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Abstract

Crowdsourcing has emerged as a competitive mechanism to conduct user studies on the Internet.
Users in crowdsourcing perform small tasks remotely from their computer or mobile device in
exchange for monetary compensation. Nowadays, multiple crowdsourcing platforms offer a fast,
low cost and scalable approach to collect human input for data acquisition and annotations.
However, the question remains whether the collected ratings in an online platform are still
valid and reliable. And if such ratings are comparable to those gathered in a constrained
laboratory environment. There is a lack of control to supervise the participant and often not
enough information about their playback system and background environment. Therefore,
different quality control mechanisms have been proposed to ensure reliable results and monitor
these factors to the extent possible [1, 2, 3].

The quality of the transmitted speech signal is essential for telecommunication network
providers. It is an important indicator used to evaluate their systems, services, and to
counterbalance potential issues. Traditionally, subjective speech quality studies are conducted
under controlled laboratory conditions with professional audio equipment. This way, good
control over the experimental setup can be accomplished, but with some disadvantages:
conducting laboratory-based studies is expensive, time-consuming, and the number of
participants is often relatively low. Consequently, the experiment outcomes might not be
representative of a broad population.

In contrast, crowdsourcing represents an excellent opportunity to move such listening tests
to the Internet and target a much wider and diverse pool of potential users at a fraction of the
cost and time. Nevertheless, the implementation of existing subjective testing methodologies
into an Internet-based environment is not straightforward. Multiple challenges arise that need
to be addressed to gather valid and reliable results.

This dissertation evaluates the impact of relevant factors affecting the results of speech
quality assessment studies carried out in crowdsourcing. These factors relate to the test
structure, the effect of environmental background noise, and the influence of language differences.
To the best of the author’s knowledge, these influencing factors have not yet been addressed.

The results indicate that it is better to offer test tasks with a number of speech stimuli
between 10 and 20 to encourage listener participation while reducing study response times.
Additionally, the outcomes suggest that the threshold level of environmental background noise
for collecting reliable speech quality scores in crowdsourcing is between 43dB(A) and 50dB(A).
Also, listeners were more tolerant of the TV-Show noise compared to the street traffic noise
when executing the listening test. Furthermore, the feasibility of using web-audio recordings
for environmental noise classification is determined. A Multi-layer Perceptron Classifier with
an adam solver achieved an accuracy of 0.69 in noise classification. In contrast, a deep model



based on a “Long Short-Term Memory” architecture accomplished an RMSE of 4.58 on average
(scale of 30.6dBA to 81.3dBA) on the test set for noise level estimation.

Finally, an experiment was performed to determine if it is possible to gather reliable speech
quality ratings for German stimuli with native English and Spanish speakers in a crowdsourcing
environment. The Person correlation to the laboratory results was strong and significant, and
the RMSE low despite the listeners’ mother tongue. However, a bias was seen in the quality
scores collected from the English and Spanish crowd-workers, which was then corrected with a
first-order mapping.
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Zusammenfassung

Crowdsourcing hat sich als wettbewerbsfähiger Mechanismus zur Durchführung von Nutzer-
studien im Internet herauskristallisiert. Diese Benutzer führen kleine Aufgaben aus der Ferne
von ihrem Computer oder Mobilgerät aus und erhalten dafür eine finanzielle Entschädigung.
Heutzutage bieten mehrere Crowdsourcing-Plattformen einen schnellen, kostengünstigen und
skalierbaren Ansatz, um menschliche Eingaben für die Datenerfassung und Annotationen
zu sammeln. Es bleibt jedoch die Frage, ob die gesammelten Bewertungen in einer Online-
Plattform noch gültig und zuverlässig sind, und ob solche Bewertungen mit denen vergleichbar
sind, die in einer Laborumgebung gesammelt wurden. Es fehlt die Kontrolle, um den Teilnehmer
zu überwachen, und oft gibt es nicht genügend Informationen über das Wiedergabesystem
und die Hintergrundumgebung. Daher wurden verschiedene Qualitätskontrollmechanismen
vorgeschlagen, um zuverlässige Ergebnisse zu gewährleisten und diese Faktoren so weit wie
möglich zu überwachen [1, 2, 3].

Die Qualität des übertragenen Sprachsignals ist für Anbieter von Telekommunikationsnetzen
essentiell. Sie ist ein wichtiger Indikator, um ihre Systeme und Dienste zu bewerten und
um möglichen Problemen entgegenzuwirken. Traditionell werden Studien zur subjektiven
Sprachqualität unter kontrollierten Laborbedingungen mit professionellem Audio-Equipment
durchgeführt. Auf diese Weise kann eine gute Kontrolle über den Versuchsaufbau erreicht
werden, allerdings mit einigen Nachteilen: Es ist teuer, zeitaufwendig und die Anzahl der
Teilnehmer ist oft relativ gering. Folglich sind die Ergebnisse des Experiments möglicherweise
nicht repräsentativ für eine breite Population.

Im Gegensatz dazu stellt Crowdsourcing eine hervorragende Möglichkeit dar, solche Hörtests
ins Internet zu verlagern und einen viel größeren und vielfältigeren Pool von potenziellen
Nutzern zu einem Bruchteil der Kosten und des Zeitaufwands anzusprechen. Dennoch ist die
Implementierung bestehender subjektiver Testmethoden in eine internetbasierte Umgebung
nicht einfach. Es ergeben sich mehrere Herausforderungen, die angegangen werden müssen,
um valide und zuverlässige Ergebnisse zu erhalten.

Diese Dissertation evaluiert den Einfluss relevanter Faktoren, die die Ergebnisse von Studien
zur Bewertung der Sprachqualität, die im Crowdsourcing durchgeführt werden, beeinflussen.
Diese Faktoren beziehen sich auf die Teststruktur, den Einfluss von Umgebungsgeräuschen
und den Einfluss von Sprachunterschieden. Nach bestem Wissen des Autors sind diese
Einflussfaktoren bisher noch nicht behandelt worden.

Die Ergebnisse deuten darauf hin, dass es besser ist, Testaufgaben mit einer Anzahl
von Sprachstimuli zwischen 10 und 20 anzubieten, um die Hörerbeteiligung zu fördern und
gleichzeitig die Reaktionszeiten der Studie zu reduzieren. Darüber hinaus deuten die Ergebnisse
darauf hin, dass der Schwellenwert des Umgebungsgeräusches für die Erfassung zuverlässiger



Sprachqualitätswerte beim Crowdsourcing zwischen 43dB(A) und 50dB(A) liegt. Außerdem
waren die Hörer bei der Durchführung des Hörtests toleranter gegenüber dem Lärm der
TV-Show als gegenüber dem Straßenverkehrslärm. Darüber hinaus wird die Machbarkeit der
Verwendung von Web-Audio-Aufnahmen für die Klassifizierung von Umgebungsgeräuschen
ermittelt. Ein Multi-Layer-Perceptron-Klassifikator mit einem “Adam”-Solver erreichte bei der
Geräuschklassifikation eine Genauigkeit von 0,69. Im Gegensatz dazu erreichte ein tiefes Modell,
das auf einer Long Short-Term MemoryArchitektur basiert, einen RMSE von durchschnittlich
4,58 (Skala von 30,6dBA bis 81,3dBA) auf dem Testset zur Geräuschpegelschätzung.

Schließlich wurde ein Experiment durchgeführt, um festzustellen, ob es möglich ist,
zuverlässige Sprachqualitätsbewertungen für deutsche Stimuli mit englischen und spanischen
Muttersprachlern in einer Crowdsourcing-Umgebung zu sammeln. Die Personenkorrelation zu
den Laborergebnissen war stark und signifikant, und der RMSE trotz der Muttersprache der
Hörer niedrig. Allerdings wurde eine Verzerrung in den von den englischen und spanischen
Crowd-Workern gesammelten Qualitätsbewertungen festgestellt, die dann mit einem Mapping
erster Ordnung korrigiert wurde.
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1
Introduction

1.1 Speech Quality

The primary purpose of using a speech telephony service is for vocal human-to-human
communication. The technological developments within traditional and modern packet-based
(Voice-over-IP) telephony networks can disturb and even impair the transmitted voice signal.
The components responsible for these communication impairments are the codecs, delay,
bandwidth limitations, packet-loss, linear and non-linear filters, echo, noise, and others [4].

Therefore, it is important for telecommunication network providers to understand how
end-users perceive and experience degradations. Estimating the quality of transmitted speech
over telecommunications systems enables them to improve their services and counteract possible
issues. In this context, the quality of transmitted speech is also referred to as the so-called
Quality of Experience (QoE).

The term Quality of Experience was first introduced in [5]. Then, based on [6], the QoE
definition was extended to:

Quality of Experience “is the degree of delight or annoyance of a person whose
experiencing involves an application, service, or system. It results from the persons evaluation
of the fulfillment of his or her expectations and needs with respect to the utility and/or enjoyment
in the light of the persons context, personality and current state.”

1.1.1 Speech Quality Assessment

A common means to study and understand the QoE of telephony services is by conducting
passive subjective experiments with human participants. Such experiments are commonly
carried out in constrained laboratory environments with controlled conditions regarding room
acoustics and background noise. This way, the impact of confounding factors can be limited
while ensuring valid and reliable study outcomes.

This test procedure is the so-called Listening-Only Test (LOT), which permits to gather
overall quality ratings on a five-point Absolute Category Rating (ACR) scale. The collected
scores are then averaged by listener, condition, or file to yield a Mean Opinion Score

1



1. Introduction

(MOS). However, these subjective laboratory studies are expensive and time-consuming.
Quality evaluations come at a relatively high expense, including the cost to build a
controlled environment, maintenance, fees for administering test participants, and participants
remunerations.

As a result, controlled experiments are usually only carried out by a limited number of
institutions, e.g., telecommunication providers, research institutes, or universities that can
afford such expenses. Additionally, the controlled laboratory environment leads to artificial
test situations in some cases. It was exposed in [7] that users rate services differently in their
life context than in a laboratory testing environment. Thus, the validity of the test suffers from
the likely higher reliability created by the controlled environment. Consequently, the demand
for instrumental models to predict the overall quality of transmitted speech and alternative
test methods has increased in recent years [8, 9].

1.1.2 Crowdsourcing

Crowdsourcing represents a valid alternative to counteract some of the limitations of laboratory
studies. Researchers are increasingly using it to collect data in more realistic test environments.

The term “crowdsourcing” was coined in 2005 by journalists Jeff Howe and Mark Robinson.
They later materialized this idea in 2006 with an article explaining how businesses were using
the Internet to “outsource” to the “crowd” work that was once performed by a designated
agent, e.g., an employee, freelancer, or a separate company [10]. This article quickly led to the
portmanteau “crowdsourcing”.

“Crowdsourcing” is a model in which organizations or individuals acquire services and
goods that can vary from idea generation, tasks, votes, finance, and medicine. Such goods
or services usually are collected from a large, relatively open, and rapidly evolving group
of participants commonly referred to as “workers” or “crowd-workers”. This model involves
using the Internet through crowdsourcing platforms to attract and divide the work between
participants to achieve a cumulative result.

Figure 1.1 depicts a simplified crowdsourcing workflow process excluding the payment
steps. First, the “work provider” creates a task on the platform. In some cases, these tasks
may include external content that could be stored in the crowdsourcing platform or external
storage service. Frequently, the platforms provide multiple task templates (e.g., survey, image
tagging, sentiment analysis, voting) and allow importing HTML and Javascript code for greater
task customization and flexibility. At this point, the “work provider” can specify different
tasks’ properties, such as the reward, the target audience, number of responses, and others.
Afterward, the tasks are accumulated in a pool that is available to the workers for execution.
The validation of the submitted answers is mostly carried out by the “work provider”. However,
some crowdsourcing platforms implement certain automatic validation mechanisms. Finally,
crowd-workers’ responses are stored and merged in the platform repository, from where the
“work provider” can download the results.

Crowdsourcing facilitates the materialization of opinions and evaluations through a
multitude of evaluators and contributors working in an open and participatory manner.
Over the years, multiple systems based on different collaborative methods have been created to
address a wide range of tasks [11]. All of these systems fall under the scope of “crowdsourcing”.
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Figure 1.1: This figure represents a crowdsourcing workflow involving the main steps from task
creations to results gathering.

Some popular examples are: “Stack Overflow”1, “Linux”, “Wikipedia”2, “Amazon Mechanical
Turk”3, and “microWorkers”4(MW).

The advantages of using crowdsourcing include cost improvements, speed, flexibility,
scalability, and diversity. These benefits have led to the wide adoption of crowdsourcing
as a powerful instrument for carrying subjective user-centered experiments. Consequently,
researchers have been using crowdsourcing to investigate different aspects of images [12, 13],
videos [14, 15, 16], mobile gaming [17], speech [18] and audio [19] multimedia applications. The
authors of [3] provide a good summary of the use of crowdsourcing for multimedia assessments.

1.1.3 Speech Quality Assessment in Crowdsourcing

The wide availability of the Internet has led to the creation of multiple crowdsourcing services
and platforms. These platforms offer low cognitive tasks or jobs to a demographically diverse
pool of workers. And the workers execute such tasks with their personal computer from the
comfort of their home in exchange for monetary compensation.

The execution of speech quality evaluations in crowdsourcing benefits from reduced
experimental turn-around times at a lower cost. Additionally, crowdsourcing permits to
reach a broad and diverse audience for collecting quality ratings in a more ecologically valid
context than traditional practices of in-Lab annotations. However, conceptual and technical
challenges arise due to the remote test settings, and multiple mechanisms have been proposed
to ensure valid results [20, 21].

Crowdsourcing users work without supervision, and they may not follow the instructions
given. Consequently, they could end up performing a listening test in a noisy environment or
with inappropriate equipment. For instance, researchers in [22] found that workers exhibit a
low discrimination capacity and don’t perceive certain speech characteristics when performing
the listening test with loudspeakers.

1https://stackoverflow.com
2https://www.wikipedia.org
3https://www.mturk.com
4https://www.microworkers.com/
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To contrast some of the challenges of carrying speech quality assessments in crowdsourcing,
researchers in [23] proposed the use of temporal expiring training certificates as a qualification
requirement. With this method, the authors achieved an improvement in terms of correlation
to the laboratory test results. Moreover, authors in [24] suggested using “trapping questions”
as a mechanism to detect inattentive listeners and to discard unreliable ratings.

1.1.4 Differences Between Laboratory-based and Crowdsourcing-based
Speech Quality Assessments

As mentioned above, conducting speech quality assessment studies in the laboratory is costly
and time-consuming, requiring the availability of testing facilities and human participants.
Thanks to the artificial setup of the laboratory tests, it is possible to quantify small differences
between speech stimuli that would otherwise be imperceptible under normal usage conditions of
a given speech service. The need for participants to access test facilities limits the demographic
characteristics of users that can be covered in a single test. Therefore, despite showing high
sensitivity and reliability of the results, the laboratory tests could show relatively low ecological
validity, in the sense that their results are not representative of the daily use of the service.

The use of the crowdsourcing paradigm could help overcome some of these limitations. A
broader, demographically balanced group of users can be reached at a lower cost. However, it
is limited to connected and Internet-savvy users. Quality evaluations are usually performed
under normal conditions of service usage, with the user’s standard equipment. In this way,
ecological validity can be greatly increased, albeit at the cost of rather little control over the
test setup, procedure, participants, and environment. The new ITU-T Recommendation P.808
has recently been established to limit the impact of poor experimental control of crowdsourced
speech quality assessment studies. More details of Recommendation P.808 can be found in
Subsection 3.3.1 and in [25].

1.2 Influencing Factors in Speech Quality Assessment using
Crowdsourcing

As previously introduced, the execution of speech quality assessment studies in crowdsourcing
is subject to several influencing factors. According to [5], an influencing factor is defined as
follows:

Influencing Factor: “Any characteristic of a user, system, service, application, or
context whose actual state or setting may have influence on the Quality of Experience for the
user.”

The ITU-T offers a technical report about the subjective evaluation of multimedia using
crowdsourcing [26]. This report focuses on the general aspects of crowdsourcing, and it also
provides an overview of the influencing factors, which can be grouped into four categories, i.e.,
user, task, platform, and context related. Figure 1.2 presents an overview of the identified
influencing factors of performing speech quality assessment experiments in crowdsourcing.
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Figure 1.2: The figure presents the main influencing factors of conducting speech quality
assessment studies in crowdsourcing. These factors are categorized under four headings, i.e., user-,
task-, platform-, and context-related factors. Depicted in blue are the influencing factors addressed
in this dissertation. The remaining factors were already addressed in the literature or should be
investigated in future work.

The user influencing factors are related to the crowd-worker’s characteristics and their
ability to execute the speech quality assessment properly. Included in this category are the
demographics factors (e.g., age, gender) [27], listener hearing impairments, and language
proficiency. For instance, it is important to estimate the hearing abilities of participants,
as crowd-workers may not realize that they may have mild or moderate hearing loss [27].
Researchers in [28, 29] proposed an adapted version of a digit-triplet test to detect hearing-
impaired listeners. However, to the author’s knowledge, the influence of linguistic differences
has not yet been investigated. Therefore, it is addressed in this dissertation.

The task influencing factors relates to the speech quality assessment task’s properties.
Researchers at [24] proposed to include trapping questions within the listening test to promote
motivation and detect inattentive workers. Furthermore, [23] encourages using a temporal
expiring training certificate as a prerequisite to perform the speech quality assessment test.
Moreover, the test duration in crowdsourcing is usually short, i.e., between 5 and 15 minutes [30],
which leads to a mixed within-between-participants study design, as each task would contain
only a subset of the entire dataset. This dissertation addressed the influence of task-related
factors that, to the authors’ knowledge, has not been investigated so far, i.e., the optimal
number of speech stimuli included in a task and the influence of task repetition.

The platform influencing factors are the design and incentive mechanisms [31]. These
factors influence workers’ decision to participate in a speech quality assessment task versus
other tasks that may be available on the crowdsourcing platform [31]. Consequently, these
factors indirectly affect the workers’ performance. However, the influence of these platform-
related factors are not investigated in this dissertation and should be addressed in future
research.

The context influencing factors are related to the hardware employed by the workers to
conduct the listening test and the environment in which they ultimately perform the speech
quality evaluation. Crowd-workers take part in user studies employing their equipment. This
equipment can vary widely, may not be calibrated, and could be of poor quality compared to
the hardware provided in laboratory-based studies. In a listening experiment, it is essential
to transmit the stimuli without distortions other than those to be judged. Additionally, it is
equally important that poor-quality sound cards or headphones do not compromise the stimuli
reproduction. Researchers in [24, 23] reported that narrow-band (NB) speech files were rated
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1. Introduction

lower in quality compared to the laboratory in a crowdsourcing speech quality assessment test.
Authors in [32] analyzed the influence of employed headphones when performing the speech
listening test, i.e., users’ regular headphones vs. professional ones. Furthermore, the acoustic
environmental characteristics, i.e., noise, reverberation, and the context (i.e., distractive), can
directly influence the quality of the responses by masking the underlying test condition or
indirectly by affecting the attention of crowd-workers [32, 33, 34]. Hence, this dissertation
investigates the influence of environmental background noise on speech quality evaluations
performed in web-crowdsourcing.

1.3 Research Questions and Thesis Outline

This dissertation addresses relevant questions related to the influencing factors introduced
in the previous section that has not yet been addressed. These questions are related to the
test structure, the impact of environmental background noise, and the influence of language
differences in speech quality assessment studies executed in crowdsourcing. Specifically, the
following research questions are answered:

• What is the optimal number of speech stimuli to include in a speech quality assessment
task in crowdsourcing to achieve valid and reliable results?

• What is the influence of conducting a speech quality assessment task multiple times?

• Which environmental noises and distractions are workers exposed to when performing
crowd-work?

• What is the impact of the environmental background noise on the speech quality ratings
collected in crowdsourcing?

• Which level of environmental background noise is acceptable to collect reliable speech
quality scores in crowdsourcing?

• Can environmental background noise recordings collected through the audio web-API be
used to identify the type of noise?

• Can non-native German listeners provide reliable speech quality scores to a German
speech dataset?

This thesis is structured as follows: In this chapter, the crowdsourcing paradigm is
introduced, and also a brief presentation of human speech quality perception. Additionally,
I expose some of the main challenges of conducting speech quality studies in crowdsourcing,
which set the ground and motivates the investigation carried out in this dissertation.

Chapter 2 reviews relevant work related to the research questions addressed in this thesis.
Chapter 3 describes concepts and methods for the practical assessment of speech quality in
crowdsourcing. Furthermore, the speech material employed in the experiments executed in
this thesis is presented.

Chapter 4 investigates the number of stimuli to include in a single task and analyzes the
influence of performing the speech quality evaluations multiple times. Chapter 5 addresses the
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research questions regarding the influence of environmental background noise on the speech
quality scores and evaluates different models to classify background noise from web audio
recordings.

Chapter 6 studies whether it is possible to employ non-German listeners to gather reliable
speech quality scores from a German dataset. Finally, Chapter 7 concludes and discusses the
main findings of this dissertation and presents directions for future work.

Most of the scientific contributions presented in this thesis have been published in the
form of conference articles. The author of this dissertation has been the first author and main
contributor of all of them:

• [35] Rafael Zequeira Jiménez, Laura Fernández Gallardo, and Sebastian Möller. “Outliers
Detection vs. Control Questions to Ensure Reliable Results in Crowdsourcing. A Speech
Quality Assessment Case Study”. In: Companion Proceedings of the The Web Conference
2018. WWW ’18. Republic and Canton of Geneva, Switzerland: International World
Wide Web Conferences Steering Committee, 2018, pp. 1127–1130. isbn: 978-1-4503-
5640-4. doi: 10.1145/3184558.3191545. url: https://doi.org/10.1145/3184558.

3191545

• [36] Rafael Zequeira Jiménez, Laura Fernández Gallardo, and Sebastian Möller. “Influence
of Number of Stimuli for Subjective Speech Quality Assessment in Crowdsourcing”. In:
2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX).
May 2018, pp. 1–6. doi: 10.1109/QoMEX.2018.8463298

• [37] Rafael Zequeira Jiménez, Laura Fernández Gallardo, and Sebastian Möller.
“Environmental Noise Recording as a Quality Control for Crowdsourcing Speech Quality
Assessments”. In: 44. Deutsche Jahrestagung für Akustik (DAGA). Deutsche Gesellschaft
für Akustik DEGA e.V., Mar. 2018, pp. 303–306. isbn: 978-3-939296-13-3

• [38] Rafael Zequeira Jiménez, Gabriel Mittag, and Sebastian Möller. “Effect of Number
of Stimuli on Users Perception of Different Speech Degradations. A Crowdsourcing
Case Study”. In: 2018 IEEE International Symposium on Multimedia (ISM). 2018,
pp. 175–179. doi: 10.1109/ISM.2018.00-16

• [39] Rafael Zequeira Jiménez, Babak Naderi, and Sebastian Möller. “Evaluating Acoustic
Features from Environmental Audio Recordings via Web. A Crowdsourcing Survey on
Background Noise Characteristics”. In: 45. Deutsche Jahrestagung für Akustik (DAGA
2019). Deutsche Gesellschaft für Akustik DEGA e.V., Mar. 2019, pp. 1190–1193. isbn:
978-3-939296-14-0

• [40] Rafael Zequeira Jiménez, Babak Naderi, and Sebastian Möller. “Background
Environment Characteristics of Crowd-Workers from German Speaking Countries
Experimental Survey on User Environment Characteristics”. In: 2019 Eleventh
International Conference on Quality of Multimedia Experience (QoMEX). 2019, pp. 1–3.
doi: 10.1109/QoMEX.2019.8743208

• [41] Rafael Zequeira Jiménez, Babak Naderi, and Sebastian Möller. “Effect of
Environmental Noise in Speech Quality Assessment Studies using Crowdsourcing”. In:
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2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX).
May 2020, pp. 1–6. doi: 10.1109/QoMEX48832.2020.9123144

• [42] Rafael Zequeira Jiménez, Babak Naderi, and Sebastian Möller. “Effect of
Environment in Speech Quality Assessment in Crowdsourcing”. In: Proceedings of
Forum Acusticum. European Acoustics Association. 2020

• [43] Rafael Zequeira Jiménez, Sebastian Möller, and Gabriel Mittag. “Removing the Bias
in Speech Quality Scores Collected in Noisy Crowdsourcing Environments”. In: submitted
to: 13th International Conference on Quality of Multimedia Experience (QoMEX). 2021

• [44] Rafael Zequeira Jiménez, Babak Naderi, and Sebastian Möller. “Influence of
Language in Speech Quality Studies in Crowdsourcing”. In: submitted to: 13th
International Conference on Quality of Multimedia Experience (QoMEX). 2021

The studies conducted in the publications above were designed and executed by the author.
The author is also responsible for the collection and analysis of the results, as well as the
writing process. The co-authors contributed valuable discussions to shape the studies’ settings,
the analysis of the data, and publications proofreading.

