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Abstract

This thesis focuses on noise induced synchronization. Noise induced synchronization
describes the stabilizing effect of noise on the long-time dynamics of a random
dynamical system. While the attractor in the absence of noise is not a single point,
the random attractor collapses to a single random point under the addition of noise.

In the first part, we consider a system that is known to synchronize under additive
noise and raise the question about the nature of the long-time behavior if one adds
less noise. We prove that the occurrence of synchronization depends on the strength
of noise and the number of directions in which the noise acts. The crucial quantity to
obtain this change of behavior is the sign of the top Lyapunov exponent. We prove
a transition from positive to negative top Lyapunov exponent as the noise increases.
In case of a negative top Lyapunov exponent, we conclude synchronization and in
case of a positive top Lyapunov exponent, we conclude lack of synchronization.

In the second part, we analyze whether this relation between the sign of the
top Lyapunov exponent and synchronization holds true in general. We give positive
results based on classical results of Ruelle and provide simple examples showing a
contrary behavior.

In the third part, we estimate the time which is required to approach the attractor
for a class of random dynamical systems that synchronize under noise. Since the
long-time dynamics of the deterministic system are in contrast to the random system
not globally stable, the time required to approach the attractor goes to infinity as
the noise gets small. We differ between the time a point and set requires to approach
the attractor and give the rates in which both times go to infinity. These rates differ
significantly.

In the fourth part, we investigate a more general property of random attractors.
We analyze whether attractors which attract compact sets uniformly on a connected
state space are connected. We prove connectedness of these attractors if compact sets
get attracted almost surely using a pathwise argumentation. For random attractors
attracting compact sets merely in probability we provide an example where the
attractor is not connected.





Zusammenfassung

Diese Arbeit befasst sich mit vom Rauschen herbeigeführter Synchronisation. Damit
wird die stabilisierende Wirkung des Rauschens auf das Langzeitverhalten eines
zufälligen dynamischen Systems beschrieben. Während der Attraktor ohne Rauschen
kein einzelner Punkt ist, zieht sich der zufällige Attraktor unter Rauschen zu einem
zufälligen Punkt zusammen.

Im ersten Teil betrachten wir ein System, welches dafür bekannt ist unter ad-
ditivem Rauschen zu synchronisieren und stellen die Frage, inwieweit sich dieses
Verhalten unter weniger Rauschen verändert. Wir beweisen, dass das Vorkommen
von Synchronisation von der Stärke des Rauschens und der Anzahl der Richtungen,
in denen das Rauschen wirkt, abhängt. Die entscheidende Größe, um diese Verän-
derung des Verhaltens zu messen, ist der Top Lyapunov Exponent. Wir zeigen einen
Übergang von negativen zu positiven Top Lyapunov Exponenten, während sich das
Rauschen verstärkt. Im Fall eines negativen Top Lyapunov Exponenten folgern wir
Synchronisation und im Fall eines positiven Top Lyapunov Exponenten folgern wir
fehlende Synchronisation.

Im zweiten Teil analysieren wir, ob diese Beziehung zwischen Top Lyapunov
Exponenten und Synchronisation auch im Allgemeinen wahr ist. Wir geben positive
Resultate, die auf klassischen Resultaten von Ruelle basieren, und zeigen einfache
Beispiele, die ein gegensätzliches Verhalten aufzeigen.

Im dritten Teil schätzen wir die Zeit ab, die benötigt wird, um sich dem Attrak-
tor eines zufälligen dynamischen Systems, welches unter Rauschen synchronisiert,
anzunähern. Da das Langzeitverhalten des deterministischen Systems im Kontrast
zu dem zufälligen System nicht global stabil ist, geht die benötigte Zeit, um sich dem
Attraktor anzunähern, gegen Unendlich, wenn das Rauschen klein wird. Wir un-
terscheiden zwischen den Zeiten, bis sich ein Punkt und eine Menge dem Attraktor
annähern und berechnen die Raten, in denen beide Zeiten gegen Unendlich gehen.
Diese Raten unterscheiden sich signifikant.

Im vierten Teil untersuchen wir eine allgemeinere Eigenschaft von zufälligen At-
traktoren. Wir analysieren, ob Attraktoren, welche kompakte Mengen gleichmäßig
anziehen, auf einem zusammenhängenden Raum zusammenhängend sind. Wir be-
weisen den Zusammenhang von diesen Attraktoren, falls kompakte Mengen fast
sicher angezogen werden mit Hilfe einer pfadweisen Argumentation. Für zufällige
Attraktoren, welche kompakte Mengen nur in Wahrscheinlichkeit anziehen, geben
wir ein Beispiel an, in dem der Attraktor nicht zusammenhängend ist.
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Chapter 1

Introduction

The theory of random dynamical systems lies in the intersection of probability theory
and dynamical systems. In contrast to the classical probabilistic viewpoint, random
dynamical systems do not merely focus on one-point motions and Markov transition
probabilities but rather analyze trajectories with different initial conditions driven
by the same noise. Their theory is manifested in Arnold’s book [1].

Typically, random dynamical systems are generated by stochastic (partial) differ-
ential equations or the product of random mappings. Their wide area of application
ranges from theoretical physics, through climate science, to neurophysiology.

A crucial question analyzing random dynamical systems concerns their asymp-
totic behavior and is closely related to random attractors. A priori one cannot expect
any convergent behavior of the trajectories to a compact set since the noise acts on
the dynamics. Therefore, an alternative concept of attractors is required. We fix
a realisation of the noise, start the process at the initial conditions under the fixed
noise at time t0 < 0 and evaluate the process at time 0, for some t0 < 0. In the
following, we will refer to these kind of dynamics starting in the past as pullback dy-
namics. If the pullback trajectories converge to a compact set as t0 → −∞, we call
this set our random attractor. Here, we distinguish between types of convergence
and types of sets of initial conditions getting uniformly attracted.

If the attractor is a single random point, then the long-time dynamics of the
process are asymptotically globally stable. In particular, the trajectories started in
any two points of the state space will converge towards each other in probability. We
call this phenomenon synchronization. Recently, some papers investigated sufficient
conditions which guarantee synchronization, see [8], [10], [21], [22].

One might expect that the addition of noise destabilizes processes. However,
as examples in [2] and [5] show, the addition of noise can even have the opposite
effect. We are in particular interested in noise-induced synchronization. Here, the
random dynamical system synchronize under the addition of noise while there is no
synchronization in the absence of noise. The main aim of this thesis is to analyze
this surprising phenomenon.

Flandoli, Gess and Scheutzow [21] provide general conditions that imply syn-
chronization. In particular, they are interested in stochastic differential equations
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CHAPTER 1. INTRODUCTION

which are not asymptotically stable in absence of noise while under the addition of
noise the attractor collapses to a random single point. As a model example they
consider the stochastic differential equation with additive noise

dXt = Xt

(
1− |Xt|2

)
dt+ σ dWt on R2 (1.1)

where Wt is a two-dimensional Brownian motion.
In the absence of noise, σ = 0, the set attractor is the closed unit ball and the

minimal point attractor is the union of the unit sphere and 0. In particular, the
deterministic system does not synchronize. Under the addition of noise, σ > 0,
synchronization is proven in [21]. Therefore, noise stabilizes the long-time dynamics
of (1.1). This behavior is illustrated by the pullback trajectories in Figure 1.1.

(a) σ = 0, t0 = −1 (b) σ = 0, t0 = −2 (c) σ = 0, t0 = −4 (d) σ = 0, t0 = −100

(e) σ = 0.5, t0 = −2 (f) σ = 0.5, t0 = −7 (g) σ = 0.5, t0 = −20 (h) σ = 0.5, t0 = −25

(i) σ = 1, t0 = −1 (j) σ = 1, t0 = −2 (k) σ = 1, t0 = −4 (l) σ = 1, t0 = −6

Figure 1.1: Pullback dynamics of (1.1) started at time t0 under the same fixed noise
with initial conditions uniformly distributed in [−2, 2]2 (and some additional points
in {0} × [−2, 2], especially 0)

For all simulated noise intensities, σ = 0, σ = 0.5 and σ = 1, most points are
at first moved close to a sphere under the dynamics of (1.1) (see Figure 1.1 (a), (e)
and (i)). Afterwards, the behavior of the deterministic and random dynamics differ.
While in the deterministic setup points stay close to the unit sphere, the random
dynamics contract. We can identify the minimal point attractors of the systems (see
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Figure 1.1 (d), (h) and (l)). As discussed before, the minimal point attractor for
σ = 0 is the union of the unit sphere and 0 and the minimal random point attractor
for σ = 0.5 and σ = 1, respectively, is a single random point. In fact, this random
point is even the random set attractor. However, we recognize that the noise does
not merely stabilize the dynamics but its strength also determines how long it takes
until the stabilization effect appears.

Observing this behavior, two questions caught our attention.
The first question, raised by M. Scheutzow, asks whether there is still synchro-

nization adding less noise as in (1.1). In particular, we are interested in the stochastic
differential equation

dXt = Xt

(
1− |Xt|2

)
dt+

[
σ 0
0 0

]
dWt on R2. (1.2)

A priori it is not clear whether noise acting in merely one direction is enough to
stabilize the long-time dynamics. This question will be examined in Chapter 3.

The second question, raised by A. Quas, considers again the stochastic differ-
ential equation (1.1) and concerns the time a point or set, respectively, requires to
approach the attractor. Since the deterministic attractor is in contrast to the ran-
dom attractor not a single random point, it is obvious that the required time should
go to infinity as the noise gets small. We will estimate these times in Chapter 5.

To get an intuition about the answer of the first question, we start by simulating
the pullback trajectories of the stochastic differential equation (1.2). We can again
observe the stabilizing effect of the noise, see Figure 1.2.

Similar to the dynamics in Figure 1.1, we can observe that at the beginning
most points get pushed towards a sphere under the dynamics of (1.2) (see Figure
1.2 (a) and (e)). Afterwards the points move to an unstable or stable symmetric
manifold, respectively, centered at the x-axis. For σ = 0.5 this manifold is unstable
and for σ = 2 it is a stable manifold. As in Figure 1.1, we can identify the minimal
random point attractor (see Figure 1.2 (d) and (h)). For σ = 2 the minimal point
attractor is a random point on the x-axis while for σ = 0.5 three random points
form the minimal point attractor where one point is located on the x-axis and the
other two are symmetrically located below and above the x-axis. Observe that these
three points cannot be the set attractor of the RDS generated by (1.2) since the
set attractor is connected. Connectedness of set attractors is studied extensively
in Chapter 6. We presume that the set attractor of the random dynamical system
generated by (1.2) for σ = 0.5 is the unstable manifold which can be identified in
Figure 1.2 (c) and for σ = 2 is the single random point in Figure 1.2 (h). Therefore,
the occurrence of synchronization does not merely depend on whether there is noise
or not but in fact depends on the exact strength of noise.

In Chapter 3 we want to quantify these observations. Our results were published
in [47] and are not merely restricted to (1.2) but are in fact valid on Rd for d ≥ 2
where the noise acts in n < d directions. We show that the addition of noise stabilizes
the long-time dynamics of (1.2). This can be seen as an extension to the stabilizing
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CHAPTER 1. INTRODUCTION

(a) σ = 0.5, t0 = −2 (b) σ = 0.5, t0 = −8 (c) σ = 0.5, t0 = −40 (d) σ = 0.5, t0 = −100

(e) σ = 2, t0 = −1 (f) σ = 2, t0 = −1.5 (g) σ = 2, t0 = −3 (h) σ = 2, t0 = −10

Figure 1.2: Pullback dynamics of (1.2) started at time t0 under the same fixed noise
(as in Figure 1.1) with initial conditions uniformly distributed in [−2, 2]2 (and some
additional points in {0} × [−2, 2], especially 0)

effect of noise for (1.1) proven in [21]. Actually, we even prove that the appearance
of synchronization depends on the strength of noise and the number of directions in
which the noise acts. In particular, we show synchronization if the noise acts in at
least two directions. In the case of the noise acting merely in one direction, there
exists a critical value such that for noise intensities smaller than the critical value
there is no synchronization while for noise intensities larger than the critical value
synchronization occurs.

The crucial quantity to describe the attractor is the sign of the top Lyapunov
exponent. The sign of the top Lyapunov exponent determines if two nearby trajec-
tories converge or separate from each other. We show a transition from positive to
negative top Lyapunov exponent as the noise increases.

Such a parameter-dependent change of the qualitative behavior of a system is in
the literature called bifurcation. Chapter 9 of Arnold’s book [1] provides instructive
examples for this phenomenon. Recently, Engel, Lamb and Rasmussen [20] showed
a bifurcation for a stochastically driven limit cycle. In contrast to our system, noise
destabilizes the long-time dynamics of their system. They show a transition from
negative to positive top Lyapunov exponent as the strength of noise increases and
state whether the minimal random point attractor is a singleton or not in the corre-
sponding case. Observe that we mainly consider a stronger form of synchronization
associated to random set attractors.

In case of a negative top Lyapunov exponent we prove synchronization following
the setup put forward in [21]. In [21] they show that some local stability con-
dition, an irreducibility condition and contraction on a large set imply synchro-
nization. However, note that the irreducibility condition is not satisfied for (1.2)
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since the set {(x1, x2)) ∈ R2 : x2 > 0} is not reachable if one starts the dynamics in
{(x1, x2) ∈ R2 : x2 < 0} and vice versa.

We deal with the lack of irreducibility by focusing on elements of the set R×{0}.
Restricting to R × {0}, we can show that an irreducibility condition holds true.
Additionally, we validate that sets where the RDS is contracting or locally stable
can be chosen to be centered at a point in R× {0}. Here, local stability follows by
the stable manifold theorem, see [21, Lemma 3.1].

A positive top Lyapunov exponent of the random dynamical system associated
to (1.2) implies lack of (weak) synchronization. In general, attractors with positive
top Lyapunov exponent are not well understood yet. These attractors are sometimes
called random strange attractors (see [30], [50]) due to their fractal-like shape. A
famous example for strange attractors is the Lorenz attractor. A numerical study
of the random Lorenz attractor can be found in [7].

It remains an open problem whether there is synchronization or not if the top
Lyapunov exponent is zero. In this case we do not even know whether nearby
trajectories converge or separate from each other.

Numerical simulations of (1.2) as seen in Figure 1.2 suggest that there is weak
synchronization for small noise on R×R+. It remains an open problem to describe
the attractor in this case.

One could also modify (1.1) in such a way that the strength of additive noise
varies in the direction it acts. In this more general case, the invariant measure of the
Markov process is more complicated to identify. However, if the noise acts in both
directions (in contrast to (1.2)), we presume synchronization. On such a system acts
more noise as on (1.1) for small σ > 0 and we presume that the stabilizing effect of
noise preserves synchronization.

Analyzing (1.1) and (1.2), we see a close relation between top Lyapunov expo-
nents and synchronization. This raises the question whether their relation remains
true in a more general setting. We give positive results and examples in Chapter
4. These results and examples are joint work with Michael Scheutzow and were
recently published in [40].

It is reasonable to conjecture that synchronization and negativity of top Lya-
punov exponents of the system should be closely related since both mean that the
system is asymptotically locally stable in some sense. A positive result of that kind
in the finite-dimensional case is [21, Lemma 3.1] which states that negativity of
the top Lyapunov exponent plus an integrability assumption on the derivatives in
a neighborhood of the support of the invariant measure guarantees that for almost
every point in the support of the invariant measure, there exists a random neigh-
borhood of the point which forms a local stable manifold. In particular, the system
is asymptotically locally stable. This result is based on the stable manifold theorem
by Ruelle [36].

This stable manifold theorem holds for diffeomorphisms on a compact mani-
fold. Another result by Ruelle [37] provides stable and unstable manifolds for dif-
ferentiable dynamical systems on Hilbert spaces. These classical results by Ruelle
have been applied to study, e.g., for example stochastic differential equations and
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CHAPTER 1. INTRODUCTION

stochastic partial differential equations, see [34], [35]. Other stable manifolds were
established by Mañé [33] for compact operators in a Banach space and by Lu [32]
for random dynamical systems in a Banach space.

We use the stable manifold theorem by Ruelle [37] which is valid for separable
Hilbert spaces. Like [21, Lemma 3.1] the proof is an easy consequence of the result
by Ruelle. The advantage of our result compared to [21, Lemma 3.1] is that it is valid
in infinite dimensional spaces. In particular, random dynamical systems generated
by stochastic partial differential equations may be treated. These systems have
received considerable attention, see for example [4], [15], [24].

Additionally, there are also other smaller differences to [21, Lemma 3.1]. We
use an invariant measure of the random dynamical system instead of an invariant
measure of the Markov semigroup. Moreover, we do not assume ergodicity of the
invariant measure or the probability measure. Due to the lack of ergodicity we do
not get the existence of a deterministic Lyapunov spectrum.

We also consider the opposite behavior. Having a non-trivial unstable manifold
of a random fixed point which satisfies some measurability condition, synchroniza-
tion cannot hold. An unstable manifold can be obtained by the unstable manifold
theorem in [37]. However, this does not exclude the possibility that the stable man-
ifold is a single random point. If the random dynamical system is time-invertible,
a non-trivial stable manifold can be obtained by choosing a stable manifold of the
time-reversed random dynamical system.

This relation between top Lyapunov exponent and synchronization, however,
does not hold in general. We provide two examples showing that our results become
untrue if our integrability assumptions are dropped. Both examples are simple one-
dimensional random dynamical systems generated by independent and identically
distributed strictly monotone and bijective maps from the real line to itself which fix
the point 0. In the first example, the top Lyapunov exponent is negative but never-
theless the point 0 is not even asymptotically locally stable. In fact, all trajectories
starting outside 0 go to −∞ or∞ and in particular there is no synchronization. The
second example is the time reversal of the first example. Hence, the top Lyapunov
exponent is positive and the system synchronizes.

Concerning the second question we stated earlier, we presume that the time until
a point or set, respectively, approaches the attractor goes to infinity as the noise gets
small. In Chapter 5, we do not merely consider (1.1) but even more general radially
symmetric gradient-type stochastic differential equations with similar dynamics as
(1.1). For the time a set needs to approach the attractor we even allow the space to
be Rd for d ≥ 2. In the one-dimensional case, d = 1, one can instead compute the
time a process started in a point requires to exit a domain using the Freidlin-Wentzel
theory (see [23, Chapter 2] or [17, Chapter 5]) or solving the Poisson problem (see
[27, Section 5.5]). All results of Chapter 5 can be also found in [48].

In applications, a relevant and observable phenomenon may be away from the
actual attractor. In many cases, this can be explained by a trajectory that stays
in the transient phase for a substantial amount of time. Such a phenomenon can
be observed for example for macrophyte-covered lakes or desert states of the Earth
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system, see [44], [45].
There are some difficulties describing the time a system stays in the transient

phase. Usually, the attractor is not reached in finite time. Hence, it is desirable to
consider the time required to reach a neighborhood of the attractor. However, this
time then goes to infinity as the neighborhood gets small. Further, the process may
also enter this neighborhood multiple times. The question arises which of these times
is relevant for our study. Moreover, the time required to reach the neighborhood
may depend on the exact initial condition.

We consider a small neighborhood around the random attractor, since the dy-
namics of (1.1) started in a deterministic point will not reach the attractor but
merely approach it and we refer to the first time to enter this small neighborhood
as the time required to approach the attractor or simply approaching time. Varying
the strength of noise, especially for small noise, we are interested in measuring the
time required to approach the attractor. While the random attractor of a system
perturbed by noise is a single random point, the attractor in the deterministic case
is not. This change of behavior when adding noise causes the approaching time to
go to infinity as the noise gets small. We observe that the rate in which the ap-
proaching time increases does not depend on the exact initial condition or the size
of the small neighborhood. However, it depends on the considered type of initial
condition. We compute the time a point or a set, respectively, requires to approach
the corresponding attractor separately. The sets in which we start the dynamics
should be sufficiently large, to be precise we assume that the unit sphere is a subset
of the considered sets.

For the deterministic system of (1.1), the time a set requires to approach the
set attractor, which is the closed unit ball, is bounded by a constant which merely
depends on the neighborhood of the attractor. In contrast, the time until a point
approaches the point attractor and stays in this neighborhood of the point attractor,
which is the union of 0 and the unit sphere, depends on the initial condition. All
points except 0 converge to the unit sphere and the time until a point close to 0
approaches the unit sphere may be arbitrarily long.

In the random setup, we use large deviation techniques to estimate the time a
set requires to approach the random set attractor. Since the considered stochastic
differential equations are perturbed by additive noise, the large deviation principle
holds for the generated semi-flow. This is an easy consequence of Schilder’s theorem
and the contraction principle. These theorems give a large deviation statement for
the Brownian motion and show that the large deviation principle is preserved under
continuous mappings. A more general large deviation result valid for stochastic
flows generated by Kunita-type stochastic differential equations can be found in the
paper [18] by Dereich and Dimitroff.

Using the large deviation principle, the gradient structure and a sample path, we
find lower and upper bounds for the probability that the approaching time of a set
is smaller than some constant. Then we apply similar arguments as in [17, Section
5.7] to get the desired bounds. In [17, Section 5.7], these arguments were used to
determine the exponential growth rate for the time a point requires to exit a domain.
In fact, the time a set requires to approach the attractor grows exponentially as the
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CHAPTER 1. INTRODUCTION

noise gets small as well.
In order to estimate the approaching time of a point, we compare the accelerated

process to a process on the unit sphere that behaves similarly and is known to
synchronize weakly. We get that the time a point requires to approach the attractor
increases merely linearly as the noise gets small.

This significant difference in the rate in which the approaching time increases is
due to the fact that a point can approach the attractor moving close to the sphere
and then along the sphere while a set can only approach the attractor if a point on
the sphere moves close to 0, which requires more energy.

The estimate of the time a point requires to approach the attractor is restricted to
the two-dimensional case. If we want to extend the example to a higher-dimensional
case, we need to consider other processes on the unit sphere which are of a more
complicated form. However, we expect that the time increases in these cases in the
same rate.

Instead of considering the first time the process enters a neighborhood of the at-
tractor, one could also consider the last time the process enters such a neighborhood.
We expect that these last times increase in the same rate as the first times, since
the interest of the trajectories to separate should be small. In order to analyze this
rigorously, it would be desirable to see that the constants appearing in the stable
manifold theorem can be chosen independently of the strength of noise for small
noise.

We consider the times a point and a set (containing the unit sphere) require to
approach the attractor. Observing the significant difference between both times, it
might be interesting to analyze sets being in between these notions, for example sets
of Hausdorff dimension less than one. Starting the dynamics of (1.1) in a subset
of the unit sphere with dimension less than one, we expect the time required to
approach the attractor to be of the same order as the time a point requires. Our
presumption is based on the fact that our starting set does not contain some neigh-
borhood of the unstable point of the process on the unit sphere almost surely.

