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ZUSAMMENFASSUNG

Die Entwicklung sicherer, komfortabler und flexibel einsetzbarer technischer
Systeme wird — mehr denn je — durch Software und die damit zusammenhé&n-
genden Softwareentwicklungsprozesse, -techniken und -methoden bestimmt.
Die Qualitatssicherung solcher Systeme hat inzwischen einen Grad an Kom-
plexitét erreicht, der nur durch den Einsatz dedizierter Qualitétssicherung-
stechniken und -methoden zu beherrschen ist. Eingebettete Systeme sind
zunehmend vernetzt und setzen Kommunikationsprotokolle ein, die in ihrem
Einsatz bisher auf den Bereich der Telekommunikation bzw. das Internet
beschrénkt waren. Im Gegensatz zu herkommlichen Softwareanwendungen
sind eingebettete Systeme jedoch weiterhin haufig hybride Echtzeitsysteme,
die iiber Sensoren und Aktuatoren mit einer physikalischen Umgebung in
Wechselwirkung treten. Sie miissen einerseits kontinuierliche Datenstréme
verarbeiten, die ihnen ein moglichst exaktes Abbild ihrer Umgebung ver-
mitteln, andererseits nehmen sie Kontrollaufgaben wahr, deren Ergebnisse
als diskrete Ereignisse in einem verteilten Systemverbund propagiert werden
sollen. Speziell in der Automobilindustrie ist die Anzahl der Steuergeriite
in einem Fahrzeug auf 50 bis 80 Stiick angestiegen. Eine etablierte Test-
technologie, die einerseits den neuen Anforderungen aus den Bereichen der
Telekommunikation gerecht wird und dariiber hinaus den bestehenden An-
forderungen eingebetteter Systeme nachkommt, gibt es bisher nicht.

In dieser Arbeit wird mit TTCN-3 embedded eine Testtechnologie en-
twickelt, die speziell fiir das Testen vernetzter, hybrider Systeme geeignet
ist und die bestehenden Qualitdtssicherungsprozesse in der Automobilin-
dustrie effektiv verbessern kann. Ausgehend von etablierten Formalismen
aus der Theorie hybrider Systeme wird eine ausfiithrbare Testspezifikation-
ssprache abgeleitet, die eine intuitive Spezifikation automatisierter Tests fiir
Systeme der Automobilindustrie ermoglicht. Die Spezifikation dedizierte
Schnittstellen zur Stimulation, Auswertung und Zeitkontrolle sorgen fiir eine
nahtlose Integration der Sprache in industrielle Werkzeugketten. Die Test-
spezifikationssprache und ihre Schnittstellendefinitionen sind als Erweiterung
des TTCN-3 Standards konzipiert. Die Integration in den TTCN-3 erlaubt
einerseits eine einfache und fundierte Industrialisierung der Ideen und schafft
andererseits die notwendige Integration mit den Konzepten zum Testen dis-
kreter nachrichtenbasierter Systeme, da diese bereits in T'TCN-3 vorhanden
sind. Die Grundlagen von TTCN-3 embedded wurden im Forschungsprojekt
TEMEA entwickelt!.

'Das Projekt TEMEA [112] wurde von der EU kofinanziert. Die Mittel stammen aus
dem Européischen Fonds fiir Regionale Entwicklung (EFRE).






ABSTRACT

The development of safer, more convenient and flexible technical systems
is now, The development of safer, more convenient and flexible technical
systems is now, more than ever, determined by software systems and their
related development processes, techniques and methods. Technical systems
have reached such a high level of complexity that quality can only be as-
sessed and ascertained through the use of testing methods that have been
developed for this specific purpose. Embedded systems are now increasingly
networked and use communication protocols that were previously limited to
the field of telecommunications and the Internet. Embedded systems can
be characterized as so called hybrid real-time systems that directly inter-
act with their physical environment through sensors and actuators. These
systems are required to perform two tasks simultaneously: they must assess
and process continuous streams of data that give them the most accurate
representation of their current environment, and they must perform control
tasks on basis of the continuous input streams and feed the results of this
tasks as discrete events in a distributed network. In the automotive indus-
try, the use of control devices has increased dramatically in recent years:
today’s average vehicle contains 50 - 80 networked control devices. There is,
however, no established test technology which can meet the new and ever-
evolving requirements of these modern, networked embedded systems in the
way that traditional telecommunication systems nor traditional embedded
systems used to do.

In this thesis, a test technology, namely TTCN-3 embedded, which sup-
ports and facilitates the testing of networked, hybrid systems is developed.
TTCN-3 embedded will improve quality assurance processes in the automo-
tive industry. Using the theory of hybrid systems and other well-established
formalisms, an executable test specification language of TTCN-3 embedded
is developed. This test specification language, in turn, allows for intuitive
and practical specification of automated tests for hybrid real-time systems
in the automotive industry. Dedicated interfaces for stimulation, evaluation
and time control allow for a seamless integration with industrial tool chains.
The test specification language and its interfaces are designed as an exten-
sion of the TTCN-3 standard. The integration of this new language into the
TTCN-3 standard enables a simple, fast and profound industry-wide applica-
tion and facilitates the integration of hybrid-system testing with the discrete
message-based systems testing that already exists. The basis of TTCN-3
embedded has been developed in the context of the project TEMEA?Z.

2The TEMEA project [112] has been co-financed by the European Union via the Eu-
ropean Regional Development Fund (ERDF).
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CHAPTER 1

INTRODUCTION

Technological progress has led to more complicated and viable products.
Since the 19th century, industries have used division of labour and speciali-
sation as strategies to bundle expertise and efficiently organise the production
of goods. These production strategies continue today and, over time, they
have led to a component-based development paradigm, in which highly spe-
cialised suppliers provide only parts of the complete product. These parts
are then assembled and integrated by one central integrator that is respon-
sible for the functionality and quality of the end product. For instance, in
the automotive industry, automotive component suppliers — or suppliers of
the suppliers — deliver hardware and software that are specialised subsys-
tems of the whole automobile (e.g. multimedia electronics, transmissions,
shock absorbers, etc). These subsystems are then assembled, integrated and
tested by the Original Equipment Manufacturer (OEM). To keep the develop-
ment and testing of these complex, widely-dispersed manufacturing processes
efficient and manageable, an integrated and seamless approach is required.
Such an approach has yet to be defined and developed. In the case of testing,
such an approach would need to address issues of test exchange, autonomy
of infrastructure, methods, platforms and the re-use of tests. This approach
would need to be constructed using a domain-specific test language. It would
need to be based on a technological basis that unifies tests of communicat-
ing, software-based systems in all of the automotive sub domains (telematics,
power train, body electronics etc.). Such an approach would therefore be able
to unify the infrastructure, definition and documentation of tests. This thesis
will introduce such an approach: a high-level test-specification infrastructure
based on TTCN-3.

1.1 BACKGROUND AND MOTIVATION

In recent years, the number of software applications and electronic control
systems in modern vehicles has increased dramatically. Software and elec-
tronic control systems are used in nearly every feature that a modern vehicle
provides and they currently constitute a high percentage of the automotive
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industry’s value chain. A vehicle built around 1996 had about half a dozen
distributed control units, and already had more processing power and mem-
ory than the spacecraft that landed on the moon in 1969. Today’s vehicles
have dozens of control units, thousands of functional features and software
with tens of thousands of lines of code.

