
Formal Modelling and Application
of Graph Transformations in the
Resource Description Framework

vorgelegt von
Diplom-Informatiker

Benjamin Braatz

Von der
Fakultät IV – Elektrotechnik und Informatik

der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

(Dr. Ing.)

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Uwe Nestmann Technische Universität Berlin
Gutachter: Prof. Dr. Hartmut Ehrig Technische Universität Berlin

Prof. Dr. Thomas Engel Université du Luxembourg

Tag der wissenschaftlichen Aussprache: 20. November 2009

Berlin 2009
D 83

This work is typeset using pdfLATEX, the KOMA-Script scrbook document class, Com-
puter Modern Bright fonts and the hyperref package.
All graphics are generated by TikZ and PGF from the pgf package.
All of these tools are available under free and open source software licences.

© 2009 Benjamin Braatz

This work is available under the “Attribution–No Derivative Works 3.0 Germany” Licence
of Creative Commons, which can be viewed at

http://creativecommons.org/licenses/by-nd/3.0/de/deed.en_GB.

Diese Arbeit ist unter der Lizenz „Namensnennung–Keine Bearbeitung 3.0 Deutschland“
der Creative Commons verfügbar, die unter

http://creativecommons.org/licenses/by-nd/3.0/de/deed.de
eingesehen werden kann.

2

http://creativecommons.org/licenses/by-nd/3.0/de/deed.en_GB
http://creativecommons.org/licenses/by-nd/3.0/de/deed.de

Abstract

In this thesis, a connection between two areas of research is developed. On the one
hand, the Resource Desription Framework (RDF) is the basis of the Semantic Web. On
the other hand, algebraic graph transformation has a long history of providing formally
well-founded modification concepts for various graph and graph-like structures.
By designing an algebraic transformation approach for RDF, the rich theoretical res-

ults of algebraic graph transformation are made available to the RDF world. To achieve
this goal, the formal abstract syntax and semantics of RDF is first reformulated in the
language of category theory which is used heavily in graph transformation. Then, an
abstract, categorical transformation framework is developed which is suitable for being
afterwards instantiated by RDF structures. This is necessary since the existing frame-
works are not applicable in an unmodified form.
The main theoretical results are a sequential composition operation for transformation

rules and theorems showing the possibility to analyse and synthesise transformations
for these sequentially composed rules. Moreover, these results are also available for
transformation rules with negative application conditions.
The applicability of the resulting concept of RDF graph transformations is shown

by two application scenarios. One is a classical Semantic Web application managing
bibliographical metadata, while the other uses RDF as an abstract syntax for domain-
specific modelling languages.

3

Zusammenfassung

In dieser Arbeit wird eine Verbindung zwischen zwei Forschungsbereichen entwickelt. Auf
der einen Seite ist das Resource Description Framework (RDF) die Basis des Semantic
Web. Auf der anderen Seite hat die algebraische Graphtransformation eine lange Tradition
darin, formal fundierte Modifikationskonzepte für Graphen und graphähnliche Strukturen
zur Verfügung zu stellen.
Durch den Entwurf eines algebraischen Transformationskonzepts für RDF werden die

reichhaltigen theoretischen Ergebnisse der algebraischen Graphtransformation für die
RDF-Welt nutzbar. Um dieses Ziel zu erreichen, wird zunächst die formale abstrakte
Syntax und Semantik von RDF in der Sprache der Kategorientheorie, die bei Graph-
transformationen intensiv genutzt wird, reformuliert. Dann wird ein abstraktes, katego-
rielles Transformations-Framework entwickelt, welches geeignet ist, anschließend durch
RDF-Strukturen instanziiert zu werden. Dies ist notwendig, da keines der existierenden
Frameworks in unmodifizierter Form anwendbar ist.
Die hauptsächlichen theoretischen Ergebnisse sind eine sequenzielle Kompositionsope-

ration für Transformationsregeln und Theoreme, die die Möglichkeit zeigen, Transforma-
tionen entlang dieser sequenziell komponierten Regeln zu analysieren und synthetisieren.
Diese Ergebnisse sind weiterhin ebenfalls für Transformationsregeln mit negativen An-
wendungsbedingungen verfügbar.
Die Anwendbarkeit des resultierenden Konzeptes für RDF-Graphtransformationen wird

durch zwei Anwendungsszenarien gezeigt. Das eine ist eine klassische Semantic-Web-
Anwendung, die bibliographische Metadaten verwaltet, während die andere RDF als ab-
strakte Syntax für domänenspezifische Modellierungssprachen verwendet.

4

Inhaltsverzeichnis

1. Introduction 7
1.1. The Semantic Web . 7
1.2. Problem Statement . 7
1.3. Graph Transformation . 9
1.4. Organisation of the Thesis . 9

2. Resource Description Framework 11
2.1. Abstract Syntax . 11

2.1.1. Vocabularies . 12
2.1.2. RDF Graphs and Homomorphisms 14

2.2. Semantics . 19
2.3. Schemas . 23
2.4. Datatypes . 26

3. MPOC Transformation Framework 29
3.1. Rule-Based Transformations . 29

3.1.1. Use Cases for Transformations 29
3.1.2. Approaches for Rule-Based Transformations 30

3.2. MPOC-PO Transformations . 33
3.2.1. Minimal Pushout Complements 33
3.2.2. Transformation Rules and Transformations 37

3.3. Sequential Composition . 40
3.3.1. Composition and Decomposition of MPOCs and IPOs 40
3.3.2. Sequentially Composed Rules 46

3.4. Negative Application Conditions . 52
3.4.1. MPOC-PO Transformations with NACs 52
3.4.2. Translation of NACs . 55
3.4.3. Composition with NACs . 58

4. RDF Graph Transformations 61
4.1. RDF Patterns and RDF Graph Transformations 61
4.2. Pushouts, IPOs and MPOCs for RDF Patterns 67
4.3. Composition and Independence for RDF Patterns 72
4.4. Inference Rules for RDF and RDF Schema 76

5

Inhaltsverzeichnis

5. Application Scenarios 83
5.1. A Semantic Web Metadata Application 83

5.1.1. Schema and Grammar for Bibliographies 83
5.1.2. Integration of Schemas . 84

5.2. Domain-Specific Modelling Languages 90
5.2.1. Schema and Grammar for IT Landscapes 90
5.2.2. Modification Rules for IT Landscapes 95
5.2.3. Evolution of Domain-Specific Modelling Languages 97

6. Conclusion and Future Perspectives 99
6.1. Solution for Application Scenarios . 99
6.2. Theoretical Contributions . 99

A. Category Theory 101
A.1. Categories and Functors . 101
A.2. Limits and Colimits . 107

Literaturverzeichnis 115

6

1. Introduction

1.1. The Semantic Web

The vision of the Semantic Web was first presented in [BHL01]. It comprises the en-
hancement of the human-readable data on the Web with machine-readable structure
such that sophisticated automated investigation on and harvesting of distributed data
becomes feasible.
While structured data are already omnipresent, this information is in the majority of

cases not preserved when presenting them on the Web. Even if the data stems from a
structured database, the presentations of these data mostly contain only layout and very
abstract structure information.
In order to facilitate the integration of harvested data from different data sources, they

would, however, have to be annotated with semantical information in the sense that a
foreign machine can deduce the meaning of an entity even if it uses a totally different
database schema.
In the concept of the Semantic Web, this goal shall be achieved by using published

schemas for data, sometimes called ontologies. Presenting data with references to these
published schemas then allows third parties to interpret them w. r. t. their own schemas.
As a data structure for presenting the schemas as well as the data typed over them, the

Resource Description Framework (RDF) was developed and specfied in the set [W3C04]
of recommendations. RDF allows the definition of globally usable structures by employ-
ing Uniform Resource Identifiers (URIs) as they are already used in various Web-based
technologies.
While more sophisticated languages for the definition of ontologies have been de-

veloped, e. g., the Web Ontology Language (OWL), presented in [MH04] and related
documents, we will only deal with RDF and its schema definition language RDF Schema
in this thesis.
Moreover, we will confine ourselves to the abstract syntax representation of RDF graph

structures, leaving aside technological issues of representing them using XML or other
concrete syntaxes. A detailed formal treatment of RDF will be given in Chapter 2.

1.2. Problem Statement

Two application scenarios for RDF structures will be considered in this thesis. The first
one is a classical Semantic Web scenario, where bibliographical metadata shall be mana-

7

1. Introduction

ged, while the second one is a novel application in which the abstract syntax of domain-
specific modelling languages (DSMLs) is represented in RDF.
More specifically, in the metadata scenario we will consider a simple example application

that can relate authors with articles and books. Firstly, the problem arises that such an
application will make assumptions about the data that are not expressible using pure
RDF and RDF Schema, e. g., that a publication always has a unique title and a person a
unique name or that a publication has at least one author.
The second problem is the definition of possible modification steps on the data store

which should respect the constraints defined by the solution to the first problem. Most of
the work on RDF is concerned with querying and logical inference on RDF structures. As
an example, the querying language SPARQL, defined in [PS08], does, in contrast to the
SQL for databases, not contain any primitives for modifying the queried RDF graph. An
enhancement, called SPARQL/Update, is given in [SM08] and in [EPN09], where also
some deficiencies of SPARQL/Update are discussed, an alternative modification protocol
is proposed. Both proposals, however, do not contain a mechanism to respect constraints
on the created structures as they are given by our first problem.
A third problem arises when data that are represented w. r. t. a different schema shall

be imported into the application. This requirement not only demands a possibility to
map the elements in the schemas to each other but also to apply structural changes.
This problem has been adressed, e. g., by the definition of a mapping language for RDF
graph transformation in [Her08], where this language takes a rather informal approach
compared to the approach presented in this thesis. Moreover it only aims at ontology
integration but not at a general modification framework for RDF.
In summary, our first application scenario demands a general modification framework

that can deal with editing modifications as well as schema integrations and at the same
time respect structural constraints for the created structures to solve all three problems
sufficiently.
The second application scenario is motivated by work in modelling security require-

ments in banking environments which is partly presented in [BEB+07] and [BHE09],
where DSMLs shall not only be used to model small isolated issues but to give a compre-
hensive overview of the whole organisation and different stakeholders shall be provided
with DSMLs tailored to their needs. Thus, the need for a family of interconnected small
DSMLs arises which can dynamically evolve according to the users’ requirements.
This means that we need a way to define DSMLs and possible modifications, such as,

e. g., refactorings on them. Additionally, it should be possible to enhance the language,
where, due to the assumption of a large corporate environment combined with frequent
requests for small evolution steps of the language, it is not feasible to require a complex
migration to a new language definition for each evolution step.
Moreover, due to the requirement that a global overview shall be achieved, the models

should be kept in organisation-wide repository servers instead of user workstations. This
combination of flexible language definitions and distributed storage of models makes RDF
a reasonable choice for the data format, where a solution for the definition of languages
and modifications and the evolution of languages is needed in addition.

8

1.3. Graph Transformation

In [AFR06] an evaluation of existing tools for DSMLs is given which shows that these
tools mostly have quite different aims and do, in general, not target the organisation-wide
integration which is predominant in our scenario. The popular MetaEdit+ tool, described,
e. g., in [Tol06], which is not treated in the above evaluation, also aims at a different
purpose emphasising flexible code generation from domain-specific models instead.

1.3. Graph Transformation

The proposal of this thesis is to use algebraic graph transformations to solve the problems
identified in the previous section. More specifically, the definition of allowed structures
for the metadata application and the definition of the language in the DSML scenario
will both be achieved by graph grammars, which employ small graph transformation rules
in a similar way to Chomsky grammars for textual languages.
But graph transformation rules can also be used for more complex modifications, where

it can be ensured that these complex operations nevertheless stay within the defined
language by composing them exclusively from the rules of the grammar.
Regarding the problem statement in the metadata scenario, complex rules can be

employed for user-guided editing modifications as well as for the automatic integration of
schemas, while in the DSML scenario an additional use case is the automatic evolution
of language models when a DSML is modified.

1.4. Organisation of the Thesis

In Chapter 2, the syntax and semantics of RDF is formalised using category theoretical
structures. This chapter is structured quite similar to the official RDF documents. While
Section 2.1 formalises the abstract syntax given in [KC04], the following sections follow
the structure of [Hay04], where the basic semantical structures are given in Section 2.2.
RDF Schema, provided by [BG04], and the corresponding semantic extension are treated
in Section 2.3. Section 2.4 gives a short overview of semantic extensions for datatypes
and typed literals.
In Chapter 3, the MPOC transformation framework is defined and its main results are

proven, where Section 3.1 motivates this by some use cases for rule-based transformations
and gives a review of existing transformation approaches. Then, Section 3.2 contains the
basic definitions which are extended by a notion of sequential composition in Section 3.3.
Section 3.4 extends the framework by negative application conditions.
In Chapter 4, this framework is instantiated to RDF. For this purpose, Section 4.1

defines RDF patterns as an extension to RDF graphs and Section 4.2 shows the con-
structions needed for the instantiation. Section 4.3 then contains proofs for the additional
properties that are needed for sequential composition of rules. Section 4.4 shows how
inferences for RDF Schema can be implemented by transformation rules.

9

1. Introduction

In Chapter 5, it is shown how the requirements of the application scenarios are met by
graph transformations, where Section 5.1 is concerned with the Semantic Web metadata
application, while Section 5.2 contains the treatment of the DSML scenario.
Finally, Chapter 6 summarises the thesis and gives pointers to future perspectives,

where Section 6.1 summarises the solution for the application scenarios and Section 6.2
highlights the theoretical contributions.
Appendix A gives an overview over the definitions and basic results of category theory

that are used throughout the thesis, where Section A.1 contains the basic notions of
categories, morphisms and functors and Section A.2 treats limits and colimits, especially
initial and final objects, products and coproducts and pushouts and pullbacks.

10

2. Resource Description Framework

The Resource Description Framework (RDF) is designed to facilitate the modelling and
exchange of data and metadata on the Semantic Web. The normative description of RDF
is given by the set [W3C04] of World Wide Web Consortium (W3C) recommendations. In
this chapter a formalisation of RDF in the framework of category theory (see Appendix A
and, e. g., [AHS90]) will be given. In contrast to other formalisations of RDF, most
notably [Mar06], which stay close to the original recommendations, we sometimes deviate
from them to achieve a cleaner categorical structure.

2.1. Abstract Syntax

The abstract syntax of RDF (defined in [KC04]) is supposed to provide the basic layer
of the Semantic Web. In RDF, all data are represented by triples consisting of subjects,
predicates and objects. As shown in Figure 2.1, an RDF graph is depicted by using the
subjects and objects as nodes and labelling directed edges between these nodes with the
predicates. Thus, each edge in the figure corresponds to a triple. Subjects and objects
can be Uniform Resource Identifiers, shown as rounded rectangles, literal values, shown
as rectangles, and blank nodes, shown as circles.

In the example, some information from the metadata application scenario is presented.
More specifically, in the left part of the figure, a book by an author is represented using
a blank node with a type and predicates from the imp: namespace. This namespace is
supposed to be used for data imported from a flat bibliography without crossreferences
like, e. g., a BibTEX file. In the right part of the figure, the bib: namespace is used
to represent an article by the same author (at least an author with the same name).
This namespace is used for the native vocabulary of our example metadata application,
where a more complex structure is used to represent the metadata and URIs in the
cont: namespace are employed to uniquely identify authors and publications. Later, in
Section 5.1, we will develop transformation rules that integrate the flat imported data to
conform to the schema expected by the example application.

In the following, we present a formalisation of RDF using category theoretical terms.
This not only prepares our later definition of graph transformations on RDF graphs, but
also gives a structured view of the building blocks of RDF itself.

11

2. Resource Description Framework

imp:Book bib:Person bib:Article

1 cont:Doe cont:Something

en,“About Anything” ε,“John Doe” en,“About Something”

rdf:type rdf:type rdf:type
bib:author

imp:title

imp:author

bib:name bib:title

Abbildung 2.1.: RDF graph from the metadata application scenario

2.1.1. Vocabularies

We will use vocabularies to structure the global entities, URIs and literals, that can occur
in RDF graphs and that are given a semantics by interpretations in Section 2.2. In this
sense, vocabularies constitute an interface between syntax and semantics in RDF.
All strings appearing in RDF graphs will be Unicode strings, where the character set

of Unicode is given in [Uni]. Hence, we first define the set of all Unicode strings. While
implementations will use some kind of transfer encoding (probably the widely used UTF-
8, specified in [Yer03]) for Unicode strings, we will, for the sake of simplicity, base our
formal definitions on an alphabet containing the code points of Unicode with no special
encoding.

Definition 2.1 (Unicode Strings)
The Unicode alphabet Unicode := {016, . . . , 10FFFF16} consists of all Unicode cha-
racters as defined by the Unicode Specification in [Uni]. The set String := Unicode∗ 1

consists of all strings over the Unicode alphabet.

Since RDF is supposed to be used in distributed applications, Uniform Resource Identi-
fiers (URIs) as defined in [BFM98] play an important role.2 In contrast to other application
areas like, e. g., the well-known Hypertext Transfer Protocol (HTTP), URIs in RDF are
solely used as globally unique identifiers and do not imply that resources are retrievable
under these URIs. The RDF Concepts and Abstract Syntax recommendation in [KC04] is
a lot more specific about how to handle the encoding of a URI. For our rather theoretical
treatment, however, it suffices to assume URIs as a special kind of Unicode strings.

Definition 2.2 (Uniform Resource Identifiers)
The set URI ⊆ String consists of all Uniform Resource Identifiers (URIs) as defined by
RFC 2396 in [BFM98].

1 As usual, we will use A∗ to denote the (infinte) set of all words over the alphabet A.
2 Newer specifications in the field, as, e. g., [PS08], reference the updated standards in [BFM05] and
[DS05] and also allow Internationalised Resource Identifiers (IRIs) containing the whole range of
Unicode characters, while URIs may only contain ASCII.

12

2.1. Abstract Syntax

In the subsequent discussions of RDF concepts we will use the XML Namespaces
facility, specified in [BHLT06], to abbreviate URIs occuring in examples and definitions.
More specifically, we will employ the following namespaces:

• rdf: for http://www.w3.org/1999/02/22-rdf-syntax-ns#

• rdfs: for http://www.w3.org/2000/01/rdf-schema#

• imp: for http://example.org/ImportBib/

• bib: for http://example.org/BibAppl/

• cont: for http://example.org/BibCont/

• dsml: for http://example.org/DSMLDef/

• mod: for http://example.org/DSMLMod/

The namespaces rdf: and rdfs: are used in the RDF specifications to represent entities
that are used in all kinds of RDF applications. Some of them are treated in Section 2.3 in
more detail. The namespaces imp:, bib: and cont: are used for the metadata application
scenario, while dsml: and mod: are used for the domain-specific modelling scenario.
RDF graphs or documents may, moreover, contain literal entities, which do not identify

any external resource or concept, but rather represent themselves. The content of a literal
is alway given by a Unicode string. For a plain literal this string is supposed to be a name
or a text, optionally annotated with the corresponding human language of the text. For
typed literals, on the other hand, the string is the representation of a value in a data
type, where the type of the literal is given by a URI. Such types may, for example, be the
data types of XML Schema, defined in [BM04], or arbitrary XML fragments, for which
a type URI rdf:XMLLiteral is pre-defined in RDF. Applications that do not understand
the data type used by a typed literal are still able to process it as an opaque entity and,
e. g., relay it to another application that is able to handle it properly.

Definition 2.3 (Literals)
The set PLit := Lang × String 3 consists of all plain literals l = (lLang, lString) with
lLang ∈ Lang and lString ∈ String, where Lang ⊆ String is the set of all language tags as
defined by RFC 3066 in [Alv01] (normalised to lowercase) and the empty tag ε ∈ Lang
is supposed to be included.
The set TLit := URI × String consists of all typed literals l = (lType, lString) with a type
lType ∈ URI and lString ∈ String.

While it would have been possible to use only typed literals and introduce a data ty-
pe for text with language tags, the choice of plain literals as distinguished first-class

3 We will use A × B to denote a categorical product of A and B (see Definition A.6). Here, in the
category of sets and functions, this coincides with the usual cartesian product (see Proposition A.9).

13

2. Resource Description Framework

elements makes it possible to employ RDF for quite complex, even multi-lingual, appli-
cations without the need to implement a data type mechanism. Moreover, a meaningful
interaction between different RDF applications is still possible without agreeing on the
used data types.
Now, we can define vocabularies to be triples containing a set of URIs, a set of plain

literals and a set of typed literals. We extend this to become a rather simple category
(see Definition A.1) by inclusions on all three components as morphisms.

Definition 2.4 (Category of Vocabularies)
The category Voc of vocabularies consists of

objects V = (VURI, VPLit, VTLit) with VURI ⊆ URI, VPLit ⊆ PLit and VTLit ⊆ TLit,

morphisms V ⊆ V ′ if and only if VURI ⊆ V ′URI, VPLit ⊆ V ′PLit and VTLit ⊆ V ′TLit and

compositions and identities given by reflexivity and transitivity of the inclusions.

Vocabularies will be used as an interface between syntax and semantics in Section 2.2.
Moreover, Section 2.3 will give special meaning to a certain vocabulary in the rdf: and
rdfs: namespaces.

2.1.2. RDF Graphs and Homomorphisms

RDF graphs are sets of statements about resources. These statements are given by
subject–predicate–object triples, where subjects and objects can be URIs, literals or blank
nodes4 and predicates are URIs. Blank nodes denote resources with a non-existent or
unknown global identifier. Such blank nodes are useful if a global identity for the corre-
sponding resource is not relevant to external users or if they shall not be able to state
additional facts about it.

Definition 2.5 (RDF Graph)
An RDF graph G = (GBlank, GTriple) consists of

• a set GBlank of blank nodes,

• a set GTriple ⊆ GNode × URI × GNode of triples (s, p, o) ∈ GTriple with subject
s ∈ GNode, predicate p ∈ URI and object o ∈ GNode, where GNode is the derived
set GNode := GBlank + URI + PLit + TLit 5.

4 The normative RDF specifications do not allow literals as subjects. To achieve a more symmetrical
definition, we choose to abolish this restriction as it is also done in many publications, e. g., in [MPG07],
and even in newer W3C recommendations like the SPARQL definition in [PS08].

5 We will use A + B to denote a categorical coproduct of A and B (see Definition A.6). Here, in the
category of sets and functions, this corresponds to a disjoint union (see Proposition A.9), where we
will, for the sake of simplicity, assume that URI, PLit, TLit and the blank node sets are already disjoint
and, hence, just take the union as coproduct and the inclusions as injections into the coproduct.

14

2.1. Abstract Syntax

The class of all RDF graphs is denoted by RDFGraphs.

In the RDF Abstract Syntax in [KC04] an RDF graph is just a triple set and the blank
node identifiers are drawn from a global, infinite set. Hence, two graphs according to
the above definition that differ only in the existence of unused blank nodes would be
considered equal according to the RDF recommendations. We choose to include the
blank nodes in the graph in order to have them accessible in subsequent definitions and
constructions enabling us, e. g., to construct limits and colimits by the corresponding
contstructions in the category Set of sets and functions (see Proposition A.1), which
would not be possible if the blank nodes were assumed to originate from a common super
set. Moreover, this choice emphasises the locality of blank nodes.
The notion of RDF graphs differs in some aspects from directed graphs as they are

considered in the graph transformation literature (cf., e. g., [EEPT06]). These differences
lead to consequences for transformations of RDF graphs, as they are developed in this
thesis. Firstly, triples do not have an independent identity and their can, thus, only be one
triple with the same subject, predicate and object. In this respect, RDF graphs are similar
to simple graphs or relations (as in the category Rel considered in [AHS90]). Therefore,
the addition of a triple which is already present in a graph does not change the graph.
Secondly, the URIs and literals are globally given and, thus, implicitly available as nodes
in all graphs. Hence, URIs and literals cannot be deleted or added in a transformation.
RDF graph homomorphisms capture the structural relationship between two RDF gra-

phs by a translation of their blank nodes, such that the codomain graph of the ho-
momorphism contains at least the translated triples. Homomorphisms are not considered
explicitly in the RDF Abstract Syntax in [KC04] and Semantics in [Hay04], but the notions
of graph equivalence and subgraph used in these recommendations will be characterised
as special homomorphisms in the following proposition.

Definition 2.6 (RDF Graph Homomorphism)
An RDF graph homomorphism h : G → G′ for RDF graphs G and G′ consists of

• a mapping function hBlank : GBlank → G′Blank for blank nodes,

such that

• there is an inclusion hTriple(GTriple) ⊆ G′Triple,

where hTriple : GNode×URI×GNode → G′Node×URI×G′Node is a derived translation defined
by

hTriple(s, p, o) := (hNode(s), p, hNode(o))

and hNode : GNode → G′Node is in turn defined by

hNode(x) :=

{
hBlank(x) for x ∈ GBlank
x for x ∈ URI + PLit + TLit

.

15

2. Resource Description Framework

The following proposition states that RDF graphs and homomorphisms form a cate-
gory (see Definition A.1) and characterises its special morphisms (see Definition A.2).
While the notion of equivalence from [KC04] and [Hay04] is reflected exactly by the
isomorphisms of this category, the definition of subgraphs by monomorphisms is more
general then the definition by triple set inclusions employed in the recommendations. Mo-
re specifically, monomorphisms additionally allow the injective renaming of blank nodes
highlighting their locality to the specific graph.

Proposition 2.1 (Category RDFHom)
RDF graphs and RDF graph homomorphisms constitute a category RDFHom, where
compositions are compositions of blank node functions and identities are blank node
identities.
In this category, the following characterisations of special morphisms hold:

Mono: A homomorphismm : G → G′ is a monomorphism if and only ifmBlank is injective.
In this case, G is called a subgraph of G′ (via m).

Epi: A homomorphism e : G → G′ is an epimorphism if and only if eBlank is surjective.

Iso: A homomorphism i : G → G′ is an isomorphism if and only if iBlank is bijective and
the equality iTriple(GTriple) = G′Triple is satisfied.
Isomorphic graphs are also called equivalent.

Beweis. Associativity of compositions and cancellability of identities follow directly from
the corresponding properties of the underlying blank node functions (see Proposition A.1),
since the equality of RDF graph homomorphisms is equivalent to the equality of the
underlying blank node functions.

Mono: If: Suppose mBlank is injective and m ◦ l1 = m ◦ l2. Then mBlank ◦ (l1)Blank =
mBlank ◦ (l2)Blank and by injective functions being monomorphisms in Set (see Pro-
position A.3) also (l1)Blank = (l2)Blank. Then we also have l1 = l2 and, hence, m is
a monomorphism. Only if: Suppose mBlank is not injective. Then there are blank
nodes b, b′ ∈ GBlank with b 6= b′ and mBlank(b) = mBlank(b

′). But then we can
define l1, l2 : ({∗},∅) → G with (l1)Blank(∗) = b and (l2)Blank(∗) = b′ satisfying
mBlank ◦ (l1)Blank = mBlank ◦ (l2)Blank, but not (l1)Blank = (l2)Blank. Then we also
have l1 6= l2 and, hence, m is not a monomorphism.

Epi: If: Suppose eBlank is surjective and f1 ◦ e = f2 ◦ e. Then (f1)Blank ◦ eBlank =
(f2)Blank ◦eBlank and by surjective functions being epimorphisms in Set (see Propo-
sition A.3) also (f1)Blank = (f2)Blank. Then we also have f1 = f2 and, hence, e is an
epimorphism. Only if: Suppose eBlank is not surjective. Then there is a blank node
b ∈ G′Blank for which no x ∈ GBlank with eBlank(x) = b exists. But then we can defi-
ne f1, f2 : G′ → (G′Blank ∪ {1, 2}, G′Triple) with (f1)Blank(y) = y = (f2)Blank(y) for all
y 6= b, (f1)Blank(b) = 1 and (f2)Blank(b) = 2 satisfying (f1)Blank ◦ e = (f2)Blank ◦ e,
but not (f1)Blank = (f2)Blank. Then we also have f1 6= f2 and, hence, e is not an
epimorphism.

16

2.1. Abstract Syntax

Iso: If: Suppose iBlank is bijective and iTriple(GTriple) = G′Triple. Since iBlank is an isomor-
phism in Set (see Proposition A.3), there is an inverse jBlank : G′Blank → GBlank with
jBlank ◦ iBlank = idGBlank and iBlank ◦ jBlank = idG′Blank . Moreover, jBlank constitutes an
RDF graph homomorphism j , since jTriple(G′Triple) = jTriple(iTriple(GTriple)) = GTriple.
Hence, i is an isomorphism. Only if: Suppose iBlank is not bijective. Then we cannot
find an inverse blank node function (see Proposition A.3) and, hence, i cannot be
an isomorphism. Suppose iBlank is bijective, but G′Triple * iTriple(GTriple). Then there
is an inverse blank node function jBlank, but it does not constitute an RDF graph
homomorphism, since jTriple(G′Triple) * jTriple(iTriple(GTriple)) = GTriple. Hence, i is
not an isomorphism.

Figure 2.2 shows an RDF homomorphism, which is neither a mono- nor an epimor-
phism, while in Figure 2.3 examples for a mono- and an epimorphism are given. Note that
the epimorphism does not have to be surjective on triples but just on blank nodes, while
the monomorphism is also injective on triples since the triple translation is composed
solely of injective functions.

RDFHom

1 2 1,2 3

l1 l2 l1 l2 l3

Abbildung 2.2.: Homomorphism in RDFHom

1 1 2

l1 l1 l2

(a) Monomorphism

1 2 1,2 uri

l1 l2 l1 l2 l3

(b) Epimorphism

Abbildung 2.3.: Special morphisms in RDFHom

In [Hay04] the merge of RDF graphs is defined by standardising apart common blank
nodes of the graph. In our category theoretical setting for RDF this corresponds to taking

17

2. Resource Description Framework

a coproduct (see Definition A.6) of the blank node sets (see Proposition A.9). This leads
to a coproduct in the category RDFHom.

