beam. This gives rise to

a robust engineering and the control of multi-mode emission. We find that the system

undergoes two pump-power driven non-equilibrium phase transitions. First, the system

starts to lase in an excited mode, which is directly determined by the position of the pump

spot. When the pump power is increased further, the spatial redistribution of pump power

mediated by this lasing mode then triggers a second transition, where thermalization leads

to the additional formation of an equilibrium-like Bose condensate in the ground mode.

In a system where both drive and thermalization are present, a sharp distinction between

lasing and Bose condensation is, strictly speaking, no longer possible. Nevertheless, the

characterizations of the first transition as lasing and the second as condensation provides a

useful way to mark the mechanisms (selective pumping vs. thermalization) that are mainly

responsible for the mode selection. The fact that the lasing mode can be selected by ad-

justing the pump spot, while the second transition always corresponds to the onset of

ground-state condensation, makes this mechanism of lasing-assisted Bose condensation a

promising tool for engineering systems with robust and tunable two-mode emission.

The spatially varying pump rate has the form p(r⃗) = P gµ,σ(r⃗), where gµ,σ(r⃗) is a normal-

ized 2D off-centered Gaussian with standard deviation σ and mean µe⃗x. In the equation of

motion (3.16), this p(r⃗) now replaces the previously constant pump rate P . We compute

the steady state of the system using the same parameter values listed in the Chapter 4, with

the exception of the frequency spacing, which is now set to Ω/2π = 3 THz (as opposed

to the previously used Ω/2π = 4 THz) 1. The Gaussian pump spot of width σ = 0.4 d is

shifted away from the trap center by µ = 3.2 d, so that it has essentially no overlap with

1This value was chosen for computational reasons and it was checked that increasing the number of modes
does not produce any significant changes in the results. Namely, those additional modes remain unselected
for the whole range of pump rates, while the selected modes and the associated threshold values stay the
same.
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Figure 5.2: Population ni of mode i vs. pump rate P for ξ = 0.04 (a) and
ξ = 6 (c). Spatial distributions f(x) of excited dye molecules along the x-
axis (b, d) is shown for ξ = 0.04, 6 at those P marked by the corresponding
vertical lines in (a, c), respectively. The shaded area represents p(x)/Γ. The
threshold gain of the ground mode Gth

0 is indicated by the dashed blue line.

the ground mode [see Fig. 5.1]. In this way, the competition between driving and thermal-

ization is enhanced. A similar off-centered pump has already been realized experimentally

to study the transient relaxation dynamics following a short pump pulse [24]. In contrast,

we are interested in the steady state of the continuously pumped system.
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5.1 Non-equilibrium steady state and lasing assisted ground-

state condensate

Numerically obtained mode populations for ξ = 0.04 and ξ = 6 are shown in Figs. 5.2(a)

and (b), respectively. The colors correspond to the modes as shown in Fig. 5.1. In the case

of the lower value of ξ, a high-energy mode (5,0) (orange), which has a relatively large

overlap with the pump spot, is selected first, followed by further selections of modes (3,0)

and (4,0) at higher values of P . The ground mode remains unselected in the whole pump-

rate range. At P > 100Γ (i.e., above the largest P shown in Fig. 5.2), gain saturation has

already been reached and no further selections can occur. When ξ is sufficiently high (b),

the selection of the ground mode (blue), which is favored via the thermalization process,

is triggered by the selection of mode (4,0) (green).

In order to understand, which mode becomes selected first, let us approximate the distri-

bution of excited dye molecules in the steady state below the first threshold by f(r⃗) ≈
p(r⃗)/(p(r⃗) + Γ) ≈ p(r⃗)/Γ. Here the first expression is obtained from Eq. (3.16) by ne-

glecting the coupling to the still weakly occupied photonic modes. Inserting this expres-

sion into the threshold gain given by Eq. (3.25), we get the following condition for the

threshold pump rate of mode i

P th
i =

Gth
i

Gi[gµ,σ(r⃗)]
, (5.1)

where Gi[gµ,σ(r⃗)] =
∫

|ψi(r⃗)|2gµ,σ(r⃗) dr⃗ is the overlap of mode i with the pump profile.