Future generations of vehicles will be integrated into a comprehensive
communications infrastructure which will enable the exchange of data be-
tween individual vehicles, groups of vehicles and traffic control centres. These
communication-enabled vehicles will be able to provide real-time information
about their speed, position, general status and routing. In return, intelligent
transport software applications, located either in the vehicles themselves or
in traffic control centres, will be able to compute and evaluate these reports
and provide drivers with pertinent information: warnings about dangerous
situations (e.g. obstacles on the road, dangerous weather conditions, traffic
jams, etc), as well as helpful updates about traffic flow and location-specific
data (e.g. free parking spaces, local traffic routing, etc). This so-called "car-
to-X (C2X)” communication infrastructure, in combination with intelligent
telematics and driver assistance systems, will make individual and public
transport more efficient, comfortable and secure for all concerned. For C2X
to function properly, all of the constituent components must be reliable and
high quality. Ensuring the quality of these systems presents a new set of
distinct challenges, because the combination of systems is unique and un-
precedented, and because the testing systems and the specification of test
cases have particular requirements.

In general, embedded systems play an increasing role in complex control
functions in many industrial domains. In particular, software-based control
systems have specific characteristics, which —at least in their combination—
are unique. Embedded systems must: interact with their environment using
sensors and actuators, supervise discrete control flows, obtain and process
simple and complex structured data, communicate over different bus systems,
and meet high safety and real-time requirements. For all of these characteris-
tics to function reliably and efficiently within the control system as a whole,
a variety of specific conditions must be met. The development and quality
assurance of such systems — especially when they are distributed, real-time
systems — thus presents a highly complex, challenging structure that is not
yet efficiently managed. This structure continues to produce significantly
rising development costs.

While different, model-based development processes and methods for em-
bedded systems exist, an industry-wide, recognised test infrastructure for the
analysis and evaluation of these systems is missing. Such a test infrastruc-
ture would lead more easily and securely to high-quality, safe and reliable



1.2 CONTRIBUTION OF THIS THESIS 3

systems. To be applicable to state-of-the-art development processes, such a
test infrastructure would have to address the specific characteristics of em-
bedded systems and would have to neatly integrate in the existing processes
and development infrastructures of the industry.

TTCN-3 [35] has the potential to serve as such an infrastructure. It
provides concepts for local and distributed testing, as well as for platform-
and technology-independent testing. A TTCN-3-based test solution can be
adapted to specific testing environments and modified to test particular sys-
tems via an open test execution environment with well-defined interfaces for
adaptation. Control systems in the automotive domain, however, can be
characterised as hybrid systems because they encompass both discrete and
continuous behaviour (in time). Discrete signals are used for communication
and coordination between system components, while continuous signals are
used to monitor and control the components and the system environment via
sensors and actuators. An adequate test technology for control systems needs
to be able to control, observe and analyse the timed, functional behaviour
of both of these systems. This behaviour is characterised by a set of dis-
crete and continuous input and output signals and their relationships to each
other. While the testing of discrete controls is well-understood and available
in TTCN-3, concepts for specification-based testing of continuous controls
and for the links between discrete and continuous system parts are not avail-
able. TTCN-3 especially lacks concepts for specifying tests for continuous
and hybrid behaviour.

1.2 (CONTRIBUTION OF THIS THESIS

This thesis aims to bridge the gap that exists between the concepts and
technologies which are normally used to test message-based discrete systems
and those which are used to test hybrid and continuous systems. The com-
bination of hybrid and continuous systems is especially unique and will be
relevant in the testing of future systems that are conceptually continuous
or hybrid and make extensive use of message-based communication in their
interactions with other systems. To ensure applicability and industrial use,
the concepts and technologies in this thesis are tailored to the requirements
and processes of the automotive industry. The main contribution of this
thesis to the field is a language, namely TT'CN-3 embedded, which allows
the testing of both message-based discrete systems and hybrid or continuous
systems. TTCN-3 embedded is based on the already standardized and indus-
trialized solution TTCN-3. TTCN-3 already contains mature concepts and
constructs for testing message-based systems; T'TCN-3 embedded expands
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upon this by including concepts for continuous and hybrid systems and inte-
grating them neatly into the already-existing language. The motivations for
TTCN-3 embedded, its specifications and a short evaluation are all included
in this thesis. Secondary contributions of this thesis to the field include: a
set of selected concepts that can be used to specify and execute tests for
continuous and hybrid systems, and a compiler and runtime-infrastructure
that is able to gather TTCN-3 embedded programmes and execute them in
the industrial-grade testing environments of the automotive industry. Since
its creation, TTCN-3 embedded has been standardized by the ETSI.

The work of this thesis began as part of the TEMEA project and is based
on a loose list of requirements that roughly capture the needs of the au-
tomotive industry with respect to test environments and test-specification
languages. Based on these given requirements, dedicated concepts and prin-
ciples for testing continuous and hybrid systems were examined and selected.
This selection was accomplished via a survey regarding existing specification
concepts and languages that are currently being used in the field of hybrid
systems testing. In this survey, special attention was paid to gathering in-
formation about testing languages and infrastructures from the automotive
industry. The next step was to describe these concepts in an abstract way and
then to integrate them syntactically and semantically into TTCN-3. Both
kinds of integration are specified formally in the thesis: the syntactical inte-
gration by means of a BNF grammar and the semantic integration by means
of an ASM specification. The formal specifications have been used to identify
syntactical and semantical gaps and ambiguities.

In order to demonstrate the concepts’ applicability and to show their ef-
fectiveness and suitability to the special requirements for testing continuous
and hybrid systems, a prototype runtime and compiler infrastructure was
developed. This prototype allowed TTCN-3 embedded to be used to test
models and ECUs in several smaller case studies. The results of these case
studies, as well as further findings from the implementation of the compiler
infrastructure and its integration in simulation and testing environments from
the automotive industry, provided feedback that was then used to iteratively
refine TT'CN-3 embedded. Main ideas of this thesis have been already pub-
lished in [44].

1.3 STRUCTURE OF THIS THESIS
This thesis is divided into an introduction, conclusion and seven content

chapters. After the introduction, the first chapter, titled Chapter 2, dis-
cusses the state-of-the-art processes and tools that are currently used to test
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Figure 1.1: The structure of the thesis

software-base automotive control systems. This chapter includes a survey of
the concepts, languages and tools that can be used to test continuous and hy-
brid systems. It ends with a short summary about the state of this technology
within the industry and explains the motivations behind this thesis. The next
chapter, Chapter 3, describes a set of formal concepts which are necessary
for the testing of continuous and hybrid systems and, therefore, have been
chosen as the base for the language extension. Chapter 4 follows and includes
the specification of TTCN-3 embedded. Based on the required concepts out-
lined in Chapter 3, the individual constructs that enhance the capabilities of
TTCN-3 are defined and then presented. The syntactical structure of each
construct is shown with examples and the semantics of each structure are
intuitively defined. Chapter 5 uses an ASM specification to create a formal
definition of the behavioural semantics of TTCN-3 embedded. Chapter 4
and Chapter 5 are strongly related. Both provide specialised perspectives
on the language extension and, taken together, they form a comprehensive
theory of TTCN-3 embedded. 4 introduces the individual constructs, and 5
specifies the operational semantics. Chapter 4 contains references to Chap-
ter 5, which relates the TTCN-3 embedded constructs to the ASM rules that
define their operational semantics. This enables users to switch between both
perspectives.