In Chapter 6, we deal with a more general property of random set attractors.
Our aim is to examine under which conditions random set attractors on a con-
nected Polish space are connected. The achieved results are joint work with Michael
Scheutzow and are going to be published in [39].

The connectedness of deterministic attractors has been extensively studied. By
results of La Salle [29], set attractors on a connected space are invariantly con-
nected. A set is invariantly connected if it is not the union of two nonempty disjoint
closed invariant sets. In [26], Hale proves that set attractors on a Banach space are
connected.

One might expect that set attractors on a connected space are always connected.
However, Gobbino and Sardella [25] provide an example of a dicrete-time determin-
istic dynamical system on a connected space which has a set attractor which is not
connected. Moreover, they prove that the set attractor of a continuous-time dynam-
ical system is connected. If one additionally assumes that the state space is locally
connected, then connectedness of the set attractor even follows for discrete-time
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dynamical systems.
In contrast to deterministic set attractors, little is known about the connectedness

of random set attractors. The question of connectedness of a random set attractor
was first addressed by Crauel and Flandoli in the seminal paper [15]. Proposition
3.13 of that paper states that if a random dynamical system in discrete or continuous
time taking values in a connected Polish space admits a set attractor (in the sense
that the attractor attracts every bounded set in the pullback sense almost surely),
then the set attractor is almost surely connected. Later, a gap was found in the
proof of that proposition and the before-mentioned example in [25] shows that the
claim does not even hold true in the deterministic case when time is discrete.

A positive result (valid in discrete and continuous time) have been found in [12]
by Crauel under the additional condition that any compact set in the state space can
be covered by a connected compact set (a property which clearly does not hold in
the example in [25]). The Proposition 3.7 states that a set attractor, which attracts
any bounded set almost surely, on a state space with the additional connectedness
assumptions is connected. The proof even shows that the statement stays true for
attractors merely attracting any compact set in probability.

Our goal is to prove connectedness of random set attractors on connected Polish
spaces, without any further connectedness assumptions on the state space. There-
fore, we restrict our proofs to continuous-time random dynamical system which
satisfy some pullback continuity in time. These restrictions are equivalent to the
restrictions for the deterministic case in [25]. For the random set attractors, which
attract any compact set almost surely, we aim to use the proof of [25, Theorem 3.1]
pathwise.

The first lemma in Chapter 6 may be of independent interest. It states that even
though pullback convergence to the attractor allows for exceptional nullsets which
may depend on the compact set, these nullsets can be chosen independently of the
compact set (even if the space is not σ-compact). This lemma does not assume the
state space to be connected. The result allows us to argue pathwise.

Using the pathwise argumentation and the idea of [25, Theorem 3.1], we prove
connectedness of the random set attractor which attracts any compact set almost
surely. In contrast to these attractors, a pathwise approach is not applicable for
random set attractors which merely attract compact sets in probability. We give
an example of this weaker form of a set attractor (satisfying all of our earlier as-
sumptions except for the almost sure convergence) which is not connected. In fact,
the attractor even attracts all bounded sets, the random dynamical system satisfies
an even more restrictive continuity assumption and the state space is even path-
connected. Here, the state space is the same as in the example in [25].

Under stronger connectedness assumptions on the state space, this weaker form
of random set attractors and random set attractors of discrete-time random dynam-
ical systems, respectively, are connected, see the proof of [12, Proposition 3.7]. It
remains an open problem whether connectedness for these set attractors may also
follow under more general assumptions. For deterministic discrete-time systems on a
connected and locally connected metric space, it is shown in [25] that the set attrac-
tor, if it exists, is connected. However, these assumptions imply that any compact

9



CHAPTER 1. INTRODUCTION

set can be covered by a connected bounded set which then implies connectedness
of set attractors (even of the weak form or the discrete-time system) attracting any
bounded set uniformly by the same arguments as in [12, Proposition 3.7].

Apart from set attractors for continuous-time systems, other types of random
attractors such as random point attractors or random Hausdorff-∆-attractors (which
attract any compact set with Hausdorff dimension less or equal ∆) have been studied
in the literature ([12], [41]). These are generally not connected even if the ambient
space is connected and the attractors are chosen to be minimal (unlike set attractors
they are generally not unique). As an example for a disconnected minimal point
attractor consider the scalar differential equation dx = (x − x3) dt on the interval
[0, 1]. Each trajectory converges to {0} or {1}. Hence, {0} ∪ {1} is the minimal
point attractor (while the set attractor is the whole interval [0, 1]). In [41], we can
find an example of a disconnected random Hausdorff-∆-attractor. It is shown that
the random dynamical system generated by dXt = Xt(1 −Xt) dWt on the interval
[0, 1], where Wt is a one-dimensional Brownian motion, has a random Hausdorff-
∆-attractor for ∆ ∈ [0, 1) (attracting the corresponding sets in probability) which
is not connected. It is not known whether connectedness of Hausdorff-∆-attractors
follows under stronger assumptions.

10



Chapter 2

Preliminaries and notation

2.1 General setting and notation

LetX be a Polish space, i.e. a separable topological space that can be metrized using
a complete metric. If the metric d is not further specified, d is merely some complete
metric giving rise to the same topology. We denote by B(·) the Borel-σ-algebra of a
space.

Let (Ω,F ,P) be a probability space. Denote by F̄ the completion of F with
respect to P. We further denote by P̄ the (unique) extension of P to F̄ .

For a set M ⊂ X denote by M̄ the closure of M and by M̊ the interior of M .
Further denote by B(x, r) the open ball around x ∈ X with radius r > 0 and by Sr
the sphere centered at 0 ∈ Rd with radius r > 0. The diameter of a set M ⊂ X is
defined by

diam(M) := sup {d(x, y) : x, y ∈M}

and the distance of a point x ∈ X to a set M ⊂ X is defined by

d(x,M) := inf {d(x, y) : y ∈M} .

For a set M ⊂ X and ε > 0 let

M ε := {x ∈ X : d(x,M) < ε} .

2.2 Random dynamical system

The field of random dynamical systems lies in the intersection of probability theory
and dynamical systems. From a probabilistic point of view, their rich structure
allows to trace any set of initial conditions simultaneously instead of being limited
to one-point motions. For a more detailed description of random dynamical systems
we refer to [1] and references therein.

We let T be either Z or R and denote the set of non-negative numbers in T by
T+.

11



CHAPTER 2. PRELIMINARIES AND NOTATION

Definition 2.2.1. Let (Ω,F ,P) be a probability space and θ = (θt)t∈T be a group
of maps θt : Ω→ Ω satisfying

(i) (ω, t) 7→ θt(ω) is (F ⊗ B(T),F)-measurable,

(ii) θ0(ω) = ω for all ω ∈ Ω,

(iii) θs+t = θs ◦ θt for all s, t ∈ T,

(iv) θt has ergodic invariant measure P for t ∈ T.

The collection (Ω,F ,P, θ) is then called a metric dynamical system.

Definition 2.2.2. Let (Ω,F ,P, θ) be a metric dynamical system. Further, let ϕ :
T+ × Ω×X → X be such that

(i) ϕ is (B(T+)⊗F ⊗ B(X),B(X))-measurable,

(ii) ϕ0(ω, x) = x for all x ∈ X and ω ∈ Ω,

(iii) ϕt+s(ω, x) = ϕt(θsω, ϕs(ω, x)) for all x ∈ X, t, s ∈ T+ and ω ∈ Ω,

(iv) x 7→ ϕs(ω, x) is continuous for each s ∈ T+ and ω ∈ Ω.

The collection (Ω,F ,P, θ, ϕ) is then called a random dynamical system (RDS).

We call a RDS a discrete-time RDS respectively a continuous-time RDS if T = Z
respectively T = R. We call a continuous-time RDS pullback continuous if t 7→
ϕt(θ−tω, x) is continuous for each ω ∈ Ω and x ∈ X.

Definition 2.2.3. A random field φ : {−∞ < s ≤ t <∞} × Ω ×X → X is called
a semi-flow if

(i) φ is (B(T+)⊗ B(T+)⊗F ⊗ B(X),B(X))-measurable

(ii) φs,s(ω, x) = x for all s ∈ T+, x ∈ X and ω ∈ Ω

(iii) φs,u(ω, x) = φt,u(ω, ·) ◦ φs,t(ω, x) for all −∞ < s ≤ t ≤ u < ∞, x ∈ X and
ω ∈ Ω

(iv) (s, t, x) 7→ ϕs,t(x) is continuous for every ω ∈ Ω

The semi-flow satisfies stronger continuity assumptions than the RDS. If one
excludes the continuity assumptions and has a metric dynamical system, there is
a a one-to-one relation between cocycles and semi-flows. One can either define a
semi-flow by φs,t(ω, x) := ϕt−s(θsω, x) or a cocycle by ϕt(ω, x) := φ0,t(ω, x).

We say an RDS is jointly continuous if it satisfies the corresponding continuity
assumption of the semi-flow, i.e. (s, t, x) 7→ ϕt−s(θsω, x) is continuous. Note that a
jointly continuous RDS is pullback continuous but the converse does not necessarily
hold true.

12



2.3. RANDOM ATTRACTOR

As an example, consider an RDS generated by a stochastic differential equation
(SDE) driven by a Brownian motion. In order to use the white noise property of the
Brownian motion, the existence of a family F = (Fs,t)−∞<s≤t<∞ of sub-σ-algebras
of F will be desirable. This family of sub-σ-algebras should satisfy Ft,u ⊂ Fs,v for
s ≤ t ≤ u ≤ v, θ−1

r (Fs,t) = Fs+r,t+r for all r, s, t and Fs,t and Fu,v are independent
for s ≤ t ≤ u ≤ v.

Suppose such a family of sub-σ-algebras exists. For each t ∈ T, denote by Ft the
smallest σ-algebra containing all Fs,t with s ≤ t and by Ft,∞ the smallest σ-algebra
containing all Ft,u with t ≤ u. Moreover, let F− := F0 and F+ := F0,∞.

If, additionally, ϕs(·, x) is F0,s-measurable for each s ∈ T+ and x ∈ X and the σ-
algebras Ft and Ft,∞ are independent for all t ∈ T, then the collection (Ω,F ,P, θ, ϕ)
is called a white-noise RDS. We will generally not assume the white-noise property
in the following.

Define the skew product Θ on Ω × X by Θt(ω, x) := (θtω, ϕt(ω, x)) for t ∈ T+.
We then say that a probability measure µ on Ω×X is an invariant measure for the
RDS ϕ if its marginal on Ω is P and Θ(t)µ = µ for all t ∈ T+. For an invariant
measure µ there exists an unique disintegration ω 7→ µω satisfying ϕt(ω)µω = µθtω
for all t ≥ 0 and P-almost all ω ∈ Ω. An invariant measure µ is called a Markov
measure, if ω 7→ µω is F−-measurable.

For a white noise RDS ϕ, define the associated Markovian semigroup by Ptf(x) :=
E [f (ϕt (·, x))] for measurable, bounded functions f . A probability measure ρ on X
is called an invariant measure of the Markovian semigroup Pt if P ∗t ρ = ρ for all t ≥ 0
where (P ∗ρ)(M) =

∫
X

(Pt1M)(x) dρ(x) for M ⊂ X.
There is a one-to-one correspondence between invariant measures of the Marko-

vian semigroup Pt and Markov invariant measures for the RDS ϕ, see [11].

2.3 Random attractor

The asymptotic behavior of RDS can be described by random attractors. Their
definition goes back to [15].

Definition 2.3.1. A family {D(ω)}ω∈Ω of non-empty subsets of X is said to be

(i) a random compact set if it is P-almost surely compact and

ω 7→ sup
y∈D(ω)

d(x, y)

is F -measurable for each x ∈ X.

(ii) ϕ-invariant if for all t ∈ T+

ϕt(ω,D(ω)) = D(θtω)

for almost all ω ∈ Ω.
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Definition 2.3.2. Let (Ω,F ,P, θ, ϕ) be an RDS and A be ϕ-invariant random com-
pact set A.

(i) A is called a pullback attractor if for every compact set B ⊂ X

lim
t→∞

sup
x∈B

d(ϕt(θ−tω, x), A(ω)) = 0 P-almost surely.

(ii) A is called a weak attractor if for every compact set B ⊂ X

lim
t→∞

sup
x∈B

d(ϕt(θ−tω, x), A(ω)) = 0 in probability.

(iii) A is called a point attractor if for every x ∈ X

lim
t→∞

d(ϕt(θ−tω, x), A(ω)) = 0 P-almost surely.

(iv) A is called a weak point attractor if for every x ∈ X

lim
t→∞

d(ϕt(θ−tω, x), A(ω)) = 0 in probability.

Note that every pullback attractor respectively point attractor is a weak attractor
respectively weak point attractor. The converse is not true and an example for this
can be found in [38].

Moreover, note that every pullback attractor respectively weak attractor is a
point attractor respectively weak point attractor. The converse is not true. Consider
the differential equation dxt = xt(1 − xt) dt on [0, 1]. The set {0, 1} is a point
attractor but does not attract the compact set [0, 1] uniformly.

In the next section, we give conditions for the existence of a pullback attractor
(and hence the other three attractors) for a RDS associated to a stochastic differ-
ential equation.

Let us now state some properties of random attractors that we need in the
following chapters. First, we want to give a statement how to cover a random
attractor with a deterministic compact set. This result is in particular handy when
dealing with weak and pullback attractors since they attract this compact set. The
statement can be found in [13, Proposition 2.15].

Proposition 2.3.3. Let ε > 0 and K(ω) be a random compact set. Then there
exists a deterministic compact set Kε ⊂ X such that

P (K(ω) ⊂ Kε) ≥ 1− ε.

The statements of the next two lemmata are about weak attractors and can be
found in [21, Lemma 1.3 and comment].

Lemma 2.3.4. Weak attractors are unique in the sense that if an RDS has two
weak attractors, then they agree almost surely.
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2.4. STOCHASTIC DIFFERENTIAL EQUATION

Lemma 2.3.5. Let A be a weak attractor of an RDS ϕ. Then A admits an F−-
measurable version. Hence, there exists an F−-measurable weak attractor Ã such
that A = Ã P-almost surely.

Obviously both lemmata also holds true for pullback attractors. (Weak) point
attractors however are in general not unique. Here, we can define a minimal (weak)
point attractor. These minimal random attractors were studied in [16].

Definition 2.3.6. A (weak) point attractor is said to be minimal if it is contained
in each (weak) point attractor.

Theorem 2.3.7. If the RDS has a (weak) point attractor, then it has a minimal
(weak) point attractor.

The construction of the minimal random attractor can be found in [16, Theorem
13 and 23]. Using the construction, one can see that for a pullback continuous RDS
the minimal (weak) point attractor admits a F−-measurable version.

In the following, we assume that the random attractors which admits a F−-
measurable version, i.e. weak attractor, pullback attractor and minimal (weak)
point attractor, are even F−-measurable.

In particular, we are interested in attractors that are single points since this
implies asymptotic stability.

Definition 2.3.8. Synchronization occurs if there is a weak attractor A(ω) being a
singleton for P-almost every ω ∈ Ω. Weak synchronization is said to occur if there
is a weak point attractor A(ω) being a singleton for P-almost every ω ∈ Ω.

In particular, (weak) synchronization implies that for all x, y ∈ X

lim
t→∞

d(ϕt(ω, x), ϕt(ω, y)) = 0

in probability.
The paper [21] provides general conditions that lead to (weak) synchronization.

An RDS that satisfies some local stability condition, an irreducibility condition and
that is contracting on large sets is shown to synchronize.

2.4 Stochastic differential equation

In Chapter 3 and 5 we consider stochastic differential equations (SDE) with additive
noise. For a fixed function b : Rd → Rd and a matrix Σ ∈ Rd,d, consider the SDE

dXt = b(Xt) dt+ Σ dWt, X0 = x ∈ Rd (2.1)

where Wt is a d-dimensional Brownian motion.
An Rd-valued stochastic process X is called a solution of the SDE (2.1) if X is

adapted with continuous paths and satisfies the corresponding integral equation

Xt = x+

∫ t

0

b(Xs) ds+

∫ t

0

Σ dWs

15
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for all t ≥ 0 P-almost surely which in particular means that the right-hand side is
well-defined. We say that the SDE has a unique solution if any two solutions with
the same initial condition are indistinguishable.

Let us assume that b is locally Lipschitz and satisfies a one-sided Lipschitz con-
dition, i.e. there exists some C > 0 such that

〈b(x)− b(y), x− y〉 ≤ C|x− y|2

for all x, y ∈ Rd, then there exists a unique solution of the SDE (2.1) which generates
an RDS (Ω,F ,P, θ, ϕ) with respect to the canonical setup, see [19, Proposition 2.4].

Here, the space Ω is C(R,Rd), F is the Borel σ-field, P is the two-sided Wiener
measure, Fs,t is the σ-algebra generated by Wu −Wv for s ≤ v ≤ u ≤ t , where
Ws : Ω→ Rd is defined asWs(ω) = ω(s), and θt is the shift (θtω)(s) = ω(s+t)−ω(t)
which is ergodic.

If we additionally assume that

lim sup
|x|→∞

〈
x

|x|
, b(x)

〉
= −∞.

then this RDS has a pullback attractor by [19, Theorem 3.1].

2.5 Large deviation principle

The large deviation principle characterizes the limiting behavior, as ε → 0, of a
family of probability measures {µε} on (X ′,B(X ′)) in terms of a rate function.
Here, X ′ is a Hausdorff topological space.

Definition 2.5.1. A rate function I is a lower semi-continuous mapping
I : X ′ → [0,∞]. A good rate function is a rate function for which all level sets
{x ∈ X ′ : I(x) ≤ α}, α ∈ [0,∞), are compact.

Definition 2.5.2. A family of probability measures {µε} satisfies the large deviation
principle (LDP) with a rate function I if for all B ∈ B(X ′)

− inf
x∈B̊

I(x) ≤ lim inf
ε→0

ε log µε(B) ≤ lim sup
ε→0

ε log µε(B) ≤ − inf
x∈B̄

I(x).

In Chapter 5 we aim to use the LDP for the semi-flow of an SDE. The fact that
this semi-flow satisfies the LDP is a consequence of the following theorems. These
theorems give a large deviation statement for the Brownian motion and show that
the LDP is preserved under continuous mappings. Proofs of both theorems can be
found in [17].

Theorem 2.5.3 (Schilder). Let Wt be a standard Brownian motion in Rd and let
νε be the probability measure induced by

√
εWt on C0[0, T ] for some T > 0. Then,

{νε} satisfies an LDP with good rate function

IW (g) =

{
1
2

∫ T
0
|ġ(t)|2 dt, g ∈

{
t 7→

∫ t
0
h(s) ds : h ∈ L2([0, T ])

}
∞, otherwise.
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Theorem 2.5.4 (Contraction principle). Let X ′ and Y ′ be Hausdorff topological
spaces and f : X ′ → Y ′ a continuous function. Consider a good rate function
IX : X ′ → [0,∞].

(i) For each y ∈ Y ′ define

IY := inf {IX(x) : x ∈ X ′ and y = f(x)} .

Then, IY is a good rate function on Y ′.

(ii) If {µε} satisfies the LDP with rate function IX , then {µε ◦ f−1} satisfies the
LDP with rate function IY
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Chapter 3

Noise dependent synchronization of a
degenerate SDE

3.1 Introduction

We consider the stochastic differential equation with drift given by a multidimen-
sional double-well potential with degenerate additive noise. That is

dXt = Xt

(
1− |Xt|2

)
dt+ Σ dWt on Rd (3.1)

where Wt is a d-dimensional Brownian motion and Σ ∈ Rd,d is a diagonal matrix
with entries

[Σ]i,j =

{
σ, for i = j and i ≤ n

0, else

for σ > 0 and d, n ∈ N with n < d. Hence, the noise merely acts in the first n
directions.

In the deterministic case, for σ = 0, the long-time dynamics are not asymptoti-
cally globally stable. The set attractor in this case is the closed unit ball. Moreover,
the minimal point attractor is given by the union of the unit sphere and {0}. Hence,
there will be no (weak) synchronization.

In [21], the stochastic differential equation with drift given by a multidimensional
double-well potential with non-degenerate additive noise, n = d, was considered as
a model example for noise induced synchronization. Hence, the proofs in [21] imply
synchronization of the random dynamical system in the case of non-degenerate noise.

In this chapter, we show that the phenomenon of noise induced synchronization
can be extended to the case of degenerate additive noise. Remarkably, we observe
that synchronization even depends on the strength of the noise and the number of
directions in which the noise acts. On the one hand, we prove that the associated
random dynamical system does synchronize in the case n = 1 for large σ and in the
case n ≥ 2. On the other hand, we show that there is no synchronization, not even
weak synchronization, in the case n = 1 for small σ. In fact, the behavior changes
at a critical noise intensity σ∗ ∈ (1

2
, 2) in the case n = 1.
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CHAPTER 3. NOISE DEPENDENT SYNCHRONIZATION

The crucial quantity to describe the attractor is the sign of the top Lyapunov
exponent. Therefore, we prove a bifurcation from positive to negative top Lyapunov
exponent in Section 3.3.

If the top Lyapunov exponent is negative we prove synchronization in Section
3.4. Therefore, we follow the setup put forward in [21]. However, note that the
irreducibility condition used in [21] is not satisfied.

A positive top Lyapunov exponent of the random dynamical system associated
to (3.1) implies lack of (weak) synchronization. This result is shown in Section 3.5.
In general, attractors with positive top Lyapunov exponent are not well understood
yet. These attractors are sometimes called random strange attractors.

3.2 Sufficient conditions for synchronization

In this section we show that the SDE (3.1) generates an RDS which has a pullback
attractor. Further, we state the general conditions under which synchronization is
shown in [21] and analyze how we need to adjust them to fit to our setting.

Denote the drift of (3.1) by b : Rd → Rd with b(x) := (1− |x|2)x.

Lemma 3.2.1. The drift b fulfills

〈x− y, b(x)− b(y)〉 ≤ |x− y|2
(

1− 3

4
|x|2
)

for all x, y ∈ Rd. In particular, b satisfies the one-sided Lipschitz condition.

Proof. Let x, y ∈ Rd and define a := x − y. Using |x − a|2 = |x|2 − 2 〈a, x〉 + |a|2
and the Cauchy-Schwarz inequality, it follows that

〈x− y, b(x)− b(y)〉 =
〈
x− y, x(1− |x|2)− y(1− |y|2)

〉
=
〈
a, a− |x|2x+ |x− a|2(x− a)

〉
= |a|2 − (|x|2 − 2 〈a, x〉+ |a|2)|a|2 + (−2 〈a, x〉+ |a|2) 〈a, x〉

= |a|2 − |a|2|x|2 −
(
|a|2 − 3

2
〈a, x〉

)2

+
1

4
| 〈a, x〉 |2

≤ |a|2 − 3

4
|a|2|x|2.