The selected mode i is the one with the lowest value of P th
i . We see that there are two

competing effects here. While the denominator favors modes having a large overlap with

the pump spot (i.e. excited modes), the numerator favors modes with low energy. For a

narrow pump spot with σ/d ≲ 1, as considered here, we expect the former effect to be

the dominant one. Figure 5.3 shows the threshold pump rate P th
i of the first selection as a

function of the pump spot position µ. Results from Eq. (5.1) (solid curve) match the exact

values obtained numerically (dots) very well. The colors and the labels (nx, ny) indicate

which mode is selected first; it changes at the vertical dotted lines. The colored bars at the

bottom, in turn indicate the mode with the largest overlap with the pump spot. We can

see that the impact of the nominator in Eq. (5.1) is to slightly shift the dotted lines with

respect to the corresponding colored bars. However, as expected, energetics plays a minor

role in the selection of the first mode compared to its overlap with the pump spot. For the

value µ = 3.2 d, which was used for the simulations shown in Figs. 5.1 and 5.2 (arrow

in Fig. 5.3), the selected mode is (4, 0), which has only slightly lower Gi[gµ,σ(r⃗)] then the

mode (6, 0). Therefore, we will refer to the first selection as simply łlasing”, since (for

µ ≳ d) an excited mode is selected predominantly as a consequence of its large overlap

with the pump spot, while the impact of thermalization is very small.
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Figure 5.3: Threshold pump rate P th
i for the first selection [Eq. (5.1)] vs.

pump-spot position µ for ξ = 6. The different colors and labels (nx, ny),
separated by dotted vertical lines, indicate which mode is selected. The dots
are obtained numerically form the full rate equations. The colored bars at
the bottom indicate the mode with the largest overlap with the pump profile
Gi[gµ,σ(r⃗)] and the arrow points to the case shown in Fig. 5.2(c, d)

Once the system starts to lase in an excitedmode, thismodewill create excited dyemolecules

in an extended region in space, much larger than the narrow off-centered pump spot. This

can be seen in Fig. 5.2(b, d) showing the spatial distribution f(x) of excited dye molecules

along the axis of the pump spot displacement (x-axis). The different linestyles correspond

to the pump rates indicated by the vertical lines of the same style in Fig. 5.2(a, c). As

mentioned previously, below the first threshold there are no selected modes and f(x) ≈
p(x)/Γ, as can be seen from the perfect match between the dashed line and the shaded

area denoting p(x)/Γ. The dotted curve, which shows f(x) just above the lasing transition,

has the additional structure corresponding to the first selected mode. This lasing assisted

redistribution of pump-power can then trigger the selection of a second mode. For a suffi-

ciently large thermalization parameter (which lowers the threshold gain Gth
0 [Eq. (3.25)]),

this mode is always found to be the ground state, which is favored via thermalization with

the dye due to its lowest energy. Thus, in this respect, the second transition is akin to

equilibrium Bose condensation and we call this effect lasing assisted ground-state con-

densation. In Fig. 5.2(d) we can also see that the threshold gain of the ground mode Gth
0

(dashed blue line) roughly matches f(x) in the center of the trap.

Although a range of ξ can be found for which only the ground mode and one excited mode

are selected below dye saturation (a particular case is shown in Fig. 5.2(c, d)), there can

be additional selections outside of this ξ range. This is shown in Fig. 5.4 where the mode

populations are depicted for various ξ and µ values. In Fig. 5.5(a) we plot the mode pop-

ulations vs. pump rate for a high value of ξ, while the corresponding spatial distribution

of excited dye molecules along the x-axis is shown below [Fig. 5.5(b)] at values of P in-

dicated by the corresponding vertical lines of the same style in the upper panel. We can

see that there is an additional mode (5,0) selected before saturation is reached and that the
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Figure 5.4: Population ni of mode i vs. pump rate P for ξ = 2, µ/d = 3.2
(a), ξ = 3, µ/d = 3.25 (b) and ξ = 4, µ/d = 3.1 (c). In each case, the
threshold pump rate for the ground mode is marked by the dotted gray line.
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chemical potential (proportional toG0, as shown in Chapter 3) is approximately flat in the

center of the trap for this relatively high value of ξ.
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Figure 5.5: Population ni of mode i vs. pump rate P (a) for ξ = 15, µ/d =
3.2. Spatial distribution f(x) of excited dye molecules along the x-axis (b) at
those P marked by the corresponding vertical lines of the same style in (a).
The shaded area represents p(x)/Γ. The threshold gain of the ground mode
Gth

