

Real demonstration results of BEM performance simulation using BIM-SPEED Toolset

Deliverable 4.2 – Energy Performance Report – Gdynia demo

Deliverable Report: Final version, issue date on 31.10.2022

BIM-SPEED

Harmonised Building Information Speedway for Energy-Efficient Renovation

This research project has received funding from the European Union's Programme H2020-NMBP-EEB-2018 under Grant Agreement no 820553.

Disclaimer

The contents of this report reflect only the author's view and the Agency and the Commission are not responsible for any use that may be made of the information it contains.

ENERGY REPORT - GDYNIA

Deliverable 4.2 – Energy Performance Report

Issue Date31st October 2022Produced byFASADA (Lukaszewska A.)Version:V 01DisseminationPublic

Colophon

Copyright © 2019 by BIM-SPEED consortium

Use of any knowledge, information or data contained in this document shall be at the user's sole risk. Neither the BIM-SPEED Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained. If you notice information in this publication that you believe should be corrected or updated, please get in contact with the project coordinator.

The authors intended not to use any copyrighted material for the publication or, if not possible, to indicate the copyright of the respective object. The copyright for any material created by the authors is reserved. Any duplication or use of objects such as diagrams, sounds or texts in other electronic or printed publications is not permitted without the author's agreement. This research project has received funding from the European Union's Programme H2020-NMBP-EEB-2018 under Grant Agreement no 820553.

Contents

ТА	BLE OF F	IGURES	3		
ТА	BLE OF T	ABLES	4		
1.	GENERAL INFORMATION				
	1.1	Building description	5		
	1.2	GIS and environmental data	7		
2.	ENERG	Y MODELLING	8		
	2.1	BIM-to-BEM procedure and software tools used	8		
	2.2	Auditing procedures and data collection	8		
	2.3 Description of BEM's technical features				
		2.3.1 Envelope components and materials	8		
		2.3.2 HVAC systems	11		
		2.3.3 Occupancy, lighting, equipment and operating patterns	12		
3.	BEM C	ALIBRATION	15		
	3.1	Calibration methodology applied and results	15		
4.	BUILDI	NG ENERGY PERFORMANCE SIMULATION RESULTS	15		
	4.1	General considerations	15		
	4.2	Energy KPIs	16		
5.	BUILDI	NG RENOVATION SCENARIOS	18		
	5.1	Renovation scenarios proposed	18		
	5.2	Scenario 1: description and results	21		
	5.3	Scenario 2: description and results	22		
	5.4	Scenario 3: description and results	24		
	5.5	Scenario 4: description and results	25		
6.	TIME R	EDUCTION EVALUATION	27		

page 2 - 28

Table of Figures

Figure 1: Residential building located in Ruchu Oporu 18, Gdańsk, Poland (photo from the Google map)	5
Figure 2: Photos of the building before the renovation	6
Figure 3: Minimum, maximum and average air temperature distribution	7
Figure 4: HVAC settigns	. 12
Figure 5: Occupancy schedule	. 13
Figure 6: Lighting schedule	. 14
Figure 7: Equipment schedule	. 15

page 3 - 28

Table of tables

Table 1: Summary of general data	6
Table 2: Summary of general environmental data	7
Table 3: Materials	9
Table 4: Construction systems	9
Table 5: Construction systems	. 11
Table 6: HVAC systems	. 11
Table 7: Internal gains features	. 12
Table 10: BS.OPED Operational Primary Energy Demand	. 16
Table 11: BS.TED Total Energy Demand	. 16
Table 12: BS.TEC Total Energy Consumption	. 17
Table 11: Overview of the Gdynia Renovation Scenarios - Envelope	. 18
Table 12: Overview of the Gdynia Renovation Scenarios – Building Systems	. 18
Table 13: BS.OPED Operational Primary Energy Demand	. 22
Table 14: BS.TED Total Energy Demand	. 22
Table 15: BS.TEC Total Energy Consumption	. 22
Table 16: BS.TES Total Energy Savings	. 22
Table 17: BS.OPED Operational Primary Energy Demand	. 23
Table 18: BS.TED Total Energy Demand	. 23
Table 19: BS.TEC Total Energy Consumption	. 23
Table 20: BS.TES Total Energy Savings	. 23
Table 21: BS.OPED Operational Primary Energy Demand	. 24
Table 22: BS.TED Total Energy Demand	. 24
Table 23: BS.TEC Total Energy Consumption	. 24
Table 24: BS.TES Total Energy Savings	. 24
Table 25: BS.OPED Operational Primary Energy Demand	. 25
Table 26: BS.TED Total Energy Demand	. 25
Table 27: BS.TEC Total Energy Consumption	. 25
Table 28: BS.TES Total Energy Savings	. 26
Table 29: Time reduction analysis for the BIM-to-BEM process compared to traditional BEM creation process	. 27

page 4 - 28

1. General information

1.1 Building description

The building subjected to the renovation was constructed in year 1961 and it is located in Gdynia (Poland) at street Ruchu Oporu 18. It is a typical residential two-family building. For the retrofitting was subjected left part of the building (single family use), the building is shown in Figure 1 and Figure 2.

Figure 1: Residential building located in Ruchu Oporu 18, Gdańsk, Poland (photo from the Google map)

The building is a three/two storey building, depending on the building side. The level of the terrain is higher on the south part of the building

Figure 2: Photos of the building before the renovation

General information				
Location	Gdynia, Poland			
Use category	Single family household			
Building type	Two storey building			
Construction year	1961			
Renovation year	To be renovated			
Number of floors	2			
Number of apartments/units	2			

Table 1: Summary of general data

page 6 - 28

1.2 GIS and environmental data

In order to apply proper environmental conditions to BEM, Energy+ weather file for nearest available location was included, which is POL_Gdansk.Port.Polnocny.121400_IMGW.epw. Air temperature plot in °C along the year for used weather file is visible in **Error! Reference source not found.** Error! Reference source not found. contains summary of general environmental data.

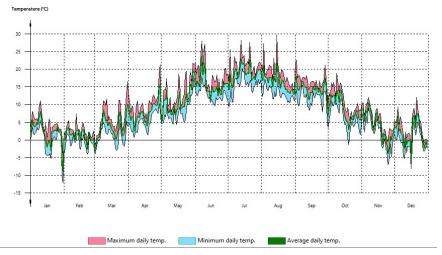


Figure 3: Minimum, maximum and average air temperature distribution

The following table provides a brief summary of the climate data.