Furthermore, the papers [36] and [38] are a fundamental part of the Section 4.1. The
publication [40] is part of Section 3.3.4, whereas [41], [42], and [43] are a crucial part of
Chapter 5. Finally, [43] is a fundamental part of Chapter 6.

• Rafael Zequeira Jiménez, Anna Llagostera, Babak Naderi, Sebastian Möller and Jens
Berger. “Modeling Worker Performance Based on Intra-rater Reliability in Crowdsourcing
: A Case Study of Speech Quality Assessment”. In: 2019 Eleventh International
Conference on Quality of Multimedia Experience (QoMEX). 2019, pp. 1–6. doi: 10.

1109/QoMEX.2019.8743148

• Rafael Zequeira Jiménez, Anna Llagostera, Babak Naderi, Sebastian Möller and Jens
Berger. “Intra- and Inter-rater Agreement in a Subjective Speech Quality Assessment
Task in Crowdsourcing”. In: Companion Proceedings of The 2019 World Wide Web
Conference. WWW ’19. New York, NY, USA: ACM, 2019, pp. 1138–1143. isbn: 978-1-
4503-6675-5. doi: 10.1145/3308560.3317084. url: http://doi.acm.org/10.1145/

3308560.3317084

The above two publications are related to this thesis with respect to the research question
on test structure. Precisely, the impact of task repetitions addressed in Section 4.2. The
author was responsible for all necessary steps for the studies conducted in crowdsourcing, i.e.,
study design and supervision, data collection, analysis of the results, and paper writing. The
laboratory study was planned and executed by Anna Llagostera and Jens Berger. They also
wrote the laboratory section of both publications. Furthermore, Babak Naderi and Sebastian
Möller contributed to the study design and discussion of the study results.

Additionally, the author of this thesis was strongly involved in the activities at the ITU-
T SG12 in the P.CROWD work item. These activities led to the ITU-T recommendation
P.808 [25]. The following is a list of the ITU-T contributions the author was part of, which
are also a key component of Chapter 4 and Chapter 5 of this dissertation:
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• Rafael Zequeira Jiménez and Sebastian Möller. Investigating the Influence of Number of
Stimuli in Speech Quality Assessments in Crowdsourcing. ITU-T Contribution SG12-
C.290. CH-Geneva: International Telecommunication Union, Nov. 2018, pp. 1–8

• Babak Naderi, Sebastian Möller, and Rafael Zequeira Jiménez. Evaluation of the
Draft of P.CROWD Recommendation. ITU-T Contribution SG12-C.290. CH-Geneva:
International Telecommunication Union, Nov. 2018, pp. 1–8

• Rafael Zequeira Jiménez, Babak Naderi, and Sebastian Möller. Influence of environmental
background noise on Speech Quality Assessment in a simulated Crowdsourcing scenario.
ITU-T Contribution SG12-C.0425. CH-Geneva: International Telecommunication Union,
Nov. 2019, pp. 1–9
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2
Related Work

This chapter reviews relevant work about speech quality studies in crowdsourcing, with a
focus on literature addressing the impact on the results of factors related to the test structure,
the effect of environmental background noise, and the influence of language differences in
subjective listening tests.

2.1 Number of Stimuli

Participants in a laboratory study usually evaluate the entire dataset. In contrast, workers
in crowdsourcing are presented with just a portion of the samples under investigation. In
this way, experimentation time can be kept short while avoiding the participant’s boredom [1,
2]. However, such experimental fragmentation leads to a mixed within-between-participants
study design. Consequently, workers can easily abandon a multi-part experiment and limit
themselves to grading a subset of the available samples [22, 50].

Multiple works in the literature propose the use of crowdsourcing to analyze different
aspects of audio [19] or speech [51, 22, 52, 53, 54, 55, 24, 56] applications. It is common to all
these articles that the results collected in crowdsourcing were highly correlated to previously
gathered laboratory outcomes. Still, the number of stimuli per task was different in most of
the cases.

The following papers are presented focusing on the number of stimuli that were used
in those studies. It is reported whether the results correlated with those of the laboratory
and whether there was worker drop-out due to the high number of samples submitted in
crowdsourcing:

• Authors in [22] carried out a study in crowdsourcing where listeners employed a discrete
five-point scale to rate the naturalness of synthesized speech. Crowd-workers were
presented with tasks containing eight to ten stimuli that were between three and five
seconds long. The results were strongly correlated (r=0.95) to paid participants in the
laboratory. Additionally, the authors measured repeatability by conducting a second
study. They found a decrease in the correlation coefficient (r=0.92 to r=0.78) when

11



2. Related Work

comparing the laboratory results with those of workers who used headphones and those
who employed loudspeakers.

• Moreover, [52] analyses word recognition in noise. The authors described the outcome of
a web-based listening study designed to discover consistent confusions between words
presented in noise, alongside an identical task performed using traditional laboratory
methods. A web interface was prepared so listeners could evaluate 50 stimuli in less than
three minutes in crowdsourcing. The correlation between a subset of the crowd-workers
and the laboratory results was strong and significant (corr=0.8) despite the relatively
high number of stimuli presented to the listeners in the crowd (i.e., 50).

• Research in [55] employed Amazon Mechanical Turk (AMT) to gather speech ratings
regarding /r/ misarticulation in single word utterances. Naive listeners in AMT rated
100 stimuli. The authors found a high agreement (r=0.98) with ratings provided by
speech experts in the laboratory.

• Researchers in [24] used mobile-crowdsourcing to investigate the influence of trapping
questions in a speech quality assessment task. Crowd-workers were confronted with tasks
consisting of six stimuli (9s long on avg.), and a high correlation was achieved between
the laboratory Mean Opinion Score (MOS) and the crowdsourcing MOS (ρ = 0.909).

• Authors in [19] investigated the viability of AMT for the subjective evaluation of audio
with intermediate impairments, a.k.a, MUSHRA [57]. The stimuli were five seconds long,
and workers evaluated ten samples per task. The results in terms of overall audio quality
were correlated (r=0.78) to previous ratings collected in the laboratory.

Furthermore, work in [56] evaluates the use of AMT for spoken word recognition. Although
crowdsourcing and the laboratory results were strongly correlated (r=0.87), the workers were
presented with 100 stimuli, and a drop-out was seen in the crowdsourcing experiment. As well,
authors in [51] experienced a drop-out rate of 15% when presenting 50 stimuli per task in a
crowdsourcing study investigating the intelligibility of synthetic speech.

Section 4.1 of this dissertation focuses on finding an optimal compromise between the
number of stimuli and results’ accuracy. The goal is to boost workers’ performance and
mitigate drop-out effects in speech quality studies carried out in crowdsourcing.

2.2 Worker Performance and Task Repetition

As previously noted, crowdsourcing workers are normally presented with a portion of the
dataset, which leads to a fractioned experimental design. Hence, a worker would need to
perform multiple tasks to evaluate the entire dataset.

The quality of experimental results gathered in crowdsourcing is frequently a function of the
workers’ performance. This idea has been explored in the literature from different viewpoints.
Research in [58] employed Amazon Mechanical Turk to examine crowd-workers’ performance in
the context of the subjective evaluation of search results. The authors investigated performance
in terms of the aggregated majority voting accuracy. Work in [59] also recognized workers’
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performance as a function of accuracy. For that, they evaluated implicit and explicit training
within different common micro-tasks types.

Researchers in [60] introduced the “SOS hypothesis” to measure consistency in subjective
QoE measurements. This hypothesis models a square relationship between the standard
deviation of the opinion scores (SOS) and the Mean Opinion Score. The authors proposed
this approach as an alternative to audit the reliability of the test results. Also, they encourage
its use to test outcomes comparability across multiple QoE studies in crowdsourcing.

Researchers in [61] also studied result comparability over different studies. The authors
carried out four subjective listening tests in three different laboratories to investigate inter-
and intra-lab test result repeatability. The speech stimuli were arranged according to
Recommendation P.800, and listeners assessed an English dataset containing 22 speech
degradation conditions, e.g., wideband versions of AMR, 3GPP TS 26 071, EVS, and selected
background noise cases such as cafeteria or road. All listeners were native English speakers
from the United States. The Pearson correlation between tests was high and above 0.97 in all
cases.

However, the test methodology in [61] was P.835 [62], whereas the experiments in this
dissertation follow Recommendation P.808 [25]. ITU-T P.835 is particularly suitable for
samples processed by noise-canceling algorithms. Listeners repeat the assessment of each
speech sample three times and focus on a different aspect of the sample quality during each
playback. Furthermore, the authors found that listeners provided higher overall MOS scores
when confronted with a broader set of speech degradation conditions.

On the other hand, authors in [63] studied the influence of test duration on users’ fatigue
and the reliability of the subjective quality ratings. The fatigue data was gathered objectively
by physiological means and subjectively by a questionnaire. The authors performed an analysis
based on measures from common QoE laboratory studies involving different task profiles,
e.g., audio, video, and web browsing. Intra- and inter-rater reliability was calculated, and
the researchers demonstrated to what extent the test duration can be increased without
compromising the users’ ratings reliability.

Furthermore, authors in [64] used Bayesian networks to model crowd-workers as a function
of human capabilities they expose when executing crowd-sourced tasks. Authors employed
such a model to estimate workers’ performance on new tasks. They aimed at improving
task assignments eventually. However, contrary to the work carried out in this dissertation,
they focused on different tasks such as fact verification, image comparison, and information
extraction.

Research in [65] also investigated workers’ performance in crowdsourcing markets, but as
a function of users’ intrinsic and extrinsic motivation. The authors demonstrated that the
crowd-workers’ accuracy improves significantly with intrinsic motivators when the extrinsic
motivation is low. Moreover, work in [31] employed Amazon Mechanical Turk to evaluate
features from micro-tasks in crowdsourcing that would influence the performance of workers.

The study of intra- and inter-rater reliability in speech quality experiments in crowdsourcing
is relatively poor. Often, workers evaluate just a portion of the dataset under test. Such a study
setup makes it difficult or even impossible to compute the intra- and inter-rater agreement.
However, this is usually the case to keep test sessions short [1] while avoiding boring the
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workers [2]. For instance, participants of the speech quality assessment study carried out
in [24] and in [23] evaluated just 2.5% of the speech dataset every time they participated in
the crowdsourcing experiment; listeners of the study described in [22] only judged 3.1% of the
available samples each time they assessed the naturalness of synthesized speech. Nevertheless,
the authors repeated the experiment but only to prove the validity of the framework they
proposed.

Additionally, even when workers have the option to evaluate the entire speech dataset,
sometimes they choose to take part in the study just one or two times, or other times the
available jobs are completed faster by multiple different workers. As a result, almost no
participant evaluates the dataset completely. For example, in the experiment carried out in [36]
and detailed in Section 4.1, more than 200 workers participated in the study, and only two
evaluated the entire speech dataset. Thus, no analysis was made regarding intra- or inter-rater
reliability.

To the best of the author’s knowledge, no study has reported the use of intra-rater reliability
as an input variable to determine workers’ performance, especially in the speech quality research
domain in crowdsourcing. Section 4.2 presents an experiment where listeners had the chance
to evaluate four times all the speech stimuli in the dataset. Hence, enough data is collected
for analyzing the agreement between and within-subjects. Additionally, a novel approach is
proposed to model the relationship between the consistency of the workers’ ratings at different
time points and the overall performance.

2.3 Environmental Background Noise

Previous work endeavored to investigate the influence of the environmental background noise
in speech quality assessments carried out in crowdsourcing. Authors in [32] performed a
study in which participants rated the quality of speech samples first in the laboratory and
afterward in a specific crowdsourcing scenario, i.e., cafeteria, metro station, or living room. In
their experiment, 14 participants executed a P.800 [66] listening test in the laboratory with
simulated “crossroad” noise, and in crowdsourcing also 14 workers performed the listening test
under the “living room” test condition. All in all, researchers discovered that the presence of a
“cafeteria” background noise at 62.7dB(A) or a “crossroad” noise at 64.7dB(A) would decrease
the correlation to ratings collected through a traditional P.800 listening test.

However, the authors focused on two main factors: the effect of the employed playback
hardware, i.e., users’ regular headphones vs. professional ones, and mobile-crowdsourcing,
where crowd-workers have the freedom to work from many different places. In contrast, this
dissertation concentrates on web-crowdsourcing. It has been exposed that users of the main
crowdsourcing platforms work mostly from home [67]. This fact limits the range of noises
workers might be exposed to when they perform crowd-work.

On the other hand, work in [33] examined the impact of the information contained in
background noise from environmental sources on the speech quality perception in VoIP
applications. The authors investigated the interaction between multiple background noise
conditions and realistic network impairments such as coders and packet loss. The tested
background noises were: the voice from a TV source, cocktail party, circuit noise, restaurant,
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and city noises. Researchers discovered that speech quality perception could be affected by the
meaning of the noise in telephony contexts and not by the interaction between the percentage
of packet loss and the different noises.

Work in [68] also investigated the listener perception of speech affected by different
environment background noise conditions. Multiple P.800 [66] speech quality studies were
conducted in different laboratories. The authors discovered that users perceived the quality of
the speech higher on those samples affected by the “Vehicle” noise condition in comparison to
those degraded by the “Street” and “Hoth” noise condition.

Similarly, researchers in [69] studied the speech quality perception for situations in which
different noises are present in the speech signal. They attempted to determine the link between
different noise types and their impact on the quality judgments. The authors carried out
a listening test to gather quality scores for a set of speech samples mixed with different
background noises. They then executed a cluster analysis on the quality ratings and identified
three classes based on the noise impact. Their experiments suggest that it is possible to create
and predict noise classes based on the speech quality scores.

Differently from the user perception of speech affected by noise, this dissertation examines
the influence of environmental background noise on the listener’s side, on the speech quality
perception in crowdsourcing scenarios.

Furthermore, speech intelligibility under different background noise circumstances is another
challenging research stream that has received significant attention in recent years. [70] tackled
the problem of speech recognition in ecologically valid natural background noise scenarios.
The authors found that the vowel identity was mostly preserved despite the noise under test,
and they also confirmed the functional role of consonants during lexical identification.

Work in [71] assessed three different speech coding standards regarding intelligibility in
near-end background noise and packet loss conditions. Researchers in [72] studied the user
perception of speech containing ambient background noise. Specifically, they looked at how
people value speech-based take-over requests as a function of background noise, speakers’
gender, speech rate, and emotional tone. To this end, the authors carried out an experiment
in crowdsourcing where workers rated speech samples according to urgency, commanding,
and pleasantness. Researchers found that the female voice was easier to understand under
background noise conditions.

Still, to the best of our knowledge, the effect of environmental background noise on speech
quality evaluations performed in web-crowdsourcing has not been studied so far.

2.4 Influence of Language Differences

Multiple studies in the literature have analyzed different aspects of conducting an audio
listening test with users of different nationalities. Work in [68] presents the results of multiple
P.800 speech quality evaluation tests carried out in multiple laboratories with listeners from
different countries. The participants assessed the quality of speech stimuli in their native
language. The authors found that Japanese listeners provided lower quality scores per condition
than the native French, English, German and Norwegian speakers. This outcome suggests that

15



2. Related Work

the speech quality scores collected from listeners of a particular nationality may be biased
when compared to the same ratings provided by a different demographic group of users.

The research in [73] presents the results of a speech quality assessment test in which users
evaluated stimuli that were in a language other than their mother tongue. Listeners were
either native Czech, Slovak, or Italian speakers. They assessed the quality of an English
speech database comprising different codecs and two noise conditions. The authors found that
listeners with insufficient English knowledge (i.e., beginner and intermediate level) rated the
speech quality systematically lower than the participants with an advanced level. Researchers
believed this outcome was due to the listeners’ inability to understand what was being said in
the stimulus, even in the less distorted samples. Therefore, they provided lower quality scores.

Similarly, French listeners in a speech quality study carried out in [74], rated systematically
lower the quality of speech items that they were able to understand but lacked semantical
meaning. In contrast, the German listeners participating in the study that could not understand
French scored similarly the quality of both types of French speech stimuli, i.e., those with no
semantic meaning and those carrying typical telephone content.

Contrary to the experimentations conducted in this thesis, the listening test in [73] and
in [74] was carried out in the laboratory following Recommendation P.800, whereas I executed
the listening test in crowdsourcing according to Recommendation P.808 [25]. Additionally, no
insight was given in [73] about how the quality ratings from native English speakers compared
to the ratings from the non-native listeners.

Furthermore, authors in [75] carried out a speech quality study to investigate the listener’s
perception of a speech dataset containing sentences of American English. There were two
groups of participants, i.e., native English listeners from the United States and native Igbo
speakers of an African tone language. The authors discovered that Igbo subjects overestimated
the impact of the noise on the speech samples’ quality. They were more disturbed by the
additive noise than other degradations compared to the native English participants. In contrast,
low-level listening or attenuated impairment conditions did not significantly affect the perceived
speech quality.

On the other hand, work in [76] examines whether a foreign language influences the ratings
and listening times in a subjective evaluation of audio with intermediate impairments, a.k.a,
“MUSHRA” [57]. The authors performed a study with native German and Mandarin Chinese
speaking listeners and items of these two languages. They discovered that for high audio
quality items where the sample artifacts are difficult to perceive, non-native listeners executed
more comparisons and needed 20% more time to conduct the listening test. Moreover, no
overall difference was found between the ratings of the native and non-native listeners.

Unlike our work, the quality of items in a “MUSHRA” test is higher, and intelligibility
is not an issue. Additionally, for high-quality items, listeners typically focus on small audio
sections and listen to it repeatedly. Often these sections are as short as half a second. Thus,
any semantic meaning is lost, and understanding does not play a role. In contrast, I investigate
how listeners of different mother tongues perceive degraded speech German stimuli.
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2.5 Conclusion

This chapter reviews the literature for relevant research addressing the influence of factors
related to the test structure, the effect of environmental background noise, and the influence
of language differences in speech quality assessment studies.

The test structure relates to the number of stimuli to include in a speech quality assessment
task in crowdsourcing. This decision is frequently made based on a rule of thumb about how
many samples can be squeezed into a test without compromising the result quality and the
test duration [1]. To the best of the author’s knowledge, no studies have been conducted in
which the influence on the results of using a different number of stimuli in a speech quality
assessment context has been analyzed. The findings of this dissertation in this respect, will
help the research community when designing subjective user studies to find a good compromise
between the number of speech samples, task length, and result reliability.

Additionally, this chapter examines different articles addressing the effect of background
noise on speech quality assessments. However, most of the cited work analyses the listeners’
perception in scenarios where the noise is coupled to the speech signal, or situations where
the noise affects the speech intelligibility. As yet, to the best of the author’s knowledge, the
effect of environmental background noise on speech quality assessment studies performed in
web-crowdsourcing has not been studied so far.

Finally, this chapter reviewed the literature for research where participants of a study
evaluated speech or audio material in a language different from their mother tongue. Still, no
studies have been found that analyze the influence of presenting a German speech dataset to
English or Spanish listeners in crowdsourcing.
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This dissertation investigates the effect of different factors influencing the results of speech
quality assessment studies conducted in crowdsourcing. To this end, I use the listening-only
quality of transmitted speech rated in an Absolute Category Rating paradigm, as this is the
most popular rating method used in practice. This chapter introduces relevant information
regarding the test procedures in crowdsourcing and the laboratory necessary to understand
the studies conducted throughout this thesis. Additionally, the speech databases employed in
most of the experiments are presented.

3.1 Laboratory Test

A common means to study and understand the Quality of Experience of telephony services is
by carrying passive subjective experiments with human participants in a laboratory context.
These experiments are the so-called “Listening-Only Test” (LOT), where overall quality ratings
are collected on a five-point Absolute Category Rating (ACR) scale.

The most frequent listening-only test employed in the laboratory is the overall quality
evaluation using an ACR paradigm. The test stimuli are presented individually, and listeners
express their opinion about the overall quality on a unipolar five-point rating scale with
numeric values 5, 4, 3, 2, and 1, and the corresponding labels: “excellent”, “good”, “fair”,
“poor”, and “bad” (or their respective language-specific counterparts). Figure 3.1 presents this
five-point ACR scale as defined in [66].

The average of the ratings from several test participants per stimulus results in an absolute
quality metric called “Mean Opinion Score” (MOS). The scores are commonly reported on a
per-stimulus and a per-test-condition level, and a test condition corresponds to the treatment
of a source stimulus, e.g., due to transmission impairments and coding effects.

The International Telecommunication Union Telecommunication Standardization Sector
(ITU-T) has published recommendations and guidelines for carefully conducting subjective
speech quality assessment studies in the laboratory, i.e., ITU-T P.800 [66]. The recommendation
states that “balanced” speech material, “normal” speakers, as wells as “normally-hearing”
test participants should be chosen, and the test stimuli should be presented in a neutral
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Figure 3.1: Five-point Absolute Category Rating (ACR) scale as defined in [66] that is used for
Listening-Only Tests.

reproducible situation. The test room guidelines define that the experiment should be carried
out in an acoustically treated listening environment with limited sources of external noise and
reverberation.

Furthermore, the test participants should be selected according to their perceptual abilities
and experience with listening tests. Then, they get invited to the laboratory, carefully
instructed about the listening test, monitored during the experiment, and debriefed after
the test. This procedure ensures constant and controllable conditions across participants
and increases reliability. However, little effort is taken to mimic real-life usage situations,
e.g., simulating background noise, asking content-related questions. Therefore, limiting the
ecological validity of the test results to some extent. Such a gap is meant to be shortened by
crowdsourcing-based speech quality evaluations.

3.2 Speech Database

The stimuli employed in the studies described in this dissertation were taken from database
number 501 and 502 from the ITU-T Recommendation P.863 [9], competition. And also from
the ITU-T Recommendation P.501 Annex D [77]. These databases were kindly provided by
SwissQual AG, Solothurn, for research purposes.

3.2.1 SwissQual 501

The database SwissQual 501 includes different types of speech degradations that were created
following the ITU-T Recommendation P.863. Four German speakers were recorded per
condition uttering four different German sentences. Overall, 200 stimuli were arranged,
accounting for 50 speech impairments conditions. These degradation conditions represent
different audio bandwidths (narrowband 300-3400 Hz, wideband 50-7000 Hz, super wideband
50-14000 Hz), temporal clipping, signal-correlated as well as uncorrelated noise, speech coding
at various bitrates, packet loss with multiple temporal loss profiles, ambient background noise
of diverse types, different frequency distortions, and also, combinations of these degradations.
Table A.1 in Appendix A presents a summary of these speech impairments conditions.

The database encloses subjective quality assessments to the 200 stimuli made by 24 different
native German listeners. These quality scores were gathered in a laboratory following the
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ITU-T Recommendation P.800 [66]. The resulting Mean Opinion Scores (MOS) for each
stimulus and condition are taken as a reference for the analyses made in the multiple studies
carried out in this thesis (from now on referred to as “Lab-MOS”).

3.2.2 SwissQual 502

The speech database SwissQual 502 is very similar to SwissQual 501, with slightly different but
comparable speech impairment conditions. This database was also created for developing the
ITU-T Rec. P.863 [9]. It contains 50 speech degradation conditions, e.g., send-side ambient
background noise, white background noise, different audio bandwidths (narrowband 300-3400
Hz, wideband 50-7000 Hz, super wideband 50-14000 Hz), speech coding at various bitrates,
and combinations of these degradations.

This database was employed in the study detailed in Section 5.1. Out of the 50 conditions,
only 16 were used due to the time constraints of the study. Table B.1 in Appendix B presents
a summary of these 15 speech impairments.

SwissQual 502 also includes subjective quality evaluations made by 24 different native
German listeners, following ITU-T Rec. P.800. I use the resulting MOS scores per file and
condition as a reference for the different analyses made in this thesis’s studies.

3.2.3 SwissQual P.501 Annex D

The database SwissQual P.501 Annex D is a mixed fullband set of samples containing audio
bandwidths from below narrowband and up to fullband. The speech stimuli are encoded with
state-of-the-art codecs under ideal and live good/average/bad coverage situations. Furthermore,
71% of the speech samples are live conditions from real-field recordings, whereas 29% are based
on offline processed speech and anchor conditions. The full list of these conditions is presented
in Table C.1 of Appendix C. More details about the speech material can be found in [78].

3.3 Crowdsourcing Test

3.3.1 Standardized Evaluation Method for Speech Quality in Crowdsourcing

The ITU-T has recently published Recommendation P.808 [25] for subjective speech quality
assessments in crowdsourcing. This standard considers the fundamental differences between
laboratory and crowdsourcing, as well as information about the experimental design, test
material, and the procedure for conducting ACR listening tests in crowdsourcing. The
Recommendation does not provide information on other listening opinion tests, such as
Degradation Category Rating (DCR) and Comparison Category Rating (CCR), as they are
the subject of future research.