0 is indicated by the dashed blue line.
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Chapter 6

Structured cavity

In the previous chapter we have shown that the mode which is selected first can be accu-

rately controlled via the position of the pump spot [Fig. 5.3] and that for sufficiently high

thermalization parameter, the second transition always corresponds to the selection of the

ground mode. Here we consider a structured potential (as introduced in Chapter 3). The

idea is to explore the prospect of engineering systems with robust and tunable two-mode

emission and to investigate how the effect can be controlled by shaping the transverse

potential landscape in the cavity.

This can be done using recently developed experimental tools based on thermo-optic im-

printing [30]. We consider a structured cavity imposing an asymmetric double-well poten-

tial for the photons, VDW(x, y) = VHO(x, y) + l exp [−(x− δ)2/(2ε2)]. In the following

we choose l = 7.5 ℏΩ and ε = 1.0 d, while δ is used as a tuning parameter. Here Ω and

d denote the angular frequency and the length associated with the harmonic oscillator

potential VHO(x, y) given by the curved mirrors. We choose a pump beam with a Gaus-

sian shape centered at the upper well minimum and sufficiently narrow (width σ = 0.5 d)

so that it has a negligibly small overlap with the modes localized in the lower well (see

Fig. 6.1).

6.1 Controlled two-mode emission

In the upper panel of Fig. 6.1 we depict the potential and the corresponding photon modes

for δ = 0.79 d together with the pump profile p(r⃗) (gray), projected onto the x-axis. The

modes shown in color are those that get selected. As shown in the lower panel of Fig. 6.1,

for a slightly different value δ = 0.81 d, the lasing mode E6 becomes delocalized between

both wells, as a consequence of an inter-well resonance.

As already mentioned, this choice of trapping potential is motivated by recently developed

technique for creating a structured transverse potential using thermo-optic imprinting
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Figure 6.1: Upper panel: Double well potential and modes |ψi(x)|2 for δ =
0.79 d together with the pump spot (P ), projected onto the x-axis. The modes
shown in color (blue and purple) and labeled by their energy are those that
get selected. Lower panel: For a slightly different value δ = 0.81 d, the lasing
mode 6 becomes delocalized between both wells, as a consequence of an inter-
well resonance.

[30]. Part of this experimental setup is shown schematically in Fig. 6.2. A thermosensitive

polymer is added to the dye solution in a microcavity, so that variations of the refractive

index are induced through irradiationwith a heat-producing laser beam. This local heating

increases the optical wavelength between the two mirrors. In the paraxial limit, this is

equivalent to a locally decreased potential for the photon gas. In other words, in order to

locally satisfy the boundary conditions imposed by the cavity, larger optical wavelength

(corresponding to a smaller photon energy) is required.

In Fig. 6.3(a) we present the mode populations versus pump power for the potential shown

in the upper panel of Fig. 6.1. The thermalization parameter is ξ = 6, the frequency spacing

is set to Ω/2π = 4 THz, while all the remaining parameters are the same as in previously

discussed cases. Since, essentially, we are only pumping the upper well, modeE6 (purple),

having the lowest energy among those modes significantly overlapping with the pump

spot, is selected first. The only other mode that gets selected at a higher P is the ground

mode E0 (blue). Thus, by modifying the cavity structure, we have isolated the effect of

lasing-assisted ground-state condensation from the selection of further modes.
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Figure 6.2: Mechanism for creating a variable potential landscape for photons
trapped in a microcavity [30]
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Figure 6.3: Mode populations ni vs pump rate P for two slightly different
values of δ. The grey area indicates a P range in which there is only lasing,
while in the blue region the ground-state condensate is also present.
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6.2 Effect of inter-well resonance

Figure 6.3(b) shows the mode populations for the slightly larger parameter δ = 0.81 d,

corresponding to the double well potential shown in the lower panel of Fig. 6.1, which

essentially looks the same as the one depicted in the upper panel. Note that this small

parameter change leads to a large change in the separation between the first and the second

threshold value. This strong sensitivity is caused by the delocalization of the lasing mode

(purple) over both wells. This is a result of the resonant coupling to a mode in the left well.