Proposition 2.2 (Coproducts in RDFHom)
Given two RDF graphs G and H, a coproduct G +H can be constructed by the disjoint
union (G + H)Blank := GBlank + HBlank with corresponding injections iBlank : GBlank →
(G + H)Blank and jBlank : HBlank → (G + H)Blank, and the triple set (G + H)Triple :=
iTriple(GTriple) ∪ jTriple(HTriple).

Beweis. The blank node functions iBlank and jBlank obviously constitute RDF graph homo-
morphisms i and j since iTriple(GTriple) ⊆ (G +H)Triple and jTriple(HTriple) ⊆ (G +H)Triple.
For each other RDG graph X with RDF graph homomorphisms g : G → X and h : H → X,
we have a unique blank node function xBlank : (G+H)Blank → XBlank with xBlank ◦ iBlank =
gBlank and xBlank ◦ jBlank = hBlank because of the coproduct property of GBlank + HBlank.
This also constitutes an RDF graph homomorphism x since xTriple((G + H)Triple) =
xTriple(iTriple(GTriple) ∪ jTriple(HTriple)) = xTriple(iTriple(GTriple)) ∪ xTriple(jTriple(HTriple)) =
gTriple(GTriple) ∪ hTriple(HTriple) ⊆ XTriple because of the homomorphism properties of g
and h.

We can construct the underlying vocabulary of an RDF graph by just collecting all
URIs, plain and typed literals that are used in triples of the graph.

Definition 2.7 (Underlying Vocabulary)
Given an RDF graph G, the underlying vocabulary Voc(G) of G is constructed by

• Voc(G)URI := {u ∈ URI | ∃(s, p, o) ∈ GTriple : s = u, p = u or o = u},

• Voc(G)PLit := {l ∈ PLit | ∃(s, p, o) ∈ GTriple : s = l or o = l} and

• Voc(G)TLit := {l ∈ TLit | ∃(s, p, o) ∈ GTriple : s = l or o = l}.

This construction can be extended to become a functor (see Definition A.4) since the
preservation of triples by an RDF graph homomorphism implies the necessary inclusions
on the underlying vocabularies.

Proposition 2.3 (Underlying Vocabulary Functor)
The construction of underlying vocabularies constitutes a functor Voc: RDFHom →
Voc.

Beweis. We have to show that for each RDF graph homomorphism h : G → G′ we
also have Voc(G) ⊆ Voc(G′). This is satisfied since for each u ∈ Voc(G)URI we ha-
ve ∃(s, p, o) ∈ GTriple : s = u, p = u or o = u by definition. Hence, we also have
∃(hNode(s), p, hNode(o)) ∈ G′Triple : hNode(s) = u, p = u or hNode(o) = u by the homo-
morphism property of h and the fact that hNode maps URIs identically. This finally means
that u ∈ Voc(G′)URI. Similar arguments apply for plain and typed literals.

18

2.2. Semantics

The underlying vocabularies of RDF graphs are used in the next section to define their
semantics. More specifically, interpretations of vocabularies are defined and an interpre-
tation satisfies an RDF graph if it is consistent with all triples in the graph.

2.2. Semantics

RDF graphs are intended as assertions about the world. The meaning of these asserti-
ons will be given by a formal semantics in this section. This model-theoretic semantics,
adopted from [Hay04], uses interpretations of vocabularies as models of possible worlds.
They map URIs and literals in a vocabulary to resources as their denotations, where plain
literals denote themselves and URIs and typed literals denote resources. Properties are
special resources with associated relations among resources as extensions.

Definition 2.8 (Interpretation)
An interpretation I = (IVoc, IRes, IVal, IProp, pextI , uintI , tintI) consists of

• a vocabulary IVoc = (IURI, IPLit, ITLit) ∈ |Voc|,

• a set IRes of resources, called universe, with a subset IVal ⊆ IRes of literal values
containing the plain literals IPLit ⊆ IVal and a subset IProp ⊆ IRes of properties6,

• an extension function pextI : IProp → P(IRes × IRes) 7,

• an interpretation function uintI : IURI → IRes for URIs and

• an interpretation function tintI : ITLit → IRes for typed literals.8

The class of all interpretations is denoted by Interp.

The relation between the abstract syntax and the semantics is established by the
satisfaction relation in the following definition.9 Informally, an interpretation satisfies a
graph if all assertions stated in the triples of the graph are realised by corresponding
property extensions in the interpretation.

Definition 2.9 (Satisfaction Relation)
The satisfaction relation |=⊆ Interp × RDFGraphs is defined by the condition that an

6 In [Hay04], IProp is not required to be a subset of IRes for simple interpretations, but only for RDF
interpretations, defined later. We choose to require IProp ⊆ IRes from the beginning to avoid some
unnecessary technical difficulties.

7 Here, P(S) denotes the powerset of a set S (see also Proposition A.5).
8 Note that the codomain for typed literals is the whole set IRes instead of just the set IVal of literal
values because ill-formed typed literals are supposed to be interpreted as resources which are not literal
values.

9 While the normative RDF semantics in [Hay04] uses an approach, where interpretations are recursively
extended to functions assigning a truth value to triples and graphs, we use a satisfaction relation, since
it fits better into our category theoretical framework.

19

2. Resource Description Framework

interpretation I ∈ Interp satisfies an RDF graph G ∈ RDFGraphs, written as I |= G, if
and only if Voc(G) ⊆ IVoc and there is an assignment asg : GBlank → IRes such that for
all triples (s, p, o) ∈ GTriple

• uintI(p) ∈ IProp and

• (asg(s), asg(o)) ∈ pextI(uintI(p)),

where the function asg : GNode → IRes is defined by

asg(x) :=


asg(x) for x ∈ GBlank
uintI(x) for x ∈ URI
x for x ∈ PLit
tintI(x) for x ∈ TLit.

One of the most important notions for the logical view on RDF is the entailment of
RDF graphs. An RDF graph entails another graph if the first semantically implies the
second, i. e., all interpretations satisfying the first also satisfy the second. This notion
formally underpins inferences on RDF graphs.

Definition 2.10 (Entailment)
Given two RDF graphs G and H, G entails H, written as G
 H, if and only if I |= G

implies I |= H for all interpretations I ∈ Interp.

In order to syntactically characterise entailment, we define a more general class of
morphisms on RDF graphs which can not only map blank nodes to blank nodes but also
instantiate them to URIs and literals. Hence, the codomain of the blank node functions
is the whole set G′Node instead of just the blank nodes G′Blank. This notion can be seen as
a combination of the notions of instance and subgraph in [Hay04].

Definition 2.11 (RDF Graph Instantiation)
An RDF graph instantiation i : G → G′ for RDF graphs G and G′ consists of

• an instantiation function iBlank : GBlank → G′Node for blank nodes,

such that

• there is an inclusion iTriple(GTriple) ⊆ G′Triple,

where iTriple : GNode × URI× GNode → G′Node × URI× G′Node is defined by

iTriple(s, p, o) := (iNode(s), p, iNode(o))

and iNode : GNode → G′Node by

iNode(x) :=

{
iBlank(x) for x ∈ GBlank
x for x ∈ URI + PLit + TLit

.

20

2.2. Semantics

RDF graph instantiations give rise to a super category of RDFHom.

Proposition 2.4 (Category RDFInst)
RDF graphs and RDF graph instantiations constitute a category RDFInst, where compo-
sitions are given by (j ◦ i)Blank := jNode ◦ iBlank for all RDF graph instantiations i : G → G′

and j : G′ → G′′ and identities by (idG)Blank := inclGBlank,GNode ◦ idGBlank 10 for all RDF graphs
G.
There is an inclusion functor Incl : RDFHom→ RDFInst with Incl(G) := G for all RDF
graphs G and Incl(h)Blank := inclG′Blank,G′Node ◦ hBlank for all RDF graph homomorphisms h.

Beweis. Firstly, we observe that (k◦j)Node = kNode◦jNode. Associativity of compositions is
then obtained by (k◦(j◦i))Blank = kNode◦(jNode◦iBlank) = (kNode◦jNode)◦iBlank = (k◦j)Node◦
iBlank = ((k◦j)◦i)Blank using associativity of functions. Secondly, since (idG′)Node = idG′Node
cancellability of identities follows from (idG′ ◦ i)Blank = (idG′)Node ◦ iBlank = idG′Node ◦ iBlank =
iBlank and (i ◦ idG)Blank = iNode ◦ (idG)Blank = iNode ◦ inclGBlank,GNode ◦ idGBlank = iBlank.
The functor properties of Incl obviously follow from homomorphisms being a special case
of instantiations.

We now have that RDF graph instantiations exactly characterise semantic entailment in
the opposite direction. This theorem corresponds to the Interpolation Lemma in [Hay04]
stating that “S entails a graph E if and only if a subgraph of S is an instance of E”, where
the instantiation and the subgraph inclusion are combined in our notion of instantiation
from E to S as already alluded to above.

Theorem 2.1 (Characterisation of Entailment by Instantiations)
Given two RDF graphs G and H, G
 H if and only if there exists and RDF graph
instantiation i : H → G.

Beweis. If: Suppose, there is an instantiation i : H → G. For all intepretations I with
I |= G, we have Voc(G) ⊆ IVoc, and, since Voc(H) ⊆ Voc(G) by the under-
lying vocabulary functor, also Voc(H) ⊆ IVoc. For all (s, p, o) ∈ HTriple, we ha-
ve (iNode(s), p, iNode(o)) ∈ GTriple by i being an instantiation and, hence, also
uintI(p) ∈ IProp by I |= G. Moreover, there is at least one assignment asg : GBlank →
IRes with (asg(s ′), asg(o ′)) ∈ pextI(uintI(p)) for all (s ′, p, o ′) ∈ GTriple. We obtain
an assignment asg′ : HBlank → IRes by asg′ := asg ◦ iBlank, and, hence, asg′ = asg ◦
iNode, with (asg′(s), asg′(o)) = (asg(iNode(s)), asg(iNode(o))) ∈ pextI(uintI(p)) for
all (s, p, o) ∈ HTriple. In summary, this means that I |= H and, since this is true for
all I |= G, also G
 H.

Only if: Suppose, that G
 H holds. The interpretation I, constructed by

• IVoc := Voc(G),

10 Here and in the following, inclS,S′ : S → S′ denotes the inclusion S ⊆ S′ viewed as an injective function
mapping elements identically. See also Proposition A.4.

21

2. Resource Description Framework

• IRes := GBlank + Voc(G)URI + Voc(G)PLit + Voc(G)TLit,

• IVal := Voc(G)PLit,

• IProp := {p ∈ Voc(G)URI | ∃(s, p, o) ∈ GTriple},
• pextI(p) := {(s, o) | ∃(s, p, o) ∈ GTriple},
• uintI := inclVoc(G)URI,IRes and

• tintI := inclVoc(G)TLit,IRes
obviously satisfies G by the assignment asg′ := inclGBlank,IRes . Hence, I also satisfies
H by an assignment asg : HBlank → IRes because of G
 H. Since IRes ⊆ GNode we
can define an instantiation i : H → G by iBlank := inclIRes,GNode ◦ asg, and, hence,
iNode = asg, which constitutes an instantiation because for each (s, p, o) ∈ HTriple
we have (asg(s), asg(o)) ∈ pextI(p) by I |= H and, hence, (iNode(s), p, iNode(o)) ∈
GTriple by the construction of I and the definition of i .

Most of the results from [Hay04] can be recovered in our category theoretical setting
quite easily. More specifically, the Empty Graph Lemma (“The empty set of triples is
entailed by any graph, and does not entail any graph except itself.”) corresponds to the
fact that the empty RDF graph is the only initial object in RDFInst, the Subgraph
Lemma (“A graph entails all its subgraphs.”) is obtained by subgraph inclusions (and also
the more general monomorphisms in our setting) being homomorphisms and, hence, also
instantiations, the Instance Lemma (“A graph is entailed by any of its instances.”) holds
because the relation between a graph and an instance in the sense of [Hay04] is a special
case of our instantiation and the Merging Lemma (“The merge of a set S of RDF graphs
is entailed by S and entails every member of S.”) follows from the injections into the
coproduct being instantiations.
In [Bag05], another characterisation of RDF entailments as graph homomorphisms is

given. Although there are strong similarities to our approach above, the aims are different.
While [Bag05] makes available results for directed, labelled multigraphs and directed,
labelled hypergraphs by giving a translation of RDF graphs and, in the latter case, also
interpretations to these well-known mathematical structures, our aim is to provide a
rigorous formal foundation for the RDF abstract syntax and semantics themselves without
translating them to another domain.
Our categorical formalisation can be enhanced by defining intepretation morphisms in

a straightforward way yielding a category of interpretations. A model functor selecting
the subcategory of all interpretations satisfying a given RDF graph would then give rise
to a specification frame in the sense of [EG94], where the construction of the instantia-
tion in the “only if” part of Theorem 2.1 can be used as an initial model of a graph. The
theory of specification frames is closely related to institutions, treated in [GB92]. While a
specification frame considers specifications without substructure, an institution differen-
tiates between signatures and sentences over these signatures. In [LLD06], a treatment
of RDF in the framework of institutions is presented, where sets of resource references,
without distinction between blank nodes, URIs and literals, are considered as signatures

22

2.3. Schemas

and single triples as sentences. Using the formalisations presented above and considering
vocabularies as signatures and whole RDF graphs as sentences could lead to a significant
refinement. A more thorough examination is, however, outside the scope of this thesis.

2.3. Schemas

In this section, we will introduce the means for defining schemas in RDF and for typing
RDF graphs over these schemas. While edges, i. e., triples, are typed by the predicates
in RDF, nodes can be typed using triples with the predefined predicate rdf:type between
an instance and its class. In order to allow the definition of classes, predicates and their
connections in a vocabulary, RDF Schema, defined in [BG04], provides a set of predicates
and classes in the rdfs: namespace to talk about predicates and classes.
The vocabularies in [KC04] and [BG04] are rather extensive, containing some red-

undancies and utility vocabulary for features like reification (i. e., triples about triples),
collections and linked lists. In [MPG07] it is shown that a small subset, called ρdf, is
sufficient to argue about the semantics of RDF Schema. Hence, we will also confine
ourselves to this subset in the following.

Definition 2.12 (ρdf Vocabulary)
The ρdf vocabulary is given by

ρdf := {rdf:type, rdfs:domain, rdfs:range, rdfs:subClassOf, rdfs:subPropertyOf}.

The URIs in this vocabulary are abbreviated by type, dom, range, sc and sp, respectively.

The semantics of this vocabulary is given by restricting the class of intepretations
appropriately. More specifically, all elements of the ρdf vocabulary, the subjects of in-
terpretations of dom and range and the subjects and objects of interpretations of sp
are required to be interpreted as properties. The interpretations of sc and sp have to be
transitive.11 The predicate type is interpreted as a property linking instances to classes.12

The predicates dom and range are intended to determine the classes of subjects and ob-
jects of properties, sc is intepreted as a subclass property in the sense that instances of
the subject are also instances of the object and sp as a relation between properties such
that all pairs in the subject property are also in the object property.

Definition 2.13 (ρdf Interpretation)
A ρdf interpretation is an interpretation I with ρdf ⊆ IURI satisfying
11 In [Hay04] and [MPG07], they are also required to be reflexive, but, since it is also shown in [MPG07]

that the only effect of reflexivity is the entailment of the corresponding reflexive triples, we choose to
drop this requirement from the beginning.

12 RDF and RDF Schema interpretations in [Hay04] and ρdf interpretations in [MPG07] include an
additional subset of IRes and an additional function for the extension of classes, where this extension
has to be equivalent to the extension of type. We choose to avoid this structural overhead, leave the
definition of interpretations unmodified and use the extension of type directly.

23

2. Resource Description Framework

for all ρdf predicates:

• if u ∈ ρdf then uintI(u) ∈ IProp,

for rdfs:domain and rdfs:range:

• if (p, d) ∈ pextI(uintI(dom)) or (p, r) ∈ pextI(uintI(range))
then p ∈ IProp,

• if (p, d) ∈ pextI(uintI(dom)) and (x, y) ∈ pextI(p)
then (x, d) ∈ pextI(uintI(type)),

• if (p, r) ∈ pextI(uintI(range)) and (x, y) ∈ pextI(p)
then (y , r) ∈ pextI(uintI(type)),

for rdfs:subClassOf:

• if (c, d) ∈ pextI(uintI(sc)) and (d, e) ∈ pextI(uintI(sc))
then (c, e) ∈ pextI(uintI(sc)),

• if (x, c) ∈ pextI(uintI(type)) and (c, d) ∈ pextI(uintI(sc))
then (x, d) ∈ pextI(uintI(type)),

for rdfs:subPropertyOf:

• if (o, p) ∈ pextI(uintI(sp)) and (p, q) ∈ pextI(uintI(sp))
then (o, q) ∈ pextI(uintI(sp)) and

• if (p, q) ∈ pextI(uintI(sp))
then p, q ∈ IProp and pextI(p) ⊆ pextI(q).

The class of all ρdf interpretations is denoted by Interpρdf .

An example for the usage of this vocabulary is given in Figure 2.4, where a schema for
the example application in the metadata scenario is defined. This schema was already
used in the RDF graph in Figure 2.1. It defines an abstract class bib:Publication with
subclasses bib:Book and bib:Article and a class bib:Person to be used for authors. The
predicate bib:author is declared to have subjects of type bib:Publication and objects of
type bib:Person. For the predicates bib:title and bib:name only the domains are given
as bib:Publication and bib:Person, respectively, while the ranges are not declared since
the intended range of plain literals cannot be identified.13

The satisfaction relation of Section 2.2 does not have to be modified for ρdf, but the
restricted class of interpretations leads to a stronger version of entailment.

Definition 2.14 (ρdf Entailment)
Given two RDF graphs G and H, G ρdf entails H, written as G
ρdf H, if and only if
I |= G implies I |= H for all interpretations I ∈ Interpρdf .
13 In fact, RDF Schema provides a URI rdfs:Literal as the class of all literals, but no identifier for plain

literals.

24

2.3. Schemas

bib:title bib:name

bib:Publication bib:author bib:Person

bib:Book bib:Article

dom dom
dom range

sc sc

Abbildung 2.4.: Schema for metadata application scenario

A syntactic characterisation of G
ρdf H can be obtained by applying inference rules
to G before trying to find an instantiation i : H → G as in Theorem 2.1. In Section 4.4
we will give these inference rules as graph transformation rules in the sense of this thesis.

In the theory of algebraic graph transformation as well as in the area of model-driven
development a quite different approach to schemas and instances of these schemas is
usually taken, where there is a distinct type graph or metamodel over which the graphs or
models are typed. The main differences between these approaches and the RDF approach
are summarised in Table 2.1. One of the main differences is that in metamodelling and
typed graphs the models or graphs have to structurally conform to their schema, while
in RDF the usage of types is optional and its consequences are defined on the semantics
rather than directly on the syntactical structures. This leads to a more flexible approach,
where, e. g., elements in an RDF graph may be typed over several schemas, instances of
different schemas can occur mixed in a single RDF graph, or hierarchies of schemas with
an arbitrary depth can be created.

Additionally to the intensional semantics given above, an extensional semantics for
RDF Schema is defined in [Hay04], where the properties dom, range, sc and sp not only
imply their corresponding characterisations, but also reflect them. This means, e. g., that
for properties p and p′ for which pextI(p) ⊆ pextI(p′) holds in an interpretation I it is also
required that (p, p′) ∈ pextI(uintI(sp)). This leads to a still stronger entailment relation
with the drawback that its syntactic characterisation is more complex.

A similar approach to the one used in this section can be employed to define further
semantic extensions. The Web Ontology Language (OWL) described in [MH04], e. g.,
defines a much richer vocabulary on top of RDF Schema to allow the definition of more
expressive ontologies. The semantics of OWL is then given by further restricting the class
of interpretations to only those who interpret the OWL vocabulary in the intended way. An
interesting line of future work would be to examine if such an approach can be feasibly
enhanced to achieve a “semantics construction kit”, where the semantics of language
families (e. g., the DSMLs in our application scenario) can be defined dynamically, where
not only structural but also behavioural features are considered.

25

2. Resource Description Framework

Tabelle 2.1.: Comparison of metamodelling/typed graphs and RDF/RDF Schema

Metamodelling/Typed Graphs RDF/RDF Schema

There is a distinct metamodel/type graph
that typically is not changed frequently.

The schema definition can be contained
in the same RDF graph as its instances
(possibly imported from elsewhere) and
changed dynamically.

A typing function assigns exactly one ty-
pe (with possible supertypes) to each ele-
ment.

The type predicate relates nodes to an ar-
bitrary number of types (even none), whi-
le the types of edges, i. e., the predicates
of triples, are still unique.
Predicates can but do not have to be de-
clared in a schema.

Models/graphs have to conform to a
metamodel/type graph.

Typings w. r. t. a schema can be inferred
from partial information.

2.4. Datatypes

In order to give a semantics to the typed literals used in RDF graphs, we need some way
to relate the string representations used in the graphs to actual values of a datatype.
Thus, a datatype consists of a lexical space for the string representations, a value space
for the actual values and a mapping function between them. Since RDF is used for data
structures and not for any operational behaviour this is sufficient to define datatypes in
this context.

Definition 2.15 (Datatype)
A datatype DT = (DT Lex,DTVal, l2vDT) consists of

• a set DT Lex ⊆ String of strings, called lexical space,

• a set DTVal, called value space and

• a function l2vDT : DT Lex → DTVal, called lexical-to-value mapping.

The class of all possible datatypes is denoted by Datatype.

The relation to the type URIs used in typed literals is established by assuming that a
datatype map is given which assigns datatypes as defined above to a set of URIs.

Definition 2.16 (Datatype Map)
A datatype map D = (DURI,mapD) consists of

• a set DURI ⊆ URI of URIs and

26

2.4. Datatypes

• a function mapD : DURI → Datatype.

When such a datatype map is given, the class of semantic interpretations can be
further restricted to conform to this datatype map in the sense that typed literals for
which the datatype URI is contained in the map are interpreted according to the map,
where ill-formed literals, i. e., literals, where the string is not in the lexical space of the
corresponding datatype, are required to be interpreted as some resource which is not
a literal value. Moreover, the value spaces of datatypes in the map are required to be
included in the set of literal values of the interpretation and the values in these spaces
are typed by the interpretation of the datatype URI.14

Definition 2.17 (D-Interpretation)
Given a datatype map D, a D-interpretation is a ρdf interpretation I with DURI ⊆ IURI
satisfying for each d ∈ DURI

• mapD(d)Val ⊆ IVal,

• (v , uintI(d)) ∈ pextI(uintI(type)) if and only if v ∈ mapD(d)Val,

• if (d, s) ∈ ITLit and s ∈ mapD(d)Lex then tintI(d, s) = l2vmapD(d)(s) and

• if (d, s) ∈ ITLit and s /∈ mapD(d)Lex then tintI(d, s) /∈ IVal.

The class of all D-interpretations is denoted by InterpD.

Note that D-interpretations introduce the possibility of contradictory RDF graphs.
If, e. g., the range of a predicate p is defined to be a datatype d ∈ DURI by a triple
(p, range, d) and the object o of a triple (s, p, o) using this predicate is an ill-formed
typed literal o = (d, s) with s /∈ mapD(d)Lex then there can be no D-interpretation
satisfying a graph containing both triples since the interpretation of the literal is required
to be both inside IVal and outside of IVal by different parts of the semantics which is
impossible.
A notion of D-entailment is again achieved by just restricting the considered interpreta-

tions to D-interpretations which again leads to a stronger entailment than ρdf entailment.
For example, contradictory graphs as the one sketched above entail every other graph.

Definition 2.18 (D-Entailment)
Given a datatype map D and two RDF graphs G and H, G D-entails H, written as
G
D H, if and only if I |= G implies I |= H for all interpretations I ∈ InterpD.

We will not consider typed literals further in this thesis since our transformations will
just leave them unmodified or replace them by a possibly completely different literal at

14 In [Hay04] the datatypes themselves are used as interpretations of datatype URIs which we have
omitted here to reduce complexity. Moreover, the predefined datatype rdf:XMLLiteral is assumed to
be contained in every datatype map which is not needed in the context of this thesis.

27

2. Resource Description Framework

the user’s choice. It would, however, be worthwhile to explore the possibilities of adding
a notion of operations and allowing transformations to apply these operations on typed
literals.

28

3. MPOC Transformation Framework

In this chapter the transformation framework which is instantiated for RDF graphs in
the next chapter is introduced. First, we will motivate the introduction of rule-based
transformations by some use cases and give an overview of existing approaches and
frameworks in Section 3.1. Then, the basic notions are introduced in Section 3.2. Our
main results regarding the sequential composition of rules are shown in Section 3.3.
Finally, negative application conditions are introduced in Section 3.4 to further restrict
the applicability of rules under certain circumstances.

3.1. Rule-Based Transformations

Rule-based, algebraic approaches to modifications of graphs and similar structures have
been studied for a long time. We will use such an approach in this thesis in order to for-
malise modifications of RDF graphs. Such a formal concept has some serious advantages
over, e. g., a programmatic approach, where some kind of ad-hoc language is used to
define transformations.

3.1.1. Use Cases for Transformations

Algebraic, rule-based transformations are a common formal framework for various kinds
of transformations. Firstly, a set of rather small transformation rules can be used to
define a grammar for a language of the structures that are transformed. This is similar
to Chomsky grammars for textual languages and allows us to distinguish between allo-
wed and disallowed structures among those that are in principle possible. We will use
such grammars to define the RDF structures expected by the example application in
the metadata application scenario in Section 5.1.1 and to define the example DSML in
Section 5.2.1.
Secondly, more complex rules can be used to allow complex modification operations to

be applied in one step. In order to stay within the language of allowed structures defined
by the grammar, it is possible to compose such complex rules from the grammar rules.
We will introduce such a composition operation later in this chapter and formally prove
that the effect of this rule can also be achieved using the constituent rules and, therefore,
do not leave the language of reachable structures. Such complex rules can be used to
define refactorings or similar large operations that are meant to be applied as a unit. In
Section 5.2.2 we will construct such a rule in the DSML scenario, where an unprotected
connection in an IT landscape is replaced by one that is protected by a firewall.

29

3. MPOC Transformation Framework

Thirdly, rules can also be meant to be applied automatically as long as possible ins-
tead of on demand by the user. Such rules can also be guaranteed to stay within the
corresponding language by composing them from grammar rules. We will use them to
integrate the imported bibliographical data into the schema expected by the application
in the metadata scenario in Section 5.1.2 and to adapt models in the DSML scenario to
an evolution of the language in Section 5.2.3.

3.1.2. Approaches for Rule-Based Transformations

In the following, a brief review of existing approaches to rule-based graph transformations
is given, where we focus on frameworks using category theory as it is also done by our
approach presented in the subsequent sections. Category theory (cf. Appendix A and,
e. g., [AHS90]) allows to talk about properties of a large variety of mathematical struc-
tures in a common framework. Thus, transformation frameworks that are formulated in
categorical terms can also be applied to various structures without the need to redevelop
the theoretical underpinnings.
To achieve this goal, category theory does not talk about the internals of objects but

just about their relations to other objects, called morphisms in category theory. We have
already seen some examples of categories for RDF graphs in the preceding chapter and
will introduce another one in the following chapter where variables for transformations
are introduced into RDF graphs.
Transformations should be able to add and delete structures. The addition is forma-

lised quite easily by a pushout (cf. Definition A.7) in category theory which intuitively
corresponds to a (disjoint) union under some common interface in most categories. The
different approaches vary in the solution for the deletion of elements.
The historically first approach is the double pushout (DPO) approach, introduced in

[EPS73], for which an early presentation of the complete theory for graphs can be found
in [Ehr79]. It uses pushout complements as a means for deletion, i. e., one searches for
that structure to which the parts that are to be deleted have to be added (by a pushout)
in order to reconstruct the original object. Thus, a DPO rule is given by a left-hand side
L, an interface I and a right-hand side R and morphisms from the interface into both
sides and it is applied to a host object G by a match from the left-hand side and two
pushouts completing the diagram in Figure 3.1a to arrive at the result H with a comatch
from the right-hand side.
Pushout complements do not exist in all cases since some of the elements that shall

be deleted could be identified by the match or be used in additional structure in the host
object. In this case a reconstruction of the host object by a pushout is not possible since
information about these identifications and dangling structures is not preserved after
deleting them.
In order to overcome this drawback the single pushout (SPO) approach was developed

in [LE90], where addition and deletion are done in one step by a pushout along a partial
morphism (cf. Figure 3.1b). Since there has to be a morphism from R to H every element
from L that has no image due to partiality has to be deleted in H even if this means that

30

3.1. Rule-Based Transformations

structures that were connected or other elements that where identified to that element
also have to be deleted. The latter possibility means that the comatch may be partial
even if the match was a total morphism in the case that a deleted element is identified
to a preserved one which then has no possible image.
This issue is, i. a., solved by the sesqui pushout (SqPO) approach, which was developed

in [CHHK06], where deletion is done by a final pullback complement (cf. Figure 3.1c).
Intuitively, a pullback (cf. Definition A.7) is an intersection over a common superstructure
(dual to a pushout being a union under a common substructure). Thus, the interface I
being a pullback means that it is the intersection of the object D obtained after deletion
and the left-hand side over the original host object G. There are, however, usually a lot
of objects satisfying this. In an extreme case, everything but the image of the interface
can be deleted and the result is still a pullback. Therefore, the final pullback complement
is chosen from these possibilities, where as much as possible is preserved.