General environmental data				
Location	Gdynia, Poland			
Weather file	POL_Gdansk.Port.Polnocny.121400_IMGW.epw			
Altitude [m]	64			
Latitude [degrees]	54			
Longitude [degrees]	18			
Undistributed temp. of the soil [°C]	10			
Network water temperature [°C]	8			

Table 2: Summary of general environmental data

2. Energy modelling

2.1 BIM-to-BEM procedure and software tools used

BIM model was exported from Revit into .ifc file. Following the BimSpeed guidelines, next step was upload of .ifc file to bimserver.center platform using Ifc Uploader, provided by CYPE. When the model was on server, another tool Open BIM Analytical Model was used to start operations on previously uploaded BIM model. Main purpose of this software is to generate analytical model from geometry located in .ifc file, but its capabilities is quite wide. In Gdynia demo it was needed to slightly simplify geometry of main entrance of the building. Moreover, there was necessity to define adjacencies of surfaces which are not in contact with surrounding air, such as walls shared with building next to our subject. One of the building's external wall was in contact with soil, which was also possible to apply with used tool. Last step in Open BIM Analytical Model is to create thermal spaces and assign them into groups differentiating by the room purpose and usage profile.

Ready and saved analytical model is uploaded once again into bimserver.center platform and ready to import into Open BIM Construction Systems tool. Software was used to define all types of external and internal partitions layer by layer, providing specific physical properties for each of them.

Model updated with construction data was uploaded once again to platform and fetched into Cypetherm Eplus, in order to complete definition of BEM model. All thermal boundary conditions are applied here to the model such as rooms temperature profiles, lighting, ventilation, occupancy and so on.

2.2 Auditing procedures and data collection

Draft Building Information Model for the building was available before the project has started. The gathering of the data was performed through the on-site visit and discussion with the building owner.

2.3 Description of BEM's technical features

Looking from the front of the building, there are three stores and two entrances on first and second level. On the back side, lowest level's wall is under the ground, so there was a need to define it as basement wall. Walls adjacent to another building were assumed as adiabatic, as there was no documented knowledge about thermal properties of sibling construction.

2.3.1 Envelope components and materials

Envelope and internal partitions data were collected from buildings documentation, confronted by on-site assessment and aggregated into Energy data collection spreadsheet. Gathering partitions data needed for BEM creation made the process faster and more reliable. Table contains materials used in the model.

page 8 - 28

		Layers			
Material	e	ρ	λ	RT	Ср
Plaster_03	3.00	1120.00	0.059	0.51	0.96
Polystyrene_12	12.00	1050.00	1.500	0.08	1.30
Brick, Common_38	38.00	1550.00	0.704	0.54	0.84
Plaster_02	2.00	1120.00	0.039	0.51	0.96
Polystyrene_06	6.00	1050.00	0.750	0.08	0.13
Polystyrene_10	10.00	1050.00	1.250	0.08	0.13
Brick, Common_48	48.00	1550.00	0.889	0.54	0.84
Plaster_01,5	1.50	1120.00	0.029	0.51	0.96
Brick, Common_24	24.00	1550.00	0.444	0.54	0.84
Plaster_01	1.00	1120.00	0.020	0.51	0.96
Brick, Common_10	10.00	1550.00	0.185	0.54	0.84
Roofing, EPDM Membrane	1.00	930.00	00 0.478 00 0.208	0.14 0.21 1.30 0.72	2.09 0.66 0.84 0.84
Concrete, Sand/cement screed	10.00	950.00			
Concrete masonry unit _27	27.00	1800.00			
Cement_03	30.00	1860.00			
Concrete, Lightweight_06	6.00	950.00	0.287	0.21	0.66
Brick, Common_16	16.00	1550.00	0.296	0.54	0.84
Cement_03	30.00 18	1860.00	0 0.417	0.72	840.00
Concrete, Lightweight_06	6.00	950.00	0.287	0.21	657.00
Concrete masonry unit _22	22.00	1800.00	0.169	1.30	840.00
Plaster_01	1.00	1120.00	0.020	0.51	960.00
Concrete, Lightweight_06	6.00	950.00	0.478	0.13	0.66
Concrete masonry unit _22	22.00	1800.00	0.169	1.30	0.84
Cement_02	20.00	1860.00	0.278	0.72	0.84
Concrete, Lightweight_10	10.00	950.00	0.478	0.21	0.66
Gravel	15.00	1840.00	0.625	0.24	0.84
	Us	ed abbreviations			
Thickness cm		RT Therma	al resistance (m ·K)	/w	
Density kg/m		Cp Specifi	c heat J/(kg∙K)		
Thermal conductivity W/(m·K)					

Table 3: Materials

Within following tables all the construction systems created for the Gdynia BEM using the Open BIM Construction Systems tool and stored within a dedicated library linked to the workflow on BIMserver.center have been reported.

Table 4: Construction systems

External Walls_Reference name	Layers	Thickness [cm]	Total Thickness [cm]
Data accuracy	every material present	± 1 cm	± 1 cm
	Plaster_01,5	1,5	
Exterior brick wall - 270mm	Brick, Common_24	24	27
	Plaster_01,5	1,5	
	Plaster_03	3	
Exterior brick wall - 560mm	Polystyrene_12	12	56
	Brick, Common_38	38	