Since the drift b of the SDE (3.1) satisfies the one-sided Lipschitz condition by
Lemma 3.2.1 and is locally Lipschitz, there exists a white noise RDS ϕ associated to
the SDE (3.1) with respect to the canonical setup by [19, Proposition 2.4]. Further,
b satisfies

lim sup
|x|→∞

〈
x

|x|
, b(x)

〉
= lim sup

|x|→∞
|x|(1− |x|2) = −∞.

By [19, Theorem 3.1], it follows that ϕ has a pullback attractor.
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3.3. TOP LYAPUNOV EXPONENT AND ASYMPTOTIC STABILITY

Throughout this chapter we denote by ϕ the RDS associated to (3.1) and by A
the F0-measurable version of the weak attractor.

Next, some properties of an RDS are defined. In [21], it is shown that these three
properties imply synchronization. Asymptotic stability is obtained by stable mani-
fold theorem and negative top Lyapunov exponent. Note that asymptotic stability
and contraction on large sets are even necessary conditions.

Definition 3.2.2. Let U ⊂ Rd be a deterministic non-empty open set. Then ϕ is
called asymptotically stable on U if there exists a deterministic sequence tn → ∞
such that

P
(

lim
n→∞

diam (ϕtn (·, U)) = 0
)
> 0.

Definition 3.2.3. ϕ is called swift transitive if for every r > 0 and x, y ∈ Rd there
is a time t > 0 such that

P(ϕt(·, B(x, r)) ⊂ B(y, 2r)) > 0.

Definition 3.2.4. ϕ is called contracting on large sets if for every r > 0 there is a
ball B(x, r) and a time t > 0 such that

P
(
diam (ϕt(·, B(x, r))) ≤ r

4

)
> 0.

We aim to show synchronization in case of a negative top Lyapunov exponent.
However, the RDS associated to the SDE (3.1) is not swift transitive. This can be
seen by observing that the set

{
(x1, x2, . . . xd) ∈ Rd : xi > 0

}
is not reachable if one

starts in
{

(x1, x2, . . . xd) ∈ Rd : xi < 0
}
and vice versa for any n < i ≤ d.

We will deal with the lack of swift transitivity by focusing on elements of the
set M :=

{
(x1, x2, . . . xd) ∈ Rd : xi = 0 for all i > n

}
. A weaker property than swift

transitivity is shown which merely holds true for all x, y ∈M instead of all x, y ∈ Rd.
Additionally, we validate that the set where the RDS is contracting or asymptotically
stable can be chosen to be centered at a point in M .

3.3 Top Lyapunov exponent and asymptotic stabil-
ity

We estimate the top Lyapunov exponent of the RDS associated to (3.1) and observe
a change of sign. Applying a stable manifold theorem and using negativity of the top
Lyapunov exponent, asymptotic stability for the RDS associated to (3.1) is shown
in the case n = 1 for large σ and in the case n ≥ 2. Denote by D the differential
operator in the state space.

The next theorem states a stable manifold theorem which can be found in [21,
Lemma 3.1]. We present another version of the stable manifold theorem which holds
in infinite dimensional spaces in Chapter 4.
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Theorem 3.3.1. Let ϕt(ω, ·) ∈ C1,δ
loc for some δ ∈ (0, 1) and all t ≥ 0 and let Pt be

the Markovian semigroup associated to ϕ. Assume that P1 has an ergodic invariant
measure ρ such that

E
∫
Rd

log+ ‖Dϕ1(ω, x)‖ dρ(x) <∞

and

E
∫
Rd

log+ ‖ϕ1(ω, ·+ x)− ϕ1(ω, x)‖C1,δ(B̄(0,1)) dρ(x) <∞.

Then

(i) there are constants λN < . . . < λ1 such that

lim
m→∞

1

m
log |Dϕm(ω, x)v| ∈ {λi}Ni=1

for all v ∈ Rd \ {0} and P⊗ ρ-almost all (ω, x) ∈ Ω× Rd.

(ii) Assume that the top Lyapunov exponent λtop := λ1 < 0. Then for every
ε ∈ (λtop, 0) there is a measurable map β : Ω × Rd → R+ \ {0} such that for
ρ-almost all x ∈ Rd,

S(ω, x) :=
{
y ∈ Rd : |ϕm(ω, y)− ϕm(ω, x)| ≤ β(ω, x) exp(εm) for all m ∈ N

}
is an open neighborhood of x P-almost surely.

From the stable manifold theorem (Theorem 3.3.1), one obtains a random, non-
empty, open set S(ω, x). One aims to show asymptotic stability on a deterministic,
non-empty, open set. The following lemma clarifies the relation between the random
set S(ω, x) and the existence of a deterministic set U such that ϕ is asymptotically
stable on U .

Lemma 3.3.2. Let V be a random open neighborhood of x ∈ Rd and let tn → ∞
be a sequence such that

P
(

lim
m→∞

diam (ϕtm(·, V (·))) = 0
)
> 0.

Then there exists some deterministic r > 0 such that

P
(

lim
m→∞

diam (ϕtm(·, B(x, r))) = 0
)
> 0.

In particular, ϕ is asymptotically stable on B(x, r).

Proof. For each ω ∈ Ω there exists k ∈ N such that B
(
x, 1

k

)
⊂ V (ω). Hence{

lim
m→∞

diam (ϕtm(·, V (·))) = 0
}

⊂
{

lim
m→∞

diam
(
ϕtm

(
·, B

(
x,

1

k

)))
= 0 for some k ∈ N

}
.
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By σ-additivity of P, there exists some r > 0 such that

P
(

lim
m→∞

diam (ϕtm(·, B(x, r))) = 0
)
> 0.

Remark 3.3.3. To apply the stable manifold theorem (Theorem 3.3.1), an ergodic
invariant measure is required and the integrability conditions in Theorem 3.3.1 need
to be satisfied.

The dynamics of (3.1) restricted to the set

M :=
{

(x1, x2, . . . , xd) ∈ Rd : xi = 0 for i > n
}

are described by the n-dimensional double-well potential with non-degenerate addi-
tive noise. That is

dXt =
(
Xt − |Xt|2 Xt

)
dt+ σ dWt on Rn. (3.2)

By [46, Theorem, p. 243], the Markovian semigroup associated to (3.2) has the
ergodic invariant probability measure

dρ̂(x) =
1

Zσ
exp

(
− 1

2σ2

(
|x|4 − 2 |x|2

))
dx,

where Zσ =
∫
Rn exp

(
− 1

2σ2 (|x|4 − 2|x|2)
)

dx. Therefore, the measure ρ on Rd with

ρ (B × {0}) = ρ̂(B) =
1

Zσ

∫
B

exp

(
− 1

2σ2

(
|x|4 − 2 |x|2

))
dx

for all B ∈ B (Rn) and

ρ
(
Rn ×

(
Rd−n \ {0}

))
= 0

is an ergodic invariant probability measure of the Markovian semigroup associated
to (3.1). The integrability conditions are shown to hold true in Lemma A.0.1 in the
Appendix.

Lemma 3.3.4. The top Lyapunov exponent of the RDS associated to (3.1) corre-
sponding to the invariant measure ρ (see Remark 3.3.3) satisfies

λtop ≤
1

Zσ

∫
Rn

(1− |x|2) exp

(
− 1

2σ2

(
|x|4 − 2 |x|2

))
dx,

where Zσ =
∫
Rn exp

(
− 1

2σ2

(
|x|4 − 2 |x|2

))
dx. For n = 1 even equality holds.

Proof. Step 1: It will be shown that for some ω ∈ Ω and x ∈M it holds that

λtop ≤ lim inf
m→∞

1

m

∫ m

0

(1− |ϕs(ω, x)|2) ds.
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By Theorem 3.3.1 (i), there exist an v ∈ Rd \ {0}, x ∈M and ω ∈ Ω such that

λtop = lim
m→∞

1

m
log |Dϕm(ω, x)v|.

Dϕt(ω, x) satisfies the equation

d

dt
Dϕt(ω, x) = Db(ϕt(ω, x))Dϕt(ω, x), Dϕ0(ω, x) = Id.

Using the estimation (A.1) in the appendix, it follows that

d

dt
|Dϕt(ω, x)v|2 = 2 〈Db(ϕt(ω, x))Dϕt(ω, x)v,Dϕt(ω, x)v〉

≤ 2
(
1− |ϕt(ω, x)|2

)
|Dϕt(ω, x)v|2.

By Gronwall’s inequality,

|Dϕt(ω, x)v| ≤ |v| exp

(∫ t

0

(
1− |ϕs(ω, x)|2

)
ds

)
.

Hence

λtop ≤ lim inf
m→∞

1

m

∫ m

0

(
1− |ϕs(ω, x)|2

)
ds.

Step 2: Let x ∈M and ω ∈ Ω. For n = 1 it will be shown that

λtop ≥ lim
m→∞

1

m

∫ m

0

(
1− |ϕs(ω, x)|2

)
ds.

In the case n = 1, Db(y) = (1− |y|2)Id− 2y⊗ y is a diagonal matrix for all y ∈M .
Moreover, ϕt(ω, x) ∈M and for any v ∈ Rd \ {0},

d

dt
Dϕt(ω, x)v = Db(ϕt(ω, x))Dϕt(ω, x)v, Dϕ0(ω, x)v = v.

Denote by (·)(i) the i-th component of a vector. Then for any v ∈ Rd \ {0},

(Dϕt(ω, x)v)(1) = v(1) exp

(∫ t

0

(
1− 3 |ϕs(ω, x)|2

)
ds

)
and

(Dϕt(ω, x)v)(i) = v(i) exp

(∫ t

0

(
1− |ϕs(ω, x)|2

)
ds

)
for i > 1. Choose v = (0, . . . , 0, 1)T ∈ Rd. Then
|Dϕt(ω, x)v| = exp

(∫ t
0
(1− |ϕs(ω, x)|2) ds

)
. Hence

λtop ≥ lim
m→∞

1

m
log |Dϕm(ω, x)v| = lim

m→∞

1

m

∫ m

0

(
1− |ϕs(ω, x)|2

)
ds.
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Step 3: The first and second step imply

λtop ≤ lim inf
m→∞

1

m

∫ m

0

(
1− |ϕs(ω, x)|2

)
ds.

for some ω ∈ Ω and x ∈ M and equality in the case n = 1. Since x ∈ M , it
holds that ϕs(ω, x) ∈M for all s ≥ 0. By the continuous-time ergodic theorem (see
Section 2 in [9]), it follows that

λtop ≤
∫
Rd

(
1− |x|2

)
dρ(x)

and equality in the case n = 1.

Theorem 3.3.5. Let λtop be the top Lyapunov exponent associated to (3.1). There
exists some σ∗ ∈

(
1
2
, 2
)
such that

(i) for n = 1 and σ < σ∗ it holds that λtop > 0.

(ii) for n = 1 and σ > σ∗ it holds that λtop < 0.

(iii) for n ≥ 2 it holds that λtop < 0.

Proof. Combining Lemma 3.3.4 and the estimates of the integral which can be found
in Lemma A.0.2 in the appendix, the statement follows.

Theorem 3.3.6. If the top Lyapunov exponent of the RDS ϕ associated to (3.1)
is negative, then there exists some x ∈ M and r > 0 such that ϕ is asymptotically
stable on B(x, r). In particular, this is the case for n ≥ 2 and for n = 1 with σ > σ∗

where σ∗ ∈
(

1
2
, 2
)
as in Theorem 3.3.5.

Proof. In the case of negative top Lyapunov exponent, the stable manifold theorem
(Theorem 3.3.1) implies that for every ε ∈ (λtop, 0) there exists a measurable map
β : Ω× Rd → R+ \ {0} and x ∈M such that

S(ω, x) :=
{
y ∈ Rd : |ϕm(ω, y)− ϕm(ω, x)| ≤ β(ω, x) eεm for all m ∈ N

}
is an open neighborhood of x P-a.s. Hence

P
(

lim
m→∞

diam (ϕtm(·, S(·, x))) = 0
)
> 0.

Lemma 3.3.2 implies the existence of some r > 0 such that ϕ is asymptotically stable
on B(x, r).

In the particular cases, Theorem 3.3.5 yields that λtop < 0.
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3.4 Synchronization

We prove synchronization for the RDS associated to (3.1) in case of negative top Lya-
punov exponent. Focusing on the setM :=

{
(x1, x2, . . . , xd) ∈ Rd : xi = 0 for i > n

}
,

we first show some similar properties to swift transitivity and contraction on large
sets. These will be used to prove that the attractor is in any small ball centered at
M with positive probability. Observe that these properties are even true for positive
top Lyapunov exponent. For negative top Lyapunov exponent, we use asymptotic
stability in such a small ball and apply Lemma 2.5 in [21] to conclude synchroniza-
tion.

Lemma 3.4.1. For all x, y ∈M and r > 0, there is a time t0 > 0 such that

P(ϕt0(·, B(x, r)) ⊂ B(y, 2r)) > 0.

Proof. Set t0 = ln 3
2
,

ψ(t) := x+
t

t0
(y − x)

for t ∈ [0, t0] and

ω̂0(t) :=
1

σ

(
ψ(t)− x−

∫ t

0

b(ψ(s)) ds

)
for t ∈ [0, t0]. Then, ψ(t) ∈ M and ω̂0(t) ∈ M for all t ∈ [0, t0]. Set ω0 to be the
first n components of ω̂0. Then ϕt(ω

0, x) = ψ(t) for all t ∈ [0, t0]. In particular,
ϕt0(ω

0, x) = y. By one-sided Lipschitz condition of b (Lemma 3.2.1), we have that

d

dt
|ϕt(ω, x′)− ϕt(ω, x)|2 = 2 〈b(ϕt(ω, x′))− b(ϕt(ω, x)), ϕt(ω, x

′)− ϕt(ω, x)〉

≤ 2|ϕt(ω, x′)− ϕt(ω, x)|2

for all x′ ∈ B(x, r), ω ∈ Ω and t ≥ 0. By Gronwall’s inequality, it follows that

|ϕt(ω, x′)− ϕt(ω, x)| ≤ |x′ − x| et ≤ r et

for all x′ ∈ B(x, r), ω ∈ Ω and t ≥ 0. Then for all x′ ∈ B(x, r) and ω ∈ Ω,

|ϕt0(ω, x′)− y| ≤ |ϕt0(ω, x′)− ϕt0(ω, x)|+ |ϕt0(ω, x)− ϕt0(ω0, x)|

≤ 3

2
r + |ϕt0(ω, x)− ϕt0(ω0, x)|.

The map ω 7→ ϕt0(ω, x) is continuous from C([0, t0];Rn) to Rd. Then there exists
an δ > 0 such that

P (ϕt0(·, B(x, r)) ⊂ B(y, 2r)) ≥ P
(
|ϕt0(·, x)− ϕt0(ω0, x)| ≤ r

2

)
≥ P

(
sup
s∈[0,t0]

|ω(s)− ω0(s)| ≤ δ

)
> 0.
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Lemma 3.4.2. For every R > 0 there is a ball B(x,R) with x ∈ M and a time
t0 > 0 such that

P
(
diam (ϕt0 (·, B(x,R))) ≤ R

4

)
> 0.

In particular, the RDS ϕ is contracting on large sets.

Proof. Let R > 0 and x := (2, 0, 0, . . . , 0)T ∈ Rd. Define

ω̂0(t) := −t b(x)

σ

for t ≥ 0. Set ω0 to be the first n components of ω̂0. Then ϕt(ω
0, x) = x for all

t ≥ 0. By Lemma 3.2.1, it holds that

〈b(x)− b(y), x− y〉 ≤ −2|x− y|2

for all y ∈ Rd. This inequality and ϕt(ω0, x) = x imply

d

dt
|ϕt(ω0, x)− ϕt(ω0, y)|2 = 2

〈
b(ϕt(ω

0, x))− b(ϕt(ω0, y)), ϕt(ω
0, x)− ϕt(ω0, y)

〉
≤ −4

∣∣ϕt(ω0, x)− ϕt(ω0, y)
∣∣2 .

for y ∈ B(x,R) and t ≥ 0. Using Gronwall’s inequality, it follows that

|x− ϕt(ω0, y)| ≤ |x− y| e−2t ≤ Re−2t

for all y ∈ B(x,R) and t ≥ 0. Choose t0 ≥ 0 such that e−2t0 ≤ 1
16
. Then for all

y ∈ B(x,R) and ω ∈ Ω,

|x− ϕt0(ω, y)| ≤
∣∣x− ϕt0(ω0, y)

∣∣+
∣∣ϕt0(ω0, y)− ϕt0(ω, y)

∣∣
≤ R

16
+
∣∣ϕt0(ω0, y)− ϕt0(ω, y)

∣∣ .
The map ω 7→ ϕt0(ω, ·) is continuous from C([0, t0];Rn) to C(B(x,R);Rd). Then
there exists an δ > 0 such that

P
(
ϕt0(·, B(x,R)) ⊂ B

(
x,
R

8

))
≥ P

(
sup

y∈B(x,R)

|ϕt0(ω0, y)− ϕt0(ω, y)| ≤ R

16

)

≥ P

(
sup
s∈[0,t0]

|ω(s)− ω0(s)| ≤ δ

)
> 0

and thus

P
(
diam (ϕt0(·, B(x,R))) ≤ R

4

)
> 0.
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Using these both lemmata, we can show that the weak attractor A is contained
in a small ball.

Proposition 3.4.3. For each ε > 0 there is an x ∈M such that

P (A ⊂ B(x, ε)) > 0.

Proof. Step 1: It will be shown that

P (A ⊂ B(x0, r0)) > 0

for some r0 > 0, x0 ∈M implies

P
(
A ⊂ B

(
x1,

2

3
r0

))
> 0

for some x1 ∈M .
Applying Lemma 3.4.2 with R = 2r0, there are y1 ∈M and t1 > 0 such that

P
(
diam (ϕt1(·, B(y1, 2r0))) ≤ r0

2

)
> 0.

Since P is invariant under θt0 for every t0 > 0, we have

P
(
diam (ϕt1(θt0 ·, B(y1, 2r0))) ≤ r0

2

)
> 0.

Applying Lemma 3.4.1, there exists an t0 > 0 such that

P (ϕt0(·, B(x0, r0)) ⊂ B(y1, 2r0)) > 0.

Moreover,

{ϕt0(·, B(x0, r0)) ⊂ B(y1, 2r0)} ∈ F0,t0

and {
diam (ϕt1(θt0 ·, B(y1, 2r0))) ≤ r0

2

}
∈ Ft0,t0+t1

since
{
diam (ϕt1(·, B(y1, 2r0))) ≤ r0

2

}
∈ F0,t1 and θ−1

t0 F0,t1 = Ft0,t0+t1 . Independence
of F0,t0 and Ft0,t0+t1 implies

P
(
diam (ϕt1+t0(·, B(x0, r0))) ≤ r0

2

)
= P

(
diam (ϕt1(θt0 ·, ϕt0(·, B(x0, r0)))) ≤ r0

2

)
≥ P (ϕt0(·, B(x0, r0)) ⊂ B(y1, 2r0)) · P

(
diam (ϕt1(θt0 ·, B(y1, 2r0))) ≤ r0

2

)
> 0.

Hence

P
(
ϕt1+t0(·, B(x0, r0)) ⊂ B̄

(
ϕt1+t0(·, x0),

r0

2

))
> 0.
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By separability of Rn, there exists a dense subset {zm}m∈N ofM . Since ϕt1+t0(ω, x0) ∈
M , it follows that{

ω ∈ Ω : ϕt1+t0(·, B(x0, r0)) ⊂ B̄
(
ϕt1+t0(·, x0),

r0

2

)}
⊂
{
ω ∈ Ω : ϕt1+t0(·, B(x0, r0)) ⊂ B

(
zm,

2

3
r0

)
for some m ∈ N

}
.

By σ-additivity of P, there exits an x1 ∈M such that

P
(
ϕt1+t0(·, B(x0, r0)) ⊂ B

(
x1,

2

3
r0

))
> 0.

It holds that
{
ϕt1+t0(·, B(x0, r0)) ⊂ B

(
x1,

2
3
r0

)}
∈ F0,t1+t0 and A is F0-measurable.

By independence of F0 and F0,t1+t0 and by the assumption of the first step, it follows
that

P
(
ϕt1+t0(·, A) ⊂ B

(
x1,

2

3
r0

))
≥ P (A ⊂ B(x0, r0)) · P

(
ϕt1+t0(·, B(x0, r0)) ⊂ B

(
x1,

2

3
r0

))
> 0.

The ϕ-invariance of A and θt1+t0-invariance of P imply

P
(
A ⊂ B

(
x1,

2

3
r0

))
> 0.

Step 2: Since the attractor A is a random compact set, for each ω ∈ Ω the set A(ω)
is bounded. Using σ-additivity of P, it follows that there exists some r0 > 0 such
that

P (A ⊂ B(0, r0)) > 0.

Applying the first step iteratively,

P (A ⊂ B(x, ε)) > 0

for some x ∈M .

Corollary 3.4.4. For each x ∈M and ε > 0,

P (A ⊂ B(x, ε)) > 0.

Proof. By Proposition 3.4.3 there is an x0 ∈ M such that P
(
A ⊂ B

(
x0,

ε
2

))
> 0.

By Lemma 3.4.1 with starting ball B
(
x0,

ε
2

)
and arrival point x, there is a time

t > 0 such that

P
(
ϕt

(
·, B

(
x0,

ε

2

))
⊂ B (x, ε)

)
> 0.
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F0-measurability of A, F0,t-measurability of ϕt and independence of F0 and F0,t

imply

P (ϕt(·, A) ⊂ B (x, ε)) ≥ P
(
A ⊂ B

(
x0,

ε

2

))
· P
(
ϕt

(
·, B

(
x0,

ε

2

))
⊂ B (x, ε)

)
> 0.

By ϕ-invariance of A and θt-invariance of P, it follows that

P (A ⊂ B (x, ε)) > 0.

Lemma 3.4.5. Let ϕ be asymptotically stable on U with P(A ⊂ U) > 0. Then ϕ
synchronizes.

Proof. The attractor A is an F0-measurable, ϕ-invariant, random closed set. By
Lemma 2.5 in [21], A is a singleton.

Theorem 3.4.6. If the top Lyapunov exponent of the RDS ϕ associated to (3.1) is
negative, then ϕ synchronizes. In particular, this is the case for n ≥ 2 and for n = 1
with σ > σ∗ where σ∗ ∈

(
1
2
, 2
)
as in Theorem 3.3.5.

