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Abstract

Video coding techniques have evolved over recent decades. Since digital video representation

and transmission have replaced the analogue counterpart, efficient compression of digitized

video is a very important topic in the whole processing chain. As well as common TV-

broadcast and storage media like DVD or Bluray-Disk, other devices and platforms showing

video content have been developed such as handheld devices and, especially, the Internet.

Popular internet platforms, e.g. YouTube, Myvideo, Sevenload, etc., have led to the trans-

mission of large amounts of video data. Further, the latest development of High-Definition

(HD) displays demands high-definition video content, which means higher resolution video

than the common TV-broadcast format. It has been shown that the latest video coding

standard H.264/AVC, which has outstanding coding performance for Standard-Definition

(SD) resolution, can be significantly improved applying enhanced and new techniques for

HD-resolution video content.

All these aspects point to a great increase of video data material for all media, requiring

ongoing research, development and enhancement of existing techniques and finding new ap-

proaches for efficient encoding of this huge amount of data. For that, a number of algorithms

has been developed. The most successful technique is DCT-based motion-compensated pre-

diction. This so-called hybrid video coding approach has been the subject matter in various

standardization processes and has been used until today in almost all applications described

above.

Alternative approaches for efficiently encoding video data have also been pursued. One

method, which can be described as “model-based”, analyzes the video content first, sepa-

rates the content into objects and codes these separately. After transmission, the separated

objects are decoded and merged to the original form. This technique brought very high

coding gain in comparison to the hybrid video coding approach and therefore, it was stan-

dardized almost ten years ago. However, this “object-based” coding approach has several

limitations, e.g. the object segmentation in the pre-analysis step and the content-dependent

coding performance. Since the standardization, people have tried to develop techniques

to improve this type of coding. Some improvements have been developed considering one

object representation called Sprite, where all the background information of an entire video

sequence is mapped into one image. New and more efficient algorithms have been developed

to build such a Sprite. Furthermore, these Sprite representations have been included in



encoding environments to show some improvements comparing to hybrid video encoding.

However, a lot of open issues remain for bringing this type of encoding, which was called

Sprite coding during the standardization process, to the market.

Therefore, the motivation of this thesis is to build a bridge between Sprite coding and

the hybrid video coding approach to both combine advantages and minimize disadvantages.

It starts with the classical Sprite coding technique. Then, the Sprite-based representation is

integrated in a coding environment using the latest standardized video codec, H.264/AVC.

Although H.264/AVC is not designed for model- or object-based representations, a signifi-

cant improvement of coding efficiency is shown using the Sprite-based approach. Further,

pre-analysis steps, such as automatic object segmentation and analysis of the content of the

video for checking whether the video is appropriate for Sprite coding or not are also exam-

ined. Different kinds of visual quality metrics are also used to even emphasize the subjective

improvement of videos coded with Sprites. Finally, a filter design will be introduced using

techniques inside the Sprite generation, which has a great potential to be used not only in

coding environments but also as post-processing for video enhancement or as pre-processing

for further video analysis techniques.



Zusammenfassung

Videocodierungstechniken haben sich über die letzten Jahrzehnte sehr stark entwickelt.

Seit die digitale Videoverarbeitung und -übertragung die analoge Technik abgelöst hat,

ist die Komprimierung von Videodaten vor der Übertragung ein sehr wichtiger Bestandteil

der gesamten Prozesskette der Videoübertragung. Dabei kamen zusätzlich zu den schon

vorhandenen Systemen, wie normale TV-Übertragung und Speichermedien wie DVD oder

Bluray-Disk, nun neue Platformen und Geräte, in denen Video angezeigt werden kann dazu.

Zwei wichtige Beispiele stellen hier mobile Geräte, wie Handys und mobile Spielkonsolen,

und natürlich das Internet dar. Betrachtet man populäre Internet-Platformen, wie z.B.

YouTube, Myvideo, Sevenload, etc., ist zu erkennen, wie drastisch die Anzahl der Video-

daten heutzutage steigt. Weiterhin erfordert die jüngste Entwicklung von High-Definition

TV-Endgeräte natürlich auch High-Definition Inhalt, d.h. Videodaten mit einer höheren

Auflösung als der bisher bekannte TV-Standard. Es wurde schon gezeigt, dass der let-

zte Videocodierungsstandard H.264/AVC, welcher eine überragende Codierungseffizienz bei

Videodaten bis zu einer Auflösung des bisherigen TV-Standards hat, durch erweiterte und

neue Techniken bei Anwendung auf höher aufgelöstes Videomaterial signifikant verbessert

werden kann.

All diese Aspekte zeigen, dass das allgemeine fast unvorstellbare Wachstum an digi-

talem Videodatenmaterial für jegliche Medien eine fortlaufende Forschung und Entwick-

lung zur Erweiterung bestehender Codierungstechniken und neuen Ansätzen zur effizien-

ten Codierung dieser riesigen Datenmengen erfordert. Dafür wurden einige Ansätze zu

Codierung von Video bereits vorgestellt. Die erfolgreichste Technik beinhaltet eine DCT-

basierte bewegungskompensierte Prädiktion. Die sogenannte hybride Videocodierung wurde

bereits mehrfach in verschiedenen Standardisierungen verarbeitet und befindet sich heutzu-

tage in fast allen Anwendungen, die oben erwähnt wurden.

Neben der hybriden Videocodierung wurden alternative Verfahren ebenfalls verfolgt.

Eine “Modell-basierte” Methode analysiert zuerst den Videoinhalt, um dann diesen In-

halt in unterschiedliche Objekte zu unterteilen und diese dann separat zu codieren und

zu übertragen. Am Empfänger werden die Objekte dann decodiert und wieder zum ur-

sprünglichen Inhalt zusammengesetzt. Diese Technik brachte einen sehr hohen Codiergewinn



im Vergleich zum hybriden Ansatz und wurde deshalb auch vor ungefähr zehn Jahren stan-

dardisiert. Allerdings hat dieser objektbasierte Ansatz auch große Nachteile, wie z.B. die Ob-

jektsegmentierung im Voranalyseschritt und die allgemeine inhaltsabhängige Codiereffizienz.

Seit der Standardisierung wurde versucht, diese Technologie fortlaufend zu verbessern.

Verbesserungen wurden gezeigt in Bezug auf eine Objektrepräsentation, welche Sprite genannt

wird. In einem sogenannten Sprite wird der gesamte Hintergrundinhalt über alle Bilder

einer Eingangsvideosequenz zu einem Bild zusammengefasst. Neue und effizientere Algo-

rithmen wurden entwickelt, um solch ein Sprite aufzubauen. Weiterhin wurden die Sprites

in Codierungsumgebungen eingebunden, um dadurch Codierverbesserungen im Vergleich

zum hybriden Ansatz zu erreichen. Allerdings verbleibt eine signifikante Anzahl an offe-

nen Fragen, um diese Art der Codierung, welche auch “Sprite coding” genannt wird, zur

Marktanwendung zu bringen.

Deshalb ist die Motivation dieser Dissertation, eine Brücke zwischen dem “Sprite coding”

und der hybriden Videocodierung zu bauen, um Vorteile beider Verfahren zu kombinieren

und mögliche Nachteile zu minimieren. Es wird damit begonnen, die klassische Sprite-

codierungstechnik in allen Teilen der gesamten Prozesskette zu verbessern, um maximale

Kompressionseffizienz für den klassischen Bereich zu erziehlen. Danach wird die Sprite-

basierte Repräsentation in eine Codierumgebung eingebracht, wobei der hybride Standard

H.264/AVC zur Codierung verwendet wird. Obwohl H.264/AVC nicht für die Verarbeitung

von modell- oder objektbasierter Repräsentation der Eingangsdaten entwickelt wurde, kann

eine signifikante Verbesserung der Codiereffizienz bei dieser Codierumgebung gezeigt wer-

den. Weiterhin werden Voranalyseschritte betrachtet, wie z.B. ein Ansatz zu automatischen

Objektsegmentierung und Inhaltsanalyse zur Definition, ob der Sprite-basierte Ansatz ver-

wendet werden kann oder nicht. Ergebnisse werden mit bekannten objektiven Metriken

zur Bildqualitätsevaluierung erstellt. Dabei werden auch Metriken verwendet, die an die

subjektive menschliche Wahrnehmung angepasst sind. Schließlich wird ein Filterdesign

vorgestellt, wobei Techniken aus der klassischen Spritegenerierung verwendet werden. Es

wird gezeigt, dass dieses Filter großes Potential bei der Anwendung in Codierungsumge-

bungen, als Nachverarbeitung zur Videoinhaltsverbesserung sowie als Vorverarbeitung für

weitere Videoanalysetechniken aufweist.
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Chapter 1

Introduction

The transmission of digital video data is a major aspect in the subject of handling multimedia

data. Beside common video transmissions like TV-broadcast and DVD or Bluray-disk, the

internet carries large amounts of video data. The so-called Web 2.0 connects social networks

with a huge amount of content provided by users including multimedia content, e.g. pictures

and video. For example, the video data available on well-known YouTube and the popularity

of these new applications is underlined in the short video shown in Fig. 1.1.

Figure 1.1: Video from “DID YOU KNOW 4.0” (Click on the image while using Adobe

Reader, http://www.youtube.com/watch?v=6ILQrUrEWe8)

With an increasing amount of classical video data (high resolution, 3D content) and

new platforms of the Web 2.0, the amount of video data to be stored, shared, analyzed,

transmitted or screened in the near future is unimaginable. So the demand for enhanced

and new techniques for efficient compression of video data is nowadays higher than ever.

This motivates the research work of this thesis.



2 1 Introduction

The compression of video data to reduce the amount of bits to transmit is a heavily

investigated research field. The major goal in a design of a video codec including an encoder

at the transmitter and a decoder at the receiver is to find a way to compress and decompress

the video data with no perceptual loss achieving as few bits as possible for transmission with

as little computational cost as possible for the encoding and decoding steps. This means that

two problems have to be faced. The first is to encode the video data with the rate-distortion

trade-off. The second is the complexity of the whole video codec. These requirements have

led to a motion compensated DCT-based approach, also known as hybrid coding, which was

developed about 25 years ago. Until today, a number of coding standards have been launched

and brought into the market. The most widely used video coding standard is the MPEG-2

standard, which has enabled digital TV-broadcast. The latest standard H.264/AVC includes

the most advanced video codec of the present. With an increasing amount of video data,

especially due to increasing picture size, need for even better coding tools has come up.

Beside this motion compensated DCT-based design, alternative approaches have been

found. While a number of researchers try to shift the complexity of the encoder to decoder,

others have tried to work on so-called content-based coding tools. It has been found that

when the content of the input video is analyzed first and coding tools are developed which

are designed to encode the input data adapted to their content features, the hybrid coding

method can be improved. Considering input video data having foreground objects and

a background object, one specific method is to segment this data into a foreground object

segment and a background object segment and encode these data separately. At the decoder,

the separated video data was decoded and merged. One significant analysis step is to

transform the background information of a certain number of frames into one frame called

“Sprite” in the video coding community. A lot of work has been done in this field since it

was developed in the early 90‘s until its standardization in MPEG-4 Part 2 [66], [14]. This

work was summarized in [68] including a new development of a Sprite generation approach

and an approach for Sprite coding and other analysis applications using these techniques.

Despite its high potential already shown in first experiments, the Sprite coding technique

has not yet come into the market.

There are a number of reasons for this. The main problem is the pre-analysis step where

the input video content is segmented into foreground and background objects. The first

approach here is to assume that the input video data is already seperated when coding is

started. However, it turned out that this is not widely applicable. The second problem of the

Sprite coding approach was the high computational cost at the encoder. The pre-analysis

steps of segmenting the foreground and background objects and especially the generation

of the Sprite image could not be handled at this time. Additionally, because Sprite coding

only works for certain kinds of video sequences, a third analysis step would be necessary to

segment the input video in time to classify valid sequences of the input video which can be

coded with the Sprite technology. Meanwhile, the performance of the common hybrid video



3

coding approach has continued to improve. Due to these reasons, i.e. of the non-applicability

of the Sprite coding approach and the wide success of the hybrid method, people have put

aside the Sprite technology.

However, as already mentioned, the Sprite technology with all its partial algorithms has a

great potential as proposed in [67] and the general idea in terms of finding a better long-term

prediction is very promising. So some researchers have kept working on this technology. In

[92], advanced Sprite generation algorithms were developed and its application on Sprite

coding was determined. However, the general Sprite coding approach was still the same as

during the standardization work years ago. It was assumed that foreground/background

segmented video data is available beforehand. In [10], the aspect of object segmentation

using the already generated background Sprites was examined. The Sprite image is not

only a very good long-term prediction signal but can be used for automatic object segmen-

tation because it can also be used as a background model. During the Sprite generation, the

foreground objects of the sequence are removed. So together with an improved Sprite gener-

ation method called “multiple Sprites”, Farin et. al showed automatic object segmentation

results using Sprites as a background model. Having these works available, Kunter [39]

considered all aspects before and developed enhanced algorithms including global motion

estimation, multiple Sprite generation, and superresolution Sprite generation. The main

step here was the development of a codec which included an automatic object segmentation

step and code the segments with H.264/AVC. This was the main novelty in comparison to

the general Sprite coding approach as standardized in MPEG-4 Part 2. The new automatic

Sprite codec, called “Object-based Video Codec (OBVC)”, was first published in Krutz et.

al. [26] and using improved multiple Sprites in Kunter et al. [41], which will also be a

subject matter of this thesis.

With a video codec including the Sprite technology and an in-built automatic object

segmentation, it is possible to think about a next step for a general usability as foreseen

in [39]. But this is not the only aspect which can be further developed. A large number

of algorithms have been published as cited above including their references concerning the

aspects of the whole processing chain of a Sprite coder, i.e. global motion estimation, Sprite

generation, automatic object segmentation using Sprites as a background model. Further

analysis for finding the validity of a sequence for Sprite coding and coder design in general.

So the goal of this thesis is to find improved and new algorithms in these aspects just

mentioned starting at points of the work cited above and others. A more detailed overview

of what will be developed in this thesis is the following.

Main contributions including related publications:

• The problem of estimating the global motion of an input sequence is the most im-

portant pre-processing step for the whole approach. The better the frame-by-frame

estimation the better is the background Sprite with all following methods including
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automatic object segmentation and coding. Therefore, known algorithms are evalu-

ated and a new approach for improving the estimation of the global motion is shown

in this thesis.

– A. Krutz, M. Frater, T. Sikora

Improved Image Registration using the Up-sampled Domain

International Workshop on Multimedia Signal Processing (MMSP) 2006,

Victoria, BC, Canada, 03.10.2006 - 06.10.2006

– A. Krutz, M. Frater, M. Kunter, T. Sikora

Windowed Image Registration for Robust Mosaicing of Scenes with

Large Background Occlusions

IEEE Int. Conf. on Image Processing (ICIP’06),

Atlanta, GA, USA, 08.10.2006 - 11.10.2006

– A. Krutz, M. Frater, T. Sikora

Window-Based Image Registration Using Variable Window Sizes

IEEE Int. Conf. on Image Processing (ICIP 2007),

San Antonio, Texas, USA, 16.09.2007 - 19.09.2007

• The generation of a Sprite image has been widely researched and significant improve-

ments have been proposed. It has been shown that the use of multiple Sprites out-

performs a classic Sprite image, which includes all the background information of the

entire video sequence considered. The two further applications of a Sprite, the auto-

matic object segmentation and the coding, show significantly better results with the

use of a multiple Sprite. In this thesis, a Sprite generation approach will be introduced

which further improves the Sprites. These are called “local background Sprites” and

are firstly applied to automatic object segmentation.

– A. Krutz, A. Glantz, M. Haller, M. Droese, T. Sikora

Multiple Background Sprite Generation using Camera Motion Char-

acterization for Object-based Video Coding

3DTV Conference 2008, The True Vision Capture, Transmission and Display of

3D Video,

Istanbul, Turkey 28.05.2008 - 30.05.2008
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– A. Krutz, A. Glantz, M. Frater, T. Sikora

Local Background Sprite Generation

International Workshop on Local and Non-Local Approximation in Image Pro-

cessing, LNLA 2008, Lausanne, Switzerland, 23.08.2008 - 24.08.2008

• As mentioned above, the Sprite image can be used for an automatic object segmen-

tation step, which can be included in an automatic Sprite codec. Reasonable results

have been shown here, but, as always in the automatic segmentation issue, there is

need for improving this step. Therefore, the Sprite generation approach is applied

to a background subtraction-based object segmentation algorithm. So a new object

segmentation algorithm based on “local background Sprites” including a number of

small improvements is shown and evaluated comprehensively.

– A. Krutz, M. Kunter, M. Mandal, M. Frater, T. Sikora

Motion-based Object Segmentation using Sprites and Anisotropic Dif-

fusion

8th International Workshop on Image Analysis for Multimedia Interactive Ser-

vices (WIAMIS), Santorini, Greece, 06.06.2007 - 08.06.2007

– A. Krutz, A. Glantz, T. Borgmann, M. Frater, T. Sikora

Motion-Based Object Segmentation using Local Background Sprites

Proceedings of the IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP 2009), Taipei, Taiwan, 19.04.2009 - 24.04.2009

• Features of the automatic Sprite coding system (OBVC (already proposed in [39])),

which has been developed in collaboration with Dr. Matthias Kunter and Dipl.-Ing.

Michael Droese, are determined. Regarding the in-built automatic object segmenta-

tion, an optimal automatic object segmentation algorithm is developed which performs

best within a coding environment. Further, the coding system (OBVC) is designed to

use different kinds of codecs. This means that the analysis part is completely separate

from the coding part. This affects that each possible hybrid video coder can be used.

At the moment, the coding system is developed with MPEG-4 Part 2 and H.264/AVC.

If there will come a new codec in the future it can be easily included in the OBVC.

Furthermore, the extension to multi-view video coding is also discussed.

– A. Krutz, M. Dröse, M. Kunter, M. Mandal, M. Frater, T. Sikora

Low Bit-Rate Object-Based Multi-View Video Coding using MVC

3DTV-Conference,

Kos Island, Greece, 07.05.2007 - 09.05.2007
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– M. Kunter, A. Krutz, M. Dröse, M. Frater, T. Sikora

Object-based Multiple Sprite Coding of unsegmented Videos using

H.264/AVC

IEEE Int. Conf. on Image Processing (ICIP 2007),

San Antonio, Texas, USA, 16.09.2007 - 19.09.2007

– A. Krutz, A. Glantz, T. Sikora, P. Nunes, F. Pereira

Automatic Object Segmentation Algorithms for Sprite Coding using

MPEG-4

50th International Symposium ELMAR-2008,

Zadar, Croatia, 10.09.2008 - 12.09.2008

– A. Glantz, A. Krutz, T. Sikora, P. Nunes, F. Pereira

Automatic MPEG-4 Sprite Coding - Comparison of Integrated Object

Segmentation Algorithms

Multimedia Tools and Applications, Special Issue on ”Advances in Image and

Video Processing Techniques”,

Springer, 2010

• A very important issue in video coding in general is to find the best encoder parameter

settings for optimal encoding of the input video in a rate-distortion sense. There is a

large number of work in this field available. Most of it, of course, refers to the hybrid

video coding approach. However, there is also work done for object-based video coding.

Because the newly developed automatic Sprite coding system (OBVC) has features,

which have not been determined before. There is a need for a development of a rate-

distortion algorithm for this codec. An approach is outlined in this thesis based on

the work done for hybrid video encoders.

– A. Krutz, A. Glantz, M. Frater, T. Sikora

Rate-Distortion Optimization for Automatic Sprite Video Coding us-

ing H.264/AVC

16th IEEE International Conference on Image Processing (ICIP 2009),

Cairo, Egypt, 07.11.2009 - 11.11.2009

• Having the OBVC, it is possible to encode the input video data fully automatic. As

already discussed, the Sprite coding approach can only be used for a certain kind of

video content. To bring the Sprite coding to a general use, pre-analysis algorithms are

developed and coding systems including these analysis steps are designed using the

OBVC and a hybrid encoder, e.g. H.264/AVC. The main goal of these analysis steps

is to extract features for classifying whether a video sequence is valid for Sprite coding

or not. The system can then easily decide, which coder is the best for each sequence.

It will be seen that using this “coder selection” a significant improvement of encoding
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performance is possible, when video data is processed where valid sequences for Sprite

coding are included (e.g. sports broadcast, home videos, documentary).

– A. Krutz, M. Kunter, M. Dröse, M. Frater, T. Sikora

Content-adaptive Video Coding Combining Object-based Coding and

H.264/AVC

Picture Coding Symposium (PCS),

Lisbon, Portugal, 07.11.2007 - 09.11.2007

– A. Krutz, S. Knorr, M. Kunter, T. Sikora

Camera Motion-Constraint Video Codec Selection

IEEE 10th International Workshop on Multimedia Signal Processing (MMSP),

Cairns, Queensland, Australia, 08.10.2008 - 10.10.2008

• Until now, the most widely used metric for evaluating the quality of a decoded video

is the PSNR (peak signal-to-noise ratio). However, a lot of work has been done over

the past decades to find a quality metric which fits more to the human visible system

(HVS) and thus is more useful to evaluate video processing algorithms, such as video

coding systems. The PSNR-metric is widely used because of the easy equation and its

convenience regarding a design of rate-distortion methods. However, it is also known

that it does not fit well to the HVS. A good example is the decoded video data coming

from a Sprite codec. Due to the Sprite processing, the PSNR-values are quite low, but

subjectively it is much better than with hybrid codecs at the same bit rate or even

lower. A PSNR-rate-curve does not show this. Therefore, alternative quality metrics

are considered and an evaluation comparing the metrics with the use of the OBVC

will be shown.

• The “local background Sprites” are not only used for automatic object segmentation.

It will be shown in this work that it is possible to use this method to develop a temporal

deblocking method. Most of the existing deblocking methods, such as included in the

latest video coding standards, work more or less spatially. The effect of a temporal

filtering and its very good performance will be shown in this thesis.

– A. Glantz, A. Krutz, M. Haller, T. Sikora

Video Coding using Global Motion Temporal Filtering

16th IEEE International Conference on Image Processing (ICIP 2009),

Cairo, Egypt, 07.11.2009 - 11.11.2009

– A. Krutz, A. Glantz, T. Sikora

Background Modeling for Video Coding: From Sprites to Global Mo-

tion Temporal Filtering

IEEE International Symposium on Circuits and Systems (ISCAS 2010),

Paris, France, 30.05.2010 - 02.06.2010
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• Using this temporal filtering and the alternative visual quality metrics, a new video

coding system, called visual quality assessed video coding (VQVC), is developed. First,

problems of the new approach are analyzed and solved. It will be shown that with

this approach it is possible to perform an optimization regarding the visual human

perception. First experiments evaluate the new coding scheme and show its promising

performance.

• Finally, the question has come up why this approach using the local background Sprites

can be successful in a video coding environment. For that, a theoretical modeling of

the new method is developed and proves this method. Two aspects, the use of local

background Sprites for deblocking in general, and the motion estimation error are

taken into account. The theoretically achieved rate-distortion function matches the

performance of the temporal deblocking and the VQVC in a real usage.

• Techniques, escpecially global motion estimation and object segmentation, developed

in this thesis are also part of collaborative work apart from video coding. Applica-

tions range from compressed domain global motion estimation, video analysis (video

summarization, compressed domain object segmentation), and 2D to 3D conversion.

– M. Haller, A. Krutz, T. Sikora

A Generic Approach for Motion-based Video Parsing

15th European Signal Processing Conference (EUSIPCO 2007),

Pozna?, Poland, 03.09.2007 - 07.09.2007

– E. Dumont, B. Merialdo, S. Essid, W. Bailer, H. Rehatschek, D. Byrne, H. Bredin,

N. E. O’Connor, G. J.F. Jones, A. F. Smeaton, M. Haller, A. Krutz, T. Sikora,

T. Piatrik

Rushes Video Summarization using a Collaborative Approach

RECVID BBC Rushes Summarization Workshop (TVS 2008) at ACM Multime-

dia 2008,

Vancouver, BC, Canada, 27.10.2008 - 01.11.2008

– M. Kunter, S. Knorr, A. Krutz, T. Sikora

Unsupervised object segmentation for 2D to 3D conversion

IS&T/SPIE’s Electronic Imaging,

San Jose, California, USA, 18.01.2009 - 22.01.2009

– M. G. Arvanitidou, A. Glantz, A. Krutz, T. Sikora, M. Mrak, A. Kondoz

Global motion estimation using variable block sizes and its application

to object segmentation

International Workshop on Image Analysis for Multimedia Interactive Services

(WIAMIS 2009),

London, UK, 06.05.2009 - 08.05.2009
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This thesis starts with fundamental algorithms, such as global motion estimation and the

development of the local background Sprite generation. The object segmentation using the

local background Sprites is considered next. Afterwards, the OBVC is determined and the

development of an approach for a rate-distortion algorithm for OBVC is described. Having

this, pre-analysis methods for a general usability are shown. Finally, alternative metrics are

introduced and the temporal deblocking issue including a design for a visual quality assessed

video codec is discussed. All reference work, where all these algorithms start will be cited

in the introduction of each chapter.





Chapter 2

Enhanced Global Motion
Estimation and Background Sprite
Generation

This chapter provides recent developments in global motion estimation and Sprite gener-

ation techniques. For global motion estimation (GME), an algorithm is developed, which

uses a windowing approach to initialize the gradient descent, i.e. the core technique within

the GME-algorithm, to converge in the background motion even when sequences with large

background occlusions are used. Up-sampling in the final estimation step is used to prevent

aliasing affected from resampling due to the image warping process. Furthermore, an ap-

proach for automatic selection of window sizes is presented. The second part of the chapter

describes a new Sprite generation technique. A first application for this new method is au-

tomatic object segmentation. However, the potential and further applications are examined

throughout the thesis, especially in the last chapter.

2.1 Introduction

Global motion estimation is a key technique for many applications such as video mosaicing,

video segmentation and coding. Input images are aligned by estimating the motion of the

background object, i.e. the camera motion, along the video sequence. We consider well-

known concepts in video coding and object segmentation as well as new approaches. For

that, enhanced global motion estimation and background Sprite generation techniques are

developed and described in this chapter.

A number of techniques for global motion estimation and video mosaicing/Sprite gener-

ation have been proposed including [50], [21], [60], [61], [8], [70], [93]. Furthermore, there

is a large amount of publications building panoramic mosaics from a given image sequence

[78], [79], [65], [52] as well as other applications like video indexing [19]. In the case of

building a panoramic mosaic, no foreground objects are assumed in the image sequence. It
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is important here to register the images very accurately pixel-by-pixel. To accelerate this

costly process, Steedly et. al. [74] proposed a technique where they reduced the amount of

registration points to create a very fast panoramic mosaicing algorithm.

We consider the use of the Sprite generation technique for separating the background

from foreground objects in a corresponding video sequence as well as coding applications.

The most important step is the accurate estimation of the background motion. A pure global

motion estimation algorithm suffers from errors caused by the influence of foreground objects

on the calculation of the motion parameters. As a result, the motion parameters achieved

do not describe the camera motion accurately relative to the background, but rather a mix

of all the motions that occur in the sequence. Methods have been presented to solve this

problem in [8] and [69]. Both ideas dealt with extracting large error values from the error

function that has to be minimized. It has been shown in [69] that this technique works

very well if one small foreground object occurs in the sequence. However, there is still the

problem of trapping in not-desired minima, and large foreground objects can still lead to

poor motion estimates, as in situations where there is more than one moving foreground

object.

For applications like segmentation and object-based coding, the accuracy of the estimate

of the motion of the background object is critical. A windowing approach is developed to

achieve good accuracy, even if a large and/or more than one foreground objects occur. This

enhanced window-based global motion estimation algorithm is based on the work in [8],

enhanced by windowing and a number of additional techniques. It was firstly introduced

in [27]. For the core gradient-based energy minimization method, an improved algorithm is

used for reducing the computational complexity [1]. The Gauss-Newton algorithm is chosen

for the energy minimization because it has the best performance in comparison to other

approaches [2]. Both, performance and computational efficiency are enhanced by the use of

an image pyramid, in which initial motion estimates are obtained using low-resolution im-

ages. The Gauss-Newton algorithm relies on a good inital estimate of the motion, especially

in the translational components. This is provided using phase correlation [38] enhanced

by windowing in one case and feature tracking [80], [63] in a second case. The impact of

errors that occur due to spatial aliasing during the warping process is minimized by the

use of an additional level in the image pyramid, in which images are up-sampled to twice

their original resolution, based on the results of [93] and [28]. Due to these improvements

connected with that windowing approach, it is possible to esimate the background motion

for a number of test sequences. Experimental results show the very good performance in

comparison to recent work even with difficult test material.

Having an improveved GME-algorithm, we come to the next step. Background mod-

eling – meaning the description of the background of a video sequence – is an important

research field. Application scenarios in which background modeling is used range from video

surveillance systems to video coding.
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A so-called background Sprite or single Sprite generated over a certain number of frames

can be such a background model. A background Sprite is an image that typically is of large

dimensions and depicts only the background pixels of a video sequence. This approach can

be extended to so-called multiple Sprites or super-resolution Sprites. In case of multiple

Sprites, the video sequence in divided into partitions and for each a background Sprite is

generated independently. In case of super-resolution, a higher quality background Sprite is

generated.

The potential for using background Sprites for object-based video coding has been sum-

marized in [67]. Furthermore, background modeling is an efficient means for video object

segmentation. Various approaches using single or multiple background Sprites in a back-

ground subtraction method have demonstrated that this kind of background model is very

promising [12], [36]. However, the mapping of pixel content from various frames in a scene

into a single Sprite or a collection of multiple Sprites may cause severe geometrical distortion

of the background. For reconstruction of the background of a single frame a second map-

ping needs to be performed, which causes additional distortion, overall resulting in erroneous

segmentation masks.

In our new local background Sprite algorithm, a mapping of content from many frames in

a scene is performed for each individual frame for background construction. In other words,

global motion estimation is performed from many adjacent frames into the frame where

the background needs to be reconstructed. No backward mapping is required. Thus, our

background Sprites are local and there are as many individual Sprites generated as frames

exist in a sequence. This results in a more precise background reconstruction compared to

conventional global Sprites. It will be seen later in this work that this technique can also

serve for further applications.

2.2 Windowed Global Motion Estimation

2.2.1 The Core and the Tools used

The core global motion estimation algorithm, inspired by [8], is illustrated in Fig. 2.1.

The input images are subdivided using an image pyramid to reduce the computational

complexity and improve the initialization of the gradient-descent algorithm. The algorithm

starts at the lowest resolution of the input images using the phase correlation method to

calculate the translational motion parameters [38]. Afterwards, the Gauss-Newton (GN)

algorithm using the affine motion model is applied. The achieved parameters then initialize

the motion parameters of the perspective model in the next upper stage of the pyramid

and the GN-algorithm is applied again. This procedure is repeated through the pyramid

until the highest resolution (the original input frames) and the final motion parameters are

calculated. A simplified robust M-estimator [69] is applied on the error function, which has to
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Figure 2.1: Core Algorithm

be minimized to prevent the influence of outliers. It has been shown that the Gauss-Newton

gradient descent algorithm has a very good performance if the start point of the gradient

descent is close to the desired minimum [2]. Therefore, the initialization of the translational

parameters is very important and the estimation of the phase correlation method is robust

and fast with good results [25].

Figure 2.2: Resampling due to warping

Figure 2.3: Sampling issue (pixel domain)

2.2.2 The Up-Sampling Issue

Due to the warping process, under-sampling can occur, which is illustrated in Fig. 2.2.

If the warping process is applied at original input images for the final estimation and we

assume that the original input images are optimally sampled, aliasing could appear in the

warped image due to possible under-sampling. This aliasing produces an increased error
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and the performance of the gradient descent algorithm decreases. The robust M-estimator

may remove some large errors, but cannot compensate for under-sampling. The design of

the binary M-estimator is for prevention of errors due to outliers. Errors in consequence

of aliasing in the warped image range through the whole image and affect the estimation

process in general. To prevent under-sampling the input images can be up-sampled. Fig.