Chapter 6 presents the runtime infrastructure for TTCN-3 embedded.
It begins by defining the extensions to the standardized runtime interfaces
of TTCN-3. It continues by showing how the extended runtime interfaces
could be used to integrate TT'CN-3 embedded into existing simulation and



6 INTRODUCTION

test execution infrastructures used by the automotive industry. Chapter 7
describes two case studies that used TTCN-3 embedded and discusses the
outcomes of these studies. Chapter 8 summarizes the thesis and considers
further areas of potential study, with particular emphasis on future challenges
anticipated within in automotive industry.



CHAPTER 2

TESTING CONTINUOUS AND HYBRID AUTOMOTIVE
SYSTEMS

The testing of continuous and hybrid systems presents new challenges for
established testing methods, languages and concepts. Already, a number of
promising approaches and solutions are developing in the industrial applica-
tion of and the scientific discourse surrounding testing methods, languages
and concepts. The following chapter is a summary of some of the basic con-
cepts that (implicitly or explicitly) constitute the basis for testing hybrid
systems and automotive control systems. The chapter starts with a short
introduction to basic terms and techniques of testing. A review section fol-
lows, in which the state of the art in testing electronic control units within
the automotive industry is discussed!. The chapter continues with a review
of the state of the art in concepts, methods, languages and tools for testing
continuous and hybrid systems. In this section, the terms continuous sys-
tem and hybrid system are more closely characterized and the terms signal
and stream are introduced. Finally, the basic specification techniques for
continuous and hybrid systems — algebraic equations, difference equations,
differential equations and hybrid automata — are outlined and an overview
which summarizes the formalisms and tools currently used for testing is pre-
sented.

2.1 TESTING SOFTWARE-BASED SYSTEMS

Testing, and software testing in particular, is one of the most important
analytic measures of quality assurance. In contrast to other methods, testing
allows for the verification of a software system throughout its development
and also under conditions (as closely as possible) approximate the intended
use of the system. Systematic, thoughtful design of test cases and compliance
with relevant test suites are two essential components of a good quality test.

!The automotive industry is one of the most relevant fields of practice for testing
concepts, particularly those which address the special features and properties of continuous
and hybrid systems. The industrial requirements arising from within the automotive
industry act as landmarks and as challenges for a proof of concept for this thesis’ results.
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The definition of a test case determines the category and scope of the test,
and the conformity of a test case to the appropriate test suites shapes its
completeness and industrial significance.

Software testing, however, cannot prove that a software system is free
of errors. It can only determine if certain test cases were executed success-
fully. As E.W. Dijkstra wrote, “Program testing can be used to show the
presence of bugs, but it never shows their absence!” [29]. This is because,
with the exception of very simple programmes, exhaustive testing (i.e the
testing of all program functions, with all possible input data, in all possible
combinations) is nearly impossible. Different systematic test strategies and
approaches, therefore, must be employed to effectively test a system. Such
testing strategies are never complete, because they do not involve all possible
input data and all possible combinations; a well-designed and diverse testing
strategy, however, can offer acceptable levels of certainty about a software’s
function.

2.1.1 Testing techniques and approaches

In [75, 76] a large number of testing techniques and approaches are identi-
fied, categorized and described. The authour distinguishes between static
and dynamic testing techniques thus: static testing techniques are involve
software which is not executed during the test; dynamic test techniques, on
the other hand, require that the software be executed during testing. In this
study, only dynamic testing techniques are addressed. In this thesis, the term
“testing” without further elaboration always refers to dynamic testing.

The main dynamic testing techniques are structure-based testing and
functional testing. Structural testing (which is also known as white-box test-
ing) focuses on the structure of a program and its data, while functional
testing focuses on the functional requirements and specifications of a sys-
tem. Due to the real-time requirements of embedded systems, the testing of
non-functional properties like timing is of increasing industrial interest. Both
functional and non-functional tests are often carried out as black-box tests.

White-box, or structure-based, tests are constructed using knowledge
about the internal structure of the system under test. They are often ex-
ecuted in an instrumented setup that provides feedback on the portions of
code covered in the test. Typical white-box, or structure-based, testing tech-
niques are control-flow-oriented techniques such as statement coverage tests,
condition coverage tests, branch coverage tests and data-flow-oriented testing
techniques.

Black-box tests, on the other hand, are developed without prior knowledge
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of the internal structure of the system under test. Rather, they are designed
on the basis of development documents. In practice, black-box tests are
not usually developed by software developers, but by technically-oriented
testers, specific departments or testing teams. Black-box testing techniques
also include requirements-based testing (the testing of specific requirements)
and stochastic testing (in which statistical information forms the test base).

Testing levels

According to Weyuker [128], at least three stages of accuracy testing are
absolutely necessary in order to achieve a reliable software-based system:

e module or unit testing, in which individual and self-contained software
entities are tested,

e integration testing, in which the subsystems formed by the integration
of the individually-tested modules or units are tested as entities, and

e system testing, in which the software system as whole is evaluated in
a real-world scenario. This might include functional testing as well as
non-functional testing, such as stress testing, performance testing and
security testing, if such requirements are required by the system.

The module, or unit-testing, step addresses the testing of individual, self-
contained software entities, which are then integrated at a later date (see
integration test). The aim of the module testing stage is to find any bugs
as early as possible. In addition, the functionality of the modules can be
tested more easily while they are still separate, as opposed to when they
have already been integrated.

Integration testing occurs during the integration of modules or units into
larger entities. Integration testing aims to detect failures in the interop-
erability or compatibility of components. Integration testing evaluates the
correctness of interfaces, messages and protocols, and checks the functional-
ity of the underlying communications infrastructure. This stage of testing
assesses some structural aspects (the correctness of interfaces and messages),
but is focused mainly on the aspects of module and unit functionality that
are directly or transitively based on interaction with other modules and units.
Integration testing also considers non-functional aspects like timing and ro-
bustness. For the integration of different components, different integration
strategies are established [12, 76].
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e Vertical integration addresses the composition of entities that are hi-
erarchically structured and follow a specific hierarchical order in their
execution (e.g. inheritance structures, decomposition of larger systems
via subsystems, well-defined communication relationships with a clear
consumer-provider relationship, etc).

e Horizontal integration addresses the integrated modules or units as
loose, non-hierarchically-coupled entities. In essence, it treats these
modules like objects in an object-oriented environment. The interde-
pendencies between these components are often not specified directly
and are, in most cases, only visible during runtime (e.g. objects that
are coupled together via method calls).

During system testing, the logical architecture and user requirements of
the entire system are tested. All previous integration and testing phases
can be performed on a test bench or in a different environment, but system
testing is carried out using original hardware and, if possible, in the original
environment. Process models such as the V-model [31] distinguish between
system testing and acceptance testing. While system testing seeks to verify
a system’s properties with respect to its specifications, acceptance testing
seeks to validate the system realization in light of its user requirements. In
acceptance testing, the system is checked to assess its practical applicability
from the perspective of a customer or potential end user.