Proof. In case of negative top Lyapunov exponent, Theorem 3.3.6 implies the exis-
tence of some x ∈M and r > 0 such that ϕ is asymptotically stable on B(x, r). By
Corollary 3.4.4,

P (A ⊂ B(x, r)) > 0.

Applying Lemma 3.4.5, it follows that synchronization occurs.

3.5 Lack of synchronization

We show that a positive top Lyapunov exponent implies lack of (weak) synchroniza-
tion for the RDS associated to (3.1). In order to prove this, we first need bounds on
the distance of two trajectories.

Lemma 3.5.1. For x, y ∈ Rd, ω ∈ Ω and t ≥ 0.5 it holds that

|ϕt(ω, x)− ϕt(ω, y)| ≤ 4.

Proof. Step 1: Assume that 2k+2 ≤ |x− y| ≤ 2k+3 for some k ≥ 0. Define

τk(ω) := inf
{
t ≥ 0 : |ϕt(ω, x)− ϕt(ω, y)| ≤ 2k+2

}
.

Let t ≤ τk(ω). Then, |ϕt(ω, x)| ≥ 2k+1 or |ϕt(ω, y)| ≥ 2k+1. Using Lemma 3.2.1, it
follows that

d

dt
|ϕt(ω, x)− ϕt(ω, y)|2

= 2 〈b(ϕt(ω, x))− b(ϕt(ω, y)), ϕt(ω, x)− ϕt(ω, y)〉

≤ 2

(
1− 3

4
max

{
|ϕt(ω, x)|2 , |ϕt(ω, y)|2

})
|ϕt(ω, x)− ϕt(ω, y)|2

≤ 2

(
1− 3

4

(
2k+1

)2
)
|ϕt(ω, x)− ϕt(ω, y)|2 .
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By Gronwall’s inequality,

|ϕt(ω, x)− ϕt(ω, y)| ≤ 2k+3 e(1−3·4k)t.

Then for t = ln 2
3·4k−1

, it follows that |ϕt(ω, x)− ϕt(ω, y)| ≤ 2k+2. Hence

τk(ω) ≤ ln 2

(3 · 4k − 1)
≤ ln 2

2 · 4k
.

Step 2: Define

τ(ω) := inf {t ≥ 0 : |ϕt(ω, x)− ϕt(ω, y)| ≤ 4} .

Using the first step iteratively, it follows that

τ(ω) ≤
∞∑
k=0

ln 2

2 · 4k
=

2

3
ln 2 <

1

2
.

Step 3: It remains to show that if

|ϕr(ω, x)− ϕr(ω, y)| ≤ 4

for some r ≥ 0, then

|ϕs(ω, x)− ϕs(ω, y)| ≤ 4

for all s ≥ r. Assume there is a time s > r such that

|ϕs(ω, x)− ϕs(ω, y)| > 4.

Define

τ̂(ω) = sup {t < s : |ϕt(ω, x)− ϕt(ω, y)| ≤ 4} .

Then |ϕt(ω, x)− ϕt(ω, y)| ≥ 4 for all t ∈ [τ̂(ω), s]. Hence, |ϕt(ω, x)| ≥ 2 or
|ϕt(ω, y)| ≥ 2 for any t ∈ [τ̂(ω), s]. Using Lemma 3.2.1, it follows that

d

dt
|ϕt(ω, x)− ϕt(ω, y)|2

= 2 〈b(ϕt(ω, x))− b(ϕt(ω, y)), ϕt(ω, x)− ϕt(ω, y)〉

≤ 2

(
1− 3

4
max

{
|ϕt(ω, x)|2 , |ϕt(ω, y)|2

})
|ϕt(ω, x)− ϕt(ω, y)|2

≤ −4 |ϕt(ω, x)− ϕt(ω, y)|2 .

for all t ∈ [τ̂(ω), s]. By Gronwall’s inequality,

|ϕs(ω, x)− ϕs(ω, y)| ≤
∣∣ϕτ̂(ω)(ω, x)− ϕτ̂(ω)(ω, y)

∣∣ e−2(s−τ̂(ω))

= 4 e−2(s−τ̂(ω)) ≤ 4

which is a contradiction to the definition of s.

31



CHAPTER 3. NOISE DEPENDENT SYNCHRONIZATION

Theorem 3.5.2. If the top Lyapunov exponent of the RDS ϕ associated to (3.1) is
positive, then there is no synchronization of ϕ, not even weak synchronization. In
particular, this is the case for n = 1 with σ < σ∗ where σ∗ ∈

(
1
2
, 2
)
as in Theorem

3.3.5.

Proof. Let x := (0, 0, . . . , 0, 1)T ∈ Rd and denote by (·)(d) the d-th component of a
vector. Looking at the dynamics of ϕt(ω, x), one can observe that (ϕt(ω, x))(d) ≤ 1
for all t ≥ 0 and ω ∈ Ω. By Itô’s formula,

ln (ϕt(ω, x))(d) = ln (ϕ0(ω, x))(d) +

∫ t

0

(
1− |ϕs(ω, x)|2

)
ds

for all t ≥ 0 and almost all ω ∈ Ω. Hence∫ t

0

(
1− |ϕs(ω, x)|2

)
ds ≤ 0

for all t ≥ 0 and almost all ω ∈ Ω. Assume there is weak synchronization and
denote by a(·) the weak point attractor which is a singleton P-almost surely. Since
the RDS associated to the non-degenerate SDE does synchronize, a(·) is a single
random point in M . Then∫ t

0

(
1− |a(θsω)|2

)
ds−

∫ t

0

(
|ϕs(ω, x)|2 − |a(θsω)|2

)
ds ≤ 0

for all t ≥ 0 and almost all ω ∈ Ω. By ϕ invariance of a(·) and a(ω) ∈ M , the
distribution of a(·) can be described by the invariant measure ρ (see Remark 3.3.3).
Using Fubini and the distribution of a(·), it follows that

E
[

1

t

∫ t

0

(
1− |a(θsω)|2

)
ds

]
=

1

t

∫ t

0

E
[
1− |a(θsω)|2

]
ds

=
1

Zσ

∫
R

(
1− y2

)
exp

(
− 1

2σ2

(
y4 − 2y2

))
dy

for all t ≥ 0. By Lemma 3.3.4 and Theorem 3.3.5, this integral is equal to λtop and
positive. Therefore,

E
[

1

t

∫ t

0

(
|ϕs(·, x)|2 − |a(θs·)|2

)
ds

]
≥ λtop > 0 (3.3)

for all t ≥ 0. By weak synchronization, ϕs(θ−s·, x) has to converge to a(·) as s→∞
in probability. Using the continuous mapping theorem, it follows that |ϕs(θ−s·, x)|2
converges to |a(·)|2 as s→∞ in probability. θs invariance of P implies that

|ϕs(·, x)|2 − |a(θs·)|2 → 0 as s→∞

in probability.
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By Lemma 3.5.1, it follows that∣∣|ϕs (·, x)|2 − |a (θs·)|2
∣∣ =

∣∣ |ϕs (·, x)| − |a (θs·)|
∣∣ ∣∣ |ϕs (·, x)|+ |a (θs·)|

∣∣
≤ |ϕs (·, x)− a (θs·)|

(
|ϕs (·, x)− a (θs·)|+ 2 |a (θs·)|

)
≤ 16 + 8 |a(θs·)|

for s ≥ ln 0.5. Then

E
[∣∣ |ϕs(·, x)|2 − |a(θs·)|2

∣∣1∣∣|ϕs(·,x)|2−|a(θs·)|2
∣∣≥K
]

≤ E
[
(16 + 8 |a(θs·)|) 1|a(θs·)|≥K−16

8

]
=

1

Zσ

∫
R
(16 + 8|y|)1|y|≥K−16

8
exp

(
− 1

2σ2

(
y4 − 2y2

))
dy

for s ≥ ln 0.5. By the rapidly decaying property of exp
(
− 1

2σ2 (y4 − 2y2)
)
, this

integral converges to 0 as K →∞. Hence
(
|ϕs(·, x)|2 − |a(θs·)|2

)
s≥ln 0.5

is uniformly
integrable. Therefore, |ϕs(·, x)|2 − |a(θs·)|2 converges to 0 as s → ∞ in L1. By L1

convergence, there exists some t0 ≥ 0 such that

E
[
|ϕs(·, x)|2 − |a(θs·)|2

]
≤ λtop

2

for all s ≥ t0. Using Fubini, it follows that

E
[

1

t

∫ t

0

(
|ϕs(·, x)|2 − |a(θs·)|2

)
ds

]
≤ 1

t
E
[∫ t0

0

(
|ϕs(·, x)|2 − |a(θs·)|2

)
ds

]
+
t− t0
t

λtop
2

for t > t0. For large t this term will get smaller than λtop which is a contradiction
to (3.3).
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Chapter 4

Synchronization, Lyapunov
exponents and stable manifolds for
random dynamical systems

4.1 Introduction

It is reasonable to conjecture that synchronization and negativity (or non-positivity)
of the top Lyapunov exponent of the system should be closely related since both
mean that the system is contracting in some sense. The aim of this chapter is to
investigate this relation for separable Hilbert spaces.

A positive result of that kind in the finite dimensional case is [21, Lemma 3.1]
which states that (under an ergodicity assumption) negativity of the top Lyapunov
exponent plus an integrability assumption on the derivative in a neighborhood of the
support of the invariant measure guarantees that for almost every x in the support
of the invariant measure, there exists a random neighborhood of x which forms a
local stable manifold. In particular, the system contracts locally. In this chapter,
we formulate a corresponding result for separable Hilbert spaces. Like [21, Lemma
3.1], the proof is an easy consequence of results by Ruelle [37].

Example 4.3.1 in Section 4.3 shows that the result becomes untrue if the inte-
grability assumption on the derivative is dropped. In Example 4.3.1 we investigate
a simple one-dimensional random dynamical system generated by independent and
identically distributed strictly monotone and bijective maps from the real line to
itself which fix the point 0. The Lyapunov exponent is strictly negative but never-
theless the point 0 is not even asymptotically locally stable. In fact all trajectories
starting outside 0 go to ∞ or −∞ (depending on the sign of the initial condition).
In particular, there is no synchronization. The reason for this behaviour is that
the random function is very steep outside a very small (random) neighborhood of 0
(even though the derivative at 0 is 1/2 almost surely).

We also consider the opposite behaviour. Proposition 4.2.3 requires that the
unstable manifold U of a random fixed point is non-trivial and states that under
this condition, synchronization cannot hold.

Example 4.3.2 shows that replacing the non-triviality of U by positivity of the
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top Lyapunov exponent does not imply a lack of synchronization. In fact, Example
4.3.2 is just the time reversal of Example 4.3.1.

4.2 Top Lyapunov exponent and synchronization

In this section we demonstrate some relations between the sign of the top Lyapunov
exponent, stable/unstable submanifolds and synchronization of a random dynamical
system ϕ.

Let (H, ‖ · ‖) be a separable Hilbert space. Denote by D the derivative in the
state space.

Proposition 4.2.1. Let ϕ be a discrete or continuous time random dynamical
system with state space H and assume that ϕ1(ω, ·) ∈ C1,δ for some δ ∈ (0, 1).
By C1,δ we denote the space of differentiable functions where the first derivative is
δ-Hölder continuous. Assume further that ϕ has an invariant measure ρ such that∫

Ω×H
log+ ‖Dϕ1(ω, x)‖ dρ(ω, x) <∞.

and ∫
Ω×H

log+
(
‖ϕ1(ω, ·+ x)− ϕ1(ω, x)‖C1,δ(B̄(0,1))

)
dρ(ω, x) <∞. (4.1)

Then, the (discrete-time) top Lyapunov exponent

λ(ω, x) = lim
n→∞

1

n
log ‖Dϕn(ω, x)‖

is defined for ρ-almost all (ω, x) ∈ Ω × H. Assume that there exists some µ < 0
such that λ(ω, x) < µ almost everywhere. Then, there exist measurable functions
0 < α(ω, x) < β(ω, x) < 1 such that for ρ-almost all (ω, x)

S(ω, x) =
{
y ∈ B̄(x, α(ω, x)) : ‖ϕn(ω, y)− ϕn(ω, x)‖ ≤ β(ω, x)eµn for all n ≥ 0

}
is a measurable neighborhood of x. We refer to S(ω, x) as the stable manifold.

Proof. By the same construction as in [21, Lemma 3.1], define M := Ω ×H, F̃ :=
F⊗B(H) and f : M 7→M given by f(m) := Θ1(ω, x) for m = (ω, x) ∈M . Further,
set

Fm(y) := ϕ1(ω, y + x)− ϕ1(ω, x) for m = (ω, x) ∈M

and apply [37, Theorem 5.1] with Q = 0. Observe that the set Dv in the proof
of [37, Theorem 5.1] is – in our special case – both open and closed in the ball
B̄(0, α(ω)) and therefore B̄(0, α(ω)) ⊂ Dv. This implies B̄(x, α(ω, x)) ⊂ S(ω, x)
almost everywhere and therefore B̄(x, α(ω, x)) = S(ω, x) almost surely.
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Corollary 4.2.2. Under the assumptions of the previous proposition the random
dynamical system ϕ is asymptotically stable, i.e. there exists a deterministic non-
empty, open set U in H such that

P
(

lim
n→∞

diam (ϕn(·, U)) = 0
)
> 0.

Proof. Existence of a neighborhood B(ω, α(ω, x)) as in Proposition 4.2.1 implies
local asymptotic stability by [21, Lemma 3.3] (the latter Lemma is formulated and
proved only in the finite-dimensional case but the proof in our set-up is almost
identical).

If we further assume that ϕ is a white-noise random dynamical system, ϕ has a
weak attractor, satisfies an irreducibility condition and contracts on large sets, then
synchronization follows, see [21, Theorem 2.14] for exact conditions.

Random attractors with positive top Lyapunov exponent are more difficult to
characterize.

Proposition 4.2.3. Assume there exist a ϕ-invariant random point A(ω), some
µ > 0 and some measurable functions 0 < α(ω) < β(ω) < 1 such that

U(ω) =
{
x0 ∈ B̄(A(ω), α(ω)) : ∃(xn)n∈N with ϕ(θ−nω, xn) = xn−1

and ‖xn − A(θ−nω)‖ ≤ β(ω)e−µn for all n ≥ 0
}

(4.2)

is not trivial (i.e. consists of more than one point) almost surely. Further assume
there exists some x0(ω) ∈ U(ω) \A(ω) such that xn(ω) are random points for n ≥ 0
where xn(ω) are chosen as in (4.2). Then, the random dynamical system ϕ does not
synchronize.

Proof. Suppose ϕ does synchronize. Then, there exists a weak attractor Ã being a
single random point. By the same arguments as in [21, Lemma 1.3] (stating unique-
ness of a weak attractor), A and Ã have to agree almost surely. Let (xn(ω))n∈N0 be
as in the proposition. There exists some q > 0 such that

P (‖A(ω)− x0(ω)‖ > q) >
3

4
.

By [13, Proposition 2.15], there exists some compact setK such that P (A(ω) ⊂ K) >
3/4. Define the index set I(ω) = {n ∈ N0 : A(θ−nω) ∈ K}. Then,

P (n ∈ I(ω)) = P (A(θ−nω) ∈ K) >
3

4

for every n ∈ N0 and

lim
m→∞

(
inf
y∈K
‖xm(ω)− y‖1{m∈I(ω)}

)
= 0

Therefore, the set
K̂(ω) := K ∪ {xm(ω)}m∈I(ω)
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is a random compact set and hence, by [13, Proposition 2.15], there exists a deter-
ministic compact set K̃ such that P(K̂(ω) ⊂ K̃) ≥ 3/4.

Combining these estimates, it follows for each n ∈ N0 that

P

(
sup
y∈K̃
‖ϕn(θ−nω, y)− A(ω)‖ > q

)
≥ P

(
‖ϕn(θ−nω, xn(ω))− A(ω)‖ > q, xn(ω) ∈ K̃

)
≥ 3

4
− P

(
xn /∈ K̃

)
≥ 3

4
− P

(
K̂(ω) * K̃

)
− P

(
xn /∈ K̂(ω)

)
≥ 3

4
− 1

4
− 1

4
=

1

4
.

Therefore, there is no synchronization.

Note that the set U(ω) is typically the unstable manifold with respect to the
invariant measure ρ(dω, dx) = δA(ω)(dx)P(dω).

Remark 4.2.4. For a finite dimensional space H, the assumption of xn(ω) to be
random points can be replaced by measurablity of the unstable manifold U(ω). This
condition is a consequence of the stable/unstable manifold theorem [37, Theorem
5.1 and 6.1] due to measurability of ϕ. Measurability of U(ω) is sufficient in this
case since the selection theorem [6, Theorem III.9, p.67] shows that x0(ω) can be
chosen to be measurable and K̃ can be replaced by {y ∈ H : infz∈K ‖y − z‖ ≤ 1}.

Remark 4.2.5. In case of a time-invertible random dynamical system, the unstable
manifold U(ω) can be obtained by choosing a stable manifold of the time-reversed
random dynamical system.

More generally, the unstable manifold can be obtained by using [37, Theorem
6.1]. Therefore, let A(ω) be an ϕ-invariant random point and define the cocycle
F n
ω (y) = ϕn(ω, y + A(ω)) − A(θnω). Under similar assumptions as in Proposition

4.2.1 with ρ(dω, dx) = δA(ω)(dx)P(dω) but supposing a positive (discrete-time) top
Lyapunov exponent

λ(ω) = lim
n→∞

1

n
log ‖Dϕn(ω,A(ω))‖

such that there exists µ > 0 with λ(ω) > µ almost everywhere, we can apply the
unstable manifold theorem [37, Theorem 6.1]. This theorem shows that there exist
measurable functions 0 < α(ω) < β(ω) such that U(ω) as in (4.2) is a measurable
submanifold of B̄(A(ω), α(ω)) almost surely. However, this does not exclude the
possibility that U(ω) is a single point, see Example 4.3.2.

4.3 Examples

We provide two examples of independent iterated functions on R. Each of them
generates a random dynamical system. The functions will be almost surely strictly
increasing, continuous and onto and they will fix 0. In the first example, all trajec-
tories which do not start at 0 converge to∞ or −∞ almost surely (depending on the
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sign of the initial condition) in spite of the fact the Lyapunov exponent associated to
the equilibrium 0 is strictly negative. In particular, there is no synchronization. The
second example just consists of an iteration of the inverses of the functions in the
first example (in particular it is also order preserving). In this case the Lyapunov
exponent is the negative of the one in the first example and hence strictly positive.
From the results about the first example, we immediately obtain that the second
example exhibits synchronization, i.e. every compact subset of R contracts to 0 in
probability as n → ∞. Since the convergence in the first example is not only in
probability but even almost sure we obtain, that in the second example {0} is not
only a weak attractor but even a pullback attractor (see [14, Proposition 4.6]).

We will comment on the relation of these examples to the results in the previous
section after presenting the examples.

Example 4.3.1. Let (ξn)n∈N > 0 be independent identically distributed real-valued
random variables such that P

(
ξ1 ≤ 2−k

)
= 1/(k−1) for all k ≥ 2 and k ∈ N. Define

the function g : R× (0,∞)→ R by

g(z, ξ) =


z/2, |z| ≤ 2ξ

z/ξ + ξ − 2, z > 2ξ

z/ξ − ξ + 2, z < −2ξ .

Obviously, 0 is a fixed point of g(·, ξ) for each ξ > 0 and hence ρ := P ⊗ δ0 is an
invariant measure of the associated discrete time random dynamical system ϕ given
by ϕn(ω, z) = g (ϕn−1(ω, z), ξn) for z ∈ R and n ∈ N with state space H = R.
Clearly, the Lyapunov exponent associated to ρ is log(1/2) < 0. We write Zn(ω) :=
ϕn(ω, z) whenever the initial condition Z0 = z is clear from the context. We will
show that |Zn| converges to infinity P-almost surely whenever Z0 6= 0. To see this,
observe that the following properties hold for every m ∈ N:

• |Zm−1| ≥ 1 implies |Zm| ≥ 4|Zm−1| − 2 ≥ 2|Zm−1|,

• |Zm| < 1 implies |Zm−1| ≤ 4ξm.

Assume that |Z0| > 2−k for some k ∈ N. Then, |Zm| > 2−k−m for all m ∈ N and
therefore

P (|Zn| < 1) ≤ P
(
ξm > 2−k−m−1 for all 1 ≤ m ≤ n

)
=

n∏
m=1

k +m− 1

k +m
=

k

k + n
n→∞−−−−→ 0 .

Using the first of the two observations above, we obtain |Zn| → ∞ almost surely
whenever Z0 6= 0.

Example 4.3.2. Define the sequence (ξn)n∈N > 0 as above and define f : R ×
(0,∞)→ R by

f(·, ξ) = g−1(·, ξ)
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for each fixed ξ > 0. As mentioned at the beginning of the section, the associated
random dynamical system exhibits synchronization in spite of the fact that the top
Lyapunov exponenent associated to its invariant measure ρ = P ⊗ δ0 is strictly
positive.

Remark 4.3.3. In none of the two examples above the random dynamical system
is continuously differentiable in the initial state z. This can easily be mended. Just
replace the function g by a function g̃ which is smooth and strictly increasing in its
first argument such that |g̃(x)| ≥ |g(x)| for all x ∈ R and such that g̃(x) = g(x)
whenever |x| /∈ [ξ, 3ξ]. Then, the absolute values of the modified trajectories con-
verge to∞ even faster than for g and in Example 4.3.2 the speed of synchronization
is even faster after the modification. Note that the change from g to g̃ does not
change the Lyapunov exponents.

Let us comment on the relation of the examples to the results in the previous
section. Obviously, the random dynamical system ϕ in Example 4.3.1 does not only
fail to synchronize but even fails to be asymptotically stable as defined in Corollary
4.2.2 (note that in this case asymptotic stability is necessary but not sufficient for
synchronization by [21]). Therefore, the assumptions of Proposition 4.2.1 cannot
hold for this example. Indeed, property (4.1) fails to hold since

E
[
log+ ‖ϕ1‖C1([−1,1])

]
≥ E

[
log+ 1

ξ1

]
=∞ .

The first integrability assumption in Proposition 4.2.1 and negativity of the Lya-
punov exponent both hold in Example 4.3.1 showing that (4.1) cannot be dropped
in Proposition 4.2.1.