2.3 shows how up-sampling can avoid aliasing in the pixel domain. In Fig. 2.3, point spread

functions are shown for each sampling case. It can be seen that in the over-sampled case

(Fig. 2.3 (b)), the point spread functions are more overlapped, which means that they are

robust against possible under-sampling. Fig. 2.3 (a) shows the optimally sampled case

(assuming the original images). If under-sampling arises here, the point spreads of each

pixels are spread like illustrated in Fig. 2.3 (c). As a result, aliasing appears in the warped

image. The same issue can be explained in the frequency domain. The over-sampling can

prevent the under-sampling during the image warping, which could cause aliasing, so long

as the magnitude of the over-sampling is larger than that of the under-sampling.

To prevent that problem, the input images are up-sampled before the last step of the

motion parameter calculation. This means that over-sampled versions are used for the last

estimation step. The 7-tap wavelet filter is taken for the interpolation process because it has

a very good approximation to the optimal sinc-function. Figure 2.4 shows a block diagram

where the up-sampling is used in the final step.

m
GN−alg. using 

motion model

the perspective

Initialize the

motion param.

motion
parameters

7−tap Wavelet
interpolation

2

Initialize the

motion param.

GN−alg. using 
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Figure 2.4: Core algorithm with up-sampling
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Figure 2.5: Background PSNR-curves comparing core alg. and core alg. with up-sampling

The global motion estimation algorithm with up-sampling is compared to the state-of-

the-art core algorithm. A set of test video sequences is used to show the advantage of the up-

sampling step discussed above. The first is the well-known “Stefan” sequence (352x240 pixel,

300 frames). Here, large camera motion occurs with one foreground object and a dominant

background object. Using this kind of sequence, the accuracy of the frame-by-frame global

motion estimation can be examined without any interference of the foreground object. The
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Table 2.1: Mean Background-PSNR values of the compared algorithms

Avg. PSNR Core Core-up Smolic

in dB Algorithm Algorithm Algorithm

“Stefan” 29.37 29.75 28.49

“Biathlon” 28.60 28.49 −

“Mobile&Calendar” 26.17 26.92 −

“Foreman” 33.74 34.55 −

“Monaco” 38.29 39.44 −

second sequence is similar to the “Stefan”-sequence. It is also a sport sequence called

“Biathlon” (352x288 pixel, 200 frames) captured from the first German TV station (“Das

Erste”). The third test video is also well-known, “Mobile&Calendar” (352x288 pixel, 100

frames). Several moving foreground objects occur here with high texture in the background.

The fourth test sequence is the MPEG-sequence “Foreman” (352x288 pixel, 300 frames).

Here, we also have a large background occlusion due to the large foreground object in

the first part of the sequence. In the second part, there is a camera pan without any

forground objects. The last sequence called “Monaco” (352x288 pixel, 150 frames) shows

a camera pan over the harbor of Monaco without any foreground objects. Short-term

motion-compensated PSNR-values are measured and compared for each algorithm. For an

accurate comparison of the background pixels, ground truth is available for each video

sequence separating the foreground object pixels from the background. We would like

to emphasize that the calculation of the motion parameters is accomplished without any

foreground/background separation. The foreground/background masks are only used for an

accurate calculation of the PSNR-value using the error image achieved. Figure 2.5 shows

the frame-to-frame PSNR-curves over the five considered test sequences considering the up-

sampling in the final registration step. It can be seen that except for “Biathlon” we achieve

an overall higher estimation performance. The highest improvement can be calculated with

test sequence “Monaco” (up to 1.15 dB) (see Tab. 2.1). This means that we are able to

improve the estimation process by applying the up-sampling step in sequences with small,

large, and no foreground objects. The reason for the “Biathlon”-case is the content of

this sequence. Here, we have wide regions with no texture (snow). Applying the phase

correlation here for initialization leads to misestimations in the early stage of the algorithm,

which makes it hard for the gradient descent algorithm to converge into the global minimum.

This issue is discussed in more detail later in this section.
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(a) Frame 100 (b) Frame 101

Figure 2.6: Frame 100 and 101 of sequence “Horse”

Figure 2.7: Error function using the 2-parameter motion model

2.2.3 The Windowing Approach

The use of statistical robust estimation methods as shown in [69] and [8] fails if, for example,

large foreground objects occur. In this case, it is possible that the background is no longer

the largest object, requiring the GN-algorithm to find a minimum which is not global. The

problem is illustrated in Fig. 2.6 and Fig. 2.7. The example shows two consecutive frames

of test sequence “Horse”. A two-dimensional error surface is built using the 2-parameter

translational motion model.

In this scene the camera follows the foreground object and therefore the global minimum

lies in the center of the translational coordinates. The background object moves relative to

the camera and produces a local minimum beside the global one. To obtain the global camera
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Figure 2.8: Best block match for Frame 101 (“Horse”)
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Figure 2.9: Windowed global motion estimation algorithm

motion, the gradient descent algorithm has to be initialized close to that local minimum.

This is achieved applying a windowing technique at the coarser levels of the image pyramid.

The input images on the coarsest level are divided into blocks. The blocks are arranged

with overlapping of 3/4 of the block size. To find the best match, phase correlation [38]

and gradient descent using the affine motion model are applied on each block. Then the

compensation error block is computed. Only the block with the lowest error is taken for

further processing. The matching can also be achieved using only phase correlation to

accelerate the algorithm. However, the use of phase correlation combined with the gradient

descent algorithm produces more accurate results and is more stable. In the next level the

gradient descent is only executed for the found block. Fig. 2.8 shows the blocks used for the

calculation of the motion parameters throughout the image pyramid for the example given

in Fig. 2.6.
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Figure 2.10: Background PSNR-curves comparing core alg. and window-based alg. with

optimal window size

It can be seen that the best block match belongs to the background objects. Thus, the

final gradient descent algorithm at the finest level, i.e. the up-sampled image level, can be

initialized by the motion parameters obtained with the blocks to find the local minimum

beside the global one.

The techniques described above lead to the windowed global motion estimaton algorithm.
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The algorithm using windowing (fixed size) is depicted in Fig. 2.9. Two versions of this

algorithm are considered for the experimental evaluation, one with fixed window size and

the other with automatic window size alignment. For the considered test sequences, two

available window sizes lead to successful results. The updating step with a new window

size has to be accomplished only a few times when an outlier is detected. This means that

the computational complexity does not increase too much in comparison to the use of a

fixed window size or to the core algorithm. The most costly calculation is the parameter

estimation on up-sampled input images at the last step of the algorithm. However, it has

been found that this step is necessary for a more precise calculation. Furthermore, the

motion parameters are well-initialized due to the computation at the latter stages of the

pyramid and the calculation at the finest stage takes only a few steps more.

For the evaluation, the test sequences “Stefan” and “Biathlon” for the small foreground

objects case and “Mobile&Calendar” and “Foreman” with large foreground objects as well

as sequence “Monaco” with no foreground objects are taken into account. Figure 2.10

depicts the comparison of the core and the proposed algorithm including all features. For

the proposed algorithm, three window sizes are considered, that are 32x32, 40x40, 48x48.

We calculated the motion parameters using these three different window sizes for each test

sequence. Table 2.2 lists the mean PSNR-values for each window size. The last column

contains the mean values where the optimal window size was taken depending on the PSNR

for each frame pair. Additionally, samples of error images are shown to emphazise the

improvement especially due to the use of windowing in Fig. 2.11.

Table 2.2: Mean Background-PSNR values of different window sizes for the proposed algo-

rithm

Avg. PSNR Wind.-size Wind.-size Wind.-size Wind.-size

in dB 32x32 40x40 48x48 (optimal)

“Stefan” 29.78 29.86 29.83 29.96

“Biathlon” 32.04 29.55 28.74 33.01

“Calendar” 27.28 27.24 27.27 27.36

“Foreman” 34.08 34.07 34.08 34.90

“Monaco” 39.21 39.24 39.19 39.54

These results show that the proposed algorithm brings the best and robust performance

in comparison to recent approaches. The problem of the fixed-size windowing approach is

also obvious. By using a fixed window size it can occur that the gradient descent algorithm

is sub-optimally initialized, and converges to a non-desired minimum. This leads to lower
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mean PSNR-values. Therefore, we show the improvement of using the optimal window size

for each image pair. Optimal means that the window size taken leads to the best PSNR-value

for the current image pair. The PSNR-values are calculated using the ground truth masks.

Having these optimal window sizes, it can be seen that the global motion estimation using

the proposed algorithm leads to very good results. These experiments show the necessity

of using windowing especially for sequences with large foreground objects. The biggest

challenge is to include in the proposed algorithm automatic window size selection during

the estimation process. The first approach for an online automatic window size selection

algorithm is given next.
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(a) Error frame (43) core alg. “Calendar” (b) Error frame (43) wind. alg. (32x32) “Calen-

dar”

(c) Error frame (1) core alg. “Foreman” (d) Error frame (1) wind. alg. (32x32) “Fore-

man”

(e) Error frame (29) core alg. “Horse” (f) Error frame (29) wind. alg. (32x32) “Horse”

Figure 2.11: Visualization of the best window match (32x32, 40x40, or 48x48)
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(a) “Mobile & Calendar” (b) “Horse”

Figure 2.12: Visualization of the best window match (32x32, 40x40, or 48x48)

(a) Error frame (outlier with fixed window size) (b) Error frame (window size changed)

Figure 2.13: Comparison of a fixed window size and variable window size at the outlier case

(frame 94, “Biathlon” sequence)

2.2.4 Online-automatic window sizes

The failure of the initialization can be prevented if variable window sizes are used. Two

sizes (32x32 and 40x40 pixel) are used for the first approach. The algorithm starts with

one window size and the task is to detect the appearance of an outlier online during the

calculation of a sequence. The RMSE-value (Root Mean Square Error) of the current image

pair is calculated at the third stage of the algorithm, at the original size of the input

images. If an outlier occurs, this RMSE-value increases significantly in comparison to the

previous value. This can be emphasized if the first numerical derivative of the RMSE-values

is considered. The calculation is not that difficult because only the RMSE-value of the

previous image pair has to be stored. The differential RMSE is then calculated as :

RMSEdiff = RMSEcurr −RMSEprev,
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A threshold defines if a peak in the differential RMSE appears and the algorithm goes back

and starts with the second window size for the current image pair. After the calculation of

the motion parameters, the window size is changed to the previous size for the next input

image pair. The threshold can be calculated using the variance of the differential RMSE:

T =
1

N

N∑
k=1

(ek − µ)2,

where ek holds the differential RMSE-value at the point k, µ is the average, and N is

the current number of the differential RMSE-values. For the first pair of frames in the

sequence, both sizes are applied. The size that produces the lower RMSE is taken for

further calculation. This can be extended when more than one example of the test sequence

is considered. Figure 2.12 illustrates the case of the best window match. Here, three

options of window sizes can be chosen. The algorithm begins with the largest window size

if the foreground object is very small. The examples show frames of sequences with larger

background occlussion due to one big or several foreground objects. It can be seen that in

this case smaller window sizes have a better match to the background.
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Figure 2.14: Windowed global motion estimation algorithm with arbitrary window sizes

Figure 2.13 shows an example for estimation improvement at an outlier case. The au-

tomatic window size technique described is now integrated in the present windowed global

motion estimation algorithm. The modification at the beginning and at the third level of

the pyramid brings the new updated algorithm, which can be seen in Fig. 2.14. It has been

found experimentally that the aligned windowing technique works best at the third stage of
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Table 2.3: Mean Background-PSNR values at the outlier cases

Avg. PSNR fix window size changed window

in dB (40x40) size

“Stefan” 25.32 29.36

“Mobile” 19.80 31.57

“Biathlon” 24.56 29.94

Table 2.4: Mean Background-PSNR values of the compared algorithms

Avg. PSNR Core Smolic Proposed Proposed

in dB Alg. Smolic (40x40) (arbitrary)

“Stefan” 28.08 28.49 29.24 29.52

“Mobile” 28.60 - 31.18 31.37

“Biathlon” 28.44 - 28.89 29.08

the algorithm. The computational complexity does not increase so much because calculating

the RMSE-value using initialized motion parameters takes only a few more steps. It can

be seen that only a few outliers occur and the re-computation during the algorithm at the

outlier-case using a new window size has to be accomplished rarely. This technique using

only two different window sizes works very well with the considered test sequences as shown

in the experiments.

Three test videos are selected to show the performance of the automatic window size

approach (“Stefan”, “Mobile&Calendar”, “Biathlon”). The PSNR-, RMSE-, and differential

RMSE-value are computed for each input image pair. The curves are illustrated in Fig. 2.15

for each of the three test sequences. It can be seen that at each sequence several outliers

occur when a fixed window size is used. The new algorithm using adaptive window sizes

intercepts the outliers. Table 2.3 shows mean PSNR-values for the outlier cases. The

updated algorithm significantly improves the performance of the algorithm at this stage.

Table 2.4 shows average PSNR-values comparing the proposed and recent algorithms. The

average PSNR-value of the proposed algorithm increases up to about 2.7 dB in comparison

to recently proposed algorithms.

2.2.5 Considering Initialization Techniques regarding the Video Content

It was already mentioned above that a good initialization is very important for a successful

gradient descent algorithm. Until now, the phase correlation technique was used because of

its robustness and the low computational cost. However, during the experiments it turned

out that the performance of the phase correlation technique depends on the content of
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Figure 2.15: PSNR-curves with and without RMSE-analysis

the input frames. For a good estimation of the displacement, the input frames have to

contain large regions with high texture resulting in a wide spectrum. If this is not the case

the global translational motion cannot be determined robustly. An alternative approach is

feature tracking, which is also widely used as an initialization technique for global motion

estimation and image registration in general. Now we compare both approaches regarding

test videos with different kind of content in the background. For that, the phase correlation

technique is briefly introduced next and the problem used with different kinds of background

content is developed. Afterwards, a state-of-the-art feature tracking algorithm is described.

An experiment is conducted comparing both algorithms estimating the translational motion

and as an initialization step for a full global motion estimation algorithm.
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(a) Frame 100 (I1) (b) Frame 101 (I2) (c) Error frame

(d) Correlation function C(x, y)

Figure 2.16: Example for calculating the translational motion parameters using the phase

correlation

2.2.5.1 Phase Correlation

The phase correlation method is derived from the Fourier transform shift theorem [38]. The

two images I1 and I2 are 2D-functions. It is assumed that I2 is a shifted version of I1:

I1(x+ xs, y + ys) = I2(x, y) (2.1)

The 2D-Fourier transforms are computed for both images and using (2.1) and the features

of the function C(x, y) can be calculated. The derivation is:

F{I1(x+ xs, y + ys)} = F{I2(x, y)}
I1(ω1, ω2)ej(ω1xs+ω2ys) = I2(ω1, ω2)

⇒ C(x, y) = F−1
{I2(w1, w2)

I1(w1, w2)

}
= F−1{ej(w1xs+w2ys)}

⇒ C(x, y) = δ(x− xs, y − ys) (2.2)

Figure 2.16 illustrates an example. Two consecutive images taken from the test sequence

“Stefan” are shown in Fig. 2.16 (a) and (b). In Fig. 2.16 (c) the error frame is depicted
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(a) Frame 130, “Stefan” (b) Frame 100, “Biathlon”

Figure 2.17: Example images with high and low texture

after applying the calculated translational motion parameters using the phase correlation

method. Figure 2.16 (d) shows the correlation function C(x, y) for that example. The peak

value represents the translational shift.

In this case, estimation with full-pixel accuracy is provided. An approach for subpixel

estimation using the phase correlation method is proposed in [13]. In this work, phase

correlation is used as initialization technique. Therefore, only full-pixel accuracy is required.

It has two big advantages. Firstly, the computation is fast. Second, the estimation is robust

against aliasing due to interlaced videos and against noise [13]. Furthermore, it is robust

against two or more moving objects.

All the advantages of this technique are possible if the spectrum of one input image I2

is nearly the shifted version of the reference image I1. This is given when the spectra of

both images include a wide range of fequencies, i.e. content with high texture such as in

the “Stefan”-sequence Fig. 2.17 (a). However, frames including wide regions without high

textures, such as in the sequence “Biathlon” (the snow), the dominant values of the spectra

of both input images are in the lower bound, which are not shifted and only a few high

edges are shifted according to the camera motion (see Fig. 2.17 (b)). In this case, the

translational coordinates of the cross correlation function are zero because the dominant

lower bound spectrums of the input images are the same. To tackle this problem, we have

to consider a feature-based techniqe to find the right camera motion also if only small regions

with high texture are available.

2.2.5.2 Feature Tracking

As described above, in some video sequences the use of phase correlation as initialization

leads to poor results in the final gradient descent-based global motion estimation algorithm.

Therefore, we tackle this problem applying a feature tracking approach. We use a state-of-

the-art algorithm proposed by Kanade, Lucas, Shi, and Tomasi (KLT) [47], [80], [63].

The KLT-algorithm is based on feature windows which are tracked using a gradient

descent algorithm. The evaluation of the sum of squared differences is taken for the error



30 2 Enhanced Global Motion Estimation and Background Sprite Generation

measurement during the tracking steps. For the gradient descent algorithm, the Newton-

method is used instead of the well-known Gauss-Newton, which is the core algorithm for

the pixel-based global motion estimation method used in this work. For the feature tracker,

only a set of pre-selected features are used for the gradient descent. So it is possible to apply

the full Newton-method including calculating the complete Hessian matrix. In general, the

algorithm assumes that only slow motion occurs between two successive images in a natural

video sequence. Therefore, the translational model is applied in the first place. Later,

if more and more images are taken into account for the feature tracking, a higher-order

motion model, e.g. the affine model, is used. In this work, the KLT-algorithm is applied as

an initialization method to estimate the displacement of the two input images considered.

For that, only the translational motion model is used.

The selection of the feature windows is the second very important task beside the tracking.

Kanade et. al define :

“a good feature is one that can be tracked well”.

That means, a feature window is good if the matrix (also structure tensor)

Z =

(
g2
x gxgy

gxgy g2
y

)
(2.3)

is above the noise level of the image and well-balanced, with

g2
x =

P−1∑
i=0

Q−1∑
j=0

g2
x(i, j) (2.4)

g2
y =

P−1∑
i=0

Q−1∑
j=0

g2
y(i, j) (2.5)

gxgy =
P−1∑
i=0

Q−1∑
j=0

gx(i, j) · gy(i, j) (2.6)

where gx(i, j) and gy(i, j) are the gradients in x- and y-direction and PxQ is the size of the

feature window. The requirement of the noise level means that both eigenvalues of matrix

Z are high. Well-balanced means that the eigenvalues are not far away from each other. For

example, two low eigenvalues indicate a relatively constant intensity profile. A high and a

low eigenvalue describe a uni-directional pattern. Only two high eigenvalues mean edges or

more generally, a good feature to track. Thus, a feature window is used if its eigenvalues λ1

and λ2 of the gradient matrix Z lie above a pre-defined threshold λTh.

In this work, initializing is performed choosing the N best feature windows of a reference

frame in the first step. The next step is the tracking of these feature windows using the KLT-

feature tracking algorithm. Feature windows are lost if occlusion occurs or if the feature



2.2 Windowed Global Motion Estimation 31

windows are out of the frame range. That means, after this tracking step there exist a

number of translational motion vectors lower or equal to N. If only small foreground objects

occur in the video and a high number of features have been tracked, there should only be a

few outliers with respect to the main motion direction. These outliers are reduced using the

well-known state-of-the-art RANSAC-algorithm. The mean value of the remaining motion

vectors is used to initialize the global motion estimation algorithm using a translational

motion model.
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Figure 2.18: Comparison of phase correlation and feature tracking for translational global

motion estimation

Now, the performance of phase correlation and KLT-feature tracking for initialization are

compared. For that, a short-term motion estimation and compensation applied on various

video sequences are determined. First, only phase correlation (PC) and feature tracking

(KLT) are used for the estimation, respectively. Second, phase correlation (GME/PC) and

feature tracking (GME/KLT) are used to initialize the global motion estimation algorithm

described above. The performance of both algorithms is evaluated by use of two test video

sequences with highly textured content (“Stefan” and “Mountain”) and use of two test se-

quences with low textured content (“Allstars (cif)” and “Biathlon”). The results are shown

in Fig. 2.18, Fig. 2.19, and Tab. 2.5, respectively. Visual examples of the results are
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also provided in Fig. 2.20. As expected, the performance of both techniques is nearly the

same for highly textured content. However, it can be seen that the KLT-algorithm outper-

forms the PC-algorithm significantly applied to test sequences with low textured content.

The results between both approaches are equal if the camera is still (e.g. from frame 220,

sequence “Allstars (cif)”) and no translational initialization is needed (Fig. 2.18 (a) and

Fig.2.19 (a)). It can also be observed that initialization techniques using the translational

model have problems if high zoom motion takes place. Here, the feature tracker can be

extended by use of the affine motion model which possibly improves the initialization. Fur-

thermore, an interesting issue is the relatively high mean PSNR-value using the KLT-feature

tracker without additional gradient descent in sequences “Allstars (cif)”, “Biathlon”, and

“Mountain” (Tab. 2.5).
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Figure 2.19: Comparison of phase correlation and KLT as initialization for a full global

motion estimation algorithm

2.2.6 Discussion and final enhanced global motion estimation algorithm

The examination of accurately estimating the global motion between two consecutive frames

of a video sequence leads to the final algorithm. Improvements are developed in this work
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(a) GME using PC error frame 130, “Allstars” (b) GME using KLT error frame 130, “Allstars”

(c) GME using PC error frame 140, “Biathlon” (d) GME using KLT error frame 140, “Biathlon”

(e) GME using PC error frame 80, “Mountain” (f) GME using KLT error frame 80, “Mountain”

(g) GME using PC error frame 200, “Stefan” (h) GME using KLT error frame 200, “Stefan”

Figure 2.20: Example error frames of short-term frame-by-frame estimation
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PC KLT GME/PC GME/KLT

“Allstars” 31.2063 32.9973 32.8629 33.3948

“Biathlon” 25.2105 28.7308 28.8015 32.7583

“Mountain” 31.7076 35.1628 35.1883 35.2114

“Stefan” 23.7608 25.3430 29.1280 29.1117

Table 2.5: Mean Background-PSNR values of short-term frame-by-frame estimation
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Figure 2.21: Global motion estimation algorithm

regarding the computational complexity, initialization, and tackling the problem of large

background occlusions. From here, sequences are considered which contain large camera

movements and the ratio between the foreground objects pixels and the background ob-

jects pixels is low. Those sequences often take place for example in sport broadcasts and

documentary as can be seen in the test data sets later in this work. Therefore, the final

global motion estimation algorithm includes all developed features except the windowing

because this is only needed if large background occlusions occur. The main application

of this work is to find alternative video coding approaches for increasing the compression

performance while holding or improving the visual quality. The background Sprite-based

approach mainly considered has the best performance in the conditions described. The

complete algorithm is depicted in Fig. 2.21 and is summarized next.

The algorithm first generates a 4-step image pyramid for the two frames to register.

The image pyramid contains the original frames, two downsampled versions and one in the

upsampled domain. For downsampling a 5-tap Le-Gall wavelet filter is used and for up-

sampling a 7-tap Daubechies wavelet filter. The first gradient descent step is performed on

the coarsest resolution and is initialized with a translational motion model using the KLT-

feature tracker. The algorithm then performs a gradient descent step in every other layer

of the image pyramid using the motion parameters from the step before as initialization. It

has been shown that this configuration provides best results in comparison to prior art.
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Figure 2.22: Single Sprite, sequence “Stefan”, reference frame 253

Figure 2.23: Creation of long-term motion parameters

2.3 Local Background Sprite Generation

2.3.1 General Background Sprites

2.3.1.1 Single Sprites

A so-called single Sprite models the background of a given sequence in one single image.

This image usually is of large dimensions and contains only the pixels from the background

of the sequence. An example of a single Sprite is depicted in Fig. 2.22.

For the creation of a single Sprite, a reference frame is chosen and all other frames of

the sequence are warped into the coordinate system of the reference. For that, so-called

long-term higher-order motion parameters are computed that describe this transformation

[70].

At first, short-term parameters are calculated using global motion estimation (GME) and

a higher-order motion model. These short-term parameters are then accumulated by simple

matrix multiplication as shown in Fig. 2.23.

By transforming all frames using the long-term parameters into the coordinate system

of the background Sprite, a stack of size M × N × S is created where M and N are the
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(a) Frames 0-244

(b) Frames 245-261 (c) Frames 262-297

Figure 2.24: Multiple Sprites, sequence “Stefan”

dimensions of the final background Sprite and S is the number of frames in the sequence.

The images in this stack are then blended together to generate the background Sprite. The

intention is to eliminate the foreground objects in the background Sprite. Blending filters

normally used are the mean or the median of all pixel values lying in dimension S on top of

each other.

2.3.1.2 Multiple Sprites

Multiple Sprites are used to improve the coding efficiency versus quality trade-off, especially

for sequences with large camera pans. The development in this area can be simply described

using one example. The well-known “Stefan” sequence has been used very often to evaluate

Sprite techniques. For example, the multiple Sprite generation algorithm proposed in [41]

leads to three partitions. The algorithms proposed in [11] and [94] generate four partitions

by use of the same test sequence. The approach presented in [32] focuses more on the quality

of the reconstructed frames from the Sprite and produces six partitions. The algorithms

proposed in [41] and [32] are introduced next.

Concatenating the short-term perspective camera parameters (homographies Hn−1,n) in

a recursive way yields non-exact long-term parameters representing the transformation H0,n

between any frame and the reference frame. These homographies are the base for an robust

but coarse camera calibration technique, published in [42]. Here we exploit the fact that for
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Figure 2.25: Rotation angles for test sequence “Biathlon” and sequence partitioning accord-

ing to y-rotation for multiple Sprite construction

common camera setups the homographies can be decomposed in a product of intrinsic and

extrinsic camera parameter matrices

H0,n = FnR0,nF
−1
0 (2.7)

=
1

α0,n


r00 r01 f0r02

r10 r11 f0r12

r20α0,n/f0 r21α0,n/f0 r22α0,n

 ,

where R0,n is the rotation matrix between frame 0 and n and Fn and F0 contain focal length

values of both views. After computing the focal length ratio α0,n = f0/fn we calculate the

focal length of the reference frame as median of all solutions resulting from Equ. 2.7. This

is done by exploiting orthogonality and constant vector norm constraints for the matrices

H0,n. Knowing all focal lengths, the rotation angles can finally be computed using trigono-

metrically properties of the center points of every image [42]. Figure 2.25 shows the rotation

angles for sequence “Biathlon”. The main motion is a left pan of the camera.

To split a video shot into several sequences, we first compute angle division for the

rotation angle (ϕy or ϕx) with the maximum overall rotation ∆ϕmax. We minimize cost

function C with respect to the number of angles M in order to find the number of Sprites

to be generated for one rotation plane.
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Figure 2.26: Partition of a sequence into multi-Sprites for panning camera with constant

focal length

C (∆ϕmax,M) =
M−1∑
i=0

fmax,i · 2 tan

(
∆ϕmax

2
+
FOV

2

)
(2.8)

Thus, we optimize the Sprite memory cost with respect to the Sprite image size along

one dimension. Figure 2.26 shows exemplarily the partition of a horizontal pan for the

generation of two Sprites. Note that the horizontal latitudes of the multi-Sprites together is

much smaller than the single Sprite latitude. The reference frame is chosen to be the middle

frame of a sub-sequence with respect to the rotation angle. Sprites are finally constructed

by applying direct frame-to-mosaic registration and advanced median blending to remove

artifacts from the foreground objects.

The second multiple Sprite generation approach introduced here assumes that back-

ground Sprites are synthesized from image sequences with camera panning and tilting

whereas sequences without these camera movements do not contribute to the generation of

background Sprites. An object-based video encoder that uses multiple background Sprites

can use metric-based measures such as the rotation angles for panning/tilting or alterna-

tively the segmentation results of camera motion characterization. Since panning/tilting

are the motion types of interest here, the characterization of camera work considers only

panning left/right, tilting up/down, and no panning/tilting.

The camera motion characterization approach as shown in Fig. 2.27 has a feature ex-

traction, classification, and a temporal segmentation stage. In the following, each of these

stages is described briefly. A more detailed description of this approach can be found in

[17].

The feature extraction uses the horizontal and vertical translational parameters hx,l and

hy,l of the earlier estimated perspective global motion parameters contained in H as input

to compute four features for pan and tilt, respectively. The index l addresses all motion

parameters for frames l and (l + 1). The complex normalized value

tl =
hx,l
w

+ j
hy,l
h

(2.9)
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Figure 2.27: Camera motion characterization for pan left, pan right, no pan, tilt up, tilt

down, and no tilt

is used to determine the median angle φt,med,l of translational motion and the median values

tx,med,l and ty,med,l with

φt,med,l = median
sl≤k≤el

(arg (tk)) (2.10)

tx,med,l = median
sl≤k≤el

(hx,k) (2.11)

ty,med,l = median
sl≤k≤el

(hy,k) , (2.12)

where w and h are the image width and height and sl and el are given as

sl = l −Wmed + 1 (2.13)

el = l +Wmed. (2.14)

The median filtered parameters are robust against possible GME outliers. The used win-

dowed median filter has a length of Wmed = bRf/2c with Rf as frame rate per second of

the video sequence.

Short-time translational angle histograms based on φt,med,l are determined to obtain more

robust features for the direction of translational motion. The used angle quantization scheme

is shown in Fig. 2.28. The derived rates RTAHPL,l, RTAHPR,l, RTAHTU,l, and RTAHTD,l

represent the occurrence of angles for pan left/right and tilt up/down in the respective

range of angles normalized to the window length W for the histogram computation. The

used overlap of windows is extensive for a proper temporal resolution.

The zero-crossing rates for horizontal and vertical translational motion parameters are

defined by

Zx,l =
1

2W

el∑
i=sl

|sgn (hx,i)− sgn (hx,i−1)| (2.15)

Zy,l =
1

2W

el∑
i=sl

|sgn (hy,i)− sgn (hy,i−1)| (2.16)
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Figure 2.28: Quantization scheme for the translational motion angle histogram (TAH)

and capture the reliability of intended translational motion within the window of the length

W .

The complete four-dimensional feature vectors for classification of pan and tilt are as

follows

xpan,l =
(
tx,med,l RTAHPL,l RTAHPR,l Zx,l

)T
(2.17)

xtilt,l =
(
ty,med,l RTAHTU,l RTAHTD,l Zy,l

)T
. (2.18)

Multi-class support vector machines (M-SVMs) are used to classify the camera motion

types. The M-SVMs provide for each image pair a result with the three possible states pan

left/right, and no pan as well as tilt up/down, and no tilt. The models for the M-SVMs

were trained on features extracted from selected videos of the TRECVid 2005 BBC rushes

video corpus [17]. The temporal segmentation starts with a median filtering of results over

15 frames. This improves the temporal stability. Changes between camera motion types are

then identified within an image sequence as boundaries of segments with the same type of

camera motion. This leads to a camera motion-based temporal segmentation.

The characterization of the camera motion separates the video sequence into segments

depending on the camera motion. Afterwards, for each segment, the physical camera pa-

rameters are estimated and based on that it is decided whether a single or a multiple sprite

is generated for the current segment. Figure 2.29 illustrates this method.

Exemplary, the new method is applied on the well-known “Stefan” - sequence. Six

background Sprites are generated. Firstly, the camera motion characterization separates

the video sequences in four parts. Then, for each part, physical camera parameters are

calculated. These parameters are used to segment the fourth sub-sequence into three Sprites

again. This leads to the six part Sprites as shown in Fig. 2.30.



2.3 Local Background Sprite Generation 41

Characterization

..