L I R

(PO) (PO)

G D H

(a) DPO approach

L R

(PO)

G H

(b) SPO approach

L I R

(FPBC) (PO)

G D H

(c) SqPO approach

Abbildung 3.1.: Approaches to categorical transformation

While a rule is not applicable in the DPO approach if there are dangling structures or
identifications and both are deleted in the SPO approach, the SqPO approach repres-
ents an intermediate solution, where dangling structures are deleted, since otherwise the
intersection by a pullback would still contain them, but pullback complement does not
exist and the rule is, hence, not applicable if deleted elements are identified to preserved
ones, since the interface contains only the preserved one but a pullback would contain
either both if their image is preserved or none if it is deleted.
From these possible approaches we choose the DPO approach in this thesis since, on

31

3. MPOC Transformation Framework

the one hand, we do not want the side effect of deleting dangling structures and, on the
other hand, the available theory is by far the most comprehensive one for this approach.
The DPO approach was generalised from graphs to more general kinds of categories

by the definition of high level replacement (HLR) categories and systems in [EHKP91],
where a collection of properties is given that a category has to satisfy in order to obtain
the possibility of DPO transformations and the theoretical results for them. This concept
was refined in [EEPT06] by replacing most of the required properties by the requirement
that the category in which the transformations should happen is (a generalistion of) a
so-called adhesive category.
For RDF structures, we, however, do not have unique pushout complements due to

the fact that morphisms are inclusions on triple sets. This makes it possible to preserve
a triple in a pushout complement even if it is deleted in the interface. In Figure 3.2 we
see two pushout complements for the same given situation, where a triple is deleted in
the interface. In one pushout complement the corresponding triple is also deleted, while
it is preserved in the other one. Since triples do not carry an identity in RDF graphs, they
cannot be disjointly unified and, hence, both pushout complements lead to the same
pushout.

u u′
p

u u′

u u′
p

u u′

(PO)

(a) Triple deleted

u u′
p

u u′

u u′
p

u u′
p

(PO)

(b) Triple preserved

Abbildung 3.2.: Non-unique pushout complements for RDF graphs

Since adhesiveness implies uniqueness of pushout complements this also makes ca-
tegories for RDF graphs intrinsincally non-adhesive (except for the choice of triple set
equalities as morphisms in the rules which would, however, void the purpose of trans-
formations). A subset of the HLR properties in [EHKP91] are still satisfied for RDF
categories but non-uniqueness of pushout complements still makes transformations non-
deterministic which is not desirable.
Therefore, we will introduce a new variant of the DPO approach, first considered in

[BB08], in the following sections, where deletion is achieved by minimal pushout comple-
ments instead of arbitrary ones. In a way, this is related to the SqPO approach choosing
final pullback complements and, in fact, we will show later that for RDF structures, and
presumably other similar categories, a minimal pushout complement is exactly a pushout
that is also a pullback.

32

3.2. MPOC-PO Transformations

3.2. MPOC-PO Transformations

In this section we will present the basic notions of our MPOC-PO transformation ap-
proach. As already mentioned above, this is a variant of the DPO approach, where the
first square is not an arbitrary pushout but a minimal pushout complement.

3.2.1. Minimal Pushout Complements

The need for minimal pushout complements arises because in some categories, namely
the ones used for RDF graphs in this thesis, pushout complements are not unique. They
may preserve elements that are deleted in the interface. This problem arises because the
triples in RDF graphs are uniquely given by their subject, predicate and object, and are,
hence, a pushout identifies triples that are identical even if they have no common preimage
in the interface. For multigraphs, usually considered in algebraic graph transformation,
this problem is avoided by edges having their own identities leading to pushouts disjointly
adding them if they have no common preimage.
In order to get a unique result for the left-hand pushout in a DPO transformation, more

specifically, the presumably intended result, we require it to delete as much as possible,
i. e., to be the smallest possible pushout complement. In terms of category theory, this is
expressed by the requirement that the minimal pushout complement is initial among all
pushout complements.

Definition 3.1 (Minimal Pushout Complement)
Given two morphisms l : I → L andm : L→ G in an arbitrary category C (cf. Figure 3.3a),
the category POC(l , m) of pushout complements of l and m consists of

objects (D, f : D → G, i : I → D) such that (G, f ,m) is a pushout of l and i (cf.
Figure 3.3b),

morphisms d : D → D′ between objects (D, f , i) and (D′, f ′, i ′) such that d ◦ i = i ′ and
f ′ ◦ d = f and

compositions and identities given by compositions and identities in C.

A minimal pushout complement (MPOC) of l and m is an initial object in POC(l , m)
(cf. Figure 3.3c).

We now want to characterise when such an MPOC exists. Intuitively an MPOC should
delete everything in the left-hand side but not in the interface or equivalently delete the
left-hand side and then add again the interface. In most categories, we may, however,
not delete all elements of the left-hand side because structures are connected to them
or they are identified by the match to the host graph. In order to formalise this, the
notion of initial pushout is introduced, which constructs the smallest possible boundary
and context, such that a given match can be reconstructed by a pushout of left-hand side
and context under the boundary. This can be seen as a category theoretical abstraction

33

3. MPOC Transformation Framework

L I

G

l

m

(a) Given situation

L I

(PO)

G D

l

m i

f

(b) POC of l and m

L I

(MPOC)

G D

(=)

(=)

D′

l

m i

f

i ′

f ′

∃!d

(c) MPOC of l and m

Abbildung 3.3.: Pushout complements and MPOCs of l and m

of the complement in sets, which, in fact, is the context for an initial pushout in SetIncl,
where the boundary is always empty since set inclusions do neither identify elements nor
glue additional structures to them.

Definition 3.2 (Initial Pushout)
Given a morphism m : L→ G in an arbitrary category C with a distinguished classM of
monomorphisms which is closed under composition, i. e., f , g ∈ M implies g ◦ f ∈ M,
and decomposition, i. e., g ◦ f ∈ M implies f ∈ M, the category PO(m) of pushouts
over m consists of

objects (B, b : B → L,C, c : C → G,mB : B → C) such that b, c ∈ M and (G, c,m) is
pushout of b and mB (cf. Figure 3.4a),

morphisms (b∗ : B → B′, c∗ : C → C′) between objects (B, b, C, c,mB) and (B′, b′, C′,
c ′, mB′) such that b′◦b∗ = b, c ′◦c∗ = c and mB′ ◦b∗ = c∗◦mB (where b∗, c∗ ∈M
due to decomposition) and

compositions and identities given by componentwise compositions and identities in C.

An initial pushout (IPO) over m is an initial object (B, b, C, c,mB) in PO(m) (cf. Figu-
re 3.4b), where B and b are called boundary object and boundary morphism and C and
c context object and context morphism, respectively.
An initial pushout is called strong if (C′, c∗, mB′) is a pushout of b∗ and mB for all
comparison pushouts, weak otherwise.1

1 In [EEPT06] only strong IPOs are considered, while we need weak IPOs in the context of this thesis,
since IPOs for RDF graphs are weak. In fact, the existence of strong IPOs would imply unique pushout
complements.

34

3.2. MPOC-PO Transformations

B L

(PO)

C G

b

mB m

c

(a) Pushout over m

(=)

B L B′

(IPO) (PO)

C G C′

(=)

∃!b∗

b b′

mB m mB′

c c ′

∃!c∗

(b) IPO over m

Abbildung 3.4.: Pushouts and initial pushouts over m

A first observation is that initial pushouts are minimal pushout complements of the
boundary and the given morphism.

Lemma 3.1 (IPOs are MPOCs)
Given a morphism m : L→ G with IPO (B, b, C, c,mB), then (C, c,mB) is an MPOC of
b and m.

Beweis. For each other pushout complement (D, f , i) of b andm we have that (B, b,D, f ,
i) is a pushout over m and, hence, there are unique morphisms b∗ : B → B and c∗ : C →
D w. r. t. b ◦ b∗ = b, f ◦ c∗ = c and i ◦ b∗ = c∗ ◦mB. Obviously, this implies b∗ = idB
and, thus, c∗ is unique w. r. t. f ◦ c∗ = c and i = c∗ ◦mB. This is exactly the comparison
morphism required for (C, c,mB) to be an MPOC.

The construction of an MPOC is only possible if the gluing points in the boundary,
i. e., the elements necessary to reconstruct the match by a pushout, are preserved in the
interface. Using initial pushouts this can be formalised by the requirement that there is
a morphism from the boundary into the interface.

Definition 3.3 (Gluing Condition)
Given a category C, morphisms l : I → L with l ∈M and m : L→ G with IPO (B, b, C, c,
mB) over m, l and m satisfy the gluing condition if there is a morphism b∗ : B → I with
b∗ ∈M and l ◦ b∗ = b (cf. Figure 3.5a).

If this condition is met we can construct an MPOC by adding the interface to the
context, i. e., building a pushout of interface and context under the boundary. The follo-
wing theorem also states that, in a category with IPOs, this characterisation is not only
sufficient but also necessary for MPOCs in the sense that it can be applied if any pushout

35

3. MPOC Transformation Framework

complement exists at all.

Theorem 3.1 (Construction of MPOCs by IPOs)
Given a category C with pushouts preserving M, morphisms l : I → L with l ∈ M and
m : L→ G with IPO (B, b, C, c,mB) over m,

1. if l and m satisfy the gluing condition then an MPOC (D, f , i) of l and m can
be constructed by a pushout (D, c∗, i) of b∗ and mB and the unique morphism
f : D → G w. r. t. f ◦ c∗ = c and f ◦ i = m ◦ l induced by G with c ◦mB = m ◦ b =
m ◦ l ◦ b∗ being a comparison object for this pushout (cf. Figure 3.5b),

2. if there is a pushout complement (D′, f ′, i ′) of l and m then l and m satisfy the
gluing condition and

3. if there is an MPOC (D, f , i) of l andm with morphisms b∗ : B → I and c∗ : C → D

induced by the IPO then (D, c∗, i) is a pushout of b∗ and mB.

Beweis.

1. Firstly, (G, f ,m) is a pushout of l and i and, hence, (D, f , i) a pushout complement
of l and m due to pushout decomposition (cf. Proposition A.11) and f ∈ M due
to pushouts preservingM (cf. Figure 3.5c).
Secondly, (D, f , i) is initial in POC(l , m) and, hence, an MPOC: For each other
pushout complement (D′, f ′, i ′) of l and m we have that (G, f ′, m) is a pushout
of l and i by definition. The initiality of the IPO then induces unique morphisms
b′ : B → I and c ′ : C → D′ with l ◦ b′ = b, f ′ ◦ c ′ = c and i ′ ◦ b′ = c ′ ◦ mB
(cf. Figure 3.5d). Since l is a monomorphism and l ◦ b′ = b = l ◦ b∗ we have
b′ = b∗. From i ′ ◦ b∗ = i ′ ◦ b′ = c ′ ◦mB we have that D′ is a comparison object
for the pushout (D, c∗, i) of b∗ and mB and, thus, there is a unique morphism
d : D → D′ with d ◦ c∗ = c ′ and d ◦ i = i ′ (cf. Figure 3.5e). It follows that
f ′ ◦ d ◦ i = f ′ ◦ i ′ = m ◦ l = f ◦ i and f ′ ◦ d ◦ c∗ = f ′ ◦ c ′ = c = f ◦ c∗. Since
(D, c∗, i) is a pushout and pushouts are jointly epimorphic (cf. Proposition A.10)
it follows that f ′ ◦ d = f .
It remains to show that d is unique w. r. t. f ′ ◦ d = f and d ◦ i = i ′. Suppose there
is d ′ : D → D′ with f ′ ◦ d ′ = f and d ′ ◦ i = i ′. It follows that f ′ ◦ d ′ ◦ c∗ = f ◦ c∗ =
c = f ′ ◦c ′ and due to f ′ being a monomorphism also d ′ ◦c∗ = c ′. Since d is unique
w. r. t. d ◦ c∗ = c ′ and d ◦ i = i ′ we have d ′ = d .
Thus, (D, f , i) is an MPOC of l and m.

2. For a pushout complement (D′, f ′, i ′) of l and m initiality of the IPO induces
unique morphisms b′ : B → I and c ′ : C → D′ with l ◦ b′ = b, f ′ ◦ c ′ = c and
i ′ ◦b′ = c ′ ◦mB (cf. Figure 3.5d). The gluing condition for l and m is then satisfied
by using b∗ = b′.

3. Since the construction in 1. applied to the given morphism b∗ yields an MPOC of l
and m and MPOCs are unique up to isomorphism the result of the construction has

36

3.2. MPOC-PO Transformations

to be isomorphic to D. But since pushouts are also only unique up to isomorphism
(D, c∗, i) can be chosen as the pushout in the construction.

3.2.2. Transformation Rules and Transformations

In order to define transformation rules and transformations in our approach, we first
summarise the requirements on categories for which this approach should be applicable,
where we will assume all definitions and propositions in the subsequent sections to take
place in such a category. In order to apply the construction of MPOCs by IPOs given
above, we require the category to have IPOs for all morphisms and pushouts along
monomorphisms preserving them. Moreover, we allow the definition of a special class
R ⊆M which are later used in the rules. This is useful to further restrict the possibilities
of rules, e. g., by disallowing certain elements to be added or deleted as we will do it for
variables in the RDF instantiation.

Definition 3.4 (Transformation Category)
A transformation category (C,M,R) is a category C with distinguished classesM and
R ⊆M of monomorphisms, such that

• M is closed under composition, i. e., f , g ∈ M implies g ◦ f ∈ M, and decompo-
sition, i. e., g ◦ f ∈M implies f ∈M,

• R is closed under composition, i. e., f , g ∈ R implies g ◦ f ∈ R,

• pushouts along M exist, i. e., for all morphisms r : I → R and i : I → D, where
r ∈M, a pushout (H, g : D → H, n : R→ H) of r and i exists,

• pushouts preserve M, i. e., for all pushouts (H, g, n) of r and i , r ∈ M implies
g ∈M,

• pushouts preserve R, i. e., for all pushouts (H, g, n) of r and i , r ∈ R implies
g ∈ R, and

• IPOs (with boundary and context morphisms inM) exist for all morphisms.

A transformation rule is now given by left-hand side, interface and right-hand side
connected by monomorphisms fromM.

Definition 3.5 (Transformation Rule)
A transformation rule tr = (Ltr , Itr ,Rtr , tr l, tr r) consists of

• objects Ltr , Itr ,Rtr ∈ |C| called left-hand side (LHS), interface and right-hand side
(RHS), respectively, and

• morphisms tr l : Itr → Ltr and tr r : Itr → Rtr with tr l, tr r ∈ R.

37

3. MPOC Transformation Framework

(=)

B L I

(IPO)

C G

b∗

b l

mB m

c

(a) Gluing condition

(=)

B I L

(PO) (=)

C D G

(=)

b

b∗ l

mB i m

c∗ ∃!f

c

(b) Pushout under boundary

(=)

B I L

(PO) (PO)

C D G

(=)

b

b∗ l

mB i m

c∗ f

c

(c) Pushout decomposition

(=)

B L I

(IPO) (PO)

C G D′

(=)

∃!b′

b l

mB m i ′

c f ′

∃!c ′

(d) Comparison complement

B I

(PO)

C D

(=)

(=)

D′

b∗ = b′

mB i

c∗

i ′

c ′

∃!d

(e) D′ comparison object for D

Abbildung 3.5.: Construction of MPOCs by IPOs

38

3.2. MPOC-PO Transformations

A transformation by a transformation rule is then constructed by an MPOC for the
left-hand side and a pushout for the right-hand side.

Definition 3.6 (Transformation)
A transformation from an object G to an object H by a transformation rule tr via a
match m : Ltr → G, written as G tr ,m

==⇒ H, is given by

• an object D with monomorphisms f : D → G and g : D → H inM,

• a morphism i : Itr → D and

• a comatch n : Rtr → H,

such that

• (D, f , i) is an MPOC of tr l and m and

• (H, g, n) is a pushout of tr r and i .

(Cf. Figure 3.6.)

Ltr Itr Rtr

(MPOC) (PO)

G D H

tr l tr r

m i n

f g

Abbildung 3.6.: Transformation G tr ,m
==⇒ H

The following theorem summarises the basic properties of transformations. More spe-
cifically, transformation results exist if the gluing condition is satisfied and then they are
also unique and transformations preserve morphisms inM.

Theorem 3.2 (Properties of Transformations)
Given a transformation rule tr , an object G and a match m : Ltr → G, such that tr l and
m satisfy the gluing condition, then

1. the transformation G tr ,m
==⇒ H as in Definition 3.6 exists,

2. the result H of the transformation is unique up to isomorphism and

3. f and g are in R.

Beweis.

39

3. MPOC Transformation Framework

1. Since the gluing condition is satisfied we can construct an MPOC (D, f , i) of
tr l and m by Theorem 3.1 and then build a pushout (H, g, n) of tr r and i since
tr r ∈M and (C,M,R) has pushouts alongM.

2. Since MPOCs and pushouts are defined as initial objects in appropriate categories
and initial objects are unique up to isomorphism (cf. Proposition A.6) (D, f , i) and,
hence, also (H, g, n) are unique up to isomorphism.

3. Since tr l and tr r are in R and (C,M,R) is required to have pushouts preserving
R f and g are also in R.

3.3. Sequential Composition

In order to build larger rules from smaller ones, we introduce the sequential composition of
rules in this section, where we show that such sequentially composed rules do not modify
the results obtainable by a set of rules and how they can be obtained from transformation
sequences.

3.3.1. Composition and Decomposition of MPOCs and IPOs

As preliminaries for composition of rules and synthesis and analysis of transformations
we need some results for the composability and deomposability of MPOCs which in turn
build on corresponding results for IPOs.
Firstly, we observe that IPOs over a morphism are composable with MPOCs of the

same morphism.2

Lemma 3.2 (Composition of IPOs with MPOCs)
Given morphisms l : I → L with l ∈M and m : L→ G with IPO (B, b, C, c,mB) over m
and an MPOC (D, f , i) of l and m (cf. Figure 3.7a), then (B, b∗, C, c∗, mB) is an IPO
over i , where b∗ : B → I and c∗ : C → D are the morphisms in M induced by initiality
of the original IPO.

Beweis. Firstly, (D, c∗, i) has to be a pushout of b∗ and mB which is satisfied because
of Theorem 3.1 3. applied to the MPOC (D, f , i) of l and m.
Secondly, this pushout is initial in PO(i): Given another pushout (I ′, l ′, D′, f ′, i ′) over i ,
then (I ′, l ◦ l ′, D′, f ◦ f ′, i ′) is a pushout over m by pushout composition (cf. Propositi-
on A.11). Initiality of the original IPO implies the existence of unique b′ : B → I ′ and
c ′ : C → D′ w. r. t. l ◦ l ′ ◦ b′ = b and f ◦ f ′ ◦ c ′ = c (cf. Figure 3.7b). Since b = l ◦ b∗,
c = f ◦ c∗ and l and f are monomorphisms this implies l ′ ◦ b′ = b∗ and f ′ ◦ c ′ = c∗.
Moreover, b′ and c ′ are also unique w. r. t. these properties since each other morphisms

2 In [EEPT06] a more general result for the strong initial pushouts in the framework of adhesive HLR
categories is given. More specifically, IPOs there are composable with arbitrary pushouts over the same
morphism.

40

3.3. Sequential Composition

b′′ and c ′′ with l ′ ◦ b′′ = b∗ and f ′ ◦ c ′′ = c∗ would also satisfy l ◦ l ′ ◦ b′′ = l ◦ b∗ = b and
f ◦ f ′ ◦ c ′′ = f ◦ c∗ = c by composition with l and f and b′ and c ′ were already unique
for the latter equalities.

(=)

B L I

(IPO) (MPOC)

C G D

(=)

∃!b∗

b l

mB m i

c f

∃!c∗

(a) Given IPO

(=)

B L I I ′

(IPO) (MPOC) (PO)

C G D D′

(=)

∃!b′

b l l ′

mB m i i ′

c f f ′

∃!c ′

(b) Comparison pushout

Abbildung 3.7.: Composition of IPOs with MPOCs

This already allows us to compose and decompose MPOCs horizontically, i. e., along
the monomorphisms, in all transformation categories, while vertical composition and de-
composition needs additional properties.

Lemma 3.3 (Horizontal Composition and Decomposition of MPOCs)
Given morphisms l : I → L, l ′ : I ′ → I, f : D → G and f ′ : D′ → D with l , l ′, f , f ′ ∈ M,
m : L → G with IPO (B, b, C, c,mB) over m and i : I → D and i ′ : I ′ → D′, such that
(G, f ,m) is a pushout of l and i and (D, f ′, i) is a pushout of l ′ and i ′ (cf. Figure 3.8),
then (D′, f ◦ f ′, i ′) is an MPOC of l ◦ l ′ and m if and only if (D, f , i) is an MPOC of l
and m and (D′, f ′, i ′) is an MPOC of l ′ and i .

Beweis. Firstly, initiality of the IPO induces morphisms b∗ : B → I and c∗ : C → D with
l ◦ b∗ = b and f ◦ c∗ = c and morphisms b′ : B → I ′ and c ′ : C → D′ with l ◦ l ′ ◦ b′ = b
and f ◦ f ′ ◦ c ′ = c . Because l and f are monomorphisms we also have l ′ ◦ b′ = b∗ and
f ′ ◦ c ′ = c∗.

If (Composition): Since (D, f , i) is an MPOC of l and m, Lemma 3.2 implies that
(B, b∗, C, c∗, mB) is an IPO over i . By Theorem 3.1 3. the MPOC (D′, f ′, i ′)
implies that (D′, c ′, i ′) is a pushout of b′ and mB. Using this pushout in the con-
struction of Theorem 3.1 1. w. r. t. m : L → G yields (D′, f ◦ f ′, i ′) as an MPOC
of l ◦ l ′ and m.

Only if (Decomposition): From (D′, f ◦ f ′, i ′) being an MPOC of l ◦ l ′ and m and
Theorem 3.1 3. it follows that (D′, c ′, i ′) is a pushout of b′ and mB. By pushout

41

3. MPOC Transformation Framework

composition (cf. Proposition A.11) with (D, f ′, i) we get a pushout (D, f ′ ◦ c ′, i)
of l ′ ◦ b′ and mB which by Theorem 3.1 1. yields (D, f , i) as MPOC of l and m.
By Lemma 3.2 this implies again that (B, b∗, C, c∗, mB) is an IPO over i . Using the
pushout (D′, c ′, i ′) of b′ and mB in Theorem 3.1 1. we get (D′, f ′, i ′) as MPOC
of l ′ and i .

B L I I ′

(IPO) (PO) (PO)

C G D D′

∃!b′
∃!b∗

b l l ′

mB m i i ′

c f f ′

∃!c∗
∃!c ′

Abbildung 3.8.: Horizontal composition and decomposition of MPOCs

For the vertical composition and decomposition of IPOs and MPOCs, we need our
category to satisfy some additional properties. The first one is a characterisation of
MPOCs by pullbacks, i. e., a pushout is an MPOC if and only if it is also a pullback.3

Intuitively this is a reasonable property since an MPOC should mean that as much as
possible is deleted in the MPOC object and this is the case if and only if the interface is
the intersection of the MPOC and the left-hand side and not more.

Definition 3.7 (MPOC-Pullback Characterisation)
A category has the MPOC-pullback characterisation if, given morphisms l : I → L and
f : D → G with l , f ∈ M, m : L→ G and i : I → D, such that (G, f ,m) is a pushout of
l and i , then (D, f , i) is an MPOC of l and m if and only if (I, l , i) is a pullback of f and
m.

Using the surprisingly strong MPOC-pullback characterisation, vertical composition of
MPOCs follows immediately since we can use composition of pushouts and pullbacks.

Lemma 3.4 (Vertical Composition of MPOCs)
Given a category which has the MPOC-pullback characterisation, morphisms l : I → L,
f : D → G and f ′ : D′ → G′ with l , f , f ′ ∈ M, m : L → G, m′ : G → G′, i : I → D and

3 Note that in the categories considered in [EEPT06] and related work pushouts (along M) are pull-
backs. Thus, this property then implies that all pushouts are MPOCs which is true because these
categories have unique pushout complements. In our framework, and escpecially for the RDF instan-
tiation, pushouts are, however, not necessarily pullbacks.

42

3.3. Sequential Composition

i ′ : D → D′, such that (D, f , i) is an MPOC of l and m and (D′, f ′, i ′) is an MPOC of f
and m′ (cf. Figure 3.9a), then (D′, f ′, i ′ ◦ i) is an MPOC of l and m′ ◦m.

Beweis. From the MPOC (D, f , i) of l andm we can conclude by definition that (G, f ,m)
is a pushout of l and i and by the MPOC-pullback characterisation that (I, l , i) is a pull-
back of f and m. Analogously, the MPOC (D′, f ′, i ′) of f and m′ implies the pushout
(G′, f ′, m′) of f and i ′ and the pullback (D, f , i ′) of f ′ and m′ (cf. Figure 3.9b). Compo-
sition of pushouts and pullbacks (cf. Proposition A.11) yields a pushout (G′, f ′, m′ ◦m)
of l and i ′ ◦ i and a pullback (I, l , i ′ ◦ i) of f ′ and m′ ◦m (cf. Figure 3.9c). Applying the
MPOC-pullback characterisation again we finally obtain the MPOC (D′, f ′, i ′ ◦ i) of l and
m′ ◦m.

L I

(MPOC)

G D

(MPOC)

G′ D′

l

m i

f

m′ i ′

f ′

(a) Given situation

L I

(PB)

(PO)

G D

(PB)

(PO)

G′ D′

l

m i

f

m′ i ′

f ′

(b) MPOCs are pullbacks

L I

(PB)
G D

(PO)

G′ D′

l

m i

m′ i ′

f ′

(c) Composistion of push-
outs and pullbacks

Abbildung 3.9.: Vertical composition of MPOCs

In order to vertically decompose MPOCs and IPOs we need a decomposition property
for pushouts using pullbacks.4 While the classical pushout decomposition in Propositi-
on A.11 allows us to decompose a pushout if one of the given morphisms is factored
by constructing a pushout of this factor, the pushout-pullback decomposition is useful if
one of the pushout morphisms is factored such that we can construct a pullback of this
factor.

Definition 3.8 (Pushout-Pullback Decomposition)
A category has pushout-pullback decompositions if, given morphisms l : I → L, f : D → G

and f ′ : D′ → G′ with l , f , f ′ ∈ M, m : L→ G, m′ : G → G′, i : I → D and i ′ : D → D′,

4 In [EEPT06] and related work another variant of pushout-pullback decomposition is used, where other
morphisms are assumed to be monomorphisms (or, more specifically, morphisms inM).

43

3. MPOC Transformation Framework

such that (G′, f ′, m′◦m) is a pushout of l and i ′◦ i , m◦ l = f ◦ i and (D, f , i ′) is a pullback
of f ′ and m′ (cf. Figure 3.10a), then (G, f ,m) is a pushout of l and i (cf. Figure 3.10b).

L I

G (PO) D

G′ D′

l

m i

m′ i ′

f ′

L I

(=)

G D

(PB)

G′ D′

l

m i

f

m′ i ′

f ′

(a) Given situation

L I

(PO)

G D

G′ D′

l

m i

f

m′ i ′

f ′

(b) Conclusion

Abbildung 3.10.: Pushout-pullback decomposition

Combining pushout-pullback decompositions and the MPOC-pullback characterisations
we obtain a vertical decomposition of MPOCs by pullbacks.

Lemma 3.5 (Vertical Decomposition of MPOCs by Pullbacks)
Given a category which has the MPOC-pullback characterisation and pushout-pullback
decompositions, morphisms l : I → L, f : D → G and f ′ : D′ → G′ with l , f , f ′ ∈ M,
m : L→ G, m′ : G → G′, i : I → D and i ′ : D → D′, such that (D′, f ′, i ′ ◦ i) is an MPOC
of l and m′ ◦m, m ◦ l = f ◦ i and (D, f , i ′) is a pullback of f ′ and m′ (cf. Figure 3.11a),
then (D, f , i) is an MPOC of l and m and (D′, f ′, i ′) is an MPOC of f and m′.

Beweis. Using the definition of MPOCs and the MPOC-pullback characterisation, we
have that (G′, f ′, m′◦m) is a pushout of l and i ′◦i and (I, l , i ′◦i) is a pullback of f ′ andm′◦
m (cf. left side of Figure 3.11b). By pushout-pullback decomposition we obtain (G, f ,m)
as pushout of l and i . Pushout and pullback decomposition (cf. Proposition A.11) then
imply that (G′, f ′, m′) is a pushout of f and i ′ and that (I, l , i) is a pullback of f and m,
respectively (cf. right side of Figure 3.11b). Using the MPOC-pullback characterisation
again yields (D, f , i) as an MPOC of l and m and (D′, f ′, i ′) as an MPOC of f and
m′.

It remains to show that MPOCs can be decomposed vertically even if no pullback but
only pushouts are involved.

Lemma 3.6 (Vertical Decomposition of MPOCs by Pushouts)
Given a category which has the MPOC-pullback characterisation and pushout-pullback

44

3.3. Sequential Composition

L I

G (MPOC) D

G′ D′

l

m i

m′ i ′

f ′

L I

(=)

G D

(PB)

G′ D′

l

m i

f

m′ i ′

f ′

(a) Given situation

L I

(PB)
G D

(PO)

G′ D′

l

m i

m′ i ′

f ′

L I

(PB)

(PO)

G D

(PB)

(PO)

G′ D′

l

m i

f

m′ i ′

f ′

(b) MPOC characterisation and pushout and
pullback decompositions

Abbildung 3.11.: Vertical decomposition of MPOCs by pullbacks

decompositions, morphisms l : I → L, f : D → G and f ′ : D′ → G′ with l , f , f ′ ∈ M,
m : L→ G, m′ : G → G′, i : I → D and i ′ : D → D′, such that (D′, f ′, i ′ ◦ i) is an MPOC
of l and m′ ◦m, (G, f ,m) is a pushout of l and i and (G′, f ′, m′) is a pushout of f and
i ′ (cf. Figure 3.11a), then (D, f , i) is an MPOC of l and m and (D′, f ′, i ′) is an MPOC
of f and m′ (cf. ??).