In general, the term ’system’ can be interpreted from different angles or
vantage points. Suppliers and subcontractors may consider a system to be
an individual controller that acts in combination with relevant sensors and
actuators in a vehicle; for a car manufacturer, however, ’system’ can refer to
the entire vehicle. Depending on the definition of the SUT, a test object may
be subject of multiple integration processes and may be tested several times.

2.1.2 Test automation

Test automation refers to the standardization of all testing activities: plan-
ning, design, implementation, execution and evaluation [124]. In current
industrial practice, test automation is mostly understood as the automation
of test execution. There are also attempts, however, to standardize other
testing activities. In this context, the most promising approach is the au-
tomation of test design and test implementation. This approach is now widely
designated as 'model-based testing’. Model-based testing is briefly outlined
in Section 2.1.3.
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Automated test execution has many advantages. It allows for the re-
peated execution of tests (e.g. every day at specific times), which enables
much more frequent test executions than manual testing. Higher testing fre-
quency allows for a more accurate measurement of software quality, because
a wider picture of error rates is produced via multiple test runs using the
same test suite. Furthermore, automated test execution offers the possibil-
ity of shifting lengthy test sessions to more convenient times of day (e.g. at
nighttime or in the early morning). This means that testing sessions need not
interfere with other software development activities. In general, the benefits
of test execution automation are: efficient test execution, reproducible test
results with exactly the same test runs, repeatability of test runs with no
extra effort, reduction of personnel and material costs, and possible reuse of
automated test procedures for multiple test objects. Automated test cases
can be executed regardless of the expertise of employees and thus are reliably
repeatable. Test runs can be repeated as often as needed and each repetition
performs exactly the same test run. Each repetition of an automated test
requires minimal effort and an automated test can also be repeated after a
alteration or extension of the test object.

On the other hand, the initial effort to create and prepare automated tests
is much higher than that which is required for manual testing. In order for
tests to be automated, an explicit, detailed and formal description of the test
knowledge is necessary. This requires formal definition of the test data and
of the necessary test procedures. Currently, there are a number of languages,
methods and tools available that support the specification, realization and
execution of automated tests. The exact nature of these languages, methods
and tools is, however, highly dependent on the application domain.

Unit testing environments for high-level programming languages such as
Java, C# [129], and, particularly for the telecommunications industry, the
test automation language TTCN-3 [65], are known and have been developed.
An overview of the test automation environments in the automotive industry
is presented in Section 2.2.

In summary, the application of automated tests is highly relevant for
industry-grade quality assurance processes in complex systems. Although
the creation of automated tests is more time-consuming in the short term,
it can save a significant amount of time in the long run, especially in the
case of multiple test repetitions. Furthermore, repeatability and determinism
are essential characteristics of automated tests, and these characteristics are
indispensable to modern testing processes. Promising approaches to test
automation are being researched and put forward, but, in the automotive
industry as in many other domains, there is still no test automation approach
which both fulfills all the domain-specific requirements and provides a series
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of general concepts that allow for the exchange and reuse of tests between
different manufacturers and suppliers.

2.1.3 Model-based testing

Model-Based Testing (MBT) is one of the most promising approaches to
the automation of test design and test implementation. The automation of
test execution replaces the manual execution of a test via the application
of test scripts which allow for an automatic test stimulation and evaluation
(see 2.1.2). Model-based testing, on the other hand, replaces manual test
design and test implementation with programmes that generate tests using
abstract specifications. So, instead of test cases being created manually, they
are generated automatically from a model or a set of models. A model,
in this case, is usually an abstract and partial representation of either the
system under test or its environment. In order to derive relevant test cases,
however, these models are usually annotated with testing directives that
model individual test objectives and generate the test itself. The test cases
derived from this model are mostly functional tests that have the same level
of abstraction as the model. These test cases form an abstract test suite that
can then be mapped and configured to a specific test platform. For any given
SUT, various kind of models might exist.

MBT approaches, like test automation execution approaches, differ in
terms of their application domains. There are a large number of scientific
and industry-specific papers that deal with MBT approaches and describe
the individual requirements of the different industrial domains. According to
[42], MBT tools (and thus MBT approaches) can be categorized as Model-
based Test Cases, Test Data Editors and Model-based Test Case Genera-
tors. Model-based Test Cases and Data Editors model individual abstractions
and/or concrete test cases by interpreting the system specification. Model-
based Test Case Generators, on the other hand, are tools which support the
algorithmic generation of test cases, test models or even entire test suites
from one model. Editors often provide a specific notation, which makes it
easier for a tester to model the test cases. Said test cases are then refined or
interpreted, so that they can be executed against the SUT. Test case gener-
ators, as the name implies, generate test cases automatically via the use of
a traversal algorithm, which is based on configurable coverage criteria such
as structural model coverage and requirements coverage. Once the test cases
are derived automatically, test generators have to fulfill tasks similar to those
of test editors, i.e. mapping test data and abstract test suites to the technical
interfaces of the SUT.
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A good overview of some different MBT approaches is provided by Neto
et. al. [28]. In this paper, the authors evaluate more than 70 papers and
compare the approaches described therein with regard to their modelling
paradigms, tool support, level of automation, etc. [122] provides a taxon-
omy of model-based testing approaches that categorizes these approaches
according to the kind of specification used for the modelling, the kind of test
generation approach and the kind of test execution. Last but not least, a
number of MBT tool vendors and industrial users have developed a stan-
dard to unify MBT terminology and have begun to define a common set of
concepts required by MBT tools [39].

In summary, MBT has evolved in recent years from an academic field
to a mature industrial-grade technology. According to [122], there is empir-
ical evidence that MBT approaches are very effective in detecting failure.
MBT also reduces test creation and maintenance costs, and the use of MBT
tools enhances the levels of documentation and communication between team
members, because of the use of models. The generated test suite and its trace-
ability back through its development provide a clear and unified view of both
the System Under Test (SUT) and the test.

Though MBT technologies are now well-developed and MBT approaches
have matured, there are still some related fields that are ripe for research.
In particular, there are still too few domain-specific solutions that meet the
particular requirements of particular domains, such as the automotive indus-
try. For example, testing systems with continuous and mixed signals presents
complex requirements that are not yet covered sufficiently. The available so-
lutions are still in research stages or are limited with respect to the grade
of automation. In addition, there are still unresolved issues relating to the
testing of non-functional requirements. This is especially true for areas like
security and usability, but also for more established testing areas such as
real-time testing and performance testing. Last but not least, the tool sup-
port systems for managing models and model transformations still cannot
cope with the complexity of today’s industrial-grade development processes.

2.2 TESTING AUTOMOTIVE CONTROL SYSTEMS

Similarly to other aspects of real-time and safety-critical systems, test pro-
cesses in the automotive industry are tool-intensive and are affected by tech-
nologically heterogeneous test infrastructures. Furthermore, the whole devel-
opment process is widely distributed and highly fragmented. The Original
Equipment Manufacturer (OEM), i.e. the system integrator and solution
provider, is responsible for specification and integration at the overall level,
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whereas the softwares and hardwares of the individual electronic control units
(ECUs?) are normally provided by different suppliers.