Input
Video Global Motion

Estimation

Camera Motion

Segment 1

Segment 2

Segment n
Physical Camera
Parameter 
Estimation

Estimation
Parameter 
Physical Camera

Estimation
Parameter 
Physical Camera

Multiple Sprites
Segment 1

Single Sprite
Segment 1

Multiple Sprites
Segment 2

Single Sprite
Segment 2

Multiple Sprites
Segment n

Single Sprite
Segment n

.

Figure 2.29: Multiple Sprite Generation using CMC

2.3.1.3 Super-resolution Sprites

Super-resolution is a technique that aims on increasing the quality of an image. A high-

resolution counterpart is built from several images with lower resolution. These images can

originate from one camera taking multiple images of a scene in time, from multiple cameras

each taking one image in time or from the frames of a moving video camera. The idea of

this approach is that an arbitrary point is visible several times.

This method can easily be extended to background Sprite generation. When building

a background Sprite a video sequence is used. After global motion estimation and trans-

formation into the coordinate system of the reference frame the pixel locations are rarely

integer values. This feature can be used to generate a single or multiple background Sprites

of higher resolution [40], [43], [94]. It has been shown in the literature that these super-

resolution techniques can improve the quality of the background Sprite. However, this type

of Sprite generation is beyond the scope of this work.

2.3.2 Local Background Sprites

Now we come to our new approach. The tendency generating three, four and six partitions

of the “Stefan”-example has led to the idea to build a local Sprite for each frame of the input

sequence. The term local background Sprite specifies a model of the background. Other

than general background Sprites one model is built for every frame and not one model for

the whole video sequence. Only the local temporal neighborhood of each reference frame is

taken into account for Sprite generation. The dimensions of a local background Sprite match

those of the reference frame. The idea is to minimize distortion in background regions.
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(a) Multi sprite 1, 1 − 42 frames (b) Multi sprite 2, 43 − 106 frames

(c) Multi sprite 3, 107 − 201 frames (d) Multi sprite 4, 202 − 244 frames

(e) Multi sprite 5, 245 − 261 frames (f) Multi sprite 6, 262 − 297 frames

Figure 2.30: Multiple Background Sprites over 297 frames, test sequence “Stefan”

When a background frame is reconstructed from a general background Sprite, distortion

can be severe. This is due to accumulated errors in the global motion estimation, non-ideal

interpolation and the double mapping into the coordinate system of the background Sprite

and back.

The algorithm for modeling local background Sprites for a given video sequence is de-

picted in Fig. 2.31. Its different parts are explained in this section.

2.3.3 Global Motion Estimation

For global motion estimation, a hierarchical gradient descent approach based on the Gauss-

Newton method is used as presented in the previous section. A block chart of the approach

can be seen in Fig. 2.21. The algorithm estimates the displacement between two temporally

adjacent frames Ip and Iq of a sequence using the 8-parametric higher-order perspective

motion model which is described by the following equations
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Figure 2.31: Modeling the background by means of local background Sprites

xq =
m0xp +m1yp +m2

m6xp +m7yp + 1
(2.19)

yq =
m3xp +m4yp +m5

m6xp +m7yp + 1
(2.20)

where (xp yp)
T is the location of a pixel in frame Ip and (xq yq)

T its corresponding position

in frame Iq. The parameters m0 to m7 describe the motion by means of translation, scaling,

rotation, sheering and perspective transformation.

Since the short-term displacement between two frames Ip and Iq is going to be used

several times while creating all local background Sprites for a video sequence, the motion

parameters are computed in a pre-processing step. This means for a sequence with n frames

the set T of transformation matrices

T = {W0,1,W1,2, . . . ,Wn−2,n−1} (2.21)

and its inverted correspondences

Tinv = {W−1
0,1,W

−1
1,2, . . . ,W

−1
n−2,n−1} (2.22)

are computed where |T | = |Tinv| = n− 1, W−1
p,q = Wq,p and

Wp,q =


m0,p,q m1,p,q m2,p,q

m3,p,q m4,p,q m5,p,q

m6,p,q m7,p,q 1

 (2.23)

is the transformation matrix between frames Ip and Iq.

2.3.4 Warping and Blending

For every reference frame a local background Sprite is to be built. Therefore, the algorithm

iteratively transforms temporally neighboring frames into the coordinate system of the ref-

erence. This produces a dynamically growing image stack of size M ×N ×St where M and
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Figure 2.32: Creation of an image stack for the generation of a local background Sprite,

sequence “Stefan”, reference frame 230

N are the dimensions of the reference frame and St = 2t+1 is the depth of the stack in step

t. In step t = 0 the stack only contains the reference frame. This approach can be seen in

Fig. 2.32.

For the transformation of an arbitrary frame into the reference’s coordinate system the

short-term motion parameters from the preprocessing step are accumulated to generate

long-term parameters which can be seen in Fig. 2.23. The global motion estimation can

only compute the displacement between two frames by approximation. Due to existing

small errors and their accumulation, the error in the long-term parameters grows larger

with increasing temporal distance to the reference frame. Hence, the long-term parameters

are used as initialization for another gradient descent step to reduce this error.

In every step t the images in the stack are merged together to build a preliminary local

background Sprite of size M ×N . For this purpose a so-called blending filter is used, which

here is a median filter. The median returns the middle value of an ordered dataset – in this

case a set of luminance and chrominance values respectively. The advantage over using a

mean filter is its robustness for outliers. Additionally, the median is always an element of

the set itself and does not produce new values.

By successively adding temporally neighboring frames the foreground objects in the pre-

liminary local background Sprites are removed step by step. This is due to the area behind

the foreground objects that is disclosed because of their movements. This can be seen in

Fig. 2.33. The preliminary local background Sprites are depicted for the “Stefan” sequence

for various steps t. One can clearly see that the foreground object has nearly completely

vanished after eight blending steps.

It is possible to evaluate the quality of the background model in every step subjectively.

However, an automatic evaluation criterion is desirable that stops the generation of the

local background Sprite when its quality is sufficient. An approach for automatic quality

evaluation is presented next.
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(a) Step t = 1, St = 3 (b) Step t = 2, St = 5

(c) Step t = 3, St = 7 (d) Step t = 8, St = 17

Figure 2.33: Preliminary local background Sprites, sequence “Stefan”, reference frame 230

2.3.5 Quality Evaluation of Local Background Sprites

A possible measure for the difference between two images or frames is the root mean square

error (RMSE). The RMSE between a reference frame Iref (x, y) and its preliminary local

background Sprite Ibs,t(x, y) in step t is defined by

RMSEt =

√√√√ 1

MN

M−1∑
i=0

N−1∑
j=0

(Iref (i, j), Ibs,t(i, j))2 (2.24)

where M and N are the dimensions of the reference frame and the preliminary local back-

ground Sprite respectively. The preliminary local background Sprite in step t = 0 is the

reference frame itself so that Ibs,t=0 = Iref and RMSEt=0 = 0. Since the foreground objects

vanish step by step the RMSE value increases successively. Therefore, the difference of the

RMSE values in two consecutive steps

∆RMSEt = RMSEt −RMSEt−1 (2.25)

decreases. When the foreground objects are completely eliminated, the values RMSEt and

∆RMSEt change only marginally.
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(a) Reference frame (b) Preliminary local background Sprite, t = 2

Figure 2.34: Partitioning of images into blocks of size 25× 25, sequence “Stefan”, reference

frame 230

At the beginning, foreground objects are still present in the preliminary local background

Sprite. Change in these areas leads to high values of ∆RMSEt. After several steps, most

of the foreground is eliminated which leads to lower values of ∆RMSEt. It holds true that

∆RMSEa >= ∆RMSEb for a <= b. Therefore, the value ∆RMSEt can be interpreted

as a measure for the information about the background that has been added to the local

background Sprite in step t.

Using the measure ∆RMSEt is not without problems when only small foreground objects

are present. Small objects only take a minor percentage of the whole frame. The influence

of errors in these areas on the measure is small compared to the sum of errors in the

background regions. In this case plotting RMSEt and ∆RMSEt against time produces

very flat curves which make a decision on the quality of the preliminary local background

Sprite very difficult. Therefore, we define matrices containing the blockwise calculated value

∆RMSEt, so-called dRMSE-matrices. Reference frame and preliminary local background

Sprite are divided into blocks of fixed size, which can be seen in Fig. 2.34. Within this

work, various block sizes between 10× 10 and 40× 40 have been tested. The problem with

small block sizes is that the profile of the dRMSE-matrices is very high-frequency. With

large block sizes the unwanted effect of averaging of large regions sets in again. In this

work a fixed block size of 25 × 25 is used. The value RMSEt is then calculated for every

block independently. Thus, no averaging over the whole frame takes place. Distinct areas

in the preliminary local background Sprite can be evaluated independently. Furthermore,

the difference to the block values in the step before is computed using Equation 2.25.

Figure 2.35 shows the corresponding blockmatrices for the example in Fig. 2.33. At the

beginning the plot of the matrix is very wavy. With increasing steps t the matrix flattens

successively. This means, the more temporally neighboring frames are transformed into the

local background Sprite’s coordinate system the less information about the background of

the reference frame is gained. The peak in the middle of the matrices in Fig. 2.35 results
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(c) Step t = 3
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(d) Step t = 8

Figure 2.35: dRMSE-matrices using blocks of size 25 × 25, sequence “Stefan”, reference

frame 230

from the moving tennis player and the area behind him that is disclosed. However, the

RMSE in the background regions doesn’t nearly change at all. After 8 blending steps (Fig.

2.35 (d)) – 16 frames and the reference frame have been blended together – the matrix is

nearly flat in all regions. This corresponds with the results in Fig. 2.33.

The quality of the preliminary local background Sprites now is assessable in a very

differentiated way. Assuming the generation of the local background Sprite is to be aborted

when there is no more information added in any region, meaning the matrix presented is

flat in every region. We present three possible evaluation criteria for dRMSE-matrices.

The easiest way to evaluate the matrices is their maximum value. The maximum provides

information about the biggest change of a block in the preliminary local background Sprite.

The curve of the maximum plotted against step t can be seen in Fig. 2.36(a). Another way

to evaluate the matrices is the variance of their values. The variance provides information

about the distribution of values in a dRMSE-matrix. The curve of the variance plotted

against step t can be seen in Fig. 2.36(b). The last way to evaluate the matrices is inspired
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Figure 2.36: Various evaluation critera for dRMSE-matrices, sequence “Stefan”, reference

frame 230

Evaluation criterion Threshold

Maximum 5.0

Variance 0.2

Eigenvalues 5.0

Table 2.6: Thresholds for evaluation criteria

by the window-based feature tracker of Kanade et al. [2]. As already described, in their

work, they define that a good feature is one that can be tracked well. This is the case when

its texturizing is high. Two large eigenvalues represent any highly textured pattern that

can be tracked well. The dRMSE-matrices can be compared to the intensity profile of a

feature window. On the contrary, we are looking for a nearly constant profile which means

two small eigenvalues. Therefore, in every step t matrix Z is computed from the gradientes

of the dRMSE-matrices. The curves of the eigenvalues plotted against step t can be seen in

Fig. 2.36(c).

For every evaluation criterion, we assume local background Sprite quality sufficient when

maximum, variance and eigenvalues respectively lie below their predefined threshold values.

The used thresholds can be see in Table 2.6.

2.3.6 Experimental results

We have evaluated our approach using four test sequences. The first sequence is called

“Allstars (Shot 1)” (352×288, 250 frames) and is recorded from a soccer broadcast in german

television. It mainly consists of translational motion but is somewhat difficult to handle for

global motion estimation because of its low-frequency content (green pitch). The second

sequence is called “Mountain” (352× 192, 100 frames) and is part of a BBC documentary.

It shows a leopard chasing an animal while moving down a hill. This sequence consists also

mainly of translational motion but has a high-frequency background (mountains). The third

sequence is called “Race1 (View 0)” (544×336, 100 frames) and is part of an MPEG testset
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(a) Sequence “Allstars (Shot 1)”
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(b) Sequence “Mountain”
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(c) Sequence “Race1 (View 0)”
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(d) Sequence “Stefan”

Figure 2.37: Background PSNR of local background Sprites using various evaluation criteria

for dRMSE-matrices

for multiview sequences. It shows a kart race. The forth sequence is the already introduced

“Stefan” sequence (352× 240, 300 frames).

For evaluation of background quality we compute the background PSNR of the model

using equation

PSNR = 10 · log10

(
2552

MSE

)
(2.26)

for the sequence’s luminance part. We have generated ground truth masks of the foreground

objects for all sequences to compute the PSNR only between the background pixels for the

original reference frame and the background model.

First, we compare all possible evaluation criteria, i.e. maximum, variance and eigenval-

ues, for the generation of local background Sprites. Figures 2.37(a) to 2.37(d) show the

background PSNR for the background models generated. Table 2.7 shows the mean PSNR

values. It can be seen that for every sequence the maximum criterion produces the best

background quality (bold values in Table 2.7). This is due to the fact, that local background

Sprite generation stops using the least temporally neighboring frames when the maximum

criterion is chosen. The high values in the last quarter of sequence “Allstars (Shot 1)”
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Sequence Algorithm PSNR [dB]

Allstars (Shot 1) Local background Sprite (maximum) 34.4345

Local background Sprite (variance) 33.7043

Local background Sprite (eigenvalues) 33.8240

Mountain Local background Sprite (maximum) 35.1592

Local background Sprite (variance) 34.7299

Local background Sprite (eigenvalues) 34.8040

Race1 (View 0) Local background Sprite (maximum) 34.6666

Local background Sprite (variance) 33.9092

Local background Sprite (eigenvalues) 33.7659

Stefan Local background Sprite (maximum) 29.5146

Local background Sprite (variance) 29.0908

Local background Sprite (eigenvalues) 29.2079

Table 2.7: Mean background PSNR values for local background Sprites generated using all

evaluation criteria

(Fig. 2.37(a)) come from the camera that is static in that part of the sequence. Therefore,

the translational initialization of the global motion estimation algorithm is very exact and

the gradient descent algorithm produces very small errors. The PSNR profile of sequence

“Mountain” (Fig. 2.37(b)) is almost constant. Except for low values at the beginning and

at the end of the sequence. These are explainable with errors in registration. The low values

around frame 30 of sequence “Race1 (View 0)” (Fig. 2.37(c)) come from a fast camera pan

that produces big translational motion. Contrary to the last part of sequence “Allstars

(Shot 1)” the translational initialization in that part of the sequence produces higher errors

for the global motion estimation. The peaks around frames 25, 50 and 120 and the drop in

the last 30 frames of sequence “Stefan” (Fig. 2.37(d)) are explainable alike. The camera

motion is static or nearly static in parts with peaks and moves very fast at the end of the

sequence.

Next, the local background Sprites are compared to common background models. We

use on one hand the local background Sprites provided by the worst criterion – which in all

cases is variance, except for sequence “Race1 (View 0)” which is eigenvalues. On the other

hand we use reconstructed background sequences from single, multiple and super-resolution

Sprites, repspectively. The plots for the comparison are shown in Fig. 2.38(a) to 2.38(d).

Table 2.8 shows the mean PSNR values. It can be seen that the new approach outperforms

common background models even when the worst evaluation criterion is used at about 2−6

dB (bold values in Table 2.8).

For sequence “Stefan” (Fig. 2.38(d)) only the first 250 frames are taken into account for

the mean PSNR value as the super-resolution Sprite existed only for that range.
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(b) Sequence “Mountain”
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(c) Sequence “Race1 (View 0)”
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Figure 2.38: Comparing background PSNR of reconstructed single/multiple/super-

resolution Sprites with local background Sprite (worst evaluation criterion)

2.4 Chapter summary and outlook to open issues

An enhanced global motion estimation algorithm based on gradient descent algorithm has

been developed. Several features have been examined, such as a windowing technique to

prevent the influence of possible foreground objects and an up-sampling step to prevent

errors during the warping process. Using this proposed windowing technique, it is possible

to estimate the motion of one object of a video sequence exactly, here the background,

without any a-priori knowledge. The technique works very well even with large background

occlusions due to large or multiple foreground objects, as has been demonstrated using a

number of video test sequences of varying complexity. Test sequences with small foreground

objects as well as with larger occluded background are considered. The use of optimal

window sizes has been also determined. It has been shown that using this, the overall

estimation process can be increased.

The up-sampling in the final registration step has also been investigated. Here, one test

sequence without any foreground object was chosen to emphasize the effect using an up-

sampling step for preventing aliasing during the image warping. It has been shown that
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Sequence Algorithm PSNR [dB]

Allstars (Shot 1) Single Sprite 29.0938

Local background Sprite (variance) 33.7043

Mountain Single Sprite 28.8877

Local background Sprite (variance) 34.7299

Race1 (View 0) Single Sprite 30.1350

Local background Sprite (eigenvalues) 33.7659

Stefan (1-250) Multiple Sprites 24.7312

Super-resolution Sprite 27.4404

Local background Sprite (variance) 29.4479

Table 2.8: Mean background PSNR comparing reconstructed single/multiple/super-

resolution Sprites with local background Sprites (worst evaluation criterion)

Sequences “Allstars” “Biathlon” “Foreman” “Stefan”

GME/KLT Bilinear/Up 33.39 32.76 34.90 29.11

GME/KLT Spline 41.65 37.69 37.32 30.58

Table 2.9: Mean Background-PSNR values of short-term frame-by-frame estimation

even for the test sequence without foreground objects and more high-frequency texture, we

achieve the highest estimation performance using only the up-sampling step. However, for

all other test sequences we also increase the estimation performance except for one test

sequence with low-frequency texture in the background.

The biggest challenge for further work is the enhancement of the in-built algorithm that

chooses the best window size within one estimation process. The main application for

our window-based global motion estimation algorithm is motion-based object segmenta-

tion. For that, a robust background motion estimation is strongly needed. Furthermore,

the up-sampling issue can also be investigated especially concerning the content of the in-

put video. Finally, initialization techniques (KLT, phase correlation) have been compared

experimentally and the final enhanced GME-algorithm (see Fig. 2.21) has been designed.

Furthermore, we have found out that using the spline interpolation and upsampling instead

of upsampling and bilinear interpolation during the final warping process brings a huge

improvement. Table 2.9 shows a first comparison.

The use of the spline interpolation method highly improves the global motion estimation

results. Therefore, we use this kind of interpolation during the warping process instead

of bilinear interpolation. However, we have seen during the experiments that the spline

interpolation is not always the best choice. The main issue for further work here is a

comprehensive research finding the optimal interpolation for the warping process.
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We have presented a novel approach for background modeling of video sequences. Con-

ventional background Sprites model the background of the sequence in one image that

usually is of large dimensions. Other than that local background Sprites are generated for

each reference frame individually and are of the same size as the reference. When using con-

ventional background Sprites for applications like image segmentation the frames containing

the background information have to be reconstructed from the Sprite image. This step is

not necessary when local background Sprites are used. Therefore, distortion is reduced. It

has been shown that the quality of the background model using this new technique clearly

outperforms conventional background models.

Nevertheless, further work has to be done concerning all fixed thresholds used in this

work. The block sizes of the dRMSE-matrices can be adaptively adjusted using a preliminary

segmentation that provides information about the mean object size in the reference frame.

The threshold values for the evaluation criteria can also be adaptively adjusted. The curves

are similar to an exponential path. Curve fitting techniques can estimate the path using

past values and adjust the threshold depending on a possible convergence.





Chapter 3

Video Object Segmentation in
Sequences with a Moving Camera

Having the two basic techniques, i.e. an enhanced global motion estimation algorithm and

local background Sprite generation, we can use these techniques to design an improved

object segmentation algorithm. For our purpose, it has to be possible to perform fore-

ground/background segmentation automatically, especially for video sequences with a mov-

ing camera. In this chapter, we describe new approaches with use of the pre-processing

methods described in Chapter 2.

3.1 Introduction

Object segmentation is a key technique in applications such as object-based video coding

and video surveillance. There are many approaches to segment or track foreground objects

in scenes recorded by a still camera, such as in surveillance applications. In those scenarios,

the background can be modeled and thus, a background subtraction method can be ap-

plied. However, the task of finding a pre-processing method for separating the foreground

and background in scenes with moving camera, e.g. pan, tilt, roll is more difficult. The

use of global motion estimation and Sprite generation techniques is a good base to tackle

this problem. If a specific camera motion model, e.g. the perspective model, fits to the real

camera motion, it is possible to generate a Sprite from this sequence. As already mentioned,

a Sprite is a storage where all aligned frames are summarized in one image [70]. All con-

sidered frames are blended into one image controlled by higher-order motion parameters.

For the blending process, a filter removing all foreground objects is used. As a result, the

Sprite contains the background of a number of frames from this video sequence. The next

step is to reconstruct the frames from the Sprite. This generates a video sequence only con-

taining the background. If these frames are used for subtraction with the original frames,

ideally, only the foreground object pixels appear in the resulting error frame [12]. During

the Sprite generation step it can occur that the blending filter produces several deviations in
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Figure 3.1: Problems using common background Sprites for object segmentation

the reconstructed frames compared to the original frames, possibly without any impact on

the subjective quality. However, if the reconstructed background frames are to be used for

segmentation, these different pixel values appear in the error frame and influence the seg-

mentation algorithm. Furthermore, the reconstructed frames can be distorted by the Sprite

generation process or by a non-static background. We address this problem by applying a

second error frame pre-computed by a frame-by-frame short-term global motion estimation

algorithm. To achieve this, it is very important to use an accurate method for the precise

estimation of the background. Thus, the segmentation algorithm is applied on both error

frames.

The segmentation is conducted in several steps. Before the error frame is converted to

a binary frame, it is low-pass filtered using anisotropic diffusion. This technique was first

proposed in [53]. The advantage of this method is that small edges between adjacent pixel

values are blurred whereas large differences of adjacent pixel values remain. The binary

image is produced thresholding the filtered error image. In our approach, the threshold is

calculated using the average and the maximum of the pixel values. In order to remove small

objects and to fill holes in the main objects, several well-know morphological operations are

applied on the binary image. The binary masks obtained are combined together.

However, the mapping of pixel content from various frames in a scene into a single Sprite

or a collection of multiple Sprites may cause severe geometrical distortion of the background

especially in border regions. For reconstruction of the background of a single frame, a second

mapping needs to be performed which causes additional distortion which is due to non-ideal

interpolation or registration errors. Object segmentation using background subtraction is

one application that is degraded by such distiortion. These problems are exemplified in

Fig. 3.1. In a second proposed algorithm, local background Sprites are used. A mapping
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of content from many frames of a scene is performed for each individual frame. In other

words, global motion estimation is performed from many adjacent frames into the frame

where the background needs to be reconstructed. No backward mapping is required. Thus,

our background Sprites are local and there are as many individual Sprites generated as

frames exist in a sequence. This will result in a more precise background modeling and

therefore background subtraction methods will be improved.

Further, the basic segmentation algorithm, i.e. processing the error frame from back-

ground subtraction to a binary mask, is also examined. The proposed scheme is compared

with state-of-the-art thresholding algorithms. The use of color spaces is also taken into

account for the whole segmentation process. Aspects described in this chapter have been

discussed in [16].

3.2 Processing the error frame resulting from a background

subtraction method

In Chapter 2, local background Sprites were introduced. We now would like to use this

technique for generating background models of each frame of a video sequence to apply

background subtraction methods for object segmentation. First, a background model is

generated for each frame and second the original frames are subtracted with its correspond-

ing background models. For each frame, which is subtracted with its background model,

an error frame results, which is used to calculate the binary object mask. For that, a

segmentation method is explained next based on Krutz et al. [37]. Afterwards, different ap-

proaches for thresholding methods are stated and their application for object segmentation

is examined.

3.2.1 Object Segmentation using Anisotropic Diffusion

The segmentation algorithm described in [37] is based on the error frame resulting from

the original frame and its background model. The difference to that approach is to use the

local background Sprites for the generation of the background model introduced in Chapter

2. The segmentation approach based on the resulting error frame is shown in Fig. 3.2 and

described next.

For a given reference frame taken from a video sequence, an error frame is calculated

using the pre-generated background model. Afterwards, the absolute values of the error

frame are computed. Ideally, only pixel values of the foreground object regions are different

from zero. Due to problems during the background model generation, errors also occur in

background regions between the original frame and its background model, here its local

background Sprite.
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Figure 3.2: Object segmentation using anisotropic diffusion

High values of background regions of the error frame are caused by the error accumulation

during the global motion estimation, the non-ideal interpolation of the transformation during

the generation of the local background Sprites and applying the blending filter. These

distortions are mostly of high-frequency nature. So, it is possible to minimize these errors

by use of a low-pass filter. The problem here is that a common low-pass filter, e.g. a

gaussian filter, does not differentiate between high-frequency regions caused by noise and

high-frequency values causes by object edges. At these edges, pixel values from foreground

and background edges are mixed up resulting in a blurred edge. Such object edges occur

in the error frame considered. The goal is to keep these edges because they ideally describe

the object’s borders. An approach to solve this problem is the anisotropic diffusion filter

to detect edges in an image first intoduced in [53]. The great advantage of this anisotropic

filter is that edges of adjacent pixels with small intensity values are low-pass filtered but

adjacent pixels with large intensity values are not low-pass filtered.

The algorithm is based on the diffusion equation and can be formulated as:

It = div(c(x, y)∇I(x, y)) (3.1)

where c(x, y) describes the diffusion coefficient and ∇I(x, y) is the gradient of the image

I(x, y). If c(x, y) is constant then It is reduced to the isotropic diffusion equation. Assuming

the object edges are known, the optimal choice of c is c(x, y) = 1 for object regions and

c(x, y) = 0 for object edges. In this case, object regions are low-pass filtered and object

edges are not low-pass filtered. Practically, the object edges are not known. Therefore, an

estimation is necessary. Such an estimation can be the absolute value of the gradient of the

image. Then, c(x, y) is a function g(·) of this estimation:

c(x, y) = g(||∇I(x, y)||). (3.2)

For function g(·), a non-negative monotonically decreasing function is chosen with g(0) = 1.

That means, in regions with small gradient values, i.e. for

||∇I(x, y)|| → 0, g(||∇I(x, y)||) → 1. This leads to a more intense smoothing in homoge-

neous regions. In our case, the following equation for the diffusion coefficient is used:
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(a) Original frame (b) Local background Sprite

Figure 3.3: Original frame and local background Sprite, sequence “Stefan”, frame 200

c(x, y) = g(||∇I(x, y)||)
=

1

1 +
(
||∇I(x,y)||

κ

)2 , (3.3)

where κ is a constant. We plug this in Equ. 3.1 and the anisotropic diffusion equation

results:

It = div (c(x, y)∇I(x, y))

= div

 1

1 +
(
||∇I(x,y)||

κ

)2∇I(x, y)

 . (3.4)

After low-pass filtering of the error frame using the anisotropic diffusion, the error frame

is normalized, i.e. scaled to the range of values [0, 1], and binarized by thresholding. A

first version of an object mask results. The threshold value t is calculated by the following

equation:

t = mean (It,norm) + ς · (max (It,norm)−mean (It,norm)) (3.5)

where It,norm is the normalized anisotropic filtered error frame and ς is a tuning constant

of the threshold.

The resulting object mask is now treated by a number of morphological operators. First,

small objects are removed using a pre-defined value of pixels in the region.

Afterwards, a closing is performed to connect two or more closely adjacent objects. As-

suming the foreground objects contain no holes, these are filled out. Finally, small objects
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(a) Error frame (b) Anisotropic diffusion

(c) Thresholding (d) Remove small objects

(e) Closing (f) Filling holes

(g) Remove small objects (h) Segmented object

Figure 3.4: Steps of object segmentation using anisotropic diffusion, sequence “Stefan”,

frame 200
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are removed again with a higher treshold than used previously. The object mask achieved

is the final result of the segmentation using anisotropic diffusion.

Every step of the segmentation approach is now visualized at one example. For that,

frame 200 taken from the test sequence “Stefan” is chosen for the reference frame shown

in Fig. 3.3(a) and its corresponding local background Sprite using the maximum criterion

Fig. 3.3(b). It can be seen in the local background Sprite that the foreground object is not

completely removed. However, this is not necessary because for the segmentation process

only the object edges are of interest. After subtraction and calculating the absolute value

of the frames shown in Fig. 3.3, the error frame results (Fig.3.4(a)). The next step is

the smoothing operation of the error frame using anisotropic diffusion. The result for the

considered example is shown in Fig. 3.4(b). It can be clearly seen that the background

is highly smoothed, but the edges of the foreground object are still remaining. The first

preliminary object mask is generated using thresholding applying Equ. 3.5 (Fig. 3.4(c)).

The remaining problems, which are tackled by the morphological operators, can be seen in

this frame. There are small errors in the background area, the legs of the tennis player are

not connected with the body and there are also small errors in the body of the player. The

results of each step of the morphological operator are shown in Fig. 3.4(d) - 3.4(g). Finally,

Fig. 3.4(h) depicts the completed segmentation result.

3.2.2 Thresholding

The subtraction of the background model from an original frame and the following thresh-

olding of the resulting error frame is a means, which is very often used for detecting areas

which have changed relative to the background model. The thresholding algorithm proposed

above is applied on the filtered version of the error frame by the anisotropic diffusion step.

The threshold is a weighting operation and is calculated by :

t = mean (It,norm) + ς · (max (It,norm)−mean (It,norm)) , (3.6)

where It,norm is the normalized filtered error frame and ς is a tuning constant. To evaluate

the performance of this approach, we compare it with various alternative thresholding algo-

rithms in the prior art. For that, we use the best approaches compared in Rosin et al. [58].

A comprehensive experimental evaluation is performed later in this chapter.

The first thresholding approach proposed by Kapur et al. [23] assumes that the grayscale

histogram of an image consists of two probability density functions, i.e. one of the grayscale

distribution lower than a threshold and the other taken from the grayscale distribution

higher or equal to a threshold. The algorithm maxmimizes the sum of the entropies of

both distributions to calculate the threshold t. The maximum entropy, i.e. the maximum

mean information, has a grayscale distribution when the relative frequency is the same for
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Figure 3.5: Grayscale histogram with unimodal distribution of an anisotropic filtered error

frame, sequence “Stefan”, reference frame 230

all grayscale values. The grayscale histograms of the error frames calculated in this work

are generally described by a unimodal distribution. Figure 3.5 depicts a typical grayscale

histogram of a filtered error frame by anisotropic diffusion. Most of the pixel values are near

zero. These pixels correspond to the background areas of the error frame. High error values

coming from the foreground areas are very rare. Thus, the maximization of the sum of

both distributions requires a threshold, which is very close to the minimum of the unimodal

distribution, because in this case all grayscale values from each side of the threshold are

uniformly distributed.

The algorithm calculates both distributions in the first step :

A :
p0

ps
,
p1

ps
, . . . ,

pt
ps

B :
pt+1

1− ps
,
pt+2

1− ps
, . . . ,

p255

1− ps
(3.7)

where p0, p1, ..., p255 are the probabilities of each grayscale value in the error frame and

ps =
∑t

i=0 pt is the sum of the probabilities of the first distribution. For each possible s the

entropies of the distributions

H(A) = −
t∑
i=0

pi
ps

ln
pi
ps

H(B) = −
255∑
i=t+1

pi
1− ps

ln
pi

1− ps
(3.8)
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Figure 3.6: Thresholds for grayscale histogram of an anisotropic filtered error frame, se-

quence “Stefan”, reference frame 230

are calculated. The discrete value t, which maximizes the sum of the entropies Φ = H(A) +

H(B), is the threshold to be found. The method described is applied on the example frame

230 of the test sequence “Stefan”. The resulting threshold can be seen in Fig. 3.6. In

comparison to other algorithms, the threshold value t = 66 is relatively high, which leads

to an under segmentation for this example, as seen in Fig. 3.8(b).