Beweis. We consider the IPO (B, b, C, c,mB) over m′ ◦m. By Lemma 3.2 (B, b∗, C, c∗,
mB) with the unique morphisms b∗ : B → I with l ◦ b∗ = b and c∗ : C → D′ with
f ′ ◦ c∗ = c , induced by (G′, f ′, m′ ◦m) of l and i ′ ◦ i as comparison pushout, is an IPO
over i ′ ◦ i . We construct pullbacks (C′, c ′, m′2) of c = f ◦ c∗ and m′ and (C′′, c ′′, m′′2) of
c∗ and i ′ with corresponding unique morphisms m′1 : B → C′ and m′′1 : B → C′′. Since
IPOs are MPOCs by Lemma 3.1 we can use MPOC pullback decomposition to conclude
that (C′, c ′, m′1) is an MPOC of b = l ◦b∗ and m, (C, f ◦c∗, m′2) an MPOC of c ′ and m′,
(C′′, c ′′, m′′1) an MPOC of b∗ and i and (C, c∗, m′′2) an MPOC of c ′′ and i ′. By composing
the MPOC C′′ with the pushout (G, g,m) of l and i , C′′ is a comparison object for the
MPOC C′ and there is a unique morphism C′ → C′′. Vice versa, by composing the
pullback C′′ with the commuting square m′ ◦ f = f ′ ◦ i ′, C′′ is also a comparison object
for C′ as a pullback and there has to be a unique morphism C′′ → C′. Hence, C′ and
C′′ are isomorphic. Thus, we can use horizontal MPOC decomposition to conclude that
(D, f , i) is an MPOC of l and m and (D′, f ′, i ′) is an MPOC of f and m′.

Finally, a last lemma shows the vertical decomposition of IPOs. More specifically,
the small IPOs over the components of a composed morphism are also IPOs over the
pushout-pullback decomposition of the large IPO over the composed morphism.

Lemma 3.7 (Vertical Decomposition of IPOs)

45

3. MPOC Transformation Framework

L I

G (MPOC) D

G′ D′

l

m i

m′ i ′

f ′

L I

(PO)

G D

(PO)

G′ D′

l

m i

f

m′ i ′

f ′

(a) Given situation

L I

(MPOC)

G D

(MPOC)

G′ D′

l

m i

f

m′ i ′

f ′

(b) Conclusion

Abbildung 3.12.: Vertical decomposition of MPOCs by pushouts

Given a category with pullbacks alongM preservingM, pushout-pullback decompositions
and MPOC-pullback characterisation and morphisms m : L → G and m′ : G → G′ with
IPOs (B1, b1, C1, c1, m1) overm, (B2, b2, C2, c2, m2) overm′ and (B3, b3, C3, c3, m3) over
m′ ◦ m (cf. Figure 3.13a), then there is an object C′3 with a monomorphism c ′3 : C

′
3 →

G and morphisms m3,1 : B3 → C′3 and m3,2 : C′3 → C3, such that m3,2 ◦ m3,1 = m3,
(C′3, c

′
3, m3,1) is an MPOC of b3 and m, (C3, c3, m3,2) is an MPOC of c ′3 and m′ and

(B1, b
∗
1, C1, c

∗
1 , m1) and (B2, b

∗
2, C2, c

∗
2 , m2) are IPOs over m3,1 and m3,2, respectively

(cf. Figure 3.13b).

Beweis. The object C′3 and the morphisms c ′3 and m3,2 can be constructed as a pullback
(C′3, c

′
3, m3,2) of c3 and m

′ inducing m3,1 as the unique morphism with m3,2 ◦m3,1 = m3
and c ′3 ◦m3,1 = m ◦b3. The IPO (B3, b3, C3, c3, m3) over m′ ◦m implies that (C3, c3, m3)
is an MPOC of b3 and m′ ◦m by Lemma 3.1. We can now apply Lemma 3.5 leading to
MPOCs (C′3, c

′
3, m3,1) of b3 and m and (C3, c3, m3,2) of c ′3 and m

′. Finally, Lemma 3.2
can be used to obtain that (B1, b∗1, C1, c

∗
1 , m1) and (B2, b

∗
2, C2, c

∗
2 , m2) are IPOs over

m3,1 and m3,2, respectively, where b∗1, c
∗
1 , b

∗
2 and c

∗
2 are the induced morphisms from the

IPO into the MPOCs as comparison pushouts.

3.3.2. Sequentially Composed Rules

We will now develop a sequential composition of transformation rules. First, some proper-
ties that are needed for a sensible sequential composition are collected. The first property
in the following definition is a variant of one of the HLR properties in [EHKP91] which is,
on the one hand, slightly weaker since we do not need the full strength for analysis and
synthesis of sequential composition, on the other hand, we additionally require a second

46

3.3. Sequential Composition

B3 L

B1

(IPO)

C1

(IPO) G

B2

(IPO)

C2

C3 G′

b3
b1

m1 m

c1
m3

b2

m2 m′

c2
c3

(a) Given situation

B3 L

B1

(IPO) (MPOC)

C1

C′3 G

B2

(IPO) (MPOC)

C2

C3 G′

b3
∃!b∗1

m1 m3,1 m

∃!c∗1
c ′3

∃!b∗2

m2 m3,2 m′

∃!c∗2
c3

(b) Conclusion

Abbildung 3.13.: Vertical IPO decomposition

47

3. MPOC Transformation Framework

cube property for MPOCs which is not considered in the original version.

Definition 3.9 (Cube Properties)
A transformation category satisfies the cube properties if, given the commutative cube
in Figure 3.14,

• the front faces (the ones containing I and D) are pushouts if the back faces
(the ones containing E and G) are pushouts and top and bottom are pullbacks
(pushouts are preserved by pullbacks) and

• if all vertical faces are pushouts and the top is a pullback then the back right face
is an MPOC if and only if the front left face is an MPOC (MPOCs are inherited
over pushouts).

E

J1 J2

I

G

D1 D2

D

Abbildung 3.14.: Cube properties

Now, we define an extended notion of transformation categories which collects all
necessary properties for the results in this section.

Definition 3.10 (Tranformation Category with Sequential Composition)
A transformation category with sequential composition (C,M,R) is a transformation
category as in Definition 3.4, such that

• pullbacks alongM exist,

• pullbacks preserveM,

• the MPOC-pullback characterisation in Definition 3.7 holds and

• pushout-pullback decompositions as in Definition 3.8 exist,

• the cube properties as in Definition 3.9 hold.

48

3.3. Sequential Composition

A sequentially composed rule is, intuitively, a large rule combining the effects of two
smaller rules. Since this process can be arbitrarily iterated the construction of arbitrarily
complex rules is possible this way. Formally, the relation between the large rule and the
smaller rule is established by sequential transformation steps from the left-hand side of
the composed rule to the right-hand side of the composed rule, where the interface is
obtained as a pullback of the interfaces of the component rules.5

Definition 3.11 (Sequentially Composed Rule)
Given transformation rules tr1, tr2 and tr3, then tr3 is a sequentially composed rule of
tr2 after tr1 if there are

• objects J1, E and J2 with morphisms l1 : J1 → Ltr3 , r1 : J1 → E, r ∗1 : Itr3 → J2,
l2 : J2 → E, l∗2 : Itr3 → J1 and r2 : J2 → Rtr3 in R and

• morphisms p1 : Ltr1 → Ltr3 , q1 : Itr1 → J1, e1 : Rtr1 → E, e2 : Ltr2 → E, q2 : Itr2 →
J2 and p2 : Rtr2 → Rtr3 ,

such that

• Ltr3
tr1,p1
===⇒ E by (J1, l1, q1) being an MPOC of (tr1)l and p1 and (E,r1, e1) being a

pushout of (tr1)r and q1,

• E
tr2,e2
===⇒ Rtr3 by (J2, l2, q2) being an MPOC of (tr2)l and e2 and (Rtr3 , r2, p2) being

a pushout of (tr2)r and q2,

• (Itr3 , l
∗
2 , r
∗
1) is a pullback of l2 and r1,

• (tr3)l = l1 ◦ l∗2 and (tr3)r = r2 ◦ r ∗1 .

(Cf. Figure 3.15.)

The first of the two main results regarding sequential composition is the analysis of
transformations by a sequentially composed rule into transformations by the component
which allows to conclude that, whenever a result is reachable by a sequentially composed
rule, it is also reachable using the component rules.

Theorem 3.3 (Analysis of Sequentially Composed Rule Transformations)
Given a sequentially composed rule tr3 of tr2 after tr1 and a transformation G1

tr3,m3
===⇒ G3,

there are an object G2 and transformations G1
tr1,m1
===⇒ G2 and G2

tr2,m2
===⇒ G3.

5 Sequentially composed rules are called E-concurrent rules in [EEPT06] and related work, where they
are uniquely constructed from the comatch of the first rule and the match of the second rule into
the object E. Since the pushout complement J1 of the right-hand side of the first rule is not unique
in our framework and there are several choices of additional data that would uniquely determine the
composition, from which none is clearly preferrable, we have chosen to give a descriptive definition
instead.

49

3. MPOC Transformation Framework

Ltr1 Itr1 Rtr1 Ltr2 Itr2 Rtr2

(PO) (MPOC)

(MPOC) (PO)
E

J1 (PB) J2

(=) (=)
Ltr3 Itr3 Rtr3

(tr1)l (tr1)r (tr2)l (tr2)r

p1

q1

e1 e2

q2

p2
r1 l2

l1 l∗2 r ∗1 r2

(tr3)l (tr3)r

Abbildung 3.15.: Sequentially composed rule

Beweis. From the given transformation G1
tr3,m3
===⇒ G3 shown in Figure 3.16a and the

structure of the sequentially composed rule in Figure 3.15 we can construct pushouts of
D3 and J1 and of D3 and J2 which induce unique morphisms from these pushouts into
G1 and G3, respectively. Pushout decomposition (cf. Proposition A.11) and horizontal
MPOC decomposition (cf. Lemma 3.3) then lead to the situation in Figure 3.16b.
Then we can construct a cube by a pushout G2 of E and D1. The pushout composition
with the pushout D1 of J1 and D3, combined with the fact the top is a pullback and, thus,
commutes, makes G2 a comparison object for the pushout D2 of J2 and D3 inducing a
unique morphism fromD2 to G2. Pushout decomposition then leads to G2 being a pushout
of E and D2 as shown in Figure 3.16c.
By the second cube property D2 is then also an MPOC of G2 under J2. When we combine
this with the information from the composed rule in Figure 3.15, the pushout and MPOC
decompositions in Figure 3.16b and the cube in Figure 3.16c we arrive at the situation
in Figure 3.16d.
Pushout composition and vertical MPOC composition then lead to the existence of
transformations G1

tr1,m1
===⇒ G2 with m1 := m3◦p1 and G2

tr2,m2
===⇒ G3 with m2 := i ′3◦e2.

The second main result is the synthesis of sequentially composed rules from trans-
formation sequences. This can be used to define a complex rule by the execution of a
transformation sequence on example data and then sequentially composing this sequence,
thus, providing a formal foundation for a macro recording facility.

Theorem 3.4 (Synthesis of Sequentially Composed Rule Transformations)
Given transformation rules tr1 and tr2 and transformations G1

tr1,m1
===⇒ G2 and G2

tr2,m2
===⇒

G3, there are a sequentially composed rule tr3 of tr2 after tr1 and a transformation
G1

tr3,m3
===⇒ G3.

50

3.3. Sequential Composition

Ltr3 Itr3 Rtr3

(MPOC) (PO)

G1 D3 G3

(tr3)l (tr3)r

m3 i3 n3

f3 g3

(a) Given transformation

Ltr3 J1 Itr3 J2 Rtr3

(MPOC)
(MPOC)
(PO)

(PO) (PO)

G1 D1 D3 D2 G3

l1 l∗2 r ∗1 r2

m3 i3 n3

∃! ∃!

(b) Interface construction

E

J1 J2

Itr3(PO) (PO)
G2

D1 D2

D3

r1

l∗2 r ∗1

l2

i ′3

i3
∃!

(c) Interface cube

Ltr1 Itr1 Rtr1 Ltr2 Itr2 Rtr2

(MPOC) (PO) (MPOC) (PO)

Ltr3 J1 E J2 Rtr3

(MPOC) (PO) (MPOC) (PO)

G1 D1 G2 D2 G3

(tr1)l (tr1)r (tr2)l (tr2)r

p1 q1 e1 e2 q2 p2

l1 r1 l2 r2

m3 i ′3 n3

(d) Component transformations

Abbildung 3.16.: Analysis of sequentially composed rule transformations

51

3. MPOC Transformation Framework

Beweis. The given transformations G1
tr1,m1
===⇒ G2 and G2

tr2,m2
===⇒ G3 are shown in Figu-

re 3.17a.
We can now choose an arbitrary factorisation of n1 and m2 via an object E and construct
pullbacks J1 of E and D1 and J2 of E and D2 inducing unique morphisms from Itr1 to
J1 and from Itr2 to J2. By pushout-pullback decomposition and vertical MPOC-pullback
decomposition (cf. Lemma 3.5) we obtain E as pushout of J1 and Itr1 and J2 as MPOC
of E under Itr2 .
Now, Ltr3 can be constructed as pushout of Ltr1 and J1 and Rtr3 as pushout of Rtr2
and J2 inducing unique morphisms m3 into G1 and n3 into G3, respectively. Pushout de-
composition and vertical MPOC-pushout decomposition (cf. Lemma 3.6) complete the
situation shown in Figure 3.17b.
Now Itr3 is constructed as a pullback of J1 and J2 and D3 as a pullback of D1 and D2
resulting in the cube in Figure 3.17c, where the front faces are pushouts due to the first
cube property and the front left face is an MPOC due to the second.
In Figure 3.17d the relevant properties from the previous figures are summarised, where
the resulting transformation G1

tr3,m3
===⇒ G3 is obtained by pushout composition and ho-

rizontal MPOC composition (cf. Lemma 3.3) and using (tr3)l := l1 ◦ l∗2 and (tr3)r :=
r2 ◦ r ∗1 .

3.4. Negative Application Conditions

In this section, we will enhance the MPOC transformation framework by negative app-
lication conditions (NACs). NACs are used to prohibit the application of a rule even if
the gluing condition is satisfied. NACs for the adhesive high level replacement categories
and systems of [EEPT06] are extensively studied in [Lam07] which is used as a basis of
this adaption to MPOC transformations.

3.4.1. MPOC-PO Transformations with NACs

A negative application condition for an object, typically the left-hand side object of a
rule, is given by another object with a morphism from the original object. The NAC is
satisfied for a morphism, typically the match for a transformation, if there is no occurrence
morphism from the NAC object such that it commutes with the tested morphism. The
NAC object can contain additional structures which shall be forbidden to exist but it is
also possible to use it to prevent the match from identifying certain elements.

Definition 3.12 (Negative Application Condition)
Given a category C with a distinguished class O of morphisms, called occurrence mor-
phisms, and an object L ∈ |C|, a negative application condition (NAC) (N, c) on L
consists of an object N and a morphism c : L→ N.

52

3.4. Negative Application Conditions

Ltr1 Itr1 Rtr1 Ltr2 Itr2 Rtr2

(MPOC) (PO) (MPOC) (PO)

G1 D1 G2 D2 G3

(tr1)l (tr1)r (tr2)l (tr2)r

m1 i1 n1 m2 i2 n2

f1 g1 f2 g2

(a) Given transformation sequence

Ltr1 Itr1 Rtr1 Ltr2 Itr2 Rtr2

(MPOC)
(PO)

(PO) (MPOC) (PO)

Ltr3 J1 E J2 Rtr3

(MPOC)
(PB)
(PO)

(PB)
(MPOC)

(PO)

G1 D1 G2 D2 G3

(tr1)l (tr1)r (tr2)l (tr2)r

p1 ∃!q1 e1 e2 ∃!q2 p2

l1 r1 l2 r2

∃!m3 i ′3 ∃!n3

(b) Decompositions

E

J1 (PB) J2

Itr3

G2

D1 (PB) D2

D3

r1

l∗2 r ∗1

l2

i ′3

∃!i3

(c) Interface cube

Ltr3 J1 Ltr3 J2 Ltr3

(MPOC) (MPOC) (PO) (PO)

G1 D1 D3 D2 G3

l1 l∗2 r ∗1 r2

m3 i3 n3

(d) Composed transformation

Abbildung 3.17.: Synthesis of sequentially composed rule transformations

53

3. MPOC Transformation Framework

A morphism m : L → G satisfies (N, c), written as m � (N, c), if there is no morphism
o : N → G with o ∈ O and o ◦ c = m (cf. Figure 3.18).

N

(=)

L

G

c

@o m

Abbildung 3.18.: Negative application condition

A new morphism class is introduced for occurrence morphisms since they need to be
restricted to some class of non-injective morphisms in order for the NAC to “count”
structures, e. g., if a rule shall only be applied to an element if it is the only one with
certain properties. If occurrences can be non-injective then the target structure itself
matches the NAC and inhibits the transformation. With injective occurrences the target
structure and the prohibitted additional structure cannot be identified and the NAC is
satisfied.
We do not require this class to be a class of monomorphisms since the appropriate

kind of injectiveness not necessarily coincides with a subclass of the monomorphisms.
More specifically, in our RDF instantiation a class of occurrences whis is more general
than monos will be needed.
In order to just apply transformations no further requirements need to be satisfied

and, hence, a NAC transformation category is just a transformation category with the
additional class for occurrence morphisms. As for transformation categories before we
will from now on silently assume that all of the definitions and lemmas occur within a
NAC transformation category.

Definition 3.13 (NAC Transformation Category)
A NAC transformation category (C,M,R,O) is a transformation category (C,M,R)
as in Definition 3.4 with an additional class O of morphisms.

A NAC transformation rule is then a transformation rule with a set of NACs on the
left-hand side and a NAC transformation is a transformation such that the match satisfies
all of the NACs.

Definition 3.14 (NAC Transformation Rules and NAC Transformations)
A NAC transformation rule (tr ,NAC) consists of

• a transformation rule tr as in Definition 3.5 and

• a set NAC of NACs on Ltr .

54

3.4. Negative Application Conditions

A NAC transformation G
(tr ,NAC),m
======⇒ H is given by

• a transformation G tr ,m
==⇒ H as in Definition 3.6,

such that

• m � (N, c) for all NACs (N, c) ∈ NAC .

3.4.2. Translation of NACs

In order to shift NACs through the structure that defines a sequentially composed rule,
we now examine the translation of NACs morphisms and rules as it is examined in detail
in [Lam07] for the case of adhesive HLR categories. For this purpose we need a collection
of additional properties that is summarised in the following definition.

Definition 3.15 (NAC Transformation Category with Sequential Composition)
A NAC transformation category with Sequential Compostion (C,M,R,O) is a NAC
transformation category (C,M,R,O) as in Definition 3.13, such that (C,M,R) is a
transformation category with sequential composition as in Definition 3.10 and

• M⊆ O,

• O is closed under composition,

• pushouts alongM preserve O,

• pullbacks alongM preserve O and

• C has epi-M-factorisations.

We first define a downward translation for sets of NACs, where we have to consider
all possible overlappings of the NACs and the codomain object.

Definition 3.16 (Downward Translation of NAC)
Given a morphism t : L→ L′ and a set NAC of NACs on L, then the downward translation
Dnt(NAC) is a set of NACs on L′ defined by

Dnt(NAC) :=
⋃

(N,c)∈NAC

{(N ′, c ′ : L′ → N ′) | ∃o ′ : N → N ′ with o ′ ∈ O,
o ′ ◦ c = c ′ ◦ t and c ′ and o ′ jointly epi}.

For this translation we obtain an equivalence in the following lemma, i. e., a morphism
satisfies the translated set of NACs if and only the composition with the translation
morphism satisfies the original set of NACs.

Lemma 3.8 (Correctness of Downward Translation)
Given a morphism t : L → L′, a set NAC of NACs on L and a morphism m : L′ → G,

55

3. MPOC Transformation Framework

then we have that m ◦ t � (N, c) for all (N, c) ∈ NAC if and only if m � (N ′, c ′) for all
(N ′, c ′) ∈ Dnt(NAC).

Beweis. If: Suppose there is a NAC (N, c) ∈ NAC with m ◦ t 2 (N, c). Then there is an
o : N → G with o ∈ O and o ◦ c = m ◦ t. We take an epi-M-factorisation of m
consiting of e : L′ → m(L′) and i : m(L′) → G. Since i ∈ M we can construct a
pullback (P, i∗, o∗) of i and o, where o∗ ∈ O due to preservation of O by pullbacks.
There is a unique morphism c∗ : L → P with i∗ ◦ c∗ = c and o∗ ◦ c∗ = e ◦ t due
to the pullback property. Then we can take a pushout (N ′, i ′, o ′) of i∗ and o∗

with a unique morphism o+ : N ′ → G with o+ ◦ o ′ = o and o+ ◦ i ′ = i , where
o ′ ∈ O due to pushouts preserving O and o ′ and o ′ and i ′ are jointly epi. Since
jointly epis are composable with epis o ′ and i ′ ◦e are also jointly epi and, moreover,
o ′ ◦c = o ′ ◦ i∗ ◦c∗ = i ′ ◦o∗ ◦c∗ = i ′ ◦e ◦ t. Hence, (N ′, i ′ ◦e) ∈ Dnt(NAC). Finally,
we also have o+ : N ′ → G with o+ ◦ i ′ ◦ e = i ◦ e = m and, hence, m 2 (N ′, i ′ ◦ e).

Only if: Suppose there is a NAC (N ′, c ′) ∈ Dnt(NAC) with m 2 (N ′, c ′). Then there is
an o : N ′ → G with o ∈ O and o ◦ c ′ = m. Moreover, by defintion of Dnt(NAC),
there is a NAC (N, c) ∈ NAC and a morphism o ′ : N → N ′ with o ′ ∈ O and
o ′ ◦ c = c ′ ◦ t. By composition with t we have o ◦ c ′ ◦ t = m ◦ t and, hence also
o ◦ o ′ ◦ c = m ◦ t. Since O is closed under composition and, hence, o ◦ o ′ ∈ O this
means m ◦ t 2 (N, c).

We also need a translation of NACs from the right-hand side of a rule to the left-hand
side, where the translation is achieved by double MPOCs, i. e., the translation of a NAC
only exists if an MPOC under the interface and a pushout under the left-hand side exists,
such that the NAC under the interface is also an MPOC w. r. t. the left-hand side. If
no MPOC under the interface exists then the NAC forbids structures that are glued to
elements that are created by the right-hand side. Therefore, the NAC cannot match a
transformation result which just added these elements without the forbidden structure. If
the pushout under the left-hand side is not an MPOC then this means that the NAC and
the left-hand side overlap on something that is not in the interface. But such structures
are deleted by the MPOC of a transformation and, hence, the NAC can also not match.

Definition 3.17 (Right-to-Left Translation of NACs)
Given a transformation rule tr and a set NAC of NACs on Rtr , then the right-to-left
translation R2Ltr (NAC) is a set of NACs on Ltr defined by

R2Ltr (NAC) :=
⋃

(N,c)∈NAC

{(N ′′, c ′′ : Ltr → N ′′) | ∃(N ′, c ′ : Itr → N ′), l ′ : N ′ → N ′′

and r ′ : N ′ → N with (N ′, r ′, c ′) MPOC of tr r and c

and (N ′, l ′, c ′) MPOC of tr l and c ′′}.

(Cf. Figure 3.19.)

56

3.4. Negative Application Conditions

Ltr Itr Rtr

(MPOC) (MPOC)

N ′′ N ′ N

tr l tr r

c ′′ c ′ c

l ′ r ′

Abbildung 3.19.: Right-to-left translation of NACs

We now show that this right-to-left translation is correct in the sense that for a given
transformation the match satisfies the right-to-left translation if and only if the comatch
satisfies the original set of NACs.

Lemma 3.9 (Correctness of Right-to-Left Translation)
Given a transformation rule tr , a set NAC of NACs on Rtr and a transformation G tr ,m

==⇒ H

with comatch n : Rtr → H, then we have that n � (N, c) for all (N, c) ∈ NAC if and only
if m � (N ′′, c ′′) for all (N ′′, c ′′) ∈ R2Ltr (NAC).

Beweis. If: Suppose there is a NAC (N, c) ∈ NAC with n 2 (N, c). Then we have
an o : N → H with o ∈ O and o ◦ c = n. But then we can take a pullback
(N∗, r ∗, o∗) of g and o and obtain a unique morphism c∗ : I → N∗ with o∗ ◦ c∗ = i
and r ∗ ◦ c∗ = c ◦ tr r. Moreover, o∗ ∈ O because pullbacks preserve O. Then
pushout-pullback decomposition leads to (N∗, r ∗, c∗) being a pushout complement
of tr r and c . Hence, there is also a minimal pushout complement (N ′, r ′, c ′) by
Theorem 3.1 2. which induces a unique morphism n : N ′ → N∗ with n ∈ M,
n ◦ c ′ = n∗ and r ′ = r ∗ ◦ n. SinceM ⊆ O and O is closed under composition we
have that o ′ := o∗ ◦ n ∈ O. Now we take the pushout (N ′′, l ′, c ′′) of tr l and c ′

which induces a unique morphism o ′′ : N ′′ → G with o ′′◦c ′′ = m and o ′′◦l ′ = f ◦o ′.
By pushout decomposition (G, f , o ′′) is a pushout of l ′ and o ′ and o ′′ ∈ O because
pushouts preserve O. Moreover, by MPOC pushout decomposition (N ′, l ′, c ′) is
an MPOC of tr l and c ′′. Hence, (N ′′, c ′′) ∈ R2Ltr (NAC), whence, o ′′ ◦ c ′′ = m

implies m 2 (N ′′, c ′′).

Only if: Suppose there is a NAC (N ′′, c ′′) ∈ R2Ltr (NAC) with m 2 (N ′′, c ′′). Then we
have an o ′′ : N ′′ → G with o ′′ ∈ O and o ′′ ◦ c ′′ = m. Moreover, due to definition
of R2Ltr (NAC) we have (N, c : Rtr → N) ∈ NAC , (N ′, c ′ : Itr → N ′), l ′ : N ′ → N ′′

and r ′ : N ′ → N with (N ′, l ′, c ′) MPOC of tr l and c ′′ and (N ′, r ′, c ′) MPOC of
tr r and c . Then we can take a pullback (N∗, l∗, o∗) of f and o ′′ and obtain a
unique morphism c∗ : Itr → N∗ with (N∗, l∗, c∗) being also an MPOC of tr l and
c ′′ due to MPOC pullback decomposition. Hence, N∗ ∼= N ′ and we also have
o ′ : N ′ → D such that (N ′, l ′, o ′) is a pullback of f and o ′′ with o ′ ∈ O due to
pullbacks preserving O. Then because of n ◦ tr r = g ◦ i = g ◦ o ′ ◦ c ′ there is a

57

3. MPOC Transformation Framework

unique o : N → H with o ◦r ′ = g ◦o ′ and o ◦c = n. Due to pushout decomposition
(H, g, o) is a pushout of r ′ and o ′ with o ∈ O due to pushouts preserving O. This
means that m 2 (N, c).

3.4.3. Composition with NACs

We now show how sequential composition can be enhanced to rules with NACs. There-
fore, we first define sequentially composed rules with NACs and then prove that analysis
and synthesis is still possible with these notions.

Definition 3.18 (Sequentially Composed Rule with NACs)
Given NAC transformation rules (tr1,NAC 1), (tr2,NAC 2) and (tr3,NAC 3), then (tr3,
NAC 3) is a sequentially composed rule with NACs of (tr2,NAC 2) after (tr1,NAC 1) if

• tr3 is a sequentially composed rule of tr2 after tr1 as in Definition 3.11 and

• NAC 3 = Dnp1(NAC 1) ∪ R2Ll1,r1(Dne2(NAC 2)), where the morphisms are defined
as in Definition 3.11 and the span consisting of l1 and r1 is interpreted as a rule.

The following theorem shows that the analysis and synthesis results can be lifted to
sequential composition with NACs. Using the lemmas from the previous sections this is
fairly obvious since they have already shown equivalence of the right-to-left and downward
translations used in the definition of sequentially composed rules with NACs.

Theorem 3.5 (Analysis and Synthesis of Composed Rule Transformations with NACs)
Given a sequentially composed rule with NACs (tr3,NAC 3) of (tr2,NAC 2) after (tr1,

NAC 1) and a transformation G1
(tr3,NAC3),m3
========⇒ G3, there are an object G2 and transfor-

mations G1
(tr1,NAC1),m1
========⇒ G2 and G2

(tr2,NAC2),m2
========⇒ G3.

Given rules (tr1,NAC 1) and (tr2,NAC 2) and transformations G1
(tr1,NAC1),m1
========⇒ G2 and

G2
(tr2,NAC2),m2
========⇒ G3, there are a sequentially composed rule with NACs (tr3,NAC 3) of

(tr2,NAC 2) after (tr1,NAC 1) and a transformation G1
(tr3,NAC3),m3
========⇒ G3.