In recent years, the code development process has become noticeably
more effective, automated and abstract via the introduction of model-based
specifications in development and the establishment of powerful code genera-
tors. Because executable models are now readily available, tests and analytic
methods can be applied early and integrated into subsequent development.
The positive effects of this — early error detection and early bug fixing —
are obvious.

2.2.1 Processes and test processes in the automotive domain

The correlation between system development activities and testing activities
is best described by a process model such as the V-model. The V-model was
published in the early 1990s by the Federal Ministries for Defense and the
Interior. It is a process model for I'T projects. In 1997, it was revised to
include new development methods and approaches [31]. Since then, it has
found widespread application in both industry and academia. The primary
use of the V-model is in heavyweight development processes, such as systems
development in the automotive and aircraft industry. Figure 2.1 shows the
activities of the system and software development according to the V-model.

verifies & validates s & Accent
System Requirements |\ ¢————"—"—"—"—"—"—"—————— ystem cceptance
Tests
verifies
__________ System Integration Tests

{————- Integration Tests
Unit Tests
Software Design

Figure 2.1: The V-Model 97

For any model to remain relevant and up-to-date, it needs to be highly

2In this thesis, the term electronic control unit (ECU) is used to refer to systems that
are a single piece of hardware. This contrasts with the already-introduced term ”control
system”, which may refer to compound systems, i.e. systems that consist of multiple
control units.
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adaptable and able to respond to the needs of today’s industrial software
development projects. To this end, a new edition of the V-model was pub-
lished in 2005 under the name V-Model XT (XT = eXtreme Tailoring) [57].
The V-Model XT addresses recent practical trends in software development
(e.g. agile and incremental approaches) and effectively has replaced the old
V-model. It is designed as a guide for the planning and execution of devel-
opment projects, and it has been developed with consideration of the entire
system lifecycle in mind.

Development and testing of embedded systems is often carried out in
several stages. Generally, in the first step, the system’s required behaviour is
modelled and simulated on an ordinary PC. If the system’s behaviour can be
classified as correct, either code generated from the model itself or separately-
coded software is integrated into a so-called prototype. The prototype’s
hardware is then gradually replaced with the original target hardware, until
the prototype has transformed completely into the desired final product.

At each stage of development, the software system undergoes a complete
cycle of the V-model, including all three phases (designing, building and
testing). In principle, all available functions should be testable at all three
development stages. Some properties, however, are only verified in the lat-
ter development phases because they are not available or testable as a pure
software model or on a prototype board. The motivation for keeping all func-
tions testable throughout the entire development process is one of increased
efficiency: making changes to and fixing bugs in the model or prototype is
significantly cheaper and faster than doing so with the final product. Early
testing offers the possibility of finding big errors before a final product has
been generated. According to Breakmann and Notenboom [18], current prac-
tice in the development of automotive control units is better represented by
a multiple V-model (see Figure 2.2).

The model showing three subsequent V-shaped development cycles, how-
ever, is a simplification of current development processes for automotive
ECUs. In reality, these processes are much more complex. System devel-
opment is a multidisciplinary project, and one in which software and hard-
ware development take place parallel to and independently of one another.
These complex systems break down, in real terms, into individual compo-
nents, and each component is often developed by a separate subcontractor
or supplier. Furthermore, some components involve suppliers working along-
side each other and only integrating subsequently. For each component in a
complex system, a V-model can be applied.

The introduction of the AUTOSAR standard is expected to establish
stand-alone software packages from independent vendors and thus will intro-
duce new roles for system suppliers and car manufacturers. In the future, not
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Figure 2.2: Subsequent V-Models for embedded system development according to [18]

only the OEMs but their suppliers, too, will increasingly be forced to deal
with the integration of hardware and software, as well as with integration
testing.

2.2.2  Test platforms in the automotive domain

Current industrial practice requires that, in order for an embedded control
system to be considered adequate for industry application, it must pass sev-
eral kinds of tests at different levels of integration and maturity. Tests that
deal with the integration of the complete vehicle system are mainly the re-
sponsibility of the OEM. These tests address the interaction between the
control units, the vehicle communication infrastructure and, last but not
least, the performance of the complete vehicle system. Tests at the ECU
level, on the other hand, are generally the responsibility of the respective
suppliers. These tests verify the functionality and electronic characteristics
of the ECU. These characteristics are, in most cases, software-driven.

ECUs have real-time requirements and closely interact with their physical
environment; correct ECU testing, therefore, must directly consider environ-
mental feedback, as well as feedback from the System Under Test (SUT), in
order to generate adequate test input data and to calculate the test verdict.
To accomplish this task, so-called closed-loop architectures [87, 78, 70] are
often employed. Closed-loop systems incorporate into themselves the part of
the feedback control system that is being verified; thus, it can be said that
this aspect is ’in the loop’ of the system. In ECU testing, feedback from the
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environment is also essential and is usually simulated by so-called environ-
ment models, which are directly linked with the SUT. Aside from scenarios
wherein technical differences exist because different systems are under test
(an ECU, the ECU’s software or a model of it), ECU testing is based on a
common architecture, the so-called closed-loop architecture.

|j SUT 1 r SUT ]
é ‘_;’ g Environment ‘_§
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Figure 2.3: Open loop architecture and closed loop architecture.

Unlike systems with open-loop architecture, a dynamic system in a closed-
loop architecture is tested in a feedback control loop. This means that the
input data for the SUT are calculated directly by the environment model, and
the environmental model, in turn, is influenced by the output of the SUT.
Equally, the interrelationship between input and output can be seen from the
opposite end: the output signals of the SUT are fed back to the inputs of the
SUT — either directly or mediated by an environment model. In open-loop
architecture, this kind of feedback control loop is interrupted deliberately.
Closed-loop architectures also make extensive use of models. Environment
models, especially, form a central part of closed-loop architecture. Thus,
in closed-loop architectures, execution object and environment model exist
together inside of and form one self-contained entity.

When it comes to testing, closed-loop architectures are more difficult to
handle than open-loop architectures. Instead of simply defining a set of input
data and then assessing the related output data, as is often done with open-
loop architecture, tests in a closed-loop scenario have to be integrated with
the environment model. Neither environment modelling, nor the integration
with the test system, nor the individual tests themselves can be carried out
in a generic and repeatable way. Thus, it proves difficult to properly define
and describe test cases, to manage them or even to reuse them partially.
The following kinds of feedback control loop testing architectures are used in
industrial practice:

e Model-in-the-Loop (MiL): In model-based system development pro-
cesses, an executable model of the ECU’s software is tested in a simu-
lation environment. The simulation environment ensures the execution
of the model and its integration with any present environment models.
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The tests assess the correct modelling of the functional requirements
and, additionally, produce feedback about the suitability of the test
algorithms.

Software-in-the-loop (SIL): The code (either hand-coded or system-
generated when model-based development techniques are applied) is
tested in a software environment in the development machine. This
kind of test aims to verify the correctness of the implementation of the
functional requirements and the correctness of the code generated from
the previously validated model. Compilation-specific issues, like the
scaling of fix point arithmetic results, are considered.