The work of Rosin [57] assumes a unimodal distribution, which means that at the lower

bound of the grayscale spectrum is a dominant summit. This summit is caused by small

errors of the background areas. The errors of the foreground areas are at the upper bound

of the spectrum, i.e. in higher grayscale value ranges. It is not necessary that these errors

of the foreground areas produce their own summit. The only constraint is that these errors

are as far as possible at the upper bound of the spectrum and thus do not fall under the

distribution of the errors of the background. For the calculation of the threshold, first a

line is drawn between the summit of the histogram, i.e. between the highest value and

the value with the lowest relative frequency. The value of the histogram is described as

H(i) for i ∈ [0, 255]. The threshold t is then calculated by maximizing the distance d

dropping the perpendicular of the line on the point (i,H(i)) of the histogram. Figure 3.7

depicts this geometric method. The threshold obtained for the error frame 230 of the test

sequence “Stefan” can be seen in Fig. 3.6. It is obvious that the threshold calculated by

Rosin’s algorithm is the lowest comparing to the remaining threshold values. For the chosen

example, the segmentation result is good as depicted in Fig. 3.8(c). However, setting the

threshold too low leads to an under segmentation.

The last thresholding algorithm introduced in this work has been proposed by Tsai [84].

This algorithm calculates the threshold by keeping the first three momentums of the error

frame in a dual significant higher contrast version. A momentum is a term taken from
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statistics. These momentums describe for example expectation value, variance, skewness or

kurtosis of a distribution function. The momentum of the k-th order of the random variable

X is the expectation value of k to the power of X and thus, is ascertained for the error

frame I(x, y):

mk =
1

MN

M−1∑
i=0

N−1∑
j=0

I(xi, yj)
k, k = 1, 2, 3, . . . (3.9)

where MxN is the size of the error frame. The momentums can also be calculated from the

histogram H(i) of the error frame

mk =
1

MN

255∑
i=0

H(i) · ik =
255∑
i=0

pi · ik. (3.10)

The variable pi = H(i)
MN is the probability of a grayscale value being in the error frame. The

error frame is considered as a non-sharp version of a dual significant higher contrast version

with two grayscale values, i.e. ibelow and iabove. The algorithm chooses a threshold t so that

the first three momentums of the error frame in the dual significant version are kept when

all values below the threshold are replaced by ibelow and above the threshold are replaced

by iabove. Now pbelow and pabove are the probabilities that a pixel value is below or above the

threshold t. The first three momentums of the dual significant version are then calculated

as:

m′k = pbelow · ikbelow + pabove · ikabove (3.11)
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(a) Threshold “weighted mean” (b) Threshold “Kapur”

(c) Threshold “Rosin” (d) Threshold “Tsai”

Figure 3.8: Segmentation results using various thresholding methods, sequence “Stefan”,

reference frame 230

where pbelow + pabove = 1 is valid and keeping the first three momentums means that m′k =

mk. The complete formulae are:

pbelow · i0below + pabove · i0above = m0

pbelow · i1below + pabove · i1above = m1

pbelow · i2below + pabove · i2above = m2

pbelow · i3below + pabove · i3above = m3 (3.12)

where m0 = 1. To determine the threshold t Equs. 3.12 have to be solved to calculate ibelow,

iabove, pbelow, and pabove. The threshold is chosen so that

pbelow =
1

MN

∑
∀i≤t

H(i) (3.13)

is valid. The threshold of Tsai’s method applied to the error frame 230 of the test sequence

“Stefan” is shown in Fig. 3.6. The threshold is relatively high with t = 64 like the threshold

calculated with Kapur’s method. The result of the segmentation can be seen in Fig. 3.8(d).
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3.2.3 Segmentation using the YUV color space

To improve the segmentation results we now examine the use of the full YUV color space.

Cavallaro et al. [3] have used the full YUV color space for segmentation with color edges.

Inspired by this method in this work all three color channels are coupled. It is assumed that

some errors cannot be detected in the luminance component, e.g. when local background

Sprites are generated and background regions appear with the same luminance values as

values of the foreground objects.

Considering a video sequence in a YUV color space, it is assumed that a background

model sequence (local background Sprites) is generated and is also transformed in the YUV

color space. For the segmentation, the U- and V-components of the reference frame and its

corresponding background model are up-sampled. Then, for each color channel a separate

error frame is calculated by differentation and calculation of the absolute values.

Each of the error frames is then combined by the following:

Ierror(x, y) = Ierror,Y (x, y) + Ierror,U (x, y) + Ierror,V (x, y) (3.14)

and afterwards scaled to the pixel range [0, 255]. Due to this coupling, errors in the fore-

ground regions are increased, because it can be assumed that the chrominance values of the

reference frame and background model are highly different. Further segmentation steps are

equivalent as described above including an anisotropic diffusion filtering.

For visualization, an outlier of the segmentation only by the use of the luminance com-

ponent is taken into account for sequence “Stefan”. The result of using the full YUV color

space can be seen in Fig. 3.9. Figure 3.9 (a) and (b) depict the original frame and its

corresponding background model of the given example. The error frames of each of the

color channels are shown in Fig. 3.9 (c) - (e). The combination of all color space compo-

nents lead to the result shown in Fig. 3.9 (f). It can easily be seen that the error values

are increased in the foreground object region. A comparison between the use of only the

luminance component and the full YUV color space for the segmentation process can be

seen in Fig. 3.9(g) and (h).

3.3 Object Segmentation using short-term global motion es-

timation

The first approach to apply automatic object segmentation is the use of global motion

estimation. Here, global motion estimation means that the background motion of two

consecutive frames of a video sequence is estimated. If an error image is calculated using

the reference frame and the compensated frame, the background pixels are ideally removed
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(a) Original frame (b) Local background Sprite

(c) Error frame, U (d) Error frame, V

(e) Error frame, Y (f) Combined error frame

(g) Result (YUV400) (h) Result (YUV420)

Figure 3.9: Segmentation using the full YUV color space, sequence “Stefan”, reference frame

210
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Figure 3.10: Motion-based Object Segmentation using Global Motion Estimation

completely. However, the foreground object regions appear from the reference and the

compensated frame in the error image. To extract the foreground objects more precisely,

two error images are taken into account: i) the error image calculated by the reference frame

and the compensated previous frame, and ii) the error image calculated by the reference

frame and the next frame. The segmentation algorithm described above is applied on these

two error frames. Two binary masks are obtained and combined by an AND-operator to

achieve the final foreground object mask. Figure 3.10 illustrates the whole processing chain.

This approach is inspired by earlier work where only global motion estimation techniques

where used for the pre-pocessing step [49].

3.4 Segmentation using short-term global motion estimation

and background Sprites

The segmentation approach relies on pre-computed error frames. It depends on the signif-

icant difference of the pixel values of the foreground and the background object. The use

of two error frames improves the segmentation results remarkably. Computing the error

image using the reconstructed background frames from the Sprite produces a precise shape

of the foreground object. The drawback is that due to Sprite generation further regions of

larger values appear in the error frame which are not related to the foreground objects. To

prevent this, it is very important to have a very good estimation of the background object.

This can be achieved by the use of the error frame by the frame-to-frame image registration.

Here the background object can be estimated more precisely while the foreground objects

appear twice in the error image. Combining both calculated objects masks using a logical

AND-operator removes some drawbacks from both approaches. The block chart of the whole

segmentation algorithm is given in Fig. 3.11.

3.5 Object Segmentation using local background Sprites

The third object segmentation algorithm used [29] includes a new background modeling.

In practice, accumulated long-term parameters, which set up the Sprite generation process,

produce distortions in the background Sprite image. Furthermore, the warping process has
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Figure 3.11: Motion-based Object Segmentation using Anisotropic Filtering

sequence
Sprite Generation

Background
Subtraction Segmentation
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Local Background

Figure 3.12: Proposed segmentation algorithm

to be applied two times, first to align each considered image to the background Sprite plane

and second to reconstruct the image from the background Sprite plane. For the new tech-

nique, we generate so-called local background Sprites. That means, we produce background

Sprites for each frame of the video. During the generation process, we only consider pixels

which fall in the current reference frame. Using this method, we are able to produce accu-

rate background models for each frame of the sequence. The whole segmentation algorithm

is then processed in a common background subtraction scheme (see Fig. 3.12).

3.6 Experimental results

To evaluate the object segmentation algorithms described above, object segmentation masks

are built using the background models and thresholding algorithms at five test sequences.

First, the test sequences used are introduced. Afterwards, the metrics are described which

will be used for the objective evaluation.

3.6.1 Test sequences

For evaluation of the background modeling techniques and segmentation algorithms de-

scribed above, four sequences with different content, features, and camera motion are con-

sidered:

• Allstars (Shot 1), size 352x288, 250 frames

• Mountain, size 352x192, 100 frames

• Race1 (View 0), size 544x336, 100 frames

• Stefan, 352x240, 300 frames

All sequences are known and already used in the previous chapter.
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3.6.2 Precision, Recall and F-Measure

Ground truth data is available for all four test sequences named in the previous section.

These ground truth masks are generated manually and show the real foreground/background

segmentation for all frames of each sequence. By use of these ground truth masks, the well-

known F-measure metric can be used to evaluate the performance of the automatic object

segmentation algorithms. The F-measure value is calculated as follows:

F = 2 · Precision ·Recall
Precision+Recall

. (3.15)

Precision and Recall describe the quality of the foreground and background objects and are

calculated :

Precision =
TP

TP + FP

Recall =
TP

TP + FN
, (3.16)

where TP (true positive) is the part of pixels which can be found in the ground truth mask

as well as in the automatic object mask to be evaluated. FP (false positive) describes the

part of pixels which only appear in the automatic object mask, i.e. wrongly-segmented

foreground object pixels. FN (false negative) is the part of pixels which can only be found

in the ground truth mask, i.e. foreground pixels not detected by the automatic algorithm.

3.7 Segmentation results

The evaluation of the segmentation and the challenge to find the best combination of back-

ground modeling technique and thresholding algorithm are determined as follows. Three

background modeling techniques are taken into account. The algorithm proposed by Mech

et al. [49] is the first pre-processing algorithm only based on global motion estimation.

It is further called “GME-based”. The second algorithm combining the short-term global

motion estimation step and global background Sprites (Krutz et al. [36]) is further called

‘GME-/Sprites-based”. The segmentation is determined for each test sequence with dif-

ferent combinations. All various algorithms generating the local background Sprites are

used (maximum, variance, eigenvalues). Furthermore, the segmentation is accomplished in

color spaces YUV400 (only luminance information) and YUV420 (full YUV color space).

For thresholding algorithms, the weighted mean method used in (Krutz et al. [36]), the

thresholding algorithm proposed by Kapur et al. [23], the methods by Rosin [57] and Tsai

[84] are taken into account. Tables 3.1 - 3.4 show the mean values of Precision, Recall, and

F-measure for all combinations of all sequences.
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Figure 3.13: Precision, Recall and F-Measure curves for best segmentation results of all test

sequences

Basically, it can be said that a final decision for choosing one criterion for generating

the local background Sprites cannot be made. However, the best segmentation results

can be achieved using the maximum or variance criterion. A reason for that is the fixed

set of thresholds during the local background Sprite generation process. The generation

of local background Sprites using the eigenvalue criterion leads to the largest amount of

adjacent frames and therefore causes a big error in the background regions. The use of

the full YUV420 color space brings an improvement in every test sequence considered. It

can be seen that when the full YUV420 color space is used the mean F-measure values

are higher than the results achieved only by use of the luminance component. Considering

the thresholding methods, the algorithm proposed by Krutz et al. [36] outperforms the

competitive methods used in this work in nearly all cases.

The best configuration of the segmentation algorithm using local background Sprites is

now discussed for each sequence considered. Three parts of the whole segmentation process

are evaluated in the following order:

• the breaking criterion during the local background Sprite generation step,
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Figure 3.14: F-Measure curves comparing all segmentation algorithms

• the color space, and

• the thresholding method.

The best segmentation configuration for the sequence “Allstars” is “Variance-YUV420-

Krutz”. The mean F-measure value is 0.75. This means an improvement of about 16% com-

pared to the GME-/Global background Sprites-based approach. Figure 3.13 (a) shows the

curves for Precision, Recall, and F-Measure for each frame of the sequence. The F-measure

curves comparing the proposed segmentation algorithm using local background Sprites and

the reference algorithms are shown in Fig. 3.14 (a). It is obvious that the proposed algo-

rithm outperforms the reference algorithms at every time of the test sequence. Additionally,

it should be mentioned that the logo of the TV-station and the scores inside the frames are

foreground objects and are segmented as such by the automatic object segmentation al-

gorithm. However, these regions are not marked as foreground in the groundtruth masks.

Therefore, they are removed from the automatic object masks before the calculation of the

metrics (P, R, F), because otherwise they would have influenced the results very strong in a

negative manner. Examples for the segmentation results from selected reference frames can

be seen in Fig. 3.15.
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The segmentation results of the sequence “Mountain” are improved with the combination

“Maximum-YUV420-Krutz” about 2% in the F-measure value in comparison to the GME-

/Global background Sprites-approach. The curves of Precision, Recall, and F-measure along

the sequence are shown in Fig. 3.13(b). The F-measure curves comparing the proposed

segmentation algorithm using local background Sprites and the reference algorithms using

global motion estimation and conventional background Sprites, respectively, are shown in

Fig. 3.14 (b). The proposed algorithm outperforms the reference algorithms also at this

test sequence, except at the beginning of the sequence and between frames 80 and 90. A

reason for this effect at the beginning is the generation of the local background Sprites,

which causes a sub-optimal object segmentation. It can be mentioned that we have reached

the limit of the object segmentation for this test sequence. Due to the features of the

test sequence, the simple translational camera motion and the high-frequency background

content, the segmentation is relatively easy. Some segmentation results can be seen in Fig.

3.16.

The test sequence “Race1” can be best segmented using the combination “Maximum-

YUV420-Krutz”, like test sequence “Mountain”. The F-measure value of about 0.91 brings

out an improvement of 6% compared to the reference algorithm using GME/Global back-

ground Sprites. Figure 3.13(c) shows the curves for Precision, Recall, and F-measure along

the sequence. The comparison to the reference algorithms is depicted in Fig. 3.14 (c). The

dropping of the Precision curve and thus the F-measure curve at the end of the sequence is

caused by the fact that the foreground objects become smaller and smaller and very slight

differences between the automatically segmented mask and the groundtruth mask cause a

dropping of the Precision value. Subjectively, the automatic segmentation at the end of

the sequence is very good, which does not comply with the metric in this case. Figure 3.17

shows some examples of segmentation results.

The best segmentation results for the test sequence “Stefan” can be achieved with the

combination “Variance-YUV420-Krutz”. It shows a mean F-measure value of 0.88. This

means an improvement of 8% compared to the reference approach. The Precision, Recall,

and F-measure curves are shown in Fig. 3.13(d). Figure 3.14(d) depicts the comparison

of the F-measure curves of each object segmentation considered. The proposed algorithm

outperforms the reference algorithms nearly complete, except in the beginning, the end and

around frame 60 of the sequence. The reason for that is, as found for test sequence “Moun-

tain”, the sub-optimal generation of the local background Sprites. Examples of segmentation

results of this test sequences can be seen in Fig. 3.18.

Finally, we would like to consider problems of calculating the quality metrics Precision,

Recall, and F-measure. The calculation of these metrics is strongly constrained to the size

of the foreground objects. The reason for dropping of the Precision values in the last part

of the sequence “Race1” can be found in these problems. The quality of the automatic

segmentation in these parts is subjectively very good as seen in Fig. 3.17(f). Small errors at
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the border of the foreground objects get a significant higher weighting than the same errors

at a larger foreground object. Comparing the relation of foreground object size and frame

size between test sequence “Allstars” (1.14%) and test sequence “Stefan” (4.87%) it can be

concluded that a mean F-measure value of 0.75 achieved at “Allstars” does not mean that

the subjective quality of the object segmentation is worse than at sequence “Stefan” with a

mean F-measure value of 0.88.

For complete subjective evaluation of the automatic segmentation results, the test videos

are provided along with the results of the three algorithms. Figures 3.19 - 3.22 show all

results compared to each other and the original test video. If the Adobe Reader is used for

displaying this thesis one can watch the videos by simply clicking on the images.
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Criterion Color space Threshold P R F

GME-based 0.425552 0.613733 0.451298

GME-/Sprites-based 0.517529 0.741405 0.586007

Maximum YUV400 Krutz 0.632925 0.831003 0.709675

Kapur 0.761088 0.626171 0.649270

Rosin 0.284743 0.952388 0.428509

Tsai 0.796993 0.605248 0.665927

YUV420 Krutz 0.808996 0.665982 0.714954

Kapur 0.896936 0.441389 0.546008

Rosin 0.423238 0.900443 0.566131

Tsai 0.901423 0.439731 0.571272

Variance YUV400 Krutz 0.631624 0.856823 0.719049

Kapur 0.758369 0.688658 0.695542

Rosin 0.290422 0.955762 0.437267

Tsai 0.800360 0.634944 0.689447

YUV420 Krutz 0.793833 0.727931 0.748910

Kapur 0.893696 0.495194 0.594747

Rosin 0.411722 0.920498 0.561170

Tsai 0.904166 0.476146 0.609195

Eigenvalues YUV400 Krutz 0.629186 0.853728 0.715855

Kapur 0.756221 0.684273 0.690021

Rosin 0.286681 0.955789 0.432585

Tsai 0.797105 0.631265 0.684176

YUV420 Krutz 0.795194 0.720551 0.746808

Kapur 0.898051 0.476174 0.578885

Rosin 0.414888 0.917109 0.563682

Tsai 0.902656 0.469036 0.601938

Table 3.1: Mean Precision, Recall, F-Measure for object segmentation, sequence “Allstars”
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Criterion Color space Threshold P R F

GME-based 0.733748 0.900068 0.800316

GME-/Sprites-based 0.783993 0.948267 0.856327

Maximum YUV400 Krutz 0.770076 0.961241 0.853737

Kapur 0.694412 0.826459 0.707584

Rosin 0.643054 0.990416 0.778694

Tsai 0.885102 0.771904 0.820279

YUV420 Krutz 0.855914 0.903186 0.877445

Kapur 0.762742 0.758881 0.698691

Rosin 0.715913 0.978063 0.825341

Tsai 0.921701 0.642259 0.752090

Variance YUV400 Krutz 0.921701 0.642259 0.752090

Kapur 0.707893 0.810795 0.698722

Rosin 0.634746 0.991563 0.772697

Tsai 0.885424 0.788879 0.830073

YUV420 Krutz 0.843243 0.914051 0.875362

Kapur 0.762035 0.749941 0.688992

Rosin 0.707239 0.979992 0.819982

Tsai 0.922463 0.669266 0.769790

Eigenvalues YUV400 Krutz 0.761602 0.964695 0.849515

Kapur 0.701561 0.808902 0.698581

Rosin 0.636625 0.991541 0.774351

Tsai 0.883551 0.784268 0.826489

YUV420 Krutz 0.843179 0.913005 0.874728

Kapur 0.762495 0.752122 0.693151

Rosin 0.709452 0.979653 0.821560

Tsai 0.920605 0.661771 0.764060

Table 3.2: Mean Precision, Recall, F-Measure for object segmentation, sequence “Mountain”
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Criterion Color space Threshold P R F

GME-based 0.472543 0.683493 0.549631

GME-/Sprites-based 0.839296 0.885550 0.850559

Maximum YUV400 Krutz 0.822186 0.957921 0.880759

Kapur 0.812560 0.876156 0.809376

Rosin 0.561431 0.989673 0.692919

Tsai 0.900430 0.845904 0.859218

YUV420 Krutz 0.884592 0.939906 0.907293

Kapur 0.888402 0.881022 0.873881

Rosin 0.636176 0.982101 0.743254

Tsai 0.946222 0.785953 0.853319

Variance YUV400 Krutz 0.816535 0.958245 0.876954

Kapur 0.821745 0.902617 0.836857

Rosin 0.521364 0.989644 0.651138

Tsai 0.879804 0.864830 0.856836

YUV420 Krutz 0.876588 0.941778 0.903865

Kapur 0.884690 0.870430 0.864744

Rosin 0.648681 0.978772 0.749662

Tsai 0.945157 0.817859 0.872767

Eigenvalues YUV400 Krutz 0.819260 0.959035 0.878961

Kapur 0.824505 0.903194 0.839262

Rosin 0.536411 0.989248 0.667206

Tsai 0.879196 0.867436 0.858064

YUV420 Krutz 0.874992 0.943230 0.903558

Kapur 0.886283 0.867872 0.863155

Rosin 0.651912 0.978294 0.751454

Tsai 0.944521 0.827196 0.877920

Table 3.3: Mean Precision, Recall, F-Measure for object segmentation, sequence “Race1

(View 0)”
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Criterion Color space Threshold P R F

GME-based 0.551941 0.661785 0.583526

GME-/Sprites-based 0.841140 0.785205 0.799715

Maximum YUV400 Krutz 0.774365 0.915589 0.826461

Kapur 0.889283 0.579552 0.657599

Rosin 0.611475 0.969369 0.697793

Tsai 0.825880 0.766011 0.759616

YUV420 Krutz 0.815003 0.901533 0.844746

Kapur 0.877864 0.764429 0.789190

Rosin 0.743152 0.939380 0.799347

Tsai 0.850498 0.800061 0.803932

Variance YUV400 Krutz 0.817421 0.925477 0.862515

Kapur 0.906797 0.637512 0.707281

Rosin 0.684111 0.969292 0.772982

Tsai 0.875173 0.762779 0.793374

YUV420 Krutz 0.851775 0.917638 0.880358

Kapur 0.884015 0.844527 0.852015

Rosin 0.799943 0.947930 0.859054

Tsai 0.893729 0.807952 0.839400

Eigenvalues YUV400 Krutz 0.809881 0.923845 0.855927

Kapur 0.904823 0.635296 0.705743

Rosin 0.672835 0.969798 0.760352

Tsai 0.867620 0.760805 0.786189

YUV420 Krutz 0.844948 0.915854 0.874357

Kapur 0.880520 0.829132 0.838942

Rosin 0.791414 0.947099 0.849422

Tsai 0.885797 0.806072 0.832551

Table 3.4: Mean Precision, Recall, F-Measure for object segmentation, sequence “Stefan”
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(a) Frame 20 (b) Segmentation result

(c) Frame 100 (d) Segmentation result

(e) Frame 200 (f) Segmentation result

Figure 3.15: Example segmentation results, sequence “Allstars”
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(a) Frame 20 (b) Segmentation result

(c) Frame 60 (d) Segmentation result

(e) Frame 80 (f) Segmentation result

Figure 3.16: Example segmentation results, sequence “Mountain”
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(a) Frame 10 (b) Segmentation result

(c) Frame 50 (d) Segmentation result

(e) Frame 90 (f) Segmentation result

Figure 3.17: Example segmentation results, sequence “Race1 (View 0)”
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(a) Frame 20 (b) Segmentation result

(c) Frame 130 (d) Segmentation result

(e) Frame 250 (f) Segmentation result

Figure 3.18: Example segmentation results, sequence “Stefan”
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(a) Original video (b) Algorithm 1

(c) Algorithm 2 (d) Algorithm 3

Figure 3.19: Subjective comparison of various automatic object segmentation algorithms

“Allstars” (Click on the full images while using Adobe Reader)

3.8 Chapter summary and outlook

In this chapter a new automatic object segmentation algorithm based on local background

Sprites introduced in the previous chapter has been proposed and evaluated. The seg-

mentation procedure has been portioned into three parts, the breaking criterion of the

local background Sprite generation, the use of different color spaces, and the thresholding

method. For each part, various methods have been taken into account and the behavior of

each combination has been evaluated regarding the performance of object segmentation in

video sequences with a moving camera.

Additionally, the best combination has built the new proposed object segmentation

method and has been compared with reference algorithms using global motion estimation

only and GME/Global background Sprites for the pre-processing step. In both reference

algorithms only the luminance component of the video data was considered (YUV400 color

space) and the algorithm proposed by Krutz et al. [36] was used for the thresholding step.
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(a) Original video (b) Algorithm 1

(c) Algorithm 2 (d) Algorithm 3

Figure 3.20: Subjective comparison of various automatic object segmentation algorithms

“Mountain” (Click on the full images while using Adobe Reader)

Comprehensive experiments have been conducted to find the best configuration. The out-

come is that, regarding the generation of the local background as a pre-processing for object

segmentation, the “variance” and the “maximum” criterion have shown the best perfor-

mance. The method using the “eigenvalues” has led to worse object segmentation results.

The use of all components of the YUV color space has brought an overall significant im-

provement. Finally, we have evaluated various thresholding methods and selected the three

most known algorithms [23], [84], [57] and compared their performance inside the proposed

algorithm to our own thresholding method already proposed in [36].

It should be mentioned that the choice of the thresholding method should be kept as

simple as possible is this work. Therefore, we haven’t considered more sophisticated thresh-

olding methods, like algorithms using fuzzy-logic or supervised algorithms. Our main ap-

plication is content-adaptive video coding and the object segmentation method is placed in

a pre-processing part at the encoder and thus should work fast and online.

The evaluation shows that the method proposed in [36] outperforms all considered com-

petitive algorithms for all test sequences. This means that we have found already a very

good configuration regarding the thresholding aspect with the considered test sequences.

We will show later on that, with some considered test sequences, we have found nearly the

optimum object segmentation.
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(a) Original video (b) Algorithm 1

(c) Algorithm 2 (d) Algorithm 3

Figure 3.21: Subjective comparison of various automatic object segmentation algorithms

“Race 1” (Click on the full images while using Adobe Reader)

So it comes out that the biggest challenge regarding the automatic object segmenta-

tion is to find the best algorithm for generating the background model, in our case the

local background Sprites. Here, several aspects can be considered and still be optimized,

e.g. using an arbitrary window size and/or finding a content-adaptive breaking criterion.

Furthermore, we have only considered test sequences with continous camera motion. Algo-

rithms have to be found when test sequences are taken into account with changing in the

camera motion, e.g. moving-still-moving. Tracking algorithms can be used here and/or a

rough pre-characterization of the camera motion to adapt the following object segmentation

algorithm.

This chapter finalizes the basic pre-processing steps of a content-adaptive video coding ap-

proach. First, the global motion of an input sequence is analyzed and second the background

during a considered test sequence is separated from the foreground objects. We would like

to emphasize here that one goal of this work is, comparing the previous approaches, to set-

up an in-built fully-automatic object segmentation method using the already found global

motion parameters. We can say that a very good segmentation approach has been found

inspired by previous work and newly developed methods. The next chapters of this thesis

will show the performance of this pre-processing algorithms inside content-adaptive video

codecs.
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(a) Original video (b) Algorithm 1

(c) Algorithm 2 (d) Algorithm 3

Figure 3.22: Subjective comparison of various automatic object segmentation algorithms

“Stefan” (Click on the full images while using Adobe Reader)



Chapter 4

Automatic Sprite Coding for
Single- and Multiview

Now we can set up an automatic Sprite coding scheme using the pre-processing techniques

developed in the previous chapters. The main challenge of the Sprite coding idea has been

the foreground/background segmentation of the video sequence to be coded. During the

MPEG-4 standardization, it was assumed that the segmentation was performed before-

hand. In this work, we design an in-built automatic object segmentation in a Sprite coding

environment. We use the MPEG-4 Sprite coding technique as well as a new model-based

video coding scheme based on the Sprite coding idea with use of H.264/AVC.

4.1 Introduction

Sprite coding has been established almost a decade ago. It was developed within the MPEG-

4 activities dealing with object-based video coding approaches. The general idea is to

segment the input sequence into foreground and background objectes. The background

object is generated by aligning all images of a certain number of frames to one larger

sized image. This image is called background Sprite. The aligned images are blended

together such that all moving foreground objects are removed. On the other hand, there is

the foreground objects sequence. Both foreground and background objects are then coded

separately. At the decoder, the background frames are reconstructed from the Sprite and

merged with the foreground objects to build the orignial video sequence. Figure 4.1 shows a

simplified Sprite coding scheme. In [14] Sprite coding within MPEG-4 is described in more

detail. The motivation for pursuing this approach has been outlined in [67]. Here, the Sprite

coding idea is taken into account to design a model-based coding scheme with automatic

in-built object segmentation.

Over the last years the whole processing chain of this approach has been researched

comprehensively. The two main pre-processing techniques are global motion estimation and

Sprite generation. Very early techniques in this field can be found in [20], [50], [7], and [5].
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Figure 4.1: Simplified Sprite coding scheme

Further work on improved global motion estimation and Sprite generation algorithms have

been published in [70], [8], [22], [46], [4], [24], [18], and [11].

The goal of this work is to build a complete video coding system based on these earlier

works. This video coding system based on the Sprite coding idea is designed towards more

general usability. Having the enhanced GME-algorithm of Chapter 2 and the improved

object segmentation algorithm of Chapter 3, it is possible to tackle the important object

segmentation issue. Towards a more practical Sprite codec, it would be very useful if this

part can be performed “in-built”. It has been shown in [48] and [12] that it is possible to

use the already calculated pre-processing techniques, GME and Sprite generation, for an

automatic segmentation. Based on these works, improved automatic object segmentation

algorithms have been proposed in [36], [30]. In [33], these methods are evaluated within

a real video coding environment. The pre-processing with in-built object segmentation

produces the Sprite-based data representation. For coding, the MPEG-4 Visual reference

codec has been used. As a result, the automatic object segmentation algorithms perform

very good in comparison to groundtruth masks for the considered test sequences.

Thus, we are able to perform an “in-built” object segmentation using global motion esti-

mation and the background Sprites already generated. Considering the latest standardized

hybrid video codec, H.264/AVC [90], our goal is to find a way to improve the coding effi-

ciency of this codec using the Sprite-based representation. For that, we apply our enhanced

pre-processing techniques including the “in-built” object segmentation first. Having the seg-

mented video data, we use the reference H.264/AVC encoder to code all the segments of the

video and multiplex the streams together to one bitstream. At the decoder, the bitstream is

demultiplexed, decoded and the segments are then merged together to the original video. It
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Figure 4.2: MPEG-4 Sprite coding using in-built object segmentation

Sequence Source Resolution Frames FPS [Hz]

Allstars ZDF (German TV (Channel 2)) 352× 288 250 25

BBC-Pan12 BBC (Docu. Planet Earth) 720× 576 185 25

BBC-Pan13 BBC (Docu. Planet Earth) 720× 576 110 25

Biathlon ARD (German TV (Channel 1)) 352× 288 200 25

Mountain BBC (Docu. Planet Earth) 352× 192 100 25

Stefan MPEG 352× 240 300 30

Table 4.1: Test sequences used for comparison of MPEG-4 Visual Sprite coding using various

automatic foreground object segmentation approaches.

has been shown in [26] and [41] and [39], where the design of this approach was developed in

collaboration, that this approach significantly improves the common use of H.264/AVC for

single- and multi-view. In this chapter, we would like to describe this enhanced Sprite-based

video codec using H.264/AVC in more detail. Comprehensive experiments show the very

good performance of our improved model-based coding scheme.

4.2 Automatic Sprite Coding within MPEG-4

The Sprite coding part in MPEG-4 Part 2 Visual was developed for an object-based represen-

tation of the input video using background Sprites. Our automatic segmentation algorithms

are mainly developed for this coding purpose. Therefore, we would like to evaluate these

algorithms in a real object-based coding environment. For that, we use our pre-processing

algorithms and connect them to the MPEG-4 codec. This is visualized in Fig. 4.2. We use

the global motion estimation and Sprite generation techniques developed in Chapter 2 and

the object segmentation algorithms from Chapter 3. Thus, the MPEG-4 codec is fed with

the foreground objects sequence, the foreground object mask obtained automatically using

our algorithms, the background Sprite image and the motion parameters. The output is a

coded file and an already decoded and reconstructed version of the input video.
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(a) Single Sprite for “BBC-Pan13” (b) Multiple Sprite 3/4 for

“Biathlon”

(c) Single Sprite for “Mountain”

(d) Multiple Sprite 1/3 for “Stefan”

(e) Single Sprite for “BBC-Pan12”

(f) Single Sprite for “Allstars”

Figure 4.3: Examples of background Sprite images generated using the approaches from

Chapter 2.
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Figure 4.4: Comparison of rate-distortion performance for coding using MPEG-4 Visual

ASP with Sprite coding (MP) applying different types of segmentation algorithms.