Beweis. Analysis: Since tr3 is a sequentially composed rule of tr2 after tr1 Theorem 3.3
leads to transformations G1

tr1,m1
===⇒ G2 and G2

tr2,m2
===⇒ G3. It remains to show

that m3 � (N3, c3) for all NACs (N3, c3) ∈ NAC 3 implies m1 � (N1, c1) for all
NACs (N1, c1) ∈ NAC 1 and m2 � (N2, c2) for all NACs (N2, c2) ∈ NAC 2. Firstly,
suppose there is a NAC (N1, c1) ∈ NAC 1 with m1 2 (N1, c1), since m1 = m3 ◦ p1
Lemma 3.8 then implies that there is a NAC (N ′, c ′) ∈ Dnp1(NAC 1) with m3 2
(N ′, c ′) but since Dnp1(NAC 1) ⊆ NAC 3 this is a contradiction to m3 � (N3, c3)
for all NACs (N3, c3) ∈ NAC 3. Secondly, suppose there is a NAC (N2, c2) ∈ NAC 2
with m2 2 (N2, c2), since m2 = i ′3 ◦e2 Lemma 3.8 then implies that there is a NAC
(N ′, c ′) ∈ Dne2(NAC 2) with i ′3 2 (N ′, c ′) but then Lemma 3.9 combined with the
corresponding MPOC and pushout under l1 and r1 in Theorem 3.3 implies that

58

3.4. Negative Application Conditions

there is a NAC (N ′, c ′) ∈ R2Ll1,r1(Dne2(NAC 2)) with m3 2 (N ′, c ′) which again is
a contradiction since R2Ll1,r1(Dne2(NAC 2)) ⊆ NAC 3.

Synthesis: Theorem 3.4 allows us to build a sequentially composed rule tr3 of tr2 after
tr1 with a transformation G1

tr3,m3
===⇒ G3. It remains to show that m1 � (N1, c1)

for all NACs (N1, c1) ∈ NAC 1 and m2 � (N2, c2) for all NACs (N2, c2) ∈ NAC 2
implies m3 � (N3, c3) for all NACs (N3, c3) ∈ NAC 3. Suppose that there is a
NAC (N3, c3) ∈ NAC 3 with m3 2 (N3, c3). By the construction of the sequen-
tially composed rule with NACs we have (N3, c3) ∈ Dnp1(NAC1) or (N3, c3) ∈
R2Ll1,r1(Dne2(NAC 2)). In the first case Lemma 3.8 implies that there is (N1, c1) ∈
NAC1 with m3 ◦ p1 = m1 2 (N1, c1) which is a contradiction. In the second case
Lemma 3.9 implies that there is a NAC (N ′, c ′) ∈ Dne2(NAC 2) with i ′3 2 (N ′, c ′)
which by Lemma 3.8 in turn implies that there is (N2, c2) ∈ NAC 2 with i ′3 ◦ e2 =
m2 2 (N2, c2) which completes the contradiction.

This theorem concludes our treatment of the MPOC transformation framework. In
the next chapter it is instantiated to RDF structures by proving requirements that where
summarised in Definition 3.4, Definition 3.10, Definition 3.13 and Definition 3.15.

59

4. RDF Graph Transformations

In this chapter we will instantiate the MPOC transformation framework developed in the
previous chapter to RDF graphs. For this purpose, the notion of RDF graph is enhanced
to RDF patterns by also including variables in Section 4.1. Pushouts, initial pushouts and
MPOCs for these patterns are presented in Section 4.2. Then, the additional properties
that are necessary for sequential composition and independence are shown in Section 4.3.
As a first application of transformation rules in the context of RDF, inference rules for
the ρdf semantics, presented in Section 2.3, are given in Section 4.4.

4.1. RDF Patterns and RDF Graph Transformations

In algebraic graph transformation, the structures of the graphs themselves are usually
used as variables in the transformation rules and instantiated to different structures
when applying the rules to host graphs. This approach is, however, not possible for RDF
graphs since most of the nodes and the predicates are given by globally unique URIs
and literals. Therefore, we enhance the notion of RDF graph to RDF patterns which
also contain variables that can be instantiated to URIs, literals and blank nodes.1 A
distinguished subset of the variables is restricted to be instantiated to URIs and can be
used as predicates (which are not allowed to be blank or literal).

Definition 4.1 (RDF Pattern)
An RDF pattern P = (PBlank, PVar, PUVar, PTriple) consists of

• a set PBlank of blank nodes,

• a set PVar of variables with a subset PUVar ⊆ PVar of URI variables and

• a set PTriple ⊆ (PVar + PNode) × (PUVar + URI) × (PVar + PNode) of triples, where
PNode := PBlank + URI + PLit + TLit.

Homomorphisms of RDF patterns are now corresponding enhancements of RDF graph
homomorphisms, where variables can be (partially) instantiated to URIs, literals and blank
nodes, while they may also be mapped to variables in the codomain pattern. URI variables
can only be instantiated to URIs or mapped to URI variables since they may appear as
1 In [BB08], blank nodes were used for this purpose with the drawback of intermingling the roles of
blank nodes as existential variables in the logical interpretation of RDF and as transformation variables
in structural modifications. Moreover, blank nodes cannot be used as predicates and, therefore, the
approach in [BB08] is restricted to transformation rules with fixed predicates.

61

4. RDF Graph Transformations

predicates in triples and an instantiation to blank nodes or literals (and, thus, indirectly
also a mapping to general variables) could lead to inconsistent RDF patterns.

Definition 4.2 (RDF Pattern Homomorphism)
An RDF pattern homomorphism h : P → P ′ consists of

• a mapping function hBlank : PBlank → P ′Blank for blank nodes and

• an assignment function hVar : PVar → P ′Var + P
′
Node for variables,

such that

• there is an inclusion hVar(PUVar) ⊆ P ′UVar + URI and

• there is an inclusion hTriple(PTriple) ⊆ P ′Triple,

where hTriple : (PVar+PNode)×(PUVar+URI)×(PVar+PNode)→ (P ′Var+P ′Node)×(P ′UVar+
URI)× (P ′Var + P ′Node) is defined by

hTriple(s, p, o) := (hVN(s), hVU(p), hVN(o))

and hVN : PVar + PNode → P ′Var + P
′
Node and hVU : PUVar + URI→ P ′UVar + URI in turn by

hVN(x) :=


hVar(x) for x ∈ PVar
hBlank(x) for x ∈ PBlank
x for x ∈ URI + PLit + TLit

and

hVU(x) :=

{
hVar(x) for x ∈ PUVar
x for x ∈ URI

.

Note that RDF patterns are very similar to the basic graph patterns used in the SPAR-
QL W3C recommendation in [PS08]. RDF pattern homomorphisms then correspond to
the pattern instance mappings defined there, with the difference that in our setting blank
nodes may only be mapped to blank nodes, not instantiated to URIs or literals. This
variation is motivated by the difference in viewpoints. While SPARQL takes the logical
viewpoint and, hence, uses blank nodes as existential variables that can be instantiated
in the host graph, we take an algebraic viewpoint, where we want to be able to add and
delete blank nodes to and from the host graph. The latter would not be possible if blank
nodes could be instantiated since URIs and literals are global and cannot be added or
deleted.
RDF patterns and RDF pattern homomorphisms again constitute a category which

will be the basis for the transformation categories for RDF, developed in the remainder
of this chapter.

62

4.1. RDF Patterns and RDF Graph Transformations

Proposition 4.1 (Category RDFPat)
RDF patterns and RDF pattern homomorphisms constitute a category RDFPat, where
compositions are given by (h ◦ g)Blank := hBlank ◦ gBlank and (h ◦ g)Var := hVN ◦ gVar
for all RDF pattern homomorphisms g : P → P ′ and h : P ′ → P ′′ and identities by
(idP)Blank := idPBlank and (idP)Var := inclPVar,PVar+PNode ◦ idPVar for all RDF patterns P .
In this category, the following characterisations of special morphisms hold:

Mono: A homomorphism m : P → P ′ is a monomorphism if and only if mBlank and mVar
are injective and mVar(PVar) ⊆ P ′Var+(P ′Blank \mBlank(PBlank)), i. e., mVar only maps
to variables and blank nodes not reached by mBlank, not to URIs, literals and blank
nodes reached by mBlank.

Epi: A homomorphism e : P → P ′ is an epimorphism if and only if eBlank and eVar are
jointly surjective on P ′Blank and eVar is surjective on P ′Var.

Iso: A homomorphism i : P → P ′ is an isomorphism if and only if iBlank is bijective,
iVar is bijective between PVar and P ′Var and the equalities P ′UVar = iVar(PUVar) and
P ′Triple = iTriple(PTriple) are satisfied.

Beweis. For blank nodes, associativity and cancellability of identities follow directly from
the corresponding properties in Set. For variables, we first observe that (h ◦ g)VN =
hVN◦gVN, fVN◦inclPVar,PVar+PNode = fVar and (idP)VN = idPVar+PNode . Associativity then follows
from (h◦(g◦f))Var = hVN◦(g◦f)Var = hVN◦gVN◦fVar = (h◦g)VN◦fVar = ((h◦g)◦f)Var and
cancellability of identities from (f ◦idP)Var = fVN◦(idP)Var = fVN◦inclPVar,PVar+PNode◦idPVar =
fVar = idP ′Var+P ′Node ◦ fVar = (idP ′)VN ◦ fVar = (idP ′ ◦ f)Var.

Mono: If: Suppose mBlank and mVar are injective, then mVar(PVar) ⊆ P ′Var + (P
′
Blank \

mBlank(PBlank)) andm◦l1 = m◦l2. ThenmBlank◦(l1)Blank = mBlank◦(l2)Blank and, be-
cause mBlank is injective, also (l1)Blank = (l2)Blank. Moreover, mVN ◦(l1)Var = mVN ◦
(l2)Var and mVN is injective (since mBlank and mVar are injective and mVar does not
map variables to URIs, literals or blank nodes already reached bymBlank) and, hence,
also (l1)Var = (l2)Var. We obtain l1 = l2 and, therefore, m is a monomorphism.
Only if: Suppose either mBlank or mVar is not injective. Then we can construct a
counterexample as in Proposition 2.1 and m is not a monomorphism. Now, suppo-
se mBlank and mVar are injective, but mVar(PVar) * P ′Var +(P ′Blank \mBlank(PBlank)).
There has to be a variable x ∈ PVar and a blank node, URI or literal y ∈ P ′Node with
mVar(x) = y . Then we can define l1, l2 : (∅, {∗},∅,∅) → P with (l1)Var(∗) = x

and (l2)Var(∗) = y if y is a URI or literal and (l2)Var(∗) = z if y is a blank node
in P ′Blank and z a corresponding blank node in PBlank with mBlank(z) = y . We have
mVN((l1)Var(∗)) = mVN((l2)Var(∗)), but (l1)Var(∗) 6= (l2)Var(∗). Hence, m is not a
monomorphism.

Epi: If: Suppose eBlank and eVar are jointly surjective on P ′Blank, eVar is surjective on
P ′Var and f1 6= f2. Then there has to be either a blank node b ∈ P ′Blank with
(f1)Blank(b) 6= (f2)Blank(b) or a variable x ∈ P ′Var with (f1)Var(x) 6= (f2)Var(x). In

63

4. RDF Graph Transformations

the first case, we have either a blank node c ∈ PBlank with eBlank(c) = b or a variable
z ∈ PVar with eVar(z) = b (since eBlank and eVar are jointly surjective) and, hence,
(f1)Blank(eBlank(c)) 6= (f2)Blank(eBlank(c)) or (f1)VN(eVar(z)) 6= (f2)VN(eVar(z)). In
the second case, we have a variable y ∈ PVar with eVar(y) = x (since eVar is
surjective) and, hence, (f1)VN(eVar(y)) 6= (f2)VN(eVar(y)). In all cases, we obtain
f1 ◦e 6= f2 ◦e. Hence, f1 ◦e = f2 ◦e already implies f1 = f2 and e is an epimorphism.
Only if: Suppose either mBlank and mVar are not jointly surjective on P ′Blank or mVar
is not surjective on P ′Var. Then we can select an unreached blank node b ∈ P ′Blank
in the first case or an unreached variable x ∈ P ′Var in the second case and construct
a counterexample as in Proposition 2.1. Hence, e is not an epimorphism.

Iso: If: Suppose iBlank is bijective, iVar is bijective between PVar and P ′Var, P
′
UVar =

iVar(PUVar) and P ′Triple = iTriple(PTriple). Then, we have inverses jBlank : P ′Blank →
PBlank with jBlank ◦ iBlank = idPBlank and iBlank ◦ jBlank = idP ′Blank and jVar : P ′Var →
PVar + PNode with jVN ◦ iVar = inclPVar,PVar+PNode and iVN ◦ jVar = inclP ′Var,P ′Var+P ′Node .
These inverses constitute an RDF pattern homomorphism, since jVar(P ′UVar) =
jVar(iVar(PUVar)) ⊆ PUVar + URI and jTriple(P ′Triple) = jTriple(iTriple(PTriple) = PTriple.
Hence, i is an isomorphism. Only if: Suppose iBlank or iVar are not bijective.
Then we cannot find an inverse and i is not an isomorphism. Suppose they are
bijective and we have inverses jBlank and jVar, but P ′UVar * iVar(PUVar). Then
jVar(P

′
UVar) * jVar(iVar(PUVar)) = PUVar and, hence, jBlank and jVar do not con-

stitute an RDF pattern homomorphism and i is not an isomorphism. Suppose
iBlank and iVar are bijective with inverses jBlank and jVar, but P ′Triple * iTriple(PTriple).
Then jTriple(P ′Triple) * jTriple(iTriple(PTriple)) = PTriple and, hence, jBlank and jVar do
not constitute an RDF pattern homomorphism and i is not an isomorphism.

Figure 4.1 shows an example of an RDF pattern homomorphism in the metadata app-
lication scenario, where a part of the example RDF graph from Figure 2.1 in Section 2.1
is matched by an RDF pattern which is supposed to match a book with title and author
expressed in the imp: vocabulary. This is achieved by mapping the blank node α of the
pattern to the blank node 1 in the graph, the variable x to the title literal and y to the
author’s name.
Obviously the definition of underlying vocabularies for RDF graphs can be generalised

to underlying vocabularies for RDF patterns and also constitute a functor in this case.

Proposition 4.2 (Underlying Vocabulary Functor)
There is an underlying vocabulary functor Voc: RDFPat→ Voc with

• Voc(P)URI := {u ∈ URI | ∃(s, p, o) ∈ PTriple : s = u, p = u or o = u},

• Voc(P)PLit := {l ∈ PLit | ∃(s, p, o) ∈ PTriple : s = l or o = l} and

• Voc(P)TLit := {l ∈ TLit | ∃(s, p, o) ∈ PTriple : s = l or o = l}

for all RDF patterns P and Voc(h) is the inclusion Voc(P) ⊆ Voc(P ′) for all RDF pattern
homomorphisms h : P → P ′.

64

4.1. RDF Patterns and RDF Graph Transformations

RDFPat

imp:Book

x α y

type
imp:title imp:author

imp:Book

en,“About Anything” 1 ε,“John Doe”

type
imp:title imp:author

hVar hBlank hVar

Abbildung 4.1.: Homomorphism in RDFPat

Beweis. The functor properties follow directly from the triple inclusion requirement for
homomorphisms.

In order to instantiate the MPOC transformation framework we need to select the
classes M (monomorphisms, for which pushouts and pullbacks exist), R ⊆ M (rule
morphisms, which are used in transformation rules and in the spans between host patterns
and transformation results) and O ⊇ M (occurrence morphisms to be used for testing
negative application conditions).
For M we choose to restrict monomorphisms to those, which do not instantiate va-

riables to blank nodes (which is possible for monomorphisms if the blank node is not
reached by the blank node function), since such an instantiation could conflict with an
instantiation to a URI or literal rendering the construction of a pushout impossible. Mo-
reover, non-URI variables cannot be mapped to URI variables, because this could also
lead to a conflict with an instantiation to literals or blank nodes in the match.
For the rule morphisms, we choose to preserve the variables isomorphically since URIs

and literals are globally given and, hence, only blank nodes can be added and deleted.
But for this purpose, rules can use blank nodes directly and do not need to delete or
add variables. Moreover, this choice ensures that transformations applied to RDF graphs
(interpreted as RDF patterns) also result in RDF graphs, while the addition of variables
would impede this.
For the occurrence morphisms, we choose morphisms o which are injective on blank

nodes and are only allowed to instantiate variables to nodes which are not already used in
the pattern, i. e., the extension oVN of the variable mapping is injective w. r. t. the combi-
nation of variables, blank nodes and URIs and literals from the vocabulary of the domain
pattern, but not necessarily w. r. t. all URIs and literals. Hence, occurrence morphisms
are more general than monomorphisms which is necessary since otherwise a NAC could
never match if a variable is instantiated to a URI or literal in the match of the left-hand

65

4. RDF Graph Transformations

side (which will usually be the case).

Definition 4.3 (MRDF, RRDF and ORDF)
The classMRDF is given by all monomorphisms m : P → P ′ for which mVar(PVar) ⊆ P ′Var
and mVar(PUVar) = P ′UVar ∩mVar(PVar) .
The class RRDF is given by all monomorphisms r : P → P ′ for which rVar is bijective
between PVar and P ′Var with P

′
UVar = rVar(PUVar).

The class ORDF is given by morphisms o : P → P ′ for which oBlank is injective and for all
variables x ∈ PVar and all nodes n ∈ PVar+PBlank+Voc(P)URI+Voc(P)PLit+Voc(P)TLit
the equality oVar(x) = oVN(n) implies x = n.

In the following proposition we show the required compositionality and decompositio-
nality properties forM, rule and occurrence morphisms.

Proposition 4.3 (Compositionality ofMRDF, RRDF and ORDF)
MRDF,RRDF andORDF are closed under homomorphism compositions. Moreover,RRDF ⊆
MRDF andMRDF ⊆ ORDF.

Beweis. Compositionality ofMRDF and RRDF follows immediately from compositionality
of inclusions, bijections and equalities.
Compositionality of ORDF is satisfied because the underlying vocabulary inclusions ensure
that the second occurrence is even more restricted than the first one and, hence, the
composition also respects the injectiveness requirement.
RRDF ⊆ MRDF since bijectiveness of rVar between PVar and P ′Var especially implies
rVar(PVar) ⊆ P ′Var.
MRDF ⊆ ORDF since the requirement for the variable assignment is trivially satisfied if
oVar is injective and only maps to variables.

Since we want to apply transformations to plain RDF graphs, not only to RDF pat-
terns, we observe (as already mentioned in the example above) that all RDF graphs can
be interpreted as RDF patterns with empty variable sets. This is formalised as a functor
from the category RDFHom to the category RDFPat. Later, we will show that trans-
formations preserve RDF graphs in the sense that for transformations of images of RDF
graphs the results are also images of RDF graphs.

Proposition 4.4 (Functor Lift : RDFHom→ RDFPat)
There is a functor Lift : RDFHom → RDFPat with Lift(G) := (GBlank,∅,∅, GTriple)
for all RDF graphs G, Lift(h)Blank := hBlank and Lift(h)Var := id∅ for all RDF graph
homomorphisms h.

Beweis. The functor properties follow obviously since the definitions are equivalent for
blank nodes and triples without variables and the empty variable set and the empty
variable assignments trivially satisfy all requirements.

66

4.2. Pushouts, IPOs and MPOCs for RDF Patterns

4.2. Pushouts, IPOs and MPOCs for RDF Patterns

In this section, we will give the basic constructions needed for RDF graph transforma-
tions, i. e., pushouts and initial pushouts. Moreover, we will show how MPOCs can be
constructed directly as a corollary.
Pushouts alongMRDF can be constructed by importing the host graph of the match

and disjointly adding all additional structures from the right-hand side graph.

Proposition 4.5 (Pushouts alongMRDF preservingMRDF)
Given RDF pattern homomorphisms r : I → R and i : I → D with r ∈MRDF, a pushout
(H, g, n) of r and i with g ∈MRDF can be constructed by

• HBlank := DBlank + (RBlank \ rBlank(IBlank)) with injections gBlank : DBlank → HBlank
and jBlank : (RBlank \ rBlank(IBlank))→ HBlank,

• HVar := DVar+(RVar\rVar(IVar)) with injections gVar : DVar → HVar and jVar : (RVar\
rVar(IVar))→ HVar,

• HUVar := {h ∈ HVar | ∃d ∈ DUVar : gVar(d) = h or ∃r ∈ RUVar \ rVar(IVar) : jVar(r) =
h},

• nBlank(r) :=

{
gBlank(iBlank(i)) for rBlank(i) = r

jBlank(r) for r ∈ (RBlank \ rBlank(IBlank))
,

• nVar(r) :=

{
gVN(iVar(i)) for rVar(i) = r

jVar(r) for r ∈ (RVar \ rVar(IVar))
and

• HTriple := gTriple(DTriple) ∪ nTriple(RTriple).

Beweis.

Well-Definedness: We first have to show that g and n are well-defined RDF pattern
homomorphisms. Firstly, gVar(DUVar) ⊆ HUVar + URI, since HUVar is explicitly
defined to contain all images of URI variables from DUVar, and nVar(RUVar) ⊆
HUVar + URI, since HUVar explicitly contains all images of additional URI variables
from RUVar \ rVar(IVar) and for all URI variables x ∈ RUVar ∩ rVar(IVar) we have
a URI variable i ∈ IUVar with rVar(i) = x (since RUVar ∩ rVar(IVar) ⊆ rVar(IUVar)),
nVar(x) = gVN(iVar(i)) (by definition of nVar) and, hence, nVar(x) ∈ HUVar + URI
(via iVar(i) ∈ DUVar+URI). Secondly, gTriple(DTriple) ⊆ HTriple and nTriple(RTriple) ⊆
HTriple, since HTriple is explicitly defined to contain both subsets.

Commutativity: We have to show that g ◦ i = n ◦ r . For all i ∈ IBlank we have
nBlank(rBlank(i)) = gBlank(iBlank(i)) by defintion of nBlank and for all i ∈ IVar we
have nVN(rVar(i)) = gVN(iVar(i)) by definition of nVN, nVar and nBlank. Thus, com-
mutativity is satisfied.

67

4. RDF Graph Transformations

Existence of Comparison Morphism: Suppose another RDF pattern H′ with homo-
morphisms g′ : D → H′ and n′ : R → H′ satisfying g′ ◦ i = n′ ◦ r . We have to
construct a homomorphism h : H → H′ with h ◦ g = g′ and h ◦ n = n′. For blank
nodes, this is achieved by hBlank(h) := g′Blank(d) for d ∈ DBlank with gBlank(d) = h
and hBlank(h) := n′Blank(r) for r ∈ RBlank \ rBlank(IBlank) with jBlank(r) = h, which
satisfies hBlank ◦ gBlank = g′Blank by construction and hBlank ◦ nBlank = n′Blank by
construction for blank nodes from RBlank \ rBlank(IBlank) and by hBlank(nBlank(r)) =
hBlank(gBlank(iBlank(i))) = g′Blank(iBlank(i)) = n′Blank(rBlank(i)) = n′Blank(r) for r ∈
rBlank(IBlank), i ∈ IBlank and rBlank(i) = r . For variables, h is defined by hVar(h) :=
g′Var(d) for d ∈ DVar with gVar(d) = h and hVar(h) := n′Var(r) for r ∈ RVar\rVar(iVar)
with jVar(r) = h, which satisfies hVN ◦gVar = g′Var by construction and hVN ◦nVat =
n′Var by construction for variables from RVar \ rVar(IVar) and by hVN(nVar(r)) =
hVN(gVN(iVar(i))) = g′VN(iVar(i)) = n′VN(rVar(i)) = n′Var(r) for r ∈ rVar(IVar),
i ∈ IVar and rVar(i) = r . The homomorphism property hVar(HUVar) ⊆ H′UVar + URI
holds, since h ∈ HUVar implies either the existence of d ∈ DUVar with gVar(d) = h
or the existence of r ∈ RUVar with nVar(r) = h (or both) by construction of HUVar
and, hence, either hVar(h) = g′Var(d) or hVar(h) = n′Var(r), but this already im-
plies hVar(h) ∈ H′UVar +URI by the homomorphism properties of g′ and n′. Finally,
the homomorphism property hTriple(HTriple) ⊆ H′Triple follows from hTriple(HTriple) =

hTriple(gTriple(DTriple)∪nTriple(RTriple)) = g′Triple(DTriple)∪n′Triple(RTriple) ⊆ H′Triple by
the homomorphism properties of g′ and n′.

Uniqueness of Comparison Morphism: Suppose another morphism h′ : H → H′ with
h′ ◦ g = g′ and h′ ◦ n = n′. We have to show h′ = h. For all blank nodes
d ∈ DBlank we have h′Blank(gBlank(d)) = g′Blank(d) = hBlank(gBlank(d)) and for all
blank nodes r ∈ RBlank\rBlank(IBlank) we have h′Blank(jBlank(r)) = h′Blank(nBlank(r)) =
n′Blank(r) = hBlank(nBlank(r)) = hBlank(jBlank(r)). Hence, h′Blank = hBlank. For all
variables d ∈ DVar we have h′VN(gVar(d)) = g′Var(d) = hVN(gVar(d)) and for all
variables r ∈ RVar \ rVar(IVar) we have h′VN(jVar(r)) = h′VN(gVar(r)) = g′Var(r) =

hVN(gVar(r)) = hVN(jVar(r)) and, hence, h′Var = hVar. Since both functions are
identical, we have h′ = h.

g ∈MRDF: Since gBlank and gVar are constructed as injections into a coproduct of sets,
they are obviously injective. Moreover, the injection gVar does not instantiate any
variable and, hence, gVar(DVar) ⊆ HVar. Lastly, HUVar ∩ gVar(DVar) = gVar(DUVar),
since all additional URI variables in HUVar have to be from RVar \ rVar(IVar) which
is disjoint from gVar(DVar) by the coproduct construction in Set.

This pushout construction also preserves the rule and occurrence morphisms.

Proposition 4.6 (Pushouts preserve RRDF and ORDF)
Given RDF pattern homomorphisms r : I → R and i : I → D with r ∈ MRDF and a
pushout (H, g, n) of r and i , then r ∈ RRDF implies g ∈ RRDF and i ∈ ORDF implies
n ∈ ORDF.

68

4.2. Pushouts, IPOs and MPOCs for RDF Patterns

Beweis. The preservation of RRDF follows immediately from the fact that rVar being a
bijection on variables implies that RVar \ rVar(IVar) is empty and, thus, nothing is added
to the variable set and the injection gVar becomes a bijection.
The preservation of ORDF follows from nVar being defined like iVar for preserved variables,
while new variables are injectively mapped and not instantiated.

We now present IPOs for RDF pattern homomorphisms, where the definition intuitively
amounts to the fact that the boundary contains all blank nodes and variables that are
used in context triples, identified to other blank nodes or variables or instantiated to a
different kind of element, while the context contains the triples of the host graph not
matched by the LHS and all blank nodes and variables needed to represent these triples
and the identifications and instantiations of the given morphism.

Proposition 4.7 (IPOs in RDFPat)
Given an RDF pattern homomorphism m : L→ G, an IPO (B, b, C, c,mB) over m with
b, c ∈MRDF can be constructed by

• BTriple := ∅,

• CTriple := GTriple \mTriple(LTriple),

•

BBlank :={b ∈ LBlank | ∃(s, p, o) ∈ CTriple : mBlank(b) = s or mBlank(b) = o}∪
{b ∈ LBlank | ∃b′ ∈ LBlank : b 6= b′ and mBlank(b) = mBlank(b′)}∪
{b ∈ LBlank | ∃x ∈ LVar : mBlank(b) = mVar(x)}

,

• bBlank := inclBBlank,LBlank ,

• CBlank := (GBlank \mBlank(LBlank)) ∪mBlank(BBlank),

• cBlank := inclCBlank,GBlank ,

• (mB)Blank := mBlank ◦ inclBBlank,LBlank ,

•

BVar :={x ∈ LVar | ∃(s, p, o) ∈ CTriple : mVar(x) = s,mVar(x) = p or

mVar(x) = o}∪
{x ∈ LVar | ∃x ′ ∈ LVar : x 6= x ′ and mVar(x) = mVar(x ′)}∪
{x ∈ LVar | ∃n ∈ GNode : mVar(x) = n}∪
{x ∈ LVar \ LUVar |mVar(x) ∈ GUVar}

,

• BUVar := BVar ∩ LUVar,

• bVar := inclBVar,LVar ,

• CVar := (GVar \mVar(LVar)) ∪ {x ∈ GVar | ∃b ∈ BVar : x = mVar(b)},

• CUVar := CVar ∩ GUVar,

69

4. RDF Graph Transformations

• cVar := inclCVar,GVar and

• (mB)Var := mVar ◦ inclBVar,LVar .

Beweis.

Well-Definedness: The boundary morphism b and the context morphism c are well-
defined, since they just consist of inclusions and the homomorphism properties
bUVar(BUVar) = BUVar ⊆ LUVar, bTriple(BTriple) = ∅ ⊆ LTriple, cUVar(CUVar) =
CUVar ⊆ GUVar and cTriple(CTriple) = CTriple ⊆ GTriple all hold by construction.
The blank node function (mB)Blank = mBlank ◦ inclBBlank,LBlank is well-defined, since
mBlank(BBlank) is explicitly included in CBlank by definition. The assignment function
(mB)Var = mVar ◦ inclBVar,LVar is well-defined, since all variables reachable from
BVar are explicitly included in CVar by definition, while blank nodes reachable from
BVar are either in GBlank \mBlank(LBlank) (if they are not reached by mBlank) or in
mBlank(BBlank) (if they are reached by both, mBlank and mVar). The homomorphism
property (mB)Var(BUVar) ⊆ CUVar + URI holds, since for all x ∈ BUVar we have
x ∈ BVar, x ∈ LUVar and (mB)Var(x) = mVar(x). By the homomorphism property
of m we obtain mVar(x) ∈ GUVar + URI. While mVar(x) ∈ URI obviously satisfies
mVar(x) ∈ CUVar + URI, mVar(x) ∈ GUVar ⊆ GVar, together with x ∈ BVar, implies
mVar(x) ∈ CVar (by construction of CVar) and, hence, alsomVar(x) ∈ CVar∩GUVar =
CUVar ⊆ CUVar + URI. Finally, the homomorphism property (mB)Triple(BTriple) ⊆
CTriple is obviously satisfied by BTriple = ∅.