As a result, the lasing-assisted creation of excited dye molecules in the left well is strongly

enhanced and the second threshold to ground-state condensation happens at much lower

pump rates.

In Figure 6.4 we plot how the two threshold pump rates for lasing (gray curve) and ground-

state condensation (blue curve) vary with δ, while the thermalization parameter is held

fixed at ξ = 1. The two arrows indicate the values of δ shown in Fig. 6.3. One can clearly

observe a sequence of resonances at which the second threshold is strongly reduced. The

inset shows a zoom-in around the values of δ used in Fig. 6.3. Remarkably, these reso-

nances can be used to control the second threshold value by orders of magnitude. The

threshold for the first transition generally increases with ξ, but it also shows small peaks

at the resonances, which are associated with a reduced overlap with the pump spot due to

delocalization of the łlasing” mode. By engineering the transverse potential for the pho-

tons in the cavity, one can use this effect to widely tune the separation between the first

and the second threshold.
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Figure 6.4: Phase diagram showing the resonance effect on the ground-state
condensate. The two phase boundaries are numerically obtained threshold
pump rates P th for the lasing (gray) and the ground-state condensation (blue)
as functions of δ. The arrows in the inset (zoom-in) correspond to the case
shown in Figs. 6.1 and 6.3.
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Chapter 7

Simplified model and analytic

solutions

Having discussed in detail the numerically obtained solutions for the steady state of the

system in different scenarios, which included varying the pump profile as well as the type

of trapping potential, we now turn to a possibility of finding a simplified model which

captures all the qualitative features discussed so far, while being analytically solvable.

We start with the last discussed case in the previous chapter - the double-well potential.

We approximate the spatially dependent fraction of excited dye molecules as a constant

f(r⃗) = fi in each of the two spatial łbins” (i = 1, 2) separated by a plane perpendicular

to the x-axis and passing through the center of the potential barrier (xB, 0), which is the

Ee

E0

BIN 2BIN 1

↗
α2

↗
α1

xB

P

Figure 7.1: Simplified model: two modes, labeled E0 and Ee are taken into
account, as well as a spatially constant fraction of excited molecules in two
regions separated by a plane (dashed line passing through the barrier center
xB), such that the groundmode can be taken as completely localized in the left
one, whereas the excited mode can be distributed between both wells, with
the respective fractions labeled by α1 and α2. Only the upper well is pumped
with a constant rate P .
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local maximum of the double-well potential (see Fig. 7.1). In other words, we use an ansatz

f(r⃗) = f1 θ(xB − x) + f2 θ(x− xB), (7.1)

where θ(x) is the Heaviside step function. Only the second bin is pumped with a constant

pump rate P , as shown in the figure. Within this simplification we also only keep two

modes, the ground mode and one excited mode (labeled e) having the lowest energy of

those with a significant intensity distribution in the pumped upper well. Since the spatial

variance of the modes and the pump profile is neglected, the modes are only characterized

by their energy and the fraction of their spatial distribution α1(2) in each bin, respectively

α1 =

∫ xB

−∞

∫ ∞

−∞

|ψi(r⃗)|2 dr⃗,

α2 =

∫ ∞

xB

∫ ∞

−∞

|ψi(r⃗)|2 dr⃗.
(7.2)

Probability conservation (normalization of wavefunctions) requires that α1 + α2 = 1.

For the ground mode, the probability to find it in the upper-well region is negligible and

thereforeα0
1 = 1 andα0

2 = 0. Likewise, the two contributions of the excitedmodeαe
1 ≡ α1

and αe
2 ≡ α2 will be approximately zero and one, respectively, except in the case of an

inter-well resonance.