Actually, the stable manifold of Example 4.3.1 is even {0}. Since the stable
manifold of Example 4.3.1 and the unstable manifold of Example 4.3.2 coincide,
Example 4.3.2 does not satisfy the assumptions of Proposition 4.2.3. In particular,
positivity of the top Lyapunov exponent implies neither non-triviality of the unstable
manifold nor lack of synchronization.
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Chapter 5

On the approaching time towards the
attractor

5.1 Introduction

We are interested in estimating the time a point or a set, respectively, requires
to approach the attractor. In particular, we want to consider systems that are
stabilized by noise. Here, the random attractor of the random system is a single
random point while the attractor in absence of noise is not. We can anticipate that
the time required for a point or set, respectively, to approach the attractor goes to
infinity as the noise, which stabilizes the system, gets small. Our aim is to estimate
these times and provide the rates at which they tend to infinity.

We consider radially symmetric gradient type stochastic differential equations
on Rd. In the absence of noise, any point except zero should converge to a stable
sphere. The exact assumptions on the SDE can be found in Section 5.2.

We prove that the time a set under the dynamics of the SDE requires to approach
the attractor increases exponentially as the noise gets small using large deviation
techniques in Section 5.3. Moreover, we show that the time a point requires to
approach the attractor increases merely linearly as the noise gets small in Section
5.4. In order to show this, we accelerate the process and compare the accelerated
process to a process on the stable sphere that is known to synchronize weakly.

This significant difference is due to the fact that a point can approach the at-
tractor moving to the stable sphere and then along the sphere while a set can just
approach the attractor if a point of the stable sphere moves close to zero.

5.2 Potential of the SDE

We consider radially symmetric gradient type stochastic differential equations

dXε
t = −∇U(Xε

t ) dt+
√
ε dWt on Rd (5.1)

where d ≥ 2, ε > 0, Wt is a d-dimensional Brownian motion and U(x) = u(|x|2) for
all x ∈ Rd and some twice differentiable convex function u : [0,∞) → R attaining
its unique minimum in (0,∞).
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We assume that −∇U satisfies a one-sided-Lipschitz condition, i.e. there exists
some C > 0 such that

〈x− y,−∇U(x) +∇U(y)〉 ≤ C|x− y|2

for all x, y ∈ Rd. Then, the SDE (5.1) has a unique solution. We denote by
Xε : [0,∞)×Ω×Rd → Rd the solution of (5.1). Moreover, the SDE (5.1) generates
an RDS (Ω,F ,P, θ,Xε) with respect to the canonical setup and this RDS has a
pullback attractor, see [19].

We say that the SDE (5.1) is strongly contracting if there exist r, t > 0 such that
|xt(y)| ≤ r for all y ∈ Rd where xt(y) is the solution of the deterministic differential
equation started in y. Therefore, the SDE (5.1) is strongly contracting if and only
if
∫∞
R
|∇U(x)|−1dx <∞ for some R > 0.

Let R∗ ∈ (0,∞) be the point where u attains its minimum, i.e. u(R∗) < u(x)
for any x 6= R∗. We restrict the proofs in the following sections to the case R∗ = 1.
However, all results are extendable to general R∗ ∈ (0,∞) since Xε

t /
√
R∗ is of the

postulated form

dXε
t /
√
R∗ = −∇Ũ(Xε

t /
√
R∗) dt+

√
ε/R∗ dWt on Rd

where Ũ(x) = u(R∗|x|2)/R∗ for all x ∈ Rd.

In the absence of noise, the solution of the differential equation

dxt = −∇U(xt) dt on Rd (5.2)

has a stable sphere, meaning that any point on this sphere is a fixed point and any
point except 0 converges towards the sphere under the dynamics of (5.2). The point
0 is also a fixed point. In terms of attractors this means that the point attractor is
the union of 0 and the stable sphere while the set attractor is the closed ball of the
same radius as the stable sphere centered at 0.

An interesting phenomenon occurs if one adds noise as in (5.1). In [21] it was
shown that under some general conditions on U , the attractor of (5.1) collapses to
a single random point.

In the one-dimenensional case, d = 1, one can estimate the time a point or set
requires to approach the attractor computing the time a process started in a point
requires to exit a domain using the Freidlin-Wentzel theory (see [23, Chapter 2] or
[17, Chapter 5]) or solving the Poisson problem (see [27, Section 5.5]).

We do not require the RDS to synchronize (weakly) in order to get lower and
upper bounds on the time required to approach the attractor. However, we differ
between the smallest and largest distance to the attractor. Both quantities coincide
if the RDS synchronize (weakly).

The paper [21] provides general conditions for the RDS associated to (5.1) to syn-
chronize (weakly). If the SDE (5.1) additionally satisfies u ∈ C3

loc,
log+ |x| exp(−2u(|x|2)/ε) ∈ L1(Rd) and |u′′′(x)| ≤ C(|x|m + 1) for some m ∈ N,
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C ≥ 0 and where u′′′ is the third derivative of u, then the associated RDS synchro-
nizes by [21]. The assumption log+ |x| exp(−2u(|x|2)/ε) ∈ L1(Rd) is in particular
satisfied for a strongly contracting SDE (5.1).

Obviously, synchronization implies weak synchronization. It is left as an open
problem in [21] whether any RDS associated to SDE (5.1) satisfying
log+ |x| exp(−2u(|x|2)/ε) ∈ L1(Rd) synchronizes weakly.

5.3 Time required for a set to approach the attrac-
tor

5.3.1 Large deviation principle

We use the large deviation principle (LDP) to describe the behavior of Xε
t for small

ε > 0. We aim to give an estimate on the time a set needs to approach the weak
attractor. Observe that by [19, Theorem 3.1] there exists a weak attractor of the
RDS associated to (5.1) and that the weak attractor is P-almost surely unique by
[21, Lemma 1.3]. We denote by AX,ε the weak attractor.

Let µεT be the probability measure induced by
√
εWt on C0([0, T ]), the space

of all continuous functions φ : [0, T ] → Rd such that φ(0) = 0 equipped with the
supremum norm topology. By Schilder’s theorem µεT satisfies an LDP with good
rate function

ÎT (g) =

{
1
2

∫ T
0
|ġ(t)|2 dt, g ∈

{
t 7→

∫ t
0
f(s) ds : f ∈ L2([0, T ])

}
∞, otherwise

.

for g ∈ C0([0, T ]). The deterministic map FT : C0([0, T ]) → C([0, T ] × Rd,Rd) is
defined by f = FT (g), where f is the semi-flow associated to

f(t) = f(0) +

∫ t

0

−∇U(f(s)) ds+ g(t), t ∈ [0, T ]. (5.3)

The LDP associated to the semi-flow Xε
t is therefore a direct application of the

contraction principle with respect to the continuous map FT . Therefore, Xε
t satisfies

the LDP in C([0, T ]× Rd,Rd) with good rate function

IT (φ) = inf
{
ÎT (g) : g ∈ C0([0, T ]) and φ = FT (g)

}
.

for φ ∈ C([0, T ]× Rd,Rd). Define the stopping times

τ ε1,δ := inf {t ≥ 0 : |Xε
t (x)−Xε

t (y)| ≤ δ for all x, y ∈ S1} ,

τ ε2,δ,M := inf

{
t ≥ 0 : sup

a∈AX,ε(θt·)
|Xε

t (x)− a| ≤ δ for all x ∈M

}
τ ε3,δ := inf

{
t ≥ 0 : |Xε

t (x)−Xε
t (y)| ≤ δ for all x, y ∈ Rd

}
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for δ > 0 and a set M ⊂ Rd. Here, τ ε2,δ,M describes the time the set M needs to
approach the attractor AX,ε. Observe that τ ε1,2δ ≤ τ ε2,δ,M ≤ τ ε3,δ for any δ > 0 and
S1 ⊂M ⊂ Rd.

In the next subsection we use the LDP to show a lower bound for τ ε1,δ and an
upper bound for τ ε3,δ. We then conclude this section combining these estimates and
showing that τ ε1,δ, τ ε2,δ,M and τ ε3,δ are roughly of order exp(V/ε) for some V > 0.

5.3.2 Lower bound for τ ε1,δ
In this subsection we show a lower bound for τ ε1,δ. Using the gradient type form of
the SDE (5.1), we provide an upper bound for the probability that this stopping
time is smaller than some deterministic time. Afterwards, we use a similar approach
as in [17, Section 5.7] to deduce that τ ε1,δ is roughly greater than exp(V/ε) where
V > 0 is determined by the potential U .

Define the annulus

Dr,R :=
{
x ∈ Rd : r < |x| < R

}
for 0 ≤ r < R ≤ ∞. Moreover, denote by

τ ε(M,D) := inf {t ≥ 0 : Xε
t (x) 6∈ D for some x ∈M}

the time until the semi-flow started in M ⊂ Rd leaves D ⊂ Rd. For 0 ≤ r1 < r2 <
r3 ≤ ∞ with r1 < 1 < r3 set

V (r1, r2, r3) := 2 min
{
u(r2

1)− u(min
{
r2

2, 1
}

), u(r2
3)− u(max

{
r2

2, 1
}

)
}

where u(∞) := limx→∞ u(x) = ∞. We show that V represents the cost of forcing
the system (5.1) started on sphere Sr2 to leave the annulus Dr1,r3 .

Lemma 5.3.1. Let 0 ≤ r1 < r2 < r3 ≤ ∞ with r1 < 1 < r3 and let T > 0. Then,

lim sup
ε→0

ε logP (τ ε(Sr2 , Dr1,r3) ≤ T ) ≤ −V (r1, r2, r3)

Proof. For any φ ∈ C([0, T ]× Rd,Rd), x ∈ Rd and 0 ≤ s < t ≤ T ,

IT (φ) ≥ 1

2

∫ t

s

∣∣∣φ̇(u, x) +∇U(φ(u, x))
∣∣∣2 du

=
1

2

∫ t

s

∣∣∣φ̇(u, x)−∇U(φ(u, x))
∣∣∣2 du+ 2

∫ t

s

〈φ̇(u, x),∇U(φ(u, x))〉 du

≥ 2 (U(φ(t, x))− U(φ(s, x))) .

(5.4)

Define

Φi :=
{
φ ∈ C([0, T ]× Rd,Rd) : φ(0, ·) = Id and |φ(t, x)| = ri

for some x ∈ Sr2 , t ∈ [0, T ]
}
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for i = 1, 3 where Φ3 = ∅ if r3 =∞. By LDP it follows that

lim sup
ε→0

ε logP (τ ε(Sr2 , Dr1,r3) ≤ T ) ≤ − inf
φ∈Φ1∪Φ3

IT (φ).

We consider the case r2 ≤ 1. If φ ∈ Φ1, there exists x ∈ Sr2 and t ∈ [0, T ] such that
|φ(t, x)| = r1. By (5.4), IT (φ) ≥ 2(u(r2

1)− u(r2
2)) for φ ∈ Φ1. If φ ∈ Φ3, there exists

x ∈ Sr2 and 0 ≤ s < t ≤ T such that |φ(s, x)| = 1 and |φ(t, x)| = r3. Using (5.4), it
follows that IT (φ) ≥ 2(u(r2

3)− u(1)) for φ ∈ Φ3. Repeating the same arguments for
the case r2 > 1, the statement follows.

Denote by

σε(M,D) := inf {t ≥ 0 : Xε
t (x) ∈ D for all x ∈M}

the time until D ⊂ Rd contains the semi-flow started in M ⊂ Rd.
The next lemma estimates the time until the semi-flow started in an annulus

is contained in a neighborhood of the stable sphere for small noise. Observe that
this time is roughly the time the semi-flow of the ODE (5.2) started in the annulus
requires to be contained in the neighborhood since the semi-flow of the SDE (5.1)
behaves similar to the semi-flow of the ODE (5.2) for small noise on a fixed time
scale.

Lemma 5.3.2. Let 0 < r1 < r2 <∞ and 0 ≤ r3 < 1 < r4 ≤ ∞. Then

lim
t→∞

lim sup
ε→0

ε logP
(
σε(Dr1,r2 , Dr3,r4) > t

)
≤ −V (0, r1,∞).

Proof. Set V := V (0, r1,∞) > 0 and let 0 < δ < V/2. We choose 0 < α < r1 <
r2 < β such that V (α, r1, β) ≥ V − δ/2 and V (α, r2, β) ≥ V − δ/2. Set M := Dr1,r2

and N := Dα,β. It holds that

P (σε(M,Dr3,r4) > t) ≤ P (τ ε(M,N) ≤ t) + P (τ ε(M,N) > t and σε(M,Dr3,r4) > t)

By Lemma 5.3.1 there exists ε0 > 0 such that

P (τ ε(M,N) ≤ t) ≤ P (τ ε(Sr1 , N) ≤ t) + P (τ ε(Sr2 , N) ≤ t)

≤ 2 exp(−(V − δ)/ε)

for all ε ≤ ε0. We consider the closed sets

Ψt :=
{
φ ∈ C([0, t]× Rd,Rd) : φ(r, y) ∈ N for all r ∈ [0, t] and y ∈M

and for each s ∈ [0, t] there exists an x ∈M
such that φ(s, x) 6∈ Dr3,r4

}
,

Ψ̃t :=
{
φ ∈ C([0, t]× Rd,Rd) : for all s ∈ [0, t] there exists

an x ∈ N such that φ(s, x) 6∈ Dr3,r4

}
.

The event {τ ε(M,N) > t}∩{σε(M,Dr3,r4) > t} is contained in {Xε
t ∈ Ψt}. By LDP

lim sup
ε→0

ε logP (τ ε(M,N) > t and σε(M,Dr3,r4) > t) ≤ − inf
φ∈Ψt

It(φ).
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It remains to show that

lim
t→∞

inf
φ∈Ψt

It(φ) > V. (5.5)

We can even show that the term (5.5) is equal to infinity. There exists a T > 0
such that the semi-flow associated to the deterministic ODE (5.2) started in N is in
Dr3,r4 at time T . We use this time T for a contradiction argument.
Assume that (5.5) is false. Then, for every n ∈ N there exists φn ∈ ΨnT such
that InT (φn) ≤ V . Hence, there exists a gn ∈ C0([0, nT ]) with FnT (gn) = φn
and ÎnT (gn) ≤ 2V . Set gn,k(t) := gn(t + kT ) − gn(kT ) for 0 ≤ k ≤ n − 1 and
0 ≤ t ≤ T . We define φn,k := FT (gn,k). Observe that φn,k ∈ Ψ̃T since φn ∈ ΨnT and
φn(kT + t, x) = φn,k(t, φn(kT, x)) for all x ∈M . By definition of gn, it follows that

n−1∑
k=0

ÎT (gn,k) = ÎnT (gn) ≤ 2V.

for all n ∈ N. Hence there exists a sequence hn ∈ C0([0, T ]) with limn→∞ ÎT (hn) = 0
and FT (hn) ∈ Ψ̃T for all n ∈ N. Arzelà-Ascoli implies that{
h ∈ C0([0, T ]) : ÎT (h) ≤ 2V

}
is a compact subset of C0([0, T ]). Therefore, the se-

quence hn has a limit point h in C0([0, T ]). Continuity of FT implies that ψ :=
FT (h) ∈ Ψ̃T . By lower semi-continuity of ÎT , IT (ψ) = 0 and ψ describes the flow
of the deterministic ODE (5.2). By definition of T , for all x ∈ N it holds that
ψ(T, x) ∈ Dr3,r4 which is a contradiction to ψ ∈ Ψ̃T .

Proposition 5.3.3. Let 0 ≤ r1 < r2 < r3 ≤ ∞ with r1 < 1 < r3. Set V :=
V (r1, 1, r3). For any β > 0 it holds that

lim
ε→0

P (τ ε(Sr2 , Dr1,r3) > exp((V − β)/ε)) = 1

and

lim inf
ε→0

ε logEτ ε(Sr2 , Dr1,r3) ≥ V.

Proof. Let β < V (r1, r2, r3) and η > 0 be small enough such that r1 < 1 − 2η,
r3 > 1 + 2η, V (r1, 1− 2η, r3) > V −β/4 and V (r1, 1 + 2η, r3) > V −β/4. Let ρ0 = 0
and for n ∈ N0 define the stopping times

σn := inf
{
t ≥ ρn : |Xε

t (x)| ∈ (1− η, 1 + η) for all x ∈ Sr2
or |Xε

t (x)| 6∈ (r1, r3) for some x ∈ Sr2
}
,

ρn+1 := inf {t ≥ σn : |Xε
t (x)| 6∈ (1− 2η, 1 + 2η) for some x ∈ Sr2}

with convention that ρn+1 = ∞ if σn = τ ε(Sr2 , Dr1,r3). During each time interval
[ρn, σn] one point of the semi-flow either leaves the annulus Dr1,r3 or the semi-flow
reenters the smaller annulus D1−η,1+η. Note that necessarily τ ε(Sr2 , Dr1,r3) = σn for
some n ∈ N0.
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Figure 5.1: Outline of the set |Xε
t (Sr2)| and the stopping times σn and ρn

By Lemma 5.3.2 there exists a T > 0 and ε1 > 0 such that

P (σ0 > T ) ≤ P (σε(Sr2 , D1−η,1+η) > T )

≤ exp(−(V (r1, r2, r3)− β)/ε)

and

P (σn − ρn > T ) ≤ P
(
σε(D1−2η,1+2η, D1−η,1+η) > T

)
≤ exp(−(V − β/2)/ε)

for all n ∈ N and ε ≤ ε1. Using Lemma 5.3.1, there exists ε2 > 0 such that

P(τ ε(Sr2 , Dr1,r3) = σ0) ≤ P (σ0 > T ) + P(τ ε(Sr2 , Dr1,r3) ≤ T )

≤ 2 exp(−(V (r1, r2, r3)− β)/ε)
(5.6)

and

P(τ ε(Sr2 , Dr1,r3) = σn) ≤ P (σn − ρn > T ) + P(τ ε(S1−2η, Dr1,r3) ≤ T )

+ P(τ ε(S1+2η, Dr1,r3) ≤ T )

≤ 3 exp(−(V − β/2)/ε)

(5.7)

for all n ∈ N and ε ≤ ε2. Choose T0 > 0 such that 2dT0(V − β/2) ≤ η2. Then, for
all n ∈ N

P (ρn − σn−1 ≤ T0) ≤ P

(
sup

t∈[0,T0]

√
ε |Wt| ≥ η

)
≤ 4d exp(−η2/(2dT0ε))

≤ 4d exp(−(V − β/2)/ε).

(5.8)

The event {τ ε(Sr2 , Dr1,r3) ≤ kT0} implies that either {τ ε(Sr2 , Dr1,r3) = σn} for some
0 ≤ n ≤ k or that at least one of the interval [σn, σn+1] for 0 ≤ n < k is at most of
length T0. Combining the estimates (5.7) and (5.8), it follows that

P (τ ε(Sr2 , Dr1,r3) ≤ kT0) ≤
k∑

n=0

P (τ ε(Sr2 , Dr1,r3) = σn) +
k∑

n=1

P (ρn − σn−1 ≤ T0)

≤ P(τ ε(Sr2 , Dr1,r3) = σ0) + (3 + 4d)k exp(−(V − β/2)/ε)
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for all k ∈ N and ε ≤ ε0 := min {ε1, ε2}. Choose k to be T−1
0 exp((V −β)/ε) rounded

up to integers. Hence,

P (τ ε(Sr2 , Dr1,r3) ≤ exp((V − β)/ε)) ≤ P (τ ε(Sr2 , Dr1,r3) ≤ kT0)

≤ P(τ ε(Sr2 , Dr1,r3) = σ0) + 8dT−1
0 exp(−β/(2ε))

for small enough ε. By estimate (5.6), the right side of the inequality converges to
zero as ε→ 0. The lower bound for Eτ ε(Sr2 , Dr1,r3) follows by Markov’s inequality.

Corollary 5.3.4. Set V := V (0, 1,∞). For any β > 0 there exists δ0 > 0 such that

lim
ε→0

P
(
τ ε1,δ > exp((V − β)/ε)

)
= 1

and

lim inf
ε→0

ε logEτ ε1,δ ≥ V

for any 0 < δ < δ0.

Proof. Observe that τ ε1,δ ≥ τ ε(S1, Dδ/2,∞).

5.3.3 Upper bound for τ ε3,δ
In this subsection, we give an upper bound for τ ε3,δ. Here, τ ε3,δ is associated to the
solution of (5.1) where the differential equation (5.1) is additionally assumed to
decay strongly. Since Xε

t satisfies the LDP, it is sufficient to choose a sample path
to get a lower estimate on the probability that τ ε3,δ is smaller than some fixed time.
Using this probability as the success probability of a geometric distribution, we get
the upper bound for τ ε3,δ.

Lemma 5.3.5. Assume that the SDE (5.1) is strongly contracting. For any δ > 0

lim
T→∞

lim inf
ε→0

ε logP
(
τ ε3,δ ≤ T

)
≥ −V (0, 1,∞).

Proof. Denote by u′ the first derivative of u. Let 0 < α < 1 be small enough
such that u′(4) ≥ 2α. Set cα1 := max {1− α, sup {0 < x < 1 : u′(|x|2) ≤ −α}} and
cα2 := inf {x > 1 : u′(|x|2) ≥ 2α} ≤ 2.
We choose gα(t) := (

∫ t
0
hα(s) ds, 0, . . . , 0) ∈ Rd with

hα(s) :=



0, for 0 ≤ s ≤ T α1 or T α5 < s ≤ T α6
3α, for T α1 < s ≤ T α2
2∇Ũ(ϕ(s− T α2 )), for T α2 < s ≤ T α3
(−2u′(0) + 1)α, for T α3 < s ≤ T α4
βα, for T α4 < s ≤ T α5
4αcα2 , for T α6 < s ≤ T α7
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for some βα > 0, 0 < T α1 < T α2 < · · · < T α6 < ∞ determined in the following and
where ϕ is the solution of

ϕ̇(s) = ∇Ũ(ϕ(s)) on R

started in ϕ(0) = −cα1 where Ũ(x) := u(x2). Hence,

ÎTα3 −Tα2 (gα(·+ T α2 )) = 2

∫ Tα3 −Tα2

0

〈ϕ̇(s),∇Ũ(ϕ(s))〉 ds

= 2(Ũ(ϕ(T α3 − T α2 ))− Ũ(ϕ(0)))

≤ 2(u(0)− u(1)) = V (0, 1,∞).

Moreover, ÎTαj+1−Tαj (gα(·+ T αj )) = 0 for j = 0, 4 and

ÎTαj+1−Tαj (gα(·+ T αj )) =

∫ Tαj+1

Tαj

|hα(s)|2 ds ≤ (hα(T αj+1))2
(
T αj+1 − T αj

)
for j = 1, 3, 4, 6. Denote by F (g) := FTα7 (g) the semi-flow associated to (5.3).