	Plaster 03	3	
	 Plaster_01	1	
Exterior brick wall - 200mm	Brick, Common_18	18	20
	Plaster_01	1	
	Plaster_03	3	
	Polystyrene_10	10	
Exterior brick wall - 640mm	Brick, Common_48	48	- 64
	Plaster_03	3	
Internal Walls_Reference name	Layers	Thickness [cm]	Total Thickness [cm]
Data accuracy	every material present	± 1 cm	± 1 cm
	Plaster_01	1	
Interior brick wall - 120mm	Brick, Common_10	10	12
	Plaster_01	1	
	Plaster_01	1	
Interior brick wall - 400mm	Brick, Common_38	38	40
	Plaster_01	1	
	Plaster_01,5	1,5	
Interior brick wall - 270mm	Brick, Common_24	24	27
	Plaster_01,5	1,5	
	Plaster_01	1	
Interior brick wall - 200mm	Brick, Common_18	18	20
	Plaster_01	1	
Underground Walls_Reference name	Layers	Thickness [cm]	Total Thickness [cm]
Data accuracy	every material present	± 1 cm	± 1 cm
	Plaster_02	2	
	Polystyrene_06	6	
Exterior brick wall - 480mm	Brick, Common_38	38	48
	Plaster_02	2	
Slab on Grounf Floor_Reference name	Layers	Thickness [cm]	Total Thickness [cm]
	Layers every material present	Thickness [cm] ± 1 cm	Total Thickness [cm] ± 1 cm
name			
name	every material present Cement_02	± 1 cm	
name	every material present Cement_02 Cement_03	± 1 cm 2 3	± 1 cm
name Data accuracy	every material present Cement_02	±1 cm 2	
name Data accuracy	every material present Cement_02 Cement_03	± 1 cm 2 3	± 1 cm
name Data accuracy	every material present Cement_02 Cement_03 Concrete, Lightweight	± 1 cm 2 3 10	± 1 cm
name Data accuracy Bacement floor	every material present Cement_02 Cement_03 Concrete, Lightweight Gravel	± 1 cm 2 3 10 15	± 1 cm 30,00
name Data accuracy Bacement floor Floor Slabs_Reference name	every material present Cement_02 Cement_03 Concrete, Lightweight Gravel Layers every material present	± 1 cm 2 3 10 15 Thickness [cm] ± 1 cm	± 1 cm 30,00 Total Thickness [cm]
name Data accuracy Bacement floor Floor Slabs_Reference name	every material present Cement_02 Cement_03 Concrete, Lightweight Gravel Layers every material present Cement_03	± 1 cm 2 3 10 15 Thickness [cm] ± 1 cm 3	± 1 cm 30,00 Total Thickness [cm]
name Data accuracy Bacement floor Floor Slabs_Reference name Data accuracy	every material present Cement_02 Cement_03 Concrete, Lightweight Gravel Layers every material present Cement_03 Concrete, Lightweight_06	± 1 cm 2 3 10 15 Thickness [cm] ± 1 cm	± 1 cm 30,00 Total Thickness [cm] ± 1 cm
name Data accuracy Bacement floor Floor Slabs_Reference name	every material present Cement_02 Cement_03 Concrete, Lightweight Gravel Layers every material present Cement_03	± 1 cm 2 3 10 15 Thickness [cm] ± 1 cm 3	± 1 cm 30,00 Total Thickness [cm]
name Data accuracy Bacement floor Floor Slabs_Reference name Data accuracy	every material present Cement_02 Cement_03 Concrete, Lightweight Gravel Layers every material present Cement_03 Concrete, Lightweight_06 Concrete, Masonry	± 1 cm 2 3 10 15 Thickness [cm] ± 1 cm 3 6	± 1 cm 30,00 Total Thickness [cm] ± 1 cm
name Data accuracy Bacement floor Floor Slabs_Reference name Data accuracy	every material present Cement_02 Cement_03 Concrete, Lightweight Gravel Layers every material present Cement_03 Concrete, Lightweight_06 Concrete, Masonry units_22	± 1 cm 2 3 10 15 Thickness [cm] ± 1 cm 3 6 22	± 1 cm 30,00 Total Thickness [cm] ± 1 cm
name Data accuracy Bacement floor Floor Slabs_Reference name Data accuracy Floor 0	every material presentCement_02Cement_03Concrete, LightweightGravelLayersevery material presentCement_03Concrete, Lightweight_06Concrete, Masonry units_22Plaster_01	± 1 cm 2 3 10 15 Thickness [cm] ± 1 cm 3 6 22 1	± 1 cm 30,00 Total Thickness [cm] ± 1 cm 32,00
name Data accuracy Bacement floor Floor Slabs_Reference name Data accuracy	every material presentCement_02Cement_03Concrete, LightweightGravelLayersevery material presentCement_03Concrete, Lightweight_06Concrete, Masonry units_22Plaster_01Cement_03	± 1 cm 2 3 10 15 Thickness [cm] ± 1 cm 3 6 22 1 3	± 1 cm 30,00 Total Thickness [cm] ± 1 cm
name Data accuracy Bacement floor Floor Slabs_Reference name Data accuracy Floor 0	every material presentCement_02Cement_03Concrete, LightweightGravelLayersevery material presentCement_03Concrete, Lightweight_06Concrete, Masonry units_22Plaster_01Cement_03Concrete, Lightweight_06Brick, Common_16	± 1 cm 2 3 10 15 Thickness [cm] ± 1 cm 3 6 22 1 3 6 22 1 3 6 2 1 3 6	± 1 cm 30,00 Total Thickness [cm] ± 1 cm 32,00
name Data accuracy Bacement floor Floor Slabs_Reference name Data accuracy Floor 0	every material presentCement_02Cement_03Concrete, LightweightGravelLayersevery material presentCement_03Concrete, Lightweight_06Concrete, Masonry units_22Plaster_01Cement_03Concrete, Lightweight_06	± 1 cm 2 3 10 15 Thickness [cm] ± 1 cm 3 6 22 1 3 6 21 1 3 6 16	± 1 cm 30,00 Total Thickness [cm] ± 1 cm 32,00
name Data accuracy Bacement floor Floor Slabs_Reference name Data accuracy Floor 0 Floor 1	every material presentCement_02Cement_03Concrete, LightweightGravelLayersevery material presentCement_03Concrete, Lightweight_06Concrete, Masonry units_22Plaster_01Cement_03Concrete, Lightweight_06Brick, Common_16Plaster_01	± 1 cm 2 3 10 15 Thickness [cm] ± 1 cm 3 6 22 1 3 6 16 1	± 1 cm 30,00 Total Thickness [cm] ± 1 cm 32,00 26,00

Concrete, Sand/cement	
screed	10
Roofing, EPDM Membrane	1
Concrete, Masonry units_27	27
Plaster_01	1,00

Table 5: Construction systems

Reference name	Thermal transmittance WINDOW [W/m2K]
Data accuracy	± 0,01
Windows_Sgl_Plain	3,1292
Windows_Dbl_Plain	3,1292
M_single-flush_int_80x200	3,18
M_single-flush_ext_84x200	2,61

2.3.2 HVAC systems

In simulated building, there are three types of thermal zones: three types of heated, occupied zones and other is not occupied nor heated.

Table 6: HVAC systems							
Thermal zone	Space classification	Min comfort temperature [°C]	Ventialation demand	DHW demand [l/day]			
Data accuracy	n.r. (description)	±1°C	± 1 l/s	±1l/day			
Thermal Zone 01	Occupied	20	8,3	35 per person			
Thermal Zone 02	Occupied	24	13,9	35 per person			
Thermal Zone 03	Occupied	17	8.3	35 per person			
Thermal Zone 04	Not occupied	n.r.	n.r.	n.r.			