Except for reducing the full spatial resolution to only 2 bins and minimizing the number

of modes which are taken into account, the resulting system of four equations with four

unknowns is analogous to the rate equations (3.15), (3.16) and reads

ṅ0 = −κn0 + n0ρ[f1(R
0
↑ +R0

↓)−R0
↑] = 0,

ṅe = −κne + neρ[(α1f1 + α2f2)(R
e
↑ +Re

↓)−Re
↑] = 0,

ḟ1 = −Γf1 + (1− f1)(R
0
↑n0/w1 +Re

↑neα1/w1)

−f1(R0
↓n0/w1 +Re

↓neα1/w1) = 0

ḟ2 = P (1− f2)− Γf2 + (1− f2)R
e
↑neα2/w2 − f2R

e
↓neα2/w2 = 0,

(7.3)

wherew1 (w2) is the area of the first (second) bin, respectively, while all the other symbols

represent the same quantities as used previously. Herewe have also neglected spontaneous

emission in order to make the system analytically solvable.

We find that there are three steady-state solutions, each valid in a different pump-rate

interval (labeled 1, 2 and 3 in Fig. 7.2). To solve the system (7.3), we first rewrite the

second equation in the following form

ṅe = ne{ρ[Ge(R
e
↑ +Re

↓)−Re
↑]− κ} = 0, (7.4)

whereGe = α1f1+α2f2 is introduced as the gain of mode e, analogously to the previously
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Figure 7.2: Lower panel: analytically obtained mode populations n0,e vs P
for ξ = 1 and δ/d = 0.46, for which the excited modes (E3) is selected first,
followed by the ground-mode selection. The two threshold values of P , in-
dicated by dotted vertical lines, separate three regimes (pump-rate intervals),
labeled 1, 2 and 3. They correspond to the three qualitatively different solu-
tions of the system of equations (7.3). Upper panel: the double-well potential
for this value of δ with the two selected modes shown in color.
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used definition (3.17). One solution is ne = 0, while setting the expression in the curly

brackets to zero, gives the condition for a nonzero ne. We get

Ge =
Re
↑ + ρ/κ

Re
↑ +Re

↓

= Gth
e , (7.5)

which is, as expected, the already familiar condition for the threshold gain (3.25). Setting

the first equation of the system (7.3) to zero, analogous condition is found for the gain of

the ground mode G0 = f1.

From the last two equations it follows that in the regime where both modes are unselected,

n0 = ne = 0, the fraction of excited molecules in the first bin is also zero, given that it is

not pumped, while f2 increases monotonically, f2 = P/(P + Γ). Inserting these results

into the condition (7.5), we obtain the threshold pump rate of the excited mode e

P th
e =

Gth
e

α2 −Gth
e

Γ. (7.6)

When P is increased above this value, population of mode e becomes macroscopically

large, while n0 remains zero. Correspondingly,Ge is clamped (exactly) atGth
e , whileG0 =

f1 starts to increase. For this second regime, ne as a function of P is found using the last

two equations of the system (7.3) together with the condition (7.5). Due to the length and

complexity of the obtained expression, it is displayed in Appendix A.

Finally, above the second threshold P th
e (regime 3), both of the modes become selected and

the gain of both modes gets clamped, G0 = f1 = Gth
0 and Ge = Gth

e . The analytically

obtained mode populations as functions of the pump rate, presented in Appendix A, are

shown in Fig. 7.2 for a particular choice of parameters ξ and δ.

Figure 7.3 shows the mode populations as functions of P for 4 values of the parameter δ

(roughly determining the double-well barrier position), while the thermalization param-

eter is held fixed at ξ = 1. We compare the analytically obtained n0,e(P ) (dashed lines)

with the numeric solutions (solid lines) of the full original rate equations [(3.15), (3.16)].

As always, the blue color corresponds to the ground mode, while the other colors repre-

sent the various excited modes e, which get selected at the respective value of δ. Given

that the spontaneous emission is neglected in (7.3), the analytically obtained n0,e abruptly

switch from zero to a large occupation at the thresholds (dotted lines). We can see that this

simplified model very accurately predicts the two threshold pump rates, at least for these

arbitrarily chosen values of δ and ξ. On the other hand, the macroscopic populations pre-

dicted by the model are quite larger than the numeric ones. This was to be expected, given

that spontaneous emission is neglected and that only two modes are considered within

the model.