Processor-in-the-loop (PiL): The executable code of the application (or
functionality) being tested is placed on an evaluation board, or an ap-
propriate processor simulation. Pili tests aim to find target-specific
sources of failure, such as target-specific compilation issues or specifics
for a concrete processor architecture. In comparison with tests exe-
cuted upon original hardware, PiLi tests are executed in a controlled
and instrumented environment. This allows for additional measure-
ments and observations. The test results can be compared with the
results of previously-executed MiLL and SiL tests, in order to find any
unexpected deviations in the system reaction.

Hardware-in-the-loop (HiL): A HiL environment is the most accurate
replica possible of either an ECU’s original target environment or of
a system composed from multiple ECUs. It contains real hardware
and partly simulated sensors, actuators, and mechanical and electrical
components. HilL environments enable the testing of electronic charac-
teristics and can also simulate a complete network of interacting ECUs.
OEMs generally use Hil. Environments during the final stages of devel-
opment to test and simulate the complete electronic infrastructure of
a vehicle. The real-time HiL.-computer that controls the test execution
offers a realistic test of time-critical requirements and the interaction
of sensors, actuators and ECUs over a bus system. It also simulates an
environment that will show at least some of the electrical properties of
the original system. HiL testing also tests ECUs in their composition
and thus possible communication errors can be identified.

Road or vehicle tests are performed with the vehicle-mounted control
unit, by a driver, in a real environment (weather, road surface, etc).
Vehicle or road tests assess applications and system functionality in the
original operation environment, under realistic operation conditions.
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Normally, different test and simulation frameworks are applied to carry
out tests within different architectures. A test and simulation framework
consists of hardware, instrumentation, simulators, environment models, soft-
ware tools and other supporting artifacts that are needed for test execution.
Almost every part of a test and simulation framework has individual require-
ments for testing methods, testing languages and testing concepts.

2.2.3 Testing languages and approaches in the automotive domain

The testing of softwares used in the automotive industry must be on par with
the high-level technical and business requirements of the industry. To wit,
the testing methodology must match the complexity of the industry. It must
take into account, among other things: the existence of supply chains with
a variety of different suppliers; the special role of the OEMs as specifiers
and integrators; long development cycles with highly formalized processes;
new technologies for distributed embedded systems (such as AUTOSAR);
and, finally, the high level of responsibility and accountability inherent in
manufacturing for such a safety-critical industry (i.e. the requirement of long-
term documentation and archiving of test results and test documentation, as
well as the application of formal test procedures and languages).

The established test approaches and tools from National Instruments [88],
dSPACE [32], Etas [34], Vector [125], MBtech [84], for example, are highly
specialized. They rely on proprietary languages and technologies and they
are mostly closed approaches, with respect to their to portability, extension
and integration. Efforts to address test exchange, especially within the au-
tomotive industry, already exist but these attempts have not yet solved the
problem [50, 46, 101]. Attempts to standardize and harmonize the existing
languages and test environments are underway; they are still, however, in
their early stages.

Modelling and test specification in the automotive industry are often
based on proprietary languages that have been developed by OEMs, their
suppliers or by variants of finite state charts. Additionally, these models and
specifications are often implemented using tools such as Matlab/Simulink, or
using UML or SysML state machines. In some cases, other tools are used
for specific parts of the test modelling process (e.g. the Classification Tree
Editor [81] is used for modelling test data and the TPT tool [17] is used for
systematically modelling test cases for continuous systems). In recent years,
UML models have become more common in testing. The UML Testing Profile
(UTP) [89] is a standardized extension of the UML to facilitate model-based
test specification.In addition, AUDI has now developed a test development
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environment and a testing methodology called EXAM [85]. EXAM facilitates
the representation, implementation and evaluation of test cases via UML se-
quence diagrams, UML use cases and UML activity diagrams. Test sequences
can be modelled graphically, and programming skills in sequence diagrams
or activity diagrams are not required. The diagrams can be interpreted by
machine and converted into executable test programs. This kind of test case
specification is largely independent of the test system itself. EXAM is similar
to other approaches, like MODENA [11], an elaborated adapter infrastruc-
ture which ensures that the abstract test suites can be applied to the SUT.
Testers are freed up, therefore, to create test cases with high level objectives,
rather than having to concentrate on the technical details of the test system
itself.

In the automotive industry, fully-qualified MBT approaches are mostly
still in the research phase. For several reasons, they are not yet widely
applied in the industry. Firstly, there are only a small number of mature
tools that support MBT. Secondly, change in the automotive industry oc-
curs very slowly: new methods have to be accepted, adapted and integrated
into strictly-defined processes. Last but not least, the task of creating and
applying fully-qualified MBT approaches is very challenging. Automotive
software systems are distributed, concurrent, real-time systems. Modelling
such systems is a task in and of itself and, currently, there are only a hand-
ful of approaches that have the capacity to generate relevant tests for such
models [93, 25, 21]. Nevertheless, MBT is steadily gaining popularity in the
automotive industry, due to its functionality and robustness in testing [92].
MBT approaches aim to assess functional models, implementation models,
software items (i.e components, modules and software systems) and, finally,
integrated ECUs (i.e. the combination of software and hardware compo-
nents).

Another prominent issue arising within the industry is the testing of vari-
ants, or Software Product Lines (SPL). Automotive product variations arise
from differences in consumer details and divergent international legal regula-
tions across markets. SPL allows for systematic reuse of tests across clusters
of similar products. Testing each product of an SPL individually is generally
not feasible. In [90] an approach for model-based SPL testing is introduced.
The author suggests an approach that generates a representative set of prod-
ucts for a SPL; this set produces a comprehensive model with coverage of
all features. The feature model can then be mapped against a reusable test
model, and thereby automatically generate test cases for each product. The
development of SPL testing approaches is a vital part of developing high qual-
ity products which have a short time to market. Test execution automation
within the automotive industry can be considered as established; the use of
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formal languages and the specification of tests on a higher level of abstraction
is also, more or less, on its way. MBT is gaining more and more relevance
in the automotive domain but, as of yet, there has been no breakthrough of
MBT into industrial practice.

In general, a testing language should provide suitable abstractions that
can define and assess analogue and sampled signals. This is necessary because
a testing language must be able to simulate the SUT’s physical environment
and interact with dedicated environment models that show continuous in-
put and output signals. Additionally, modern control systems consist of
distributed entities (e.g. controllers, sensors, actuators) that are interlinked
by network infrastructures (e.g. CAN or FlexRay buses in the automotive
domain). These distributed entities communicate with each other via the ex-
change of complex messages. They use different communication paradigms,
like asynchronous event-based communication or synchronous client-server
communication®. Typically, communication behaviour is tested using testing
languages that provide support for event- or message-based communication
and provide a means to assess complex data structures. Because reusability
is an important concern, the language should provide sufficient support for
modularization and support for the specification of reusable entities, such as
functions, operations and parameterization.

While most of the testing approaches, languages and tools that are cur-
rently in use are able to deal with discrete data, an approach that unifies the
ideas from software development and telecommunication with concepts aris-
ing from systems engineering and control theory is missing. A particularly
important, and still unavailable, approach would be one that could integrate
concepts that can test the continuous aspects of an automotive electronic
control unit or a network thereof.