P.808 encourages dividing the test procedure into three phases, i.e., “qualification”,
“training”, and “assessment”. The “qualification” phase serves to test the eligibility of the
test participants. The “training” phase should contain a temporal restriction and anchoring
conditions to prepare the listeners for the evaluation task. Finally, the “assessment” phase
includes a small set of stimuli, and participants give their opinion about the overall quality on
the corresponding ACR scale.
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Recommendation P.808 es the outcome of years of research regarding crowdsourcing for
speech quality assessment studies. This research has been conducted by the “Quality and
Usability Lab” of the “Berlin Institute of Technology” (from which the author is a member)
and other laboratory partners. Thus, the methodology defined in the following Subsection 3.3.3
for executing speech quality evaluations in crowdsourcing is in line with the specifications of
P.808.

3.3.2 Crowdsourcing Platforms

The crowdsourcing platforms maintain a dedicated crowd of workers and provide the necessary
infrastructure like a pool of tasks, payment mechanisms, and in some cases, additional services
like quality control or worker selection mechanisms [30].

The crowdsourcing platforms employed to conduct some of the studies detailed in this
dissertation are Amazon Mechanical Turk (AMT)1 and clickworker2. AMT is the best known,
used, and researched platform within the academic literature and in a more public context [67].
Due to the platforms’ payout policy3, the vast majority of its crowd-workers are from the
United States and India4.

On the other hand, clickworker is a crowdsourcing platform based in Germany that claims
to have a crowd of more than 2.2 million workers from all over the world5. Most of their users
come from North America (46%), Europe (30%), and Asia (15%). And overall, 47% are native
English speakers and 12% native German speakers.

3.3.3 Test Setup and Procedure

The experiments carried out in this thesis were executed on multiple crowdsourcing platforms
and in the laboratory. To ensure a consistent test layout across the different studies, an HTML
JavaScript-based framework6 was implemented to administer the listening test, in conjunction
with a Node.js server for the data collection.

The speech quality assessment studies conducted in crowdsourcing contain three main
phases, i.e., Qualification, Training, and Assessment. These phases were implemented in the
framework mentioned above and are detailed in this subsection.

3.3.3.1 Qualification

The Qualification phase serves to screen the workers’ population to find suitable participants
for the listening test based on their mother tongue. Additionally, basic demographics
information is collected at this point, i.e., gender, age group, country of residence, and
mother tongue. Specifically, the Qualification consist of a short introduction to the study,
a consent request for the data being collected, a demographic questionnaire, and a quiz to
test the German language knowledge. This test comprises three audios that are 23 seconds
long on average. Workers then listen to a German passage and are asked to select the correct

1https://www.mturk.com
2https://www.clickworker.com
3https://www.mturk.com/mturk/help?helpPage=worker
4http://demographics.mturk-tracker.com
5https://www.clickworker.com/clickworker-crowd
6https://gitlab.com/zequeira/SQAT-Cr.git
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statement out of three options. Workers failing this quiz are not invited to the study. Finally,
workers answer whether or not they have been involved in any type of listening test in the
last year. Those responding positively to this question are prevented from participating in the
study [66].

3.3.3.2 Training

The Training phase permits to check whether the workers’ system is optimal for conducting
the listening test. Listeners specify how they use their headphones, i.e., in-ear or over-ear. They
are not allowed to use loudspeakers. Otherwise, they would present a smaller discrimination
capacity [22]. Additionally, workers are presented with a short math exercise with digits
panning left to right in stereo. Then, they insert the total sum in an input field. This way, the
two-eared usage of headphones is controlled. Furthermore, they play a short audio clip and
set their device volume to a comfortable level. After this, they are instructed not to change
the volume; otherwise, the results would be invalidated. Finally, workers listen to five speech
stimuli carefully selected from the dataset to cover the entire MOS range. Thus, they could get
to know what to expect on the rating task while becoming familiar with the interface. They
are not informed about the samples’ quality to avoid bias on the ratings. Additionally, this
anchoring step serves to overcome the scale usage problem reported in previous studies [79].
All the questions are mandatory, and the workers failing the math exercise are prevented from
participating in the study for 12 hours. On the other hand, when they pass the Training, they
are granted an hour-long time frame. During this time, workers can execute the assessment as
long as it was available. After one hour, they need to perform the Training again to continue
participating in the study.

3.3.3.3 Assessment

The Assessment phase is presented immediately after the workers complete the Qualification
successfully. They are informed that each speech sample contains one or two sentences and
that they just need to rate the overall speech quality on the provided five-point scale, see
Figure 3.2. Workers could not give their opinion on the scale unless they listened first to the
speech sample. They could not go forward until the audio was played entirely and one option
selected on the scale. They could listen to each speech sample as many times as they wished.

Inspired by work in [24], one trapping question (TQ) is inserted randomly within the first
five stimuli from every ten speech samples. This TQ consists of a speech stimulus that starts
as the rest of the stimuli but is interrupted after four seconds and includes a new voice that
requests the worker to select one specific option in the five-point scale (the TQ’s Graphical
User Interface (GUI) is the same as the rest of stimuli, Figure 3.2). The TQ includes as well a
motivational message and highlights the value of the listeners’ work. When workers fail the
TQ, the ratings from the set of those ten stimuli are considered unreliable. Like when failing
the training phase, they are prevented from participating in the study for one hour.

All the text, feedback messages, and labels in each study were translated to match the
target audience’s language.
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Figure 3.2: Graphical interface employed by the listeners for the speech quality assessment in
crowdsourcing (in line with [66]). The text translate from German: “Speech Quality” and “Rating”.
The scale (in descending order): “Excellent”, “Good”, “Fair”, “Poor”, and “Bad”.

3.3.4 Environment

As previously stated, users in crowdsourcing work remotely and unsupervised. This lack of
control introduces some “noise” into the study setup, which needs to be controlled for gathering
valid results. Therefore, understanding the characteristics of the environments in which workers
perform crowdsourcing tasks is crucial to mitigating these study impairments. Specifically, the
common sources of noise and distractions they experience when doing crowd-work. The user
environment characteristics are essential in audio and speech quality assessment studies as
listeners might not be able to evaluate appropriately certain degradations in speech samples if
they conduct the task from a place where they could be distracted. Inattentive crowd-workers
are prone to work sloppy, which in turn leds to poor experimental results.

This subsection investigates the environment characteristics of crowd-workers from German-
speaking countries. To this end, a study was conducted in which workers gave details about
the surroundings in which they usually perform crowdsourcing tasks. Audio and visual data
was collected per user, which contributed to aggregate more information on the users’ input.

3.3.4.1 Study Setup

The German-based clickworker crowdsourcing platform was used. Clickworker has an active
pool of workers from Germany, Austria, and Belgium. Thus, a good fit for the experimental
needs. The study consisted of three phases, i.e., “Audio Recording Setup”, “Environment
Video Recording”, and “Environment Questionnaire”. A three-pages HTML JavaScript-based
framework with a Node.js back-end to collect the data was implemented.

I targeted users from Germany, Austria, and Belgium. Overall, 325 crowd-workers
participated in the study. Unfortunately, a number of them dropped out of the experiment at
different stages. Consequently, it was not possible to collect the same amount of data at each
study phase.

3.3.4.2 Audio Recording Setup

This phase consisted of a tutorial that guided workers in deactivating some noise reduction
options that are frequently enabled by default on Windows and macOS computers. This step
was important for collecting accurate audio recordings of the workers’ environmental scene.
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They were also asked to submit a screenshot of their system’s configuration to show they had
the proper audio recording setup. Otherwise, the recordings would be too corrupt to extract
any useful information from them.

A total of 248 workers submitted a screenshot and 183 of them from a Windows computer.
I noticed that 54% of the participants configured their computer correctly, whereas 23.4%
failed on this task. Some of these workers did not pay attention to the instructions and selected
the wrong option on the setup. Others uploaded an image file different from the requested
screenshot. The remaining 22.6% could not set the requested audio configuration, either
because their system was old or because the options they needed to select were not available
on their computers. Uploading the screenshot was a requirement to proceed to the next phase.

3.3.4.3 Environment Video Recording

Once crowd-workers uploaded the screenshot, they continued with the second phase in which
they recorded and submitted a short video of their current environment. For this purpose,
I prepared an example video so that they could see how to do the recording. They were
advised to perform the recording with their smartphone. Additionally, they were instructed to
avoid recording any element that allows them to be identified nor other people, and neither
documents containing confidential data.

These videos were analyzed to verify that the recorded scene corresponded with the one
reported by the workers in the questionnaire (Subsection 3.3.4.6). I collected a total of 230
videos from different crowd-workers.

I recognized a house’s room in 82.17% of the recordings. Most frequently, a living room,
bedroom, workroom, or kitchen. I also identified an office space in 3.48% of the videos. In
6.09% of the cases workers failed to do a proper recording, and no scene was identified. Also,
6.52% of the participants submitted a video different from what we requested.

Moreover, a few workers were not concern about privacy, and despite our instructions, they
recorded themselves or other people in the room. Additionally, I found that workers tended to
turn down the TV, radio, or music volume prior to recording, as the video audio was low or
quiet compared to the web audio recording.

3.3.4.4 Environment Questionnaire

Finally, after workers submitted the video, they proceeded to the last phase to answer questions
regarding their place’s environmental characteristics, where they usually perform crowdsourcing
tasks. They also gave information about the environment in which they were at that moment.

Additionally, a JavaScript code embedded within the first question permitted to record the
workers’ environment background noise for 15 seconds. This data was used to check whether
the information they provided in the questionnaire correlated with the sounds captured in the
recordings.

3.3.4.5 Audio Recording Analysis

A total of 131 environmental background noise files from different workers were collected. I
hypothesize that some users did not grant access to their microphone or that hardware or
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browser issues happened on the worker side, which prevented the recording from happening;
therefore, the low number of files. These audios were labeled manually according to the
sound they contained and whether they carried any information. Table 3.1 presents the labels
assigned to these background noise recordings.

I found that 43.08% of the recordings were corrupted, and it was not possible to identify
any sound. According to the screenshots of these workers’ audio setup, 19.6% failed to
configure their system correctly, while 32.1% selected the instructed options. For the rest of
the recordings (48.2%), a screenshot was not provided.

It is important to note that some of the recordings were made with a properly configured
system, yet the audio files did not carry any information. We believe that the microphone of
these users was defective. Moreover, we labeled some files as “quiet” because the background
noise was low or non-existent. More information is presented in Table 3.1. In addition, we
detected in some files noises from the kitchen, bird sounds, mobile ring tones, ventilation
systems, water flowing, and radio. However, these noises were detected in only one recording
in most cases and, therefore, not included in Table 3.1.

Table 3.1: Labels assigned to the audio recordings in relation to the type of noise that could be
heard on them.

Background Noise Number of Files Percentage

not defined (NA) 56 43.08%
quiet 31 23.85%
TV 18 13.85%
electric device 11 8.46%
music 8 6.15%
street noise 4 3.08%
people talking 3 2.31%

3.3.4.6 Questionnaire Results

A total of 213 workers submitted answers to the questionnaire. 93.4% reported Home as the
regular workplace where they usually perform crowdsourcing tasks, whereas 3.8% execute the
tasks from Work. This information seems accurate since 86.9% of them expressed being at
home while running our study, and 7.5% selected Work as their current workplace.

Moreover, 79.6% of the workers reported being alone while conducting our experiment,
while 14.7% announced that there was one more person in the same room. They also reported
an estimate of the number of hours per week they spend performing crowdsourcing tasks. I
discovered that approximately 60% of the participants spend one to three hours per week
conducting crowdsourcing tasks. Table 3.2 presents the questionnaire results.

Additionally, workers responded to (translated from German): “What other tasks or
activities do you normally conduct when you run Clickworker Jobs?”. Answers were collected
in a multiple-choice question format with an open text field. 24.8% of the crowd-workers
stated that they listen to some music, 18.3% take part in other activities on their computer,
16.3% execute other crowdsourcing tasks, 15.1% watch TV, and 10.8% get into social media.
Only 1.2% reported not taking part in any other activity. See Table 3.3 for more details.
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Table 3.2: Answers to the questionnaire from 213 workers. Information regarding the workers’
regular workplace, workers’ current workplace, number of persons on the same room while executing
the study, and the amount of hours per week workers spend doing crowdsourcing tasks. Numbers
are expressed in percentages.

Regular Work Place
Home 93.4%
Work 3.8%
onTheGo 1.9%
Cafeteria 0.5%
Other 0.5%

Current Work Place
Home 86.9%
Work 7.5%
Other 3.3%
onTheGo 2.3%

Persons in the Same Room
Alone 79.6%
One 14.7%
Two 4.3%
Three 1.4%

Hours/Week doing Crowdsourcing
1 23.5%
2 23.9%
3 10.3%
5 9.9%

The last two questionnaire items were two open-ended questions. First, crowd-workers
described their current environment and reported the sounds or noises they could hear at that
moment. Afterward, they reported the noises that usually distract them when performing
tasks on clickworker or other crowdsourcing platforms. I collected these answers in an open
text field, which I then analyzed with the “IBMgermanb® SPSSgermanb® Text Analytics
for Surveys” (v4.0.1) tool. This software uses Natural Language Processing (NLP) to code
the input text into terms (either simple words or phrases), from which categories are also
developed.

This analysis revealed that 21.6% of the crowd-workers could hear cars or street noises,
18.8% the TV, 14.6% of them were in the presence of other people talking, 13.6% reported
being in a quiet place, and 13.6% could hear the noises produced by their computer. More
details can be found in Table 3.4(a).

This information is in line with the noises extracted manually from the environmental
noise recordings (see Table 3.1). In both tables (Table 3.1 and Table 3.4(a)), the same type
of noise was identified, e.g., TV, car or street noise, music, people talking, quiet, etc. This
suggests the validity of the background noise recordings and the workers’ answers regarding
their current environmental noise.

To the second open-ended question, workers reported that when conducting crowdsourcing
tasks, they get distracted frequently by other people (33.3%), phone calls (28.6%), and their
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Table 3.3: Answers to the question: “What other tasks or activities do you normally conduct
when you run Clickworker Jobs?”, from the 213 workers that submitted the questionnaire.

Home Other Activities %

listening to music 24.8%
other activities in computer 18.3%
other crowdsourcing tasks 16.3%
watching TV 15.1%
social media 10.8%
listening to the radio 6.0%
texting, chatting 3.8%
talking with people 3.4%
none 1.2%
first task in clickworker 0.2%

smartphone (6.6%). 17.8% stated that they execute crowdsourcing tasks while being in a quiet
place. More details in Table 3.4(b).

Table 3.4: Categories found in the open ended answers from 213 workers that reported about the
noises or sounds heard while conducting our study (Table 3.4a), and the sources of distractions
they face when doing crowdsourcing tasks (Table 3.4b).

(a) Noises or sounds
heard.

Category %

car 21.6
TV 18.8
people 14.6
quiet 13.6
computer 13.6
music 7.0
bird 5.2
radio 3.8
baby 3.3
keyboard 2.8
mouse click 2.3
mowing 1.4
dog 0.9

(b) Sources of distrac-
tions.

Category %

people 33.3
phone calls 28.6
quiet 17.8
smartphone 6.6
baby 5.2
TV 5.2
music 2.8
social media 2.8
pets 1.4
WhatsApp 1.4
chat 0.9
autos 0.5

3.3.4.7 Discussion

This section investigated the environmental characteristics of German crowd-workers. I
found that 86.9% of our study participants perform crowdsourcing tasks mostly from home.
Additionally, I observed that the environmental background noise that might influence the
results of a speech quality assessment experiment in crowdsourcing could be grouped into two
main types, i.e., constant mechanic noise like car engines and street traffic noises (as reported
in Table 3.4(a)), and periodic, melodic, or voiced types of noise like from TV, music, radio,
or people talking. I also discovered that 24.8% and 15.1% of the workers take part in other
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activities when conducting crowdsourcing tasks, i.e., listening to music and watching TV,
respectively.

Based on these findings, when addressing studies to German crowd-workers, it is advised
to include instructions for turning off multimedia devices, i.e., TV, radio, music player,
and to request workers to close windows and doors to avoid outside noises. It is also
recommended to collect environment audio recordings to identify those workers not following
the instructions. Moreover, these findings might be partly generalizable to western users
from Amazon Mechanical Turk or microWorkers, being that societies and customs are similar.
However, I cannot ensure this as a comparable experiment to this one would be needed in
AMT and MW.

3.4 Simulated Crowdsourcing Test in Laboratory

Two requirements need to be fulfilled to simulate a crowdsourcing environment in the laboratory
to carry out subjective user studies. First, the environmental characteristics related to
background noise must be met. And second, the study participants must use their own devices
to execute the study.

To simulate environmental background noise situations in the laboratory, I employed a
four-speaker setup as defined in [80]. The loudspeakers were positioned two meters apart
from the center of the room where the test participant was seated. The height of the four
loudspeakers was set to 1.5 meters so that the center of the acoustic field (i.e., the listeners’
ears while seated) is of the same height as the loudspeaker positions. [80] also gives guidelines
to use a subwoofer for the noise simulation. However, I did not employ one in the setup, as
the “Studio Monitor Genelec 8030A” speakers were used, which were powerful enough with 5”
woofers, 110dB SPL, and frequency range from 54Hz to 20KHz. Figure 3.3 shows a diagram
of the speakers’ positioning.

Figure 3.3: Loudspeakers arrangement in the laboratory room for environmental background
noise simulation.
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Moreover, I used the audio interface “FIREFACE UCX” to reproduce the noise signal, and
the background noise levels were measured with the fullband artificial head HMS II.3 HEAD
acoustics.

Additionally, to fulfill the second requirement, the study participants were requested to
bring their computer and headset they use in everyday life to execute the listening test. To
accomplish the speech quality assessment study, they connected to the Internet to access the
same HTML and JavaScript-based framework7 that I have used successfully in all speech
quality studies conducted in crowdsourcing [36, 45, 46, 41]. Specifically, this framework is a
web-based implementation of the three phases of a crowdsourcing speech quality assessment
study detailed in Subsection 3.3.3.

3.5 Result Metrics

Reliability and validity are two important criteria that must be fulfilled by any measurement
to ensure that results are robust and potentially generalizable to more natural contexts. These
two criteria must also be met to guarantee that theoretical conclusions derived from these
results are well-founded.

The reliability is defined as the accuracy of measurements, which describes how much
initial test results would deviate from the results of follow-up tests (retests). For experimental
studies, the reliability metric is crucial as it warrants the replication of the initial experiment
with a sample drawn from the original population.

The validity refers to which extend a measurement actually captures its intended
measurands. It relates to the truthfulness of the responses and to whether a test measures
what is intended to measure. In order to measure the validity of the test answers, a “ground
truth” or alike is needed. For instance, the validity of the ratings collected in a speech quality
assessment task in crowdsourcing can be determined by comparing them to the results from a
laboratory test, assuming that the latter is close to the “ground truth”.

Furthermore, the ratings collected in a crowdsourcing speech quality assessment study
must undergo a data screening process. The submitted responses to a specific task should
be discarded when listeners answer wrong the gold standard or trapping questions included.
Additionally, an analysis should be made to detect and discard the ratings deemed extreme
outliers, i.e., those located at a distance from the median equal or higher than 3.0 · IQR

(interquartile range) [81]. Other methods to detect outliers include the use of boxplots, which
flag the extreme outliers ratings when they fall beyond the outer fence [82].

After the data screening process, the Mean Opinion Score (MOS) per stimulus and
condition should be calculated. These MOS values can be complemented with the calculation
of Confidence Intervals (CI). Then, the Spearman’s rank-order correlation or Pearson’s product-
moment correlation and Root Mean Square Error should be computed to determine the
relationship between MOS scores collected in the laboratory and crowdsourcing. These
correlations provide an estimate of the validity of the ratings gathered in crowdsourcing. It
gives insights into the strength and direction of the association between two continuous or
ordinal variables.

7https://gitlab.com/zequeira/NoStimuli-SQA.git
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3.6 Conclusion

This chapter details the study setup and procedures common to the different experiments
carried out as part of this dissertation. Additionally, the speech material employed in the
studies is presented as well as insights about the environmental conditions of the German
crowd-workers. Finally, a definition of reliability and validity is given in the context of
subjective speech quality testing, and guidelines are given for the data screening process of
speech quality scores collected in crowdsourcing.
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Test Structure

This chapter investigates aspects concerning the structure of a speech quality assessment task
in crowdsourcing and its influence on worker performance. Precisely, I determine the optimal
number of speech stimuli to include in a single task. Additionally, the impact of executing the
rating task multiple times on different rater reliability metrics is analyzed.

Two sets of separate studies were conducted. In the first study, participants were assigned
to one of three user-groups, each of which was confronted with tasks consisting of a different
number of speech stimuli. The study setup and results are detailed in Section 4.1.

The second study was also conducted in crowdsourcing. A group of listeners was recruited
to assess the overall quality of speech samples four times. Then, I analyze the impact of task
repetition in the intra- and inter-listener agreement and the relationship between intra-rater
agreement with the workers’ accuracy. Further details can be found in Section 4.2.

4.1 Influence of Number of Stimuli

One of the fundamental differences between carrying speech quality studies in the laboratory
versus a crowdsourcing environment is that listeners in the laboratory evaluate the entire
dataset. In contrast, in crowdsourcing, participants assess just a portion of the stimuli per
task to keep the listening session short and avoid the workers’ boredom. Aspects like listeners’
workload and fatigue are essential as they relate to an important question, i.e., how to optimize
the study design without compromising the results’ quality by tiring the test participants?
This section examines the impact of the number of presented speech stimuli per task on the
reliability of listeners’ ratings in the context of subjective speech quality assessments.

4.1.1 Study Setup

A crowdsourcing experiment was conducted in which three groups of workers were recruited,
i.e., G1, G2, and G3. Listeners in each group assessed the quality of different numbers of
speech stimuli. I then computed the Mean Opinion Scores (MOS) per file and condition, and
the results were contrasted with previously collected ratings in the laboratory (Lab-MOS).

33



4. Test Structure

4.1.1.1 Speech Database

The speech stimuli were taken from the database SwissQual 501 from the ITU-T Rec. P.863 [9],
competition. This database contains 200 speech samples carrying 50 different degradation
conditions. Additionally, it includes subjective quality assessments made by 24 different native
German listeners, in accordance with the ITU-T Rec. P.800 [66]. The resulting Lab-MOS
scores are taken as a reference for the analysis presented in this section. Further information
regarding SwissQual 501 can be found in Section 3.2.1.

4.1.1.2 Method

The study was conducted in the clickworker crowdsourcing platform. Clickworker is based in
Germany, and it has an active pool of workers from Germany, Austria, and Belgium. Hence, a
good fit for the experimental needs.

The study consisted of three phases, i.e., Qualification, Training, and Assessment. The
details of these phases are presented in Section 3.3.3.1, 3.3.3.2, and 3.3.3.3, respectively.

Differently from the specifications of Section 3.3.3.3, the Assessment task in this study
contained a different number of stimuli according to each group. Listeners in G1 evaluated ten
speech samples, whereas listeners in G2 and G3 assessed the quality of 20 and 40 speech stimuli
per task, respectively. I selected these quantities, considering the number of samples that could
be included in a task without making it too long to avoid boring workers [1]. The 200 stimuli
in the dataset were between eight and ten seconds long. To assess them all, crowd-workers in
G1, G2, and G3, could perform the Assessment task up to 20, 10, and 5 times, respectively.
Due to the inserted trapping questions, the final number of speech samples in G1, G2, G3
were 11, 22, and 44, respectively (see Section 3.3.3.3).

Moreover, listeners were assigned a 12-hour window when they completed the Assessment
task successfully (i.e., without failing the included trapping questions). During this time, they
could not participate in the study. Otherwise, e.g., a worker from G1 (that evaluates ten
stimuli), if it would execute the Assessment task two times in a row, would become like a
crowd-worker from G2 that assesses 20 speech stimuli. Since our goal is to determine the
optimal number of stimuli to include in a single task, it is crucial to avoid such a scenario and
differentiate the number of samples presented in each group.

Finally, the Assessment included one last question in which crowd-workers selected on a
slider from 1 to 11 how exhausted they felt after completing the listening task, with 1 (translated
from German): “not exhausted at all” and 11 being “extremely exhausted”. Selecting the
midpoint of the scale, i.e., 6, was not possible.

4.1.2 Results

4.1.2.1 Qualification

A total of 466 workers executed the Qualification phase successfully. Table 4.1 below presents
the collected demographics. It can be seen that 94.8% of the participants were from Germany,
and 95.9% stated German as their first language. I analyzed the responses of the workers who
were not native Germans (4.1%, 19 workers in total). All their answers were correct, so it was
assumed that they were fluent in German and therefore included in the study.
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Furthermore, 25 workers stated that they were involved in a listening test in the last year
and were excluded from our experiment [22]. The remaining 441 crowd-workers were equally
demographically distributed in three non-overlapping groups, so a different number of stimuli
could be presented to each group.