In the following, we choose βα and T αi for i = 1, 2, ..., 7 such that

lim
α→0

(hα(T αj+1))2
(
T αj+1 − T αj

)
= 0

for j = 1, 3, 4, 6 and

|F (gα)(T α7 , x)− F (gα)(T α7 , y)| ≤ δ

for all x, y ∈ Rd. Then

lim
α→0

lim inf
ε→0

ε logP
(
τ ε3,δ ≤ T α7

)
≥ − lim

α→0
ÎTα7 (gα) = − lim

α→0

7∑
j=0

ÎTαj+1−Tαj (gα(·+ T αj ))

≥ −V (0, 1,∞)

by LDP and the statement follows.

(a) t=Tα1 (b) t=Tα4 (c) t=Tα5 (d) t=Tα6 (e) t=Tα7

Figure 5.2: Outline of the semi-flow F (gα) in R2 at time t

Step 1: Since (5.1) is strongly contracting, we can choose T α1 such that
|F (gα)(T α1 , x)| ≤ 1 + α for all x ∈ Rd.

Define Y (t, y) := F (gα(t + T α1 ))(t, y) for y ∈ Rd and write tαk := T αk − T α1 for
k = 2, . . . , 7. Observe that it is sufficient to restrict the analysis to Y (t, y) on the
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set B̄1+α since Y (t, y) describes the dynamics of F (gα) after time T α1 . Denote by Πk

the projection on the k-th component in Rd.
In the steps 2 to 4, we concentrate on the movement of the point y1 := (−1 −

α, 0, . . . , 0) ∈ Rd, choose tα2 , tα3 and tα4 and show that Π1(Y (tα4 , y1) > 0. This behav-
ior we extend to the set B̄1+α in the fifth step by choosing βα and tα5 suitable and
showing that Π1(Y (tα5 , y)) > 0 for all y ∈ B̄1+α. Observe that Π1(Y (s, y)) > 0
implies that Π1(Y (t, y)) > 0 for all y ∈ Rd and 0 < s < t and define ty :=
inf {t ≥ 0 : Π1(Y (t, y)) > 0} for y ∈ Rd. Hence, Π1(Y (t, y)) > 0 for all t ≥ ty.
In the steps 6 and 7, we choose tα6 and tα7 and show the contraction.
Step 2: Set y1 := (−1 − α, 0, . . . , 0) ∈ Rd. Observe that Π1(F (t 7→ 3αt)(2, y1)) ≥
−cα1 . Choose tα2 = 2.
Step 3: The function ϕ as defined above describes the movement of Y (· + tα2 , y2)
started in y2 := (−cα1 , 0, . . . , 0) ∈ Rd. Choose tα3 such that ϕ(tα3 − tα2 ) ≥ −α. Then,
Π1(Y (tα3 , y2)) ≥ −α.
Step 4: Let y3 := (−α, 0, . . . , 0) ∈ Rd. Observe that Π1(F (t 7→ (−2u′(0) +
1)αt)(2, y3)) ≥ α. Choose tα4 = tα3 + 2. Then, Π1(Y (tα4 , y1)) ≥ α > 0.
Step 5: Since y 7→ Y (tα4 , y) is continuous, there exists a neighborhood of y1 such
that Π1(Y (tα4 , y)) > 0 for all y in this neighborhood. Hence, there exists an ηα > 0
such that Π1(Y (tα4 , y)) < 0 for some y ∈ S1+α implies that Π(y) ≥ −1 − α + ηα.
Observe that

d
Π1(F (gα)(t, y))√∑d
k=2(Πk(F (gα)(t, y)))2

=
1√∑d

k=2(Πk(F (gα)(t, y)))2

dgα(t)

for all y ∈ Rd. Observe that |Y (t, y)| ≤ 2 for all y ∈ B̄1+α and tα4 ≤ t < ty. Hence,

Π1(Y (t, y))√∑d
k=2(Πk(Y (t, y)))2

≥ − 2

ηα
+

1

2
βα(t− tα4 )

for all y ∈ S1+α and tα4 ≤ t < ty. Set βα := αηα and tα5 := tα4 + 8α−1(ηα)−2. Then,
Π1(Y (tα5 , y)) > 0 for any y ∈ S1+α. Moreover,

ÎTα5 −Tα4 (gα(·+ T α4 )) = (hα(T α5 ))2 (T α5 − T α4 ) = (βα)2 (tα5 − tα4 ) = 8α.

Step 6: Since Π1(Y (tα5 , y)) > 0 for any y ∈ B̄1+α and B̄1+α is closed, it follows that
miny∈B̄1+α

Π1(Y (tα5 , y)) > 0. Choose tα6 > tα5 such that cα1 ≤ |Y (tα6 , y)| ≤ 2 for all
y ∈ B̄1+α.
Step 7: Since Π1(Y (tα6 , x)) > 0, |Y (tα6 , x)| ≥ cα1 and Π1(gα(t)) ≥ 0 for all x ∈ B̄1+α

and t ≥ 0, it holds that |Y (t, x)| ≥ cα1 for all x ∈ B̄1+α and tα6 ≤ t ≤ tα7 . Observe
that z := (cα2 , 0, . . . , 0) ∈ Rd is a fixed point of Y (t + tα6 , ·). By convexity of u, for
any x = (x1, x2, . . . , xd) ∈ Rd with x1 > 0 and |x| ≥ cα1

d |Y (t+ tα6 , x)− z|2 ≤ −1

2
|Y (t+ tα6 , x)− z|2

(
u′(|Y (t+ tα6 , x)|2) + u′(|z|2))

)
dt

≤ −α
2
|Y (t+ tα6 , x)− z|2 dt.
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By Gronwall’s inequality, it follows that

|Y (t+ tα6 , x)− z| ≤ 4 exp

(
−αt

4

)
.

Choose tα7 = tα6 + 4
α

(log 8 − log δ). Combining all steps, it follows that
|F (gα)(T α7 , x)− F (gα)(T α7 , y)| ≤ δ for all x, y ∈ Rd.

Proposition 5.3.6. Assume that the SDE (5.1) is strongly contracting. Set V :=
V (0, 1,∞). Then, for any δ > 0 and β > 0 it holds that

lim
ε→0

P
(
τ ε3,δ < exp((V + β)/ε)

)
= 1

and

lim sup
ε→0

ε logEτ ε3,δ ≤ V.

Proof. Let 0 < η < β/2. By Lemma 5.3.5 there exists ε0 > 0 and T > 0 such that

P (τ3,δ ≤ T ) ≥ exp((−V − η)/ε).

for all ε ≤ ε0. Conditioning on the event
{
τ ε3,δ > (k − 1)T

}
for k = 2, 3, ... yields

P
(
τ ε3,δ > kT

)
= P

(
τ ε3,δ > kT |τ ε3,δ > (k − 1)T

)
P
(
τ ε3,δ > (k − 1)T

)
≤ P

(
τ ε3,δ > T

)
P
(
τ ε3,δ > (k − 1)T

)
≤ P

(
τ ε3,δ > T

)k
Therefore,

Eτ ε3,δ ≤ T

(
1 +

∞∑
k=1

P
(
τ ε3,δ > kT

))
≤ T

(
1 +

∞∑
k=1

(1− exp((−V − η)/ε))k
)

≤ T exp((V + η)/ε)

for all ε ≤ ε0. Using Markov’s inequality it follows that

P
(
τ ε3,δ ≥ exp((V + β)/ε)

)
≤ T exp(−β/(2ε))

for all ε ≤ ε0.

Remark 5.3.7. Observe that the upper bound for τ ε3,δ as in Proposition 5.3.6 even
holds for some RDS that do not synchronize.

In Chapter 3, we consider the SDE (3.1) which does not synchronize for small
noise. The drift of this SDE is of the same form as in the SDE (5.1) while the
noise merely acts in the first component. Hence, the arguments in Lemma 5.3.5 and
Proposition 5.3.6 extend to this SDE since gα in Lemma 5.3.5 is chosen to be 0 in
all components except for the first one.
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5.3.4 Approaching the set attractor

Combining the estimates from the previous subsections, we get lower and upper
bounds for these stopping times. These bounds show that the time a set requires to
approach the attractor is roughly exp(V (0, 1,∞)/ε).

Theorem 5.3.8. Assume that the SDE (5.1) is strongly contracting. Set V :=
V (0, 1,∞) and let S1 ⊂ M ⊂ Rd. For any β > 0 there exists δ0 > 0 such that for
all 0 < δ ≤ δ0 it holds that

lim
ε→0

P
(
exp((V − β)/ε) < τ ε1,2δ ≤ τ ε2,δ,M ≤ τ ε3,δ < exp((V + β)/ε)

)
= 1

and

lim
ε→0

ε logEτ ε1,2δ = lim
ε→0

ε logEτ ε2,δ,M = lim
ε→0

ε logEτ ε3,δ = V.

Proof. Using τ ε1,2δ ≤ τ ε2,δ,M ≤ τ ε3,δ, the statement follows by Corollary 5.3.4 and
Proposition 5.3.6.

5.4 Time required for a point to approach the at-
tractor

5.4.1 Convergence to a process on the unit sphere

In this section, we restrict our study to the two-dimensional case and show that the
time required for a point to approach the attractor under the dynamics of (5.1) is
exactly of order ε−1. In particular, we give an estimate on the rate of convergence
of a point under the dynamics of (5.1) towards the attractor.

Here, we consider the minimal weak point attractor AX,εpoint. A minimal weak
point attractor is a weak point attractor that is contained in any other weak point
attractor. By [19, Theorem 3.1] and [16, Theorem 23] such a minimal weak point
attractor exists.

We perform a time change and compare the accelerated process to a process on
the unit sphere. Therefore, we write the accelerated process in polar coordinates.
Precisely, we consider

(Rε
t cosφεt , R

ε
t sinφεt) = Xε

t/ε.

Then,

d(Rε
t )

2 = −4

ε
(Rε

t )
2u′((Rε

t )
2) dt+ 2Rε

t cosφεt dW̃ 1
t + 2Rε

t sinφεt dW̃ 2
t + 2 dt. (5.9)

where u′ is the first derivative of u and

dφεt =
1

Rε
t

(
− sinφεt dW̃ 1

t + cosφεt dW̃ 2
t

)
(5.10)
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where
(
W̃ 1
t , W̃

2
t

)
=
√
εWt/ε and (W̃ 1, W̃ 2) is a two-dimensional Brownian motion.

As ε→ 0, the drift of Rε
t moves the radius close to 1. Hence, we aim to compare φεt

to the process

dZt = − sinZt dW̃ 1
t + cosZt dW̃ 2

t (5.11)

on the limit cycle S = R/2ΠZ. After we show that Rε
t is close to 1 and φεt is close

to Zt, we use that the RDS associated to (5.11) is known to synchronize weakly, i.e.
every point in S converges to a single random point.

Remark 5.4.1. In higher dimensional cases, d > 2, more complicated processes on
the sphere need to be analyzed. For example in the three-dimensional case, d = 3,
we can write (

R̂ε
t cos φ̂ε1,t sin φ̂ε2,t, R̂

ε
t sin φ̂ε1,t sin φ̂ε2,t, R̂

ε
t cos φ̂ε2,t

)
= Xε

t/ε.

Then the SDE on the sphere should behaves similar to

dφ̂ε1,t =
1

R̂ε
t

(
−

sin φ̂ε1,t

sin φ̂ε2,t
dŴ 1

t +
cos φ̂ε1,t

sin φ̂ε2,t
dŴ 2

t

)
dφ̂ε2,t =

1

R̂ε
t

(
cos φ̂ε1,t cos φ̂ε2,t dŴ 1

t + sin φ̂ε1,t cos φ̂ε2,t dŴ 2
t + sin φ̂ε2,t dŴ 3

t

)
where

(
Ŵ 1
t , Ŵ

2
t , Ŵ

3
t

)
=
√
εWt/ε and (Ŵ 1, Ŵ 2, Ŵ 3) is a three-dimensional Brownian

motion. Even though we do not compute the rates in which a point approaches the
attractor in higher dimensions, we expect these rates to be the same as in the two-
dimensional case.

Returning to the two-dimensional case, we show that the radial component of
the accelerated process Rε

t is close to 1 for t > 0 and small noise intensities ε.

Lemma 5.4.2. Let 0 < α < β < 1, T > 0 and 0 < r1 < 1 < r2 < r3 < ∞. Then,
there exists an ε0 > 0 such that

P (r1 < Rε
T < r2) ≥ 1− β

for all ε ≤ ε0 and any F−-measurable Xε
0 satisfying

P (Rε
0 ≤ r3) ≥ 1− α.

Proof. Choose k ∈ N such that 2−k+1 ≤ β−α and set t = min {1/2, T/(2k)}. Using
(5.9), ∫ t

0

Rε
t cosφεt dW̃ 1

t +

∫ t

0

Rε
t sinφεt dW̃ 2

t > 0

implies that (Rε
s)

2 ≥ 2t for some s ≤ t. Set r4 =
√

2t ≤ 1. Then

P (Rε
s ≥ r4 for some s ≤ t) ≥ 1/2.
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Conditioning on the event {Rε
s < r4 for all s ≤ (j − 1)t} for j = 2, 3, ...k yields to

P (Rε
s < r4 for all s ≤ T/2) ≤ P (Rε

s < r4 for all s ≤ kt)

≤ 1/2 P (Rε
s < r4 for all s ≤ (k − 1)t)

≤ 2−k ≤ (β − α)/2.

(5.12)

Combining this estimate and the assumption, it follows that

P (r4 ≤ Rε
s ≤ r3 for some s ≤ T/2) ≥ 1− (α + β)/2.

Let r1 < r5 < 1 < r6 < r2. By Lemma 5.3.2, there exists C, ε1 > 0 such that

P (r5 < Rε
s < r6 for some s ≤ T/2 + εC) ≥ 1− (α + 2β)/3.

for all ε ≤ ε1. Hence, for all ε ≤ min {ε1, T/(2C)}
P (r5 < Rε

t < r6 for some t ≤ T ) ≥ 1− (α + 2β)/3..

Using Proposition 5.3.3, the statement follows.
Lemma 5.4.3. Let 0 < α < β < 1 and δ, T > 0. Then, there exist ε0, η > 0 such
that

P
(

max
t≤T
|Rε

t − 1| < δ and max
t≤T
|φεt − Zt| < δ

)
≥ 1− β

for all ε ≤ ε0 and all F−-measurable Xε
0 and Z0 satisfying

P (|Rε
0 − 1| < η and |φε0 − Z0| < η) ≥ 1− α.

Proof. Choose 0 < η < 0.5 min {δ, 1} such that (4η2 + 128Tη2(1− 2η)−2) e16T <
(β − α)δ2. Define

Bε
t :=

{
max
s≤t
|Rε

s − 1| < 2η

}
∩ { |ϕε0 − Z0| < η} .

for all t ≤ T . Using Proposition 5.3.3 and the assumption, there exists ε0 > 0 such
that

P (Bε
T ) ≥ 1− (α + β)/2

for all ε ≤ ε0. We use Doob’s inequality and Ito isometry to estimate

Emax
t≤T
|φεt − Zt|

2
1BεT

≤ 2E |φε0 − Z0|2 1BεT + 2Emax
t≤T

(∫ t

0

(
sinZs −

1

Rε
s

sinφεs

)
1Bεs dW 1

s

+

∫ t

0

(
− cosZs +

1

Rε
s

cosφεs

)
1Bεs dW 2

s

)2

≤ 2η2 + 4E
∫ T

0

((
sinZt −

1

Rε
t

sinφεt

)2

+

(
− cosZt +

1

Rε
t

cosφεt

)2
)
1Bεt

dt

≤ 2η2 + 16E
∫ T

0

(
|Zt − φεt |

2 +

∣∣∣∣1− 1

Rε
t

∣∣∣∣2
)
1Bεt

dt

≤ 2η2 + 64T
η2

(1− 2η)2
+ 16

∫ T

0

Emax
s≤t
|Zs − φεs|

2
1Bεt

dt.
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Using Gronwall’s inequality, it follows that

Emax
t≤T
|φεt − Zt|

2
1BεT
≤
(

2η2 + 64T
η2

(1− 2η)2

)
e16T < (β − α)δ2/2.

Using Markov inequality, we get

P
(

max
t≤T
|Rε

t − 1| < δ and max
t≤T
|φεt − Zt| < δ

)
≥ P (Bε

T )− P
(
Bε
T and max

t≤T
|φεt − Zt| ≥ δ

)
≥ 1− (α + β)/2− δ−2 Emax

t≤T
|φεt − Zt|

2
1BεT

≥ 1− α

for all ε ≤ ε0.

5.4.2 Asymptotic stability of the process on the unit sphere

The SDE (5.11) has a stable point whose Lyapunov exponent is negative, see [3].
This random point is the minimal weak point attractor of the RDS associated to
(5.11) which we in the following denote by AZ . Observe that due to the time change
the minimal weak point attractor AZ of the RDS associated to (5.11) at time t is
AZ(θt/εω). When we consider the distance of AZ to a point in R2, we identify with
AZ the point

(
cosAZ , sinAZ

)
on the unit sphere.

Denote by Zt(Z0) the solution of (5.11) started in Z0. We now show the rate of
convergence of Zt(Z0) to AZ , first for deterministic Z0 and then for F−-measurable
Z0.

Lemma 5.4.4. For any α > 0 and 0 < µ < 1/2 there exists C > 0 such that

P
(∣∣Zt(Z0)− AZ(θt/ε·)

∣∣ ≤ C e−µt for all t ≥ 0
)
≥ 1− α

for all Z0 ∈ [0, 2Π).

Proof. By [3], the top Lyapunov exponent of (5.11) is −1/2. Stable manifold the-
orem implies that for all 0 < µ < 0.5 there exist a measurable c(ω) > 0 and a
measurable neighborhood U(ω) of AZ(ω) such that∣∣Zt(x)− AZ(θt/εω)

∣∣ < c(ω)e−µt

for all x ∈ U(ω) and t ≥ 0. Hence, for any α > 0 there exists some c̃, δ > 0 such
that

P
(∣∣Zt(x)− AZ(θt/εω)

∣∣ < c̃e−µt for all x ∈ AZ(ω)δ and t ≥ 0
)
≥ 1− α/2.

Since AZ(ω) is the attractor of the RDS associated to (5.11), there exists a time
T > 0 such that

P
(∣∣ZT (x)− AZ(θT/εω)

∣∣ < δ
)
≥ 1− α/2
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for all x ∈ [0, 2Π). Combining these two estimates yields to

P
(∣∣Zt(x)− AZ(θt/εω)

∣∣ < c̃e−µ(t−T ) for all t ≥ T
)
≥ 1− α

for all x ∈ [0, 2Π) and t ≥ 0.

Proposition 5.4.5. For any α > 0 and 0 < µ < 0.5 there exists C > 0 such that

P
(∣∣Zt − AZ(θt/ε·)

∣∣ ≤ C e−µt for all t ≥ 0
)
≥ 1− α

for all F−-measurable Z0.

Proof. The weak point attractor AZ(ω) is an F−-measurable stable point. Reverting
the time, one receives an F+-measurable unstable point UZ(ω). Hence, UZ(ω) and
AZ(ω) are independent. Under the dynamics of (5.11) every single deterministic
point converges to the attractor. However, the unstable point does not converge to
the attractor.

If the unstable point is in an interval and the attractor is not, then the time the
endpoints of this interval require to approach the attractor is an upper bound for
the time any point outside the interval requires to approach the attractor.

Let n ∈ N such that αn ≥ 4. We define

Ik :=

[
k

2Π

n
, (k + 1)

2Π

n

)
, Pk = k

2Π

n
and Pn = P0

for 0 ≤ k < n. By Lemma 5.4.4 there exists C > 0 such that

P
(∣∣Zt(Pk)− AZ(θt/ε·)

∣∣ > C e−µt for some t ≥ 0
)
≤ α

4n

for all 0 ≤ k ≤ n. If UZ(ω) ∈ Ik and A(ω) 6∈ Ik for some 0 ≤ k < n, then

sup
z 6∈Ik

∣∣Zt(z)− AZ(θt/εω)
∣∣ = max

{∣∣Zt(Pk)− AZ(θt/εω)
∣∣ , ∣∣Zt(Pk+1)− AZ(θt/εω)

∣∣}
for all t ≥ 0. Therefore,

P
( ∣∣Zt(Z0)− AZ(θt/ε·)

∣∣ ≤ C e−µt for all t ≥ 0
)

≥
n−1∑
k=0

P
(
UZ(·) ∈ Ik, AZ(·) 6∈ Ik, Z0 6∈ Ik,

∣∣Zt(Pk)− AZ(θt/ε·)
∣∣ ≤ C e−µt

and
∣∣Zt(Pk+1)− AZ(θt/ε·)

∣∣ ≤ C e−µt for all t ≥ 0
)

≥
n−1∑
k=0

(
P
(
UZ(·) ∈ Ik

)
P
(
AZ(·) 6∈ Ik, Z0 6∈ Ik

)
− P

(∣∣Zt(Pk)− AZ(θt/ε·)
∣∣ > C e−µt for some t ≥ 0

)
− P

(∣∣Zt(Pk+1)− AZ(θt/ε·)
∣∣ > C e−µt for some t ≥ 0

) )
≥ 1

n

n−1∑
k=0

P
(
AZ(·) 6∈ Ik, Z0 6∈ Ik

)
− α/2

≥ n− 2

n
− α/2 ≥ 1− α

for all F−-measurable Z0.
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5.4.3 Approaching the point attractor

Combining the estimates from the previous subsections, we are able to show the
rate of convergence of Xε

t/ε to AZ . As a direct consequence, we get that AZ and
AX,εpoint are close for small ε and the upper bound for the rate of convergence of Xε

t/ε

to AX,εpoint. Moreover, we show that Xε
t does not approach its attractor on a faster

time scale.

Proposition 5.4.6. Let 0 < α < β < 1, r > 0 and 0 < µ < 0.5. Then, there exists
C > 0 such that for all T1, T3 > 0 there exists an ε0 > 0 such that

P
(∣∣Xε

t/ε − AZ(θt/ε·)
∣∣ ≤ Ce−µ(t−T2) for all T2 ≤ t ≤ T2 + T3

)
≥ 1− β

for all 0 < ε ≤ ε0, T2 ≥ T1 and all F−-measurable Xε
0 satisfying

P (Rε
0 ≤ r) ≥ 1− α.