2.3 INTRODUCTION TO CONTINUOUS AND HYBRID SYSTEMS

On a theoretical level, a significantly large number of today’s embedded sys-
tems can be characterized as dynamic hybrid systems. A dynamic hybrid
system is a system that shows both continuous and discrete dynamic be-
haviour. The terms discrete system, continuous system and hybrid system
originate in dynamical system theory [114, 130] and, as such, they describe
mathematical models for systems with certain kind of properties.

o A discrete system is a dynamic system that has a finite number of states
and is therefore fully computational. The state changes are normally

3Please refer to AUTOSAR [10]. This is a good example of an innovative industry-grade
approach to designing complex control system architectures for distributed environments.
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processed at fixed and predictable time steps. Discrete systems belong
to the class of transition systems with finite states.

In contrast, the term continuous system refers to a dynamic system
that shows analogous input and output characteristics. The inputs and
outputs of such a system flow. They are capable of changing at any
instant, to any real numbered value, and the relation of the inputs and
outputs can be modelled as partially or ordinary differential equations.
In a continuous system, state changes occur at infinitesimally small
time steps and the number of states are infinite.

The term hybrid system characterizes a dynamic system that explicitly
allows the existence of discrete jumps [54, 5]. This means that the in-
puts and outputs of a signal may evolve continuously, but, as well, may
show discrete behaviour at certain moments in time. This concept is
especially necessary when describing the behaviour of software-driven
controllers. Software-driven controllers are often used to control con-
tinuous processes or quantities, like the cornering ability of a vehicle
or the simple velocity of a car. Software-driven controllers, therefore,
explicitly deal with continuous quantities. On the other hand, software
itself and the ideals of its design envision discrete behaviour. Control
software often defines certain phases (or states). These phases are, in
fact, often dependent on continuous system inputs and are used to trig-
ger certain (often continuous) behaviour variants. Thus, the detection
and the thereby-triggered control behaviour itself are often both con-
tinuous; the switches between different phases are, however, discrete
by nature. In addition, software-driven controllers are influenced by
external discrete events (e.g. activation/deactivation, status messages
from other controllers, etc) which have impact on their own behaviour.

In the following chapter, the terms hybrid system and continuous system

will be used as classifications of control systems. As such, the phrase "test-
ing hybrid control systems” will refer to attempts to test a control system
that shows the input/output behaviour of a hybrid system. The inputs and
outputs of such systems will be referred to as signals.

2.3.1

Continuous and discrete signals

A signal is a time-varying quantity that can be measured by a technical sys-
tem. Such measurable quantities can be represented in different theoretical
forms. Typically, quantities with discrete representations (i.e. those rep-
resented by an integer value) or with continuous representations (i.e. those
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represented by real values) are distinguished from one another. Both discrete
and continuous signals can be classified (according to their respective values
and time domains) into the following four categories [22, 23, 30].

1. Analogue signals are continuous in the domains of both time and value.
They are the most 'natural’ signal category, because they are charac-
terized by physical units (e.g. current, voltage, velocity) and measured
with sensors. Some typical physical quantities used in the area of em-
bedded system development are vehicle velocity and field intensity of a
radio station. Analogue signals can be described as a piecewise function
over time with 0% = f(t) and ¢,0% € R).

2. Time-quantified signals show discrete values in the time domain and
continuous values in the value domain. The signal values are defined
only at predetermined time points (so-called sampling points) with
o'l = f(t) and t € N, € R). One typical example of time-quantified
signals could be the time/value pairs of a recorded signal; and a typ-
ical representation of a time-quantified signal could be, for example,
a series or an array of real numbers. Even if the original signal is a
synthetic function, it can only be reconstructed from a time-quantified
signal with considerable mathematical effort.

3. Value-quantified signals are time-continuous signals with discrete val-
ues. A typical example of a value-quantified signal would be data de-
rived from analogue signals, which is dedicated to further processing
(e.g. an A/D converted sensor signal that is provides to an electrical
control unit).

4. Digital signals are discrete with respect to the time and value domain
with 0? = f(t) and t,0' € N). When the value domain has only
two possible signal values (that is to say, when the value domain has
exactly two elements), the signal can be characterized as a binary signal.
Typical examples of binary signals include switching positions or flags.
Digital signals, including the occurrence of events, can be modeled.

2.3.2  Systems of equations

In system theory, the behaviour of dynamic systems is normally described
using Systems of Equations. These kinds of mathematical models are widely
used in natural science to describe physical, real world processes such as the
vibration of a pendulum, radioactive decay, the dynamics of fluids, and so
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on. Systems of equations modelling is one of the basic techniques in mathe-
matics, natural science and engineering science, and it provides a multitude
of methods too numerous to be outlined here. In systems engineering, al-
gebraic equations, difference equations or differential equations are used to
describe the dynamics of technical systems, especially mechatronic systems
(e.g. electric drives, hydraulic systems, etc). The behaviour of such sys-
tems is generally designated as an operator 7T[-], which continuously acts
on the inputs of the system [77]. The system allocates the outputs, ac-
cording to a function, over time o; = f;(t). Systems of equations make
it possible to represent the dynamics of such a complex system as a rela-
tion between time, system input and system state. In this thesis, simple
classification will be used. While differential equations (and thus differen-
tial equation systems) relate the values of individual functions to themselves
and their derivatives of various orders, a difference equation only refers to
discrete values. The quantities used for input and output, therefore, are dis-
crete signals or, mathematically speaking, series of values. Many methods
of computing numerical solutions of differential equations or of studying the
properties of differential equations involve approximating the solution of a
differential equation via the solution of a corresponding difference equation.
The term algebraic equation is used to describe the polynomial equation sys-
tem of the form f(x1, 2,73, .., Tn) = D, . Ceyen,en ] T3 2y, Where the
coefficients ¢, ¢, ., are integers [113].

n

2.3.3 Hybrid automata

Hybrid systems are often modelled as State-Transition-Networks (STNs)
[5, 80, 8, 27]. Similarly to continuous systems, the behaviour for each state
is defined via partially or ordinarily differential equations or algebraic equa-
tions. The transition between states (which, in fact, models the discrete
character of the hybrid system) takes place when certain logical conditions
become true.

Hybrid automata are the conceptual extension of timed automata [6].
They where first introduced by Alur et al. [5] in 1992, where they were
used to analyze properties of hybrid systems. Hybrid Automata consist
of State-Transition-Networks (e.g. Finite State Machines) that define so-
called phases or modes. FEach phase or mode shows different continuous
behaviour. While the Alur-Henzinger automata [5] were designed with the
intention of supporting the algorithmic analysis of hybrid systems model
checking, Hybrid Input/Output Automata [80, 79] are more closely related
to hybrid systems design and allow greater compositional modelling, abstrac-
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tion and analysis of hybrid systems. Automata with discrete time [3, 55] are
more computationally-oriented models. There are modelling environments
like HyChart and Charon that are completely dedicated to the specifica-
tion, analysis and validation of hybrid automata; industrial-grade modelling
languages like Matlab/Simulink and SysML have integrated the concepts of
hybrid automata into their modelling paradigms, so that they are now able
to specify hybrid systems. Different approaches have been developed for the
formalization of these hybrid systems [99, 80, 6].