We proceed to evaluate the agreement more systematically across a whole range of both
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Figure 7.3: Mode populations n0,e vs P for ξ = 1 and 4 values of the pa-
rameter δ, for which various excited modes (Ee) shown in different colors
are selected first, followed by the ground-mode selection (blue) in each case.
Results obtained analytically using the simplified model are shown as dashed
lines with the corresponding threshold P values marked by dotted vertical
lines, whereas the numerical solutions of the original rate equations [(3.15),
(3.16)] are shown as solid lines.
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Figure 7.4: Threshold pump rate P th vs ξ for the first selection of mode e
(purple) and the second one of the ground mode (blue), for δ/d = 0.79 (a) and
δ/d = 0.81 (b). The analytically obtained results (solid curves) are compared
with the numerical ones (dots interpolated by dotted lines to guide the eye).



Chapter 7. Simplified model and analytic solutions 61

the thermalization factor and the δ parameter. In Fig. 7.4, we first show how the ana-

lytically obtained threshold pump rates P
th,0(e)
model (solid lines) vary with the thermalization

parameter, while δ is kept the same as in Fig. 7.3 (a, b), where the latter case (b) corre-

sponds to an inter-well resonance. The numerical values P
th,0(e)
num are indicated by dots.

Unsurprisingly, the agreement for the first selection (purple) is excellent 1, while there

are small deviations for the second threshold (blue). However, we can see that the agree-

ment between the two solutions increases with ξ and they become barely distinguishable

above ξ ≈ 1. The blue curve asymptotes to the horizontal blue line, which indicates the

minimum value of the second threshold 2

P th,0
model(ξ → ∞) =

R0
↓

R0
↑

w2 −
Re
↓

Re
↑

w2 +

(

1 +
Re
↓

Re
↑

)

(w1 + w2)α2

w2

[

Re
↓

Re
↑

+
R0
↓

R0
↑

(

α2 +
Re
↓

Re
↑

α2 − 1

)] . (7.7)

As expected from the discussion in the previous chapter, in the case of inter-well res-

onance, the first (purple) and second threshold (blue) become closer, due to the excited

(łlasing”) mode being approximately equally distributed between both wells. The vertical

dashed line marks the lowest value of ξ for which the model predicts the occurrence of a

ground-mode selection (below this value, P th,0
model becomes negative, and thus unphysical).

This łcutoff” also matches the corresponding numerical one very well.

Finally, in Fig. 7.5, we compare how the analytic (solid lines) and the numeric threshold

pump rates (dots) vary with δ, with ξ = 1. While the match for the first threshold (gray) is

excellent across the whole range of δ, as expected, there are some deviations for the second

one (blue), in particular between the resonances. The two lower panels show magnified

regions around two of the resonance points (indicated by arrows in the top panel). We

can see that the agreement is perfect for the first threshold, while the model consistently

underestimates the P th of the second threshold.

The very good agreement between the solutions of the simplified and the original rate

equations in the double-well case suggests that this model should also be applicable to the

case of the inhomogeneously pumped harmonic trap. The equations remain the same and

the only difference is how the placement of the border between the two spatial regions is

chosen. It is placed at a position between the ground mode and the pump, where they both

become vanishingly small 3, as shown in Fig. 7.6. Again, the excited mode is distributed

1Given that the threshold P for the first transition can be obtained analytically even for the original rate
equations, it is expected (and required) that the simplified model merely reproduces that result.

2Here, we explicitly write the expression for P th,0
model only in the limiting case ξ → ∞. The general

expression, given in Appendix A, is too long and complex to provide much insight.
3The same criterion is also automatically satisfied in the case of the double-well trap by placing the border

at the center of the potential barrier.
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Figure 7.5: Top panel: threshold pump rate P th vs δ for the first selection
of the excited mode (gray) and the second one of the ground mode (blue).