Following figures show the HVAC setting of each thermal zone.

	Schedule 🗌	×	Schedule 🗌	×
Reference	Thermal Zone 01	-	Reference Thermal Zone 02] 🚅
 ○ Annual ● Weekly ○ Working day / Weekend ○ All week Profiles Profiles 			O Annual ● Weekly O Working day / Weekend O All week Profiles ✓ Distinguish programming per month]
Months	Monday Tuesday Wednesday Thursday Friday Saturday Sunday		Months Monday Tuesday Wednesday Thursday Friday Saturday Sunday	
January	Thermal Zone 01		January Thermal Zone 02	
February	Thermal Zone 01		February Thermal Zone 02	
March	Thermal Zone 01		March Thermal Zone 02	
April	Thermal Zone 01		April Thermal Zone 02	
May	Off		May Off	
June	Off		June Off	
July	Off		July Off	
August	Off		August Off	
September	Off		September Off	
October	Thermal Zone 01		October Thermal Zone 02	
November	Thermal Zone 01		November Thermal Zone 02	
December	Thermal Zone 01		December Thermal Zone 02	
Accept		Cancel	Accept	Cancel

Available profiles	⊐ ×	Available profiles	×	Available profiles	×
Reference Thermal Zone 01		Reference Thermal Zone 02	-	Reference Off	-
Off ●On OBy hour	-	○ Off ● On ○ By hour	#	● Off ○ On ○ By hour	4
Value 20 C°		Value 24 C*			
Accept	Cancel	Accept	Cancel	Accept	Cancel

		Production	sets			×
Reference DHW equipment						
Covered DHW demand percentage	100 %					
	Generic equipment	Air-source heat pump	Heat pump for hot water	Geothermal		
Production sets						
	tural gas V 5000.00 W 0.95 (
Storage tank						0
Accept					Ca	incel

Figure 4: HVAC settigns

2.3.3 Occupancy, lighting, equipment and operating patterns

Gdynia BEM has been characterised also under the point of view of the internal gains as summarised in following table 7.

Table 7: Internal gains features

Thermal zone	Space classification	Installed light power [W/m2]	Internal equipment [W/m2]	Occupancy activity level [W/person]
Thermal Zone 01	Occupied	1,9	8,3	126
Thermal Zone 02	Occupied	9,5	13,9	-
Thermal Zone 03	Occupied	1.9	8.3	126
Thermal Zone 04	Not occupied	-	=	-

Relevant operating schedules and occupational patterns have been assumed based on standard residential uses and on a few information collected from the users. Following figures show a few of the patterns set for the Gdynia BEM.

			Scheduk	2			×
Reference	Occupa	ncy schedule					-
Consid		kly () Worl y as being a w amming per r	orking day	Veeken	d 🔿 All week	Profiles 🖉	*
	٧	Workin <mark>g d</mark> ays			Weel	cend (
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	
Occupan	cy schedul	e (type 1)Mon	day-Friday		Occupancy schedu	e (type 2)weekend	

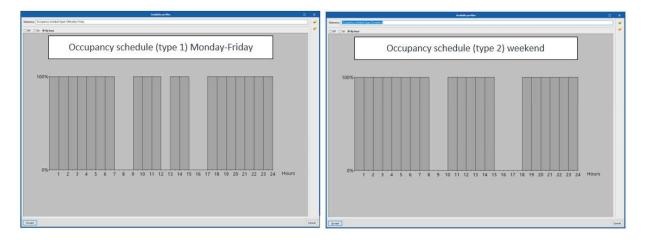


Figure 5: Occupancy schedule

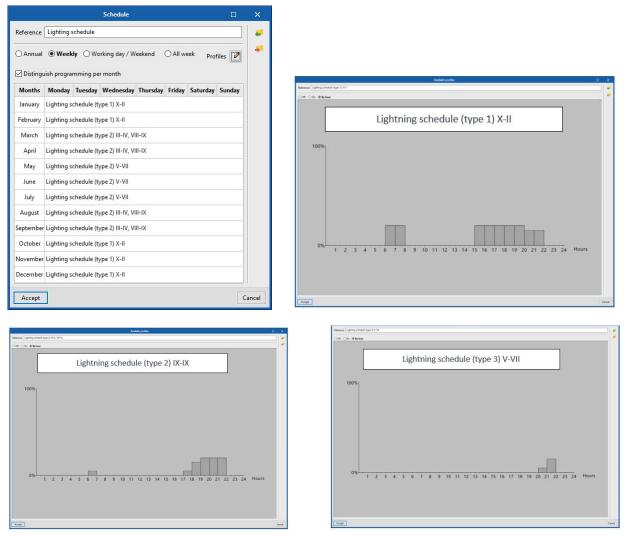
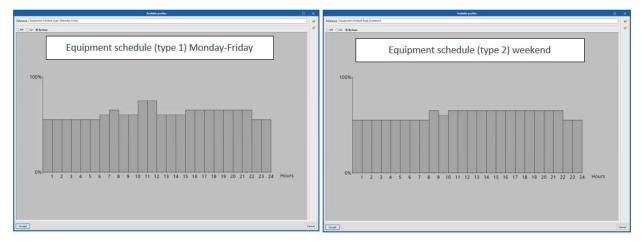



Figure 6: Lighting schedule

Annual Consider Distingui	○ Week Saturday ish progra V Tuesday	ent schedule (y) (*) Work / as being a w amming per r Vorking days Wednesday (type 1)Mon	orking day nonth Thursday	Friday	d () All week Week Saturday	Sunday	4
Consider Distingui	Saturday ish progra V Tuesday	y as being a w amming per r Vorking days Wednesday	orking day nonth Thursday	Friday	Weel Saturday	cend Sunday	#
Distingui	sh progra V Tuesday	amming per r Vorking days Wednesday	nonth Thursday	Friday	Saturday	Sunday	
-	Tuesday	Wednesday	Thursday		Saturday	Sunday	
-	-		-				
Equipment	schedule	(type 1)Mon	day-Friday				
		())			Equipment schedul	e (type 2)weekend	
							ancel

Figure 7: Equipment schedule

3. BEM calibration

3.1 Calibration methodology applied and results

Owner of simulated building was not able to provide annual thermal energy utilization data. Due to the fact that calibration methodology and energy calculations with the use of CypeTherm+ were performed within P2ENDURE research project (<u>https://www.p2endure-project.eu/en</u>), and the demonstration building in Gdynia (from BIM-SPEED project) and demonstration buildings from P2ENDURE project have been constructed with similar consyruction technology, the calibration approach from P2ENDURE project was reapeated for Gdynia demonstration project. In P2Endure project in Polish demonstration buildings (in Gdynia and Warsaw) were successfully calibrated basing on real annual thermal energy utilization data. Because of many similarities of both buildings, we decided to repeat calibration steps from P2Endure building energy model in current BEM case. Calibration methodology basically assumes that ventilation performance is decreased by 15% in all building's thermal spaces.