Table 4.1: Demographic information of the 466 workers that executed the Qualification phase
successfully. Values are expressed in percentages. “NP” stands for “Not Provided”, i.e., workers
did not provide that information.

Language
German 95.9
English 0.9
Russian 0.9
Other 2.3

Country
Germany 94.8
Austria 4.5
Belgium 0.2

NP 0.4

Gender
Male 56.2

Female 42.7
NP 0.9

Other 0.2

Age
18-25 22.7
26-35 32.8
36-45 21.0
>45 23.4

4.1.2.2 Training and Assessment

The Training phase proved valuable and stopped 15, 8, and 9 workers in G1, G2, and G3,
respectively, from taking part in the assessment task. They answered wrong the math question.
Overall, 92 crowd-workers in G1 (35.9% female and 93.5% native Germans), 53 in G2 (39.6%
female, 96.2% native Germans) and 64 in G3 (42.2% female, 98.4% native Germans) provided
a total of 5230, 4840 and 5080 ratings, respectively.

A total of 50 quality scores in G1 and 60 in G3 were labeled as unreliable by our quality
control mechanism and were removed. All listeners in G2 answered the trapping questions
correctly, and all their ratings were considered for further analysis. I collected at least 24
assessments per stimuli from different listeners in groups G1 and G2. Workers in G3 did
not finish all tasks during the study time, so at least 23 assessments per speech sample were
gathered.

I calculated the Spearman’s rank-order correlation to determine the relationship between
the laboratory and the ratings collected in crowdsourcing in G1, G2, and G3 (only the
trustworthy assessments). Preliminary analysis showed the relationship to be monotonic, as
assessed by visual inspection of a scatter-plot. Additionally, the Root Mean Square Error
(RMSE) between the Lab-MOS and the G1-, G2-, and G3-MOS was computed. The correlation
with the Lab-MOS was strong and significant for all groups regardless of the number of stimuli
included. However, the highest correlation and the lowest RMSE was accomplished in G3
with 40 stimuli (ρ = 0.89(p < .001)), which suggests the highest validity for this group. I
believe that this result might be because workers in G3 listened to more speech samples, which
allowed them to assess the differences between stimuli better. Table 4.2 presents a summary
of these results and the valid ratings collected in each crowdsourcing group.

4.1.2.3 Influence of Number of Stimuli

I conducted an analysis per group to determine if there was a positive or negative trend in the
correlation coefficient when considering the listeners’ evaluations in intervals of ten stimuli. To
this end, the Spearman’s correlation was computed between the Lab-MOS and the first ten
ratings of a single listener. Then, for the next ten ratings, and like this, four times in G3, two
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Table 4.2: Study sizes and Spearman’s correlation (ρ) between the Lab-MOS and the CS-MOS
(only ratings deemed reliable). The correlation coefficient resulted to be strong and significant in
every group.

Group # of valid ratings # of listeners ρ RMSE

G1 (10 stimuli) 5180 92 0.87* 0.45
G2 (20 stimuli) 4840 53 0.86* 0.47
G3 (40 stimuli) 5020 64 0.89* 0.40
*p < 0.001

times in G2, and only one in G1. This analysis was conducted with all crowd-workers in all
groups. I call this division subgroups (SG).

Results in Figure 4.1 show a slight increase in the correlation coefficient in the second
half of the test in G2 (SG1 to SG2). The same tendency can be seen in G3 (i.e., an increase
from SG1 to SG2). However, the correlation starts decreasing slightly from SG2 to SG4. This
trend suggests that increasing over 40 the number of stimuli per task might lead eventually to
unreliable results.

SG

SG

SG

SG

Figure 4.1: Trend in the Spearman’s rank-order correlation between the Lab-MOS and the
crowdsourcing groups when analyzing in intervals of 10 stimuli.

Figure 4.2 presents the fatigue scores per listening session that were gathered in each
group in crowdsourcing. Values are expressed in percentages. It can be seen that in G2 and
G3, a higher amount of assessments (14.1% and 13.2%, respectively) were made by listeners
reporting being exhausted at the end of the Assessment task (i.e., selecting a value on the
fatigue scale above six). In contrast, only 4.7% of workers in G1 were exhausted when finishing
each listening session.

The fact that crowd-workers in G3 were fatigued by the end of the listening test could be
one reason for a higher proportion of them participating in the study only once compared to
those in G1 and G2, see Figure 4.3. Although the number of listeners executing the Assessment
decreased linearly in all groups, there were a number of workers completing the listening
session 12 times in G1 and eight times in G2. This behavior was not observed within listeners
of G3. This outcome indicates that workers preferred to execute short tasks as it was more
comfortable for them.

As stated before, the speech material assessed in this study carried 50 degradation conditions.
I run a Kruskal-Wallis H test [83] to investigate the differences between the rating scores
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Figure 4.2: Fatigue score per assessments expressed in percentages. In G2 and G3 a greater
number of evaluations were made by workers who announced being exhausted at the end of the
listening session. The scale was: 1 not exhausted and 11 extremely exhausted. Workers could not
select the middle of the scale, i.e., 6.

provided by participants in the laboratory and the ratings from workers of G1, G2, and
G3 that evaluated a different number of stimuli per task (i.e., 10, 20, and 40, respectively).
Distributions of the quality scores were similar for all groups, as judged by visual inspection of
a boxplot. This test revealed that the Median (Mdn) of the rating scores were statistically
significantly different in 26 conditions.

Consequently, to determine the cases in which the differences laid between the laboratory
and at least two crowdsourcing groups, I conducted a pairwise comparison analysis according
to Dunn’s procedure [84]. Bonferroni [85] correction for multiple comparisons was made
with a statistical significance level accepted at p < .0083. This posthoc test exhibited
significant differences in 7 and 12 conditions when comparing the laboratory against two
and three crowdsourcing groups, respectively. Figure 4.4 presents these 19 conditions with
95% confidence intervals. Information about the degradation conditions can be found in
Appendix A. Furthermore, Table 4.3 shows the results (χ2 values and pairwise comparisons)
for the cases in which the laboratory differed from all the crowdsourcing groups.

Additionally, I analyzed the results per group of the previous test. I found that the ratings
given to 17 of the conditions were statistically significantly different between the laboratory
and workers in G1. In turn, for G2 and G3, there were significant differences to the laboratory
for 22 and 18 conditions, respectively. These results suggest that the quality scores were more
accurate in G1 and again less reliable in G2. I hypothesize that workers in G1 evaluating a
lower number of stimuli were only partially exhausted, so they could better judge the overall
speech quality based on the different degradations.

A closer look into these results revealed that particularly wideband (WB) (e.g., conditions
13, 20, 26, 27, 43, 45, and 46) and super-wideband (SWB) (e.g., conditions 5, 11, 12, 22,
and 34) speech stimuli were overrated in crowdsourcing in comparison to the laboratory,
see Figure 4.4. In contrast, narrowband (NB) speech files seem to provoke a lower quality
score in crowdsourcing (e.g., conditions 29, 31, 36, and 42). The labels and details of the
degradation conditions are presented in Appendix A. These results are in line with [24], where
NB conditions were rated significantly lower in crowdsourcing than in the laboratory.
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(a) Group 1

(b) Group 2

(c) Group 3

Figure 4.3: The figure shows the number of workers that executed the speech quality assessment
task a certain number of times. For instance, 22 workers in G1 conducted the Assessment phase
one time. “SQAT” stands for “Speech Quality Assessment Task”.
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Figure 4.4: Comparison between the Lab-MOS and the CS-MOS with 95% confidence intervals.
Represented only the conditions for which there is a statistically significant difference between
laboratory and at least two crowdsourcing groups. Information about the degradation conditions
can be found in Appendix A and more details in [9].

Table 4.3: The table presents the 12 conditions for which the median (Mdn) of the rating scores
were statistically significantly different between the laboratory and all the groups in crowdsourcing.

Cond. No. χ2(3)
Lab G1 G2 G3
Mdn Mdn p-value Mdn p-value Mdn p-value

5 75.6* 3 4 < .001 4 < .001 4 < .001
9 12.1⋆ 3 2 = .022 2 = .019 2 = .046
11 26.6* 4 4 = .001 5 < .001 5 = .001
13 26.6* 3 3 = .001 4 < .001 3.5 = .001
22 22.7* 3 4 < .001 3 = .005 3 = .013
26 94.4* 1 3 < .001 3 < .001 2 < .001
31 26.4* 3 2 < .001 2 < .001 3 = .019
34 25.0* 2 2 < .001 2 = .002 2 < .001
42 20.8* 3 2 = .007 2 < .001 2 = .042
43 20.2* 3 4 = .002 4 < .001 4 = .003
46 20.4* 3 3 = .037 4 < .001 3 = .007
47 16.6• 2 2 = .002 2 = .007 2 = .008

*p < .001; ⋆p = .007; •p = .001

4.1.3 Discussion

This section investigates the influence of the number of stimuli on the validity of the speech
quality ratings collected via crowdsourcing. A study was carried out with 209 crowd-workers
divided into three non-overlapping groups. Each group was presented with tasks consisting
of a different number of stimuli, i.e., 10, 20, or 40. The results in the three groups were
highly correlated to previously collected laboratory ratings. The best performance in terms of
correlation to the laboratory ratings was achieved in G3 when employing 40 stimuli. However,
a significant number of workers in G3 reported being exhausted when finishing the assessment
task. Thus, most listeners in this group participated in the study only one time.

Additionally, an analysis was made to determine whether listeners in crowdsourcing
perceived significantly different speech impairments compared to listeners in the laboratory.
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This test revealed that G1 with ten stimuli had a lower number of degradation conditions for
which the quality ratings were significantly different from those provided in the laboratory.
Therefore, it is desirable to offer tasks with a reduced number of speech stimuli at the expense
of sacrificing ratings’ accuracy to some extent.

Furthermore, I found that workers in crowdsourcing tended to rate higher the quality of
wideband (WB) and super-wideband (SWB) speech stimuli than participants in the laboratory
experiment. In contrast, narrowband (NB) speech samples seem to provoke lower quality
ratings in crowdsourcing than in the laboratory. Further investigation would be needed to
determine the reasons for the difference in these quality evaluations for certain WB, SWB,
and NB speech files.

4.2 Impact of Task Repetition

Crowdsourcing is a convenient instrument for carrying subjective speech quality studies.
Nonetheless, data gathered in crowdsourcing can be corrupt due to users’ neglect. Therefore,
participants who are consistent in their answers or exhibit a high intra-rater reliability score
are preferred for speech quality assessments in crowdsourcing.

This section investigates the impact of executing a speech quality assessment task multiple
times on the intra- and inter-listener agreement. Additionally, I determine the relationship
between the intra-rater reliability and listener performance. Two studies were conducted, one
in the laboratory and the other one in crowdsourcing. Listeners in both experiments rated four
times the quality of the speech stimuli. Finally, I propose a model as a function of intra-rater
reliability, root-mean-square, and listeners’ age to predict worker performance. Such a model
is intended to measure how valid the crowdsourcing results are when there are no laboratory
results to compare with.

4.2.1 Study Setup

In the following, I present the speech material employed in our studies and the experiment
carried out in the laboratory, which aimed at evaluating the listener perception of modern
mobile telephony services. Finally, the crowdsourcing study is detailed, intended to replicate
the results gathered in the laboratory test.

4.2.1.1 Speech Material

The constructed speech database is a mixed fullband set of samples containing different audio
bandwidths, i.e., from below narrowband and up to fullband. The bandwidths distribution
between the speech stimuli is the following: 21% narrowband (NB), 50% wideband (WB), 23%
super-wideband (SWB), and 6% fullband (FB).

The listening test in the laboratory targeted the assessment of speech stimuli encoded
with state-of-the-art codecs, e.g., EVS [86], AMR-WB, AMR-NB [87, 88], and Opus 1 under
ideal and live good/average/bad coverage situations. The test focused on live conditions from
real-field recordings, which were 71% of the speech samples. The remaining 29% were based
on offline processed speech and anchor conditions.

1https://opus-codec.org/
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The real-field recordings were collected in Switzerland during September 2018, under good,
average, and bad coverage network conditions. These samples were gathered using modern
equipment from Rohde & Schwarz SwissQual, and it included state-of-the-art measurements
such as:

• VoLTE calls with EVS at 24.4 kbit/s SWB

• WhatsApp calls in LTE with Opus at 20 kbit/s WB

• 3G mobile to mobile calls with AMR-WB at 12.65kbit/s and 23.85 kbit/s

• 3G mobile to mobile calls with AMR-NB at 12.2 kbit/s

• 3G/2G mobile to mobile calls with transcoding from AMR-WB at 12.65 kbit/s to
AMR-NB at 12.2 kbit/s

The offline (simulated) coded conditions in the test aimed at emulating everyday situations
that can be seen in the field. Consequently, we selected:

• EVS 24.4 kbit/s SWB

• EVS 13.2 kbit/s SWB

• Opus 20 kbit/s WB

• AMR-WB 23.85 kbit/s

• AMR-WB 12.65 kbit/s

• AMR (NB) 12.2 kbit/s.

The three fullband conditions in the test were one fullband reference and two anchors
with packet loss. Four additional low quality simulated conditions were obtained by adding
packet loss to some codec conditions or by re-encoding the reference sample multiple times
with the same settings. The sample used was the composed female/male German sample from
the ITU-T Rec. P.501 Annex D [77]. Overall, 53 speech stimuli were arranged, carrying 53
degradation conditions. The full list of these conditions is listed in Table C.1 of Appendix C.
More details about the speech material can be found in [78].

As stated above, the test included a high number of live recordings in real-field mobile
networks. For these recordings, it does not apply the use of several speech samples forming
a “condition”. Thus, we used only one speech stimulus that was presented four times in
total (non-consecutive) to the listeners. This procedure resulted in a comparable significant
statistical confidence, as achieved with traditionally designed P.800 listening tests.

4.2.1.2 Laboratory Study

The laboratory study intended to evaluate the user perceptions of popular mobile telephony
services such as VoLTE, circuit-switched mobile (i.e., GSM and UMTS), and VoIP OTT
applications like WhatsApp.

The experiment was conducted at the SwissQual test laboratory in October 2018. The
listening panel consisted of 24 native German listeners (11 female and 13 male). They were
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invited individually to run the test, and only one person was listening at a time. Subjects
assessed the quality of speech samples using a discrete five-point ACR scale with the possibilities:
“ausgezeichnet” (excellent), “gut” (good), “ordentlich” (fair), “dürftig” (poor), and “schlecht”
(bad).

All participants evaluated all 53 conditions, which in this study were 53 speech stimuli. To
accomplish small enough confidence intervals, listeners assessed four times the quality of the
53 speech samples. Then, we collected 96 ratings per stimulus. The stimuli presentation order
was randomized for each participant. The test started with five training speech sequences to let
the listeners get used to the interface and the test setup. The speech samples were presented
in a diotic (binaural) form to the subjects through a diffuse field equalized headphones (Grado
SR 60). The presentation level was 73 dB(A) SPL at each ear (equivalent to -26dB OVL).
More details about the laboratory study can be found in [78].

I collected subjective quality assessments from 24 different native German listeners. Then,
Mean Opinion Scores (MOS) were computed for each stimulus. I refer to these scores as
“Lab-MOS” and use it as a reference for the analysis presented in this subsection.

Additionally, Kendall’s coefficient of concordance (W ) [89] was calculated to determine
the agreement among the listeners’ ratings. This test revealed a statistically significant
agreement across the laboratory participants when they evaluated all the speech samples,
W = 0.86, p < 0.001. The data’s reliability is verified when a high agreement exists in the
ratings that different participants provide to the same speech stimulus. This high Kendall’s
coefficient exposes a low variability across the individual ratings, demonstrating high confidence
in the collected MOS.

It is valid to mention that we cannot prove the influence of the training effect directly
(i.e., listeners assessing the samples four times). However, when confronting the predictions
of the ITU-T Rec. P.863 [9] model with the collected subjective scores shows no anomaly
regarding common, classically designed P.800 [66] studies with varying or non-repeating
speech samples. Neither the spread of the prediction rank-order nor the bias nor codec or
bandwidth dependencies were larger than for classically designed experiments [78]. For this
indirect proof, it should be noted that P.863 is trained on classically designed databases but
predicts successfully in our case of an experiment with repetition of the same sample across all
conditions.

4.2.1.3 Crowdsourcing Study

The crowdsourcing experiment was executed in the clickworker crowdsourcing platform. The
study consisted of three phases, i.e., Qualification, Training, and Assessment. The details of
these phases are presented in Section 3.3.3.1, 3.3.3.2, and 3.3.3.3, respectively.

Unlike the details defined in Section 3.3.3.3, the Assessment task in this study comprised
58 speech stimuli, i.e., 53 speech samples plus five trapping questions inserted every ten stimuli.
The Assessment also included a slider at the end so crowd-workers could state from 1 to 11
how exhausted they were after completing the listening task. One meant “not exhausted at
all” and 11 “extremely exhausted”. Workers could take part in the Assessment task up to four
times.
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4.2.2 Results

A total of 8321 ratings were collected and provided by 52 crowd-workers. 51.9% were female,
96.2% were from Germany (2 workers were from Austria), and all were native German speakers.

The trapping question was useful and permitted us to identify 119 unreliable ratings given
by three participants. Two of them failed all of the trapping questions the single time they
conducted the Assessment task. Then, 106 ratings were invalidated. The other worker failed
the last trapping question in the listening test; then, those 13 ratings were also invalidated.
These 119 ratings were discarded as I assumed those crowd-workers were performing the
listening test carelessly. The resulting 8202 ratings are then considered for further analysis.

Out of all participants, 29 crowd-workers executed the Assessment task four times, like in
the laboratory, and provided 6148 quality scores. These subjective ratings were averaged per
degradation condition to compute the MOS scores, referred to as “CS-MOS”. I calculated the
Pearson’s product-moment correlation between the laboratory ratings and the ratings given
by these 29 workers. Preliminary analyses showed the relationship to be linear with both
variables approximately normally distributed, as assessed by visual inspection of Normal Q-Q
Plots, and there were no outliers. Additionally, the Root Mean Square Error (RMSE) between
the Lab-MOS and the CS-MOS was computed. The correlation coefficient was strong and
statistically significant, and the RMSE low, i.e., r = 0.978 (p < .001), RMSE = 0.441.

Moreover, a scatterplot between the Lab-MOS and the CS-MOS exposed a slight “banana
shaped” effect between the two sets of results. Such an effect is usually due to the differences
in the test conditions between the laboratory and crowdsourcing environment, e.g., equipment,
listening panel, test presentation. This effect was corrected by applying the first and third
order mapping [90]. While the correlation coefficient did not significantly increase, this analysis
helped correct the bias and improved the RMSE to 0.17. Table 4.4 presents these results, and
Figure 4.5 shows the scatterplots between the Lab-MOS and the CS-MOS before and after
applying the third order mapping.

Table 4.4: The table shows the Pearson correlation (r) and RMSE between Lab-MOS and
CS-MOS after applying the first and third order mapping [90].

r RMSE

no mapping 0.978* 0.4409
1st order mapping 0.979* 0.2025
3rd order mapping 0.986* 0.1701
*p < 0.001

Furthermore, I computed the Kendall’s concordance coefficient (W ) [89] to determine
the agreement among the workers’ ratings. I found that the 29 crowd-workers statistically
significantly agreed in their assessments, W = 0.807, p < 0.001. Our results reveal that, despite
the task’s subjectivity, listeners in crowdsourcing seemed to apply the same criteria when
assessing the overall quality of these speech stimuli encoded with state-of-the-art codecs. This
is probably due to our mature methodology. Such a high coefficient indicates that most of the
variance across the ratings can be explained by the differences between the speech samples
and not by individual differences in the workers’ evaluations. All in all, our results suggest
that the crowdsourcing ratings might be as reliable as the ones gathered in the laboratory
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(a) no mapping

(b) 3rd order mapping

Figure 4.5: The figures show the Lab-MOS versus CS-MOS per condition before and after
applying the third order mapping [90].

and that most probably, the differences would be the same if repeating the experiment in a
different laboratory. In fact, the agreement between listeners in the laboratory, i.e., W = 0.86
(see Subsection 4.2.1.2), is comparable to workers’ agreement in crowdsourcing.

4.2.2.1 Inter-rater Reliability

In the following, I investigate the listeners’ agreement in each of the four stages in which they
conducted the crowdsourcing Assessment task. Our goal is to determine if the agreement
fluctuated from the first to the fourth time workers executed the Assessment and if it varied
with respect to the Pearson correlation and the RMSE. This analysis was only performed for
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listeners in crowdsourcing. Participants in the laboratory assessed four times the quality of
the 53 speech stimuli at once, which resulted in a randomized set of 212 stimuli. Thus, no
distinction can be made in terms of repetitions.

The Kendall’s concordance coefficient (W ) [89] can be used as such a measure of inter-rater
agreement for continuous and ordinal variables when there are two or more raters [91, 92]. I
considered the single rating given by the 29 workers to the 53 speech stimuli at each repetition.
Consequently, four Kendall’s W coefficients were calculated on this ordinal data.

Additionally, I calculated the correlation and RMSE between the Lab-MOS and the ratings
provided by the 29 crowd-workers averaged per file, at repetition one, two, three, and four.
Table 4.5 outlines these results. While the RMSE and the correlation prevailed almost constant,
the agreement between workers increased slightly (not monotonous) from repetition one to four
(i.e., 0.67 to 0.68). Such an increase can be explained by listeners becoming more confident with
their assessments, the more they participate in the study. Nevertheless, the lowest agreement
(W = 0.65) was seen during the third repetition. To investigate further, I conducted a two-way
mixed ANOVA [93, 94]. The analysis showed that indeed the main effect of repetition presented
a statistically significant difference in the mean ratings at the third repetition for three of the
speech degradation conditions, i.e., C07, C15, and C37. The results are presented in Table 4.6.

Table 4.5: The table presents the Kendall’s (W ) coefficient of agreement, the Pearson’s product-
moment correlation (r), and RMSE between the Lab-MOS and the CS-MOS for each of the times
the workers conducted the Assessment task.

Repetition W r RMSE

1 0.6712* 0.9758* 0.4452
2 0.6673* 0.9745* 0.4413
3 0.6582* 0.9770* 0.4460
4 0.6836* 0.9777* 0.4409

*p < 0.001

Table 4.6: Results of the two-way mixed ANOVA showing the three conditions for which a
statistically significant difference was seen in the mean ratings at the third repetition. More details
about these speech impairments can be found in Table C.1 of Appendix C and in [78].

Condition Condition Description F (3, 53) p − value η2

C07 EVS 13.2 kbps SWB 5.23 = 0.002 0.093
C15 2 x AMR-WB 6.6kbps 2.891 = 0.037 0.054
C37 M2M UMTS call AMR-WB 23.85kbps 7.287 < 0.001 0.125

avg. network condition 3

The slight decrease in the between listener agreement helped identify those three speech
impairments that were the most difficult for the listeners to assess. I believe that, in order to
gather reliable speech quality annotations for these degradation conditions, the assessment
task should be addressed to a large pool of listeners. This way, the quality ratings’ confidence
intervals could be lowered down.

All in all, the high Kendall’s coefficient indicates that the speech quality assessment study
in crowdsourcing was well designed and with low ambiguity. It can be assumed that all
workers understood the instructions and that most of the variance across the ratings can be
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explained by the differences between the speech degradation conditions and not by different
test interpretations. This outcome confirms the reliability of the collected ratings.

4.2.2.2 Intra-rater Reliability

Additionally, I examined which of the four times the workers performed the Assessment
were most confident in their evaluations. With this aim in mind, I calculated the intra-rater
reliability (IRR). The IRR provides a measure of the consistency in the ratings that a single
worker gives to the same sample at different time points. Then, the IRR was estimated for
each worker considering the first two, three, and four repetitions by calculating the Intraclass
Correlation Coefficient (ICC) over the ratings given at each Assessment task [95].

As noted earlier, the laboratory listeners evaluated the quality of the 53 speech stimuli
four times at a time, resulting in a random set of 212 speech samples. Consequently, it was
not possible to make a distinction on repetitions. Therefore, this analysis is only conducted
for listeners in crowdsourcing.

