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An impact of an elastic sphere with an elastic half space under no-slip conditions (infinitely large coefficient
of friction) is studied numerically using the method of dimensionality reduction. It is shown that the
rebound velocity and angular velocity, written as proper dimensionless variables, are determined by a
function of only the ratio of tangential and normal stiffness ("Mindlin-ratio"). The obtained numerical
results can be approximated by a simple analytical expression.

I
mpacts of solid particles are of interest for many physical and technological processes related to the dynamics
of granular media1–4. Even if the particles have a spherical shape and the material is purely elastic, the detailed
dynamics of the impact can be very complicated and include partial slip, gross slip or no slip in the contact area

during different phases of the impact. This is the reason why a comprehensive theory of frictional impacts has not
been developed so far. The exact analytical solution exists only for the simplest case when complete sliding (gross
slip) occurs in the whole contact area during the entire impact. However, already for the other limiting case of no
slip in the whole contact area (infinitely large coefficient of friction) the complete solution has not been obtained
so far in spite of the apparent simplicity of the problem. The classical theory using only the conservation laws and
the rolling conditions, which can be found in textbooks on mechanics5, is intrinsically inconsistent as it considers
the impact as being elastic but at the same time uses the condition of rigid rotation of the body as a whole. The
tangential compliance of the contact as well as micro slip in the contact area has been taken into account first by
Maw, Barber and Fawcett6 (MBF theory), based on the theory of normal contact for elastic spheres by Hertz7 and
the theory by Mindlin for tangential contacts8. Barber later provided an analytical theory for only those phases of
the impact during which complete adhesion takes place9. The MBF theory was validated experimentally by the
authors themselves10 as well by other authors11–14. A review of existing impact models and their validation can be
found in the book15. In spite of the long history of studies of impacts, the existing results still cover only part of the
theoretically possible impact parameters, and no effective numerical methods for analyzing impact processes
could be developed so far.

In the present paper we consider one of the simplest cases of an impact: an impact with no-slip in the contact
area during the whole time of contact. Theoretical foundation for the solution of this problem was created by
Hertz6 and Mindlin8 and is used in the MBF theory. The reason why this problem still has not been studied
exhaustively is the mathematical complexity of the combined, time dependent normal and tangential problem. In
a series of recent papers, Popov et. al. have shown that the theory by Hertz-Mindlin can be reproduced exactly by a
contact of properly modified profile shape with a linear elastic foundation consisting of independent springs16–20.
The method can be used not only for the combined normal-tangential contact with arbitrary history of loading
but also for the rolling contact21. This method, called method of dimensionality reduction, MDR, simplifies the
contact problem drastically and opens new ways for analytical and numerical treatment of dynamic normal and
tangential contacts.

The paper is organized as follows. We first reproduce, for comparison with known exact results, the classical
solution based on the assumption of rigid rotation at the last moment of contact. We then solve a simplified model
with a constant contact stiffness, which provides the general understanding of the problem and the dimensionless
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variables which are of interest and will be used in the following
analysis. After this the impact problem is solved using the method
of dimensionality reduction.

Results
Simplified model of the impact with no-slip condition. Classical
‘‘rigid body’’ solution. Let us consider an impact of an elastic sphere
with mass m and radius R on an elastic half space, as shown in Fig. 1.
Let the moduli of elasticity of the sphere and the half space be E1 and
E2, their Poison’s numbers n1 and n2, and their shear moduli G1 and
G2, accordingly. The main notations are illustrated in Fig. 1: The
incident velocity of the center of mass of the sphere is n0 with
horizontal and vertical components nx0 and nz0, the incident
angular velocity v0, the rebound velocity is n with components nx

and 2nz0, the grazing angle is a, and the rebound angle b.
We first reproduce the classical solution of the impact problem.

Let Fx and Fz be the components of contact force acting on the sphere
during the impact. The equations of motion of the sphere in the
integral form can be written as

m(vz{vz0)~{

ðt

0
Fz(t’)dt’, ð1Þ

m(vx{vx0)~{

ðt

0
Fx(t’)dt’, ð2Þ

I(v{v0)~{R
ðt

0
Fx(t’)dt’, ð3Þ

where t is the duration of the impact, and I 5 (2/5)mR2 is the moment
of inertia of a homogeneous sphere. Together with the rolling con-
dition for the tangential rebound velocity,

vxzvR~0, ð4Þ

these equations determine unambiguously all kinematic quantities of
the sphere after the impact:

vx~
5
7

vx0{
2
7

Rv0,

v~
2
7

v0{
5
7

vx0

R
:

It can be easily seen that the impact is non-elastic, as the energy
change during the impact,

DE~
m
2

v2
x{v2

x0

� �
z

I
2

v2{v2
0

� �
~{

m
7

vx0zRv0ð Þ2, ð7Þ

is negative. This solution is, however, oversimplified. While equa-
tions (1)–(3) are exact (under assumption of very short impact time),
the kinematic condition (4) is intrinsically controversial: it cannot be
valid during the whole time of impact, and its application to the last

moment of impact is an arbitrary and not substantiated assumption.
In reality, due to the elasticity of the sphere, the condition (4) will be
valid only at one point in time during the impact.