Pushout property: First, c◦mB = m◦b holds by definition ofmB as restriction ofm (and
b and c consisting solely of inclusions). Now, suppose an RDF pattern G′ and ho-
momorphisms c ′ : C → G′ and m′ : L→ G′ with c ′ ◦mB = m′ ◦b. We have to con-
struct a homomorphism g : G → G′ with g◦c = c ′ and g◦m = m′. For blank nodes,
we are forced to choose gBlank(g) := c ′Blank(g) for all g ∈ CBlank and gBlank(g) :=
m′Blank(l) for all l ∈ LBlank with mBlank(l) = g in order to satisfy the required equa-
lities. This completely determines gBlank, since all blank nodes of GBlank are either
reached by GBlank\mBlank(LBlank) ⊆ CBlank or bymBlank(LBlank). Moreover, it is well-
defined, since conflicts on blank nodes g ∈ mBlank(BBlank) = CBlank∩mBlank(LBlank)
are impeded by the commutativity c ′Blank(mBlank(b)) = m

′
Blank(bBlank(b)) and con-

flicts on blank nodes l , l ′ ∈ LBlank with l 6= l ′ and mBlank(l) = mBlank(l
′) are

prevented, since these nodes have to be in BBlank by construction. For variables,
we have to choose gVar(g) := c ′Var(g) for all g ∈ CVar and gVar(g) := m′Var(l) for
all l ∈ LVar with mVar(l) = g. This again completely determines gVar, since all va-
riables of GVar are either in GVar \mVar(LVar) ⊆ CVar or in mVar(LVar). Analogously
to blank nodes, conflicts are avoided, since all possible conflicting cases are already
present in BVar and therefore prohibited by c ′VN ◦(mB)Var = m′VN ◦bVar. The homo-
morphism property gVar(GUVar) ⊆ G′UVar + URI is ensured, since all g ∈ GUVar are
either images of l ∈ LUVar with mVar(l) = g and gVar(g) = m′Var(l) ∈ G′UVar + URI
holds due to the homomorphism property of m′ or g ∈ CUVar = CVar ∩ GUVar and

70

4.2. Pushouts, IPOs and MPOCs for RDF Patterns

gVar(g) = c
′
Var(g) ∈ G′UVar + URI due to the corresponding property of c ′. This is

complete, since GUVar = CUVar ∪mVar(LUVar) is ensured by all l ∈ LVar \LUVar with
mVar(l) ∈ GUVar being in BVar and, therefore mVar(l) ∈ CUVar. Finally, the homo-
morphism property gTriple(GTriple) ⊆ G′Triple holds, since each triple (s, p, o) ∈ GTriple
is either from CTriple = GTriple \mTriple(LTriple) or from mTriple(LTriple) and the ho-
momorphism properties of c ′ and m′ ensure gTriple(s, p, o) ∈ G′Triple, respectively.

Initiality: Without loss of generality, we will assume that b′ and c ′ consist of inclusions
and the pushout (G, c ′, m) of b′ and m′B is constructed by Proposition 4.5. We
have to show that BBlank ⊆ B′Blank, BVar ⊆ B′Var, BUVar ⊆ B′UVar, BTriple ⊆ B′Triple,
CBlank ⊆ C′Blank, CVar ⊆ C′Var, CUVar ⊆ C′UVar, CTriple ⊆ C′Triple and inclC,C′ ◦
mB = m′B ◦ inclB,B′ . Since BTriple = ∅, BTriple ⊆ B′Triple is obviously satisfied.
For CTriple = GTriple \ mTriple(LTriple) we assume a triple t ∈ CTriple (t ∈ GTriple
and t /∈ mTriple(LTriple). According to Proposition 4.5, we have GTriple = C′Triple ∪
mTriple(LTriple) and especially t ∈ GTriple implies t ∈ C′Triple or t ∈ mTriple(LTriple),
but the second case is prohibited by the assumption and, hence, we can conclude
t ∈ C′Triple.

b, c ∈MRDF: The blank node functions bBlank and cBlank and the assignment functions
bVar and cVar are inclusions and, therefore, injective. Moreover, the assignment
functions do not instantiate any variable and satisfy bVar(BUVar) = BUVar = BVar ∩
LUVar = LUVar ∩ bVar(BVar) and cVar(CUVar) = CUVar = CVar ∩ GUVar = GUVar ∩
cVar(CVar) by definition.

Since it is much more feasible to implement MPOCs directly than to employ the theo-
retical construction via IPOs, we give the direct construction of MPOCs as a corollary.

Corollary 4.1 (MPOCs in RDFPat)
Given RDF pattern homomorphisms l : I → L and m : L→ G with l ∈MRDF, such that
the gluing condition is satisfied, an MPOC (D, f , i) of l and m with f ∈ MRDF can be
constructed by

• DBlank := GBlank \mBlank(LBlank \ lBlank(IBlank)),

• DVar := GVar \mVar(LVar \ lVar(IVar)),

• DUVar := DVar ∩ GUVar

• fBlank := inclDBlank,GBlank ,

• fVar := inclDVar,GVar ,

• iBlank := mBlank ◦ lBlank,

• iVar := mVar ◦ lVar and

• DTriple := GTriple \mTriple(LTriple \ lTriple(ITriple)).

71

4. RDF Graph Transformations

Beweis. This follows immediately from combining the constructions in Proposition 4.7
and Proposition 4.5 due to Theorem 3.1.

With these structures we are able to instantiate the MPOC transformation framework
for RDF patterns which is summarised in the following corollary.

Corollary 4.2 (NAC Transformation Category for RDF Patterns)
(RDFPat,MRDF,RRDF,ORDF) is a NAC transformation category as given in Definiti-
on 3.4 and Definition 3.13.

Beweis. In particular,MRDF and RRDF are closed under composition as shown in Propo-
sition 4.3, pushouts alongMRDF preservingMRDF exist due to Proposition 4.5, pushouts
preserve RRDF according to Proposition 4.6 and IPOs exist for all morphisms according
to Proposition 4.7.

Because we want to apply the transformations to plain RDF graphs without variables
it is an important result that the transformation of RDF graphs interpreted as RDF
patterns again yields RDF graphs.

Proposition 4.8 (Transformations in RDFPat preserve RDF Graphs)
Given an RDF graph G ∈ |RDFHom| and a RDF pattern transformation Lift(G) tr ,m==⇒ P ′,
then there exists an RDF graph G′ ∈ |RDFHom| with Lift(G′) = P ′.

Beweis. This follows immediately from the fact that morphisms in RRDF are bijective on
the variable sets. Since the variable sets of images of the Lift functor are empty sets, the
variable sets of the transformation result are also empty and an RDF graph which has
this pattern as image is obtained by just omitting these empty variable sets.

4.3. Composition and Independence for RDF Patterns

In this section, we present the additional constructions and properties that are necessary
to instantiate the sequential composition operation of the MPOC transformation frame-
work.

Proposition 4.9 (Pullbacks along Monos preserving Monos in RDFPat)
Given RDF pattern homomorphisms g : D → H and n : R → H with g ∈ MRDF, a
pullback (I, r, i) of g and n with r ∈MRDF can be constructed by

• IBlank := {r ∈ RBlank | ∃d ∈ DBlank : nBlank(r) = gBlank(d)},

• IVar := {r ∈ RVar | ∃d ∈ DVar +DNode : nVar(r) = gVN(d)},

• IUVar := IVar ∩ RUVar,

• rBlank := inclIBlank,RBlank ,

72

4.3. Composition and Independence for RDF Patterns

• rVar := inclIVar,RVar ,

• iBlank(i) := d for d ∈ DBlank with nBlank(i) = gBlank(d),

• iVar(i) := d for d ∈ DVar +DNode with nVar(i) = gVN(d) and

• ITriple := {(s, p, o) ∈ RTriple | ∃(s ′, p′, o ′) ∈ DTriple : nTriple(s, p, o) = gTriple(s
′, p′,

o ′)}.

Beweis.

Well-Definedness: The homomorphism r is well-defined, since rBlank and rVar are in-
clusions and IUVar and ITriple are constructed as subsets of RUVar and RTriple, re-
spectively. The functions iBlank and iVar are well-defined, since the existence of the
funtion results is ensured by the construction of IBlank and IVar, respectively, and
the uniqueness by the injectivity of gBlank and gVN. The homomorphism property
iVar(IUVar) ⊆ DUVar + URI follows from IUVar ⊆ RUVar (by construction of IUVar),
nVar(RUVar) ⊆ HUVar+URI (by the homomorphism property of n) and the fact that
gVN(d) = nVar(i) ∈ HUVar +URI implies d ∈ DUVar +URI (by g ∈MRDF). Finally,
the homomorphism property iTriple(ITriple) ⊆ DTriple is ensured by the construction
of ITriple.

Commutativity: For the commutativity g ◦ i = n ◦ r we have gBlank(iBlank(i)) = nBlank(i)
for all i ∈ IBlank and gVN(iVar(i)) = nVar(i) for all i ∈ IVar, since the construction of
i chooses exactly those (unique) elements of DBlank and DVar+DNode, respectively,
satisfying these equations.

Existence of Comparison Morphism: Suppose another RDF pattern I ′ with homomor-
phisms r ′ : I ′ → R and i ′ : I ′ → D satisfying g ◦ i ′ = n ◦ r ′. We have to construct a
homomorphism x : I ′ → I with r◦x = r ′ and i◦x = i ′. For blank nodes, this is achie-
ved by xBlank(i ′) := r ′Blank(i

′) = r which is well-defined, since nBlank(r ′Blank(i
′)) =

gBlank(i
′
Blank(i

′)) implies that d = i ′Blank(i
′) ∈ DBlank with nBlank(r) = gBlank(d)

exists and, hence, r ∈ IBlank holds by construction of IBlank. This definition satisfies
rBlank◦xBlank = r ′Blank by definition and iBlank◦xBlank = i ′Blank by gBlank◦iBlank◦xBlank =
nBlank ◦ rBlank ◦ xBlank = nBlank ◦ r ′Blank = gBlank ◦ i ′Blank and gBlank being a mono-
morphism. For variables, we analogously define xVar(i ′) := r ′Var(i

′) = r which is
again well-defined, since nVN(r ′Var(i

′)) = gVN(i
′
Var(i

′)) implies that d = i ′Var(i
′) ∈

DVar +DNode with nVN(r) = gVN(d) exists and, hence, r ∈ IVar holds for r ∈ RVar
by construction of IVar and r ∈ IBlank holds for r ∈ RBlank by construction of IBlank.
This definition also satisfies rVN ◦ xVar = r ′Var by definition and iVN ◦ xVar = i ′Var by
gVN◦iVN◦xVN = nVN◦rVN◦xVN = nVN◦r ′Var = gVN◦i ′VN and gVN being a injective and,
hence, a monomorphism. The homomorphism property xVar(I ′UVar) ⊆ IUVar + URI
follows from i ′ ∈ I ′UVar implying r ′Var(i

′) = rVN(xVar(i
′)) = xVar(i

′) ∈ RUVar and
i ′Var(i

′) = iVN(xVar(i
′)) ∈ DUVar (by the homomorphism properties of r ′ and i ′)

and, together with gVN(iVN(xVar(i))) = nVN(rVN(xVar(i ′))) = nVN(xVar(i ′)) and the

73

4. RDF Graph Transformations

definitions of IVar and IUVar also xVar(i ′) ∈ IUVar+URI. Finally, the homomorphism
property xTriple(I ′Triple) ⊆ ITriple holds by the fact, that for all (s, p, o) ∈ I ′Triple
we have r ′Triple(s, p, o) = rTriple(xTriple(s, p, o)) = xTriple(s, p, o) ∈ RTriple and
i ′Triple(s, p, o) = iTriple(xTriple(s, p, o)) ∈ DTriple by the homomorphism properties of
r ′ and i ′ which, together with gTriple(iTriple(xTriple(s, p, o))) = nTriple(rTriple(xTriple(s, p, o))) =
nTriple(xTriple(s, p, o)) and the definition of ITriple, implies xTriple(s, p, o) ∈ ITriple.

Uniqueness of Comparison Morphism: Suppose another morphism x ′ : I ′ → I with r ◦
x ′ = r ′ and i ◦ x ′ = i ′. We have to show x ′ = x . Since r is a monomorphism and
r ◦ x ′ = r ′ = r ◦ x , we can immediately conclude x ′ = x .

r ∈MRDF: The functions rBlank and rVar are constructed as inclusions, which are ob-
viously injective. Moreover, the inclusion rVar does not instantiate any variable and
rVar(IUVar) = IUVar = RUVar ∩ IVar = RUVar ∩ rVar(IVar) holds by construction of
IUVar.

In the MPOC transformation framework, we additionally need the preservation of the
occurrence morphisms in ORDF by pullbacks.

Proposition 4.10 (Pullbacks preserve ORDF)
Given RDF pattern homomorphisms g : D → H and n : R → H with g ∈ MRDF and a
pullback (I, r, i) of g and n, then n ∈ ORDF implies i ∈ ORDF.

Beweis. Suppose n ∈ ORDF. Firstly, iBlank is injective by decomposition of gBlank ◦ iBlank =
nBlank ◦ rBlank with nBlank ◦ rBlank being injective by composition. Secondly, suppose we
have x ∈ IVar and n ∈ IVar + IBlank + Voc(I)URI + Voc(I)PLit + Voc(I)TLit with x 6= n.
Since rVar is injective and only maps to variables, we have rVar(x) ∈ RVar, rVN(n) ∈
RVar +RBlank +Voc(R)URI +Voc(R)PLit +Voc(R)TLit and rVar(x) 6= rVN(n). Because of
n ∈ ORDF nVar(rVar(x)) 6= oVN(rVN(n)) and by commutativity we obtain gVN(iVar(x)) 6=
gVN(iVN(n)). Since gVN is injective this implies iVar(x) 6= iVN(n). Hence, iVar(x) = iVN(n)
already implies x = n and i ∈ ORDF.

Proposition 4.11 (MPOC-Pullback Characterisation in RDFPat)
The MPOC-pullback characterisation given in Definition 3.7 is satisfied for RDFPat.

Proof Sketch. Pushout complements for the same given situation only differ in their triple
sets. For the minimal pushout complement all triples that are in the left-hand side but
not in the interface have to be removed which implies that the triple set of the interface
is the intersection of the triple set of the left-hand side and the triple-set of the MPOC
and, hence, makes the interface a pullback. On the other hand, a pushout complement
for which the interface is a pullback is already a minimal pushout complement since no
further triples can be removed from the triple set without losing the pushout property.

Proposition 4.12 (Pushout-Pullback Decompositions in RDFPat)
RDFPat has pushout-pullback decompositions as defined in Definition 3.8.

74

4.3. Composition and Independence for RDF Patterns

Proof Sketch. The pullback D as constructed above is a subgraph of G which contains
exactly those elements for which the instances are also found in the subgraph D′ of the
codomain G′. If this subgraph is now an instantiation of a pushout interface I for the
original codomain G′ then this means by the pushout construction above that G′ can
be exactly reconstructed by disjointly and injectively adding the additional elements of L
to the instantiation D′ of I. But since G is an intermediate object in this instantiation
it also obtained by disjointly adding the additional elements of L to the intermediate
instantiation D of I and is, hence, a pushout of D and L under I.

Proposition 4.13 (Cube Properties in RDFPat)
The cube properties given in Definition 3.9 are satisfied in RDFPat.

Proof Sketch. Since all horizontal morphisms are monos we will without loss of generality
assume them to be inclusions. In both properties I is then the intersection of J1 and J2.
For the first property, D is additionally the intersection of D1 and D2 and the back faces
being pushouts means that G can be obtained by either disjointly and injectively adding
the additional elements of E w. r. t. J1 to J1’s instance D1 or by adding the additional
elements of E w. r. t. J2 to its instance D2. But then the instances D1 and D2 must
already contain the elements that do not stem from their intersection D in a compatible
way and, hence, be pushouts of J1 and D and J2 and D over the intersection I of J1 and
J2, respectively.
For the second property we already know that all vertical faces are pushouts. We have
to show that D is a minimal complement of D1 under I if and only if D2 is a minimal
complement of G under J2.
First, we assume that D2 is minimal, but D is not. Then there has to be a triple in J1
which is not in I, but for which the corresponding instance is nevertheless in D. Since the
instance is in D it has to be in all graphs in the bottom by the inclusions. Moreover, since
the triple is in J1 it has to be in E, but it cannot be in J2 because otherwise it would also
be in the intersection I. Hence, D2 cannot be minimal since it contains an instance of a
triple which is in E but not in J2.
Second, we assume that D is minimal, but D2 is not. Then, there has to be a triple in
E but not in J2 for which the corresponding instance is nevertheless in D2. Since D2 is
a pushout of J2 and D and the triple is not from J2, the instance has to be in D. Since
I is the intersection of J1 and J2 the triple cannot be in I. Hence, D is not minimal.

As an epi-MRDF factorisation we choose the image of the homomorphism as the most
easily realisable variant. Note that epi-mono factorisations are not unique in RDFPat
since we are free to include more triples into the factorisation object, while e still is an
epimorphism.

Proposition 4.14 (Epi-MRDF Factorisations in RDFPat)
Given an RDF pattern homomorphism m : L → G, an epi-MRDF factorisation of m
can be obtained by the RDF pattern m(L), the epimorphism e : L → m(L) and the

75

4. RDF Graph Transformations

monomorphism i : m(L)→ G with i ∈MRDF constructed by

• m(L)Blank := {b ∈ GBlank | ∃l ∈ LBlank : mBlank(l) = b or ∃l ∈ LVar : mVar(l) = b},

• m(L)Var := {x ∈ GVar | ∃l ∈ LVar : mVar(l) = x},

• m(L)UVar := m(L)Var ∩ GUVar,

• m(L)Triple := {(s, p, o) ∈ GTriple | ∃(s ′, p′, o ′) ∈ LTriple : mTriple(s ′, p′, o ′) = (s, p,
o)}

• eBlank(b) := mBlank(b) for all b ∈ LBlank,

• eVar(x) := mVar(x) for all x ∈ LVar,

• iBlank := inclm(L)Blank,GBlank and

• iVar := inclm(L)Var,GVar .

Beweis. The homomorphism e is obviously surjective on blank nodes and variables since
m(L) is explicitly defined to only contain elements that are reached by m. On the other
hand i is defined as an inclusion of m(L) into G, which is injective, does not instantiate
variables and does not map non-URI to URI variables. Hence, e is an epimorphism and
i ∈MRDF.

Now we have all constructions and results that are necessary for sequential composition
which is summarised in the following corollary.

Corollary 4.3 (NAC Transformation Category with Sequential Composition for RDF Pat-
terns)
(RDFPat,MRDF,RRDF,ORDF) is a NAC transformation category with sequential com-
position as given in Definition 3.10 and Definition 3.15.

Beweis. For sequential composition, pullbacks alongMRDF preservingMRDF are shown
in Proposition 4.9, the MPOC-pullback characterisation is proven in Proposition 4.11,
pushout-pullback decomposition is given in Proposition 4.12 and the cube properties are
shown in Proposition 4.13. For NACs, the facts thatMRDF ⊆ ORDF and ORDF is closed
under composition are given in Proposition 4.3, pushouts and pullbacks along MRDF

preserving ORDF are shown in Proposition 4.6 and Proposition 4.10, respectively, and
epi-MRDF factorisations are given in Proposition 4.14.

4.4. Inference Rules for RDF and RDF Schema

In this section, we will give transformation rules which implement inference rules for ρdf.
These rules are algebraic transformation rule versions of a set of inference rules given in

76

4.4. Inference Rules for RDF and RDF Schema

[MPG07]. Since we confined ourselves to a ρdf variant without reflexivity in Section 2.3
we will also omit corresponding inference rules for reflexivity in this section.
The purpose of inference is that semantic ρdf entailment shall be characterised synta-

citically in order to validate if a given RDF graph G ρdf entails another graph H. With
the help of the rules given in the following this can be characterised by the fact that G
ρdf entails H if and only if there is a transformation sequence using the following rules
from G to a graph G′ such that there is an RDF graph instantiation i : H → G′.
The first rules, given in Figure 4.2, realise the inferences implied by dom and range

triples.2 Since ρdf interpretations require that the interpretations of dom, range and type
are compatible in a reasonable way we can infer the types of subjects and objects of a
predicate from triples defining their domain and range in the schema of the predicate.

d p

x
p

y

dom

type{add}

(a) Domain

p r

x
p

y

range

typ
e

{a
dd
}

(b) Range

Abbildung 4.2.: Typing rules for dom and range

For the subclass predicate sc, the transitivity that is required by the definition of ρdf
interpretations is syntactically realised by the rule in Figure 4.3a, while the inheritance of
type properties is realised by the rule in Figure 4.3b.
For the subproperty predicate sp, transitivity is realised by the transformation rule in

Figure 4.4a, while the inheritance of superproperties is achieved by the rule in Figure 4.4b.

While the rules given so far are quite straightforward and are, in fact, already given
in [Hay04], it was shown in [Mar06] and [MPG07] that these are not complete. The
reason is that blank nodes (and, although not really sensible, also literals3) may appear
in subproperty hierarchies, but the rules in Figure 4.2 and Figure 4.4 together may only
infer the corresponding type triples if the superproperty is represented by a URI. This
can be readily seen in our inference transformation rules since the rules in Figure 4.2 and

2 Here and in the following, rules are depicted using a compact notation, where LHS, interface and RHS
are given in one figure and the deleted parts only included in the LHS are tagged with “{del}”, while
the added parts only included in the RHS are tagged with “{add}”. Moreover, we will use variable
nodes with rounded corners and the same background color as URIs for URI variables.

3 The problem that is sketched here does not arise for literals w. r. t. the original RDF specification since
they are only allowed as objects there but for this problem they have to be objects of an sp triple and
subjects of a dom or range triple. In our setting, where the restriction of subjects is omitted, both,
blank nodes and literals, can be the culprit.

77

4. RDF Graph Transformations

c d e
sc sc

sc
{add}

(a) Transitivity

c d

x

sc

type typ
e

{a
dd
}

(b) Inheritance

Abbildung 4.3.: Inference rules for sc

o p q
sp sp

sp

{add}

(a) Transitivity

q q

x y

pp

sp
{add}

(b) Inheritance

Abbildung 4.4.: Inference rules for sp

78

4.4. Inference Rules for RDF and RDF Schema

Figure 4.4b use URI variables and are, hence, not applicable to blank nodes and literals.
The rules in Figure 4.5 solve this issue by also allowing the implicit inference of type
triples for domains and ranges of superproperties.

d q

p

x
p

y

dom

sp

type{add}

(a) Domain

q r

p

x
p

y

range

sp

ty
pe

{a
dd
}

(b) Range

Abbildung 4.5.: Implicit typing rules for dom and range

These rules constitute a sound and complete calculus for ρdf entailment which will
be shown in the following theorems. The soundness is rather easy to show, since the
inference rules exactly reflect the semantic conditions of ρdf interpretations.

Theorem 4.1 (Soundness of ρdf Inference Rules)
Given a transformation G tr ,m

==⇒ H by one of the inference rules in Figure 4.2–4.5 and a
ρdf interpretation I, I |= G implies I |= H.

Beweis. We distinguish by the given transformation rules:

Domain typing: Because of the match m, the graph G has to contain the triples
(mVar(x), mVar(p), mVar(y)) and (mVar(p),dom, mVar(d)). Since I |= G holds, De-
finition 2.9 implies that there is an assignment asg : GBlank → IRes, such that we
have (asg(mVar(x)), asg(mVar(y))) ∈ pextI(uintI(mVar(p))) and (asg(mVar(p)),
asg(mVar(d))) ∈ pextI(uintI(dom)). The semantic condition for dom in Definiti-
on 2.13 implies that (asg(mVar(x)), asg(mVar(d))) ∈ pextI(uintI(type)). Then I
also satisfies the triple (mVar(x), type, mVar(d)) and, since this is the only triple
added by the transformation, we also have I |= H.

Range typing: Analogously to domain typing with the semantic condition for range in
Definition 2.13

Subclass transitivity: Analogously to domain typing with the transitivity condition for
sc in Definition 2.13

Subclass inheritance: Analogously to domain typing with the inheritance condition for
sc in Definition 2.13

79

4. RDF Graph Transformations

Subproperty transitivity: Analogously to domain typing with the transitivity condition
for sp in Definition 2.13

Subproperty inheritance: GTriple has to contain the triples (mVar(p), sp, mVar(q)) and
(mVar(x), mVar(p), mVar(y)). Then we also have (asg(mVar(p)), asg(mVar(q))) ∈
pextI(uintI(sp)) and (asg(mVar(x)), asg(mVar(y))) ∈ pextI(uintI(mVar(p))) by I |=
G and Definition 2.9. Moreover, we have (asg(mVar(x)), asg(mVar(y))) ∈ pextI(uintI(mVar(q)))
by pextI(uintI(mVar(p))) ⊆ pextI(uintI(mVar(q))) whis is implied by the semantic
condition for subproperty inheritance in Definition 2.13. Again, this corresponds to
the only triple added by the rule and, hence, I |= H.

Implicit domain typing: GTriple has to contain the triples (mVar(x), mVar(p), mVar(y)),
(mVar(p), sp, mVar(q)) and (mVar(q), dom, mVar(d)). By I |= G and Definition 2.9,
we have (asg(mVar(x)), asg(mVar(y))) ∈ pextI(uintI(mVar(p))), (asg(mVar(p)),
asg(mVar(q))) ∈ pextI(uintI(sp)) and, finally, (asg(mVar(p)), asg(mVar(d))) ∈
pextI(uintI(dom)). From subproperty inheritance in Definition 2.13 we obtain
(asg(mVar(x)), asg(mVar(y))) ∈ pextI(uintI(mVar(q))) and the semantic condition
for dom implies (asg(mVar(x)), asg(mVar(d))) ∈ pextI(uintI(type)), which again
lets us conclude I |= H.

Implicit range typing: Analogously to implicit domain typing with the semantic condi-
tion for range instead of dom

The completeness of this calculus is not as easy to show as soundness. We only give
a sketch here, since a complete proof would require some considerable extensions to the
formal framework of Chapter 2.

Theorem 4.2 (Completeness of ρdf Inference Rules)
Given RDF graphs G and H with G
ρdf H, there is a transformation sequence G ⇒∗ G′
by the inference rules in Figure 4.2–4.5 and an instantiation i : H → G′.

Proof Sketch. Similar to the “only if” part in the proof of Theorem 2.1, we construct
a minimal (simple) interpretation I of G and afterwards close it under the semantic
conditions for ρdf interpretations leading to an initial ρdf interpretation I ′ of G. On
the other hand, we apply the inference rules of this section as long as possible leading
to a graph G′. Since the inference rules exactly reflect the semantic conditions of ρdf
interpretations, I ′ is the initial (simple) interpretation of G′. Moreover, I ′ |= G implies
I ′ |= H and we can construct an instantiation i : H → G′ analogously to Theorem 2.1.

We have now seen that transformation rules can be used to formalise inference rules but
a more thorough examination of the relationships between inference and transformations
is outside the scope of this thesis. More specifically, it is not really sensible to infer all
possible triples since such inferences significantly increase the storage space needed for
RDF graphs. Therefore, a lot of RDF engines employ inference implicitly during querying
of a graph instead of explicitly adding the inferred triples to the graph. The relationships

80

4.4. Inference Rules for RDF and RDF Schema

of this kind of inference to our transformation approach are non-trivial since, e. g., the
question has to be answered what the result of a transformation deleting an inferred
triple is.
Nevertheless, the application of RDF graph transformations to RDF datastores without

inference is not critical and can be already used before solving these further reasearch
topics.

81

5. Application Scenarios

In this chapter we will show how transformation rules can be used in the two applicati-
on scenarios described in Section 1.2. The first scenario, presented in Section 5.1, is a
Semantic Web application for bibliographical metadata. While structured metadata are
a classical use case for Semantic Web structures, the second scenario, treated in Secti-
on 5.2, is a novel application area for RDF. There, RDF graphs are used as an abstract
syntax for a domain-specific modelling language (DSML).

5.1. A Semantic Web Metadata Application

The small application that is considered in this section manages two types of publications,
articles and books, and their relations to authors. We will first give a schema for the
data used by the application and grammar rules that describe the allowed structures in
Section 5.1.1. In addition we also assume that metadata shall be imported from external
sources, where a different schema is used which is presented in Section 5.1.2 together
with transformation rules that integrate this foreign data into the application.

5.1.1. Schema and Grammar for Bibliographies

The schema for our example application is given in Figure 5.11 We have two types of
publications, bib:Book and bib:Article, with the common super class bib:Publication.
Publications can have a title given by the predicate bib:title and an author given by the
predicate bib:author. The range of bib:author is the class bib:Person which in turn can
have a name given by the predicate bib:name. Titles and names are supposed to be plain
literal content which, however, is not represented in this schema.
Semantic Web applications often have more or less implicit constraints on the data

that are not expressible using RDF Schema. For our example, we assume the following
constraints:

• A person shall have exactly one name.

• A publication shall have exactly one title.

• A publication shall have at least one author.

We use the grammar in Figure 5.2 to express these constraints. Only graphs that can
be built using the rules in the grammar are allowed.
1 This figure was already presented in Section 2.3 and is only repeated here.