The ICC is a statistical method frequently used for assessing IRR for ratio, interval, and
ordinal variables. It is particularly suitable when the “cases” under investigation are evaluated
two or more times [96] like in our study. I used a “two-way random” model to compute an
ICC(2, 1) coefficient as I was interested in the degree of agreement in the absolute values
across the ratings from a single worker [97]. For this purpose, the “icc” function of the R
package “IRR” was employed using “agreement” and “single” as parameters [96]. The boxplots
in Figure 4.6 reveal these results. The graph shows that the point in time workers executed
the Assessment did not influence the IRR. This outcome suggests that all crowd-workers
executed each Assessment task with high conscientiousness, which confirms the reliability of
the collected ratings.

Figure 4.6: Reliability of the workers at the second, third and fourth time they conducted the
Assessment task.

Furthermore, I investigated how the Pearson correlation (r) and the RMSE changed through
the whole crowdsourcing study, i.e., from repetition one to four. To this end, I calculated the
correlation and RMSE between the Lab-MOS and the scores given by a single crowd-worker
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at each Assessment task. This analysis was made per worker and repetition. Figure 4.7 shows
these results with 95% confidence intervals. It can be seen that both the correlation and the
RMSE improved with the number of repetitions, i.e., r increased from repetition one to four,
whereas the RMSE decreased. This outcome evidences that conducting the Assessment task
multiple times contributed to collecting more accurate speech quality scores. Hence, better
results were achieved after the fourth repetition (when comparing to the laboratory results).
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(a) Pearson’s correlation

(b) RMSE

Figure 4.7: Pearson’s correlation and root-mean-squared-error (RMSE) with 95% confidence
intervals between the Lab-MOS and the ratings provided by each worker.
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4.2.2.3 Predicting Workers’ Performance

A standard multiple regression analysis to predict the workers’ performance was executed.
Features were derived from intra-rater reliability (IRR), root-mean-squared-deviation (RMSD),
listeners’ age and gender, workers fatigue, and time they spent in each Assessment task. I
considered the ratings of 29 and 7 crowd-workers who ran the Assessment four and three times,
respectively. The rest of the workers participated in the study only once or twice, so their
ratings were not considered.

The workers’ performance (WPer) I expressed as a percentage and defined it as the
Pearson’s correlation between the Lab-MOS and the ratings provided by a single worker. As
stated before, the IRR determines to what extent a listener’s ratings gathered at different
time-points are consistent [98]. The IRR was calculated in the previous Subsection 4.2.2.2,
and it is used now for this analysis as well.

The RMSD was determined by computing the root-mean-squared-deviation between a
workers’ MOS and the rest of the workers’ ratings. The Fatigue (FTG) data was gathered
on a scale varying from 1 (not exhausted) to 11 (extremely exhausted). The collected FTG
scores and the time (T) were averaged over the three or four times each listener conducted
the Assessment task. Moreover, workers’ age was collected as an age range, i.e., 18-25, 26-35,
36-45, and above 45; thus, I treated it as a categorical variable. All of the input features were
normalized based on z-scores to avoid the bias of the regression coefficients and to evaluate
better their impact on the prediction.

The first multiple regression analysis revealed that time, fatigue, and gender, were not
contributing significantly to predict workers’ performance, i.e., p = 0.121, p = 0.879 and
p = 0.108, respectively. Then, a stepwise multiple regression was conducted with the remaining
input variables and 5-fold cross-validation. This test unveiled linearity as assessed by partial
regression plots and a plot of studentized residuals against the predicted values. Residuals
were independent [99], as determined by a Durbin-Watson statistic of 1.808. There was
homoscedasticity, as assessed by visual inspection of a plot of studentized residuals versus
unstandardized predicted values. There was no multicollinearity evidence, as judged by
tolerance values greater than 0.1 [100], and the correlation between the independent variables
was below 0.7. There were no studentized deleted residuals greater than ±3 standard deviations,
no leverage values greater than 0.498, and values for Cook’s distance above 1. The assumption
of normality was met, as assessed by a Q-Q Plot. The multiple regression model statistically
significantly predicted WPer, F (3, 32) = 44.228, p < .001, adj. R2 = 0.787. All three variables
added statistically significantly to the prediction, p < 0.05 for IRR and RMSD, and p = 0.016
for age. Regression coefficients and standard errors can be found in Table 4.7. Equation 4.1
presents the yielded multiple regression model.

WPer = 87.925 + 6.36 · IRR − 3.72 · RMSD − 1.847 · Age (4.1)

The model accomplished a Pearson correlation of r = 0.898 (p < .001) and RMSE of
3.9 in predicting the workers’ performance. The regression coefficients show that intra-rater
reliability has the largest influence on the prediction, while age has the lowest impact. This
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Table 4.7: Summary of the multiple regression analysis.

Variable B SEB β p

Intercept 87.925 0.689 < 0.05
IRR 6.360 0.742 0.709 < 0.05
RMSD −3.720 0.727 −0.415 < 0.05
Age −1.847 0.723 −0.206 = 0.016
B (unstandardized) and β (standardized) regression coefficients;
SEB= Standard error of the coefficient;

outcome suggests that it is possible to predict and evaluate the validity of the crowdsourcing
results based on how consistent are the ratings of a single user at different points in time.

4.2.3 Discussion

In the study described previously, listeners could evaluate four times the speech samples in
the dataset. I analyzed the inter- and intra-listener agreement, as I believed that these two
metrics would increase gradually from repetition one to four. It was also believed that the
crowdsourcing ratings’ accuracy, in terms of correlation and root-mean-squared-deviation to
the laboratory results, would increase as well. However, this was not the case with the inter-
and intra-rater agreement. While the former fluctuated from the first to the last repetition (see
Table 4.5), the latter remained almost constant, as shown in Figure 4.6. This outcome shows
that there was no linear relationship between these two metrics, and the fact that listeners,
as individuals, were quite consistent with their answers did not contribute to a significant
increase in the listeners’ agreement as a group.

Interestingly, an opposite effect was seen with the Pearson’s product-moment correlation
and the RMSE. Both remained almost constant from repetition one to four (see Table 4.5)
when contrasting all the laboratory and the crowdsourcing ratings. In contrast, these two
metrics improved when considering the ratings of individual workers at each of the Assessment
tasks. See Figure 4.7(a) and 4.7(b), respectively.

Furthermore, I developed a model to predict workers’ performance based on intra-rater
reliability (IRR), Root Mean Square Deviation (RMSD), and listeners’ age. The IRR coefficient
had the largest impact on the prediction, while age had the lowest influence. Additionally, I
demonstrated the importance of the consistency in the workers’ ratings to the final performance,
and eventually to the overall results’ validity.

It is valid to point out that the study setup of the experiments carried out in this subsection
is relatively uncommon. Usually, due to financial and time constraints, participants of a speech
quality assessment study evaluate only once the samples in the dataset. Frequently, these
speech databases contain multiple samples coded with the same degradation condition. Thus,
an intra-rater reliability score could be calculated, accounting for the ratings given to a
particular degradation condition. With this premise in mind, I hypothesize that the proposed
model could be used to evaluate the listeners’ performance, considering the scores per condition
of a single participant.
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4.3 Conclusion

This chapter investigated the optimum number of speech stimuli to include in a speech quality
assessment task in crowdsourcing. Additionally, I analyzed important reliability metrics within
a speech quality experiment. To this end, two sets of separate studies were conducted.

In the first study, workers were divided into three groups, each of which was confronted
with tasks consisting of a different number of speech samples, i.e., 10, 20, or 40. The Mean
Opinion Scores in all groups were significantly correlated to ratings collected in a previous
laboratory study despite the number of speech stimuli per task. The highest correlation
coefficient was achieved in the group assessing 40 stimuli. However, I found that workers in
this group were exhausted at the end of the assessment task, and therefore they participated
in the study only one time. I encourage offering tasks with a reduced number of stimuli to
promote worker participation and reduce study response times.

The second study was first conducted in the laboratory and then replicated in crowdsourcing.
Listeners had the chance to evaluate four times the quality of speech samples processed with
state-of-the-art codecs under different transmissions types. I then analyzed the between and
within listeners’ agreement and prosed a model to predict the workers’ performance. Features
were derived from the gathered data, and the intra-rater reliability was the feature with the
most substantial influence on the prediction. Such a model would help determine workers’
accuracy in situations where there is no baseline data to compare the crowdsourcing results.

50



5
Impact of Background Noise

Speech quality assessment studies in crowdsourcing benefit from reduced turnaround times at
lower costs. They also induce real-life environmental conditions, as crowd-workers frequently
work from home employing their computers and headphones. Still, there is a lack of control
over the participants and not enough information about their playback system and background
environment. The validity of data gathered in a disturbed environment is questionable,
especially in speech quality assessment studies.

This chapter investigates the influence of the environmental background noise in speech
quality studies carried out in crowdsourcing. A three-phase speech quality assessment study
was conducted in a simulated crowdsourcing environment in the laboratory. In each phase,
listeners assessed the quality of speech files under the influence of environmental background
noise at different levels.

Furthermore, the feasibility of using web-audio recordings for environmental noise
classification is examined. Two background noise datasets were arranged, and standard
features were extracted and used for noise classification and noise level estimation.

5.1 Effect of Environmental Background Noise

The methodology for conducting speech quality studies in crowdsourcing has matured.
Different mechanisms have been proposed to ensure valid results, e.g., “trapping questions”,
“temporal training”, and others [66]. However, the question remains about the influence of
the environmental background noise on speech quality ratings. Workers do not always follow
the given instructions, and they might be exposed to different environmental conditions while
conducting specific tasks. For instance, I surveyed crowd-workers’ environmental conditions
and found that they could hear street noises and the TV while answering the given survey.
Therefore, it is crucial to determine the influence of common crowdsourcing environmental
background noise conditions on the speech quality assessments.
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5.1.1 Study Setup

A simulated crowdsourcing study in the laboratory was conducted, as detailed in Section 3.4.
Three groups of participants were recruited to evaluate the quality of speech stimuli under
the influence of different environmental background noise conditions. Group one (G1) and
three (G3) carried out the listening test in the presence of street traffic background noise, and
Group two (G2) in the presence of “TV-Show” background noise. I decided to use these noises
as it was found in Chapter 3, Section 3.3.4 that these two are the most common environmental
noises that German crowd-workers may be exposed to when performing crowdsourcing tasks.

The speech quality assessment tests were conducted following the ITU-T Recommendation
P.808 [25], which was already published by the time this study was conducted. P.808 is
the result of years of research of our Lab and other laboratory partners into the use of
crowdsourcing for speech quality assessment studies. Therefore, our methodology, defined in
Subsection 3.3.3 for executing speech quality evaluations in crowdsourcing, is in line with the
ITU-T Recommendation P.808.

The study was divided into four sessions. First, participants executed a standard P.808 [25]
listening test without background noise. Afterward, the remaining three sessions were also
according to Recommendation P.808, but under the influence of environmental background
noise at different levels. The order of these last three sessions was randomized, and the speech
stimuli were the same in each of the four sessions. Table 5.1 below compiles this information
and displays the levels at which the background noise was played during each test session.

Table 5.1: Study setup and levels at which the background noise was played throughout each test
session.

Session Group 1 (G1) Group 2 (G2) Group 3 (G3) Ordering(street traffic noise) (TV-Show noise) (street traffic noise)

CSLvl0 - - - first
CSLvl1 50dB(A) 60dB(A) 36dB(A)

randomCSLvl2 55dB(A) 70dB(A) 43dB(A)
CSLvl3 65.5dB(A) 80dB(A) 50dB(A)
Sessions’ name nomenclature: “CS” stands for crowdsourcing, “Lvl” for level
and 0 to 3 to indicate the noise level.

The background noise levels were measured with the dummy head HMS II.3 HEAD
acoustics. For the presentation of the noise, I employed a four-speaker setup as defined in [80]
for simulating the noisy environments, and a “FIREFACE UCX” served as an audio interface.
The speakers used were the “Studio Monitor Genelec 8030A” that contain 5” woofers, 54Hz to
20KHz frequency range, and 110dB SPL.

5.1.1.1 Background Noise Signals

The street traffic noise signal was taken from the background noise database available at [80].
Concretely, the 20 seconds long “Outside_Traffic_Crossroads_binaural.wav” audio file was
used. On the other hand, for the “TV-Show” background noise group (G2), it was required
an audio signal containing speech, instrumental music, and a combination of both. Hence, I
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crafted a three-minute file using audio clips from the German television program: “Die Harald
Schmidt Show”.

These noise signals were attenuated or amplified to accomplish the desired noise level. A
frequency analysis of the street noise signal revealed that most of its energy was concentrated
at the low frequencies between 10Hz and 1000Hz. In turn, the “TV-Show” noise had the
most energy between 10Hz and 4000Hz. I used these two frequency ranges as parameters for
measuring the different levels of noise with the fullband artificial head HMS II.3. This binaural
measurement was conducted in dB SPL (Sound Pressure Level) and A-weighted throughout
each noise signal with time weighting response time of one second.

5.1.1.2 Speech Database

I used the speech stimuli from the database SwissQual 502 from the ITU-T Recommendation
P.863 [9] competition. This database contains four speech samples per condition and a total
of 50 different speech impairment conditions. The stimuli were 8 to 12 seconds long, and I
used only 60 speech stimuli to keep the overall study duration under one hour while avoiding
listener fatigue. More details about SwissQual 502 can be found in Section 3.2.2.

Moreover, this database also includes speech quality ratings provided by 24 different native
German speakers. The MOS per file and condition is used as a reference for the analysis
presented in this chapter (referred to as “Lab-MOS”). Table 5.2 provides information about
the 15 speech degradation conditions employed in our study. More details can be found in [9].

Table 5.2: Conditions labels referring to the speech impairments under test [9].

Condition Degradation
Number Description

1 SWB
2 SWB+Noise 12dB
3 SWB+Noise 20dB
6 SWB Level -10dB
7 SWB Level -20dB
32 EVRC-A
33 EVRC-A + Noise 18dB SNR + Codec NS
43 VoIP WB-Call + acoust. send
44 VoIP WB-Call + -16dB + acoust. send
45 VoIP WB-Call + -8dB + acoust. send
46 VoIP WB-Call + +5dB + acoust. send
47 VoIP WB-Call + acoust. noise (rcv)
48 VoIP WB-Call + acoust. noise (rcv) + -8dB
49 VoIP WB-Call + acoust. noise (rcv) + -16dB
50 VoIP WB-Call + ampl. clipping + acoust. send

5.1.2 Results

Overall, 24 listeners in G1, 25 in G2, and 20 in G3 participated in our study and produced 5760,
6000, and 4800 ratings, respectively. All participants in the three groups came from Germany
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and were native German speakers. Table 5.3 shows the demographics of the participants. They
all were compensated for their participation.

Table 5.3: The table presents the demographic information of the 24, 25, and 20 participants
that executed the study in G1, G2, and G3, respectively. All listeners came from Germany and
were native German speakers. Values are expressed in percentages.

G1 G2 G3
(24 listeners) (25 listeners) (20 listeners)

Age:

18-25 12.5 44.0 25.0
26-35 54.2 44.0 50.0
36-45 20.8 8.0 10.0
>45 12.5 4.0 15.0

Gender: Female 54.2 60.0 45.0
Male 45.8 40.0 55.0

I analyzed the speech quality scores gathered in each session to identify and remove the
extreme outliers ratings, those located at a distance from the median equal or higher than
3.0 · IQR (Interquartile Range) [81]. Consequently, I discarded 53, 46, and 85 ratings in G1,
G2, and G3, respectively. See Table 5.4 for a summary. The remaining ratings are then
considered for further analysis.

Table 5.4: Ratings discarded deemed extreme outliers that were found in each session in groups
1, 2, and 3.

Session Group 1 Group 2 Group 3

CSLvl0 22 13 37
CSLvl1 0 11 16
CSLvl2 17 22 16
CSLvl3 14 0 16

In the following, I first determine the validity of the mean opinion scores (MOS) collected
in the first session (CSLvl0-MOS) by comparing them to the Lab-MOS. Note that both the
laboratory study and CSLvl0 were conducted without background noise. Then, to investigate
the background noise’s influence on the speech quality ratings, I contrasted the CSLvl0-MOS
against the MOS values gathered in the remaining three sessions. This analysis was made for
each of the three groups.

5.1.2.1 Laboratory vs. CSLvl0

I calculated the Pearson’s product-moment correlation and the Root Mean Square Error
(RMSE) to determine the relationship between the ratings collected in the laboratory and
CSLvl0. The correlation coefficient proved to be strong and significant in each group as well
as low the RMSE. Table 5.5 outlines these results. This outcome indicates the validity of the
collected quality scores at the first session in each of the groups.

Additionally, I analyzed the scores per degradation condition to investigate if there
were statistically significant differences between the speech quality ratings provided by the
participants in the laboratory and CSLvl0. To this end, I run a Mann-Whitney U test [101].
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Table 5.5: The table presents the Pearson’s correlation and Root Mean Square Error (RMSE)
between the Lab-MOS and the ratings gathered in each group’s first session (CSLvl0) without
background noise.

Group Session # of listeners r RMSE

G1 CSLvl0 24 0.88* 0.379
G2 CSLvl0 25 0.87* 0.406
G3 CSLvl0 20 0.83* 0.502

*p < 0.001

Out of the 15 conditions that were under test, the median (Mdn) of the rating scores were
statistically significantly different for only four conditions in G1 and G3 and only five conditions
in G2. Table 5.6 presents these results.

Table 5.6: The table presents the results of the Mann-Whitney U test per condition between the
laboratory and CSLvl0 for all groups.

Cond. G1 G2 G3
U z p-value U z p-value U z p-value

2 166.5 -2.537 = .011 129.0 -3.447 = .001 144.0 -2.292 = .022
32 483.5 4.049 < .001 473.0 3.476 = .001 448.5 4.936 < .001
33 − − − − − − 363.0 2.936 = .003
43 418.0 2.711 = .007 415.0 2.323 = .02 390.0 3.586 < .001
45 395.0 2.228 = .026 421.5 2.460 = .014 − − −
47 − − − 195.0 -2.115 = .034 − − −

Additionally, I ran an independent-sample t-test to determine if the speech stimuli were
evaluated differently by listeners in CSLvl0 than the listeners in the laboratory. A visual
inspection of a boxplot showed no outliers in the data. The quality scores from the laboratory
and CSLvl0 were approximately normally distributed according to a generated Q-Q Plot.
There was homogeneity of variances, as determined by Levene’s test for equality of variances
(p = .197, p = .554, and p = .626 in G1, G2, and G3, respectively). This t-test revealed that
there was not a significant statistical difference between the quality scores provided by the
listeners in the laboratory and those in CSLvl0 from all groups, i.e., t(718) = 1.067, p = .286
in G1, t(733) = −.208, p = .836 in G2, and t(658) = 1.838, p = .067 in G3. This result set the
baseline for the analysis of the other three sessions (i.e., CSLvl1, CSLvl2, and CSLvl3) that
were performed in the presence of environmental background noise.

One of the reasons for the differences found with the Mann-Whitney U test might be
that listeners in our simulated crowdsourcing study executed the listening test with their
headphones and not a professional one. It seems that they did not perceive the background
noise in the signal of stimuli from condition two and therefore provided higher quality scores
than the laboratory participants. Moreover, they could not distinguish the quality of the
speech samples from conditions 32, 43, and 45 accurately and provided lower quality scores
than the laboratory listeners. Another reason might be that participants in our experiment
assessed only 15 conditions, whereas 50 conditions were tested in the laboratory. Nevertheless,
listeners executed a training session before the assessment with an anchoring step to counteract
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this effect. Still, listeners in the laboratory had a higher discrimination capacity, and thus,
these differences were observed.

5.1.2.2 Influence of Background Noise

To investigate the influence of the environmental background noise on the speech quality
ratings, listeners performed three more times the listening test in the presence of noise (i.e.,
CSLvl1, CSLvl2, and CSLvl3). As previously pointed out, participants in G1 and G3 were
exposed to street traffic background noise and those in G2 to a “TV-Show” noise signal. The
noise was reproduced at a different level in each of the sessions, i.e. 50dB(A), 55dB(A) and
65.5dB(A) in G1, 60dB(A), 70dB(A) and 80dB(A) in G2 and 36dB(A), 43dB(A) and 50dB(A)
in G3, respectively. See Table 5.1.

I ran a Wilcoxon signed-rank test to investigate the differences between the listeners’ speech
quality ratings in CSLvl0 and CSLvl1. I performed this analysis per conditions and for all
groups. The difference between scores was approximately symmetrically distributed. This
test revealed that the medians of the quality scores were statistically significantly different in
10 and 8 of the speech degradation conditions under test in G1 and G2, respectively. These
results are presented in Table 5.7. In G3, significant differences were only found for condition
number 33, i.e., z = 2.391, p = .017.

Table 5.7: Results of the Wilcoxon signed-rank test showing the speech degradation conditions
rated statistically significantly different between CSLvl0 and CSLvl1 that were found in each group.
In G3 only condition 33 was rated significantly different, i.e., z = 2.391, p = .017.

Cond. No. G1 G2
z p-value z p-value

2 2.567 = .01 2.933 = .003
6 -3.684 < .001 -3.342 = .001
7 -3.824 < .001 -3.507 < .001
32 2.930 = .003 − −
33 3.943 < .001 3.595 < .001
44 -3.374 = .001 -2.542 = .011
45 -2.649 = .008 − −
46 2.196 = .028 2.642 = .008
48 -2.122 = .034 2.123 = .034
49 -3.188 = .001 − −
50 − − 2.756 = .006

Ten conditions rated statistically significantly different between CSLvl0 and CSLvl1 in G1,
and eight in G2 is a relatively high value, considering that there were 15 speech degradation
conditions under test. These results infer that a speech quality assessment test conducted in a
room with a level of the environmental background noise of 50dB(A) or more would lead to
significantly different results compared to the silent condition.

Moreover, I analyzed whether there were statistically significant differences between the
quality ratings collected in CSLvl0 and the ones gathered in the remaining two sessions in G3.
A Wilcoxon signed-rank test showed that there were only five speech degradation conditions
rated statistically significantly different when comparing CSLvl0 against CSLvl2 (43dB(A)),
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and nine conditions when contrasting CSLvl0 versus CSLvl3 (50dB(A)). More details can be
found in Table 5.8.

Table 5.8: Results of the Wilcoxon signed-rank test executed in Group 3. The table shows the
conditions rated statistically significantly different between CSLvl0 and CSLvl2, and CSLvl0 and
CSLvl3.

Cond. CSLvl0 CSLvl2 CSLvl3
Median Median z p-value Median z p-value

3 3.625 3.875 2.080 = .038 4.000 1.987 = .047
6 4.000 3.625 -2.670 = .008 3.125 -3.642 < .001
7 2.750 2.250 -2.514 = .012 1.625 -3.280 = .001
33 1.500 1.875 2.054 = .040 2.000 3.014 = .003
44 2.625 − − − 1.875 -2.490 = .013
45 3.500 2.875 -3.158 = .002 2.625 -3.420 = .001
48 3.000 − − − 2.750 -2.619 = .009
49 2.500 − − − 1.875 -2.635 = .008
50 1.750 − − − 2.125 2.758 = .006

These results are in line with those from G1 when comparing CSLvl0 versus CSLvl1
(50dB(A)). Participants in G1 evaluated statistically significantly different ten degradation
conditions while a street traffic noise was being played at 50dB(A) (see Table 5.7). Indeed,
an independent-samples t-test revealed that there was not a significant statistical difference
between the quality scores provided by the listeners from G1 at CSLvl1 (50dB(A)) and listeners
from G3 at CSLvl3 (50dB(A)) that executed the test under the influence of street traffic
background noise (t(658) = 1.861, p = .063). This outcome confirms that a speech quality
assessment test executed under the influence of background noise at a level of 50dB(A) would
lead to unreliable results. Moreover, our findings suggest that a speech quality test conducted
in the presence of environment background noise of 43dB(A) or lower would only in rare cases
differ from a test carried out in silence, comparing the resulting MOS scores.

Furthermore, I executed a one-way repeated measures ANOVA to determine whether the
gathered MOS values in G3 were statistically significantly different over the test sessions
performed under different background noise conditions. There were no outliers, and the data
were approximately normally distributed. The assumption of sphericity was violated, as assessed
by Mauchly’s test of sphericity, χ2(5) = 133.257, p < .001. Consequently, a Greenhouse-Geisser
correction was applied (ε = 0.754). This ANOVA test revealed that the quality scores were
statistically significantly different at the different test sessions, F (2.261, 676.034) = 5.504, p =
.003. Then, a post hoc analysis with a Bonferroni adjustment showed that the quality scores
provided by the listeners at CSLvl3 (under the influence of a 50dB(A) background noise) were
statistically significantly different to the ones given at CSLvl0 (p = .033), CSLvl1 (p = .009)
and CSLvl2 (p = .02). However, no significant difference was seen among the quality scores
gathered between the sessions CSLvl0, CSLvl1, and CSLvl2. All in all, our results imply that
the threshold of the level of environmental background noise for collecting reliable speech
quality scores lies between 43dB(A) and 50dB(A).