4.2.1 Intrinsic evaluation of automatic object segmentation algorithms

For the experimental evaluation, we considered six test sequences that are listed in Table

4.1. First, background Sprite images have been generated for all test sequences using the

approaches presented in Chapter 2. However, multiple Sprites have only been generated for

“Biathlon” and “Stefan”, since the camera pan in all other sequences is too narrow to make

this necessary. In the multiple Sprites case, the sequence “Biathlon” is divided into four

partitions (frames 0 to 9, 10 to 22, 23 to 46, and 47 to 199) and “Stefan” is divided into

three partitions (frames 0 to 244, 245 to 261, and 262 to 299). Examples of background

Sprite images are depicted in Fig. 4.3.

Segmentation has been performed using all test sequences from Table 4.1 and all given al-

gorithms described in Chapter 3, i.e. Algorithm1 based on short-term global motion compen-

sation, Algorithm2 based on background subtraction using single and multiple Sprites, and

Algorithm3 based on background subtraction using local background Sprite modeling. Ad-

ditionally, for the sequences “Biathlon” and “Stefan”, groundtruth masks for the foreground

objects were available. Therefore, we also used these as an ideal segmentation case for Sprite
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Figure 4.5: Comparison of rate-distortion performance for coding using MPEG-4 Visual ASP

with Sprite coding (MP) applying different types of background Sprites and segmentation

algorithms.

coding to evaluate the influence of correct segmentation in terms of coding performance. The

sequences were coded using the Sprite coding approach presented in the previous section.

The MPEG-4 Visual reference coder software MoMuSys (Mobile Multimedia Systems) has

been used applying the Main Profile (MP) for Sprite coding. Additionally, all sequences

were coded as one rectangular video object using the Advanced Simple Profile (ASP) for

comparison. The quantization parameter (QP) has been kept constant (QPbg = 14) for the

background model for all test sequences. The foreground object sequences have been coded

using one of several quantization parameters, i.e. QPfg ∈ {7, 10, 14, 21, 28, 31}, as is the case

for the ASP. It has to be stated explicitly that the choice of QPbg is purely random, i.e.

no optimization in terms of setting the best combination of QPbg and QPfg has been done.

The prediction structure has been set to IPPP with a GOP size of 16 for Sprite coding as

well as for the ASP to ensure comparability. Quarter-pel motion vector accuracy has as well

been enabled for both profiles.

Fig. 4.4 and 4.5 show rate-distortion results for all test sequences used. It can be

seen in all curves that the segmentation approach Algorithm3, i.e. segmentation based on
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background subtraction using local background Sprites, outperforms all other segmentation

techniques. Additionally, when multiple background Sprites are used (cf. Fig. 4.5(a) and

Fig. 4.5(c)), the performance is better than compared to using one single background Sprite

image as a model.

For the sequence “BBC-Pan12” (cf. 4.4(b)), the Sprite coding approach performs worse

than coding the sequence using MPEG-4 ASP. This can be explained with the content of

the sequence. It shows a group of monkeys wading through water, which is moving and

takes a large part of the video frame. Dynamic textures, e.g. water, have to be assumed as

foreground objects in a video, since their movement differs from the global motion. Such a

dynamic texture cannot be modeled correctly by a static background Sprite. However, all

segmentation approaches presented in this work define the water as background. Therefore,

the decoded video frames differ strongly from the original sequence in these parts after

reconstruction of background Sprite image and foreground object sequence. This results

in a lower PSNR compared to MPEG-4 ASP, which correctly reconstructs the dynamic

texture.

In Fig. 4.4(c), the rate-distortion curves for the test sequence “BBC-Pan13” are shown.

Here, no curve for coding the sequence with the MPEG-4 ASP is depicted, since the bit

rate needed for coding this sequence using the ASP is in the range of about 800 kbit/s to

1200 kbit/s, depending on the coarseness of quantization. The reason for the low bit rate

range when using Sprite coding compared to the ASP is the content of the sequence. The

foreground objects, i.e. a group of flying birds, are very small. Therefore, the background

model already shows nearly the complete sequence. In other words, the bit rate needed for

coding the foreground object sequence is only 1-2 times the bit rate needed for coding the

background model. E.g. for the sequence “Allstars”, the bit rate for the foreground object

sequence is 3-11 times higher than that needed for the background model, depending on

the combination of quantization and segmentation approach. Therefore, the “BBC-Pan13”

sequence is an excellent example of the capabilities of the Sprite coding principle.

The usage of a single background Sprite image for the sequence “Biathlon” (cf. 4.5(a))

did not perform as well as expected. It turned out that the generation of the background

model introduced some errors. This can also be explained with the content of the sequence.

Fig. 4.3(b) shows one of its multiple Sprites, which gives an impression of its content. Most

part of it is snow, i.e. homogeneous content. In background Sprite generation, long-term

motion compensation is performed. This means that a mapping of pixel content between

temporally remote frames has to be done. This is challenging when large homogeneous

areas are present and may lead to bad results, as is the case here. Additionally, the camera

moves very fast, which makes background Sprite image generation even harder. Due to

these problems, the quality of the background model for this sequence is not very good,

which leads to a bad rate-distortion performance.
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For Algorithm3, up to 1.4 dB PSNR-gain has been achieved compared to the competing

segmentation algorithms. For the sequences where groundtruth is available, Algorithm3

even outperforms the groundtruth-mask in the upper bit rate range. We thus can say that

we have found a nearly optimal automatic object segmentation method for this kind of

coding approach.
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Figure 4.6: Automatic Sprite coding system using H.264/AVC

4.3 Automatic Sprite Coding using H.264/AVC

The basic idea of this coding approach is to transfer the input video sequence into foreground

and background parts before encoding. A block chart of the Automatic Sprite coding

approach using H.264/AVC is given in Fig. 4.6. The H.264/AVC encoder is treated as a

black box. The coding process of each of the data segments is described next in more detail.

4.3.1 Texture and Binary Mask Coding

The textures of the Sprite and the foreground objects are independently coded using H.264/

AVC. We used the reference software JSVM version 9.1. To efficiently code the foreground,

the objects are expanded to fit to macroblock structure. We applied coding in a hierarchical

B picture scheme IbBb... with a GOP length of 15 frames [62]. The Sprite itself is coded

as I picture. The binary mask coding scheme uses the binary arithmetic coder “M-Coder”,

which is specified in the H.264/AVC standard. Eight contexts are initialized to model 8
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possible spatial states for every pixel to code as shown in Fig. 4.7. In advance to the

coding, the mask is divided into 16x16 blocks. The transformation parameters are coded as

four frame corner point correspondences using 3 bytes per corner point and build the side

information.

PSfrag replacements

a

b c

x
ctx(x) = a · 20 + b · 21 + c · 22

Figure 4.7: Context assignment for bit(x) in Binary Mask Coding

4.3.2 Applying blocks on the segmented foreground objects

Having the segmented foreground objects sequence, we would like to use the common

H.264/AVC standard for coding. Because of the block-based hybrid video coding approach,

it is useful to lay a 16x16 block grid over a foreground objects frame. Figure 4.8 shows two

examples. Block grids have two advantages. Firstly, due to the automatic segmentation,

errors can occur in foreground objects. We apply the blocks in the way that every block

which contains pixels from the foreground is declared as foreground. This means that falsely

segmented regions of the foreground objects appear again. Secondly, this approach prevents

losing coding efficiency because a block is either background and contains only zeros or it

is foreground. We have no blocks which contain both, background (zeros) and foreground

pixels. This would lead to additonal cost in bit rate because of the high-frequency edge.

A disadvantage of this approach is that falsely segmented background regions (background

is segmented as foreground) increases and the coding performance of the OBVC decreases.

Therefore, it is still very important to have a very accurate segmentation algorithm as a

pre-processing step.

4.3.3 Experimental comparison of OBVC against common use of

H.264/AVC

We evaluate the overall coding performance of the automatic Sprite codec called “OBVC”.

For that, we use a test data set of 8 video sequences of different genres, characteristics and

resolution. The test data set is depicted in Tab. 4.2.

We only compare the OBVC with H.264/AVC because it is well-known that the advanced

coding tools of H.264/AVC significantly outperform the MPEG-4 Part 2 Visual. We use

H.264/AVC inside the OBVC and we would like to show if it is possible that we outperform

the common hybrid encoder using our object-based representation including the automatic

object segmentation. For the experiments, the latest developed and evaluated object seg-

mentation is used. As already mentioned, we consider an objective quality measurement,
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Figure 4.8: Generation of blocked foreground objects

Table 4.2: Test video sequences

Sequence Source Resolution Frames FPS [Hz]

“Allstars” (cif) ZDF (German TV (Channel 2)) 352× 288 250 25

“Allstars” ZDF (German TV (Channel 2)) 704× 576 250 25

“Biathlon” ARD (German TV (Channel 1)) 352× 288 200 25

“Entertainment” VCEG 352× 288 250 25

“Mountain” BBC (Docu. Planet Earth) 352× 192 100 25

“Race1” MPEG 544× 336 100 25

“Stefan” MPEG 352× 240 300 25

“Tempete” VCEG 352× 288 260 25

the very common peak signal-to-noise ratio (PSNR). For the H.264/AVC codec, we use the

reference software JSVM v.9.1. The encoder settings are hierarchical B-frames for the pre-

diction and the GOP-size is 15 frames. For the calculation of the bit rate, we assume a frame

rate of 25 frames/s. To set up a fair comparison, we keep these settings fix for encoding the

whole video sequence as well as encoding the foreground objects sequence in the OBVC.

We take all eight test sequences into acount for this evaluation. The rate-distortion curves

for all sequences are shown in Fig. 4.9-4.10. It can be seen that the OBVC obtains higher

coding gain in comparison to common use of H.264/AVC for all sequences. We achieve bit

rate savings up to 50 %. It is also obvious that the coding efficiency of our coding approach

increases with the resolution of the test sequences. This means that the OBVC is able

to encode higher resolution of certain video sequences at lower bit rates, which makes it

suitable e.g. for internet applications.
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Figure 4.9: Rate-distortion curves comparing OBVC and H.264/AVC (1)

4.4 Extension to multi-view video: Automatic Sprite Coding

using MVC

The model-based coding approach described and evaluated in the previous sections can

be simply extended to the multi-view case. For that, a set of n views from the multi-

view video data has been handled separately in the pre-processing, i.e. the global motion

estimation, Sprite generation and automatic object segmentation. A simplified schematic of

the proposed automatic Sprite coder using MVC is shown in Fig. 4.11. Figure 4.13 shows

the coding structure for the multi-view background Sprites. The Sprites for each view and

the associated foreground objects sequences are coded using a multi-view prediction scheme

shown in Fig. 4.12. Here, an IbBb... frame structure is used with GOP = 15. Although,

Fig. 4.12 shows the scheme for only two-views, it can be extended to more views easily.

For the first experimental results, we now add the second view of the “Race1” sequence

to evaluate our approach for two views. The same coding settings as for the single-view case

were applied using the MVC. Figure 4.14 (a) shows the coding results. It can be seen that

our codec performs better than the common use of the MVC. The Sprite sequence contains
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Figure 4.10: Rate-distortion curves comparing OBVC and H.264/AVC (2)

two frames of Sprites, which are coded predictively and yield a higher coding gain. Thus, we

have a better performance in the higher quality curve in comparison to the single-view case.

To evaluate the subjective improvement of the coded video content, two examples are shown

below. Figures 4.15 (a) and (b) shows the comparison of the sequence “Race1 view 1” coded

with the object-based coder and MVC. The frames show the difference in quality between

the background objects reconstructed using two coding approaches. It can be observed

that the lower the bit rate, the higher are the artifacts in the MVC. The background,

reconstructed from the Sprites, is almost free of these errors. This result illustrates one of

the key advantages of the Sprite coding approach. Furthermore, Fig. 4.15 (c)-(e) show a

zoom-in of an example frame, which shows the foreground object. It can be seen that even

the object sequence is reconstructed with a better quality than using the MVC. Thus, the

object based approach significantly outperforms common hybrid codecs for the considered

test sequences in both objective and subjective performance assessment.
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Figure 4.12: Multi-View Prediction Scheme for the foreground object sequence (GOP = 15)

4.4.1 Multiple Multi-view Sprite Prediction

Now we consider the case when more than only one background Sprite containing all the

background information of the sequence is used. The advantage is, as described above, that if

there is a wide camera pan during the sequence a single background Sprite becomes also very

large. Applying a multiple Sprite results in smaller background Sprites, which reduces the

bit rate. Furthermore, multiple Sprites provide more accurately reconstructed background

frames because of smaller distortions at the border of the Sprite. Additionally, we will

show that multiple background Sprites are also advantageous if more than one direction of

a camera pan appears during the sequence considered (e.g. “Race1”). Using single Sprites,

we approached in the previous section the single background Sprites of each view as a video

sequence. Having multiple Sprites, we now can use common prediction schemes inlcuded in

MVC to code the background Sprites over the views and along the single sequence.
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Figure 4.13: Coding structure of a Multi-view background Sprite sequence, “Race1”

The coding performance was examined of the single- and multiple Sprite generation

methods. For multiple Sprites, we used the generation technique using the estimation of the

real pan angle and camera motion characterization (CMC) introduced in Chapter 2. We

coded the different background Sprites and produced a rate-distortion comparison. In Fig.

4.14 (b) the curves are drawn for the multi-view case. As expected from the direct PSNR-

value comparison we achieve much higher coding performance using the new multiple Sprite

generation technique based on CMC. Overall, we can state that using multiple multi-view

Sprite prediction improves the coding behavior compared to the technique, which uses a

single multi-view Sprite prediction.

4.4.2 Outlook towards the enhanced OBMVC

Having the mutiple multi-view Sprite prediction scheme we can outlook towards an enhanced

OBMVC. Figure 4.16 shows the block diagram using the new features described above. We

can say that a significant coding improvement will be expected in comparison to the object-

based MVC described in this work. An experimental evaluation of that is the first future

task when pursuing in this area.

4.5 Chapter summary and outlook

We have presented an object-based video coding system using background Sprites. The main

difference, compared to previous work in this field, is the automatic in-built object segme-
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Figure 4.14: OBMVC coding and Multiple multi-view Sprite prediction results

nation and encoding the object-based represented video data with H.264/AVC. Beside this,

we have shown the performance of new advanced automatic object segmentation algorithms

in sequences with higher-order camera motion including fast pan and strong zoom. We eval-

uated these algorithms in a real coding environment using the MPEG-4 Visual Main Profile

encoder. It has been shown that the performance of the automatic object segmentation

algorithms is very close or equal to the manually segmented ground truth object represen-

tation with the considered test sequences. Furthermore, we have used the latest developed

object segmentation algorithm and an enhanced multiple background Sprite generation al-

gorithm as pre-processing for the automatic Sprite codec using H.264/AVC (OBVC). We

compared the OBVC with H.264/AVC using a number of different test sequences and it can

be seen that for a certain bit rate range, the OBVC outperforms H.264/AVC up to 50 %.

It is also obvious that the encoder of the OBVC has several new settings, e.g. the choice of

the QP of the background Sprite and the QP of the foreground object sequence. A next

step would be finding an optimal setting of these parameters in a rate-distortion sense. Due

to a possible different behavior of this coding approach, it is necessary to design a new

optimization method, which is the biggest task and will be discussed in the next chapter.

Further, we have extended our model-based coding approach to the multi-view case. It has

been shown that having a set of views, where background Sprites are suitable, siginificant

coding gain can be achieved due to the enhanced prediction using the Sprites connected

with the MVC. It has also been indicated that using enhanced Sprite generation techniques,

such as multiple Sprites, further enhanced prediction schemes are possible to bring even

more coding performance. The task for future work will be further investigation how this

enhanced long-term prediction method can increase the coding efficiency of a multi-view

video either with a Sprite representation or other new approaches.
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(a) MVC (98 kbit/s) (b) OBMVC (97 kbit/s)

(c) original (d) MVC (98 kbit/s) (e) OBMVC (97 kbit/s)

Figure 4.15: Subjective comparison of decoded test video “Race1 view 1” (Click on the full

images while using Adobe Reader)

(a) Encoder

(b) Decoder

Figure 4.16: Object-based Multi-View Video Codec using Multiple Sprites



Chapter 5

Rate-Distortion optimized
Automatic Sprite Coding

5.1 Introduction

As already mentioned in the previous chapter, Sprite coding was developed within the

MPEG-4 activities dealing with object-based video coding approaches. In [14] Sprite coding

within MPEG-4 is described in more detail. The motivation for pursuing this approach has

been outlined in [67] and in this work. Automatic Sprite coding has been introduced recently

as an extension of the latest video coding standard H.264/AVC [26], [41], [35]. It has been

shown that for a certain kind of video sequences, it is possible to outperform the hybrid

video coding approach up to 50% in bit rate savings. In our approach, we consider the

H.264/AVC-encoder as a black box. The video content is pre-processed in a way that all

the background information of a number of consecutive frames of the input video is aligned

into one single image, which is called background Sprite. The remaining foreground objects

are segmented automatically and stored in a separate video file. For this, background

subtraction algorithms are applied where the already generate background Sprite is used as

a background model for all frames of the sequence considered [36], [31]. This is the main

novelty in comparison to Sprite coding in MPEG-4 where the segmentation mask of the

objects were treated as given. We code the different objects, the foreground object sequence

and the background Sprite image, using H.264/AVC independently.

At the decoder, the background sequence is reconstructed from the decoded background

Sprite image and the original video sequence is generated by merging the background frames

sequence and the foreground object sequence. As mentioned above, both parts are coded

separatly using H.264/AVC. This means also that each of them are encoded with the op-

timized coding parameters set by the in-built rate-distortion optimization of the encoder.

Our goal now is to examine the optimization of the whole automatic Sprite codec (OBVC)

introduced in the previous chapter. The behavior of the OBVC is different in comparison

to common hybid codecs because of several issues, e.g. coding the background pixels in-

side a background Sprite but measure the quality of reconstructed background frames and
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varying the in-built object segmentation parameters. We discuss how these parameters of

the OBVC can be set optimally in a rate-distortion sense. There is a number of work done

here concerning rate control of object-based coding. However, all this related work refers to

the MPEG-4 object-based approach and the use of background Sprites were not considered

[51], [56]. Our approach is closer to the H.264/AVC-encoder. Therefore, we consider the

optimization techniques used for hybrid video codecs.

A lot of work has been done in rate-distortion optimization of video codecs. For a hybrid

video encoder, the state-of-the-art approach is an optimization using the Lagrangian cost

function. The principle is to minimize the function J(I|X,λ):

J(I|X,λ) = D(I|X) + λR(I|X), (5.1)

where D is the distortion of the input signal after encoding and decoding and R is the

allocated bit rate. The variable I stands for the input signal (row of images), X includes

the encoding parameters and λ is the Lagrangian multiplier. It has been shown that the

prediction modes including the costs of motion estimation are optimzed, both at macroblock

level. A block chart of a hybrid video codec including rate control at the encoder is shown

in Fig. 5.1.

Figure 5.1: Hybrid Video Coder including rate-distortion optimization [77]

A comprehensive description and evaluation has been published in [76] and [86]. Using

this method, a critical point is to assign the Lagrangian parameter λ. In [76] a relationship

between λ and the quantization parameter QP was found experimentally:
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λ = 0.85 ·QP2 (5.2)

which was further examined in [85]. A theoretical approximation, which lead to this rela-

tionship has been also shown [76] and [85]. Furthermore, Equation 5.2 is valid for H.263 and

MPEG-4. The same experiment was examined for the latest hybrid video coding standard,

H.264/AVC. Here, the relationship between λ and QP is [86]:

λ = 0.85 · 2QP−12
3 (5.3)

Based on these investigations, we take into account the issue of encoder optimization using

the Lagrangian approach for the OBVC introduced in the previous chapter. As already

mentioned, the OBVC encoder has different behavior in comparison to a common hybrid

video encoder. Therefore, we have to re-design the optimization process for our purpose.

This chapter is organized as follows. In Section 5.2 the Lagrangian rate-distorion optimiza-

tion approach is described in more detail. Especially, assigning the Lagrangian multiplier

is discussed. Section 5.3 includes the optimization method applied to our coding approach.

Experimental results are shown in Section 5.4 and the last section gives an outlook to further

steps, which can be investigated in this issue.

5.2 Rate-Distortion Optimization for Hybrid Video Coding

The Lagrangian cost function for optimal allocation of bits was firstly introduced in [64].

Applying this technique for video coding was shown in e.g. [75], [89], [76], and [86]. Until

today, it has become “state-of-the-art” for optimizing encoder parameter settings in hybrid

video encoders, such as the optimal choice of prediction modes and motion estimation. A

brief insight is provided into the technique to set up the next section.

For choosing the optimal mode for each macroblock, a Lagrangian cost function Jmode is

minimized [86]:

Jmode(Sk, Ik|Q,λmode) = DREC(Sk, Ik|Q) + λmodeRREC(Sk, Ik|Q), (5.4)

where Sk are the macroblocks, Ik are the coding modes, Q is the quantization paramter,

DREC is the distortion, RREC is the rate after entropy encoding, and λmode is the Lagrangian

multiplier. For the distortion measurement, the sum of squared difference (SSD) is used.

Refering to [86], possible coding modes for different video coding standards are e.g.:

• MPEG-2 : INTRA, SKIP, INTER-16x16

• H.263 and MPEG-4 : INTRA, SKIP, INTER-16x16, INTER-8x8
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• H.264/AVC : INTRA-4x4, INTRA-16x16, SKIP, INTER-16x16, INTER-16x8, INTER-

8x16, INTER-8x8

The same approach is also applied to motion estimation. Here, another Lagrangian

cost function is examined regarding to motion estimation type (pixel accuracy, half-pixel

accuracy, quarter-pixel accuracy). The critical point of optimizing a constrained problem

using the Langrangian cost function is the right choice of assigning the multiplier λ. In

[76] and [85], a theoretical derivation has been given of a relationship between λ and the

quantization parameter Q. The first derivative of the Lagrangian function

J(R) = D + λR, (5.5)

has to be calculated and set to zero to find the optimal λ:

dJ(R)

dR
=
dD

dR
+ λ = 0, (5.6)

which results in the well-known equation:

λ = −dD
dR

. (5.7)

This means that the optimal Lagrangian multiplier λ is the slope of the distortion-rate

function. Now, a typical high-rate approximation function for entropy-contrained scalar

quantization can be assumend as:

R(D) = a log2

(
b

D

)
. (5.8)

The parameters a and b define the relationship between rate and distortion. For the

distortion-quantizer function, it is assumed that at sufficiently high rates, the source prob-

ability distribution can be approximated as uniform within each quantizer interval. The

function can be written as:

D(Q) =
Q2

3
. (5.9)

Having this distortion-quantizer function, a rate-quatizer function can be assembled by

inserting Equ. 5.8 in 5.9:

R(Q) = a log2

(
3b

Q2

)
. (5.10)

There are two functions of distortion D and rate R, which are a function of the quantizer Q.

We have the relation between λ, D, and R, so we calculate the derivatives of both functions:
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dD(Q)

dR(Q)
=

(
Q2

3

)′
(
a log2

(
3b
Q2

))′ =
2Q
3
−2a
Q ln(2)

=
ln(2)

3a
Q2, (5.11)

with

(
a log2

(
3b

Q2

))′
= a

(
3b

Q2

)′
·
(

log2

(
3b

Q2

))′
=

(
− 6b

Q3

)
·
(

Q2

ln(2)3b

)
=
−2a

Q ln(2)
. (5.12)

To this end, we have the relationship between the Lagrangian multiplier and the quantizer

value:

λ = −dD
dR

=
ln(2)

3a
Q2, (5.13)

where ln(2)
3a is set to the parameter c. This parameter was experimentally assigned to 0.85 for

H.263, MPEG-4 and H.264/AVC, where for H.264/AVC the relation of λ and the quantizer

value is different (shown in Equ. 5.2) due to a different assumption for the distortion-

quantizer relation (D ≈ 2
Q−3
12 instead of D ≈ Q2 for H.263 and MPEG-4).

This brief overview sets up the next section, where we consider our Sprite-based coding

approach for optimizing the encoder.

5.3 Rate-Distortion optimization for OBVC

This section describes the approach for optimizing the object-based video codec using Sprites

(OBVC). We start with a general overview to define the problem. Afterwards, the method

developed is applied to encode the foreground and background objects in an optimal way.

Comprehensive experimental results are conducted to prove this approach, which are shown

in the next section.

5.3.1 General approach

We design the rate-distortion optimization for our object-based codec using background

Sprites. It has been outlined in the previous section that optimization using the Lagrangian

cost function is very suitable for optimizing video encoders with a set of parameters. Our

basic coding approach is to merge the impact of background Sprite representation and the

powerful encoding tools of the latest video coding standard H.264/AVC. First, we apply

enhanced global motion estimation and background Sprite generation techniques as a pre-

processing step. We use the results for an in-built automatic object segmentation to extract

the foreground objects from the input sequence considered. This is necessary because in the

final background Sprite image, only pixels which correspond to the background are stored.

We then have the following data representation:
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• Background Sprite image (contains all background information of the input sequence)

• Foreground objects sequence (contains only the foreground objects of the input se-

quence)

• Foreground/Background mask sequence (automatically generated during the pre-processing;

needed for the decoder)

• Higher-order long-term motion parameters (side information; control the warping pro-

cess of images into and out of the background Sprite)

All these items are coded separately. The background Sprite image and the foreground

objects sequence are coded using the H.264/AVC encoder. Here, the Sprite image is con-

sidered as a video sequence with one frame and coded as an intra frame. It is also possible

to code the background Sprite image with other image encoders, e.g. JPEG or JPEG2000.

However, we keep encoding with H.264/AVC to be uniform. Furthermore, the motivation

of our coding approach is to be an extension of H.264/AVC. The mask sequence is coded by

using a binary mask encoder [6]. We do not encode the higher-order motion parameters at

this stage. For the bit rate calculation, we reserve 4.8 kbits/s for transmitting these motion

parameters (we assume 3 byte per parameter → 8 parameter per frame → 24 byte/frame

with 25 frames/s → 4.8 kbit/s.).

After encoding, we multiplex all bit streams together and the final encoded file results.

We emphasize that we treat the H.264/AVC-encoders as black boxes. The mean QP-value is

the parameter which is set from outside. All others are kept fix. For the prediction scheme,

we use hierarchical B-frames to achieve the best coding performance [62].

Bit streamU
X

H.264/AVC

H.264/AVC

QP

QP

Binary Mask
Encoder

Control
Encoder

Sprite

Generation

GME

Algorithm

Local Sprite
Generation

Object
Segmentation

FG

BG

Object−based

Decoder

Input
Video

Side Information

Encoded Sprite Image(s)

Encoded Foreground Object Sequence

Encoded Foreground/Background Masks

M

Figure 5.2: Rate-distortion optimized OBVC

Having this set up, we consider our approach as a single video encoder. We have two

coding parameters, two QP-values of the foreground objects sequence and the background
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Sprite. The question is how the encoder can set these QP-values optimally. Due to the very

good performance of the approach using the Lagrangian cost function we also take this into

account. The Lagrangian cost function which is to be minimized for our case is:

J(In|(QPfg, QPbg), λfg/bg) = Drec(In|(QPfg, QPbg)) + λfg/bgRrec(In|(QPfg, QPbg)) (5.14)

with the following parameters:

In - Input image sequence (n frames)

QPfg - QP for foreground object sequence

QPbg - QP for background Sprite image

Drec - Distortion between input images and corresponding reconstructed output images

λfg/bg - Lagrange multiplier

Rrec - bit rate of whole encoded image sequence

This means for the encoder that we have to deliver a decoded and reconstructed version of

the input image sequence to the encoder control unit. A block chart is given in Fig. 5.2,

which depicts the encoder of the controlled object-based approach. The difference here in

comparison to previous coder control methods using the Lagrangian approach is that we

apply this on the whole images of the video sequence instead of on macroblock level. There

exist two questions:

1. Can we compare this coding environment with common well-know hybrid encoding?

2. Can we adopt the theoretical derivations made finding the optimal assignment for the

Lagrangian multiplier?

To answer the first question, we have to consider that the foreground object sequence is

coded and evaluated directly. However, the process of coding the background information

is different. We first generate the background Sprite where all background information is

gathered by warping and blending all frames of the considered input sequence into one image.

Then, the background Sprite image is coded and afterwards the background image sequence

is reconstructed from the decoded background Sprite by another inverse warping process.

This means that we transform the background information into another representation, code

it and transform it back. The quality evaluation is then measured on the reconstructed

frames. One of the theoretical assumptions deriving a formula for assigning the Lagrangian

multiplier is the relation between the quantizer value and the distortion of the signal as
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outlined in the previous section. In case of coding the background information using a

Sprite representation, we have no direct relationship between the quantizer of the encoder

and the quality of the reconstructed video signal. Figure 5.3 visualizes this issue regarding

the quantizer and the input signal. If we would compare S and S′ we would have the

common coding environment. However, in our case, I and I ′ is compared to each other.

I’
Blending

Image
Sequence Warping Image

Sprite

Quantizer Warping 
Inverse

Sequence
Reconstructed Image

I S S’

Figure 5.3: Abstracted processing chain for Sprite coding

Therefore, we can say that our coding environment has a different behavior to the com-

mon hybrid video coding approach. This means that we can not rely on the theoretical

assumptions made towards defining the Lagrangian multiplier. However, due to the simi-

larity, the video signal is kind of filtered before quantization and afterwards, we expect an

analog relationship between the Lagrangian multipler and the QP’s.

5.3.2 Lagrange Multiplier Selection for optimal Foreground/Background

Coding

Beside the assumption of the relation between the distortion and the quantizer (Equ. 5.9

for H.263 and MPEG-4) we can not consider the approximation made for a rate-distortion

analytic function (Equ. 5.8) because it is valid for high rates. In our case, we have previously

shown [26], [41] that our approach outperforms the common H.264/AVC-codec at low bit

rates. In this work, objective measurements are used for performance evaluation and due to

the warping, blending and inverse warping process while generating the background Sprite,

the uncoded reconstructed video sequence is not equal to the input video sequence which

produces a max. PSNR-limit. Thus, we would like to optimize our codec especially in

the bit rate ranges where it outperforms common H.264/AVC. This means that we have to

derive the Lagrange multiplier selection completely experimentally like the factor 0.85 was

found for H.263 and MPEG-4 (Equ. 5.2) and the relation for H.264/AVC (Equ. 5.3).

In [76] and [85] a set of λ’s was assigned and the coding behavior as well as the perfor-

mance were measured to find an appropriate value for the constant c in Equ. 5.13. For our

purpose, it has been found that the opposite way is useful.

Considering the computational cost, we define a QPfg-value for the foreground object se-

quence. Then, the background Sprite is coded with different QPbg’s. Analogous to Equ. 5.4,

the differently coded background Sprite images are our “modes”. The sequences are recon-

structed using the differently coded background Sprites and the values for Drec and Rrec are

computed. The MSE (mean-squared-error) of each image pair (original and reconstructed)

is chosen for the value of Drec. The resulting equation is:
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Table 5.1: QP-values chosen for encoding foreground objects and background Sprite

QPfg 24 28 32 36 40 44 48

QPbg 24 28 32 36 40 - -

Drec =
1

MN

∑
M

∑
N

(In − I ′n)2, (5.15)

where In is the original frame, I ′n is the reconstructed frame after object-based decoding, n

is the number of frames of the input sequence, and M × N is the size of the images. Rrec

is the overall rate, which is needed for the whole sequence including the binary mask and

motion parameters. For one fix QPfg, one Drec-Rrec-curve is achieved. Figure 5.4 shows an

example.
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Figure 5.4: D-R-curve for QPfg = 24 connected with several QPBG’s, sequence “Tempete”

We have to find out which point of the D-R-curve is optimal in a rate-distortion sense

regarding our coding environment. It is assumed that for every considered sequence, the

behavior of our codec is similar. For finding the equation for λ, we choose four test se-

quences with different content and genres, i.e. “Allstars”, “Entertainment”, “Race1”, and

“Tempete”. Several coded background Sprites are compounded with each of the QPfg’s. As

mentioned above, the main goal is to optimize our codec in the lower bit rate ranges. That

means, we consider the values from Tab. 5.1 for each of the QP’s .