Proof. Let ε > 0. We start the SDE (5.11) in Zε
T1

= φεT1 . By Proposition 5.4.5 there
exists c > 0 such that

P
(∣∣Zt − AZ(θt/ε·)

∣∣ ≤ c e−µ(t−T1) for all t ≥ T1

)
≥ 1− α/2.

for all ε > 0. Using Lemma 5.4.2 and 5.4.3, there exists ε0 > 0 such that

P
(

max
T1≤t≤T1+T3

|Rε
t − 1| < e−µT3 and max

T1≤t≤T1+T3
|φεt − Zε

t | < e−µT3
)
≥ 1− α/2

for all ε ≤ ε0. Setting C := c+ 2 it follows that

P
(∣∣Xε

t/ε − AZ(θt/ε·)
∣∣ ≤ Ce−µ(t−T1) for all T1 ≤ t ≤ T1 + T3

)
≥ 1− α.

Using the same arguments for the process starting in Xε
(T2−T1)/ε at time (T2−T1)/ε,

the statement follows.

Remark 5.4.7. Observe that the statement of Proposition 5.4.6 is not true if one
takes the supremum over all t ≥ T inside the probability term. Precisely, for all
δ, ε, T > 0

P
(

sup
t≥T

∣∣Xε
t/ε − AZ(θt/ε·)

∣∣ ≤ δ

)
= 0

since the process Xε
t leaves a neighborhood of the unit sphere for some t ≥ T/ε

almost surely.

Corollary 5.4.8. For all α, δ, T > 0 there exists an ε0 > 0 such that

P

(
inf

a∈AX,εpoint(θt·)
|AZ(θt·)− a| ≤ δ for all 0 ≤ t ≤ T/ε

)
≥ 1− α

for all 0 < ε ≤ ε0.
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Proof. By the construction of the minimal weak point attractor in [16, Theorem 23],
the minimal weak point attractor of (5.1) has a F−-measurable version. We denote
this version also by AX,εpoint. Using [6, Theorem III.9], we can select an F−-measurable
xε(ω) where

xε(ω) ∈

{
AX,εpoint(ω) ∩B2, if AX,εpoint(ω) ∩B2 6= ∅
R2, else.

Since the drift of (5.1) pushes any point outside the unit ball towards the unit ball,
it holds that

lim
ε→0

P
(
AX,εpoint(ω) ∩ B2 = ∅

)
= 0.

Applying Proposition 5.4.6, there exist some ε1, s > 0 such that

P
(∣∣Xε

t/ε(x
ε(·))− AZ(θt/ε·)

∣∣ ≤ δ for all s ≤ t ≤ T
)
≥ 1− α/2

for all ε ≤ ε1. Since xε(ω) ∈ AX,εpoint(ω) implies that Xε
t (x

ε(ω)) ∈ AX,εpoint(θtω), there
exists ε2 > 0 such that

P

(
inf

a∈AX,εpoint(θt·)

∣∣AZ(θt·)− a
∣∣ ≤ δ for all s/ε ≤ t ≤ (s+ T )/ε

)
≥ 1− α

for all ε ≤ ε2. Using θs/ε-invariance of P, the statement follows.

Theorem 5.4.9. Let 0 < α < β < 1, r > 0 and 0 < µ < 0.5 Then, there exists
C > 0 such that for all T1, T3 > 0 there exists an ε0 > 0 such that

P

(
inf

a∈AX,εpoint(θt/ε·)

∣∣Xε
t/ε − a

∣∣ ≤ Ce−µ(t−T2) for all T2 ≤ t ≤ T2 + T3

)
≥ 1− β

for all 0 < ε ≤ ε0, T2 ≥ T1 and all F−-measurable Xε
0 satisfying

P (Rε
0 ≤ r) ≥ 1− α.

Proof. Apply Proposition 5.4.6 and Corollary 5.4.8 and use the triangle inequality.

Theorem 5.4.10. For any α > 0 there exist ε0, δ, T > 0 such that

P

 sup
a∈AX,εpoint(θt·)

|Xε
t − a| > δ for all 0 ≤ t ≤ T/ε

 ≥ 1− α

for all ε ≤ ε0 and all deterministic Xε
0 ∈ R2.
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Proof. Let γ, T > 0 such that 20γ ≤ αΠ and 10T ≤ αγ2. By Lemma 5.4.3 there
exists 0 < 2δ < sin γ and ε0 > 0 such that for all 0 < ε ≤ ε0

P
(
|φεt − Zε| ≤ γ for all σδ,ε ≤ t ≤ T

)
≥ 1− α/5

where σδ,ε := inf {t ≥ 0 : |Rε
t − 1| ≤ 2δ} and Zε

t is the solution to (5.11) started in
Zε
σδ,ε

= φε
σδ,ε

. Then,

P
(∣∣Xt/ε − AZ(θt/ε·)

∣∣ > 2δ for all t ≤ T
)

≥ P
(∣∣Xt/ε − AZ(θt/ε·)

∣∣ > sin γ for all σδ,ε ≤ t ≤ T
)

≥ P
(∣∣φεt − AZ(θt/ε·)

∣∣ > γ for all σδ,ε ≤ t ≤ T
)

≥ P
(
|φεt − Zε

t | ≤ γ and
∣∣Zε

t − AZ(θt/ε·)
∣∣ > 2γ for all σδ,ε ≤ t ≤ T

)
≥ P

(∣∣Zε
t − AZ(θt/ε·)

∣∣ > 2γ for all σδ,ε ≤ t ≤ T
)
− α/5.

Independence of Zε
σδ,ε

and AZ(·) implies

P
(∣∣Zε

σδ,ε − A
Z(·)

∣∣ ≤ 4γ
)

=
8γ

2Π
≤ α/5.

Since T was chosen small, it holds that

P
(∣∣Zε

t − AZ(θt/ε·)
∣∣ > 2γ for all σδ,ε ≤ t ≤ T

)
≥ P

( ∣∣Zε
σδ,ε − A

Z(·)
∣∣ > 4γ, |Zε

t − Zε
σδ,ε | ≤ γ

and
∣∣AZ(·)− AZ(θt/ε·)

∣∣ ≤ γ for all σδ,ε ≤ t ≤ T
)

≥ 1− α/5− P
(

max
σδ,ε≤t≤T

|Zε
t − Zε

σδ,ε | > γ

)
− P

(
max

σδ,ε≤t≤T

∣∣AZ(·)− AZ(θt/ε·)
∣∣ > γ

)
≥ 1− 3α/5

Therefore,

P
(∣∣Xε

t/ε − AZ(θt/ε·)
∣∣ > 2δ for all t ≤ T

)
≥ 1− 4α/5.

Applying Corollary 5.4.8, the statement follows.

For small δ > 0 denote by

τ ε0,δ,x := inf

{
t ≥ 0 : inf

a∈AX,εpoint(θt·)
|Xε

t (x)− a| ≤ δ

}
and

τ ε0,δ,x := inf

t ≥ 0 : sup
a∈AX,εpoint(θt·)

|Xε
t (x)− a| ≤ δ


the time the process Xε

t started in x ∈ R2 requires to approach some point re-
spectively all points of the minimal weak point attractor AX,εpoint. Observe that
τ ε0,δ,x ≤ τ ε0,δ,x. If the RDS associated to (5.1) synchronize both quantities coincide.

59
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Corollary 5.4.11. For any α > 0 there exists some δ0 > 0 such that for all 0 <
δ ≤ δ0 there exist ε0, T1, T2 > 0 such that

P
(
τ ε0,δ,x < T2/ε and τ ε0,δ,x > T1/ε

)
≥ 1− α

for all 0 < ε ≤ ε0 and x ∈ R2. In particular, if the RDS associated to (5.1)
synchronize weakly, then

P
(
T1/ε < τ ε0,δ,x = τ ε0,δ,x < T2/ε

)
≥ 1− α

Proof. The lower bound follows by theorem 5.4.10 and the upper bound by theorem
5.4.9.

Remark 5.4.12. In contrast to Corollary 5.4.11, if u has more than one local
minimum the time until a point approaches the attractor under the dynamics of
(5.1) can increase exponentially in ε−1. For this purpose, observe that one can find
a lower bound for the time until the paths of the solution started in different minima
approach each other using the difference of the potential U in the minima and similar
arguments as in section 5.3.2.

Hence, in the case of u having multiple minima, the difference between the time
a point and a set requires to approach the attractor is not as significant as in the
case where u has exactly one minimum.

60



Chapter 6

Connectedness of random set
attractors

6.1 Introduction

While connectedness of (deterministic) attractors is extensively studied (see [29], [26]
and [25]), little is known about connectedness of random set attractors. We consider
random set attractors, i.e. pullback and weak attractors, of continuous-time RDS
on a connected state space and examine whether these attractors are connected.

In the deterministic case, connectedness of these set attractors is shown in [25].
We aim to use their approach pathwise. Moreover, they provide an example of a
discrete-time RDS on a connected space having a set attractor which is not con-
nected.

Under additional connectedness assumptions on the state space, it is shown in
[12, Proposition 3.7] that random set attractors, which attract any bounded set
almost surely, are connected. The proof even stays true for weak attractors. Here,
the state space has to satisfy that any compact set in the state space can be covered
by a connected compact set. This condition is clearly not satisfied by the state space
of the example in [25].

In Section 6.2, we consider pullback attractors for continuous-time RDS taking
values in a connected Polish space. For a pullback continuous RDS, we show that
the pullback attractor (if it exists) is almost surely connected. The first lemma in
this section may be of independent interest. It states that even though pullback
convergence to the attractor allows for exceptional nullsets which may depend on
the compact set, these nullsets can be chosen independently of the compact set (even
if the space is not σ-compact). This lemma does not assume the state space to be
connected. The result allows us to argue pathwise (for fixed ω) in the proof of the
main result.

In Section 6.3, we provide an example of a RDS on a path-connected state space
where the weak attractor is not connected. In that example, the RDS is even jointly
continuous and the attractor even attracts all bounded and not just compact sets.
The state space in that example is the same as that in [25], but the RDS on that
space is more sophisticated.

61



CHAPTER 6. CONNECTEDNESS OF RANDOM SET ATTRACTORS

6.2 Pullback attractor

In this section, we show that the pullback attractor of a pullback continuous RDS
on a connected Polish space X is connected. The pullback attractor attracts any
compact set almost surely. We prove that the nullsets where it may not converge
can be be chosen independently of the compact set. This allows us to analyze the
RDS pathwise and to use similar arguments as in the deterministic proof of [25,
Theorem 3.1].

Lemma 6.2.1. Let A be the pullback attractor of the pullback continuous RDS ϕ.
Then, there exists some Ω̂ ∈ F with P(Ω̂) = 1 such that for any ω ∈ Ω̂ and compact
set K ⊂ X,

lim
t→∞

sup
x∈K

d(ϕt(θ−tω, x), A(ω)) = 0.

Proof. First, we consider convergent sequences in X. Let

ĉ :=

{
(x∞, x1, x2, x3, . . . ) ∈ XN : d(xn, x∞) ≤ 1

n
for all n ∈ N

}
which is closed in the Polish space XN and hence itself a Polish space. Further, let

M(ω) :=
⋃
n∈N

⋂
m∈N

⋃
q∈Q,q≥m

⋃
k∈N∪{∞}

{
(x∞, x1, x2, . . . ) ∈ ĉ :

ϕq(θ−qω, xk) ∈ A(ω)
1
n

}c
be the set of sequences of ĉ that are not uniformly attracted. By measurability of ϕ
and A, the graph of M is measurable.

Assume there is a subset Ω̃ ∈ F with P(Ω̃) > 0 such that M(ω) 6= ∅ for all
ω ∈ Ω̃. Define

M̃(ω) :=

{
M(ω) if ω ∈ Ω̃

ĉ else.

Then the graph ofM is in F×B(X) and hence in F̄×B(X). Note that F̄ is closed un-
der the Souslin operation (see [42, Example 3.5.20 and Theorem 3.5.22]). Hence, [31,
Corollary of Theorem 7] (see also the survey by Wagner [49, Theorem 3.4]) implies
the existence of a F̄ -measurable selection x(ω) = (x∞(ω), x1(ω), x2(ω), . . . ) ∈ M̃(ω).
The set

⋃
k∈N∪{∞} {xk(ω)} is sequentially compact for each ω ∈ Ω. By the same ar-

guments as in [13, Proposition 2.15], there exists some deterministic compact set
K̃ ⊂ X such that

P̄
(
xk(ω) ∈ K̃ for all k ∈ N ∪ {∞}

)
> 1− P(Ω̃).

Using the definition of Ω̃ and M̂ it follows that

P̄
(
x(ω) ∈M(ω) and xk(ω) ∈ K̃ for all k ∈ N ∪ {∞}

)
> 0.
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This contradicts the fact that the pullback attractor attracts K̃ almost surely. Hence,
M(ω) = ∅ almost surely. Using pullback continuity of ϕ, it follows that there exists
some Ω̂ ∈ F with P(Ω̂) = 1 such that for any ω ∈ Ω̂ and (x∞, x1, x2, . . . ) ∈ ĉ,

lim
t→∞

sup
k∈N∪{∞}

d(ϕt(θ−tω, xk), A(ω)) = 0. (6.1)

Now, assume there exists some compact set K, ε > 0, ω ∈ Ω̂ and sequence tm
going to infinity such that ϕtm(θ−tmω,K) 6⊂ A(ω)ε for all m ∈ N. Hence, there are
ym ∈ K such that ϕtm(θ−tmω, ym) 6∈ A(ω)ε for all m ∈ N. Since K is compact, there
is a convergent subsequence ymk with y∞ := limk→∞ ymk and (y∞, ym1 , ym2 , . . . ) ∈ ĉ
which is a contradiction to (6.1).

Remark 6.2.2. The statement of Lemma 6.2.1 remains true for pullback attractors
of RDS in discrete time.

Lemma 6.2.3. Let A be the pullback attractor of the RDS ϕ. For δ > 0 there exist
compact sets Kn ⊂ X and tn ≥ 0, n ∈ N such that

P
(
ϕtn (θ−tnω,Kn) ⊃ A(ω) and

ϕt (θ−tω,Kn) ⊂ A(ω)
1
n for all t ≥ tn, n ∈ N

)
≥ 1− δ.

Proof. Let n ∈ N. By [13, Proposition 2.15] there exists some compact set Kn ⊂ X
such that

P (A(ω) ⊂ Kn) ≥ 1− δ

2n+1
. (6.2)

The definition of the pullback attractor implies that there exists some tn > 0 such
that

P
(
ϕt (θ−tω,Kn) ⊂ A(ω)

1
n for all t ≥ tn

)
≥ 1− δ

2n+1
. (6.3)

By ϕ-invariance of A, θ-invariance of P and (6.2) it follows that

P (ϕtn (θ−tnω,Kn) ⊃ A(ω)) ≥ 1− δ

2n+1
.

Combining this estimate and (6.3), we conclude

P
(
ϕtn (θ−tnω,Kn) ⊃ A(ω) and

ϕt (θ−tω,Kn) ⊂ A(ω)
1
n for all t ≥ tn

)
≥ 1− δ

2n

which implies the claim.

Theorem 6.2.4. Let X be a connected Polish space and ϕ be a pullback continuous
RDS. If there exists a pullback attractor A, then A is almost surely connected.
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Proof. Assume A is not connected with positive probability. By Lemma 6.2.1 and
6.2.3 we can choose Ω̃ ∈ F with P(Ω̃) > 0, compact sets Kn ⊂ X and a sequence tn
such that for any ω ∈ Ω̃, n ∈ N and compact set K ⊂ X it holds that

• A(ω) is not connected,

• limt→∞ supx∈K d(ϕt(θ−tω, x), A(ω)) = 0,

• ϕtn (θ−tnω,Kn) ⊃ A(ω) and ϕt (θ−tω,Kn) ⊂ A(ω)
1
n for all t ≥ tn.

Fix ω ∈ Ω̃. For this fixed ω we will follow the idea of the proof in the deterministic
case (see [25, Theorem 3.1]). Note, however, that third step requires some extra
argument in our case.
Step 1: Let A(ω) = A1∪A2, where A1 and A2 are nonempty, disjoint, compact sets.
There exists some ε > 0 such that Aε1 ∩ Aε2 = ∅. Define

X1 := {x ∈ X : there exists t such that ϕs(θ−sω, x) ∈ Aε1 for all s ≥ t}
X2 := {x ∈ X : there exists t such that ϕs(θ−sω, x) ∈ Aε2 for all s ≥ t} .

If we show that X1 and X2 are disjoint nonempty open sets satisfying X1∪X2 = X,
then we found a contradiction to X being connected. Obviously, X1 ∩X2 = ∅.
Step 2: We show that X1 ∪X2 = X.

Let x ∈ X. By definition of Ω̃, there exists some t > 0 such that ϕs(θ−sω, x) ∈
A(ω)ε for all s ≥ t. Define

St := {ϕs(θ−sω, x) : s ≥ t} .

Then, St ⊂ A(ω)ε and St is connected by pullback continuity. Therefore, St is either
totally contained in Aε1 or totally contained in Aε2.
Step 3: We show that Xi 6= ∅ for i = 1, 2.

Let n ∈ N with 1
n
≤ ε. By definition of Ω̃, ϕtn (θ−tnω,Kn) ⊃ A(ω) and

ϕt (θ−tω,Kn) ⊂ A(ω)ε for all t ≥ tn for some n ∈ N. Hence, there exists x ∈ Kn ⊂ X
such that ϕtn (θ−tnω, x) ∈ Ai. By continuity in time, ϕt (θ−tω, x) ∈ Aεi for all t ≥ tn.
Step 4: We show that Xi is open for i = 1, 2.

Assume that Xi is not open. Then, there exist an x ∈ Xi, a sequence xk converg-
ing to x and a sequence sk converging to infinity such that ϕsk (θ−skω, xk) /∈ Aεi for
all k ∈ N. By definition of Ω̃, there exists some s > 0 such that ϕt(θ−tω, xk) ∈ A(ω)ε

for all k ∈ N and t ≥ s. Since x ∈ Xi, xk is converging to x and ϕ is continuous in
the state space, there exists some k∗ such that ϕs(θ−sω, xk) ∈ Aεi for k ≥ k∗. Using
pullback continuity, it follows that ϕt(θ−tω, xk) ∈ Aεi for t ≥ s and k ≥ k∗ which is
a contradiction to the definition of xk.

6.3 Weak attractor

The question arises whether the result in the previous section can be extended to
weak attractors. In contrast to pullback attractors, convergence to weak attracors
is merely in probabilty. We give an example of an RDS where the weak attractor is
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not connected. In addition to the assumption on the RDS and state space of Section
6.2, this example has a jointly continuous RDS, a path-connected state space and
every bounded set converges to the attractor.

Example 6.3.1. Step 1: The metric space. We choose the same metric space as in
[25, Remark 5.2]. Set sn =

∑n
i=0 2−i for n ∈ N0. Let us consider the following sets

in R2:

P−∞ := (−1, 0), P∞ := (2, 0),

Pn := (sn−1, 0), P−n := (1− sn, 0),

XL
n :=

{
(x, y) ∈ R2 : x = sn−1 + λ 2−n−1 and

y = λ 2−n for some λ ∈ [0, 1]
}
,

XR
n :=

{
(x, y) ∈ R2 : x = sn−1 + (2− λ) 2−n−1 and

y = λ 2−n for some λ ∈ [0, 1]
}
,

XL
−n :=

{
(x, y) ∈ R2 : x = 1− sn + λ 2−n−1 and

y = λ 2n for some λ ∈ [0, 1]
}
,

XR
−n :=

{
(x, y) ∈ R2 : x = 1− sn + (2− λ) 2−n−1 and

y = λ 2n for some λ ∈ [0, 1]
}
,

X−∞ :=
{

(−1, y) ∈ R2 : y ≥ 0
}
,

Y :=
{

(x, y) ∈ R2 : y ≤ 0, (x− 0.5)2 + y2 = 2.25
}

and

Xz := XL
z ∪XR

z

for n ∈ N0 and z ∈ Z. The sets Xz are the two equal sides of isosceles triangles
in the halfplane with base PzPz+1 and height 2−z. The left- respectively right-hand
side of Xz is denoted by XL

z respectively XR
z . Finally we define the complete metric

space

X :=
∞⋃
z∈Z

Xn ∪X−∞ ∪ Y

with the metric induced by R2.
Step 2: The dynamics. We characterize the dynamics by phases of length one. To
each phase there corresponds a random variable ξm where (ξm)m∈Z is a sequence
of independent identically distributed random variables with P (ξ0 = k) = 2−k for
k ∈ N. In a phase with corresponding ξm = k all points to the right of P−(k+1)!+1

get pushed k! triangles to the right and all points on the lower half of the triangles
to the left of P−(k+1)! decrease their height.

We describe the dynamics during a phase by a function f : {0 ≤ s ≤ t ≤ 1} ×
N×X 7→ X. Let f be such that

• P 7→ f0,t(k, P ) is bijective
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Figure 6.1: bounded subset of X

• fs,t = f0,t ◦ f−1
0,s

• (s, t) 7→ fs,t(k, P ) is continuous

• if z ≥ −(k + 1)! and P = (x, y) ∈ XR
z , then

f0,1(k, P ) ∈
{

(x̃, ỹ) ∈ XR
z+k! : ỹ = 2−k!y

}
• if z ≥ −(k + 1)! + 1 and P = (x, y) ∈ XL

z , then
f0,1(k, P ) ∈

{
(x̃, ỹ) ∈ XL

z+k! : ỹ = 2−k!y
}

• if z ≥ −(k+1)!+1 and P ∈ XR
z−1∪XL

z , then |f0,t(k, P )− f0,t(k, Pz)| ≤ |P − Pz|

• if z ≤ −(k + 1)! and P = (x, y) ∈ XL
z with y ≤ 2−z−1, then

f0,t(k, P ) ∈
{

(x̃, ỹ) ∈ XL
z : ỹ = 2−ty

}
• if z ≤ −(k + 1)!− 1 and P = (x, y) ∈ XR

z with y ≤ 2−z−1, then
f0,t(k, P ) ∈

{
(x̃, ỹ) ∈ XR

z : ỹ = 2−ty
}

• if P,Q ∈ XL
z or P,Q ∈ XR

z for z ∈ Z, then
|fs,t(k, P )− fs,t(k,Q)| ≤ 4(k! + 1) |P −Q|

• if P ∈ X−∞ and P = (−1, y), then f0,t(k, P ) = (−1, 2−ty)

• if P ∈ Y , then f0,t(k, P ) = P .

Then, t 7→ fs,t(ξm, P ) describes the dynamics of the system started in a point P at
time s in a phase with corresponding random variable ξm. Since (s, t) 7→ fs,t(k, P )
is continuous and P 7→ fs,t(k, P ) is Lipschitz continuous with Lipschitz constant
depending on k, the map (s, t, P ) 7→ fs,t(k, P ) is continuous.