In the case of G1 with street traffic background noise, when comparing CSLvl0 to the other
two sessions, i.e., CSLvl2 (55dB(A)) and CSLvl3 (65.5dB(A)), the number of conditions that
were rated statistically significantly different were 11 in CSLvl2 and 10 in CSLvl3. On the
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other hand, in Group 2, under the influence of “TV-Show” background noise, the number of
significant differences ranges from 8 to 9 (CSLvl0 vs. CSLvl1 (60dB(A)), CSLvl3 (80dB(A)),
respectively). Table 5.9 compiles these results. This outcome indicates that listeners are less
distracted by the “TV-Show” noise than by the street traffic noise when executing the listening
test. Thus, higher loudness values of the environment background noise in G2 (60dB(A),
70dB(A), and 80dB(A) for CSLvl1, CSLvl2, and CSLvl3, respectively) led to slightly less
significant differences in the speech quality ratings when comparing to listeners in G1. Hence,
the “TV-Show” environmental background noise was less intrusive for the participants than
the street noise.

Table 5.9: Number of conditions rated statistically significantly different between CSLvl0 and
the rest of the test sessions in Group 1 (G1) and Group 2 (G2).

G1 (street traffic noise) G2 (TV-Show noise)

CSLvl0 vs.
CSLvl1 (50dBA) 10

CSLvl0 vs.
CSLvl1 (60dBA) 8

CSLvl2 (55dBA) 11 CSLvl2 (70dBA) 9
CSLvl3 (65.5dBA) 10 CSLvl3 (80dBA) 9

5.1.3 Discussion

Figure 5.1 presents the MOS values per condition with 95% confidence intervals given by
listeners in the laboratory and our study sessions in Group 1, 2, and 3. Considering these
results, it can be inferred that the presence of background noise does not provoke a constant
linear decrease or increase of the quality scores among an entire speech quality assessment test.
Instead, it influences differently depending on the speech degradation condition under test.
For instance, conditions 6, 7, 44, 45, 48, and 49 are characterized as being quiet. A clear trend
was seen where listeners scored lower the quality of the speech stimuli than participants in the
laboratory. They were unable to hear these speech samples properly due to the environmental
background noise. This trend was observed in all groups.

Differently, conditions 2 and 3 were characterized by having background noise. In these
cases, it seems that the environmental background noise masked the noise present in the
speech signal, which prevented the listeners from perceiving the low quality of those stimuli.
Instead, the participants in our study rated higher the quality of those speech samples than
the listeners in the laboratory, see Figure 5.1.
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(a) Group 1

(b) Group 2

(c) Group 3

Figure 5.1: Comparison between the Lab-MOS and the CSLvl0,1,2,3-MOS values per condition
with 95% confidence intervals. Information about the degradation conditions can be found in
Table 5.2 and more details in [9].
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5.2 Analysis of Noisy Speech Quality Scores collected in
Crowdsourcing Environments

As previously stated, a trend was found in the ratings given to similar speech degradation
conditions as the background noise increased. More precisely, listeners in our study provided
lower quality scores than the laboratory participants to the quiet speech impairment conditions.
In contrast, conditions with background noise received higher ratings in our experiment than
in the laboratory, see Subsection 5.1.3. Therefore, there is a need for instrumental models to
correct the bias that can be found in the speech quality ratings collected in noisy crowdsourcing
environments. Such models would be beneficial for using quality scores that would otherwise
be discarded.

This section investigates a method for correcting the bias found in quality ratings given
to speech stimuli with background noise and attenuated speech samples in the presence of
environmental noise. Specifically, I determine the applicability of different regressor models to
estimate the difference between the MOS collected in quiet and noisy environmental conditions.

The models were trained with data collected from the participants of the study groups 1 (G1)
and 3 (G3) that conducted the listening test while being exposed to street traffic environmental
background noise. The features were derived from statistics metrics calculated from the
quality ratings given to each speech degradation condition and the level of environmental
noise. Additionally, I tested two approaches to apply prior training to overcome the problem
of imbalanced data. Finally, I present the results of an extensive model tuning for optimizing
the regressor predictions.

5.2.1 Speech Quality Scores

Out of the 15 conditions under test, I only used the ratings provided to the six attenuated
degradation conditions and the assessments made to the four speech impairment conditions with
noise. Table 5.10 shows the selected conditions. The other conditions were not included since
no relationship was found between the listeners’ ratings, the characteristics of the degradation,
and the environmental background noise.

I computed the Pearson’s product-moment correlation and the Root Mean Square Error
(RMSE) to determine the relationship between the ratings collected in the laboratory and
CSLvl0, 1, 2, and 3. These results are presented in Table 5.11. A positive and significant
correlation with the Lab-MOS and low RMSE was seen in both groups. As expected, the
correlation coefficient decreased with increasing background noise.

As previously pointed out, six of the impairment conditions were distinguished by the
speech signal’s attenuation in the range of -8dB to -20dB (see Table 5.10). A clear trend was
seen in both groups (G1 and G3), where listeners scored low the quality of these speech samples
with the increase of the background noise. Figure 5.2 presents the MOS scores provided by
listeners in both groups to the six speech degradation conditions. It can be seen that the
quality scores degraded as the environmental noise at the listening side increased.

The other four conditions were characterized by degrading the speech signal with a
background noise at the sending side varying from 12dB to 20dB (see Table 5.10). A slight
trend can be observed in two of these conditions (i.e., 2 and 33 (see Figure 5.3)), where users
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Table 5.10: Condition numbers and labels referring to the speech impairments under test [9]. The
first six conditions were characterized by being attenuated, and the last four by having background
noise.

Condition Number Degradation Description

Attenuated conditions
6 SWB Level -10dB
7 SWB Level -20dB
44 VoIP WB-Call + -16dB + acoust. send
45 VoIP WB-Call + -8dB + acoust. send
48 VoIP WB-Call + acoust. noise (rcv) + -8dB
49 VoIP WB-Call + acoust. noise (rcv) + -16dB

Conditions with noise
2 SWB+Noise 12dB
3 SWB+Noise 20dB
33 EVRC-A + Noise 18dB SNR + Codec NS
47 VoIP WB-Call + acoust. noise (rcv)

Table 5.11: Pearson’s (r) correlation and root mean squared error (RMSE) between the Lab-
MOS and the MOS scores collected in all of the test sessions in Group 1 (G1) and Group 3 (G3).

Group Session r p RMSE

G1

CSLvl0 0.877 < .001 0.405
CSLvl1 0.721 = .002 0.593
CSLvl2 0.632 = .011 0.726
CSLvl3 0.526 = .044 0.922

G3

CSLvl0 0.784 = .001 0.534
CSLvl1 0.793 < .001 0.519
CSLvl2 0.754 = .001 0.562
CSLvl3 0.71 = .003 0.638

provided a higher speech quality score in the test sessions with environmental background
noise than without background noise. Figure 5.3 shows the MOS scores with 95% confidence
intervals provided by listeners in both groups to the four speech degradation conditions.

5.2.2 Model

In the following, I test the feasibility of some ensemble-based and non-linear models to predict
the difference between the MOS collected in the test session with background noise and the
MOS gathered in the silent test condition.

5.2.2.1 Feature Selection

The model’s input features were calculated per listener, speech degradation condition, and
level of noise (i.e., test session). The target variable was computed by subtracting the average
of the ratings per speech degradation condition provided by a single user in each of the test
session to the MOS per degradation condition given by the rest of the participants in CSLvl0.

I computed the standard deviation (StdDev) out of the four ratings provided by each
participant to each speech degradation condition. Additionally, I scaled the ratings using the
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Figure 5.2: MOS provided by listeners in G1 and G3 to the six speech degradation conditions in
the presence of environmental background noise. “no noise” and “50,0 dB(A) comprise the samples
from both G1 and G3. Information about the degradation conditions can be found in Table 5.10
and in [9].

Figure 5.3: MOS provided by listeners in G1 and G3 to the four speech degradation conditions in
the presence of environmental background noise. “no noise” and “50,0 dB(A) comprise the samples
from both G1 and G3. Details about the degradation conditions can be found in Table 5.10 and
in [9].

scale generic function of the R package “base” and calculated the standard deviation of these
scaled scores (StdDev2). The scale factor (SCALE), the variance (VAR), and the median
absolute deviation (MAD) were also considered as input features. Moreover, I calculated an
intra-rater reliability (IRR) score by computing the intraclass correlation coefficient (ICC).
Since I was interested in the degree of agreement in the absolute values across the ratings
from a single worker, I used a “one-way random” model to compute the ICC coefficient. For
this purpose, the icc function of the R package “IRR” was employed using “agreement” and
“single” as parameters [96]. To be able to calculate the IRR from the ratings provided by a
single user to a specific speech degradation condition, the input to the ICC function were these
ratings and the same ratings but randomized. All the input features were normalized based on
z-scores to prevent bias of the regression coefficients and better evaluate their impact on the
prediction.
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5.2.2.2 Model Evaluation

Different regression models were trained to find the one yielding the best results on estimating
the degradation of the speech quality scores due to the environmental background noise. The
training was done on the data corresponding to the attenuated speech stimuli, i.e., six speech
conditions, from now on referred to as “quiet speech” data, and also on the data corresponding
to the speech samples with background noise, i.e., four speech conditions, from now on referred
to as “noisy speech” data.

After computing the features and the target variable, I noted that the data was imbalanced.
Figure 5.4 shows a histogram of the target variable. In the case of the quiet or attenuated
speech data, it can be seen that most of the samples correspond to values between -0.5 and 2
(approx.). In contrast, for the “noisy speech” data, a large number of samples were between
-0.5 and 0.5 (approx.). A common approach with such an imbalanced dataset is calculating
weights and using them as parameters when training and testing. Otherwise, a model aiming
to minimize the misclassification error would be inherently biased towards the majority class
and produce inaccurate predictions.
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Figure 5.4: The figure shows the imbalanced distribution of the target variable values
corresponding to the attenuated speech stimuli and the speech conditions with background noise.

In a classification task, the weights are realized by dividing the total number of samples by
the number of samples in a specific class. In contrast, in a regression problem like in our case,
this approach can not be made since the target variable is a continuous number. Therefore,
I applied k-means clustering to group the target variable into bins and then calculated and
assigned the weights to these clusters as if they were classes. In this way, I addressed the
imbalance problem of the data so I could obtain accurate predictions from the regressors under
test. This approach would penalize the prediction made to the numeric space containing a
large number of samples.

The regressors models to be trained with our dataset that support weighting were some
decision-tree based ensemble models like: Bagging regressor (BR) [102] with an Epsilon-Support
Vector Regression model as a base estimator, Random Forest (RFR) [103], Extra Trees
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(ETR) [104], Ada Boost (ABR) [105], Gradient Boosting (GBR) [106], and Stacking regressor
(SR) with a linear regression model and a RFR as base estimators. Also, I tested some
non-linear regressors: Support Vector Regressor (SVR) with a polynomial function kernel and
a K-nearest Neighbors (KNNR).

The models were evaluated in terms of the coefficient of determination (R2) and the root-
mean-squared-error (RMSE). I employed a 10-fold cross-validation technique, which leads to a
robust estimation of the models under test. Our experiments are based on the implementations
in the “scikit-learn” toolkit [107], and I used default model parameters in all cases for this
initial evaluation. Table 5.12 presents these results. It can be seen that when training the
model on the data from the speech degradation conditions that provoked an attenuation in
the speech stimuli (“quiet speech”), the Gradient Boosting Regressor (GBR) yielded the best
results as it had one of the best R2 and RMSE scores. In contrast, the models performed
poorly (i.e., low R2 and high RMSE) on the data from the speech degradation conditions that
corrupted the speech stimuli with background noise (“noisy speech”).

Table 5.12: Regressors evaluation. The coefficient of determination (R2) and RMSE is the average
of the 10-fold cross validation. Best results are shown in bold.

Regressor quiet speech noise speech
R2 RMSE R2 RMSE

Ada Boost 0.816 0.496 0.50 0.65
Bagging 0.809 0.491 0.43 0.69
Extra Trees 0.774 0.521 0.32 0.73
Gradient Boosting 0.826 0.479 0.50 0.65
K-nearest Neighbors 0.776 0.483 0.40 0.64
Random Forest 0.793 0.495 0.40 0.68
Support Vector 0.754 0.576 0.26 0.74
Stacking 0.791 0.576 0.43 0.72

One of the reasons for the poor performance on the “noisy speech” data might be the fact
that there were only four conditions in this case, and in only two it could be seen a slight
trend in the speech quality ratings with the increase of the background noise (see Figure 5.3).
Therefore, more data would be needed to evaluate the performance of the aforementioned
models for correcting the bias on the quality ratings due to the environmental background
noise. Thus, in the following, I focus the analysis on the “quiet speech” data.

Next, I investigate if training the model after applying a data augmentation technique
would lead to better results. Data augmentation is used to even datasets and overcome the
data imbalance problem. Specifically, I used the Synthetic Minority Over-sampling Technique
(SMOTE) [108]. SMOTE uses an algorithm based on k nearest-neighbors to generate new
samples of the minority classes. That is, given a sample xi, a new sample xnew will be generated
by selecting one of its k nearest-neighbors xzi and applying the following formula:

xnew = xi + λ × (xzi − xi) (5.1)

where λ is a random number in the range [0, 1].
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I applied the SMOTE algorithm to our “quiet speech” dataset using the implementation
from the imbalanced-learn toolbox [109]. Only the GBR model was evaluated since it was the
one showing the best results on the data, see Table 5.12. I conducted 10-fold cross-validation,
and the average of the R2 coefficient and RMSE was 0.88 and 0.44, respectively. These results
suggest that it is better to use a data augmentation technique like SMOTE than a weighting
approach, to estimate the deviation of the MOS scores due to the influence of background
noise.

5.2.2.3 Model Tuning

The gradient boosting algorithm [106] adds new decision trees based models using an ensemble
technique called boosting. In doing so, it permits to correct the errors made by existing models
and this process is repeated until there are no further improvements. As previously pointed
out, the GBR model was trained using the default parameters. I then conducted an extensive
hyper-parameter tuning using grid search over the relevant values of the regressor parameters
with 10-fold cross-validation. The goal was to find the best parameter constellation. Again,
the metrics used for the hyper-parameter optimization were R2 and RMSE. The default and
optimized values of the parameters are shown in Table 5.13. The tuned GBR model achieved
a R2 score of 0.90 and RMSE of 0.416.

Table 5.13: Important hyper-parameters of the GBR model and their default and optimized
values. Information regarding the hyper-parameters can be found in [110].

Hyper-parameter Default Optimized

number of boosting stages 100 80
min_samples_leaf 1 5
max_depth 3 6
alpha 0.9 0.5

5.2.3 Discussion

The proposed Gradient Boosting Regressor can be applied when information is available about
the environmental background noise characteristics of listeners in crowdsourcing. Further
investigation would be needed to evaluate different approaches to fulfill this requirement. Either
by including a step in the listening test asking crowd-workers to assess the environmental
noise with a sound meter app or recording through the audio web-API a few seconds of the
workers’ environmental noise and using this data to make automatic predictions about the
characteristics of the background noise.

I encourage using the proposed bias correction method on ratings from speech degradation
conditions of similar characteristics. Otherwise, the uncertainty of the algorithm would increase
as the RMSE would be high.
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5.3 Environment Background Noise Classification

This section investigates the use of different features for environmental noise classification in
terms of type and level of noise. Our goal is to determine if it is possible to infer information
about the workers’ environment from small environmental audio recordings gathered through
the audio-web API when workers perform the listening test. In a previous section, I showed the
noises that might distract workers when executing tasks in crowdsourcing (see Subsection 3.3.4),
and in Section 5.1, I determined the influence of the environmental background noise in the
speech quality scores. Hence, a mechanism is needed to determine the characteristics of the
workers’ environment. Such a mechanism would be useful for detecting when crowd-workers
do not follow the study’s instructions and execute the listening test in noisy environments.

5.3.1 Environment Background Noise Collection

I created a web application for collecting environmental audio recordings. These web-audio
recordings conform the two dataset that will be introduced in the following sections for noise
classification and noise level estimation. This web-App had four sections. The first section
contained instructions to disable the noise reduction options enabled by default in Windows
and macOS computers. These options were: “Disable all sound effects” in the “Microphone
Properties” in Windows, and the checkbox: “Use ambient noise reduction” in the sound
settings in Mac computers. The second section comprised the instructions for performing the
recordings emulating a realistic usage scenario (e.g., to record noises from a TV on, users
had to turn on the TV at a normal volume and run the web recording App from where they
usually sit down to work).

The third section included the list of nine different environmental noises to emulate and
record:

• Watching TV or TV-Show

• Listening to Radio

• Listening to Music

• Coffee Machine

• Dishwasher

• Water Heater

• Street/Traffic Noises

• People Talking

• Quiet

These noises were selected based on our findings of the most common environmental noises
affecting German crowd-workers when they enroll in crowdsourcing tasks (see Subsection 3.3.4).
Finally, the web-App had two text input fields and the button to trigger the recording. The
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input field served to assign a unique identifier to the recording and to provide information
about the noise’s loudness.

This web-App was either used in the laboratory with the background noise simulated
according to the definitions of Section 3.4 and loudness measurements with the artificial head
HMS II.3 HEAD acoustics. Or used at home in real-life scenarios with noise level measurements
from the “db Meter” 1 mobile application available for Android and IOS devices.

5.3.1.1 Dataset for Noise Classification

The Dataset for Noise Classification (DNC)2 [111] consisted of 4377 labeled environmental
recordings approximately equally balanced between three main categories, i.e., “mechanic”,
“melodic”, and “quiet”. I decided to group the recordings into these three categories, as it was
found in Subsection 3.3.4.7, that these are the type of background noises that might impact
the results of speech quality evaluations carried out in crowdsourcing. The environmental
recordings had an average duration of 14.6 seconds, representing 17.8 hours of background
noise data. Table 5.14 shows the number of files per category and the noise classes contained
in each category.

Table 5.14: Number of recordings per category and types of noises or classes contained in each
category.

Noise Classes Noise Category Files per Category

coffee machine

mechanic 1545dishwasher
water heater
street, traffic

TV, TV-Show

melodic 1427music
radio
people

quiet quiet 1405

5.3.1.2 Dataset for Noise Level Estimation

The Dataset for Noise Level Estimation (DNLE)3 [112] contained 1668 recordings labeled
according to type and level of noise. The loudness measurements were 50.7dB(A) on average,
varying from 30.6dB(A) to 81.3dB(A). The environmental recordings were 15.0 seconds long
on average, which summed up to 6.95 hours of background noise data in total. As in the DNC
dataset, the recordings were arranged into three main categories, i.e., “mechanic”, “melodic”,
and “quiet”. Table 5.15 below shows the number of files per category, the noise classes in each
category, and information regarding each category’s loudness levels.

1http://dbmeterpro.com/
2https://github.com/zequeira/DNC.git
3https://github.com/zequeira/DNLE.git
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Table 5.15: Number of environmental recordings per category and loudness levels in each category.

Noise Classes Noise Category Files per Loudness Average min / max
Category (dBA) (dBA)

street, traffic mechanic 576 58.6 46.5 / 70.0dishwasher

TV, TV-Show
melodic 580 59.6 32.0 / 81.3music

radio

quiet quiet 512 31.4 30.6 / 33.0

5.3.2 Experiment BN1

The experiment BN1 examines the suitability of mel-frequency cepstral coefficients (MFCC) for
classifying the background noise from web audio recordings. Spectral features like MFCC have
been widely adopted in speech and music [113] applications due to its coefficients’ stability
against signal deformations [114, 115, 116]. The MFCC is calculated by applying a discrete
cosine transform (DCT) to the log-mel-spectrogram as if it were a signal. The amplitudes of
the resulting spectrum represent the MFCC coefficients.

I investigate the optimal number of MFCC coefficients for identifying the environment
noise category. To this end, I trained multiple state-of-the-art machine learning classifiers with
different feature sets. Each set comprised a different number of MFCC coefficients varying
from 5 to 31 (i.e., an odd number of coefficients from 5 to 31), and as a result, all classifiers
were tested 14 times.

I used the librosa [117] python package with default settings4 to compute MFCC features
from the “DNC” dataset. As previously stated, DNC has 17.8 hours of environmental
recordings grouped into three main categories, i.e., “mechanic”, “melodic”, and “quiet” (see
Subsection 5.3.1.1). All features were normalized based on z-scores to avoid bias and to
evaluate the classifiers’ performance better.

The classifiers under test were: k-nearest neighbors (KNN) [118], Random Forest Classifier
(RFC) [103], Extra Trees Classifier (ETC) [104], optimized Gradient Boosting Classifier
(XGBC) [106], Ada Boost Classifier (ABC) [119], Bagging Classifier (BC) [102], and Multi-
layer Perceptron Classifier (MLPC) [120]. Table 5.16 presents a list of these classifiers with
their key parameter settings.

The classifiers were evaluated in terms of accuracy. I employed a 5-fold cross-validation
technique, which leads to a robust estimation of the models under test. Our experiment is
based on the implementations in the “scikit-learn” toolkit [107]. When not specified, the
parameters had default values.

5.3.2.1 Results

Figure 5.5 presents the experimental results. It can be seen that the accuracy increased with the
increase in the number of MFCC coefficients. However, at the cost of more resources and time
needed during the training process. In fact, it was not possible to train the “Bagging” classifiers

4https://librosa.org/doc
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Table 5.16: The table shows the classifiers under test with their main parameter configuration.

Classifier Parameters Setup Classifier
Abbreviation

k-nearest neighbors (KNN) No. neighbors: 5 KNN-5

Random Forest Classifier (RFC) No. estimators: 50 RFC-500

Extra Trees Classifier (ETC) No. estimators: 50 ETC-50

Gradient Boosting Classifier (XGBC) tree method: approx XGBC

Ada Boost Classifier (ABC) base estimator: ABC-RFC10RFC(n_estimators=10)

Ada Boost Classifier (ABC) base estimator: ABC-RFC20RFC(n_estimators=20)

Ada Boost Classifier (ABC) base estimator: ABC-ETC20ETC(n_estimators=20)

Bagging Classifier (BC) base estimator: BC-KNN5KNN(n_neighbors=5)

Bagging Classifier (BC) base estimator: BC-DTCdecision tree classifier

Bagging Classifier (BC) base estimator: BC-ETCextra tree classifier

Multi-layer Perceptron Classifier (MLPC)
hidden_layer_sizes:

MLPC-adam(40, 30, 30, 30, 3);
solver: adam

Multi-layer Perceptron Classifier (MLPC)
hidden_layer_sizes:

MLPC-lbfgs(40, 30, 30, 30, 3);
solver: lbfgs

Multi-layer Perceptron Classifier (MLPC)
hidden_layer_sizes:

MLPC-adam+(40, 35, 35, 35, 3);
solver: adam

with more than 23 MFCC coefficients, or the “ExtraTrees”, “Random Forest”, “K-nearest
neighbors”, and optimized “Gradient Boosting” classifiers with more than 25 MFCC coefficients.
Training these classifiers with a high number of MFCC coefficients was computationally too
expensive, and therefore no results were obtained in these cases.
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The two classifiers with the best performance were the Ada Boost Classifier with a
Random Forest Classifier with 20 estimators as a base estimator (ABC-RFC20), and the two
architectures of the Multi-layer Perceptron Classifier with the adam solver for the weight
optimization (MLPC-adam). The highest accuracy was 0.64 and 0.69 for the ABC-RFC20
and MLPC-adam classifiers, respectively.

A closer look at the performance evolution of these classifiers with the increase of the MFCC
coefficients revealed that the accuracy did not improve significantly after 19 or 21 coefficients.
This outcome suggests that a good trade-off might be to use a number of MFCC coefficients
around 20 to accomplish a fair balance between accuracy and computational resources for
noise classification from web audio recordings.

5.3.3 Experiment BN2

This subsection investigates the suitability of different spectral and chroma features for
environmental noise level estimation from web audio recordings. I used the librosa5 package
with default parameters to derive the following 65 features from the DNLE dataset:

• 20 MFCC

• 20 delta-delta

• 1 spectral centroid

• 12 chromagram

• 12 chroma energy normalized (CENS).

Delta-delta features are calculated by computing the local estimate of the second derivative
of MFCC features. They are also called acceleration coefficients and introduce an even longer
temporal context. Spectral features have been successfully employed in sound classification [114,
115, 121] and audio event recognition [122] tasks. The spectral centroid is calculated by
normalizing each frame of a magnitude spectrogram and treating it as a distribution over
frequency bins, from which the mean or centroid per frame is extracted [123].