Impact in the case of a constant contact stiffness. In a second step let us
take into account the normal and tangential compliance of the con-
tact in a simplified way. The normal and tangential compliance of the
contact are changing during the impact due to changing contact
configuration. Let us simplify this situation by considering an impact
of a rigid sphere having a linear spring in the contact region. This also
can be an elastic sphere with a flat patch. Due to the flat the contact
stiffness will be constant provided the contact radius does not change
considerably during the impact. The considered system and notation
are shown in Fig. 2.

Equations of motion can be written as

m€uz~{FN , ð8Þ

m€ux~{Ff , ð9Þ

I€Q~{Ff R, ð10Þ

where

FN~kzuz, ð11Þ

Ff ~kx uxzRQð Þ ð12Þ

are the normal and tangential components of the contact force. In the
last equation we took into account the fact that the tangential dis-
placement of the contact point is a sum of the displacement of the
center of mass and the displacement due to rigid rotation. The solu-
tion of the set of Eq. (8)–(12) with the initial conditions ux(0) 5 0,
_ux(0)~vx0, uz(0) 5 0, _uz(0)~vz0, Q(0) 5 0, _Q(0)~v0 has the form

_uz(t)~vz0cos vztð Þ, ð13Þ

_ux(t)~
5
7

vx0{
2
7

Rv0

� �
z

2
7

vx0zRv0ð Þ cos vxtð Þ, ð14Þ

_Q(t)~
2
7

v0{
5
7

vx0

R

� �
z

5
7R

vx0zRv0ð Þcos vxtð Þ, ð15Þ

where vz~
ffiffiffiffiffiffiffiffiffiffiffi
kz=m

p
, and vx~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7kx= 2mð Þ

p
. The duration of the

impact, ti, is determined by the Eq. (13) and is equal to ti 5 p/vz.
The velocities at the last moment of the impact are equal to

_uz(ti)~{vz0, ð16Þ

Figure 1 | Schematic presentation of an impact.
Figure 2 | Simplified contact model with a constant contact stiffness (left)
and the force diagram during the impact (right).

ð5Þ

ð6Þ
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The energy change during the impact is equal to

DE~{
m
7

vx0zRv0ð Þ2sin2 p

ffiffiffiffiffiffiffiffi
7
2

kx

kz

s !
: ð19Þ

Note that the expressions for �vx and �v are exactly the classical solu-
tions (5) and (6), while the remainder of Eq. (17) and (18) describes
the influence of the finite tangential compliance. From Eq. (17) and
(18), it follows that the combinations

7
2

vx{�vx

V
~cos p

ffiffiffiffiffiffiffiffi
7
2

kx

kz

s !
, ð20Þ

7
5

R v{�vð Þ
V

~cos p

ffiffiffiffiffiffiffiffi
7
2

kx

kz

s !
, ð21Þ

7DE

m vx0zRv0ð Þ2
~{sin2 p

ffiffiffiffiffiffiffiffi
7
2

kx

kz

s !
ð22Þ

are functions of the ratio kx/kz of the normal and tangential contact
stiffness. This suggests that the structure of the relations (20) and (21)
may be valid for a more general case of contact of any shape.
Indeed, for an arbitrary rotationally symmetric body the ratio of
differential tangential and normal stiffnesses is constant and equal

to Ref. 8 kx/kz 5 G*/E*, where

1
E�

~
1{n2

1

E1
z

1{n2
2

E2
, ð23Þ

1
G�

~
2{n1

4G1
z

2{n2

4G2
: ð24Þ

In Refs. 22 and 23 it was shown by numerical simulations that this
is valid even for randomly rough fractal surfaces. We thus may
anticipate that the Eq. (20) and (21) are valid for both regular forms
and rough profiles, while the exact dependence may be replaced by
another, shape dependent function. We arrive at the hypothesis that
in the general case the relations (20) and (21) have to by replaced by

7
2

vx{�vx

V
~

7
5

R v{�vð Þ
V

~P cð Þ, ð25Þ

7DE

m vx0zRv0ð Þ2
~{1z P cð Þð Þ2, ð26Þ

where

c~

ffiffiffiffiffiffiffiffiffi
7
2

G�

E�

r
: ð27Þ

In the next Section, we will prove this hypothesis by numerical simu-
lations and find the form of the function P(c).