It has been found experimentally that this setting is most appropriate for our coding

environment. We encode the test sequences with each combination of the QP-values shown
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Table 5.2: Optimal λ-values for each QPfg

QPfg 24 28 32 36 40 44 48

λopt (“Allstars (cif)”) 0.025 0.05 0.1 0.2 0.5 2.25 4.5

λopt (“Entertainment”) 0.05 0.1 0.15 0.25 1.15 2.9 6.75

λopt (“Race1”) 0.01 0.05 0.075 0.1 0.2 2.5 5

λopt (“Tempete”) 0.05 0.1 0.15 0.25 0.75 2 4

above. Figure 5.5 shows the result for the test sequence “Tempete”. Having these points

we obtain for each QPfg a D-R-curve with five samples comes from the differently coded

background Sprites. We can see from Fig. 5.5 that for each QPfg there exists one optimal

point in the rate-distortion sense. Each of these optimal points is marked. Considering the

D-R-curve, the optimal point is chosen and the connected Lagrangian multiplier which leads

to that point is recorded. Table 5.2 shows the optimal λ-value for each QPfg with the four

test sequences considered.

Figure 5.6 shows the λ-QPfg-curve experimentally found. Having these results, we can

find a formula, which is for general use. A polynomial curve fitting technique is applied to

the experimental curve to approximate it. This leads us to the following equation:

λopt(QPfg) = 0.0012 · 2
QPfg−12

3 + 0.2566 (5.16)
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To prove this relationship, a comprehensive experimental evaluation is conducted in the

next section.

5.4 Experimental results

We evaluate the rate-distortion optimization technique derived above using a number of

different test video sequences. As already mentioned, we consider an objective quality

measurement, the very common peak signal-to-noise ratio. For the H.264/AVC codec, we

use the reference software JSVM v.9.1. The encoder settings are hierarchical B-frames for

the prediction and the GOP-size is 15. For the calculation of the bit rate, we assume a

Table 5.3: Test video sequences

Sequence Source Resolution Frames FPS [Hz]

“Allstars” (cif) ZDF (German TV (Channel 2)) 352× 288 250 25

“Allstars” ZDF (German TV (Channel 2)) 704× 576 250 25

“Biathlon” ARD (German TV (Channel 1)) 352× 288 200 25

“Entertainment” VCEG 352× 288 250 25

“Mountain” BBC (Docu. Planet Earth) 352× 192 100 25

“Race1” MPEG 544× 336 100 25

“Stefan” MPEG 352× 240 300 25

“Tempete” VCEG 352× 288 260 25
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Figure 5.7: Results for optimizing OBVC (1)

frame rate of 25 frames/s. To set up a fair comparison, we keep these settings fixed for

encoding the whole video sequence as well as encoding the foreground objects sequence

in the OBVC. Several different kinds of test sequences are taken into account to cover a

wide range of genres and content. Of course, all sequences have complex camera motion

because this is the main feature we tackle with our Sprite-based technique. However, the test

sequences have been chosen from various genres, e.g. sport, documentation, entertainment.

We consider different resolutions to analyze if this impacts the coding performance as well.

Table 5.3 lists the test sequences used. In the first part, it is examined how the optimization

technique works. For that, we first figure, which points from all combinations are picked

up. Then, the optimized curve of the OBVC-encoder is compared to H.264/AVC.

Figures 5.7 and 5.8 show the results for the test sequences considered. For the test se-

quences with CIF/SIF-resolution, the rate-distortion optimization scheme works very good.

Nearly the optimal combination of the foreground and background QP in the rate-distortion

sense are chosen. However, the equation for the assignment of λ works suboptimal on the

test sequences with higher resolution. The reason is that, as descibed earlier in the chapter,

the Lagrangian multiplier is the slope of the rate-distortion curve. For sequences with a
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Figure 5.8: Results for optimizing OBVC (2)

unique resolution, it is possible to find an equation experimentally, which can be applied

for all video material having the same resolution. By increasing the resolution, the spatial

information to code increases as well, which leads to a higher bit rate, while the distortion

changes slightly (compare “Allstars (cif)” and “Allstars”, cf. Fig. 5.7(a) and Fig. 5.7(c)).

This yields a change of the slope of the RD-curve. Therefore, the equation found for the

lower resolution does not apply on the sequences with higher resolution. Thus, new coeffi-

cients have to be found when the OBVC is used for coding sequences with higher resolutions,

which is a big task for future work.

In general, it can be seen that in sequences with spatial detail as well as complex camera

motion including fast pan and strong zoom, the OBVC outperforms common H.264/AVC

up to 50% for the lower bit rate ranges. Another fact is that in higher resolution the bit rate

saving increases as well. This means that the potential of Sprite-based coding techniques

is very high for TV-resolution and even for the next step, HD-TV. A drawback here is the

increasing computational complexity at the encoder during the pre-processing steps (global

motion estimation and background Sprite generation).
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Figure 5.9: Bit rate savings in % of OBVC optimized compared to H.264/AVC (1)

5.4.1 Comparison of optimized OBVC and MPEG-4 Sprite Coding with

automatic object segmentation

Having the OBVC optimized, an interesting experiment is the comparison with the MPEG-

4 Sprite coding technique using the same automatic object segmentation as described in

Chapter 4. We have shown that for certain test sequences the OBVC outperforms the

common use of H.264/AVC significantly. However, H.264/AVC is not designed for an object-

based coding structure. For that, we compare the best configuration of the automatic

MPEG-4 Sprite coding setting, i.e. Algorithm3 for automatic object segmentation (cf.

Chapter 3 and 4) and Multiple Sprites for test sequences “Biathlon” and “Stefan”, with

common use of H.264/AVC and OBVC. Figures 5.11 (a) - (d) show the rate-distortion curves

for four test sequences. It can be seen that the common use of H.264/AVC outperforms the

MPEG-4 Sprite coding technique, except for a small bit rate range of the “Stefan”-sequence.

This experiment substantiates the advanced coding tools of H.264/AVC. However, using the

MPEG-4 object-based coding idea with H.264/AVC brings again a performance gain. To this

end, we can summarize that even for further enhanced coding standards, it will be possible to

outperform the common hybrid video codec using the object-based representation including
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Figure 5.10: Bit rate savings in % of OBVC optimized compared to H.264/AVC (2)

background Sprites.

5.5 Further work

This section draws an overview of other issues, which could be considered regarding the

optimization of the OBVC. We mainly point to the very important pre-processing steps

including background Sprite generation and in-built object segmentation.

5.5.1 Background Sprite Generation

Much research has been done in generating background Sprites from a sequence [70], [12],

[11], [93], [42]. The main goal in each of these works is basically to generate a background

Sprite as accurate as possible to have the highest possible PSNR-value of the reconstructed

scene in comparison to the original. This has led to several approaches ranging from single-,

multiple-, and superresolution background Sprites. The latest development introduces a

superresolution multiple Sprite, which seems to be optimal in the sense of obtaining the

highest PNSR-values for the reconstructed images [94]. Beside the high accuracy of the
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Figure 5.11: Comparison of OBVC (optimized), MPEG-4 Sprite Coding, and common

H.264/AVC

reconstructed frames, only the coding efficiency by encoding the Sprite images has been

considered. The performance of different kinds of background Sprite images is shown in

Fig. 5.12. Here, single-, multiple-, and superresolution Sprites are used within the OBVC.

It can be seen that using the superresolution Sprite, it is possible to outperform H.264/AVC

further to higher bit rate ranges in comparison to the multiple Sprites. However, in lower

bit rate ranges the use of multiple Sprites is more efficient. The reason for this is that the

cost of the higher accuracy of the reconstructed frames from the superresolution Sprite is

the upsampled version of the background Sprite image, i.e. we have more data to encode.

Thus, it is the same optimization problem described and evaluated above. It is possible

to apply the same strategy including the superresolution background Sprite and we expect

that the algorithm will choose the right “mode”, i.e. for higher bit rates the superresolution

and for lower bit rates multiple background Sprites.
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Figure 5.12: Comparison of various kinds of background Sprites within OBVC (“Stefan”)

[39]

5.5.2 In-built object segmentation

The second issue which can be tackled using the optimization approach described above is

the in-built automatic object segmentation. Beside a number of processing steps during the

segmentation algorithm, thresholding is applied for converting the error image to a binary

version. We use the first statistical momentum of the error image after some pre-processing

inlcuding anisotropic filtering. This value can be varied using a tuning constant that weights

the foreground objects more or less. This impacts the amount of pixels considered as

foreground. If the threshold value is higher, less pixels are taken into account as foreground,

which leads to higher coding gain. The drawback is that more artifacts in the real foreground

objects appear. We now take the test sequence “Entertainment” and use a number of

threshold values and apply the whole encoding process. For that, we left “QPbg” fix and

varied only “QPfg” to emphasize the coding behavior of the use of different threshold values.

The RD-curves are depicted in Fig. 5.13. It is obvious that there is the same optimization

problem as above. The higher the PSNR of the threshold value used the higher the bit rate.

This means that we can apply our optimization technique and pick the optimal point of each
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curve, which means of each threshold value. There are two drawbacks. The first drawback

is that we have to encode the entire foreground objects sequence with different “QPfg’s”

and thresholds, which is very time consuming. The second drawback is that towards lower

bit rates higher threshold values would be taken because of the better RD-performance.

This means that for lower bit rates the artifacts in the foreground objects due to under

segmentation would increase. However, in practice it has been found that there are only a

few threshold values which would come in consideration. So the real impact of adjusting

the threshold in a rate-distortion sense is worth a try.

5.6 Chapter Summary

We considered the rate-constraint encoder optimization problem of our automatic Sprite

codec “OBVC”. The well-established Lagrangian optimization method is taken into ac-

count, which has become the de-facto standard for rate-distortion optimization in hybrid

video codecs. This approach was first introduced for common hybrid video codecs. The

issue considered more in detail regarding the “OBVC”-encoder was the right choice of the

“QP” for the foreground object sequence and the “QP” for the background Sprite. Prob-

lems were analyzed first towards the extension of the Lagrangian approach to the “OBVC”.

The outcome was that the very critical issue of choosing the right Lagrangian multiplier

λ cannot be adopted from the derivation of the common hybrid codecs. Due to the com-

plexity of the pre-processing steps during the background Sprite generation, a method for

deriving a relationship between the Lagrangian multiplier λ and the quantization parameter

of the foreground object “QPfg” has been found experimentally. This equation is evaluated

comprehensively. For that, eight test sequences from different genres with different charac-

teristics and resolutions are used to show on one side the performance of the optimization

technique and on the other side the performance of the newly optimized results compared to

H.264/AVC. Overall, the optimization technique works very well. For all sequences nearly
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all optimized point in the rate-distortion sense are chosen by the encoder automatically. In

comparison to H.264/AVC, we can say that we achieve for seven test sequences bit rate

savings up to 60 % and 20 to 30 % as a mean value. We obtain these improvements in lower

bit rate ranges because of the maximum PSNR-limit due to the use of background Sprites.

In the last section, we discussed further issues which can be necessary for the optimization

process of the “OBVC”-encoder. The use of different kinds of background Sprites and

different choices of a threshold value during the in-built object segmentation were mentioned.

We showed that the optimization method described above can be easily extended to these

further problems. This would be the next step for further work.





Chapter 6

Video Content Analysis for
Automatic Sprite Coding

In this chapter, we tackle the problem of general usability of the Sprite-based coding ap-

proach. We have shown that this coding technique outperforms common hybrid video codecs

for certain video sequences, i.e. sequences having a fixed camera and containing small fore-

ground objects and almost static background, e.g. sport broadcast or documentary. The

goal is to design a content-adaptive video codec including an automatic pre-analysis step

to assign the optimal encoding technique depending on the content and camera motion

characteristics. First algorithms are presented in this chapter.

6.1 Introduction

The task is to automatically detect material where the Sprite-based codec can be applied. To

achieve this, the content of the considered video has to be analyzed first. We apply the global

motion estimation algorithm used throughout this thesis to detect the motion of the camera.

The first approach is to use the short-term motion parameters calculated already during

the Sprite generation step for pre-analysis of the video, including shot-boundary detection.

These parameters are also used to build a criterion for choosing the most appropriate video

codec, i.e. either the Sprite-based codec or common H.264/AVC. Every shot is then coded

using the chosen video codec. At the decoder, all shots are decoded and merged to the

original scene. An overview of this content-adaptive video coding system is given in Fig.

6.9.

In a second approach, we will show that the codec selection only relies on the camera

motion of the sequence. We consider the object-based video codec (OBVC) in combination

with H.264/AVC for camera pans and common H.264/AVC for camera motion types where

the OBVC does not work, e.g. camera track. Two algorithms are presented and compared

for recognizing the camera motion type. The sequence is then segmented into sub-segments

relying on the several motion types. A first technique uses the frame-by-frame global motion
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compensated error values RMSE (root mean square error) as the input data. Using the

eight-parameter perspective motion model [55], camera motion, such as pan, tilt, zoom,

rotation, can be estimated very well. This leads to small RMSE-values in the global motion

compensated error frames. Having the threshold based on the variance on the RMSE-curve

calculated, the video is segmented into two segments for Sprite coding mode (RMSE-values

below the threshold) and H.264/AVC mode (RMSE-values above or equal the threshold).

The second technique relies on feature tracking and motion model selection. Here, the

camera track is recognized using the Geometric Robust Information Criterion (GRIC) [82].

Assuming, that the camera is tracked, this sub-sequence is coded with the H.264/AVC

mode. All other sub-sequences are coded with the Sprite coding mode. We will show that

this codec selection based on the camera motion outperforms the coding performance of

using the H.264/AVC for the whole sequence.

6.2 Low-level Content-Analysis using Global Motion Estima-

tion

Part of this section has been developed together with [59].

6.2.1 A hybrid shot boundary detection method using GME

Figure 6.1: Block diagram of the SBD and shot classification stages

The first step in the process is to apply the global motion estimation algorithm over the

input video sequence. The outputs required from this algorithm to face the automatic shot

boundary detection (SBD) and the shot analysis are the RMSE curve computed for each two

frames after the motion estimation and the estimated global motion vector for the whole

sequence. Firstly, the SBD process is carried out in order to determine the transitions
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between shots within the sequence. Concretely, the developed technique for SBD is able

to detect both abrupt transitions (or hard cuts, HCs) and gradual transitions (GTs, such

as wipes, dissolves and fades). Once the frames, where the shot transitions take place,

are found, these shots are segmented from the video sequence and analyzed separately.

Specifically, this analysis tries to classify the shots into wide angle shots, which are shots

captured from a considerable distance to the scene, and close angle shots, in which the

foreground objects occlude a large part of the background.

The SBD process starts with the detection of the HCs. The motion discontinuity which

takes place between two adjacent shots when a HC occurs is reflected in the RMSE curve

as a sharp peak. In order to reliably detect those peaks, an adaptive threshold technique,

based on the approach presented in [83], is applied over the RMSE time series. Concretely,

this thresholding method is based on the use of a sliding symmetric window of size 2w − 1,

which progressively covers the whole curve. Therefore, the sliding window is located in

each RMSE value, and two conditions are analyzed in order to decide whether the value

concerns a HC or not. Firstly, the current RMSE value must be the local maximum within

the window. Secondly, the current value must be a number of n times greater than the

mean of the remaining values of the window. The mathematical expression is the following,

where r is the current RMSE value and c is a constant added both to the mean and the

current RMSE value to make the algorithm robust against situations when the mean is

approximately zero and the threshold can be too low:

ri + c ≥ n ·
∑i+w−1

j=i−w+1(rj + c)

2w − 1

It is worth noting that the parameter w, which determines the size of the window, must be

smaller than the minimum distance between two shot transitions. Moreover, when a HC is

declared, it is not necessary to check the following discontinuity values which where within

the window, because these values are not maximums and do not satisfy the first condition.

Thus, the following discontinuity value to analyze should be the next value immediately to

the end of the previous window.

After this step, a previous set of frames corresponding to possible HCs is obtained. In

order to remove false detections which can be declared as HCs, a refinement process is applied

based on the color histogram difference [44]. Concretely, for each possible HC detected after

the thresholding, the two previous frames and the following to the frame where the HC

has been found are taken. Then, the color histogram difference is computed for the last

frame of the existing shot (the immediately previous to the location of the detected HC)

and first frame of the entering one (the following frame to the detected location for the HC),

obtaining color histogram difference (CHD) 1 CHD1. The same value is calculated for the

two immediately previous frames to the HC, getting CHD2. The color histogram differences

are computed using the following expression, where pi(r, g, b) is the number of pixels of color
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(r, g, b) in the frame Ii of the video sequence. N is the total number of pixels of the frames

of the sequence and B is a value (generally 2 or 3) used to discretize all the colors to 2B

different values, thus r, g, b ∈ [0, 2B − 1], in order to reduce the influence of noise and light

changes in the results.

CHD =
1

N
·

2B−1∑
r=0

2B−1∑
g=0

2B−1∑
b=0

|p1(r, g, b)− p2(r, g, b)|

If the detected HC is actually an abrupt transition, CHD1 should be much larger than

CHD2, taking into account the color distribution discontinuity between the entering and

the exiting shots when a HC occurs. Thus, the following expression is evaluated in order to

declare a HC or a false alarm. After these last step, the HC detection process is finished.

CHD1 ≥ n · CHD2 → Hard Cut

otherwise → False Alarm

Once the HC detection is overcome, the detection of gradual transitions is tackled. The

developed technique is able to detect GTs in general, without distinguishing among the

different existing types of GTs (such as wipes, fades, dissolves and others special editions).

With this aim, between each two HCs detected in the previous stage, the CHD for each two

contiguous frames is computed, obtaining a CHD time series for each segment of the video

sequence resulting after the HC detection (lets call these segments si where i = 1, 2, ..., N

and N is the number of detected shots). In this time series, unlike the HCs which produce

sharp peaks, the GTs cause “bump” of lower level than those peaks, showing the progressive

change between two shots.

Taking this fact into account and extrapolating the idea of the thresholding technique

used for the HC detection using a larger sliding window, those “bumps” can be detected (also

considering that the same window should not cover two GTs at the same time). Concretely,

a set of frames which satisfy the two requirements aforementioned are detected first, called

mj where j = 1, 2, ...,M (where M is the number of sets). Among these frames are those

where the CHD value is maximum in a GT, but also frames related to other effects like

camera or object movements and luminance changes. In order to remove these possibly

false detections, three algorithms are executed.

Firstly, the mean of the estimated global motion values corresponding to the frames

within the sliding window are computed. Then, if the estimated global motion value related

to the frame mj is much larger (for example two times), than the computed mean value,

the detection is considered a motion effect and is removed from the possible GTs.

Moreover, in order to detect possibly false detections caused by abrupt changes of lu-

minance within a shot, a detector of these kind of effects is implemented. In concrete, a

neighborhood of a number of frames around mj is defined. Then, the mean luminance is
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calculated for each frame within the neighborhood and then the maximum and the mini-

mum values obtained are taken. If the maximum is much greater than the minimum, then

an abrupt change of luminance is considered and not a GT.

Finally, at the same time that the large sliding window is applied over the segment of the

video si, another sliding window but much smaller (usually with a size of nine frames) is

used. With this, isolated peaks of comparable levels to the GTs (and obviously much lower

than those related to HCs) are detected and removed from the set of possible GTs too.

After all these processes implemented to eliminate false alarms, a second set of frames

corresponding to the maximums (generally intermediate frames in the transition) of the

detected GTs is obtained, m2k where k = 1, 2, ...,M2 and M2 is the total number of

detected GTs after the refinement steps. Then, considering that the remaining frames are

related to GTs, it is time to search the first and the last frame of each GT. With this aim,

each direction (to the right and left) is followed from the detected maximum until a value

is found that is a fixed times lower than the maximum. These are the discontinuity values

related to the first and the last frame of the GT, and the process is finally completed.

Then, all the shot transitions detected, (both HCs and GTs) are combined and the shot

segmentation is carried out to obtain the inputs to the analysis stage. As said before, the

shots are classified into wide angle shots and close angle shots. In order to distinguish be-

tween these two types, statistical and motion features are considered, taking into account

the experiments presented in [34]. Therefore, the RMSE curve and the estimated global

motion vector, are considered to face the shot classification task. These signals are seg-

mented, taking separately the part corresponding to each video shot, and for each one of

these segments the following four features are computed: the mean and the first derivative

of the variance of the RMSE segments, and also the mean and the variance of the segments

of the global motion vector. Finally, analyzing the obtained values, a threshold for each

feature is heuristically selected and the four features are combined in order to achieve a

reliable shot classification.

The following tables show the experimental results obtained after applying the whole

process to the “Allstars” soccer sequence. Table 6.1 shows the parameters of the test

sequence.

Table 6.2 shows the final results of the SBD process using the performance measure recall

and precision in percentage. It is worth noting that two of the gradual transitions considered

in the groundtruth are not really GTs, since no shot change takes placed. However, the

appearance of the score in the bottom part of the frames with a considerable size produces

a similar effect to a GT. However, this effect can be removed applying some techniques of

text detection avoiding to declare it as a GT.
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Sequence Frames Rate (fps) Resolution

Allstars 25083 25 704x576

Table 6.1: Parameters of the test video sequence.

Groundtruth SBD results

HC GT Total

Total HC GT R P R P R P

58 33 25 100 100 88 95.65 94.83 98.21

Table 6.2: SBD experimental results.

6.2.2 Shot Analysis

To find a criterion for the decision of the video codec, the differential RMSE-curve is consid-

ered, as for shot boundary detection. In the case presented above, the sequence is segmented

into three shots. We calculate the variance of each curve segment. It can be seen in Fig.

6.2 (a) that the variance of shot 1 and 3 is less than for shot 2. We know from earlier exam-

ination that the object-based video codec achieves a higher coding gain for sequences like

shot 1 and 3. For shot 2, it is not possible to build a video mosaic because of this very close

camera shot with a large foreground object. In that case, it is very hard to segment. Finally,

we know from our recent experiments that the background object has to be much larger

than the foreground objects to gain more coding efficiency. So we need a criterion which

distiguishes shot 1 and 3 from shot 2. For the example shown in Fig. 6.2, the variance values

of the differential RMSE for shot 1 and 3 are 0.4 and 2.4, respectively. The variance for shot

2 is 15.6. This means that the short-term frame-to-frame image registration is very unstable

for the second shot. These motion paramters set up the mosaic generation algorithm and if

the accuracy of the background estimation varies in that way an accurate mosaic cannot be

generated. Considering these variance values, a threshold has to be defined. We calculate

the mean of the three variance values in a pre-processing step.

Groundtruth Analysis results

WAS CAS R P WAS % frames CAS % frames

20 35 95 100 72.27 27.73

Table 6.3: Shot analysis experimental results.

Table 6.3 shows the results of the shot analysis stage. The numbers of the groundtruth

represent the number of wide angle shots (WAS) and close angle shots (CAS) in the whole

“Allstars” sequence (15 min.). There are two shots that do not belong to any of these types.

The results show the recall and precision of the shot classification process. It also shows
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Figure 6.2: Frame-by-Frame RMSE analysis

the percentage of frames belonging to wide angle shots and close angle shots with respect

to the global number of frames.

6.3 Video Segmentation based on Camera Motion

6.3.1 Algorithms for Selecting an optimal Video Codec depending on the

Camera Motion

The fundamental idea is to segment the input sequence depending on the camera motion

of the scene. We consider two types of camera setups, fix camera with pan, tilt, zoom or

roll and camera track. It has been shown over the last decade that video seqences with a

fix camera (pan, tilt, zoom, roll) can be coded very efficiently with an object-based coding

approach, i.e. Sprite coding. If the camera tracks during the sequence, Sprite coding is not

possible. Therefore, we will automatically segment the input sequence into sub-sequences

and code the sub-sequences with different video codecs, i.e. Sprite coding (e.g. pan) and

H.264/AVC (track). The next two sub-sections describe two approaches for analysis and

segmentation of a video sequence regarding its camera motion.
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(a) Keyframe (shot1) (b) Keyframe (shot2) (c) Keyframe (shot3)

Figure 6.3: Keyframes of the three shots detected

6.3.1.1 Segmenting the Sequence using Global Motion Estimation

To find a criterion for the decision of the video codec, the RMSE-curve over the whole

input sequence is considered. We first apply a frame-by-frame global motion estimation

algorithm [27]. Then, for each frame a global motion-compensated error frame is computed.

The RMSE-value based on this error frame is taken as quality criterion of the estimation.

After applying a temporal median filter on the RMSE-values of the whole sequence for noise

reduction, we calculate a threshold which defines the two types of camera motion. If the

camera is panning the global motion estimation with the 8-parameter perspective camera

model performs quite well for this motion type. The RMSE-values will be low. If the

camera tracks it is not possible to have a stable estimation of the global motion because the

camera model does not fit anymore. The RMSE-values will increase in this sub-sequence.

We calculate the variance of the whole RMSE-curve defining the threshold. We apply this

algorithm on one synthetic test sequence “Room3D” with two pans and one camera track.

Figure 6.4 shows the result for the first test sequence. It can be seen that the threshold

seperated the sequence in three sub-sequences. The first and the third are sub-sequences

with camera pans (RMSE below the threshold) and the second sub-sequence has a camera

track (RMSE above the threshold). That means, the first and the third sub-sequence can be

coded with the Sprite-based approach and the second sub-sequence is coded with common

H.264/AVC. Figure 6.4 shows the three sub-sequences. The first and the third sequences are

already transformed into background Sprites [40]. For the second sub-sequence, the first,

the middle, and the last frame are depicted.

The second test sequence was captured with a hand-held camera and thus it is comparable

with common home videos. The first part of the sequence has a camera track and the second

part is a camera pan. The way of capturing this sequence is lean on for example home videos.

The result for the second video sequence can be seen in Fig. 6.5. For the first sub-sequence

the first, middle, and last frame are shown again for the camera track. The second sub-

sequence (pan) is also shown in background Sprite-based representation.
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(a) pan, frames 1-67

(b) camera track (first) (c) camera track (middle) (d) camera track (last)

(e) pan, 116-160

Figure 6.4: Video segments using GME of the synthetic sequence “Room3D”
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(a) camera track (b) camera track (c) camera track

(d) pan, 199-400

Figure 6.5: Video segments using GME of the real sequence “Castle”

6.3.1.2 Segmenting the Sequence using Feature Tracking and GRIC - Score

The second algorithm for analyzing the camera motion is based on a motion model selection

approach. A slightly modified version of the well-known Kanade-Lucas tracker [81] is used to

track feature points throughout the video sequence. Since the baseline between consecutive

frames is small or the camera rotates about its center, a 2D perspective motion model,

H (homography), can be used to transfer features from one frame to their corresponding

positions in the second frame [55]. If the baseline, i.e. the estimation between two frames,

increases during the tracking process and if the features belong to a 3D scene structure,

the transfer error increases as well. Thus, the 2D motion model must be upgraded to a 3D

motion model, F (epipolar geometry). Hence, the current frame is the intersection between

both motion models and can be selected as a keyframe. The Geometric Robust Information

Criterion (GRIC) [82] is a robust model selection criterion to extract such keyframes and

is defined as:

GRIC =
∑

ρ(e2
i ) + λ1dn+ λ2k (6.1)

where ρ(e2
i ) is a function of residuals:

ρ(e2
i ) = min

(
e2
i

σ2
, λ3(r − d)

)
(6.2)



6.3 Video Segmentation based on Camera Motion 133

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2  4  6  8  10  12

F
ra

m
e
s

Number of Keyframe

Keyframes-curve with thresholds, ’’Room3D’’ 

(a) Key frame curve “Room3D”

Figure 6.6: Keyframe curve of feature tracker using GRIC-score with turning points

The parameters are defined as follows: d is the dimension of the selected motion model

(H has the dimension 2, whereas F has 3 dimensions), r is the dimension of the data (i.e.

equal to 4 for two views), k is the number of the estimated model parameters (7 for F and

8 for H), n is the number of tracked features, σ is the standard deviation of the error on

each coordinate and ei is the distance between a feature point transfered through H and

the corresponding point in the target image, or the Euclidian distance between the epipolar

line of a feature point and its corresponding point in the target image, dependent on the

selected model. λ1, λ2, and λ3 are tuning parameters.

Initializing the first frame of the sequence as keyframe and proceeding frame by frame,

the next keyframe is selected, if the GRIC value of the motion model F is below the GRIC

value of H, i.e. a 2D motion model is no longer an accurate representation of the camera

motion with respect to the 3D structure.

Having the set of keyframes of the considered sequence, we have to find a decision criterion

for segmenting the sequence. For this, we draw the keyframe-curve over all frames of the

sequence. Figure 6.6 shows the diagram for test sequence “Room3D”. Defining the criterion

for the sequence segmentation, we need to take a look at the characteristic of this curve.

We can see that in the first part of the sequence, where the camera pans, no keyframes are

selected by the GRIC-score algorithm except the initial first frame of the sequence. When

the camera movement changes to a track, keyframes are selected along this sub-sequence.

In the third part, the camera motion turns back to pan and only the last frame is selected

for completion. We now have to find the turning points of the keyframe-curve to define

borders of the camera motion types by calculating the maximum of the second derivative
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(a) camera track (first) (b) camera track (middle) (c) camera track (last)

(d) pan, frames 249-400

Figure 6.7: Video segments using GRIC, “Castle”

of this curve. It can be seen in Fig. 6.6 that the detected turning points segment the video

sequence regarding to the camera motion types. For sequence “Room3D” the sub-sequences

are slightly different to the GME-based sequence segmentation as described above (first part

frame 1-70, second 71-120, third 121-160). The segmentation of the second test sequence

“Castle” using the GRIC-score is more different to the first GME-based approach. Figure

6.7 shows the results. The performance of both algorithms is evaluated within a camera-

motion constraint video codec. We will see the impact of using different kinds of video

codecs and the role of the sub-sequence segmentation.

6.4 The content-adaptive (CAVC) and camera-constraint video

coding system (CMCVC) using OBVC and H.264/AVC

This section introduces the object-based coding scheme used and summarizes the complete

content-based video coding system.
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6.4.1 Content-adaptive Video Codec

6.4.1.1 Object-based Coding Approach

The object-based video codec (OBVC), which has been presented in previous chapters and

in [26] and [41], combines the advantages of the object-based coding idea using background

mosaics and the excellent coding performance of the H.264/AVC. As pre-processing, a back-

ground Sprite is generated which contains all the background information of the sequence.

By applying a blending technique, nearly all foreground objects can be removed from the

background mosaic image. Figure 6.8 shows the background Sprites for shot 1 and 3 of our

considered test scene. The video sequence is then reconstructed from the Sprite and all the

frames contain only background information. This background video sequence is used for

an in-built foreground/background segmentation algorithm, which relies on a background

subtraction technique (see Chapter 3) and some further algorithms.

(a) Mosaic (shot1)

(b) Mosaic (shot3)

Figure 6.8: Background Sprites of shot 1 and 3

Having the segmented video data, the background mosaic image, the foreground objects

sequence, the foreground/background binary mask (which is needed at the decoder) and

the motion parameters (which are not coded), the H.264/AVC is used to code the video
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Figure 6.9: Content-adaptive Video Codec

segments. At the decoder, the segments are merged together to the reconstructed video

sequence.