The chroma features include the computation of a chromagram from a waveform or power
spectrogram [124] and a variant of “Chroma Energy Normalized” (CENS). Chroma features
are a powerful representation of the audio signal in which the entire spectrum is projected
onto 12 bins representing the 12 different semitones or chroma of the musical octave. For
certain audio signals, knowing the chroma distribution even without the absolute frequency
(i.e., the original octave) can provide useful information about the audio, and may even reveal
perceived similarities that are not apparent in the original spectra. On the other hand, CENS
features take statistics over large windows to smooth out local deviations in tempo, articulation
and musical ornaments. Chroma features are robust to dynamics, timbre, and articulation.
Therefore, they are commonly used in audio matching and retrieval applications [125].

All features were normalized based on z-scores. A preliminary analysis revealed that the
data was imbalanced. The histogram below (see Figure 5.6) shows a high difference between

5https://librosa.org/doc
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5. Impact of Background Noise

the number of samples available around 40dBA and above 70dBA, compared to the samples
in the other ranges. To overcome this imbalanced data problem, I used the same approach
employed in Subsection 5.2.2.2. K-means clustering was applied to the target variable and
I computed weights based on the resulting groups. Then, I used this weight vector on each
training step to correct the result of the “loss function”.
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Figure 5.6: The figure presents the imbalanced distribution of the target variable in the dataset
for noise level estimation. There is a low number of samples around 40dBA and above 70dBA
compared to the rest.

I trained a deep neural network model based on a “Long Short-Term Memory” (LSTM) [126]
architecture for estimating the level of noise. LSTMs are a specific Recurrent Neural Network
(RNN) architecture designed to model temporal sequences and their long-range dependencies
more precisely than conventional RNNs. LSTM and traditional RNNs have been successfully
applied to various sequence prediction and sequence labeling tasks [127, 128].

I hypothesize that the ability of LSTMs to model temporal sequence dependencies could
be beneficial for noise level estimation. Most noises in the DNLE dataset are not constant
(e.g., television, music, radio, street traffic). Therefore, an LSTM can potentially take into
account the temporal characteristics of the noise to make predictions.

The LSTM architectures are designed to integrate information in one direction along a
particular dimension, e.g., forward in time. On the other hand, it might be beneficial in some
applications to integrate data across both directions. This can be achieved by “Bi-directional
recurrent networks” (BRNNs) by implementing a reduction to the standard one-directional
architecture [129]. This approach was successfully adapted in [130] to LSTM architectures,
i.e., BiLSTM.

Bi-directional networks and BiLSTM in particular, have been demonstrated to be effective
for a wide range of audio analysis tasks, varying from speech recognition [131, 132] beat
tracking [133], and event detection [134]. In general, bi-directional networks are more powerful
and generally preferred unless forward-sequential processing is required. For instance, research
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5.3 Environment Background Noise Classification

in [134] employed a multilabel bi-directional long- and short-term memory (BiLSTM) recurrent
neural network for polyphonic sound event detection from real-life recordings.

In this thesis, our model6 is composed of three fully connected LSTM layers, plus three
fully connected bidirectional LSTM (BiLSTM) layers, plus three fully connected LSTM layers
and a linear regression layer as an output. As previously stated, the BiLSTM layers operate on
the input sequence in both directions. Table 5.17 summarizes the architecture of our model:

Table 5.17: Architecture of the deep neural network based on LSTM and BiLSTM.

Layer Type No. Layers

LSTM 3
BiLSTM 3
LSTM 3
Regression 1

5.3.3.1 Results

The dataset was split into 90% for training and 10% for testing. The model was trained with
an “adam” optimizer, a learning rate of 0.0005, and a batch size of 675. The proposed model
achieved an RMSE of 4.58 on average with a minimum of 0.5 and a maximum of 14.4 (scale of
30.6dBA to 81.3dBA), and a standard deviation of 2.72 on the test dataset. The Figure 5.7
presents the resulting scatterplot of the predictions on the test dataset.
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Figure 5.7: The figure shows a scatterplot of the LSTM-based deep model predictions on the test
dataset.

6https://github.com/zequeira/ENVM-BiLSTM.git
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5.3.4 Discussion

This section investigates the use of machine learning for environmental noise classification
and noise level estimation from audio recordings collected through the audio-web API in
crowdsourcing. Two datasets were created containing recordings of environmental noises
that have been shown to affect workers when they perform crowd-work. One experiment
was conducted where multiple classifiers were trained with MFCC features varying from 5
to 31 coefficients. The classifier’s accuracy increased with the number of MFCC coefficients.
However, the computational cost and training time increased with the number of MFCC
coefficients, and in some classifiers, it was not possible to collect results for a high number of
MFCCs.

Moreover, one of the highest accuracies of 0.64 was achieved with an Ada Boost Classifier
with a Random Forest Classifier as a base estimator. A high accuracy was also achieved with a
Multi-layer Perceptron Classifier with an “adam” solver for weight optimization (0.69). It was
also observed that the accuracy did not increase significantly when employing more than 19 or
21 MFCC coefficients. Therefore, it is recommended to use a number of MFCC coefficients
around 20 to achieve a good balance between accuracy and computational requirements. All in
all, these results indicate that it is possible to classify the type of noise from audio recordings
collected through the audio-web API.

In a second experiment, an LSTM-based deep neural network was trained using different
spectral and chroma features to estimate the noise level from web-audio recordings. The
proposed network architecture was based on fully connected LSTM and BiLSTM layers with
a linear regression layer as output. The network achieved an RMSE of 4.58 and a standard
deviation of 2.72 on the test dataset. This outcome indicates the validity of the LSTM-based
neural network for environmental noise level estimation from web-audio recordings.

5.4 Conclusion

This chapter investigates the influence of environmental background noise on the results of
a speech quality assessment test in crowdsourcing. A simulated crowdsourcing study was
conducted in the laboratory with three groups of participants. They assessed the overall
quality of speech stimuli in the presence of environmental background noise at various levels.
The results indicate that the environmental background noise level threshold to achieve reliable
speech quality assessment results in crowdsourcing lies between 43dB(A) and 50dB(A). The
outcomes suggest that a background noise level of 50dB(A) on average leads to invalid results.
In contrast, a level of 43dB(A) yielded reliable speech quality ratings in most cases.

Furthermore, users tolerate more the TV-Show noise when executing the listening test.
The participants in Group 2 gave quality scores that were more in line with the quiet test
condition than listeners in Group 1. Additionally, the results indicate that the presence of
environmental background noise does not provoke that listeners would give consistently lower
or higher quality scores among an entire speech quality assessment study. Instead, the effect
of the background noise depends on the speech degradation condition in a test.

Moreover, this chapter presents an approach to correct the bias produced by the influence
of the environmental background noise in the speech quality ratings given to attenuated
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speech stimuli in crowdsourcing. To this end, features were derived out of statistics computed
from the quality ratings. The imbalanced characteristics of the data were corrected. Then a
Gradient Boosting Regressor (GBR) model was fine-tuned and trained employing a 10-fold
cross-validation technique. The model achieved a R2 score of 0.90 and RMSE of 0.416.

Finally, this chapter investigates the feasibility of using audio recordings collected through
the audio-web API for environmental noise classification. The goal was to determine if it
would be possible to infer information about the workers’ environmental characteristics from
audio samples gathered when performing the listening test. With this goal in mind, two
background noise datasets were created, and standard features were extracted and used for
noise classification and noise level estimation.

One experiment was conducted where different classifiers were trained with MFCC
coefficients varying from 5 to 31 to classify the type of noise. The classifiers were evaluated in
terms of accuracy. The results indicate that accuracy increases with the number of MFCC
coefficients but at the expense of the time and resources needed during the training process.
The classifiers with the highest accuracy were an Ada Boost Classifier with a Random Forest
Classifier as a base estimator (0.64) and a Multi-layer Perceptron Classifier with an adam
solver (0.69).

The second experiment evaluated the use of deep neural networks for noise level estimation.
To this end, different spectral and chroma features were extracted from web audio recordings
and used to train a deep model based on a “Long Short-Term Memory” (LSTM) architecture.
The LSTM-based model achieved an RMSE of 4.58 on average and a standard deviation of
2.72 on the test dataset.
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6
Influence of Language

This chapter investigates the feasibility of conducting a speech quality study with listeners
of a native language other than the speech dataset to be assessed. The motivation is that
evaluating the quality of German speech samples is a cumbersome task. It is challenging to
recruit German listeners, as the main crowdsourcing platforms do not have enough active
German users. An alternative is to use clickworker, a German-based crowdsourcing platform.
However, they lack basic functionalities like audio playback. Thus, it is necessary to implement
a system to conduct a listening test, which could be challenging and expensive. Additionally, it
is difficult to control the language proficiency of crowd-workers. Consequently, some listeners
may end up participating in a listening test of a target language other than their mother
tongue.

In this chapter, I determine the influence of assessing the quality of a German speech
dataset with native English and Spanish speakers. To this end, three studies were conducted,
which are outlined below, as well as the study results.

6.1 Study Setup

6.1.1 Speech Database

The stimuli for this experimentation were taken from the speech dataset SwissQual 501 from
the ITU-T Rec. P.863 [9] competition. SwissQual 501 includes 200 speech samples carrying 50
different degradation conditions. Additionally, it incorporates subjective quality assessments
from 24 different native German listeners. The resulting Lab-MOS scores are taken as a
reference for the analysis presented in this chapter. Further information regarding SwissQual
501 can be found in Section 3.2.1 and in Appendix A.

6.1.2 Method

Three studies were conducted (i.e., E1, E2, and E3) to assess the quality of a German speech
dataset. E1 was run with native German listeners while E2 and E3 were executed with native
English and Spanish speakers.
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6. Influence of Language

The study E1 was conducted using the German-based clickworker crowdsourcing platform.
Clickworker reported having 2.2 million users worldwide, 30% from Europe and 12% in total
are native German speakers 1. Then, the study was addressed to crowd-workers from Germany,
Austria, and Belgium.

On the other hand, studies E2 and E3 were executed in Amazon Mechanical Turk (AMT).
E2 targeted workers from the United States with a Human Intelligence Task (HIT) approval
rate greater than 98% and more than 500 HITs approved. In contrast, E3 was addressed to
workers from all Spanish speaking countries. Due to the low number of active Spanish workers
in AMT, no restriction was set regarding the workers’ performance history.

The crowdsourcing studies contained three phases (i.e., Qualification, Training, and
Assessment), which are described in Section 3.3.3. In the following, I detail characteristics of
the Qualification and the Assessment phase that are particular to the studies E1, E2, and E3.

Since I wanted to recruit workers with no knowledge of the German language in E2 and
E3, the Qualification phase included a single choice question where users indicated from zero
(no knowledge) to six (native) their understanding of German. Additionally, they listened to a
passage in German and answered four content questions about the audio. Workers qualified to
participate in the study when they answered zero or one to the German proficiency question
and responded wrong to the content questions.

The Assessment phase included 15 speech stimuli plus one trapping question inserted
randomly within the first five stimuli and one between the 10th and the 15th sample. All
interfaces were presented in the native language of the listener. More details about the
Qualification, Training, and Assessment phases can be found in Sections 3.3.3.1, 3.3.3.2, and
3.3.3.3, respectively.

6.2 Results

Overall, 233 workers executed the Qualification phase in E1. Thirty-five failed the included
German test, and the remaining 198 workers were invited to participate in the study.

In the case of E2, 190 workers completed the Qualification. Fifteen of them were not invited
to participate in the study. They were either not native English speakers or answered the
German content questions correctly. On the other hand, 68 workers executed the Qualification
to participate in study E3. Twelve were prevented from taking part in the study since they
were not native Spanish speakers or were able to understand the German language.

A total of 64 listeners in E1, 53 in E2, and 40 in E3 participated in our study and produced
5400, 4179, and 3800 ratings, respectively. The workers’ demographics are shown in Table 6.1.
All workers in each group answered the trapping question correctly. Furthermore, I analyzed
all of the speech quality scores collected in each group to identify and discard the ratings
deemed extreme outliers, i.e., those located at a distance from the median equal or higher than
3.0 · IQR (interquartile range) [81]. Then, 137, 154, and 76 ratings were removed in study
E1, E2, and E3, respectively. The remaining quality scores were then considered for further
analysis.

1https://www.clickworker.com/clickworker-crowd
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Table 6.1: The table presents the demographic information of the 64, 53, and 40 workers that
conducted the listening test in Study E1, E2, and E3, respectively. Values are expressed in
percentages.

E1 E2 E3
(64 workers) (53 workers) (40 workers)

Age:

18-25 25.0 11.3 45.0
26-35 34.4 24.5 30.0
36-45 18.8 30.2 17.5
>45 21.9 34.0 7.5

Gender: Female 53.1 52.8 32.5
Male 46.9 47.2 67.5

Language:
German: 96.9

English: 100 Spanish: 100Russian: 1.6
Hungarian: 1.6

Country: Germany: 90.6 US: 100

Spain: 52.5

Austria: 9.4

Mexico: 17.5
Venezuela: 12.5
Argentina: 5.0
Colombia: 5.0

Costa Rica: 5.0
Ecuador: 2.5

6.2.1 Analysis of Laboratory vs. Study E1, E2, and E3

To determine the validity of the mean opinion scores (MOS) collected in the different studies,
I compared the Lab-MOS to the E1-, E2-, and E3-MOS, respectively. Then, to analyze the
influence of language mismatch in the speech quality ratings, I contrasted the Lab-MOS to
the E1-MOS, and then the E1-MOS against the MOS values gathered in studies E2 and E3.

I calculated the Pearson’s product-moment correlation and the Root Mean Square Error
(RMSE) to assess the relationship between the ratings collected in the laboratory and
crowdsourcing in studies E1, E2, and E3. A positive and significant correlation with the
Lab-MOS and low RMSE was seen in each study regardless of the listeners’ mother tongue.
As expected, one of the highest correlations and the lowest RMSE were achieved in E1 with
the German listeners, i.e., r = 0.92(p < .001); RMSE = 0.319. Table 6.2 presents a summary
of these results. This outcome indicates the validity of the ratings gathered in the different
studies.

Table 6.2: The table presents the study sizes, Pearson’s product-moment correlation, and the Root
Mean Square Error (RMSE) between the Lab-MOS and the ratings collected in the crowdsourcing
studies E1, E2, and E3.

Study # of valid ratings # of listeners r RMSE

E1 (native Germans) 5263 64 0.922* 0.319
E2 (native English) 4025 53 0.929* 0.467
E3 (native Spanish) 3724 40 0.862* 0.523
*p < 0.001
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Additionally, I investigated whether there were significant differences between the speech
quality ratings given by the listeners to each of the speech degradation conditions in the
laboratory and E1. With this goal in mind, I run a Mann-Whitney U test [101] per condition
with Šidák alpha correction to counteract the problem of multiple comparisons. The Šidák
correction [135] is conducted under the premise that the executed tests are independent. Since
all conditions are considered independently, the adjusted alpha level (αSID) is determined by:

αSID = (1 − (1 − α))
1
m (6.1)

where α equals the unadjusted p-value (i.e., α = 0.05) and m represents the number of
independent conditions (i.e., 50 in our study). The Šidák correction gives a stronger bond
than the Bonferroni correction. It can also be limited by the condition of independence and is
less stringent in its control over the type I error [136].

A standard practice in statistical analyses is to accept an alpha level of 0.05 to identify
statistical significance from non-significance. However, when conducting a high number of
statistical tests, this approach will result in one variable that will appear to be significant
when, in reality, it is co-incidental [137]. The occurrence of rejecting the null hypothesis when
it is, in fact, true is referred to as a type I error.

I replaced the values of α and m in Eq.(6.1) and resulted in an alpha-corrected value of
0.001. Thus, the statistically significant effects are determined for p-values equal to or less
than 0.001.

Out of the 50 conditions that were under test, I found that the median (Mdn) of the
rating scores were statistically significantly different for 11 conditions. The results of the
Mann-Whitney U test are presented in Table 6.3, together with the mean values per condition.
Information about the speech impairment conditions can be found in Appendix A and more
details in [9].

Table 6.3: Conditions rated statistically significantly different between listeners in the laboratory
and those in the study E1.

Cond. No. Lab Lab E1
Median Mean Median Mean U z p-value

5 3.00 2.938 4.00 3.718 2900.5 -5.262 < .001
12 1.00 1.198 1.00 1.590 4763.0 -3.649 < .001
22 3.00 2.844 3.00 3.385 3561.0 -3.649 < .001
26 1.00 1.479 2.00 2.350 2032.0 -7.690 < .001
27 1.00 1.135 1.00 1.574 3906.0 -5.712 < .001
29 3.00 2.990 3.00 2.558 6366.0 3.629 < .001
31 3.00 2.948 2.00 2.495 6371.0 3.733 < .001
34 2.00 1.906 2.00 2.505 3338.5 -4.149 < .001
36 2.00 2.250 2.00 1.923 6240.0 3.466 = .001
42 3.00 2.865 2.00 2.413 5701.0 3.654 < .001
43 3.00 2.844 4.00 3.523 4086.5 -4.413 < .001

Additionally, Figure 6.1 shows a scatterplot of the Lab-MOS and the E1-MOS for these 11
conditions. The figure shows that listeners in crowdsourcing overrated conditions 5, 12, 22, 26,
27, 34, and 43 compared to the laboratory participants. These conditions were either wideband
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(WB) or super-wideband (SWB), and four of them in combination with the Advanced Audio
Coding 2 (AAC) codec. In general, these conditions have in common that they caused a
degradation in the speech that would be difficult to perceive if the listener is not completely
focused on the test, or if the listening device is of bad quality. For instance, condition 5 had
a subtle noise coupled to the speech signal that was apparently unnoticed by listeners in
crowdsourcing. Also overlooked was the “electronic” sound of the speech in conditions 26 and
27. Thus, listeners in E1 provided higher quality scores to those speech stimuli.

Moreover, the underrated speech degradation conditions were characterized by being
narrowband combined with the Enhanced Full Rate (EFR) or the Adaptive Multirate (AMR)
codecs. The speech signal in most of these conditions was attenuated, and the speech sounded
a bit artificial in conditions 29 and 31. It seems that listeners in E1 could not properly hear
those attenuated stimuli, so they gave lower scores than participants in the laboratory.
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Figure 6.1: Comparison between the Lab-MOS and the E1-MOS. Represented only the conditions
that were rated statistically significantly different. More details about the degradation conditions
can be found in Appendix A and in [9].

All in all, the MOS differences between the laboratory and E1 were probably due to the
hardware employed for the listening test. Laboratory listeners wore professional headphones,
while crowdsourcing participants used regular headphones that they employ in their daily lives.
Additionally, laboratory listeners had higher discrimination capacity as they assessed the entire
speech dataset. In contrast, workers in crowdsourcing rated the quality of 15 speech stimuli per
session. Nevertheless, the MOS scores collected in the study E1 are valid and reliable. There
were only 11 conditions rated statistically significantly different between the laboratory and
E1, and in most cases, the difference was relatively small. Furthermore, Figure 6.2 compares
the MOS scores per condition with 95% confidence intervals that were given by the listeners
in the laboratory and those in the study E1.

6.2.2 Influence of Language Differences

To investigate the influence of language differences on the collected speech quality ratings, I
conducted the studies E2 and E3 with native English and Spanish speakers, respectively. Both
groups of listeners assessed the quality of the same German speech dataset evaluated by the
participants in E1. Of course, the study setup remained unchanged.

2The AAC is an audio coding standard for lossy digital audio compression. It was created to be the MP3
format’s successor since it achieves higher sound quality at the same bit rate.
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Figure 6.2: Comparison between the Lab-MOS and the E1-MOS with 95% confidence intervals.
Represented only the conditions that were rated statistically significantly different. Information
about the degradation conditions can be found in Appendix A and in [9].

I computed the Pearson’s product-moment correlation and the RMSE to determine the
relationship between the ratings collected in the study E1 and the scores collected in E2 and
E3. The correlation coefficient was strong and significant, and the RMSE low in both studies
with native English and Spanish speakers. These results indicate the validity of the ratings
collected in E2 and E3. Table 6.4 summarizes these results.

Table 6.4: The table presents the Pearson’s product-moment correlation, and the Root Mean
Square Error (RMSE) between the E1-MOS and the crowdsourcing ratings collected in the study
E2, and E3.

Study # of valid ratings # of listeners r RMSE

E2 (native English) 4025 53 0.970* 0.342
E3 (native Spanish) 3724 40 0.955* 0.339
*p < 0.001

Additionally, I run a Mann-Whitney U test per condition with Šidák alpha correction to
investigate the differences between the speech quality ratings provided by German listeners
(E1) and those gathered with native English (E2) and Spanish (E3) listeners. This test revealed
that the quality scores’ medians were statistically significantly different in 12 of the speech
degradation conditions under test in E2 (see Table 6.5) and for 10 conditions in the case of
the study E3 (see Table 6.6).

The number of speech impairment conditions rated statistically significantly different
between native Germans and native English, and between the Germans and Spanish speakers
was low, considering that there were 50 conditions under test. These results confirm the
validity of the speech quality scores collected in the study E2 and E3, which suggests that it
is possible to reliably assess the quality of a German speech dataset with native English or
Spanish speakers.

Figure 6.3 shows a scatterplot of the MOS scores of the 12 conditions rated statistically
significantly different between the German and the English speakers. And, Figure 6.4 presents
the scatterplot of the ten conditions that were perceived significantly differently by German
and Spanish listeners. It can be seen in both graphs that English and Spanish speakers tended
to overrate the quality of the speech stimuli of these impairments conditions. Since the listeners
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Table 6.5: Conditions rated statistically significantly different between the German listeners (E1)
and the native English (E2) speakers.

Cond. No. E1 E1 E2
Median Mean Median Mean U z p-value

2 2.00 2.036 2.00 2.571 2361.5 -3.983 < .001
12 1.00 1.589 2.00 2.012 4043.0 -3.436 = .001
23 2.00 2.118 3.00 2.679 2663.5 -4.791 < .001
29 3.00 2.558 3.00 3.066 1985.5 -4.520 < .001
30 2.00 2.558 3.00 2.929 4065.5 -3.285 = .001
32 2.00 2.011 3.00 2.595 2469.5 -4.506 < .001
36 2.00 1.923 2.00 2.257 2828.0 -3.399 = .001
37 2.00 2.164 3.00 2.747 2396.5 -5.225 < .001
42 2.00 2.413 3.00 2.974 2260.5 -4.295 < .001
44 2.00 2.442 3.00 2.988 2994.0 -3.842 < .001
49 2.00 1.942 3.00 2.548 2859.0 -4.173 < .001
50 1.00 1.167 2.00 1.607 2584.0 -5.064 < .001

Table 6.6: Conditions rated statistically significantly different between the German listeners (E1)
and the native Spanish (E3) speakers.

Cond. No. E1 E1 E3
Median Mean Median Mean U z p-value

1 5.00 4.637 5.00 4.900 2789.5 -3.342 = .001
2 2.00 2.036 3.00 2.921 1326.5 -6.765 < .001
3 3.00 3.437 4.00 3.826 2499.0 -3.615 < .001
11 4.00 4.212 5.00 4.640 2749.0 -3.296 = .001
12 1.00 1.589 2.00 2.184 3436.0 -3.903 < .001
21 2.00 2.195 3.00 2.956 2273.0 -5.811 < .001
28 2.00 2.202 3.00 2.632 2486.5 -3.673 < .001
34 2.00 2.505 3.00 3.329 2244.5 -5.041 < .001
36 2.00 1.923 2.00 2.447 2412.0 -5.016 < .001
49 2.00 1.942 3.00 2.447 2764.5 -3.516 < .001

in these two groups were not familiar with the German language, it seems that they did not
perceive some impairments in the speech due to the degradation conditions. That was the
case of the stimuli from conditions 11 and 12, where the speech was clipped, or conditions
28, 29, and 30 where the speech sounded a bit electronic, or the slight interruptions in the
stimuli of conditions 34, 42, and 44, or the robotic-sounding distortion in the samples from
conditions 49. These impairments were difficult to perceive for the non-native ear, and thus
listeners provided systematically higher quality scores to those speech stimuli.

The bias evidenced in Figures 6.3 and 6.4 can be corrected by applying a first-order
mapping [90]. Figures 6.5 and 6.6 presents a scatterplot of the MOS values per condition
between the native German (E1-MOS) and English (E2-MOS) and Spanish (E3-MOS) speakers,
respectively, after applying the first-order mapping. Additionally, I computed the Pearson’s
product-moment correlation and RMSE between the E1-MOS and the corrected E2- and
E3-MOS. These results are presented in Table 6.7. While the correlation coefficient did not
improve significantly, the RMSE decreased to 0.30 and 0.23 in E2 and E3, respectively.
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Figure 6.3: Scatterplot of the per-file-MOS for conditions rated statistically significantly different
between the native German (E1-MOS) and the native English (E2-MOS) speakers. More details
about the speech impairment conditions can be found in [9].
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Figure 6.4: Scatterplot of the per-file-MOS for conditions rated statistically significantly different
between the native German (E1-MOS) and the native Spanish (E3-MOS) speakers. More details
about the speech impairment conditions can be found in [9].
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Figure 6.5: Scatterplot of the ratings per condition provided by the native German (E1-MOS)
versus the scores provided by the native English (E2-MOS) speakers after applying the first-order
mapping. All conditions are represented.
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Figure 6.6: Scatterplot of the scores per condition provided by the native German (E1-MOS)
versus the ratings provided by the native Spanish (E3-MOS) speakers after applying the first-order
mapping. All conditions are represented.