4. Building energy performance simulation results

4.1 General considerations

All openings of the simulated building have very poor thermal insulation properties with factors 3.3 W/m2K for windows and 2.6 W/m2k for entrance doors.

Most of external walls are insulated with 12 cm of polystyrene. Only external walls of entrance halls are not insulated al all, while underground walls from the back side of the building have 6cm layer of polystyrene.

The highest heat consumption exists in thermal zones with highest minimum air temperature and ventilation requirements, such as bathrooms and kitchen. In simulated building two of three bathrooms

page 15 - 28

happen to be located on the lowest, underground level with walls adjacent to the soil. As mentioned before, these walls are insulated only with 6cm of polystyrene.

Analysis of results shows that the most heat consuming per square meter are entrance halls and underground bathrooms. However, due to poor thermal performance of all window openings also all other spaces characterize with high energy consumption.

4.2 Energy KPIs

The following Energy KPI have been calculated according to D4.1 descriptions.

BS.OPED: Operational Primary Energy Demand

The primary energy demand has been calculated from the final energy consumption at consumption point and multiplied by the conversion factor (specific for Poland) for final energy to primary energy. The table below summarises the primary energy demand related to natural gas and network electricity.

Table 8: B	S.OPED O	perational P	rimar	y Energy I	Demand
BS.OPED	: Operati	onal Primary	/ Ener	gy Dema	nd
Ep [kWh	/m²]		34.6	0	
Energy vector	Cef,total (kWh/year)	(kWh/m²·year)	f _{cep}	C_{ep,nr} (kWh/year)	(kWh/m²∙ye

where:

 $C_{ef,total}$: Total energy consumption at consumption point, kWh/m²·year.

f_{cep}: Conversion factor for final energy to primary energy obtained from non-renewable sources.

*C*_{ep,nr}: Total non-renewable primary energy consumption, kWh/m²·year.

BS.TED: Total Energy Demand

The energy demand of the building is the total amount of energy the technical systems of the building (heating and cooling) have to provide to maintain its indoor environment in comfortable conditions. The table below summarises the results obtained from the calculation of the heating energy demand (there is no cooling for the Gdynia demo)

.

				Table 9: BS.TED Total Energy Demand							_				
		E	BS.TED	S.TED: Total Energy Demand											
		C		[kWh,	/m²yea	ar]		152.0	õ						
		C	Донw [k	w [kWh/m²year] 2				27.6							
		C	Д тот [k	pr [kWh/m²year] 180.3											
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Y	ear
		(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh/year)	(kWh/m²·year)
BUILDING (St. = 14	6.44 m²; V	= 412.8	2 m³)												
	Heating	3844.0	3743.9	3392.6	2011.2	1.77					2025.6	3335.5	3998.9	22351.6	152.6
Energy demand	DHW	343.8	310.6	343.8	332.8	343.8	332.8	343.8	343.8	332.8	343.8	332.8	343.8	4048.5	27.6
	TOTAL	4187.8	4054.5	3736.4	2343.9	343.8	332.8	343.8	343.8	332.8	2369.4	3668.3	4342.7	26400.2	180.3

¥---

BS.TEC: Total Energy Consumption

Total Energy Consumption has been calculated directly using the simulation engine of CYPETHERM EPlus. Following table summarises Primary energy consumption for heating and domestic hot water production.

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	ear
		(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh/year)	(kWh/m²·year)
BUILDING (Su = 146	5.44 m²; V	= 412.8	2 m³)												
	Heating	3844.0	3743.9	3392.6	2011.2						2025.6	3335.5	3998.9	22351.6	152.6
Energy demand	DHW	343.8	310.6	343.8	332.8	343.8	332.8	343.8	343.8	332.8	343.8	332.8	343.8	4048.5	27.6
	TOTAL	4187.8	4054.5	3736.4	2343.9	343.8	332.8	343.8	343.8	332.8	2369.4	3668.3	4342.7	26400.2	180.3
	EFheat	4046.3	3941.0	3571.1	2117.0		227		22		2132.9	3511.1	4209.3	23528.7	160.7
	EPheat	4835.3	4709.5	4267.5	2529.8						2548.8	4195.7	5030.1	28116.8	192.0
	EPnr,heat	4811.1	4685.9	4246.2	2517.2						2536.1	4174.8	5005.0	27976.2	191.0
	EFcool														
latural gas _{cep} = 1.189)	EPcool		222												
	EPnr,cool	1000													
	EFdhw	361.9	326.9	361.9	350.3	361.9	350.3	361.9	361.9	350.3	361.9	350.3	361.9	4261.6	29.1
	EPdhw	432.5	390.7	432.5	418.6	432.5	418.6	432.5	432.5	418.6	432.5	418.6	432.5	5092.6	34.8
	EPnr,dhw	430.4	388.7	430.4	416.5	430.4	416.5	430.4	430.4	416.5	430.4	416.5	430.4	5067.2	34.6
	EF														
uto-consumed lectricity	EP	10 <u>22</u> 0									122	22			
$f_{cep} = 1.954)$	EPnr														
	Cef,total	4408.2	4267.9	3933.1	2467.3	361.9	350.3	361.9	361.9	350.3	2494.9	3861.3	4571.3	27790.3	189.8
	Cep	5267.8	5100.2	4700.0	2948.4	432.5	418.6	432.5	432.5	418.6	2981.4	4614.3	5462.7	33209.5	226.8
	Cep,nr	5241.5	5074.7	4676.5	2933.6	430.4	416.5	430.4	430.4	416.5	2966.4	4591.2	5435.4	33043.4	225.6

Su: Residential area of the building, m².

V: Net residential area of the building, m³.

f_{cep}: Conversion factor for final energy to primary energy obtained from non-renewable sources.