83

5. Application Scenarios

bib:title bib:name

bib:Publication bib:author bib:Person

bib:Book bib:Article

dom dom
dom range

sc sc

Abbildung 5.1.: Schema for bibliographies

The rule addPerson in Figure 5.2a is the only possibility to introduce new nodes with
type bib:Person and new triples with predicate bib:name into the system. This ensures
that every author has exactly one name. The NACs require that the name is not already
used for another person and the person does not already have another name. Note that
this, on the one hand, ensures to have a unique node for each person but, on the other
hand, does not take into account that different persons may in reality have the same
name.
The rules addBook in Figure 5.2b and addArticle in Figure 5.2c are used to add publi-

cations and their relations to authors to the system, where the node of type bib:Person
has to exist in advance. The NACs again ensure that there is a one-to-one correspon-
dence between titles and publications with the side effect that there cannot be a book
and an article with the same title.
Since type triples to the types bib:Book and bib:Article can only be introduced by

this rule which at the same time introduces a bib:author triple it is guaranteed that
each publication has at least one author. Note that the same rules can be used to add
additional authors to a publication since pushouts in RDF do not add triples again which
are already contained in the host graph. If a publication with the same title already exists
the NACs restrict the possible matches such that the corresponding variable (b or a) has
to be mapped to this publication.
Observe that there is no rule involving bib:Publication from the schema. Hence, this

class can be seen as an abstract class which has no direct instances that can be created
by the grammar.
In summary, the informal constraints of our language are ensured on the one hand by

the NACs guaranteeing a one-to-one correspondence between persons and their names
and publications and their titles, on the other hand by the fact that publications can only
be created together with their first author.

5.1.2. Integration of Schemas

Another use case for graph transformations on RDF is the automatic integration or
adaption between data w. r. t. different schemas. For example, Figure 5.3 shows a schema

84

5.1. A Semantic Web Metadata Application

n p bib:Person
bib:name
{add}

type

{add}

NACs: n x pbib:name

n x pbib:name

(a) Rule addPerson

bib:Book bib:Person

t b p

type {add} type

bib:title
{add}

bib:author
{add}

NACs: t x b
bib:title

t x b
bib:title

(b) Rule addBook

bib:Article bib:Person

t a p

type {add} type

bib:title
{add}

bib:author
{add}

NACs: t x a
bib:title

t x a
bib:title

(c) Rule addArticle

Abbildung 5.2.: Grammar for bibliographies

85

5. Application Scenarios

for a record-based bibliography.

imp:author

imp:Publication

imp:title
imp:Book imp:Article

dom

dom
sc sc

Abbildung 5.3.: Schema for record entries

Such a vocabulary can be used for straightforward parsing of flat bibliographies without
cross-references into RDF data. For each record of the source a blank node with corre-
sponding triples is created. Therefore, we introduce a simple grammar for record-based
bibliographies in Figure 5.4.
The RDF graph in Figure 5.52 contains an imported publication created by this gram-

mar together with a publication that was created by the grammar from the previous
section. Since RDF graphs are supposed to represent whole data stores, such situations,
where data w. r. t. different schemas and grammars are contained in the same graph, will
arise quite often.
In order to make the imported data usable for our example application we have to

integrate it into the schema used by the application. The rules in Figure 5.6 facilitate
this. Firstly, the rules intBook in Figure 5.6a and intArticle in Figure 5.6b translate
books and articles with an arbitrary number of authors into the native schema. The
NACs (inherited from addPerson and addBook) ensure that names and titles exactly
correspond to persons and publications. If the book (for the second and further authors)
or the author or both already have a corresponding URI we can still use the same rule
since the NACs only forbid that another node with the same type and name exists. In
this case some of the structures added by the rule are already contained in the graph and
not added again.
Finally, the rules delBook in Figure 5.6c and delArticle in Figure 5.6d remove the

blank node and the triples for type and title. Because of the dangling condition this rule
can only be applied after all authors have been translated and deleted. If a publication
does not have any authors from the beginning it can also be deleted by this rule which is
intended since the native schema does not allow publications without authors and such
publications can, thus, not be integrated.
The fact that these integration rules are (for the parts regarding bib: vocabulary) com-

posed of the grammar rules is responsible for ensuring that they only produce structures
which are compatible with the grammar.
The example graph can be integrated by first applying intBook and then delBook. The

2 This figure was already used as the first example of an RDF graph in Section 2.1.

86

5.1. A Semantic Web Metadata Application

imp:Book α

{add}

t
type

{add}

imp:title

{add}

(a) Rule addImpBook

imp:Article α

{add}

t
type

{add}

imp:title

{add}

(b) Rule addImpArticle

imp:Book α n
type imp:author

{add}

(c) Rule addImpBookAuth

imp:Article α n
type imp:author

{add}

(d) Rule addImpArtAuth

Abbildung 5.4.: Grammar for record entries

imp:Book bib:Person bib:Article

1 cont:Doe cont:Something

en,“About Anything” ε,“John Doe” en,“About Something”

type type type
bib:author

imp:title

imp:author

bib:name bib:title

Abbildung 5.5.: RDF graph with imported and native metadata

87

5. Application Scenarios

t b bib:Book

imp:Book α

n p bib:Person

type
imp:title

imp:author
{del}

bib:title
{add}

type

{add}

bib:author {add}

bib:name
{add}

type

{add}

NACs: t x b
bib:title

t x b
bib:title

n x pbib:name
n x pbib:name

(a) Rule intBook

t a bib:Article

imp:Article α

n p bib:Person

type
imp:title

imp:author
{del}

bib:title
{add}

type

{add}

bib:author {add}

bib:name
{add}

type

{add}

NACs: t x a
bib:title

t x a
bib:title

n x pbib:name
n x pbib:name

(b) Rule intArticle

imp:Book α

{del}

t
type

{del}

imp:title

{del}

(c) Rule delBook

imp:Article α

{del}

t
type

{del}

imp:title

{del}

(d) Rule delArticle

Abbildung 5.6.: Schema integration rules

88

5.1. A Semantic Web Metadata Application

result of this integration is given in Figure 5.7, where the new URI cont:New for the book
was chosen by the match of intBook and the type and bib:name triples for the author
were not added again, since they were already contained in the graph.

bib:Book bib:Person bib:Article

cont:New cont:Doe cont:Something

en,“About Anything” ε,“John Doe” en,“About Something”

type type type
bib:author

bib:title

bib:author

bib:name bib:title

Abbildung 5.7.: Result of integration

89

5. Application Scenarios

5.2. Domain-Specific Modelling Languages

For the DSML application scenario we consider a simple language for IT landscapes
which is intended to easily depict the network layout of an organisation. As an example,
Figure 5.8 shows an IT landscape, where two local networks, named “Data Center 1” and
“Data Center 2”, are both connected to a demilitarised zone (DMZ) for public servers via
firewall protected connections. The DMZ itself is connected to the Internet via another
firewall protected connection. There is a remote cluster for backups which also has a
protected connection to the Internet. In order to reach this backup network, the data
centers also have direct connections to the Internet that (as a deliberately introduced
design flaw which will be repaired later) are not protected.

Data Center 1

Data Center 2

DMZ Internet Backup Data Cluster

Abbildung 5.8.: Example IT landscape

We now want to give the abstract syntax for models in this language as RDF graphs.
Since the whole model would be too large, only one connection is presented with concrete
and abstract syntax in Figure 5.9, where one of the data centers is represented by a URI in
the mod: namespace with triples connecting it to the type dsml:LAN and the inscription
as a plain literal. Correspondingly the Internet entitity in the model is represented by a URI
mod:INet of type dsml:WAN with the inscription “Internet” as a plain literal. Moreover,
the connection itself is given by a blank node of type dsml:Connection with dsml:connect
triples to both URIs.

5.2.1. Schema and Grammar for IT Landscapes

The schema for the example DSML is given in Figure 5.10. Connections are declared such
that they can connect all instances of the abstract class dsml:Connectable which is the
common superclass for applicances, such as the firewalls in the example, and networks.
Since appliances are supposed to be identified solely by an icon depicting their type, only
nets are declared to be the domain of the dsml:name predicate for attaching inscriptions.

90

5.2. Domain-Specific Modelling Languages

Concrete Data Center 1 Internet

Abstract

dsml:LAN dsml:Connection dsml:WAN

mod:LAN1 1 mod:INet

en,“Data Center 1” en,“Internet”

type type type
dsml:connect dsml:connect

dsml:name dsml:name

Abbildung 5.9.: Concrete and abstract syntax of a connection

dsml:Connectable dsml:connect dsml:Connection

dsml:Appliance dsml:Net dsml:name

dsml:FW dsml:LAN dsml:WAN

sc sc

sc sc sc
sc sc

sc

range dom

dom

Abbildung 5.10.: Schema for IT landscape DSML

91

5. Application Scenarios

Again, the structural constraints assumed for the language are expressed by a grammar
which is given in Figure 5.11. The grammar allows to add local networks as well as
WANs by the same rule addnet which uses a variable for the class and just restricts it
to be a subclass of dsml:Net. The rule also ensures that a name has to be given for
each instance of dsml:Net. The rule addConnection is meant to introduce connections
between networks, where a blank node is used to represent the connection. Since the
blank node is created by the rule itself it is ensured that each connection connects exactly
two networks. The most complex rule addFirewall creates a connection protected by a
firewall, where the firewall itself and the connections on both sides are added at the same
time. NACs are used to ensure that a firewall is only introduced between distinct nets,
i. e., the variables x and z are not assigned to the same net, that the node that is assigned
to the variable y is not already used in any connection and that it does not have a type
already.
In order to derive some more complex editing rules in the next section, we also need

rules that allow us to delete structures, which are shown in Figure 5.12. While it would
be useful to be able to automatically derive such deleting rules from a constructive
grammar, this task is non-trivial and no formal support is available up to now. A small
example of the problems arising during the derivation of deletion rules can be already seen
in this simple grammar. While the main body of the rules is just reverted to delete the
structures that were added by the constructive grammar, the treatment of NACs needs
special attention. Since nodes of type dsml:Net are required in the left-hand side of
the rules addConnection and addFirewall we cannot delete these types at will without
changing the language. Therefore, the rule delNet uses a NAC that ensures that the
deleted network is not used in any connection. On the other hand, the rule delFirewall
does, in contrast to its constructive counterpart, not need any NACs since the NACs
only forbid to add the structure if certain conditions are not met, while the deletion of a
firewall cannot violate these structural constraints.

92

5.2. Domain-Specific Modelling Languages

tx dsml:Net

x nx

sc

ty
pe

{a
dd
}

dsml:name
{add}

(a) Rule addNet

dsml:Net

tx dsml:Connection tz

x γ

{add}

z

sc sc

ty
pe

ty
pe

{a
dd
}

ty
pe

dsml:connect
{add}

dsml:connect
{add}

(b) Rule addConnection

dsml:Net

dsml:Connection

tx dsml:FW tz

x α

{add}

y β

{add}

z

sc sc

ty
pe ty

pe
{a
dd
}

ty
pe

{a
dd
}

ty
pe

{a
dd
}

ty
pe

dsml:connect
{add}

dsml:connect
{add}

dsml:connect
{add}

dsml:connect
{add}

NACs: x,z w ydsml:connect y w
type

(c) Rule addFirewall

Abbildung 5.11.: Grammar rules for IT landscape DSML

93

5. Application Scenarios

dsml:Net tx

nx x

sc

ty
pe

{d
el
}

dsml:name
{del}

NAC:

w x
dsml:connect

(a) Rule delNet

dsml:Net

tx dsml:Connection tz

x γ

{del}

z

sc sc

ty
pe

ty
pe

{d
el
}

ty
pe

dsml:connect
{del}

dsml:connect
{del}

(b) Rule delConnection

dsml:Net

dsml:Connection

tx dsml:FW tz

x α

{del}

y β

{del}

z

sc sc

ty
pe ty

pe
{d
el
}

ty
pe

{d
el
}

ty
pe

{d
el
}

ty
pe

dsml:connect
{del}

dsml:connect
{del}

dsml:connect
{del}

dsml:connect
{del}

(c) Rule delFirewall

Abbildung 5.12.: Deleting rules for IT landscape DSML

94

5.2. Domain-Specific Modelling Languages

5.2.2. Modification Rules for IT Landscapes

In this section we will give examples of more complex modification rules that are composed
of the grammar rules from the previous section. Such rules are intended for end users
to achieve elaborate transformations in one step without the risk to leave the language
defined by the grammar (and deleting rules). This is ensured by Theorem 3.3 which
ensures that an application of a composed rule can be substituted by applications of its
constituents.
The first example rule, editNet in Figure 5.13, combines the rules delNet and addNet

to achieve the modification of an existing net in a landscape model. Note that during
rule composition the NACs are inherited from the component rules and, therefore, this
rule is only applicable to unconnected networks.

dsml:Net

tx tx’

x

nx nx’

sc sc

type
{del}

type

{add
}

dsml:nam
e

{del}

dsml:name{add}

NAC: w x
dsml:connect

Abbildung 5.13.: Rule editNet as composition of delNet and addNet

The second modification rule, protect in Figure 5.14, combines the rules delConnection
and addFirewall in order to protect an existing connection in a landscape by a firewall.
Again, the NACs are inherited from the component rule addFirewall.
The protect rule can be used to repair the design flaw in the example model from

Figure 5.9, where the unprotected connection is replaced by a connection with a firewall.

95

5. Application Scenarios

dsml:Net

dsml:FW
tx tz

α

{add}

β

{add}

y

x z

dsml:Connection

γ

{del}

sc sc

ty
pe

type{add}

ty
pe

{a
dd
}

ty
pe

{a
dd
}

ty
pe

dsm
l:co

nne
ct

{ad
d}

dsml:connect{add}
dsml:con

nect

{add
}

dsml:connect{add}

ty
pe

{d
el
}

dsml:connect{del} dsm
l:con

nect

{de
l}

NACs: x,z w ydsml:connect y w
type

Abbildung 5.14.: Rule protect as composition of delConnection and addFirewall

96

5.2. Domain-Specific Modelling Languages

5.2.3. Evolution of Domain-Specific Modelling Languages

In this last section we will shortly sketch how the flexibility provided by RDF and graph
transformation can be used to support the evolution of DSMLs. We assume that lo-
cal networks shall be refined by introducing a distinction between public and restricted
networks. This can be achieved by adding the schema elements in Figure 5.15 to the
schema. Note that the evolved structures are just added to the schema but the original
class dsml:LAN is not removed. This is sensible for the continued support of legacy
models since it is not feasible to migrate all models in a large organisation at the same
time.

dsml:Connectable

dsml:Net

dsml:Public dsml:Restricted

sc
sc

sc sc

Abbildung 5.15.: Additional schema elements for evolved DSML

In order to adapt such legacy models to the evolved language graph transformation
rules can again be used. Figure 5.16 shows a rather simple one which just adapts all
legacy local area networks to become public networks w. r. t. the evolved schema. Such
adaption rules could be applied manually when the need arises or automatically to whole
models or even repositories.

dsml:LAN dsml:Public

x

type{del}
typ

e

{a
dd
}

Abbildung 5.16.: Adaption rule for evolved DSML

97

6. Conclusion and Future Perspectives

In this thesis, a formally founded transformation concept for RDF has been developed and
applied in two application scenarios. In Section 6.1, we will shortly summarise how the
requirements of the scenarios are solved by graph transformations. Then, in Section 6.2,
the main theoretical contributions and perspectives for future work are recapitulated.

6.1. Solution for Application Scenarios

In Chapter 5 it has been shown that graph transformations provide a solution for the pro-
blem statement in Section 1.2. Graph transformations have been presented as a versatile
tool to deal with all kinds of modifications of RDF data.
The requirements w. r. t. the example metadata application habe been met by providing

a grammar that defines all allowed structures for the application and then showing how
metadata that are imported using another schema can be integrated into the language
defined by this grammar.
With respect to the domain-specific language scenario, the abstract syntax has also

been defined by a grammar. Then, it has been shown that complex editing operations on
models in the language can be built from the grammar rules. Moreover, a small example
for the evolution of the domain-specific modelling language has lead to an adaption rule
that allows to migrate models in the original language to models in the evolved language.
In future work, the formal transformation concept should be implemented in an RDF

graph transformation engine which would be useful for both application scenarios. Espe-
cially for the domain-specific language scenario, an extension of the example to a case
study with a whole language family would be useful to show how graph transformations
can be used to integrate models for different aspects of a system.

6.2. Theoretical Contributions

A formalisation of RDF in category theory has been given in Chapter 2, where it is already
shown that semantic entailment corresponds to morphisms on the syntax. Since this
type of result is the basis for category theoretical specification formalism, represented by
specifications frames (cf. [EG94]) and institutions (cf. [GB92]), it seems to be a valuable
line of future research to use these to give a new structured overview for the abstract
syntax and semantics of RDF.

99

6. Conclusion and Future Perspectives

For graph transformation theory, a new abstract transformation framework, built around
the notion of minimal pushout complements, has been developed in Chapter 3 and in-
stantiated to RDF in Chapter 4. This framework is not only applicable to RDF structures
but may also be valuable for other kinds of graphical structures that do not fit into the
existing frameworks because of non-unique pushout complements.
In the framework, a notion of sequential composition of transformation rules is given

for which analysis and synthesis results habe been proven. These results already allow the
definition of complex transformation rules by recording and sequentially composing an
example transformation sequence which gives a formal foundation for a macro recording
feature in a possible implementation. Moreover, the analysis result for sequentially com-
posed rules proves that these rules do not enhance the class of reachable structures and,
thus, the exclusive application of rules that are composed from the rules of a grammar
ensures that the modifications stay within the language of the grammar.
A fairly complete collection of compositionality results for initial pushouts and mini-

mal pushout complements has been proven in this thesis which should make it possible
to also prove more of the theoretical results available in other categorical transforma-
tion frameworks, especially adhesive HLR categories (cf. [EEPT06]). More specifically,
independence analysis for sequential and parallel rule applications would be a valuable
addition to the theory since it would allow, on the one hand, to implement possibilities
for the navigation in modification histories, making it possible to undo and redo indepen-
dent modifications irrespective of their temporal order, on the other hand, to reconcile
concurrent modifications automatically if they are independent.
Altogether, while giving a complete and self-contained solution for the goals formulated

in the problem statement in Section 1.2, the concepts and theoretical results developed
in this thesis also provide a sound basis for future work w. r. t. more ambitious goals.

100

A. Category Theory

In this appendix, we will summarise the definitions and results of category theory that are
used throughout the thesis. For an introduction to category theory, see, e. g., [AHS90].

A.1. Categories and Functors

The notion of category is used to give an abstract container for various kinds of ma-
thematical structures, where the internals of objects are not considered but rather their
external relationships are represented by morphisms.

Definition A.1 (Category)
A category C consists of

• a class |C| of objects,

• a set C(A,B) of morphisms for each pair of objects A,B ∈ |C|,

• an identity idA ∈ C(A,A) for each object A ∈ |C| and

• a composition g ◦ f ∈ C(A,C) for all objects A,B, C ∈ |C| and morphisms f ∈
C(A,B) and g ∈ C(B,C)

such that

• the compositions are associative, i. e., h ◦ (g ◦ f) = (h ◦ g) ◦ f for all objects
A,B, C,D ∈ |C| and morphisms f ∈ C(A,B), g ∈ C(B,C) and h ∈ C(C,D) (cf.
Figure A.1a), and

• the identities are cancellable, i. e., f ◦ idA = f = idB ◦ f for all objects A,B ∈ |C|
and morphisms f ∈ C(A,B) (cf. Figure A.1b).

A morphism f ∈ C(A,B) is also denoted as “f : A → B in C”. The explicit mentioning
of the category is often omitted if it is understood from the context.

The most prominent example of a category is the category Set of sets and functions.
While other, more general categories of sets with partial functions or general relations as
morphism can also be defined we will confine ourselves to total functions (and inclusions
as a special case in the following proposition) since these are the only kind of relations
needed in this thesis.

101

A. Category Theory

A B C Df g h

g ◦ f
h ◦ (g ◦ f)

h ◦ g
(h ◦ g) ◦ f

(a) Associativity of compositions

A A B B

(=)

(=)

idA f idB

f

f

(b) Cancellability of identities

Abbildung A.1.: Axioms for categories

Proposition A.1 (Category of Sets and Functions)
The category Set of sets and functions consists of

objects being all possible sets A,

morphisms being (total) functions f : A → B which map an element a ∈ A to an
element f (a) ∈ B,

compositions given by g ◦ f (a) := g(f (a)) for each a ∈ A and

identities given by idA(a) := a for each a ∈ A.

Beweis.

Associativity: For all a ∈ A we have h ◦ (g ◦ f)(a) = h(g ◦ f (a)) = h(g(f (a))) =

h ◦ g(f (a)) = (h ◦ g) ◦ f (a).

Cancellability: For all a ∈ A we have f ◦ idA(a) = f (idA(a)) = f (a) = idB(f (a)) =

idB ◦ f (a).

Another interesting category for the same class of all sets as objects is the category
SetIncl of sets and inclusions, where we have a unique morphism between two sets if and
only if the first is a subset of the second.

Proposition A.2 (Category of Sets and Inclusions)
The category SetIncl of sets and inclusions consists of

102

A.1. Categories and Functors

objects being all possible sets A,

morphisms A ⊆ B if and only if for all a ∈ A we also have a ∈ B,

compositions B ⊆ C ◦ A ⊆ B = A ⊆ C because of transitivity and

identities A ⊆ A because of reflexivity.

Beweis. Since morphisms are unique associativity and cancellability are obviously satis-
fied.

As already alluded to above, category theory does not refer to the internals of objects
or morphisms. Therefore notions like injectivity, surjectivity and bijectivity, which are given
by the effect on internal elements of the objects, are replaced by notions referring to the
external properties of morphisms.1 The most important notion is that of an isomorphism.
Since isomorphisms are cancellable to identities in both directions, isomorphic objects are
absolutely equivalent from a categorical point of view, where only the external relations
by morphisms and not the internal structure of objects are relevant.

Definition A.2 (Special Morphisms)
Given a category C, the following types of special morphisms are defined:

Isomorphism: A morphism i : A → B is an isomorphism, or iso for short, if there is a
morphism j : B → A such that j ◦ i = idA and i ◦ j = idB (cf. Figure A.2a). In this
case A and B are also called isomorphic, written as A ∼= B.

Monomorphism: A morphism m : B → C is a monomorphism, or mono for short, if for
all morphisms l1, l2 : A→ B the equality m ◦ l1 = m ◦ l2 implies the equality l1 = l2
(cf. Figure A.2b).

Epimorphism: A morphism e : A → B is an epimorphism, or epi for short, if for all
morphisms f1, f2 : B → C the equality f1 ◦ e = f2 ◦ e implies the equality f1 = f2
(cf. Figure A.2c).

We now characterise these special morphism notions in our two example categories,
where the case of SetIncl is rather simple since there is at most one morphism between
two objects and in the case of Set we get exactly the bijective, injective and surjective
functions. For other, more complex categories this may, however, not be the case. Note
that the isomorphisms are different in both categories. While in Set all sets with the
same cardinality, i. e., bijective funtions between them, are isomorphic, in SetIncl only
absolutely identical sets are isomorphic.

1 We omit the notions of sections and retractions, sometimes called split monos and split epis, for the
sake of brevity and because they are not needed in this thesis. They are defined as “half isomorphisms”,
where there is an inverse such that only one of the compositions is required to yield the identity. In
Set they coincide with the monos and epis to be injective and surjective functions, respectively, while
in SetIncl only the identities are sections and retractions.

103

A. Category Theory

B A B A

(=)

(=)

j i j

idB

idA

(a) Isomorphism

A B C
l1

l2
m

m ◦ l1

m ◦ l2
(b) Monomorphism

A B Ce
f1

f2

f1 ◦ e

f2 ◦ e

(c) Epimorphism

Abbildung A.2.: Special morphisms

Proposition A.3 (Special Morphisms in Set and SetIncl)
For the category Set we have the following characterisation of special morphisms:

Mono: A morphism m : A → B is mono if and only if it is injective, i. e., f (x) = f (y)

implies x = y for all x, y ∈ A.

Epi: A morphism e : A→ B is epi if and only if it is surjective, i. e., there exists an x ∈ B
with f (x) = y for all y ∈ B.

Iso: A morphism i : A→ B is iso if and only if it is bijective, i. e., injective and surjective.

For the category SetIncl, on the other hand, the following holds:

Mono and Epi: All morphisms A ⊆ B are monos and epis.

Iso: Only the identities A ⊆ A are isos.

Beweis.

Mono in Set: If: If for all x ∈ A we have that m ◦ l1(x) = m ◦ l2(x) then injectivity
implies l1(x) = l2(x) which is the required property for a mono. Only if: Suppose
a mono which is not injective. Then there have to be a 6= a′ with m(a) = m(a′).
But then there are also functions l1, l2 : {∗} → B with l1(∗) = a and l2(∗) = a′

satisfying m ◦ l1(∗) = m(a) = m(a′) = m ◦ l2(∗) but not l1(∗) = l2(∗). Hence, m
is not a mono.

Epi in Set: If: If for all x ∈ A we have that f1 ◦ e(x) = f2 ◦ e(x) then surjectivity also
implies that for all y ∈ B we have f1(y) = f2(y) which is the required property for

104

A.1. Categories and Functors

an epi. Only if: Suppose an epi which is not surjective. Then there has to be b ∈ B
for which no x ∈ A with e(x) = b exists. But then we can define two functions
f1, f2 : B → B ∪ {1, 2} with f1(y) = f2(y) = y for all y 6= b, f1(b) = 1 and
f2(b) = 2 satisfying f1 ◦e(x) = e(x) = f2 ◦e(x) for all x ∈ A but not f1(y) = f2(y)
for all y ∈ B (since f1(b) 6= f2(b)). Hence, e is not an epi.

Iso in Set: If: Define j by j(b) = a if and only if i(a) = b which is functional because
of injectivity and total because of surjectivity. Then j ◦ i(a) = a for all a ∈ A and
i ◦ j(b) = b for all b ∈ B. Hence, i is an iso. Only if: Suppose an iso which is not
bijective. Then it is either not injective or not surjective. If it is not injective for
a 6= a′ with i(a) = i(a′) then j(i(a)) = j(i(a′)) but idA(a) = a 6= a′ = idA(a

′).
Hence, i is not an iso. If it is not surjective for b ∈ B for which there is no a ∈ A
with i(a) = b then we cannot find j(b) with i(j(b)) = b = idB(b). Hence, i is also
not an iso.

Mono and Epi in SetIncl: Since the defining property of monos and epis only requi-
res the equality of certain morphisms and morphisms are unique in SetIncl these
properties are trivially satisfied for all existing morphisms.

Iso in SetIncl: Since an iso is a morphism with an inverse and A ⊆ B and B ⊆ A implies
that A = B we have only the identities as isos in SetIncl.

A generalistion of epimorphism from single morphisms to pairs of morphisms is needed
at various points in the thesis. It represents a categorical abstraction of joint surjec-
tiveness, i. e., everything in the codomain is in the image of at least one of the two
morphisms.

Definition A.3 (Jointly Epimorphic Morphisms)
Given a category C, two morphisms f : A→ C and g : B → C are jointly epimorphic, or
jointly epi for short, if for all morphisms h1, h2 : C → D the equalities h1 ◦ f = h2 ◦ f and
h1 ◦ g = h2 ◦ g together imply the equality h1 = h2 (cf. Figure A.3).

A

C D

B

h1 ◦ f = h2 ◦ f

f

g

h1

h2

h1 ◦ g = h2 ◦ g

Abbildung A.3.: Jointly epimorphic morphisms

105

A. Category Theory

In order to relate different categories the notion of a functor is introduced which can
be seen as a morphism between categories. It consists of a mapping of objects and a
mapping of morphisms such that the relevant structure of a category, i. e., the identities
and the compositions are preserved.

Definition A.4 (Functor)
Given two categories C and D, a functor F : C→ D is given by

• an object F (A) ∈ |D| for each object A ∈ |C| and

• a morphism F (f) ∈ D(F (A), F (B)) for all objects A,B ∈ |C| and morphisms
f ∈ C(A,B) (cf. Figure A.4),

such that

• the identities are preserved, i. e., F (idA) = idF (A) for each object A ∈ |C|, and

• the compositions are preserved, i. e., F (g◦f) = F (g)◦F (f) for all objects A,B, C ∈
|C| and morphisms f ∈ C(A,B) and g ∈ C(B,C).

C A B

D F (A) F (B)

F

f

F (f)

Abbildung A.4.: Functor

As a first, simple example of a functor we consider the relation between the categories
SetIncl and Set. Obviously, inclusions are somehow a special kind of functions and the
functor just has to define this „somehow“, i. e., show how we construct the inclusion
function for all sets with A ⊆ B.

Proposition A.4 (Inclusion Functor Incl : SetIncl→ Set)
The functor Incl : SetIncl → Set is defined by Incl(A) := A for all sets A ∈ |SetIncl| =
|Set| and Incl(A ⊆ B) := inclA,B for all morphisms A ⊆ B in SetIncl, where inclA,B : A→
B is a function defined by inclA,B(a) := a for all a ∈ A.

Beweis. The inclusion functions inclA,B used as functor images for the morphisms A ⊆ B
of SetIncl are well-defined since for all a ∈ A we have by definition of SetIncl also a ∈ B.
The functor preserves identities because inclA,A(a) = a = idA(a) for all a ∈ A and each
set A ∈ |SetIncl| and it also preserves compositions since inclA,C(a) = a = inclB,C(a) =
inclB,C(inclA,B(a)) for all a ∈ A.

106

A.2. Limits and Colimits

A more complex example of an endofunctor, i. e., a functor from a category into itself,
is the powerset functor which assigns the set of all its subsets to a given set. For functions
we will use the extension of a function to subsets of its domain as the functor image.

Proposition A.5 (Powerset Functor)
The functor P : Set→ Set is defined by P(A) := {S |S ⊆ A} for all sets A ∈ |Set| and
P(f)(S) := {f (a) | a ∈ S} ⊆ B for all morphisms f : A→ B in Set and S ∈ P(A).

Beweis. The functor preserves identities because for all A ∈ |Set| and S ∈ P(A), i. e.,
S ⊆ A, we have P(idA)(S) = {idA(a) | a ∈ S} = S = idP(A)(S) and it also preser-
ves compositions since P(g ◦ f)(S) = {g(f (a)) | a ∈ S} = P(g)({f (a) | a ∈ S}) =
P(g)(P(f)(S)) for all f : A→ B and g : B → C and all S ⊆ A.