Table 6.7: The table presents the Pearson’s product-moment correlation, and the Root Mean
Square Error (RMSE) between the E1-MOS and the ratings collected in E2, and E3, after applying
a first-order mapping.

Study r RMSE

E2 (native English) 0.93* 0.30
E3 (native Spanish) 0.96* 0.23
*p < 0.001

6.2.3 Analysis of Conditions per Group

One of the main goals of a speech quality assessment test is to understand how users perceive
certain speech degradation conditions and also small variations of these impairments. In the
following, I analyze the ratings given to the degradation conditions and compare all conditions
with each other to determine whether the same conclusion can be drawn in each study group.

I conducted a paired-samples t-test with Šidák alpha correction for multiple comparisons
between all speech degradation conditions within each study group. Considering that there
were 50 conditions under test, then there were 1176 t-tests executed in total. First, I compare
the results between the laboratory and the native German listeners. And afterward, I contrast
the results from the native English and Spanish speakers to the German crowd-workers.

Out of the 1176 t-tests, 986 yielded the same results with the German listeners as with
the laboratory participants, representing 83.84%. This result also confirms the validity of
conducting speech quality assessments with German listeners in crowdsourcing. The same
conclusion was reached in most cases as if the test were performed in the laboratory.

Furthermore, when contrasting the results from the native English and Spanish speakers
to the Germans, 1021 and 990 t-tests produced the same results, which represent 86.21% and
84.18%, respectively. These outcomes also demonstrate the validity of evaluating the quality
of German speech stimuli with native English and Spanish listeners in crowdsourcing.

Moreover, I analyzed the t-test results of the comparisons involving similar degradation
conditions. For example, conditions 2 and 3 that where SWB with two different levels of
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noise (i.e., 12dB and 20dB, respectively), or conditions 6 and 7 also SWB but with different
attenuations (i.e., -10dB and -20dB, respectively). Then there were 48 of these comparisons.
Forty-one of these t-tests produced the same outcome with the German listeners as with the
laboratory participants, representing 85.42%. Also, the results of 45 and 41 t-tests were the
same between the German listeners and the English and Spanish speakers, respectively. These
findings reinforce our claim that reliable speech quality scores of German speech stimuli can
be gathered with native English and Spanish speakers. The table below shows the executed
comparisons between similar degradation conditions for all groups.

Table 6.8: The table presents the outcomes of the executed paired-samples t-tests between similar
degradation conditions within each study group. Represented are the results for the laboratory
participants and the native German, English, and Spanish speakers, respectively. Depicted with
an “X” the comparisons deemed significant and in blank where no significance was seen.

Comparison of Laboratory German English Spanish
conditions Participants Listeners Listeners Listeners

2 vs 3
4 vs 5 X X
6 vs 7 X X
9 vs 10 X X X
13 vs 14
15 vs 16
15 vs 17
16 vs 17
18 vs 28 X X
19 vs 20
21 vs 22 X
21 vs 50
23 vs 24
23 vs 25 X
24 vs 25
24 vs 36
26 vs 27 X
26 vs 34
27 vs 34 X
29 vs 30
29 vs 31
29 vs 32 X
29 vs 33
31 vs 32
31 vs 33
32 vs 33
33 vs 35
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Comparison of Laboratory German English Spanish
conditions Participants Listeners Listeners Listeners

33 vs 37
35 vs 37
38 vs 39
38 vs 40
38 vs 41
38 vs 42
39 vs 40 X
39 vs 41
39 vs 42
40 vs 41
40 vs 42
41 vs 42
43 vs 44
43 vs 45
43 vs 46
44 vs 45
44 vs 46
45 vs 46
47 vs 48
47 vs 49
48 vs 49

6.3 Conclusion

The studies presented in this chapter aim to assess whether it is possible to gather reliable
speech quality scores for German stimuli with native English and Spanish speakers in a
crowdsourcing environment. The reason being that there are not enough active German
workers in the main crowdsourcing platform (i.e., Amazon Mechanical Turk (AMT) and
microWorkers (MW)). An alternative is to use clickworker, which is a crowdsourcing platform
based in Germany. However, they lack basic functionalities like audio-playback, quality control,
or task repetition. Thus, it is mandatory to implement a system to carry listening tests in
clickworker, which might be cumbersome. Therefore, the question of whether assessments
of the speech quality of a German dataset could be made at AMT with native English and
Spanish workers.

Three studies (i.e., E1, E2, and E3) were conducted with different listeners to assess the
quality of the same German speech stimuli. E1 was carried out in the clickworker crowdsourcing
platform with native German speakers. And studies E2 and E3 were executed in AMT with
native English and Spanish speakers, respectively. First, results gathered in E1 were contrasted
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to ratings collected in a previous laboratory experiment with a panel of German listeners.
Then, the MOS scores from the English and Spanish listeners were contrasted to the MOS
scores given by the Germans participants in E1.

Overall, a high and significant Pearson correlation and low RMSE was achieved between the
laboratory ratings and the scores collected in all crowdsourcing studies, despite the listeners’
mother tongue (see Table 6.2).

Furthermore, a scatterplot of the mean opinion scores from the German crowd-workers and
the native English and Spanish speakers revealed that the non-German participants tended to
overestimate the quality of the speech stimuli. Then, this bias was corrected with a first-order
mapping.

A similar effect was also seen in the speech quality scores gathered by the researchers of
the study performed in [73]. In that experiment, non-native English listeners evaluated the
quality of English speech stimuli, and the ratings collected from listeners with low English
knowledge were biased. Likewise, native and non-native English listeners evaluated the quality
of an American-English speech dataset in an experiment in [75]. The results showed that
the non-native subjects rated the stimuli with additional noise lower than the native English
participants. The trend observed in these studies was different from that perceived in my
experiments with non-native English and Spanish listeners. I do not have an explanation for
these differences, as further research would be necessary. However, what is important is that
biases can be expected when performing the speech listening test with non-native speakers
(relative to the speech dataset). Therefore, the bias perceived in the speech quality ratings
provided by the non-German participants of our study is not surprising.

Additionally, an analysis was executed per group and per speech degradation condition to
determine if the same conclusion regarding listener perception of the speech impairments could
be reached in each study group in crowdsourcing. This analysis showed that more than 85%
of the results obtained with native English and Spanish speakers were equivalent to the results
gathered with German crowd-workers. These outcomes indicate the feasibility of conducting
speech quality assessment studies of a German dataset with native English or Spanish speaking
crowd-workers in Amazon Mechanical Turk.
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The quality of transmitted speech is a vital indicator for telecommunication network providers
used to evaluate their systems and services. Traditional laboratory methods to estimate speech
quality are expensive and time-consuming. Therefore, the need for instrumental models to
predict the overall quality of transmitted speech and alternative test methods has risen in
recent years [9, 25].

Crowdsourcing is a valid approach for the rapid collection of speech quality evaluations.
However, due to the remote nature of crowdsourcing studies and the lack of supervision of
participants, multiple challenges arise that need to be addressed to collect valid and reliable
outcomes. This thesis investigates the influence of different factors in the speech quality
assessments executed in crowdsourcing. Specifically, I address important questions concerning
the test structure, environment background noise conditions, and language mismatch between
the speech dataset and listeners’ pool.

Chapter 2 provides a review of related work that contributes to motivating the research
carried out in this dissertation. Chapter 3 presents the speech material used in the studies
and the test procedures fundamentals followed in the experiments.

Chapter 4 addresses the research questions regarding the test structure. Particularly, I
investigate the optimum number of speech stimuli to include in a single task, and also the
influence of performing the evaluation task multiple times, on different worker reliability
metrics. The first research question was addressed by conducting a study in crowdsourcing
with three non-overlapping groups. Workers were confronted with tasks consisting of a different
number of stimuli, i.e., 10, 20, or 40. The speech quality ratings were highly correlated to
previously collected laboratory scores despite the number of employed stimuli.

The highest correlation and lowest RMSE was achieved in the group assessing 40 speech
samples per task. However, a decrease in the correlation coefficient was perceived in the second
half of these tests. Also, a significant number of workers in this group reported being exhausted
at the end of the task. Consequently, most of them participated in the study only once, and it
was challenging to collect the desired number of votes per file compared to the other groups.
Therefore, it is encouraging to offer tasks containing a reduced number of speech stimuli, i.e.,
between 10 and 15.
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Additionally, the results indicate that crowd-workers perceived higher the quality of
wideband (WB) and super-wideband (SWB) speech stimuli than the listeners in the laboratory.
On the contrary, the overall quality of narrowband (NB) speech samples was perceived lower by
crowdsourcing listeners than those in the laboratory. I hypothesize that these differences were
due to the hardware employed to perform the listening test. Listeners in the laboratory used
professional equipment, whereas crowd-workers employed regular headphones. Nevertheless,
there is no clear explanation for these differences. Hence, further investigation would be needed
to determine the reasons for the discrepancy in the quality evaluations for certain WB, SWB,
and NB speech files.

The second research question was addressed by carrying out two studies, one in the
laboratory and the other in crowdsourcing. In both, listeners had the chance to evaluate four
times the quality of the speech stimuli in the dataset. The results showed that listeners as
individuals were very consistent with their ratings. However, this consistency did not lead to
an increase in the agreement of all listeners as a group. As a result, the correlation and RMSE
to the laboratory results remained almost constant from the first to the last time workers
conducted the listening test. Finally, a model is proposed to predict wokers’ performance based
on intra-rater reliability, root-mean-squared-deviation, and listeners’ age. Such a model would
be convenient for estimating the validity of the speech quality scores collected in crowdsourcing
when there are no laboratory results to compare to.

It is worth noticing that the proposed model was built with data collected in a crowdsourcing
experiment in which listeners evaluated the same set of stimuli several times. Such a study
setup is relatively uncommon due to financial limitations and experimental design constraints
in crowdsourcing.

Frequently, in speech quality assessment experiments, the database to be evaluated
comprises multiple samples that are coded with very similar speech impairments. Then,
a listener would provide quality scores to a condition by assessing multiple speech stimuli. To
circumvent the limitations mentioned above and to be able to apply the proposed model to
evaluate the listener performance, an idea is to consider the ratings per condition from a single
worker. This way, an intra-rater reliability score can be computed that could be used as an
input feature. Nonetheless, further empirical studies would need to be carried out to validate
this assumption.

Chapter 5 answers questions related to the impact of environmental background noise in
speech quality experiments carried out in crowdsourcing. To this end, a simulated crowdsourcing
study was executed in the laboratory with three groups of participants. They evaluated the
overall quality of speech files in the presence of environmental background noise at different
levels.

The results indicate that the environmental background noise’s threshold to collect reliable
speech quality assessments in crowdsourcing lies between 43dB(A) and 50dB(A). A background
noise level of 50dB(A) on average led to invalid results, whereas a 43dB(A) level yielded
reliable speech quality ratings in most cases.

Additionally, listeners were more tolerant towards the TV-Show noise than to the street-
traffic noise. Participants performing the test under the TV-Show noise condition provided
quality scores that were more in line with the quiet test condition. Moreover, the results
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indicate that the presence of background environmental noise does not cause listeners to
consistently give lower or higher quality scores in an entire speech quality assessment study.
Instead, the effect of the background noise depends on the speech degradation condition in a
test.

Furthermore, a Gradient Boosting Regressor model is proposed for correcting the bias
found in the quality scores given to attenuated speech samples. Features were derived out of
different statistics computed from the quality ratings and noise level. The regressor model
achieved an R2 score of 0.90 and an RMSE of 0.416.

The proposed model can be applied under the premise that information about workers’
environmental background noise characteristics in crowdsourcing is available. An idea to fulfill
this requirement is to include a step in the training phase of the speech quality assessment
study, asking crowd-workers to assess the environmental background noise with one of the
available sound meter apps for smartphones. However, further research would be needed to
determine the accuracy of such sound meter apps and whether workers would be willing to
install a mobile application as part of the study.

Another approach to infer information about the workers’ environmental characteristics is
to automatically record audio samples through the audio-web API while performing the speech
quality listening test. Of course, this would only be possible after informing them about the
recording and their subsequent consent. The collected recordings could then be used to make
automatic predictions about the listeners’ environment background noise characteristics.

However, it remains to be explored in future work whether good environmental recordings
can be collected from the audio-web API from users in crowdsourcing. And also, if it is
possible to use machine learning to derive information about the characteristics of the noise
from those audio samples, considering that audio data collected through a web browser can be
very diverse due to the diversity of computers, operating systems, and software versions.

Finally, Chapter 5 takes the first steps to address the question of using machine learning
for noise classification from web-audio recordings. Two environmental background noise
datasets were created, taking into account the noises affecting workers when they participate
in crowdsourcing tasks. These datasets were used for testing the performance of different
machine learning algorithms for noise classification and noise level estimation.

One experiment was carried out where multiple state-of-the-art machine learning classifiers
were trained with a different number of MFCC coefficients for noise classification. The classifiers’
accuracy increased with the number of MFCC coefficients and also increased the computational
requirements. The highest accuracy was achieved with a Multi-layer Perceptron Classifier
with an adam solver for weight optimization. It is recommended to employ a number of
MFCC coefficients around 20 to accomplish a fair balance between accuracy and computational
requirements.

Additionally, another study was conducted to verify the performance of a deep learning
model based on a “Long- Short-Term Memory” (LSTM) architecture for noise level estimation.
The proposed LSTM-based model achieved an RMSE of 4.58 and a standard deviation of 2.72
on the test dataset.

All in all, these outcomes confirm the validity of using web audio recordings to infer
information about the environmental background noise characteristics. However, additional
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empirical studies would be needed to collect background audio data from crowdsourcing and
further validate the proposed models.

Chapter 6 investigates whether non-native German listeners could provide reliable speech
quality evaluations to a German speech dataset. Three studies were conducted in crowdsourcing
with native German, English, and Spanish speakers. All participants evaluated the quality of
the same German speech stimuli. The correlation to the laboratory results was strong and
significant in all groups regardless of the listeners’ mother tongue. Additionally, a scatterplot
of the mean opinion scores revealed that the English and Spanish crowd-workers tended to
overrate the quality of the speech files. However, a first-order mapping permitted to correct
such a bias. Moreover, an analysis was made per group to determine if the same conclusion
regarding listener perception of the speech impairments could be drawn in each study group.
This analysis revealed that more than 85% of the results obtained with native English and
Spanish speakers are equivalent to the results gathered with the German crowd-workers.

All in all, these outcomes indicate that it is possible to evaluate the quality of a German
speech dataset with native English or Spanish speakers in crowdsourcing. Yet, a bias can be
expected, but such deviations could be corrected with a first-order mapping.

A direction for future research is to investigate if reliable annotations of speech quality to
a German dataset could be gathered with native Indian crowd-workers. Workers from India
represent one of the most prominent user groups in the crowdsourcing platforms Amazon
Mechanical Work and microWorkers [67]. Therefore, it is important to determine the validity
of the speech quality evaluations from Indian workers. Addressing speech quality experiments
to Indian users would reduce study costs and study turn-around time as they are very active
in doing crowd-work. Furthermore, future research should address whether reliable speech
quality annotations to a German dataset could be gathered with listeners from a language
group different than German.
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A
Appendix A

A.1 Speech Database SwissQual 501

Table A.1: The table presents information about the 50 degradation conditions of the SwissQual
501 speech database. The Mean Opinion Scores (MOS) per condition is also displayed. More
details can be found in [9].

Condition Degradation MOS per
Number Description Condition

1 SWB 4.67
2 SWB+Noise 12dB 2.25
3 SWB+Noise 20dB 3.36
4 SWB+MNRU 10dB 1.23
5 SWB+MNRU 25dB 2.94
6 SWB Level -10dB 4.17
7 SWB Level -20dB 3.10
8 SWB mIRSsend+IRSrcv 3.79
9 SWB 500-2500Hz 2.57
10 SWB 100-5000Hz 3.89
11 SWB 2% Time Clipping 3.86
12 SWB 20% Time Clipping 1.20
13 AMR-WB Mode 0 (6.6 kbps) 2.94
14 AMR-WB Mode 2 (12.65 kbps) 3.95
15 AMR-WB Mode 0 (6.6 kbps) + Noise 16dB SNR 2.30
16 AMR-WB Mode 2 (12.65 kbps) + Noise 16dB SNR 2.84
17 AMR-WB Mode 2 (12.65 kbps) + Noise 16dB SNR +- 16dB 2.49
18 AMR-NB Mode 5 (7.95 kbps) 3.40
19 EVRC-B OP 0 3.57
20 EVRC-WB OP 3 3.61
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Condition Degradation MOS per
Number Description Condition

21 AAC LC + Noise 14dB SNR + +5dB 2.05
22 AAC LC + -10dB 2.84
23 AMR-NB Live M2L + Noise 16dB SNR + Phone NS 2.31

+ DTX UL + Nokia chipset
24 AMR-NB Live M2M + Noise 16dB SNR - Phone NS 1.85

+ DTX UL + bad channel + QualComm chipset
25 AMR-NB Live L2M + Bad channel + No DTX DL 3.58

+ Nokia chipset
26 AAC LC low bitrate (WB) 1.48
27 4 x AAC LC low bitrate (WB) 1.14
28 AMR-NB Mode 5 (7.95 kbps) + Noise 16dB SNR 2.28

+ NS simulation + AMR-NB Mode 5(7.95 kbps)
29 EFR Live M2L + ac. Recording 2.99
30 EFR Live M2L + +5dB + ampl. clipping 2.78

+ ac. recording
31 EFR Live M2L + -10dB + ac. Recording 2.95
32 EFR Live M2L + -20dB + ac. Recording 2.31
33 EFR Live M2M + Noise 16dB SNR + Phone NS 2.28

+ DTX UL + Nokia chipset
34 AAC LC + packet loss 1.91

(in emulated streaming environment)
35 EFR Live M2M + bad channel 2.23
36 AMR-NB Live M2M + Noise 16dB SNR - Phone NS 2.25

+ DTX UL + QC chipset
37 EFR Live M2M + bad channel + Noise 16dB SNR 2.17

+ Phone NS + DTX UL + Nokia chipset
38 Video Call live AMR + QualComm chipset 3.05
39 Video Call live AMR + Nokia chipset 2.78
40 Video Call live AMR + QualComm chipset + +5dB 3.31
41 Video Call live AMR + QualComm chipset + -8dB 3.16
42 Video Call live AMR + QualComm chipset + -16dB 2.86
43 VoIP WB-Call 2.84
44 VoIP WB-Call + -16dB 2.34
45 VoIP WB-Call + -8dB 2.88
46 VoIP WB-Call + +5dB 2.73
47 VoIP WB-Call + Noise 16dB SNR + bad channel + +5dB 1.93
48 VoIP WB-Call + Noise 16dB SNR + bad channel + -8dB 2.20
49 VoIP WB-Call + Noise 16dB SNR + bad channel + -16dB 1.64
50 AAC LC + Noise 14dB SNR + ampl. clipping 1.19
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B.1 Speech Database SwissQual 502

Table B.1: The table presents information about the 15 degradation conditions taken from the
SwissQual 502 speech database. The Mean Opinion Scores (MOS) per condition is also displayed.
More details can be found in [9].

Condition Degradation MOS per
Number Description Condition

1 SWB 4.625
2 SWB+Noise 12dB 1.594
3 SWB+Noise 20dB 3.365
6 SWB Level -10dB 4.031
7 SWB Level -20dB 2.792
32 EVRC-A 3.698
33 EVRC-A + Noise 18dB SNR + Codec NS 1.990
43 VoIP WB-Call + acoust. send 4.042
44 VoIP WB-Call + -16dB + acoust. send 2.297
45 VoIP WB-Call + -8dB + acoust. send 3.677
46 VoIP WB-Call + +5dB + acoust. send 3.615
47 VoIP WB-Call + acoust. noise (rcv) 2.688
48 VoIP WB-Call + acoust. noise (rcv) + -8dB 2.740
49 VoIP WB-Call + acoust. noise (rcv) + -16dB 2.594
50 VoIP WB-Call + ampl. clipping + acoust. send 2.146
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C.1 Speech Database SwissQual P.501 Annex D

Table C.1: The table presents information about the 53 degradation conditions of the SwissQual
P.501 Annex D speech database. This database was used in the studies conducted in Subsection 4.2.
The table also shows the Mean Opinion Scores (MOS) per condition. More details in [78].

Condition Degradation MOS per
Number Description Condition

1 FB reference 4.615
2 WB (P.341 filtered, 7kHz LP) 4.292
3 100-5000Hz BP 3.438
4 FB 2% Time Clipping 3.177
5 FB 20% Time Clipping 1.281
6 EVS 24.4 kbps SWB 4.469
7 EVS 13.2 kbps SWB 4.292
8 OPUS CBR 20kbps WB 4.208
9 AMR-WB 23.85 kbps 3.667
10 AMR-WB 12.65 kbps 3.458
11 AMR-NB 12.2 kbps 2.604
12 EVS 24.4 kbps SWB + losses 2.448
13 AMR-NB 12.2 kbps + losses 1.875
14 4 x EVS 9600 SWB 1.615
15 2 x AMR-WB 6.6kbps 2.010
16 M2M VoLTE call EVS 24.4kbps SWB good network conditions 1 4.219
17 M2M VoLTE call EVS 24.4kbps SWB good network conditions 2 4.344
18 M2M VoLTE call EVS 24.4kbps SWB packet loss 1 2.531
19 M2M VoLTE call EVS 24.4kbps SWB packet loss 2 1.656
20 M2M VoLTE call EVS 24.4kbps SWB variable delay + packet loss 1 3.281
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Condition Degradation MOS per
Number Description Condition

21 M2M VoLTE call EVS 24.4kbps SWB variable delay + packet loss 2 2.229
22 M2M VoLTE call EVS 24.4kbps SWB variable delay + packet loss 3 2.000
23 M2M VoLTE call EVS 24.4kbps SWB variable delay 1 2.844
24 WhatsApp call good network conditions 1 1.146
25 WhatsApp call good network conditions 2 4.250
26 WhatsApp call packet loss 1 3.646
27 WhatsApp call packet loss 2 2.719
28 WhatsApp call packet loss 3 2.854
29 WhatsApp call variable delay 1 2.167
30 WhatsApp call variable delay 2 2.656
31 WhatsApp call variable delay + interruptions 1 1.146
32 WhatsApp call variable delay + interruptions 2 2.635
33 M2M UMTS call AMR-WB 23.85kbps good network conditions 1 3.979
34 M2M UMTS call AMR-WB 23.85kbps good network conditions 2 4.010
35 M2M UMTS call AMR-WB 23.85kbps avg. network conditions 1 2.198
36 M2M UMTS call AMR-WB 23.85kbps avg. network conditions 2 1.823
37 M2M UMTS call AMR-WB 23.85kbps avg. network conditions 3 3.052
38 M2M UMTS call AMR-WB 23.85kbps bad network conditions 1 1.260
39 M2M UMTS call AMR-WB 23.85kbps bad network conditions 2 1.208
40 M2M UMTS call AMR-WB 12.65kbps good network conditions 1 3.427
41 M2M UMTS to GSM call AMR-WB 12.65kbps interruption 1.260
42 M2M UMTS call AMR-WB 12.65kbps good network conditions 1 3.406
43 M2M UMTS call AMR-WB 12.65kbps good network conditions 2 3.563
44 M2M UMTS call AMR-WB 12.65kbps average network conditions 1 2.719
45 M2M UMTS call AMR-WB 12.65kbps average network conditions 2 3.135
46 M2M UMTS call AMR-NB 12.2kbps good network conditions 1 2.813
47 M2M UMTS call AMR-NB 12.2kbps good network conditions 2 2.802
48 M2M UMTS call AMR-NB 12.2kbps average network conditions 1 2.344
49 M2M UMTS call AMR-NB 12.2kbps average network conditions 2 2.563
50 M2M UMTS call AMR-WB 12.65kbps to AMR-NB 12.2 transcoding 1 2.802
51 M2M UMTS call AMR-WB 12.65kbps to AMR-NB 12.2 transcoding 2 2.656
52 M2M UMTS call AMR-WB 12.65kbps to AMR-NB 12.2 1.958

transcoding + interruption 1
53 M2M UMTS call AMR-WB 12.65kbps to AMR-NB 12.2 1.156

transcoding + interruption 2
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