EF: Final energy consumed by the system at consumption point, kWh.

EP: Primary energy consumption, kWh.

EPnr: Non-renewable primary energy consumption, kWh.

*C*_{ef,total}: Total energy consumption at consumption point, kWh/m²·year.

Cep: Total primary energy consumption, kWh/m²·year.

Cep,nr: Total non-renewable primary energy consumption, kWh/m2·year.

Table 10: BS.TEC Total Energy Consumption

BS.TEC: Total Energy Consumption							
$EP_{heat}[kWh/m^2]$	192.0						
EP _{cool} [kWh/m ²]	Cooling not present						
EP _{light} [kWh/m ²]	7						
EP _{dhw} [kWh/m ²]	34.8						
EPTOT[kWh/m ²]	233.8						

5. Building renovation scenarios

There were several improvements proposed to baseline state of building. As a result, four renovation scenarios were defined. Each of them consists of certain enhancements to envelope or building systems. All of them are listed and described below.

5.1 Renovation scenarios proposed

For the Gdynia democase, the following building renovation scenarios have been assessed according to Task 7.1 premises. The following table summarises the configuration of each scenario.

	Building Envelope											
	1. External Wall insulation	2. Ventilated	3. Rooftop module	4. Windows	5. Second window	6. Indoor insulation (floors)						
Scenario 01	x	-	х	х	х	x						
Scenario 02	-	х	-	-	х	х						
Scenario 03	х	-	х	х	-	х						
Scenario 03	х	-	х	х	-	х						

Table 11: Overview of the Gdynia Renovation Scenarios - Envelope

Table 12: Overview of the Gdynia Renovation Scenarios – Building Systems

	7. Lighting	8. Radiators	9. Piping	10. Boilers	11. Ventilation	12. PV	13. Thermal solar
Scenario 01	Х	х	Х	х	-	-	х
Scenario 02	Х	х	-	-	Х	-	-
Scenario 03	х	-	-	-	-	-	-
Scenario 03	х	-	-	-	-	Х	-

1. ETICS – External wall insulation

External walls and basement's wall are insulated as following:

Position:	External wal	ls				
Product website	https://lamb	oda.swisspor	.pl/pl/page/2	29/lambda-pl	<u>us-fasada</u>	
EXT	Thermal Conductivity (W/mK)	thickness (m)	Thermal Transmittan ce U (W/m ² K)	Thermal resistance R (W/m ² K)	Total thickness (m)	Total Thermal Transmittan ce U (W/m ² K)
EPS 032	0.032	0.12	0.26	3.75	0.68	0.225
		0.56	1.43	0.70	0.08	0.225
Brick wall	0.80	0.52	1.54	0.65	0.64	0.227
DI ICK Wall	0.80	0.40	2.00	0.50	0.52	0.235
		0.27	2.96	0.34	0.39	0.244
INT						

Position:	External bac	ement walls				
Product website	https://term	oorganika.pl	l/plyty-z-poli	styrenu-ekstr	udowanego-	xps?gclid=Cj(
EXT	Thermal Conductivity (W/mK)	thickness (m)	Thermal Transmittan ce U (W/m ² K)	Thermal resistance R (W/m ² K)	Total thickness (m)	Total Thermal Transmittan ce U (W/m ² K)
Styrodur XPS 200-036	0.036	0.12	0.30	3.33	0.50	0.262
Brick wall	0.80	0.38 0.27	0.48	0.48 0.34	0.50	0.263
INT						

2. Ventilated

External walls are insulated and also ventilated as following

Position:	External wal	ls				
Juct website						
EXT	Thermal Conductivity (W/mK)	thickness (m)	Thermal Transmittan ce U (W/m ² K)	Thermal resistance R (W/m ² K)	Total thickness (m)	Total Thermal Transmittan ce U (W/m ² K)
Facing	0.23	0.08	0.285	0.35		
Air gap	0.025	0.03	0.83	1.2	0.79	0.176
EPS 032	0.032	0.12	0.29	3.43	0.79	0.176
		0.56	1.43	0.70		
Brick wall	0.80	0.52	1.54	0.65	0.75	0.178
	0.80	0.40	2.00	0.50	0.67	0.183
		0.27	2.96	0.34	0.54	0.188
INT						

3. Rooftop module

Flat roof is insulated with EPS

Position:	Flat roof					
Product website	https://lamb	da.swisspor	.pl/pl/page/2	29/lambda-pl	<u>us-fasada</u>	
ΕΧΤ	Thermal Conductivity (W/mK)	thickness (m)	Thermal Transmittan ce U (W/m ² K)	Thermal resistance R (W/m ² K)	Total thickness (m)	Total Thermal Transmittan ce U (W/m ² K)
Bitumen membrane	0.180	0.01	18.00	0.06		
EPS 032	0.032	0.20	0.29	3.43		
Bitumen membrane	0.180	0.01	18.00	0.06	0.50	0.227
DMS ceilling	1.080	0.27	4.00	0.25		
Plaster	0.80	0.01	1.64	0.61		
INT						

4. Windows

Windows are replaced and installed with insulation break between them and building façade insulation.

Manufactor	DRUTEX			
Product ID	IGLO Energy Classic			
Thermal Transmittance	0.9	W/m ² K		
Product website	https://www.drutex.	 	ukty/iglo-en	ergy-classic.html

5. Secondary windows

Same windows as above, but installed without thermal bridge between them and façade insulation.

6. Indoor insulation (floors)

Interior and basement floors are insulated.