The analytically obtained results P
th,0(e)
model (solid curves) are compared with

the numerical ones, P
th,0(e)
num (dots). The three qualitatively different regimes

are shown with different colors, white (no modes selected), gray (only mode
e selected) and blue (ground mode also selected). The two resonance points
marked by arrows are shown magnified in the two lower panels.
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Figure 7.6: Simplified model applied to the case of asymmetrically pumped
harmonic trap. The border between 2 spatial regions is placed between the
ground mode and the pump, where they both become vanishingly small.
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Figure 7.7: Mode populations n(0,0) and n(e,0) vsP for ξ = 6 (a) and ξ = 0.04
(b). Results obtained analytically using the simplified model are shown as
dashed lines with the corresponding threshold P values marked by dotted
vertical lines, whereas the numerical solutions of the original rate equations
[(3.15), (3.16)] are shown as solid lines.
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across both regions, while the ground mode is taken to be localized completely in the left

region.

In Fig. 7.7 we show the mode populations as functions of P for 2 values of the thermaliza-

tion parameter ξ = 6 (a) and ξ = 0.04 (b). These are the same values that were used in

Chapter 5 where the numerical solutions of the original rate equations for the asymmetri-

cally pumped harmonic trap are discussed. The agreement between the analytic (dashed)

and the numeric solutions (solid lines) is still quite good, but the deviations are larger here,

partly because the analytically solvable model requires a constant pump in the second bin,

whereas a gaussian pump profile was used to obtain the numerical results. The model

also accurately predicts that for the lower value of ξ [Fig. 7.7 (b)], the ground mode is not

selected. This is indicated by the fact that the model produces a negative value of P th,0
model

in this case.

This simplified model and the corresponding rate equations (7.3) can be easily modified to

account for the case of a homogeneously pumped harmonic trap. Namely, a termP (1−f1)
must be added to the third equation of (7.3), since both f1 and f2 are now pumped with

a constant rate P . However, this model where the full spatial dependence is replaced

with only two bins, is too crude to replicate the key effect of mode competition, i.e. the

fact that, following the ground mode, the second mode to be selected at larger P is of

successively higher energy as ξ increases. One of the reasons is that in the model, various

excitedmodes are differentiated by their value ofαR, and not their overlapwith the ground

mode. While the latter decreases monotonically with the mode energy, the former does

not. Another reason is that the detailed spatial dependence affecting how different modes

overlap with each other, and correspondingly, the way in which the shape of f(r⃗) changes

above threshold P , has an a an important role in the effect of mode competition. This

means that it cannot be reproduced within a model which reduces f(r⃗) to only two values

f1 and f2.
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Chapter 8

Conclusions

We have studied how the variation of the photon cavity lifetime 1/κ and the cutoff fre-

quencyωc affects the steady state of a homogeneously pumped photon gas coupled to a dye

medium. We have shown how, through the effect of mode competition (governed by the

dye excitation profiles), the equilibrium-like ground-mode condensation emerges from the

steady state of the system. Namely, we found that increasing the thermalization parameter

ξ ∝ 1/κ produces a form of mode repulsion, in the sense that the ground-mode selection

is followed by a selection of modes with increasing number of excitation quanta. This is

explained as a consequence of how the dye excitation profile f(r⃗) at pump powers above

which the ground-mode is selected, changes with ξ. We produced a phase diagram of the

system in the space of 2 parameters, the pump power and the thermalization parameter

and noted how it differs from the one in Ref. [31].

We then looked at the effect of varying cutoff frequency ωc on the selection of modes,

and found that, in agreement with previous work [10, 20, 24], below a certain value of ωc,

the photons are unable to effectively thermalize, resulting in the closely spaced selections

of many excited modes, as opposed to the ground mode. On the other hand, the cutoff

frequency can be increased above the value used in the rest of this work, while keeping

the ratio of emission and absorption rates still to a good approximation proportional to

the Boltzmann factor (i.e. the Kennard-Stepanov law still holds). We show that in this case

only the ground mode is selected before the gain saturates.