A.2. Limits and Colimits

Definitions by universal properties are very important in category theory. Such properties
are given by the requirement that an object is the smallest or largest object among a
class of similar objects, where the order is given by the morphisms. The simplest form of
such objects are initial and final objects which are the smallest and largest objects of a
whole category, respectively.

Definition A.5 (Initial and Final Objects)
Given a category C, an initial object I ∈ |C| is an object satisfying the universal property
that there exists a unique morphism i : I → A for each object A ∈ |C|. Dually, for a final
object F ∈ |C| there exists a unique morphism f : A→ F for each object A ∈ |C|.

An important property of such objects is that they are unique up to isomorphism, i. e.,
there may be other objects satisfying the universal property but there are isomorphisms
between all of them which makes them absolutely equivalent from a categorical point of
view.

Proposition A.6 (Uniqueness of Initial and Final Objects)
Initial and final objects are unique up to isomorphisms, i. e., given two initial objects I
and I ′, there is an isomorphism i : I → I ′, and given two final objects F and F ′, there is
an isomorphism f : F → F ′.

Beweis. Since I is initial w. r. t. I ′ as comparison object there is a unique morphism
i : I → I ′ and, vice versa, since I ′ is initial w. r. t. I as comparison object there is a unique
morphism j : I ′ → I. Hence, we have the compositions j ◦ i : I → I and i ◦ j : I ′ → I ′. But
since I and I ′ are also comparison objects for themselves, respectively, idI : I → I and
idI ′ : I

′ → I ′ are unique, j ◦ i = idI and i ◦ j = idI ′ and, hence, i (and j) are isomorphisms.
A similar argument applies for final objects.

107

A. Category Theory

The similarity, alluded to in the last sentence of the previous proof, is called duality
in category theory. In general, most categorical constructions have a dual construction,
where all morphisms are reversed in direction and all other used constructions are also
replaced with their duals. It is usually sufficient to just prove one property and the dual
one follows immediately and we will do so for the remainder of this appendix. If, however,
constructions involve the inner structure of the objects of a special category duality
cannot be used anymore.
In Set the initial object is the empty set and any object with a single element is a final

object, while in SetIncl the empty set is also initial but there is no final object since we
do not assume a universe set of all possible elements.

Proposition A.7 (Initial and Final Objects in Set and SetIncl)
In Set the empty set ∅ is the only initial object and the singleton set {∗} with one
element ∗ is a final object.
In SetIncl the empty set ∅ is the only initial object and there does not exist a final object.

Beweis. The empty set ∅ is initial in Set since for each other set A ∈ |Set| there is the
unique (likewise empty) function incl∅,A : ∅ → A. There can be no other initial objects
since there can be no total function from a set containing elements to the empty set
(and no other set is isomorphic to the empty set because isomorphisms correspond to
bijections between sets with the same cardinality).
The singleton set {∗} is final in Set since for each other set A ∈ |Set| a function
f : A → {∗} is given by f (a) := ∗ for all a ∈ A which is unique since the function has
to be total and there are no other possible image elements. Other singleton sets are
also final, where the isomorphisms between them are given by the bijections mapping the
corresponding single elements to each other.
The empty set ∅ is initial in SetIncl since ∅ ⊆ A for all sets A ∈ |SetIncl|.
There is no final object in SetIncl since we assume to work in the class of all sets (as
opposed to the set of all subsets of a given universe) and the union of all possible sets is
not a set itself in order to avoid the well-known paradoxes of set theory.

The next kinds of objects defined by universal properties are products and coproducts,
where two objects are given and the product is the final object among those who have
morphisms into both given objects, while the coproduct is the initial object among those
who have morphisms from both objects. Such initial and final objects w. r. t. given dia-
grams are called limits and colimits in category theory, where limits are final objects with
morphisms into all objects in the diagram and colimits are initial objects with morphisms
from all objects in the diagram. Initial and final objects themselves may be considered as
limits and colimits of the empty diagram.

Definition A.6 (Products and Coproducts)
Given a category C and two objects A,B ∈ |C|, a product of A and B is an object P
with projection morphisms p1 : P → A and p2 : P → A, such that for each other object

108

A.2. Limits and Colimits

P ′ with morphisms p′1 : P
′ → A and p′2 : P

′ → B there is a unique morphism p : P ′ → P

with p′1 = p1 ◦ p and p′2 = p2 ◦ p (cf. Figure A.5a).
Vice versa, a coproduct of A and B is an object C with injection morphisms2 i1 : A→ C

and i2 : B → C, such that for each other object C′ with morphisms i ′1 : A → C′ and
i ′2 : B → C′ there is a unique morphism c : C → C′ with i ′1 = c ◦ i1 and i ′2 = c ◦ i2 (cf.
Figure A.5b).

P ′

(=)

P

(=)

A

B

p′1

∃!p
p1

p2

p′2

(a) Product

A

B

(=)

C

(=)

C′

i ′1

i1

i2

∃!c

i ′2

(b) Coproduct

Abbildung A.5.: Products and coproducts

We now show that the injections into the coproduct are jointly epimorphic in all cate-
gories.

Proposition A.8 (Coproducts are Jointly Epimorphic)
Given a category C, two objects A and B and a coproduct C of A and B with injections
i1 : A→ C and i2 : B → C, then i1 and i2 are jointly epimorphic.

Beweis. Each object D with morphisms f1, f2 : C → D satisfying f1 ◦ i1 = f2 ◦ i1 and
f1 ◦ i2 = f2 ◦ i2 is a comparison object for the coproduct by the morphisms g : A→ D :=

f1 ◦ i1 = f2 ◦ i1 and h : B → D := f1 ◦ i2 = f2 ◦ i2. Then there has to be a unique morphism
f : C → D with f ◦ i1 = g and f ◦ i2 = h by the coproduct definition. But since both, f1
and f2, satisfy these equalities uniqueness implies f1 = f = f2. Hence, i1 and i2 are jointly
epi.

For Set and SetIncl products and coproducts are categorical characterisations for
some well-known constructions. More specifically, in Set the usual cartesian product is
a product and the disjoint union is a coproduct, while in SetIncl the intersection is the
only product and the (non-disjoint) union is the only coproduct.

2 Note that despite the intuitive name given to them these morphisms do not need to be monomorphisms
or injective in all categories. However, they are in all categories we deal with in this thesis.

109

A. Category Theory

Proposition A.9 (Products and Coproducts in Set and SetIncl)
Given sets A,B ∈ |Set|, a product of A and B can be constructed by A×B := {(a, b) | a ∈
A, b ∈ B} with projections p1(a, b) := a and p2(a, b) := b and a coproduct by A+B :=
{(1, a) | a ∈ A} ∪ {(2, b) | b ∈ B} with injections i1(a) := (1, a) and i2(b) := (2, b).
Given sets A,B ∈ |SetIncl|, the product of A and B is given by A ∩ B with projections
A ∩ B ⊆ A and A ∩ B ⊆ B and the coproduct by A ∪ B with injections A ⊆ A ∪ B and
B ⊆ A ∪ B.

Beweis. For the product in Set and a comparison object P ′ with projections p′1 and p
′
2

the requirements p1(p(x)) = p′1(x) and p2(p(x)) = p
′
2(x) uniquely determine the mor-

phism p to be defined by p(x) := (p′1(x), p
′
2(x)).

For the coproduct in Set and a comparison object C′ with injections i ′1 and i
′
2 the requi-

rements c(i1(a)) = i ′1(a) and c(i2(a)) = i
′
2(a) uniquely determine the morphism c to be

defined by c(1, a) := i ′1(a) for elements from A and c(2, b) := i ′2(b) for elements from
B.
For SetIncl the required inclusions for comparison objects exist since all sets that are
contained in both sets are also contained in the intersection and, vice versa, all sets con-
taining both sets also contain their union. These inclusions are obviously unique since all
inclusions in SetIncl are unique.

The most important limits and colimits for the purposes of this thesis are pushout
and pullbacks, where not only objects but also morphisms are in the given diagram.
More specifically, pushouts are colimits under3 two objects that share a common third
object, while pullbacks are limits over two objects that are contained in a common third
object by corresponding morphisms. The resulting morphisms are an intrinsic part of the
pushouts and pullbacks and can usually not be understood from the context (as it was the
case for products and coproducts). Therefore, we will define a category, called cone or
cocone category, respectively, of comparison objects built from the original category that
consists of objects containing not only the comparison objects themselves but also the
corresponding morphisms. The pushouts and pullbacks are then initial and final objects in
these categories, respectively. This style of definition is also used for the minimal pushout
complements and the initial pushouts in Section 3.2.

Definition A.7 (Pushouts and Pullbacks)
Given a category C and morphisms f : A→ B and g : A→ C (cf. Figure A.6a), then the
category Cocone(f , g) of cocones under f and g consists of

objects (D, h : C → D, i : B → D) such that h ◦ g = i ◦ f (cf. Figure A.6b),

morphisms d : D → D′ between objects (D, h, i) and (D′, h′, i ′) such that d ◦ h = h′

and d ◦ i = i ′ and
3 Note that the words “under” and “over” are usually used in category theory with the intuition that
morphisms are drawn from top to bottom, i. e., a colimit under a diagram means that the morphisms
go into the colimit, while a limit over a diagram means that the morphisms go from the limit into the
diagram.

110

A.2. Limits and Colimits

A B

C

f

g

(a) Given situation

A B

(=)

C D

f

g i

h

(b) Cocone of f and g

A B

(PO)

C D

(=)

(=)

D′

f

g i

h

i ′

h′

∃!d

(c) Pushout of f and g

Abbildung A.6.: Pushouts of f and g

compositions and identities given by compositions and identities in C.

A pushout of f and g is then an initial object (D, h, i) in Cocone(f , g) (cf. Figure A.6c).
Given a category C and morphisms f : C → D and g : B → D (cf. Figure A.7a), then
the category Cone(f , g) of cones over f and g consists of

objects (A, d : A→ B, e : A→ C) such that g ◦ d = f ◦ e (cf. Figure A.7b),

morphisms a : A → A′ between objects (A, d, e) and (A′, d ′, e ′) such that d ◦ a = d ′

and e ◦ a = e ′ and

compositions and identities given by compositions and identities in C.

A pullback of f and g is then a final object (A, d, e) in Cone(f , g) (cf. Figure A.7c).

Similarly to coproducts, pushouts are also jointly epi, where the proof is also very
similar. In fact, if we would extend the definition of jointly epimorphic morphisms to also
cover sets with more than two morphisms then all colimits would be jointly epimorphic
for the set of all morphisms into the colimit. For our purposes, it is, however, enough to
know that pushouts are jointly epi.

Proposition A.10 (Pushouts are Jointly Epimorphic)
Given a category C, two morphisms f : A→ B and g : A→ C and a pushout (D, h, i) of
f and g, then h and i are jointly epimorphic.

Beweis. Each object E with morphisms j1, j2 : D → E satisfying j1 ◦ h = j2 ◦ h and
j1 ◦ i = j2 ◦ h constitutes a comparison object (E, j1 ◦ h, j1 ◦ i by j1 ◦ h ◦ g = j1 ◦ i ◦ f (or
equivalently a comparison object (E, j2 ◦ h, j2 ◦ i) by j2 ◦ ◦g = j2 ◦ i ◦ f). Then there has
to be a unique morphism k : D → E with k ◦ h = j1 ◦ h and k ◦ i = j1 ◦ i (or equivalently

111

A. Category Theory

B

C D

g

f

(a) Given situation

A B

(=)

C D

d

e g

f

(b) Cone of f and g

A B

(PB)

C D

(=)

(=)

A′

d

e g

f

d ′

e ′

∃!a

(c) Pullback of f and g

Abbildung A.7.: Pullbacks of f and g

k ◦h = j2 ◦h and k ◦ i = j2 ◦ i) by the definition of pushouts. Since both, j1 and j2, satisfy
these equalities uniqueness implies j1 = k = j2. Hence, h and i are jointly epi.

Finally, compositions and decompositions of pushouts and pullbacks are important
preliminaries for the results in the main part of the thesis, especially for the correspon-
ding results for minimal pushout complements and initial pushouts in Section 3.3. While
pushouts and pullbacks can be composed to yield larger pushouts and pullbacks, decom-
position is only possible if not only the large square but also a specific component square
is given to be of the corresponding type.

Proposition A.11 (Composition and Decomposition of Pushouts and Pullbacks)
Let a category C and morphisms f : A→ B, g : B → C, h : A→ D, i : B → E, j : C → F ,
k : D → E and l : E → F , such that i ◦ f = k ◦ h and j ◦ g = l ◦ i (cf. Figure A.8), be
given.

Composition: If (E, k, i) is a pushout of f and h and (F, l , j) is a pushout of g and i
(both small squares are pushouts) then (F, l ◦ k, j) is a pushout of g ◦ f and h
(the large square is a pushout). Vice versa, if (A, f , h) is a pullback of k and i and
(B, g, i) is a pullback of l and j (both small squares are pullbacks) then (A, g ◦ f , h)
is a pullback of l ◦ k and j (the large square is a pullback).

Decomposition: If (F, l ◦ k, j) is a pushout of g ◦ f and h and (E, k, i) is a pushout of f
and h (the large and the first small square are pushouts) then (F, l , j) is a pushout
of g and i (the second small square is a pushout). Vice versa, if (A, g ◦ f , h) is
a pullback of l ◦ k and j and (B, g, i) is a pullback of l and j (the large and the
second small square are pullbacks) then (A, f , h) is a pullback of k and i (the first
small square is a pullback).

112

A.2. Limits and Colimits

Beweis. Since the corresponding proof for pullbacks can be ontained by dualisation we
only show this proposition for pushouts.

Composition: Suppose there is a comparison object (F ′, j ′, m′) for the large square.
Since j ′ ◦ g ◦ f = m′ ◦ h this induces a comparison object (F ′, j ′ ◦ g,m′) for the
pushout (E, k, i) and yields a unique morphism l ′ : E → F ′ with l ′ ◦ k = m′ and
l ′ ◦ i = j ′ ◦ g. The last equality in turn means that (F ′, l ′, j ′) is a comparison
object for the pushout (F, l , j) leading to a unique f : F → F ′ with f ◦ l = l ′ and
f ◦ j = j ′. By composing with k we obtain f ◦ l ◦ k = l ′ ◦ k = m′ and f is also a
comparison morphism for the large square. Since each other morphism f ′ : F → F ′

with f ◦ j = j ′ and f ′ ◦ l ◦ k = m′ also satisfies f ′ ◦ l ◦ i = f ′ ◦ j ◦ g = j ′ ◦ g we get
f ′ ◦ l = l ′ by uniqueness of l ′ and then f ′ = f by uniqueness of f . Hence, f is also
unique w. r. t. the equalities for the large square and the latter is a pushout.

Decomposition: Suppose there is a comparison object (F ′, l ′, j ′) for the second small
square. Since l ′ ◦ i = j ′ ◦ g we get l ′ ◦ k ◦ h = l ′ ◦ i ◦ f = j ′ ◦ g ◦ f and (F ′, l ′ ◦ k, j ′)
is a comparison object for the large square. Hence, there is a unique f : F → F ′

with f ◦ l ◦ k = l ′ ◦ k and f ◦ j = j ′. It follows that f ◦ l ◦ i = f ◦ j ◦ g = j ′ ◦ g = l ′ ◦ i
and since k and i are jointly epi also f ◦ l = l ′. Hence, f is a comparison morphism
for the second small square. Each other morphism f ′ : F → F ′ with f ′ ◦ l = l ′ and
f ′ ◦ j = j ′ also satisfies f ′ ◦ l ◦ k = l ′ ◦ k and uniqueness of f w. r. t. the latter
equalities implies f ′ = f . Thus, f is also unique w. r. t. the equalities for the second
small square and it is a pushout.

A B C

(=) (=)

D E F

f g

h i j

k l

Abbildung A.8.: Composition and decomposition of pushouts and pullbacks

113

Literaturverzeichnis

[AFR06] Daniel Amyot, Hanna Farah, Jean-François Roy. Evaluation of Development
Tools for Domain-Specific Modeling Languages. In Gotzhein and Reed (edi-
tors), System Analysis and Modeling: Language Profiles. Proc. SAM 2006.
LNCS 4320, pages 183–197. Springer, 2006.
doi:10.1007/11951148_12

[AHS90] Jiří Adámek, Horst Herrlich, George E. Strecker. Abstract and Concrete Ca-
tegories. The Joy of Cats. Wiley, 1990.
http://katmat.math.uni-bremen.de/acc/

[Alv01] Harald Tveit Alvestrand. RFC 3066 – Tags for the Identification of Langua-
ges. Internet Engineering Task Force (IETF), January 2001. Best current
practice.
http://tools.ietf.org/html/rfc3066

[Bag05] Jean-François Baget. RDF Entailment as a Graph Homomorphism. In Gil
et al. (editors), The Semantic Web. Proc. ISWC 2005. LNCS 3729, pages 82–
96. Springer, 2005.
doi:10.1007/11574620_9
ftp://ftp.inrialpes.fr/pub/exmo/publications/baget2005a.pdf

[BB08] Benjamin Braatz, Christoph Brandt. Graph Transformations for the Resour-
ce Description Framework. In Ermel et al. (editors), Proc. GT-VMT 2008.
Electronic Communications of the EASST 10. 2008.
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/158

[BEB+07] Christoph Brandt, Thomas Engel, Benjamin Braatz, Frank Hermann, Hart-
mut Ehrig. An Approach Using Formally Well-founded Domain Languages for
Secure Coarse-grained IT System Modelling in a Real-world Banking Scena-
rio. In ACIS 2007 Proceedings. 2007.
http://aisel.aisnet.org/acis2007/62/

[Bec04] Dave Beckett. RDF/XML Syntax Specification (Revised). World Wide Web
Consortium (W3C), February 2004. Part of [W3C04].
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/

[BFM98] Tim Berners-Lee, Roy T. Fielding, Larry Masinter. RFC 2396 – Uniform
Resource Identifiers (URI): Generic Syntax. Internet Engineering Task Force

115

http://dx.doi.org/10.1007/11951148_12
http://katmat.math.uni-bremen.de/acc/
http://tools.ietf.org/html/rfc3066
http://dx.doi.org/10.1007/11574620_9
ftp://ftp.inrialpes.fr/pub/exmo/publications/baget2005a.pdf
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/158
http://aisel.aisnet.org/acis2007/62/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/

Literaturverzeichnis

(IETF), August 1998. Draft standard.
http://tools.ietf.org/html/rfc2396

[BFM05] Tim Berners-Lee, Roy T. Fielding, Larry Masinter. RFC 3986 – Uniform
Resource Identifiers (URI): Generic Syntax. Internet Engineering Task Force
(IETF), January 2005. Standard, obsoletes [BFM98].
http://tools.ietf.org/html/rfc3986

[BG04] Dan Brickley, R. V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. World Wide Web Consortium (W3C), February 2004. Part of
[W3C04].
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

[BHE09] Christoph Brandt, Frank Hermann, Thomas Engel. Security and Consistency
of IT and Business Models at Credit Suisse Realized by Graph Constraints,
Transformation and Integration Using Algebraic Graph Theory. In Halpin et al.
(editors), BPMDS 2009 and EMMSAD 2009 Proceedings. LNBIP 29. Sprin-
ger, 2009.
doi:10.1007/978-3-642-01862-6_28

[BHL01] Tim Berners-Lee, James Hendler, Ora Lassila. The Semantic Web: A new
form of Web content that is meaningful to computers will unleash a revolution
of new possibilities. Scientific American 284(5):34–43, May 2001.
http://www.scientificamerican.com/article.cfm?id=the-semantic-web

[BHLT06] Tim Bray, Dave Hollander, Andrew Layman, Richard Tobin. Namespaces in
XML 1.0 (Second Edition). World Wide Web Consortium (W3C), August
2006.
http://www.w3.org/TR/2006/REC-xml-names-20060816/

[BM04] Paul V. Biron, Ashok Malhotra. XML Schema Part 2: Datatypes (Second
Edition). World Wide Web Consortium (W3C), October 2004.
http://www.w3.org/TR/xmlschema-2/

[CHHK06] Andrea Corradini, Tobias Heindel, Frank Hermann, Barbara König. Sesqui-
Pushout Rewriting. In Corradini et al. (editors), Graph Transformations. Proc.
ICGT 2006. LNCS 4178, pages 30–45. Springer, 2006.
doi:10.1007/11841883_4

[DS05] M. Dürst, M. Suignard. RFC 3987 – Internationalized Resource Identifiers
(IRIs). Internet Engineering Task Force (IETF), January 2005. Proposed
standard.
http://tools.ietf.org/html/rfc3987

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, Gariele Taentzer. Fundamentals
of Algebraic Graph Transformation. Monographs in Theoretical Computer

116

http://tools.ietf.org/html/rfc2396
http://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://dx.doi.org/10.1007/978-3-642-01862-6_28
http://www.scientificamerican.com/article.cfm?id=the-semantic-web
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/xmlschema-2/
http://dx.doi.org/10.1007/11841883_4
http://tools.ietf.org/html/rfc3987

Literaturverzeichnis

Science. Springer, 2006.
doi:10.1007/3-540-31188-2

[EG94] Hartmut Ehrig, Martin Große-Rhode. Functorial theory of parameterized
specifications in a general specification framework. Theoretical Computer
Science (TCS) 135(2):221–266, December 1994.
doi:10.1016/0304-3975(94)90110-4

[EHKP91] Hartmut Ehrig, Annegret Habel, Hans-Jörg Kreowski, Francesco Parisi-
Presicce. From graph grammars to high level replacement systems. In Ehrig
et al. (editors), Graph Grammars and Their Application to Computer Science.
LNCS 532, pages 269–291. Springer, 1991.
doi:10.1007/BFb0017395

[Ehr79] Hartmut Ehrig. Introduction to the Algebraic Theory of Graph Grammars (A
Survey). In Claus et al. (editors), Graph Grammars and Their Application to
Computer Science and Biology. LNCS 73, pages 1–69. Springer, 1979.
doi:10.1007/BFb0025714

[EPN09] Fredrik Enoksson, Matthias Palmér, Ambjörn Naeve. An RDF Modification
Protocol, based on the Needs of Editing Tools. In Sicilia and Lytras (editors),
Metadata and Semantics. Pages 191–199. Springer, 2009.
doi:10.1007/978-0-387-77745-0_18
http://kmr.nada.kth.se/papers/SemanticWeb/Corfu07_Remote_Editing.
pdf

[EPS73] Hartmut Ehrig, Michael Pfender, Hans Jürgen Schneider. Graph-grammars:
An algebraic approach. In Switching and Automata Theory. Proc. SWAT
1973. Pages 167–180. IEEE, 1973.
doi:10.1109/SWAT.1973.11

[GB92] Joseph A. Goguen, Rod M. Burstall. Institutions: abstract model theory for
specification and programming. Journal of the ACM (JACM) 39(1):95–146,
January 1992.
doi:10.1145/147508.147524

[GB04] Jan Grant, Dave Beckett. RDF Test Cases. World Wide Web Consortium
(W3C), February 2004. Part of [W3C04].
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/

[Hay04] Patrick Hayes. RDF Semantics. World Wide Web Consortium (W3C), Fe-
bruary 2004. Part of [W3C04].
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

[Her08] Matthias Hert. RDF Graph Transformation. Bridging between Ontologies.
Diploma thesis, University of Zurich, February 2008.
http://www.ifi.uzh.ch/pax/uploads/pdf/publication/611/Thesis.pdf

117

http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1016/0304-3975(94)90110-4
http://dx.doi.org/10.1007/BFb0017395
http://dx.doi.org/10.1007/BFb0025714
http://dx.doi.org/10.1007/978-0-387-77745-0_18
http://kmr.nada.kth.se/papers/SemanticWeb/Corfu07_Remote_Editing.pdf
http://kmr.nada.kth.se/papers/SemanticWeb/Corfu07_Remote_Editing.pdf
http://dx.doi.org/10.1109/SWAT.1973.11
http://dx.doi.org/10.1145/147508.147524
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.ifi.uzh.ch/pax/uploads/pdf/publication/611/Thesis.pdf

Literaturverzeichnis

[KC04] Graham Klyne, Jeremy J. Carroll. Resource Description Framework (RDF):
Concepts and Abstract Syntax. World Wide Web Consortium (W3C), Fe-
bruary 2004. Part of [W3C04].
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[Lam07] Leen Lambers. Adhesive High-Level Replacement Systems with Negative Ap-
plication Conditions. Technical report 2007/14, Technische Universität Ber-
lin, 2007.
http://iv.tu-berlin.de/TechnBerichte/2007/2007-14.pdf

[LE90] Michael Löwe, Hartmut Ehrig. Algebraic approach to graph transformati-
on based on single pushout derivations. In Möhring (editor), Proc. Graph-
Theoretic Concepts in Computer Science. LNCS 484, pages 338–353. Sprin-
ger, 1990.
doi:10.1007/3-540-53832-1_52

[LLD06] Dorel Lucanu, Yuan Fang Li, Jin Song Dong. RDF Framework Institutions.
Proceedings of the Romanian Academy 7(1), 2006.
http://www.acad.ro/sectii2002/proceedings/doc2006-1/08-Luncanu.pdf

[Mar06] Draltan Marin. RDF formalization. Technical report TR/DCC-2006-8, Uni-
versidad de Chile, May 2006.
http://www.dcc.uchile.cl/TR/2006/TR_DCC-2006-008.pdf

[MH04] Deborah L. McGuinness, Frank van Harmelen. OWLWeb Ontology Language
Overview. World Wide Web Consortium (W3C), February 2004.
http://www.w3.org/TR/2004/REC-owl-features-20040210/

[MM04] Frank Manola, Eric Miller. RDF Primer. World Wide Web Consortium (W3C),
February 2004. Part of [W3C04].
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

[MPG07] Sergio Muñoz, Jorge Pérez, Claudio Gutierrez. Minimal Deductive Systems
for RDF. In Franconi et al. (editors), The Semantic Web: Research and
Applications. Proc. ESWC 2007. LNCS 4519, pages 53–67. Springer, 2007.
doi:10.1007/978-3-540-72667-8_6
http://www2.ing.puc.cl/~jperez/papers/minimal-rdf-camera-ready-ext.
pdf

[PS08] Eric Prud’hommeaux, Andy Seaborne. SPARQL Query Language for RDF.
World Wide Web Consortium (W3C), January 2008.
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

[SM08] Andy Seaborne, Geetha Manjunath. SPARQL/Update. A language for upda-
ting RDF graphs. April 2008.
http://jena.hpl.hp.com/~afs/SPARQL-Update.html

118

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://iv.tu-berlin.de/TechnBerichte/2007/2007-14.pdf
http://dx.doi.org/10.1007/3-540-53832-1_52
http://www.acad.ro/sectii2002/proceedings/doc2006-1/08-Luncanu.pdf
http://www.dcc.uchile.cl/TR/2006/TR_DCC-2006-008.pdf
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://dx.doi.org/10.1007/978-3-540-72667-8_6
http://www2.ing.puc.cl/~jperez/papers/minimal-rdf-camera-ready-ext.pdf
http://www2.ing.puc.cl/~jperez/papers/minimal-rdf-camera-ready-ext.pdf
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://jena.hpl.hp.com/~afs/SPARQL-Update.html

Literaturverzeichnis

[Tol06] Juha-Pekka Tolvanen. MetaEdit+: integrated modeling and metamodeling
environment for domain-specific languages. In Proc. OOPSLA 2006. Pa-
ges 690–691. ACM, 2006.
doi:10.1145/1176617.1176676

[Uni] The Unicode Consortium. The Unicode Standard, Version 5.1.0. Defined by:
The Unicode Standard, Version 5.0 (Addison-Wesley, 2007), as amended by
Unicode 5.1.0 (http://www.unicode.org/versions/Unicode5.1.0/).

[W3C04] World Wide Web Consortium (W3C). Resource Description Framework
(RDF). February 2004. Consists of [MM04], [KC04], [Bec04], [Hay04],
[BG04] and [GB04].
http://www.w3.org/RDF/

[Yer03] François Yergeau. RFC 3629 – UTF-8, a transformation format of ISO 10646.
Internet Engineering Task Force (IETF), November 2003. Standard.
http://tools.ietf.org/html/rfc3629

Digital Object Identifiers (DOIs) can be resolved using the web service provided at http://dx.doi.org/.

119

http://dx.doi.org/10.1145/1176617.1176676
http://www.unicode.org/versions/Unicode5.1.0/
http://www.w3.org/RDF/
http://tools.ietf.org/html/rfc3629
http://dx.doi.org/

	Introduction
	The Semantic Web
	Problem Statement
	Graph Transformation
	Organisation of the Thesis

	Resource Description Framework
	Abstract Syntax
	Vocabularies
	RDF Graphs and Homomorphisms

	Semantics
	Schemas
	Datatypes

	MPOC Transformation Framework
	Rule-Based Transformations
	Use Cases for Transformations
	Approaches for Rule-Based Transformations

	MPOC-PO Transformations
	Minimal Pushout Complements
	Transformation Rules and Transformations

	Sequential Composition
	Composition and Decomposition of MPOCs and IPOs
	Sequentially Composed Rules

	Negative Application Conditions
	MPOC-PO Transformations with NACs
	Translation of NACs
	Composition with NACs

	RDF Graph Transformations
	RDF Patterns and RDF Graph Transformations
	Pushouts, IPOs and MPOCs for RDF Patterns
	Composition and Independence for RDF Patterns
	Inference Rules for RDF and RDF Schema

	Application Scenarios
	A Semantic Web Metadata Application
	Schema and Grammar for Bibliographies
	Integration of Schemas

	Domain-Specific Modelling Languages
	Schema and Grammar for IT Landscapes
	Modification Rules for IT Landscapes
	Evolution of Domain-Specific Modelling Languages

	Conclusion and Future Perspectives
	Solution for Application Scenarios
	Theoretical Contributions

	Category Theory
	Categories and Functors
	Limits and Colimits

	Literaturverzeichnis