Position:	Bacement floor					
Product website	https://termoorga	anika.pl/gold·	-dach-podloga			
INT	Thermal Conductivity (W/mK)	thickness (m)	Thermal Transmittance U (W/m²K)	Thermal resistance R (W/m ² K)	Total thickness (m)	Total Thermal Transmittance U (W/m ² K)
Terracotta	1.050	0.02	52.50	0.02		
Concrete	1.050	0.08	13.13	0.08		
EPS 036	0.036	0.10	0.36	0.56	0.41	0.260
Bitumen felt	0.180	0.01	18.00	0.06	0.41	0.360
Concrete	0.600	0.10	6.00	0.17]	
Grave	0.900	0.10	9.00	0.11		
EXT						

Position:	Interior floor I					
Product website	https://termoorga	anika.pl/gold-	-dach-podloga			
INT	Thermal Conductivity (W/mK)	thickness (m)	Thermal Transmittance U (W/m ² K)	Thermal resistance R (W/m ² K)	Total thickness (m)	Total Thermal Transmittance U (W/m ² K)
Oak flooring	0.220	0.02	1.10	0.91		
Concrete	1.050	0.06	17.50	0.06		
EPS 100	0.036	0.04	0.90	1.11	0.35	0.710
Concrete blocks slab	0.250	0.22	1.14	0.88		
Plaster	· 0.700	0.01	70.00	0.01		
INT						

Position:	Interior floor II					
Product website	https://termoorga	anika.pl/gold-	-dach-podloga			
INT	Thermal Conductivity (W/mK)	thickness (m)	Thermal Transmittance U (W/m ² K)	Thermal resistance R (W/m²K)	Total thickness (m)	Total Thermal Transmittance U (W/m ² K)
Oak flooring	0.220	0.02	1.10	0.91		
Concrete	1.050	0.06	17.50	0.06	1	
EPS 100	0.036	0.04	0.90	1.11	0.35	0.550
Klein's ceilling	0.700	0.22	3.18	0.31		
Plaster	· 0.700	0.01	70.00	0.01		
INT						

7. Lightening

Light bulbs are replaced with LEDs decreasing electricity consumption.

OCCUPIED Space type	LIGHTING Installed power [W] or [W/mq]
Rooms	0,7W/mq
Kitchen/Bathrooms	0,9W/mq

8. Radiators

Radiators are replaced with newer steel panel heaters.

9. Piping

Central heating piping is replaced and insulated, increasing overall system efficiency.

10. Boiler

Boiler is replaced with energy efficient gas condensing boiler.

Manufactor	VIESSMANN		
Product ID	Vitodens 100-W		
Nominal Power	32	W	

 Product website
 https://www.viessmann.pl/pl/budynki-mieszkalne/kotly-gazowe/gazowe-kotly-kondensacyjne/vitodens-100-w-vitodens-111-w.html

11.11. Ventilation

All ventilation ducts are replaced which ensure proper air flow through the system.

12.12. PV

Assumed 5000 kWh/year is produced from PV installation located on the roof of the building.

13.13 Thermal Solar

Domestic hot water is heated up with solar collectors, which lowers environmental fingerprint and primal energy demand.

5.2 Scenario 1: description and results

Scenario 1 consists of:

- ETICS
- Rooftop module
- Windows
- Indoor insulation (floors)
- Radiators
- Piping
- Boilers
- Thermal Solar

The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

BS.OPED: 0	Operati	onal Prima	ary E	nergy D	emand
Ep [kWh/m	²]		1	05.17	
Energy vector	(kWh/year)	C _{ef} (kWh/m²·year)	f _{cep,nr}		C _{ep,nr} (kWh/m²·year)
Energy vector	(kWh/year) 12886.43	1997.000	f _{cep,nr} 1.189		

 $C_{ef,total}$: Total energy consumption at consumption point, kWh/m²·year.

f_{cep,nr}: Conversion factor for final energy to primary energy obtained from non-renewable sources.

Cep,nr: Total non-renewable primary energy consumption, kWh/m²·year.

BS.TED: Total Energy Demand

Table 14: BS.TED Tota	Energy Demand			
BS.TED: Total Energy Demand				
QHEATING [kWh/m ² year]	96.4			
Q _{DHW} [kWh/m ² year]	27.7			
QTOT [kWh/m ² year]	124.1			

BS.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

BS.TEC: Total Energy Consumption		
$EP_{heat}[kWh/m^2]$	105.2	
EP _{cool} [kWh/m ²]	Cooling not present	
EP _{light} [kWh/m ²]	0.7	
EP _{dhw} [kWh/m ²]	34.8	
EPTOT[kWh/m ²]	105.9	

BS.TES: Total Energy savings

Table 16: BS.TES Total Energy Savings

BS.TES: Total Energy Savings					
	Baseline	Scenario 01	SAVING		
$EP_{heat}[kWh/m^2]$	192	105.2	86.8		
EP _{cool} [kWh/m ²]	Cooling not present				
$EP_{light}[kWh/m^2]$	7 0.7 6.3				
EP _{dhw} [kWh/m ²]	34.8	34.8	-		
EPTOT[kWh/m ²]	233.8	140.7	93.1		

5.3 Scenario 2: description and results

Scenario 2 consists of:

- Ventilated
- Second window

- Indoor insulation (floors)
- Lighting
- Radiators
- Ventilation

The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

Т	able 17: BS.OPED Operational Primary Energy Dem						nan
	BS.OPED: Operational Primary				y Energy	y Demand	
	Ep [kWh/m²]				140.15		
Energy vector		(kWh/year)	C _{ef} (kWh/m²-year)	f _{cep,nr}		(kWh/m²-year)	
Natural gas		17195.14	117.42	1.189	20445.45	139.61	
Electricity obtained from	the network	40.55	0.28	1.954	79.24	0.54	

where:

Cef,total: Total energy consumption at consumption point, kWh/m²·year.

- f_{cep,n}: Conversion factor for final energy to primary energy obtained from non-renewable sources.
- Cep,nr: Total non-renewable primary energy consumption, kWh/m²·year.

BS.TED: Total Energy Demand

BS.TED: Total Energy Demand		
QHEATING [kWh/m ² year]	128.9	
Q _{DHW} [kWh/m ² year]	27.7	
QTOT [kWh/m ² year]	156.6	

BS.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

Table 19: BS.TEC Total	Energy Consumption
	Life by consumption

BS.TEC: Total Energy Consumption				
$EP_{heat}[kWh/m^2]$	140.3			
EP _{cool} [kWh/m ²]	Cooling not present			
EP _{light} [kWh/m ²]	0.7			
EP _{dhw} [kWh/m ²]	34.8			
EP _{TOT} [kWh/m ²]	175.8			

BS.TES: Total Energy savings

Table 20: BS.TES Total Energy Savings

BS.TES: Total Energy Savings					
	Baseline	Scenario 02	SAVING		
EP _{heat} [kWh/m ²]	192	140.3	51.7		
EP _{cool} [kWh/m ²]	Cooling not present				
EP _{light} [kWh/m ²]	7	0.7	6.3		
EP _{dhw} [kWh/m ²]	34.8	34.8	-		
EP _{TOT} [kWh/m ²]	233.8	175.8	58		

5.4 Scenario 3: description and results

Scenario 3 consists of:

- ETICS
- Rooftop module
- Windows
- Indoor insulation (floors)
- Lighting

The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

Table 21: BS.C	PED Op	erational P	rima	ry Energ	y Demand	
BS.OPED: O	BS.OPED: Operational Primary Energy Demand					
Ep [kWh/m ²]	Ep [kWh/m²]			121.24		
Energy vector		C _{ef} (kWh/m²·year)	f _{cep,nr}		ep,nr (kWh/m²-year)	
Natural gas Electricity obtained from the network	14865.42	101.51	1.189	17675.36	120.70	

where:

Cet,total: Total energy consumption at consumption point, kWh/m²·year.

fcep,n: Conversion factor for final energy to primary energy obtained from non-renewable sources.