We have also studied the case of an asymmetrically pumped photon gas, where a mecha-

nism for controlled two-mode emission is observed. Namely, a transition to lasing in an

excited cavity mode induced by an off-centered pump beam can trigger a second transi-

tion, where thermalization leads to the formation of a photon condensate in the ground

mode. This mechanism can be made very robust and widely tuned by using a recently

developed experimental technique for shaping the transverse potential for the photons in

a trap. Namely, when pumping the upper minimum of an asymmetric double well, the

second transition threshold can be shifted by orders of magnitude by tuning the system

close to or further away from interwell resonances.
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Finally, we formulated a simplifiedmodel which can be solved analytically and, for the case

of asymmetrically pumped system, reproduces the qualitative features of the numerically

obtained solutions of the full original model, while the quantitative agreement between

the two models is also very good.
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Appendix A

Full analytic solution of a

simplified model

The population in the ground mode n0 for the three regimes, as shown in Fig. A.1

n10 = n20 = 0,

n30 = ((R̃e
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↑ + R̃e
↓)α1)((1 + p)w2α1 − w1α2)

+ R̃0
↓(−R̃e

↑(1 + p)w2α1(R̃
e
↑ − R̃0

↓ + R̃e
↓ + (R̃e

↑ + R̃e
↓)α1)

+ (R̃e
↑ + R̃e

↓)(R̃
e
↑w1 + (R̃e

↑ + R̃e
↓)pw2α1)α2 − R̃e

↑(R̃
e
↑ + R̃e

↓)w1α
2
2)ξ

+ R̃e
↑(R̃

0
↓)

2w2α1(R̃
e
↑(1 + p)− (R̃e

↑ + R̃e
↓)pα2)ξ

2 + (R̃0
↑)

2ξ(−R̃e
↓(1 + p)w2α1

+ R̃e
↑w1α2 + R̃e

↓w1α2 + (R̃e
↓(1 + p)w2α1(R̃

e
↑(−1 + α1) + R̃e

↓α1)

+ (R̃e
↑ + R̃e

↓)(R̃
e
↓(−w1 + pw2)α1 + R̃e

↑(w1 − w1α1))α2 − R̃e
↑(R̃

e
↑ + R̃e

↓)w1α
2
2)ξ)

+ R̃0
↑((R̃

e
↑ + R̃e

↓)(−(1 + p)w2α1 + w1α2) + ((1 + p)w2α1(−((Re
↑))

2

+ R̃e
↑R̃

0
↓ − R̃e

↑R̃
e
↓ − R̃0

↓R̃
e
↓ + (R̃e

↑ + R̃e
↓)(R̃

e
↑ + 2R̃e

↓)α1) + (R̃e
↑ + R̃e

↓)((R̃
e
↑ + R̃0

↓)w1

− (R̃e
↑ + R̃e

↓)(2w1 − pw2)α1)α2 − R̃e
↑(R̃

e
↑ + R̃e

↓)w1α
2
2)ξ

− R̃0
↓(R̃

e
↑(1 + p)w2α1(−R̃e

↑R̃
e
↓ + (R̃e

↑ + R̃e
↓)α1)− (R̃e

↑ + R̃e
↓)(R̃

e
↑w1 + (−R̃e

↑ + R̃e
↓)pw2α1)α2

+ R̃e
↑(R̃

e
↑ + R̃e

↓)w1α
2
2)ξ

2))/((R̃0
↑ + R̃0

↓)(R̃
e
↑ + R̃e

↓)rα2((R̃
e
↑ + R̃e

↓)α1

+ R̃0
↓(−1 + R̃e

↑(−1 + α2)ξ) + R̃0
↑(−1 + R̃e

↓α1ξ + R̃e
↑(−1 + α1 + α2)ξ))).

Here we use the dimensionless quantities

r = R0
↑/Γ,

p = P/Γ,
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Figure A.1: Lower panel: analytically obtained mode populations n0,e vs P
for ξ = 1 and δ/d = 0.46, for which the excited modes (E3) is selected
first, followed by the ground-mode selection. The corresponding threshold
values of P , indicated by dotted vertical lines, separate the three solutions of
the system of equations (7.3). Upper panel: the double-well potential for this
value of δ with the two selected modes shown in color.
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The population in the excited mode ne for the three regimes, as shown in Fig. A.1 is
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The threshold pump rate for the ground mode is calculated by setting n30 = n20 = 0 and

solving it for P . The solution P th
0 is given by
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