6.4.1.2 The Content-based Video Coding System

All the techniques described are combined in the coding system shown in Fig. 6.9. The

coding-mode decision relies only on the camera motion estimation. Two video codecs,

object-based video coding (OBVC) and H.264/AVC, are considered for coding shots of a

scene separately. The video data is then transmitted and decoded with the related video

decoder. Afterwards, the scene is set together from the separated shots. In the next section,

the first experimental results are presented. The results show the suitability of content-

adaptive coding.

6.4.2 Camera motion-constraint Video Coding using Sprite Coding and

H.264/AVC (CMCVC)

The described analysis algorithms are now embedded in a second video coding system. A

simplified block chart of the system is depicted in Fig. 6.10. For the analysis part, both

algorithms can be used as the pre-processing step. Having the borders calculated, the input

sequence is segmented into a sub-sequence where the camera is on a fixed point and the

movements are pan, tilt, zoom, rotation and a sub-sequence where the camera is tracked.

Both labels go into the decider, which switches between both possible video codecs. The

sub-sequences with a fixed camera (motion types: pan, tilt, zoom, rotation) are coded with

a Sprite codec using H.264/AVC. The two test sequences considered contain no moving

foreground objects. Therefore, no object segmentation is needed. We use a simplified

version of the object-based video codec proposed in [41]. If the GRIC-based analysis is used
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Figure 6.10: Camera-motion constraint Video Codec (CMCVC)

an extra short-term global motion estimation is applied to set up the Sprite generation step.

Otherwise, the GME-part can be left behind and the global motion parameters already

calculated during the analysis part are used. This is the main advantage of the GME-based

analysis algorithm. Then, a Sprite generation algorithm is used to store all the frames

into one image. In this work, we use a single background Sprite. The background Sprite

image is coded as an Intra-frame using the H.264/AVC. The long-term motion parameters

which control the background Sprite generation and reconstruction are not coded. We

assume that providing three byte per parameter is accurate enough for transmission. The

8-parameter perspective motion model is used. That means, we have 24 bytes per frame as

side information. Figure 6.11 illustrates this simplified Sprite codec using H.264/AVC.

If the camera motion of the sub-sequence is track it is treated like a general video se-

quence, because is not possible to generate a background Sprite for this type of camera

motion. For this, we use the common H.264/AVC video codec.

6.5 Experimental results

6.5.1 CAVC

The experiments are examined with the football test sequence “Allstars” (704x576 pixels,

641 frames, 25 fps). The sequence is coded using the proposed content-adaptive OBVC

and only with H.264/AVC. For H.264/AVC, we use the latest examined prediction scheme,

hierarchical B-frames, with a GOP of 15 frames. These settings are fixed for the content-

adaptive codec and the use of H.264/AVC. Shot 1 (250 frames) and 3 (316 frames) can

be coded using the OBVC. Figure 6.12 and 6.10 show rate-distortion curves for these two

sub-sequences. It can be seen that especially for shot 1, the OBVC achieves a much higher
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coding performance in comparison to H.264/AVC. The difference of the PSNR-values is up

to 3 dB and higher. For shot 3, there is also an imrovement of the coding performance (up

to 2 dB). However, the coding limit is reached here earlier because of the presence of more

foreground objects in the scene. The shot 2 is coded with H.264/AVC for both cases, so

there is no benefit using our approach compared to H.264/AVC. Figure 6.12 shows the rate-

distortion curve for the whole scene. Due to the coding gain of shot 1 and 3 of the OBVC,

the content-based video coding system outperforms H.264/AVC over a bit rate range of up

to 250 kbits/s. We achieve gains of up to 2 dB in quality for the same bit rates, or save

more than 30% of the bit rate for the same quality. This can be stretched by providing more

bits for shot 2 (last point of the curve). It can be seen that despite the limit of shot 3, a

coding gain can be held in that range for the whole scene. Figure 6.13 shows parts of frames

taken from the decoded videos from shot 1. It can be seen that the subjective quality as

well as the objective quality of the OBVC-coded video is higher than for that coded with

H.264/AVC.

6.5.2 CMCVC

We consider two test sequences for the experimental evaluation. The first sequence is a syn-

thetic video called “Room3D” (720x576 pixel, 25 fps, 160 frames, progressive) with camera

pan, track and pan again. The second test sequence is a real video captured with a hand

camera. It is called “Castle” (720x576 pixel, 25 fps, 400 frames, progressive). Here we have

a typical “home-made” scenario where the camera is tracked in the first part and panned in

the second part of the sequence. Of course, this camera movement can occur on a large num-

ber of types of video content. The application for home videos is only an example. We code

the sequences using our camera motion-constraint coding approach with the GME-based
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(b) OBVC (shot 3)
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Figure 6.12: Coding results OBVC of the selected shots of the scene and CAVC for the

complete scene, sequence “Allstars”

analysis (CMCVC - GME) and feature tracking and the GRIC-score (CMCVC - GRIC).

We compare both approaches to each other and against common H.264/AVC objectively

using the PSNR-value for the objective quality. A GOP-size of 15 frames is used for common

H.264/AVC. For the prediction structure, we use the latest approved hierarchical B-frames.

Additionally, we apply all new features inlcuding CABAC to have best coding performance

for both compared codecs. Rate-distortion curves are shown in Fig. 6.14 (a) (“Room3D”)

and (b) (“Castle”). It can be seen that we achieve a higher coding gain over a large bit rate

range for the first test sequence. We achieve bit rate savings up to 50% against common

H.264/AVC with both approaches. However, for this sequence, the GME-based algorithm

slightly outperforms the GRIC-based approach. For the second test sequence, we increase

the coding performance in comparison to common H.264/AVC in the lower bit rate range.

The last point of the H.264/AVC-curve is the lowest coding limit for this sequence. We

achieve up to 20% bit rate savings. Furthermore, we can extend the bit rate range in the

lower direction using the CMCVC. The GRIC-based approach is here much better than the

GME-based CMCVC.

Overall we can say that it is possible to increase the coding performance of common
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(a) PSNR=31.35 dB, R=174.88 kbits/s (H.264) (b) PSNR=33.32 dB, R=161.64 kbits/s (OBVC)

Figure 6.13: Comparison of decoded frames (parts)
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Figure 6.14: Rate-distortion curves comparing the CMCVC and H.264/AVC, “Room3D”,

“Castle”

hybrid video codecs by applying a pre-processing step where the camera motion type is

automatically recognized. Based on this, we add a Sprite coding mode for sequences where

the camera is fix and the movements are pan, tilt, zoom, rotation, etc. We can interpret

these first experimental results regarding two issues.

The first one is the ratio of the frames of the whole input sequence which are coded

using common H.264/AVC mode and the frames which are coded using the Sprite cod-

ing mode (coding mode frame ratio (CMFR)). For the first sequence, the CMFR is 60:100

(groundtruth). That means, the sub-sequence where the camera tracks contains 60 frames

(coded with H.264/AVC mode) and the two other sub-sequences where the camera pans con-

tain 100 frames (coded with the Sprite mode). The automatically segmented sub-sequences

lead to a CMFR of 48:112 = 0.43 for the GME-based algorithm and 50:110 = 0.45 for

the GRIC-based approach. These results are very similar, however, the GME-based algo-

rithm achieves a slightly higher coding gain, which means that less frames of the second
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(a) H.264/AVC (common use), 465.98 kbits/s, frame

73

(b) CMCVC (H.264/AVC mode), 235.93 kbits/s

(GME), frame 73

(c) Original (cut) (d) H.264/AVC (cut) (e) CMCVC (cut)

Figure 6.15: Example for subjective comparison, CMCVC and H.264/AVC only, “Room3D”

frame 73

sub-sequence (track) are coded with the Sprite mode. For the test sequence “Castle”, no

exact groundtruth is available because of the smooth crossover of the camera track and

pan. It can be seen that here the GRIC-based approach segments the sequence better

than the GME-based approach. Compared to sequence one, a coding gain can only be

achieved for some parts of the bit rate range. The CMFR is 248:152 = 1.63 for GRIC-

based and 198:202 = 0.98 for GME-based analysis. The GME-based algorithm includes

too many frames from the camera track for the Sprite coding mode. This leads to distor-

tions during the Sprite generation process because for the frames taken from the camera

track sub-sequence, the assumed camera model is not valid anymore. The CMCVC using

GRIC-based analysis produces a better result. If we compare the best CMCVC result for

sequence one and two we can see that the coding gain against common H.264/AVC is not

that high like for the first sequence for bit rate savings and coding gain over bit rate range.
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(a) H.264 (common use), 223.85 kbits/s, frame 100 (b) CMCVC (H.264 mode), 172.84 kbits/s (GME),

frame 100

(c) Original (d) H.264/AVC (e) CMCVC

Figure 6.16: Example for subjective comparison, CMCVC and H.264/AVC only, “Castle”

frame 100

The reason is the much higher CMFR (1.63) for the second sequence.

The second issue for interpretation of the results is the video content itself. Test sequence

“Room3D” has high-frequency textures, which is really hard to predict for a DCT-based

motion-compensated codec. The use of a Sprite codec improves the objective as well as the

subjective quality. Figure 6.15 and 6.16 show examples for the two test sequences. Example

frames and close-ups are shown for H.264/AVC and CMCVC with H.264/AVC mode. It

can be seen that due to the bit rate savings from the Sprite coding mode the sub-sequence

part with the camera track can also be coded with higher subjective quality in comparison

to H.264/AVC only. Thus, the sequences coded with CMCVC come along with bit rate

savings together with increasing the subjective quality of the video.

6.6 Potential of the content-adaptive approach

We have seen that it is possible to achieve significant bit rate savings by the use of a

pre-processing step analyzing the features of the input video, e.g. segmenting into shots,

classifying the shots regarding its content and/or camera motion and selecting a video codec
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which fits to the video segment in an optimal way. In a first approach, we have used two

video coding approaches. First, a content- and camera motion depending approach using

background Sprites. It has been shown earlier in this work that it is possible to outperform

the well-known hybrid video coding approach with bit rate savings of more than 50% and

quality improvements of up to 2-3 dB (subjective quality is also increased). So it is obvious

to take the next step and try to find out if the input video can be coded with the background

Sprite-based approach or not. For that, a pre-analysis step is necessary to recognize the

features of the input video. Two main aspects have been considered in this chapter which

are necessary for a very good performance of the Sprite-based video coding approach, the

kind of camera motion and the ratio of the foreground pixels and the background pixels.

All aspects of the pre-analysis should be calculated with low-level algorithms and most of

them global motion-based because global motion parameters have to be calculated anyway.

Therefore, we have shown an improved shot boundary detection algorithm, a global motion-

based content analysis step, and a first approach for segmenting a video sequence based

on the camera motion. Based on this segmentation, we have selected either the Sprite-

based approach if the current video sequence is valid for Sprite-based coding or use of the

common hybrid approach in the opposite case. We have achieved high bit rate savings over

a longer bit rate range. The relation between the bit rate saving by the use of a Sprite-based

approach and the percentage of the frames of a sequence which are appropriate for coding

with the Sprite-based approach is linear. This means that if 50% of an input sequence

can be coded Sprite-based and a bit rate saving of 50% can be achieved and the remaining

frames are coded with the hybrid codec, the overall bit rate saving is 25%. If the input

sequence only contains 25%, it would be still 12.5% bit rate saving. This description gives a

more general view of the potential of the proposed approach to use two (or more) different

video codecs depending on the video content. We are aware that this issue was discussed

earlier, however, not in this specific way, using a new Sprite-based approach with in-built

object segmentation and H.264/AVC (OBVC) and use of common mode of H.264/AVC.

Having this knowledge, it is possible to estimate the coding performance of sequences with

about 70% of valid frames coded by the OBVC, like e.g. 15 min of a football broadcast

evaluated in this chapter. This means that the overall bit rate saving can be calculated with

the following equation:

rsall = rsobvc · fobvc, (6.3)

where rsall is the overall bit rate saving, rsobvc is the bit rate saving of the part coded with

the OBVC, and fobvc is the percentage of frames of the input sequences coded with OBVC. If

we assume that for our football broadcast example, we can achieve a mean bit rate saving of

30%, which is a realistic estimate, with the OBVC-coded parts, the overall bit rate savings

is 30% · 0.7 = 21%. It is a very simple calculation, but it shows that it is really worth to

proceed working this approach. At the moment, it is very time-consuming and the analysis
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algorithms still have problems in stability. However, with increasing computational power

in the near future, this type of encoding of video content could become very attractive not

only for offline applications.

6.7 Chapter Summary

In this chapter, we have proceeded the content-adaptive video coding idea considering the

input video content in time. We have seen that the OBVC described in the previous chapters

can signifcantly outperform the common hybrid video coding method, but only for an input

video with certain features regarding camera motion and relation between foreground objects

and background objects. To make this approach applicable, pre-analysis steps are needed to

define whether a considered sequences of frames of the input video is valid for coding with

the OBVC or not. The validity was the biggest challenge in the past when people worked

on this type of coding approach and until now, this technique has not come to the market

because of the limitation mentionend above and throughout this thesis. Compared to earlier

work, a first step making this approach more applicable is the approach of setting up an

in-built fully-automatic object segmentation for separating the video content before coding

as described in Chapters 4 and 5. The next step is to analyze the input video time-based

and content-based whether a certain amount of frames is valid for coding with OBVC or not.

We have shown two approaches for segmenting the video temporally into shots which can be

coded either with OBVC or H.264/AVC. We tried to stay at low-level analysis methods to

keep the pre-processing as simple as possible. The first experimental evaluation has shown

very promising results.

We conclude though that analyzing the video for selecting different video segments and

coding these segments depending on their features with different coding approaches is worth

a look in the future.



Chapter 7

Video Quality Metrics

7.1 Introduction

In all previous chapters, we used the PSNR for a quality measurement because it is widely

used and it fits well to the rate-distortion theory. However, we have also seen that limitations

of these coding approaches appear due to the limit in the objective quality measured with the

PSNR of the decoded frames caused by the background Sprite generation and reconstruction.

Random subjective tests have shown that despite lower PSNR values, the quality of the

OBVC encoded video sequences are even better in comparison to common H.264/AVC

encoded ones. Therefore, we briefly introduce alternative video quality metrics which try to

fit more to the human perception and are probably more useful for the future.

(a) Frame 24, (H.264/AVC, PSNR = 36.01 dB, SSIM

= 0.93)

(b) Frame 24, (OBVC, PSNR = 34.54 dB, SSIM =

0.94)

Figure 7.1: Comparison of a decoded frame between H.264/AVC and OBVC, sequence

“Allstars”
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7.2 Video Quality Metrics and OBVC

Until now, all experimental evaluation was examined using the PSNR for measuring the

quality of the decoded sequences. As mentioned above, the reason for that is that this

metric is widely used and accepted in the video coding community. Although there are

studies from the early 90’s until now about the PSNR (or MSE) and its lack of perceptual

sensivity for the human visual system, e.g. [15], [9], [91]. Therefore, the research field “image

quality assessment” tries to find an object metric which fits more to the human perception

than the PSNR. Over the last decade, several alternative metrics have been developed, such

as Video Quality Metric (VQM) [54], Sarnoff’s Just Noticable Difference (JND), and SSIM

(structural similarity). The latter has been published as the latest metric fitting more to the

human visual system [88]. It has been shown that SSIM outperforms PSNR, UQI ([87]), and

JND in terms of correlating with subjective quality evaluation. For our purpose, the SSIM

is attractive because of the sensivity of blocking artifacts of common hybrid video codecs.

Due to our PSNR limit using background Sprites, it is not possible to show objectively that

we provide a subjectively high quality decoded frame while blocking artifacts still remain in

the common hybrid encoded frames. Figure 7.1 shows an example.

7.3 Experimental results

Now, the performance of the OBVC described in the previous chapters is compared to com-

mon H.264/AVC using alternative visual quality metrics. For that, we consider the SSIM,

which has been shown as the best quality metric in comparison to previous approaches.

Because the SSIM is an image-related quality metric (as PSNR and MSE), we use a second

metric, VQM (video quality metric), which also takes into account video features such as

motion, etc. Four sequences are selected from previous experiments and new rate-distortion

curves are generated using the two different quality metrcs. Figure 7.2 shows the results

using the SSIM. Bit rate savings achieved are depicted in Fig. 7.2 (e) - (h). It can be seen

that the OBVC outperforms common H.264/AVC in lower band width as resulted using the

PSNR metric. Bit rate reductions up to 70% are possible at very low rates and around 20%

at higher bit rates. The evaluation of the use of VQM as the quality metric is shown in Fig.

7.3.

To interpret these results, we measured the mean bit rate savings using the three quality

metrics considered, i.e. PSNR, SSIM, and VQM. Table 7.1 shows the results. By calculating

the mean rate savings over all four test sequences, it can be seen that the bit rate savings

increase significantly using the SSIM and VQM metric. Furthermore, the second interesting

value is the bit rate range where the OBVC outperforms H.264/AVC. Due to the background

Sprite generation and reconstruction process there is the limitation in the objective quality

measurement of the reconstructed frames. This means that we can reach only a fix value of
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Table 7.1: Comparison of mean bit rate savings in % using various video quality metrics

Test videos PSNR SSIM VQM

“Allstars” 41.5 47.1 46.7

“Biathlon” 14.5 25.3 25.1

“Entertainment” 18.2 32.2 9

“Race1” 15.37 7.7 31.25

mean of all sequ. 22.39 28.1 28.01

Table 7.2: bit rate ranges in kbits/s outperforming H.264/AVC starting from 0 kbits/s

Test videos PSNR SSIM VQM

“Allstars” 260 460 400

“Biathlon” 125 240 220

“Entertainment” 170 260 210

“Race1” 125 300 460

mean of all sequ. 170 315 322.5

objective quality. By considering the outperforming bit rate range we can evaluate this fix

value using SSIM and VQM as the quality metrics instead of PSNR. Table 7.2 shows the

mean bit rate ranges of all considered test sequences. Using SSIM and VQM for objective

quality it is possible to show that the OBVC is able to outperform common H.264/AVC for

a higher bit rate range than using PSNR. Due to these improvements, the benefit of the

OBVC can be more highlighted using the metrics that are designed to model the human

visual system.

7.4 Chapter Summary

We shortly introduced alternative quality metrics to the widely used PSNR. The goal for

these metrics is to come closer to the human perception to measure the visual quality of an

image or video as seen by humans. Because of our modeling technique, the measurement

using PSNR brings a limit in the PSNR quality. However, these limits due to the warping

process while generating the background model do not cause distortions recognized by the

human eye. Therefore, we have shown experiments comparing the OBVC developed in this

thesis with common use of H.264/AVC with different kinds of quality metrics. It turns

out that the OBVC is able to outperform common H.264/AVC in a wider bit rate range

when perceptual-based quality metrics are used, such as SSIM. Introducing these alternative
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metrics sets up the motivation for a design of a quality assessed video codec, which will be

optimized regarding to the human perception.
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Figure 7.2: Rate-Distortion curves and bit rate savings in % of OBVC against H.264/AVC

using SSIM metric
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Figure 7.3: Rate-Distortion curves and bit rate savings in % of OBVC against H.264/AVC

using VQM metric



Chapter 8

Video Coding using Global Motion
Temporal Filtering

8.1 Introduction

In the previous chapters, the classical object-based video coding approach was determined.

New and improved algorithms have been shown in every single part of the processing chain

like global motion estimation, automatic object segmentation, and the way of encoding. Fur-

thermore, due to the limitations of the object-based video coding using background Sprites,

an approach has been developed and evaluated for a more general usability combining the

OBVC and a common use of H.264/AVC. Having shown the potential of the techniques used

in the previous codecs, we now would like to develop tools which can be used in common

hybrid video codecs. We’ve got inspiration concering this issue by earlier work from Smolic

et al [73], [71], [72]. Our algorithm described in Chapter 2 3 called Local Background Sprite

is the key technique for the method described next. We apply this technique for global mo-

tion temporal filtering (GMTF). First, GMTF is used as a post-processing step to enhance

the quality of coded video data. Second, considering perceptual-based quality metrics, a

video coding scheme is designed using GMTF, which will be optimized regarding the human

perception.

8.2 Global Motion Temporal Filtering for Post-processing

In our proposed Local Background Sprite algorithm, a mapping of content from many

frames in a scene is performed for each individual frame for background construction. In

other words, global motion estimation (registration) is performed from many adjacent frames

into the frame where the background needs to be reconstructed. No backward mapping is

required. Thus, our background Sprites are local and there are as many individual Sprites

generated as frames exist in a sequence. This will result in a more precise background

reconstruction compared to conventional global Sprites.
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Figure 8.1: Coding scheme using GMTF post-processing

Beside others, one application comes inside the method. When a Local Background

Sprite is generated, a number of frames are aligned to the reference frame and for each pixel

position of the reference frame, a row of pixel candidates is evaluated. Appying a filter,

here the median, to the pixel row a final value of each pixel position of the reference frame

is obtained. In other words, we apply a temporal filtering on the reference frame. That

means the new background model frame is also free of noise due to this temporal filtering.

We now tackle the blocking artifacts problem in common hybrid video codecs. The idea is

to apply the Local Background Sprite generation algorithm on each frame at the decoder.

If the video was transmitted at a low bit rate, e.g. in internet video portals, the quality of

the decoded video is improved due to the post-processing step described.

8.2.1 Theoretical Consideration of GMTF deblocking

Blocking artifacts after encoding and decoding are coding noise. We can use the temporal

mean filtering idea for noise reduction.

It is assumed that a number of distorted versions Y from an original image X are available

after registration using global motion estimation. The local Sprite approach essentially

identifies and registers these noisy versions. Consider the pixel registered value yk(m,n) of

the kth frame as the sum of the original pixel x(m,n) and a value from the noise signal

nk(m,n):

yk(m,n) = x(m,n) + nk(m,n) (8.1)

The mean value over all noisy versions yk(m,n) is:

y(m,n) =
1

N

N∑
k=1

yk(m,n) = x(m,n) +
1

N

N∑
k=1

nk(m,n)︸ ︷︷ ︸
r(m,n)

. (8.2)

Uncorrelated white coding noise is assumed with the variance σ2
n and the autocorrelation

matrix:
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Rnn =


σ2
n 0 . . .

0 σ2
n . . .

...
...

. . .

 (8.3)

We now show that the variance of the noise is reduced by the factor N (number of registered

frames). The mean noise signal is r(m,n). The variance can be calculated as:

σ2
r = E[R2(m,n)] =

1

N2

N∑
i=1

σ2
n =

σ2
n

N
(8.4)

Thus, the variance of the coding noise has been reduced by the factor N by averaging pixel

values of N noisy versions. Having this result we can turn to our deblocking problem in a

codec environment. If we are able to apply a noise reduction using the GMTF approach we

are able to increase coding efficiency.

One of the major problems in a common hybrid video codec are the blocking artifacts.

For our theoretical estimation we treat these blocking artifacts as above as temporally

independent white noise. For independent Gaussian sources, the rate-distortion function

can be formulated as follows:

Dnf(Rnf) = 2−2Rnfσ2
x, (8.5)

where Dnf(Rnf) is the distortion, Rnf is the bit rate, and σ2
x is the variance of the coded pixel

amplitude for a single frame. We now apply a decoder noise reduction using N versions.

With Equ. 8.4 the new rate-distortion function is:

Df(Rf) = 2−2Rf
σ2
x

N
. (8.6)

With Dnf(Rnf) = Df(Rf) = D:

2−2Rnf = 2−2Rf
1

N
(8.7)

⇒ Rf(D,N) = Rnf(D)− 1

2
log2(N) (8.8)

We thus obtain a bit rate saving of 1
2 log2(N) per pixel by applying a noise reduction using

averaging of frames. Equ. 8.8 is valid for N ·D ≤ σ2
x.
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8.2.2 Coding environment using GMTF deblocking as post-processing

step

The deblocking filter using GMTF is used as a post-processing step. Two aspects regard-

ing the foreground objects have to be handled. First, the foreground objects information

has to be added after the filtering process and second, the deblocking issue in foreground

objects regions. For that, the following hybrid approach is considered. At the encoder, the

input video signal is processed by an automatic object segmentation method using Local

Background Modeling (LBM) ([29]). The output of this segmentation step is a binary mask

for each frame, which defines foreground objects and background region along the video

sequence. This binary mask sequence is encoded using the same binary mask encoder used

in [41] and transmitted as side information. At the decoder, the binary mask is used to

extract the foreground object regions from the decoded video sequence where the common

deblocking filter used in H.264/AVC is applied. Then, GMTF is performed on the decoded

video sequence. In the final reconstruction step, the filtered forground objects are mapped

on the GMTF processed frames. As a result, pixels of the background regions are tem-

porally filtered and the foreground object regions are filtered spatially using the common

H.264/AVC deblocking filter. The block diagram of the described method is given in Fig.

8.1.

8.2.3 Experimental evaluation

Having this new approach, experiments are conducted to show the performance in compari-

son to the state-of-the-art deblocking techniques used in H.264/AVC. For that, we first have

to define an objective metric for evaluation. In previous work in the field, PSNR was used

to evaluate the performance of a deblocking filter, e.g. in the standard H.264/AVC in-loop

filter [45].

So we use PSNR to measure the amount of blocking artifacts in a decoded video frame.

We choose four test sequences to show the performance of the deblocking using Local Back-

ground Sprites. The sequences “Biathlon” (352x288, 200 frames) and “Race1” (544x336,

100 frames) are used before and represent sport videos with large camera pans and zooms

including single and multiple objects. Additionally, we take into account two sequences

recorded from the BBC documentary “Planet Earth” called “Birds” (720x576, 100 frames)

and “Desert” (720x400, 240 frames). Three different coding environments are considered

for the experiments. Except the deblocking filter, all encoder settings are fixed to ensure a

fair comparison. The JSVM v.9.1 is used as the reference H.264/AVC encoder with hierar-

chical B-frames prediction structure and GOP-size 15. The first setting is to encode the test

videos at different QP’s without in-loop deblocking filter. The in-loop filter is turned on in

the second term. The third coding environment is the scheme described above (Fig. 8.1)
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Figure 8.2: Comparison of H.264/AVC in-loop deblocking filter and a post-processing de-

blocking filter using GMTF

where encoding and decoding is done without in-loop deblocking filter. In theory, the post-

processing deblocking using GMTF improves the quality of decoded video. To evaluate this,

we have a look at the rate-distortion performance comparing the three coding settings men-

tioned. Figure 8.2 shows the rate-distortion curves for the four test sequences considered.

It can be easily seen that the post-processing GMTF deblocking outperforms the common

in-loop filter used in H.264/AVC significantly, except for test sequence “Race1” (we consider

this problem later). It is obvious that the performance of the deblocking approach increases

in the lower bit rate ranges when blocking artifacts appear. It starts at about 1Mbit/s in the

TV-resolution and 500 kbit/s and 200 kbits/s at the test sequences with lower resolution,

respectively. To emphasize this, bit rate saving curves are drawn comparing the use of com-

mon H.264/AVC in-loop deblocking filter and the GMTF deblocking filter in comparison

to the use of no deblocking in-loop or as post-processing. The curves are depicted in Fig.

8.2. The savings achieved using the GMTF deblocking filter are immense at all sequences

considered. Figure 8.3 shows the bit rate savings of the coding scheme described in Fig.

8.1 in comparison to the common use of H.264/AVC with in-loop deblocking filter. It is
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Figure 8.3: Bit rate savings of post-processing deblocking filter using GMTF compared to

H.264/AVC in-loop deblocking filter

noticable that especially at the test sequences with TV-resolution, bit rate savings up to

37% can be achieved. Again, the performance gain of the new method increases with the

resolution of the test video. For a subjective impression, Fig. 8.4 - 8.6 depict samples of the

test sequences where the very good performance of the new deblocking scheme is shown.

The images are taken from sequences coded with the same quatization parameter. The only

difference is the use of the in-loop deblocking filter on one side and the GMTF deblocking

on the other side.

We have shown that our new deblocking method outperforms the state-of-the-art ap-

proach. It is possible to set up a coding scheme to transmit the input video with a lower

bit rate and enhance the quality at the decoder using the post-processing step proposed.

For three test sequences, the objective and subjective results are highly correlated. For

“Race1”, the GMTF brings no improvement according to the quality metric PSNR. We will

show later that GMTF also improves the test sequences “Race”, when a quality metric more

reliable to the human visual system is used (SSIM). Another open issue is to find out how

many frames are taken into account to build the Local Background Sprite for deblocking.
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Until now, we have used a fixed number of frames (20) chosen empirically. This problem is

tackled in the next section.

(a) Frame 11, (H.264/AVC) (b) Frame 11, (H.264/AVC + GMTF)

(c) Frame 101, (H.264/AVC) (d) Frame 101, (H.264/AVC + GMTF)

(e) Frame 130, (H.264/AVC) (f) Frame 130, (H.264/AVC + GMTF)

Figure 8.4: Comparison of commonly decoded frames and the deblocking version using Local

Background Sprites, sequence “Biathlon”
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(a) Frame 17, (H.264/AVC) (b) Frame 17, (H.264/AVC + GMTF)

(c) Frame 33, (H.264/AVC) (d) Frame 33, (H.264/AVC + GMTF)

(e) Frame 57, (H.264/AVC) (f) Frame 57, (H.264/AVC + GMTF)

Figure 8.5: Comparison of commonly decoded frames and the deblocking version using Local

Background Sprites, sequence “Birds”
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(a) Frame 11, (H.264/AVC) (b) Frame 11, (H.264/AVC + GMTF)

(c) Frame 36, (H.264/AVC) (d) Frame 36, (H.264/AVC + GMTF)

(e) Frame 69, (H.264/AVC) (f) Frame 69, (H.264/AVC + GMTF)

(g) Frame 92, (H.264/AVC) (h) Frame 92, (H.264/AVC + GMTF)

Figure 8.6: Comparison of commonly decoded frames and the deblocking version using Local

Background Sprites, sequence “Race1”



160 8 Video Coding using Global Motion Temporal Filtering

8.3 Visual Quality assessed Video Coding using GMTF

It has been shown above that it is possible to save a lot of bits to transmit an encoded video

applying a quality enhancement, that means removing blocking artifacts almost completely

using the temporal filtering during a Local Background Sprite generation. The question

now is how many frames used in the generation process of each reference frame achieves the

optimal deblocking result. For that, a full codec approach has been developed to solve this

problem. This method is described and evaluated in the next subsections.

8.3.1 Finding the optimal frame number for deblocking

In the previous section, we have used GMTF deblocking at the decoder. This means that

there is only the decoded version of the video available. To find the optimal number of frames

for deblocking, we have to design a new encoding scheme including a quality assessment loop.

The block chart of the new encoder is shown in Fig. 8.9. The decoder is the same as in

Fig. 8.1 except the aspect that additionally the number of frames used for generating the

Local Background Sprite for each frame is transmitted as side information and delivered

to the post-processing step. We start with an object segmentation algorithm to separate

the foreground objects from the background. For that, we use the method described in

chapter 3 ([29]). The next step is to find the optimal number of frames for the temporal

deblocking using the Local Background Sprite. For that, we use the decoder including the

deblocking filter to reconstruct the video as done at the receiver. Having the reconstructed

video including temporal deblocking filtering in the background regions and merging the

spatially deblocked foreground objects the quality is measured compared to the original

after each frame used for generating the background Sprite. We use SSIM for the quality

measure as reasonably outlined above. The reconstruction process is determined until a fix

maximum frame number, here 40, is reached. The frame number which produces the best

filtering quality for the reference frame considered is chosen and is encoded and transmitted

as side information to the receiver. This means that each frame of the video sequence has an

associated number of frames for generating the corresponding Local Background Sprite. We

expect that the numbers of frames are highly correlated and slowly increase with a higher

QP value. At the receiver, each frame at the decoded video can be temporally filtered

and deblocked using the optimal amount of frames taken into account. This visual quality

assessed codec (VQVC) is evaluated using the same test sequences used above. The results

are outlined in the next section.