Cep,nr: Total non-renewable primary energy consumption, kWh/m²·year.

BS.TED: Total Energy Demand

Table 22: BS.TED Total Energy Demand				
BS.TED: Total Energy Demand				
Q _{HEATING} [kWh/m ² year] 96.4				
Q _{DHW} [kWh/m ² year]	27.7			
Q _{TOT} [kWh/m ² year] 124.1				

BS.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

Table 23: BS.TEC Total Energy Consumption

BS.TEC: Total Energy Consumption				
EP _{heat} [kWh/m ²]	121.3			
EP _{cool} [kWh/m ²]	Cooling not present			
$EP_{light}[kWh/m^2]$	0.7			
EP _{dhw} [kWh/m ²]	34.8			
EP _{TOT} [kWh/m ²]	156.8			

BS.TES: Total Energy savings

Table 24: BS.TES Total Energy Savings

BS.TES: Total Energy Savings					
	Baseline	Scenario 03	SAVING		
EP _{heat} [kWh/m ²]	192	121.3	70.7		
EP _{cool} [kWh/m ²]	Cooling not present				
EP _{light} [kWh/m ²]	7	0.7	6.3		

$EP_{dhw}[kWh/m^2]$	34.8	34.8	-
EPTOT[kWh/m ²]	233.8	156.8	77

5.5 Scenario 4: description and results

Scenario 4 consists of:

- ETICS
- Rooftop module
- Windows
- Indoor insulation (floors)
- Lighting
- PV

The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

Table 25: BS.	OPED Op	erational P	rimar	y Energy	Demand
BS.OPED: C	peratior	nal Primary	Ener	gy Dema	nd
Ep [kWh/m ²]			54.52		
Energy vector	C _{ef} (kWh/year) (kWh/m²-year)		f _{cep,nr}	C _{ep,nr} (kWh/year) (kWh/m²-year	
Natural gas	14865.42	101.51	1.189	17675.36	120.70
Electricity obtained from the network	-4959.45	-33.87	1.954	-9691.12	-66.18
Electricity produced on site (renewable)	5000.00	34.14	0.000		

where:

- Cer,total: Total energy consumption at consumption point, kWh/m²·year.
- fcep,nr: Conversion factor for final energy to primary energy obtained from non-renewable sources.
- Cep,nr: Total non-renewable primary energy consumption, kWh/m²·year.

BS.TED: Total Energy Demand

Table 26: BS.TED Total Energy Demand	
--------------------------------------	--

BS.TED: Total Energy Demand			
QHEATING [kWh/m ² year]	96.4		
Q _{DHW} [kWh/m ² year]	27.7		
QTOT [kWh/m ² year]	124.1		

BS.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

Table 27. BS. TEC TOtal Energy Consumption			
BS.TEC: Total Energy Consumption			
EP _{heat} [kWh/m ²] 121.3			
EP _{cool} [kWh/m ²]	Cooling not present		
EP _{light} [kWh/m ²]	0.7		
EP _{dhw} [kWh/m ²]	34.8		
EP _{PV} [kWh/m ²]	-80.9		
EP _{TOT} [kWh/m ²]	75.9		

Table 27: BS.TEC Total Energy Consumption

BS.TES: Total Energy saving

Table 28: BS.TES Total Energy Savings

BS.TES: Total Energy Savings						
	Baseline	Scenario 03	SAVING			
$EP_{heat}[kWh/m^2]$	192	121.3	70.7			
EP _{cool} [kWh/m ²]	Cooling not present					
EP _{light} [kWh/m ²]	7	0.7	6.3			
EP _{dhw} [kWh/m ²]	34.8	34.8	-			
EP _{PV} [kWh/m ²]	0	-80.9	80.9			
ЕРтот[kWh/m ²] 233.8		75.9	157.9			

6. Time reduction evaluation

Following table shows the results of the time reduction for the Gdynia democase. The BIM SPEED process completed as previously described has been compared to the creation of a BEM using a traditional process, based on the expertise of FASADA on similar buildings.

Table 29: Time reduction analysis for the BIM-to-BEM process compared to traditional BEM creation process

		Traditional process		BIM SPEED PROCESS		
	Workflow required for the BEM creation	activity description	time required (working days)	activity description	time required (working days)	
1	BUILDING DATA COLLECTION (site inspection, document/drawing analysis,), specific data for the thermal characterization are needed					
	a) direct geometrical measurements (needed if detailed and reliable technical drawings are not available)		2,5	Information extracted directly from BIM	0,25	
	b) collection and detection of the thermal characteristics of building components (mapping of windows type, wall type)		1	Information extracted/partially extracted from BIM	0,75	
	c) collection and identification of relevant HVAC characteristics (installed power, type of terminals,)		0,5	Not included in BIM (same for traditional process)	0,5	
	d) data on building operational uses		0,5	Not included in BIM (same for traditional process)	0,5	
2	Building geometry creation					
	a) 2D floorplans reconstruction from on site measurements (needed if detailed and reliable technical drawings are not available)		1,5	Not needed - geometrical information extracted directly from BIM	0	
	b) creation of the 3D geometry of the building directly with specific Building Energy Simulation tools		3	creation of the Analytical model using BIM (just minor adjustments may be needed)	1,25	
3	Building thermal characterisation					
	a) creation of the building components and related libraries (e.g. materials, stratigraphies)		2	the same as traditional process	2	
	b) definition of the thermal zones (uses, internal gains - occupancy, lighting, equipment schedules - temperatures)		2	the same as traditional process	2	
4	HVAC characterisation					
	a) creation of the HVAC components (and related libraries)		0,5	the same as traditional process	0,5	
	b) definition of the systems		1	the same as traditional process	1	
	TOTAL TIME REQUIRED		14.5		8,75	