In the following steps we show that the weak attractor of this system exists and
is not connected.
Step 3: Attractor of discrete-time system. Let r ∈ N be arbitrary. Define the
bounded set Kr := {(x, y) ∈ X : y ≤ 2r} and the neighborhood
Ur = {(x, y) ∈ X : y ≤ 2−r} of

⋃
z∈Z Pz ∪ Y . Consider the discrete-time system
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generated by the iterated functions (f0,1(ξm, ·))m∈Z. If ξm ≥ k for some phase with
k! ≥ 2r, then the process started in

⋃∞
z=−rXz ∩ Kr stays in Ur after this phase.

Running 2r phases, all points in Kr ∩
(⋃∞

i=r+1 X−i ∪X−∞
)
decrease their height

and reach Ur. Therefore, after 2r phases where at least one corresponding ξm ≥ k
with k! ≥ 2r the discrete-time process started in Kr is in Ur. In contrast to the
continuous-time process, the discrete-time process cannot leave Ur afterwards. By
[12, Theorem 3.4], there exists a pullback attractor of the discrete-time process and
this attractor is a subset of

⋃
z∈Z Pz ∪ Y . For n ∈ N define

Fn(ξ−1, ξ−2, . . . , ξ−n) := f0,1(ξ−1, ·) ◦ f0,1(ξ−2, ·) ◦ · · · ◦ f0,1(ξ−n,
⋃
z∈Z

Pz)

⊂
⋃
z∈Z

Pz.

By definition of the pullback attractor, Fn(ξ−1, ξ−2, . . . , ξ−n) converges to the pull-
back attractor as n goes to infinity P-almost surely. Therefore, P0 ∈ Fn for large
enough n implies that P0 is in the attractor as well. The point P0 is not in Fn iff
there exist k ∈ N and times −n ≤ t0 < t1 < · · · < tk < 0 such that ξti = k for all
0 ≤ i ≤ k and ξs ≤ k for all t0 ≤ s < 0. Then,

P(P0 is in the attractor) = lim
n→∞

P (P0 ∈ Fn(ξ−1, ξ−2, . . . , ξ−n))

≥ 1−
∑
k∈N

P (ξ0 = k|ξ0 ≥ k)k+1 =
1

2

which implies that the pullback attractor is not connected with positive probability.
More generally, the attractor is not connected if there exists an m ≥ 0 such that
for all n ∈ N the point P0 ∈ Fn(ξ−m−1, ξ−m−2, . . . , ξ−m−n). This event is in the
terminal sigma algebra. By Kolmogorov’s zero-one law, the pullback attractor of
the discrete-time system is almost surely not connected.
Step 4: Attractor of continuous-time system. When we consider the continuous-time
system we need to add a random phase shift which is uniformly distibuted on [0, 1).
For 0 ≤ s, t < 1 and n ∈ N, the system started in a point P at time s of a phase is
described by

ϕ−s+n+t(ω, P ) = f0,t(ξn, ·) ◦ f0,1(ξn−1, ·) ◦ · · · ◦ f0,1(ξ1, ·) ◦ fs,1(ξ0, P ).

with ω = (s, (ξm)m∈Z) ∈ [0, 1) × NZ =: Ω and canonical shift on Ω and the basic
probability measure on Ω is the product of Lebesgue measure on [0, 1) and the
laws of (ξm)m∈Z. Then, ϕ is a jointly continuous RDS as a composition of jointly
continuous maps.

Let r ≥ 2. If we start in a set Kr as in step 3 in an incomplete phase with
corresponding ξm ≤ r, then at the end of this phase the process is still in Kr. The
pullback attractor of the discrete-time system attracts this bounded set. Hence,
there exists a time nr ∈ N such that the discrete process started in Kr stays in
a ball around the discrete-time attractor with radius 2−(r+1)! after time nr with
probability 1− 2−r.
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We extend the discrete-time attractor to continuous time in such a way that
the so constructed random set stays strictly invariant under the given dynamics. If
one starts the end phase in a ball around the discrete-time attractor with radius
2−(r+1)!, one can leave the ball around the invariantly extended random set with
radius 2−(k+1)! only during a phase with corresponding ξm ≥ r.

Combining these three parts, the continuous-time process started in Kr at time
t ≥ nr + 1 is in a ball around the discrete-time attractor with radius 2−(r+1)! with
probability 1− 2−r+1.

This probability tends to one as r goes to infinity. Therefore, the continuous-time
extension of the discrete-time attractor is the weak attractor of the continuous-time
system. By construction, the weak attractor of the continuous system is almost
surely not connected. Note that the weak attractor will not almost surely be con-
tained in the set

⋃
z∈Z Pz ∪ Y .

Remark 6.3.2. If every compact set in X can be covered by a connected compact
set, then the weak attractor is connected. This follows by the same arguments as in
[12, Proposition 3.7] where this result was stated for the pullback attractor. Here,
one does not need to assume continuity in time.

A similar assumption is satisfied on a connected and locally connected Polish
space. By local connectedness, a compact set can be covered by finitely many
bounded open connected sets. Since a connected and locally connected Polish space
is also path-connected (see Mazurkiewicz-Moore-Menger theorem in [28, p. 254,
Theorem 1 and p. 253, Theorem 2]), one can connect these sets by paths. Hence,
any compact set can be covered by an bounded connected set. For weak attractors
(without an assumption on the continuity in time) which attract any bounded set,
connectedness follows by the same arguments as in the proof of [12, Proposition 3.7].
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Appendix

In the Appendix we show some estimates that we need in Chapter 3. We show that
the integrability assumptions for the stable manifold theorem (Theorem 3.3.1) are
satisfied for the RDS generated by (3.1). Further, we estimate the integral occurring
as an estimate of the top Lyapunov exponent.

Lemma A.0.1. The RDS ϕ associated to (3.1) satisfies ϕt(ω, ·) ∈ C2
loc,

E
∫
Rd

log+ ‖Dϕ1(ω, x)‖ dρ(x) <∞

and

E
∫
Rd

log+ ‖ϕ1(ω, ·+ x)− ϕ1(ω, x)‖C1,δ(B̄(0,1)) dρ(x) <∞.

Proof. Let t > 0, ω ∈ Ω and x, u, v ∈ Rd. To show ϕt(ω, ·) ∈ C2
loc consider the

transformation ϕ̃t(ω, x) := ϕt(ω, x)−σω̂(t) with ω̂(t) being equal to ω(t) in the first
n components and 0 in the last n− d components. This transformation satisfies

d

dt
ϕ̃t(ω, x) = b(ϕ̃t(ω, x) + σω(t)).

By arguments similiar to [43, Theorem 2.10] and since b ∈ C2 it follows that
ϕ̃t(ω, ·) ∈ C2

loc. Hence, ϕt(ω, ·) ∈ C2
loc.

The derivatives of the drift b satisfy

〈Db(x)u, u〉 = −2 |〈x, u〉|2 +
(
1− |x|2

)
|u|2

≤
(
1− |x|2

)
|u|2 ≤ |u|2

(A.1)

and ∥∥D2b(x)
∥∥ ≤ 6|x|. (A.2)

To get integrability of the two terms, observe that

d

dt
Dϕt(ω, x) = Db(ϕt(ω, x))Dϕt(ω, x), Dϕ0(ω, x) = Id.
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Using (A.1), it follows that

d

dt
|Dϕt(ω, x)v|2 = 2 〈Db(ϕt(ω, x))Dϕt(ω, x)v,Dϕt(ω, x)v〉

≤ 2 |Dϕt(ω, x)v|2 .

By Gronwall’s inequality,

|Dϕt(ω, x)v| ≤ |v| et.

Hence ‖Dϕt(ω, x)‖ ≤ et and

E
∫
Rd

log+ ‖Dϕ1(ω, x)‖ dρ(x) ≤
∫
Rd

log+
(
e1
)

dρ(x) = 1 <∞.

To show integrability of the second term define

F x(ω, y) := ϕ1(ω, y + x)− ϕ1(ω, x)

for y ∈ B̄(0, 1). The aim will be to estimate ‖F x(ω, ·)‖C1,δ(B̄(0,1)). Since
DF x(ω, y)v = Dϕ1(ω, y + x)v the estimations above imply

‖DF x(ω, y)‖ = ‖Dϕ1(ω, y + x)‖ ≤ e1.

Moreover,

d

dt

(
ϕt(ω, y + x)− ϕt(ω, x)

)
= b(ϕt(ω, y + x))− b(ϕt(ω, x)).

By one-sided Lipschitz condition of b (Lemma 3.2.1)

d

dt
|ϕt(ω, y + x)− ϕt(ω, x)|2

= 2 〈b(ϕt(ω, y + x))− b(ϕt(ω, x)), ϕt(ω, y + x)− ϕt(ω, x)〉
≤ 2 |ϕt(ω, y + x)− ϕt(ω, x)|2 .

Applying Gronwall’s inequality it follows

|ϕt(ω, y + x)− ϕt(ω, x)| ≤ |y| et.

In particular ‖F x(ω, ·)‖C(B̄(0,1)) ≤ e1. It remains to estimate ‖DF x(ω, ·)‖Cδ(B̄(0,1)).
Note that

‖DF x(ω, ·)‖Cδ(B̄(0,1)) ≤ ‖DF
x(ω, ·)‖C(B̄(0,1)) + Ĉ

∥∥D2F x(ω, ·)
∥∥
C(B̄(0,1))

≤ e1 + Ĉ
∥∥D2ϕ1(ω, ·)

∥∥
C(B̄(0,1))

for some Ĉ > 0. Let u, v ∈ Rd with |u|, |v| ≤ 1. Then,

d

dt
D2ϕt(ω, x)(u, v) = D2b(ϕt(ω, x)) (Dϕt(ω, x)u,Dϕt(ω, x)v)

+Db(ϕt(ω, x))D2ϕt(ω, x)(u, v)

70



and

1

2

d

dt

∣∣D2ϕt(ω, x)(u, v)
∣∣2 =

〈
D2b(ϕt(ω, x))(Dϕt(ω, x)u,Dϕt(ω, x)v)

+Db(ϕt(ω, x))D2ϕt(ω, x)(u, v), D2ϕt(ω, x)(u, v)
〉

≤
∥∥D2b(ϕt(ω, x))

∥∥ ‖Dϕt(ω, x)‖2
∣∣D2ϕt(ω, x)(u, v)

∣∣
+
〈
Db(ϕt(ω, x))D2ϕt(ω, x)(u, v), D2ϕt(ω, x)(u, v)

〉
.

Using the estimates on the derivatives of the drift (A.1) and (A.2) it follows

1

2

d

dt

∣∣D2ϕt(ω, x)(u, v)
∣∣2

≤ 6 |ϕt(ω, x)| ‖Dϕt(ω, x)‖2
∣∣D2ϕt(ω, x)(u, v)

∣∣+
∣∣D2ϕt(ω, x)(u, v)

∣∣2
≤ 6e2t |ϕt(ω, x)|

∣∣D2ϕt(ω, x)(u, v)
∣∣+
∣∣D2ϕt(ω, x)(u, v)

∣∣2
≤ 9e4t |ϕt(ω, x)|2 + 2

∣∣D2ϕt(ω, x)(u, v)
∣∣2 ,

where the last step holds since a2 + c2 ≥ 2ac for a, c ∈ R. Applying Gronwall’s
inequality yields ∣∣D2ϕt(ω, x)(u, v)

∣∣2 ≤ ∫ t

0

18e4s |ϕs(ω, x)|2 e4(t−s) ds

= 18e4t

∫ t

0

|ϕs(ω, x)|2 ds.

Therefore,

∥∥D2ϕ1(ω, ·)
∥∥2

C(B̄(0,1))
≤ 18e4

∫ 1

0

‖ϕs(ω, ·)‖2
C(B̄(0,1)) ds.

As shown before

|ϕs(ω, y)− ϕs(ω, x)| ≤ |y − x| es

for y ∈ Rd and s ≥ 0. Hence,

|ϕs(ω, y)| ≤ |ϕs(ω, x)|+ |y − x| es

and

‖ϕs(ω, ·)‖C(B̄(0,1)) ≤ |ϕs(ω, x)|+ e1

for y ∈ B̄(0, 1) and s ∈ [0, 1]. Then,

∥∥D2ϕ1(ω, ·)
∥∥2

C(B̄(0,1))
≤ 18e4

∫ 1

0

(
|ϕs(ω, x)|+ e1

)2
ds

≤ C̃ + C̃

∫ 1

0

|ϕs(ω, x)|2 ds
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for some constant C̃ > 0. In conclusion,

‖F x(ω, ·)‖C1,δ(B̄(0,1)) ≤ ‖F
x(ω, ·)‖C(B̄(0,1)) + ‖DF x(ω, ·)‖C(B̄(0,1))

+ Ĉ
∥∥D2F x(ω, ·)

∥∥
C(B̄(0,1))

≤ e1 + e1 + Ĉ

(
C̃ + C̃

∫ 1

0

|ϕs(ω, x)|2 ds

)
≤ C + C

∫ 1

0

|ϕs(ω, x)|2 ds

for some constants C, Ĉ, C̃ > 0. By Fubini’s theorem and Jensen’s inequality

E
∫
Rd

log+
(
‖F x(ω, ·)‖C1,δ(B̄(0,1))

)
dρ(x)

≤ E
∫
Rd

log+

(
C + C

∫ 1

0

|ϕs(ω, x)|2 ds

)
dρ(x)

≤
∫
Rd

log+

(
C + C

∫ 1

0

E
[
|ϕs(ω, x)|2

]
d

)
dρ(x).

Itô’s formula implies

E
[
|ϕt(ω, x)|2

]
= E

[
|x|2 +

∫ t

0

2 〈b(ϕs(ω, x)), ϕs(ω, x)〉 ds+ ntσ2

]
= E

[
|x|2 +

∫ t

0

2
(
|ϕs(ω, x)|2 − |ϕs(ω, x)|4

)
ds+ ntσ2

]
≤ |x|2 +

∫ t

0

2E
[
|ϕs(ω, x)|2

]
ds+ ntσ2.

Gronwall’s inequality yields

E
[
|ϕt(ω, x)|2

]
≤
(
|x|2 + ntσ2

)
e2t.

Hence,

sup
s∈[0,1]

E
[
|ϕs(ω, x)|2

]
≤
(
|x|2 + nσ2

)
e2.

Therefore, there exists some constant C > 0 such that

E
∫
Rd

log+
(
‖F x(ω, ·)‖C1,δ(B̄(0,1))

)
dρ(x) ≤

∫
Rd

log+
(
C + C|x|2

)
dρ(x).

Using the invariant measure ρ introduced in Remark 3.3.3, it follows that

E
∫
Rd

log+
(
‖F x(ω, ·)‖C1,δ(B̄(0,1))

)
dρ(x) ≤ 1

Zσ

∫
Rn

log+
(
C + C|x|2

)
e

2
σ2

( 1
2
|x|2− 1

4
|x|4) dx,

where Zσ =
∫
Rn e

2
σ2

( 1
2
|x|2− 1

4
|x|4) dx. By rapidly decaying property of e

2
σ2

( 1
2
|x|2− 1

4
|x|4),

the integral ∫
Rn

log+
(
C + C|x|2

)
e

2
σ2

( 1
2
|x|2− 1

4
|x|4) dx

is finite.
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Lemma A.0.2. Let Ln,σ be the integral

Ln,σ :=

∫ ∞
0

(1− |x|2) exp

(
− 1

2σ2

(
|x|2 − 1

)2
)

dx.

There exists some σ∗ ∈ (1/2, 2) such that

(i) for n = 1 and σ ≤ σ∗ it holds that Ln,σ > 0.

(ii) for n = 1 and σ ≥ σ∗ it holds that Ln,σ < 0.

(iii) for n ≥ 2 it holds that Ln,σ < 0.

Proof. Case n ≥ 2: Changing to polar coordinates, it follows that

Ln,σ = c

∫ ∞
0

(
1− r2

)
rn−1 exp

(
− 1

2σ2

(
r2 − 1

)2
)

dr

= c̃

∫ ∞
0

rn−2

(
d

dr
exp

(
− 1

2σ2

(
r2 − 1

)2
))

dr

with constants c, c̃ > 0. For n = 2 we have

Ln,σ = c̃

∫ ∞
0

(
d

dr
exp

(
− 1

2σ2

(
r2 − 1

)2
))

dr = −c̃ exp

(
− 1

2σ2

)
< 0.

For n ≥ 3, using integration by parts, it follows that

Ln,σ = −c̃(n− 2)

∫ ∞
0

rn−3 exp

(
− 1

2σ2

(
r2 − 1

)2
)

dr < 0.

These estimates prove statement (iii).
Case n = 1: Step 1: In the first step we show that L1,σ > 0 for σ ≤ 1/2 and that
L1,σ < 0 for σ ≥ 2.
Using integration by parts, it follows that∫ ∞

1

(1− x2) exp

(
− 1

2σ2

(
x2 − 1

)2
)

dx

=
σ2

2

∫ ∞
1

1

x

(
d

dx
exp

(
− 1

2σ2

(
x2 − 1

)2
))

dx

= −σ
2

2
+
σ2

2

∫ ∞
1

1

x2
exp

(
− 1

2σ2

(
x2 − 1

)2
)

dx. (A.3)

We use integration by substitution and split up the integral to get lower estimates.
Hence ∫ 1

0

(
1− x2

)
exp

(
− 1

2σ2

(
x2 − 1

)2
)

dx

=

∫ 1

0

1

2
√

1− x
x exp

(
− 1

2σ2
x2

)
dx

≥
∫ 3

4

0

1

2
x exp

(
− 1

2σ2
x2

)
dx+

∫ 1

3
4

x exp

(
− 1

2σ2
x2

)
dx

=
σ2

2
+
σ2

2

(
exp

(
− 9

32σ2

)
− 2 exp

(
− 1

2σ2

))
.
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Combining this estimate and (A.3) yields to

L1,σ ≥
σ2

2
exp

(
− 1

2σ2

)(
exp

(
7

32σ2

)
− 2

)
> 0

for σ ≤ 1
2
.

Moreover, there are upper estimates on the integrals. Splitting up the integral shows
that∫ ∞

1

1

x2
exp

(
− 1

2σ2

(
x2 − 1

)2
)

dx ≤
∫ √1+2σ

1

1

x2
dx+

∫ ∞
√

1+2σ

1

x2
exp(−2) dx

= 1− 1√
1 + 2σ

(1− exp(−2)) .

Inserting this estimate into (A.3) yields to∫ ∞
1

(1− x2) exp

(
− 1

2σ2

(
x2 − 1

)2
)

dx ≤ − σ2

2
√

1 + 2σ
(1− exp(−2)) . (A.4)

Observe that∫ 1

0

(
1− x2

)
exp

(
− 1

2σ2

(
x2 − 1

)2
)

dx ≤
∫ 1

0

(
1− x2

)
dx =

2

3
.

Combining these estimates it follows that

L1,σ ≤
2

3
− σ2

2

1√
1 + 2σ

(1− exp(−2)) ≤ 2

3
−
√

2√
3

(1− exp(−2)) < 0

for σ ≥ 2.
Step 2: In this step we show that∫ ∞

0

(1− x2) exp

(
− 1

2σ2
(x4 − 2x2)

)
dx = exp

(
1

2σ2

)
L1,σ

is strictly monoton decreasing in σ on the interval [1/2, 2]. Using the monotonicity,
statement (i) and (ii) follow with Step 1.
Rapidly decaying property of exp

(
− 1

2σ2 (x4 − 2x2)
)
and integration by parts imply

d

dσ

∫ ∞
0

(
1− x2

)
exp

(
− 1

2σ2

(
x4 − 2x2

))
dx

=

∫ ∞
0

(
1− x2

) d

dσ
exp

(
− 1

2σ2

(
x4 − 2x2

))
dx

=
1

σ3

∫ ∞
0

(
1− x2

) (
x4 − 2x2

)
exp

(
− 1

2σ2

(
x4 − 2x2

))
dx

=
1

2σ

∫ ∞
0

(
x3 − 2x

) d

dx

(
exp

(
− 1

2σ2

(
x4 − 2x2

)))
dx

=
1

2σ
exp

(
1

2σ2

)∫ ∞
0

(
−3x2 + 2

)
exp

(
− 1

2σ2

(
x2 − 1

)2
)

dx.
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It remains to show that∫ ∞
0

(
−3x2 + 2

)
exp

(
− 1

2σ2

(
x2 − 1

)2
)

dx ≤ 0.

Splitting up the integral we get∫ 1

0

(
2− 3x2

)
exp

(
− 1

2σ2

(
x2 − 1

)2
)

dx

≤
∫ 1/3

0

(
2− 3x2

)
exp

(
− 32

81σ2

)
dx+

∫ 1/2

1/3

(
2− 3x2

)
exp

(
− 9

32σ2

)
dx

+

∫ √2/3

1/2

(
2− 3x2

)
exp

(
− 1

18σ2

)
dx+

∫ 1

√
2/3

(
2− 3x2

)
exp

(
− 1

18σ2

)
dx

≤ 17

27
exp

(
− 32

81σ2

)
+

(
7

8
− 17

27

)
exp

(
− 9

32σ2

)
+

1

8
exp

(
− 1

18σ2

)
.

Moreover, it holds that∫ ∞
1

x2 exp

(
− 1

2σ2

(
x2 − 1

)2
)

dx =
1

2

∫ ∞
1

√
x exp

(
− 1

2σ2
(x− 1)2

)
dx

≥ 1

2

∫ ∞
1

exp

(
− 1

2σ2
(x− 1)2

)
dx

=
σ√
2

∫ ∞
0

exp
(
−x2

)
dx =

√
Π

8
σ.

Combining these estimates and (A.4), it follows that∫ ∞
0

(
−3x2 + 2

)
exp

(
− 1

2σ2

(
x2 − 1

)2
)

dx

≤
∫ 1

0

(
2− 3x2

)
exp

(
− 1

2σ2

(
x2 − 1

)2
)
−
∫ ∞

1

x2 exp

(
− 1

2σ2

(
x2 − 1

)2
)

dx

+ 2

∫ ∞
1

(1− x2) exp

(
− 1

2σ2
1

(
x2 − 1

)2
)

dx

≤ 17

27
exp

(
− 32

81σ2
2

)
+

(
7

8
− 17

27

)
exp

(
− 9

32σ2
2

)
+

1

8
exp

(
− 1

18σ2
2

)
− σ2

1√
1 + 2σ1

(1− exp(−2))−
√

Π

8
σ1

for all σ ∈ [σ1, σ2] ⊂ [1/2, 2]. Computing this term separately for the intervals
[1/2, 6/10], [6/10, 7/10], [7/10, 9/10] and [9/10, 2], we can conclude that the relevant
integral is strictly monoton decreasing in σ on the interval [1/2, 2].
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