8.3.2 Theoretical Consideration

We repeat the consideration of the previous subsection to get the same starting point as

above. Additionally, we provide an approach to model the global motion estimation process.
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It is assumed that a number of distorted versions Y from an original image X are avail-

able. We consider the kth pixel value yk(m,n) of the kth version which is the sum of the

original pixel x(m,n) and a value from the white noise signal nk(m,n):

yk(m,n) = x(m,n) + nk(m,n) (8.9)

We calculate the mean value using each candidate of pixel yk(m,n):

y(m,n) =
1

N

N∑
k=1

yk(m,n) = x(m,n) +
1

N

N∑
k=1

nk(m,n)︸ ︷︷ ︸
r(m,n)

. (8.10)

White noise is assumed with the variance σ2
n and the autocorrelation matrix:

Rnn =


σ2
n 0 . . .

0 σ2
n . . .

...
...

. . .

 (8.11)

We now show that the variance of the noise is reduced by the factorN (number of overlapping

signals). The mean noise signal is r(m,n). The variance can be calculated as:

σ2
r = E[R2(m,n)] =

1

N2

N∑
i=1

σ2
n =

σ2
n

N
(8.12)

Thus, the variance of the noise has been reduced by the factor N . We now turn to our

deblocking problem in a video. Assume that it is possible to observe N representations of

y, i.e. corresponding quantized pixels from N frames of a video sequence. Averaging these

quantized pixels y in temporal direction reduces the error variance by

E[e2
f ] =

E[e2]

N
, (8.13)

with N being the number of noisy versions x. This assumes that the versions of e in

temporal direction are also not correlated. Our goal is to see whether it is possible to code

all versions of x along the temporal direction with reduced bits/sample when afterwards

temporal filtering is applied. Before showing that, we have to consider the generation of

version of e in temporal direction. That means we have to align a number of frames for

filtering one reference image. This is conducted using short-term and long-term motion

estimation. We now find a way to model this. It is still assumed that we have the 2-

dimensional Gaussian distributed memoryless signal x = xn. We now try to estimate the

current sample using the previous one. This is done with an additive operation, that is in

an optimal estimation:
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xn(x, y) = xn−1(x+ tx, y + ty), (8.14)

where t is the optimal estimation parameter. In practice, this operation does not match

exactly due to the way of the estimation is calculated, right motion model, interpolation

operation for sub-pixel case, etc. Therefore, an estimation error appears, which can be

written for our theoretical case:

xn−1(x+ tx + ∆x, x+ ty + ∆y) = xn(x+ ∆x, y + ∆y), (8.15)

where ∆x,∆y is the estimation error. Thus, the resulting error signal is:

en(x, y) = xn(x, y)− xn(x+ ∆x, y + ∆y). (8.16)

The term xn(x+ ∆x, y + ∆y) can be approximated using the first Taylor expansion:

xn(x+ ∆x, y + ∆y) ≈ xn(x) +∇xTn ·
(

∆x

∆y

)
. (8.17)

With this, the error signal is:

en(x, y) = xn(x, y)−
(
xn(x, y) +

∂xn(x, y)

∂x
·∆x +

∂xn(x, y)

∂y
·∆y

)

en(x, y) = −∂xn(x, y)

∂x
·∆x −

∂xn(x, y)

∂y
·∆y (8.18)

We can now calculate the error variance using the expected value

σ2
en = E[e2

n]

= E

[(
− ∂xn(x, y)

∂x
∆x −

∂xn(x, y)

∂y
∆y

)2]
, (8.19)

with the assumption that ∂xn(x,y)
∂x and ∆x and ∂xn(x,y)

∂y and ∆y are uncorrelated and statis-

tically indepented:

σ2
en = E

[(
− ∂xn(x, y)

∂x
·∆x

)2]
+ 2 · E

[
∂xn(x, y)

∂x

∂xn(x, y)

∂y
∆x∆y

]
︸ ︷︷ ︸

=0

+E

[(
− ∂xn(x, y)

∂y
·∆y

)2]

σ2
en = E[∆2

x] · E
[(

∂xn(x, y)

∂x

)2]
+ E[∆2

y] · E
[(

∂xn(x, y)

∂y

)2]
. (8.20)
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Now we approximate the derivative of xn with the first numerical derivative in both direc-

tions:

∂xn(x, y)

∂x
≈ xn(x, y)− xn(x− 1, y)

∂xn(x, y)

∂y
≈ xn(x, y)− xn(x, y − 1), (8.21)

using this and the assumption E[∆2
x] = E[∆2

y] = E[∆2] we can plug the approximation in

Equ. 8.20:

σ2
en = σ2

∆ ·
{
E

[(
∂xn(x, y)

∂x

)2]
+ E

[(
∂xn(x, y)

∂y

)2]}
= σ2

∆ · {E[(xn(x, y)− xn(x− 1, y))2] + E[(xn(x, y)− xn(x, y − 1))2]}
= σ2

∆ · {E[x2
n − 2xnxn(x− 1, y) + x2

n(x− 1, y)] + E[x2
n − 2xnxn(x, y − 1) + x2

n(x, y − 1)]}
= σ2

∆ · {σ2
x − 2E[xn(x, y)xn(x− 1, y)]︸ ︷︷ ︸

ACF (AR(1))=σ2
x·α
|1|
1

+σ2
x + σ2

x − 2E[xn(x, y)xn(x, y − 1)]︸ ︷︷ ︸
ACF (AR(1))=σ2

x·α
|1|
2

+σ2
x}

= σ2
∆σ

2
x · (4− 2(α1 + α2)

= 2σ2
∆σ

2
x(2− α1 − α2) (8.22)

Equ. 8.22 is the prediction error variance due to the estimation of one signal from a previous

version.

Knowing this we can derive a rate-distortion equation of reducing the noise using temporal

filtering with the constraint of the estimation error variance. For our Gaussian distributed

memoryless signal xn, the D-R-function is:

σ2
exq

= 2−2R · σ2
x. (8.23)

In the aligning process for our temporal filtering, we calculate short-term parameters for

the estimation between consecutive signals. Every aligned signal which represent a ”new”

version of the signal to be filtered is generated by applying long-term motion parameters

according to the reference signal. The long-term motion parameters are calculated using

accumulative multiplication of the short-term parameters. We assume that the model for

the short-term estimation errors between two consecutive frames derived in Equ. 8.22 can

serve for every estimation step. If these errors now are accumulated because of building

the long-term motion parameters, the overall error caused by the motion estimation process

increases. To model that, the motion estimation error increases with increasing number of

frames taken into account for temporal filtering process, we basically sum the errors which

occur due to short-term motion estimation. It is highly emphasized that this assumption is
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made to simplify the the theoretical modeling at this stage, because calculating the long-

term motion parameters and the blending process to build the filtered version of the current

image is a very sophistictated process. To design a more accurate model for that process is

an issue for further work. However, it will be shown later that this assumption approximates

the real behavior of the video codec using global temporal filtering very well.

Thus we consider two error components of our model for temporal noise reduction. The

temporally overlapped quantization error represented by its variance σ2
eq and the prediction

error variance due to the motion estimation σ2
em :

σ2
eq = 2−2Rσ

2
x

N
σ2
em = N · 2σ2

∆σ
2
x(2− α1 − α2) (8.24)

We assume that the final error variance is built by the sum of the two components shown

above. Thus the D-R-function of our model for the temporal noise reduction with Equ. 8.24

is:

σ2
etf

= 2−2Rσ
2
x

N
+N · 2σ2

∆σ
2
x(2− α1 − α2). (8.25)

Now it is of interest how possible bit rate savings are carried out from this theoretical D-R-

function. For that, the distortion values of Equ.’s 8.23 and 8.25 are set equal. The bit rate

of the general quantization error shall be R1 and the bit rate using temporal noise reduction

shall be R2. An equation of the bit rate R2 can now be derived as:

σ2
exq

!
= σ2

etf

2−2R1σ2
x = 2−2R2

σ2
x

N
+N · 2σ2

∆σ
2
x(2− α1 − α2)

2−2R2
1

N
= 2−2R1 −N · 2σ2

∆(2− α1 − α2)

−2R2 − ld(N) = ld{2−2R1 −N2σ2
∆(2− α1 − α2)}

−2R2 = ld{2−2R1 −N2σ2
∆(2− α1 − α2)}+ ld(N)

R2 = −1

2

{
ld{2−2R1 −N2σ2

∆(2− α1 − α2)}+ ld(N)

}
(8.26)

For a meaningful interpretation of the equation derived in Equ. 8.26 for the bit rate of the

temporal filtered video signal, limits are calculated where Equ. 8.26 is valid considering the

real coding and filtering algorithm. First, a lower limit for R1 is derived. Equ. 8.26 makes

only sense if the term 2−2R1 −N2σ2
∆(2− α1 − α2) is greater than zero. This leads to:
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0 < 2−2R1 −N2σ2
∆(2− α1 − α2)

2−2R1 > N2σ2
∆(2− α1 − α2)

−2R1 > ld(N2σ2
∆(2− α1 − α2))

R1 > −1

2
ld(N2σ2

∆(2− α1 − α2)) (8.27)

The next consideration is that the number of frames for temporal filtering N is greater or

equal to 1. This means that ld(N) > 0. The higher limit of N can be derived from Equ.

8.26. The higher limit for N and the error variance of the pixel difference due to motion

estimation σ2
∆, respectively:

0 6 2−2R1 −N2σ2
∆(2− α1 − α2)

2−2R1 6 N2σ2
∆(2− α1 − α2)

N >
2−2R1

2σ2
∆(2− α1 − α2)

(8.28)

σ2
∆ >

2−2R1

2N(2− α1 − α2)
(8.29)

Defining equations for ranges of N and σ2
∆ is important for drawing rate-distortion curves

of the theoretical R-D-functions. For that, reasonable values have to be set to show curves

which can be interpreted. Figure 8.7 shows curves for the theoretical rate-distortion function

developed above. The behavior with a variable frame number N to be used for filtering and

a fix motion estimation error variance can be seen in Fig. 8.7(a). It can be seen that with

increasing the number of frames to be used for filtering, the distortion decreases at the lower

bit rate ranges. However, the motion estimation error has a higher impact at higher bit rate

ranges, which causes in an increase of the distortion in that range. This is illustrated by the

dashed vertical lines, where the model of our temporal filtering method crosses the reference

model without filtering. This matches exactly with the real PSNR curves shown above

for GMTF post-processing. Figure 8.7(b) shows theoretical curves with variable motion

estimation error variance and a fix number of frames N . This case illustrates that with an

increase of motion estimation errors, the gain of the filtering approach decreases rapidly.

Another very interesting issue is shown in Fig. 8.8. Here, rate-“number of frames”-curves

are shown to examine the behavior of the possible bit rate savings. In both cases, i.e. the

rate (of the filtered version) vs. number of frames and bit rate savings (difference of Rfiltered

and Rreference), it can be seen that there is one optimal number of frames to be filtered,

which brings the best improvement. This outcoming aspect brings us to a design of a visual

quality assessed video codec, where an optimal number of frames can be found at the encoder

to get the best visual quality at the decoder after GMTF post-processing. Finally, we can
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say that our first theoretical model approximates the real behaviour of the GMFT approach

very well. However, further investigations can be done in this area, especially for modeling

the motion estimation error, which is approached very simply in our first approach.
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Figure 8.7: Curves of theoretical rate-distortion function Equ. 8.25
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Figure 8.8: Theoretical rate(R)-number of frames(N) function Equ. 8.26

8.3.3 Visual quality assessed Video Coding using Global Motion Tempo-

ral Filtering (VQVC)

Figure 8.9 shows a block diagram of the temporal deblocking approach included in an

H.264/AVC coding environment. Herein, frames of a given video sequence are normally

coded as one would do using H.264/AVC without using its standardized deblocking filter

[45].

At the encoder side, frames are decoded and stored in a buffer that is used for the tem-

poral deblocking filter. As described above, for a given reference frame Iref the temporal
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Figure 8.9: Global motion temporal filtering within a video coding environment

neighborhood, consisting of a set of distorted frames, is taken into account for deblock-

ing. The algorithm successively warps temporally neighboring frames into the coordinate

system of the reference frame. To this end, the global motion – e.g. an 8-parameter per-

spective motion model – has to be estimated, which is done using a hierarchical gradient

descent approach based on the Gauss-Newton method. Thus, a growing image stack of

spatially aligned frames is generated, which is blended together to build a single denoised

representation I ′ref of the reference frame. In every blending step the quality of the current

representation I ′ref is compared to the original frame Iorig,ref using SSIM. The representa-

tion with the highest SSIM value is taken as the final deblocked frame. We have chosen

the SSIM metric because, as already mentioned, it has been shown recently that the SSIM

metric fits best to the human perception compared to other objective metrics for images.

Therefore, we have presented a coding approach which is optimized regarding the human

perception. Of course, it is possible to use any other metric in the “quality assessment” step,

like PSNR. However, it is then optimized regarding the respective behavior of the metric

used. For example, if the PSNR is used, the quality of the frames is not really optimized

regarding the human perception which is well-known.

The number of frames N used for deblocking is differentially coded using signed mapping

Exp-Golomb codes and sent as side information to the receiver. Temporal deblocking at the

encoder only takes place to assess best quality at the receiver and therefore to measure the

ideal amount of frames to be used.

Foreground segments are defined as segments in the scene that move other than the global

motion. These segments vanish successively from the deblocked frames the more temporal

neighbors are used for generating them. The segments are coded using H.264/AVC with

standardized deblocking filter. The segment mask has to transmitted as side information to

the receiver. Automatic segmentation takes place in a preprocessing step. Since it is only

necessary to ensure a correct binary mask, we will not further define the way it is generated.

In our work we used the algorithm developed in Chapter 3 which is an anisotropic diffusion-

based background subtraction technique using Local Background Sprites.
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At the receiver the common H.264/AVC bit stream, the binary object mask, and the

number of frames used in the temporal deblocking filter are decoded. The deblocking filter

computes the denoised frames as defined above. Finally, the frames are reconstructed using

the binary foreground object mask and presented to the viewer. In our approach, global

motion parameters are not transmitted. The decoder estimates the parameters based on

the noisy decoded images.

8.3.4 Experimental Evaluation
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Figure 8.10: Comparison of H.264/AVC deblocking with VQVC in terms of rate-distortion

performance (SSIM)

For experimental evaluation we compared the common H.264/AVC deblocking filter to

the new temporal deblocking approach. For the H.264/AVC encoder we used hierarchical

B-frames and CABAC entropy coding. The in-loop deblocking filter is turned off for our

new approach. We used four test sequences: “Biathlon” (352× 288, 200 frames) taken from

a German televison broadcast, “Birds” (720× 576, 110 frames) from the BBC documentary

“Planet Earth”, “Desert” (720×400, 240 frames) from “Planet Earth” as well, and “Race1”

(554 × 336, 100 frames) from an MPEG multi-view test sequence. Figure 8.10 shows com-

pression efficiency in terms of rate-distortion performance. For distortion measurement we
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Figure 8.11: Mean optimal frame number for GMTF vs. quantization parameter QP

used the mean SSIM on the luminance channel (Y-MSSIM) instead of PSNR because the

encoding scheme is optimized on that. We reach bit rate savings of up to 18% (“Birds” at

0.93 Y-MSSIM) mostly in lower bit rates. This is understandable because with higher bit

rate the amount of blocking artifacts drops rapidly meaning there should be no difference

between the various deblocking approaches. Figures 8.13 - 8.16 show a subjective compar-

ison of a representative frame from the four test sequences considered (when using Adobe

Reader, the complete videos can be watched and the reader can decide which one is subjec-

tively better by considering the bit rate). Here, one can clearly see the significant deblocking

capabilities of the approach presented. The proposed approach performs excellent deblock-

ing while preserving edges in the images efficiently. Furthermore, Fig. 8.11 shows the mean

optimal frame number for GMTF assigned in the encoder loop of the VQVC. It can be seen

that the number of frames to be used for GMTF increases with an increase of the quanti-

zation parameter QP. This effect also complies with the theoretical consideration. A higher

QP results in a higher quantization noise, i.e. block noise, and the distortion increases. For

that more frames are needed to perform GMTF for removing the blocking artifacts. With

lower QP’s, the bit rate increases and the blocking artifacts decrease. Therefore, less frames

are needed for GMTF.

Finally, we would like to evaluate the theoretical model found in Equ.’s 8.25 and 8.26.
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(a) “Biathlon”, QP36

 0

 5

 10

 15

 20

 25

 0  10  20  30  40  50

B
it
 r

a
te

 s
a

v
in

g
s
 i
n

 [
%

]

N

(b) “Birds”, QP36
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(c) “Desert”, QP36
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Figure 8.12: Bit rate savings vs. number frames for filtering

We also can do this because our theoretical model also applies for the SSIM (see Appendix).

Therefore, we consider theoretical rate(R)-number of frames for filtering (N) function Equ.

8.26 shown in Fig. 8.8. We would like to show how good our theoretical function models

the behavior of the VQVC. For that, we conducted experiments to draw R-N-curves with

the experimental data. Figure 8.12 shows the results for three test sequences (“Biathlon”,

“Birds”, “Desert”) at one QP. It can be seen that the experimental curves approximately

follow the theoretical curves. The curves have different shapes depending on the possible

bit rate saving that can be achieved. As the theoretical function demonstrate, the bit rate

savings increase with a decreasing error variance, motion esitmation error. The motion

estimation performs very good with the test sequences “Birds” and “Desert”, but is more

difficult with “Biathlon”. Therefore, less bit rate savings are possible with “Biathlon” than

with “Birds” and “Desert”. However, it can be observed that the gain of the temporal

filter and the VQVC increases with an increasing resolution of the test video. This is also a

reason why the amount of bit rate savings is much higher with the test sequences “Birds” and

“Desert”. Besides, the “zig-zag” inside the R-N-curve comes from the different performance

of forward and backward motion estimation. Forward motion estimation is performed first

and for backward motion estimation, the inverse motion parameters are used, which have a

slightly lower quality that the direct estimated foreward motion paramters. This results in
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such a “zig-zag” form of the curve. Thus, we have proven with our theoretical model that

the global motion temporal filter inside a video codec brings a very good performance and

is able to outperform the common state-of-the-art techniques.

8.4 Summary and outlook

In this chapter, a new filtering approach was presented to tackle the blocking artifact problem

of highly compressed video. We have shown in theory and practice that our global motion

temporal filter produces very good results even with highly distorted material at very low bit

rate ranges. With the theoretical consideration, we have proven the concept of our approach.

In practice, motion estimation is needed to provide the aligned versions of the frame to be

filtered. Therefore, we developed a theoretical model including the motion estimation step

to show the behavior of our approach in a real coding environment. The theoretical rate-

distortion function achieved approximates real RD-curves very good. The more frames N

are used for filtering the better is the performance in the lower bit rate ranges, but the lower

is the performance in higher bit rate ranges due to the motion estimation errors. This means

that we have proven our method theoretically and practically. Based on that, a visual quality

assessed video codec has been designed which uses the GMTF technique. Furthermore, the

coding design includes an optimization step, which is adapted to the human perception.

Having this technique available, further steps can be examined in both directions. First,

the model-based approach can be pursued, where e.g. further optimization can be done

regarding region-of-interests etc. Second, we have also shown that this GMT filter can

produce very good results in a post-processing step when a common hybrid video coder is

used. It would be very interesting to see if the GMTF brings also improvements when it is

used for in-loop filtering.
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(a) H.264/AVC + List (R = 60kbit/s)

(b) H.264/AVC + GMTF (R = 52kbit/s)

Figure 8.13: Subjective comparison of H.264/AVC with in-loop deblocking and GMTF for

post-processing “Biathlon” (Click on the images while using Adobe Reader)
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(a) H.264/AVC + List (R = 117kbit/s)

(b) H.264/AVC + GMTF (R = 73kbit/s)

Figure 8.14: Subjective comparison of H.264/AVC with in-loop deblocking and GMTF for

post-processing “Birds” (Click on the images while using Adobe Reader)
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(a) H.264/AVC + List (R = 214kbit/s)

(b) H.264/AVC + GMTF (R = 142kbit/s)

Figure 8.15: Subjective comparison of H.264/AVC with in-loop deblocking and GMTF for

post-processing “Desert” (Click on the images while using Adobe Reader)
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(a) H.264/AVC + List (R = 229kbit/s)

(b) H.264/AVC + GMTF (R = 161kbit/s)

Figure 8.16: Subjective comparison of H.264/AVC with in-loop deblocking and GMTF for

post-processing “Desert” (Click on the images while using Adobe Reader)





Chapter 9

Summary and Conclusion

In this thesis, we have determined aspects related to advanced video coding techniques

which could be integrated into common video transmission systems. We have considered

the Sprite coding approach developed almost 15 years ago. Because of its complexity and

alleged problem in terms of its applicability, this technique has not come into the market until

now. However, in a large number of studies the high potential of this technique at all as well

as partial algorithms has been shown. So the main goal of this thesis was first to pursue the

traditional Sprite coding technique, improve its processing chain, further developing a Sprite

coding scheme with an in-built object segmentation including the design of a rate-distortion

algorithm. Additionally, methods have been developed to make the Sprite coding approach

more applicable. Since this approach outperforms the common hybrid video codecs for

certain kinds of input video sequences, a pre-processing analysis step is necessary to define

whether an input sequence can be coded with the Sprite codec or not.

The second goal was to find out where else the partial algorithms within the processing

chain of the automatic Sprite codec developed can be used. A temporal deblocking filter

has been developed by use of the new Sprite generation technique developed in this thesis,

that is called local background Sprites. It has been found that using this algorithm it is

possible to remove blocking artifacts appearing in common hybrid video codecs significantly.

Different scenarios for such a deblocking method have been evaluated including the use of

the deblocking approach at the decoder. A complete video codec has been developed where

temporal deblocking is performed in an optimal way.

Addtional to these practical developments and different designs of video codecs, a the-

oretical model has been developed. A theoretical rate-distortion function has been found,

which shows that the codec developed is able to outperform the hybrid approach. Theore-

tial bit rate vs. number of frames for filtering curves underline the expected performance in

practice.

In both practical matters, i.e. pursuing the traditional Sprite coding approach and

developing new video codecs with use of partial algorithms related to the Sprite coding,

very good results have been achieved in comparison to earlier work and especially to hybrid



178 9 Summary and Conclusion

video coding methods. It can be stated that the techniques developed and evaluated in this

thesis have come much closer to be useful for future video codecs. However, there is still a

lot of space for future work both areas. Five possible further developments are presented in

the following.

• Regarding the approach to bring the traditional Sprite coding towards general us-

ability, the following encoding scheme could be developed. A two stage pre-analysis

component selects the input video into several parts and defines which coding method

is most appropriate for each video segment depending on their feature. A third coding

issue can be added where the traditional Sprites are used as a prediction signal. A

rate-distortion algorithm optimizes the scheme regarding all coding modes and all re-

lated features. For that, a rate-distortion optimization algorithm has to be developed

dealing with the automatic Sprite coding approach and the common hybrid encoder

in combination. The rate-distortion optimization approach developed in this thesis

can be further developed for that purpose. The method proposed in this work decides

only between two codecs. However, theoretically it is possible to have one codec for

each different kind of input video classified in genres and/or features. For example, it

has been shown that sports and documentary are appropriate for global motion-based

prediction codecs like conventional Sprites. On the other side, there are codec-designs

for news and video conferencing-like content, which can also be added in such a sys-

tem. The main goal here would be to find a low-complex content analysis method

that is used as a pre-processing step.

• The visual quality assessed video coding (VQVC) approach opens a wide new range of

research. It is actually well-known that existing video coding approaches are not suffi-

ciently designed towards the human perception, especially in the rate-distortion sense.

The rate-distortion optimization algorithm developed in this thesis and the VQVC

lead to the idea to develop a visual quality assessed rate-distortion optimized video

coding system. Because there are different demands on a rate-distortion optimizing

algorithm, e.g. frames have to be decoded completely when the quality is analyzed

by such an algorithm, the RD-optimization approach developed in this thesis can also

be applied. The theoretical consideration derived for this new coding approach can

also be further developed, including refining the existing theoretical rate-distortion

function to model the behavior of this VQVC-coding system.

• We have shown the performance of temporal filtering for deblocking as a post-processing

step. The results were very promising with the considered test sequences. Now, the

next step for future work is to implement this filter inside the encoding loop of a

hybrid video encoder. For that, two ways are possible. We have shown that temporal

filtering results in very good deblocking. Therefore, temporal filtering can be used
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as an in-loop deblocking filter. If the global motion temporal filter is used, a com-

bination with a spatial deblocking filter is appropriate. The spatial deblocking filter

is necessary to perform deblocking of objects that do not follow the global motion.

Having this design, further developments in finding an optimal combination of the

spatial and temporal filter or enhance the temporal filter can be determined. One

enhancement of the temporal filter could be that the filter does not only work for

one motion but also in different motion directions regarding several moving objects

appearing in the video. The main improvement using the temporal filter for deblock-

ing will be the enhancement of the motion estimation due to its improved deblocking

performance. The second way to use the temporal filter developed is to apply it as

an additional prediction mode. Here, higher-order motion estimation can be used for

generating the prediction signal. It is possible to integrate the method for P-, B-,

and hierarchical B-frames. The impact of the temporal filter as in-loop or prediction

filter can be determined separately. Then, it will be very interesting to find out which

combination between the in-loop temporal filter, spatial deblocking filter, other in-

loop filters (Wiener) and the several prediction modes is the best. Considering the

prediction modes, prediction signals generated by common block matching methods

and higher-order motion estimation used for the temporal filter can be evaluated com-

prehensively. Since a higher-order motion model is used for global motion temporal

filtering, work is also necessary using the motion vectors already calculated to obtain

higher-order motion parameters for temporal filtering that are as accurate as possible.

If it is possible to come very close to the pixel-based methods the applicability would

be very high. On one side the computational cost would decrease and on the other

side, no additional motion parameters have to be transmitted.

• Every aspect described in the hybrid video coding application for single-view videos

can also be transfered into multi-view video coding. In such an environment, a tem-

poral filter can also take into account not only consecutive frames of one view but also

frames from the spatial views. Using the spatial views, a higher-order disparity estima-

tion between the views is necessary. More precisely, long-term higher-order disparity

estimation has to be performed to achieve a good filtering. For example, assuming a

multi-view video with eight views and fourth view to be filtered, long-term disparity

estimation has to be applied in both directions, from fourth to one and from fourth

to eight view. It has to be determined whether the temporal and spatial view filtering

together improve the deblocking and/or prediction results of a multi-view video codec.

This depends on the long-term higher-order disparity estimation, which could be the

main focus of further work in this matter.

• The possibility of the temporal filter and its performance for video quality enhance-

ment of compressed video has been proved in a first theoretical consideration. Here,
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the quantizer noise was assumed to be white. The motion estimation error was also

taken into account. A model has been developed that matches very well with the prac-

tical behavior of e.g. the VQVC. However, further work will be done in this field to

enhance the theoretical model, to prove that the error coming from blocking artefacts

can be treated as white noise, and to design a model for the temporal filter inside

a prediction-based hybrid video encoder. Considering the post-processing idea again

brings us to additional applications. The concept of temporally aligning images can

also be used in superresolution techniques. This means that we are able to improve

the video quality of highly compressed and distorted video and even enhance the res-

olution by combining our approach with a superresolution technique. The increasing

amount of video data especially in very popular social networks is immense. A lot of

such video material has a good quality. However, there is a huge amount of video that

contains compression artifacts, noise and has low resolution. Therefore, if it would

be possible to use our proposed technique to build a video enhancement method as

post-processing we expect that the quality and even the resolution can be improved.

This would be very attractive for social networks, e.g. YouTube, Myvideo, Sevenload

etc. Additionally, there is a lot of research activity in analyzing the video content

of these video databases. It is clear that the performance of analysis algorithms gets

worse with a decrease of the video quality caused by e.g. compression artifacts. If

we are able to enhance noisy highly compressed video data, the analysis algorithms

will perform better as well. That means that further research could be to design a

video analysis system for video databases of e.g. social networks with a video en-

hancement step using the developed tools as a pre-processing step. A starting point

here is the development of an algorithm that can obtain highly accurate higher-order

motion parameters from available motion vectors (as already mentioned above). The

performance of the entire quality enhancement algorithm is dependent on this basic

work. Further steps are the selection of a appropriate superresolution algorithm or a

design of a new one based on the temporal filter proposed in this work.

Finally, we can say that standing on the shoulders of the previous works in this field we

have come much closer to carry these powerful techniques towards a wide applicability. We

have shown a wide range of applications that can be further developed, not only in the video

coding area. The implementation of the temporal filter inside an encoding loop make it very

attractive for future hybrid video coding research and development. However, the potential

of pursuing alternative video coding methods as well as all related applications is also very

promising. To close the circle, the huge and permanently increasing amount of video data

available at todays Web 2.0 social networks as well as “classical” video transmission systems

like TV broadcast and DVD/Bluray storages needs enhanced video processing and coding

algorithms more than ever.



Appendix A

SSIM and the Approach for
Theoretical Modeling

We would like to show that the approach of the theoretical modeling fits also to the GMTF

when the SSIM is used for objective image quality measurement. In Chapter 8, the VQVC

was designed to optimize the visual quality during the encoding process. For that, the SSIM

was applied to measure the visual quality according to the HVS.

We assume that a quantized signal y is the sum of an original signal x and quantization

noise e:

y = x+ e. (A.1)

Under the assumption that the quantization error is small (which assumes a sufficiently high

number of bits per sample), it is

E[x · e] = 0. (A.2)

Thus, x and e are uncorrelated. If x is Gaussian distributed, this quantization noise error

variance is generated by coding at rate R:

E[e2] = σ2
e = σ2

x · 2−2R. (A.3)

Assume that it is possible to observe N representations of y, i.e. corresponding quantized

pixels from N frames of a video sequence. Averaging these quantized pixels y in temporal

direction reduces the error variance by

E[e2
f ] =

E[e2]

N
, (A.4)

with N being the number of noisy versions x. This assumes that the versions of e in

temporal direction are also not correlated. Our goal is to see whether it is possible to code
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all versions of x along the temporal direction with reduced bits/sample when afterwards

temporal filtering is applied. In other words: Assuming same quality after reconstruction of

x (measured using SSIM), does temporal filtering result in reduced bits/sample? For this

aim we request that SSIMnf = SSIMf , where nf is not filtered and f is the filtered quality.

Without loss of generality we assume that x, y, and e are zero mean processes, thus

E[y2] = σ2
y = σ2

x + σ2
e , (A.5)

cov(x, y) = E[xy] = σ2
x. (A.6)

In this case SSIM(x, y) reduces to

SSIMnf (x, y) =
2 cov(x, y) + C2

σ2
x + σ2

y + C2
=

2σ2
x + C2

2σ2
x + σ2

enf
+ C2

, (A.7)

SSIMf (x, y) =
2σ2

x + C2

2σ2
x + σ2

ef
+ C2

=
2σ2

x + C2

2σ2
x +

σ2
enf

N + C2

, (A.8)

where σ2
enf

is the quantization error variance when coding before temporal filtering is applied.

C2 is a constant factor. It is apparent that the SSIM decreases if σ2
e increases. If the

quantization noise e is correlated with x, the covariance term will influence SSIM more

directly. For our purpose we set SSIMnf (x, y) = SSIMf (x, y), and thus have

σ2
enf

= σ2
ef

(A.9)

The terms σ2
enf

and σ2
ef

are generated by coding the signal x at different rates Rnf and Rf .

According to Equation A.3 this accounts to

2−2Rnf =
2−2Rf

N

Rf = Rnf −
1

2
log2(N) (A.10)

This completes the proof. A bit rate reduction to the amount of 1
2 log2(N) is achieved

(assuming same SSIM). In other words: It is possible to encode N identical versions of

x with 1
2 log2(N) bits/samples less than without filtering and an identical SSIM is still

achieved.

This is the same model achieved in Equ.8.8 not considering the motion estimation error.

With Equ. A.9 we have shown that using the SSIM does not influence our theoretical

considerations.
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