Impact of a sphere: results of modeling. In the present work, the
equations of motion (8)–(10) were solved by the Euler integration
procedure. The results for the energy change during the impact as a

function of the parameter c~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(7=2)(G�=E�)

p
are presented in Fig. 3,

where the dimensionless variables
7
2

vx{�vx

V
,

7
5

R v{�vð Þ
V

, and

7DE

m vx0zRv0ð Þ2
are plotted as a function of the parameter c defined

by Eq. (27). Note that if the bodies have equal Poisson numbers: n1 5

n2 5 n, then G*/E* 5 2(1 2 n)/(2 2 n). From the thermodynamic
stability criterion, it follows that Ref. 24 21 , n # 1/2. Thus, for
isotropic bodies, 2/3 , G*/E* , 4/3 which corresponds to

1:52vcv2:16: ð28Þ

Figure 3 | Dependencies of the variables
7
2

vx{�vx

V
,

7
5

R v{�vð Þ
V

, and
7DE

m vx0zRv0ð Þ2
on the parameter ª~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(7=2)(G�=E�)

p
. The impacts were calculated

for various initial conditions, various radii, elastic moduli and masses of the spheres. Independently of the parameters used, all data collapse to a master

curve, which determines unambiguously the rebound values of the kinematic variables as a function of the incident values. The classical, rigid-body

solution (5), (6) is shown by the horizontal dashed line. The interval (28) is shown by vertical dotted lines.
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However, for anisotropic (e.g. orthotropic) media, the effective ratio
G*/E* can be in a wider range than given by this Equation. We
therefore present results outside the region (28) as well.

Fig. 4 is a magnified representation of the most practically relevant
range of the variable c. In this range the numerically determined
function P(c) can be approximated with

P(c)~{1z2: exp ({ac):cos2½k(c{b)� ð29Þ

with a 5 0.195, b 5 0.061, and k 5 1.685. For practically important
case of n 5 1/3 we get P < 0.20, and for incompressible media (n 5 1/2),
P < 20.09.

Discussion
In the present paper, we used the method of dimensionality reduction
in the area of its exact applicability (contact of axis-symmetric bodies)
to simulate an impact of an elastic sphere on an elastic half-space. The
main result of the study is the proof of the hypothesis (25) as well as
numerical determination of the function P(c) appearing in this equa-
tion. This function is presented in Fig. 3. A simple analytical approxi-
mation (29) was found for this function. We investigated a much
wider range of the ratios G*/E* than would be relevant for isotropic
elastic bodies. As for anisotropic bodies (e.g. media with orthotropic
elasticity), this ratio can in principle have arbitrary values. The sug-
gested method can be generalized straightforwardly to impacts of
bodies of different form (not necessarily spherical), impact with adhe-
sion, contacts with dry friction or impact of viscoelastic bodies.

Methods
For simulation of normal and tangential contact during the impact we use the method
of dimensionality reduction (MDR). In the framework of the MDR, two preliminary
steps are performed19: First, the three-dimensional elastic bodies are replaced by a
one-dimensional linearly elastic foundation consisting of an array of independent
springs, with a sufficiently small separation distance Dx and normal and tangential
stiffness Dkz 5 E*Dx and Dkx 5 G*Dx. In the second step, the three-dimensional
profile z 5 f(r) is transformed into a one-dimensional profile g(x) according to

g(x)~ xj j
ðxj j
0

f ’(r)ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2{r2
p dr: ð30Þ

When the MDR-transformed profile g(x) is indented into the elastic foundation and is
moved normally and tangentially according to an arbitrary law, the force-displace-
ment relations of the equivalent one-dimensional system will reproduce those of the
initial three-dimensional contact problem (proofs have been done in Refs. 18, 19.)
The MDR solution has the same accuracy as the solutions by Cattaneo25 and
Mindlin8: in the case of general Poisson ratio, there is an inaccuracy, which has been
shown to be generally quite small26.

For a sphere with radius R, the shape in the vicinity of the contact is given by f(r) 5

r2/(2R). The one-dimensional MDR-image, according to (30), is g(x) 5 x2/R. If the
vertical displacement uz of the center of mass is counted from the moment of first
contact, it coincides with the indentation depth, and the vertical displacement of the
spring of the elastic foundation at the point xi, ~uz(xi), is equal to ~uz(xi)~uz{g(xi)
inside the contact region. The contact radius a is determined by the condition
~uz(a)~uz{g(a)~0. Due to the assumed stick condition in the whole contact region,
the temporal incremental changes d~ux(xi) of the tangential displacements of all
springs that are in contact with the profile, are equal to the rigid-body movement of
the contact point, d~ux(xi)~duxzRdQ. The normal and tangential forces are calcu-

lated easily as FN~E�Dx
X
cont

~uz(xi), Ff ~G�Dx
X
cont

~ux(xi), where summation is over

all springs in contact at the given moment of time.
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Figure 4 | Dependencies of the variables
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V
,

7
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V

on the parameter ª~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(7=2)(G�=E�)

p
in the range of most interest for isotropic

materials are shown with solid line. The range 1.52 , c , 2.16 corresponding to Poisson number between 21 and 0.5 is marked by vertical dotted lines.

The approximation (29) is shown with triangles; the classical, rigid-body solution (5), (6) is shown by the horizontal dashed line. The coefficient of

determination for approximation (29) and numerical dependency in the full showed range of 0 , c ,3 is R2 . 0.9995.
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