2.3.4 Data streams and stream processing

Within computer science, the term data stream is used to describe the flow
of (continuous or discrete) sequences of data between Stream Processing
Systems (SPS). Streams are similar to pipes, which were introduced by
Doug Mcllroy for the Unix operating system. Data streams are continuously
processed and are particularly suited to the representation of dynamically-
evolving quantities over the course of time. The length of a stream cannot
be established in advance. There are different kinds of streams with different
properties (e.g. varying data rates) and formalisms; the characteristics of a
stream depend on the domain of application.

Stream processing has been under research since the early 1960s. In
1974, Kahn introduced the so-called Kahn-Networks: a formalism for par-
allel computation on the basis of fixed point semantics [69]. In the 1980s
and 1990s, stream-processing languages like Lucid [126] and LUSTRE [52]
were introduced to model asynchronous and synchronous data flow. SIG-
NAL [40] and ESTEREL [111] were designed for the specification of signal-
processing networks and reactive systems, and STREAM [26] is a language
for verifying hardware. For detailed information on stream processing and
stream-processing languages, please refer to [109]. In recent years, stream
processing has become especially famous in the context of the distribution of
multimedia on the Internet [119, 118].

The contribution of M. Broy [19] is of special interest to the specification
of embedded systems. Broy has introduced a theory of streams for concurrent
components. This theory identifies different kinds of streams (e.g. discrete
streams with discrete time, discrete streams with continuous time, dense
streams, etc), each of which rely on different kinds of timing models (discrete
time, continuous time, dense time, etc). The relations between the different
kinds of streams constitute different levels of abstraction with respect to the
underlying model of timing. A refinement relation is introduced to map the
respective timing models accordingly.
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Data streams (or, for short, streams) provide an ideal representation of
the different types of signals introduced in Section 2.3.1. They have been
exhaustively examined in academia and are widely used to describe finite
and infinite data flows. In contrast to scalar values, they provide the whole
allocation history applied within one a channel and they provide a suitable
implementation for the continuous evolution of quantities.

2.3.5 Specification languages for continuous and hybrid systems

In recent years, model-based specification techniques have become available
for discrete as well as continuous and hybrid systems. For discrete systems,
there already exists a large range of modelling approaches, including state-
based approaches like Statechart [53], B [1], Z [105, 106] or UML State Ma-
chines. There are also interaction-oriented approaches like Message sequence
Charts, UML Message Diagrams; process-oriented approaches like CCS [86],
CCP [100], LOTOS [2]; and different variants of Petri Nets [97, 98]. For
some of the modelling approaches, dedicated real-time extensions are avail-
able. For example, timed automata [6] are widely accepted as a formalism
used to check the dynamics of real-time systems. Modelling techniques for
hybrid systems include phase transition systems [82], hybrid automata [5]
and hybrid I/O automata [80]. The techniques and formalisms have been
analyzed and developed carefully in academia for many years. Academic
tools like Shift [27], Ptolemy, [73], HyChart [49] and languages like Charon
[7] have been available for a long time. There are also already a number of
mature industrial-grade tools like Matlab Simulink/Stateflow [115], Esterell
Scade [111],and IBM Rhapsody UML, all of which are in daily use and provide
industrial-grade modelling, verification and code-generation environments for
hybrid systems.

The tools Simulink/Stateflow [117, 115] feature a modelling and simula-
tion framework based on the numerical computing environment MATLAB
[116]. Simulink provides engineers with a signalflow-oriented graphical mod-
elling language for embedded systems. Among other things, it supports the
specification of systems based on differential equations. Stateflow is an ex-
tension for Simulink and supports the intuitive definition of state-based and
event-driven systems by means of finite-state machines. Both Simulink and
Stateflow can be used, in conjunction with the code-generation facility Target
Link, to generate industrial grade C code.

Esterel Scade [111] provides data- and control-flow-oriented modelling

approaches which are based on the synchronous and data-flow-oriented lan-
guage Lustre [52], in combination with finite-state machines. Similarly to
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Matlab Simulink /Stateflow, Esterel Scade has evolved towards an integrated
modelling environment for embedded systems that, outside of modelling and
simulation, also provides a number of mature tools for code generation and
verification.

While Esterel Scade and Matlab Simulink/Stateflow provide their own
languages, IBM Rhapsody is based on the standardized modelling languages
UML2 and SysML.

2.4 TESTING TECHNIQUES AND APPROACHES FOR CONTINUOUS AND HY-
BRID REAL-TIME SYSTEMS

In recent years, some new approaches and methods have been developed to
test hybrid systems. The preeminent approaches with an industrial back-
ground can be found in the automotive industry. In the academic commu-
nity, new approaches to model-based conformity testing of hybrid systems
have been of special interest. In the following section, the most relevant
approaches are outlined.

2.4.1 Test modelling approaches for hybrid systems

The Classification Tree Method for Embedded Systems (CTM/ES) [22] ap-
plies the classification tree method to embedded systems and especially ad-
dresses the generation of test stimuli for continuous and timed behaviour.
The Classification Tree Method [81] is a special approach to partition test-
ing, applied to the input domain of a test object. The input domain is
analyzed under different test-relevant aspects and, for each aspect, a number
of disjointed classifications can be formed. The classifications are further re-
fined by adding classes and class representatives. The step-by-step partition
of the input domain via classifications is represented visually as a classifica-
tion tree. On the basis of the classification tree, test cases are then derived
to subsequently cover the different classes. In addition to the classical CTM,
the CTM/ES provides a timeline that associates test steps with distinct time
values and provides a number of signal primitives. This allows for continu-
ous definition of transitions between class representatives. The CTM/ES is
integrated in the tool MTest, which was originally developed at Daimler and
has since been used for testing Simulink/Stateflow Models.

Timed Partition Testing (TPT) [74, 17] is a method for systematic black-
box testing of continuous behaviour. As a tool, TPT includes a modelling
language that defines test scenarios on the basis of hybrid automata [5] and
stream-processing functions [19]. A TPT model addresses the systematic
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definition of test inputs and usually forms a superset of test cases, whereby
each individual test case itself is a full-featured state machine. TPT concepts
are dedicated to continuous and hybrid systems in the automotive industry,
and they allow for the definition of reactive test cases. Based on its theoretical
foundations, the TPT tool supports test definition via the TPT language,
test execution within a TPT runtime environment and test evaluation via a
separate, Python-based library. TPT is mainly used for component testing,
integration testing and system testing of embedded systems in Model in the
Loop (MiL), Software in the Loop (SiL) and Hardware in the Loop (HiL)

scenarios.

On the basis of the TPT concepts, Perez et al. [95, 96] developed a test
method for multilevel testing. The authors introduced a modularization ap-
proach for test cases, whereby modules are formed in order to separate the
invariant and variant parts of a test specification. Invariant parts of a test
case form the core, abstract test case (i.e. the part which can be reused);
variant parts of a test case, on the other hand, are transferred to a multi-
layered test adapter, which has to be redesigned for each testing layer. This
so-called multilevel approach allows for the reuse of test cases between dif-
ferent test layers and includes both a test design strategy and sufficient tool
support on the basis of the TPT tool.

2.4.2 Assessment of signals via signal properties

The specification of formal properties (in order to denote the requirements
of a hybrid system) is a well-known technique from the theory of hybrid
automata [5]. Given a set of formal system properties (denoted in a temporal
logic calculus), the reachability of the properties can be automatically checked
by an appropriate system model, designed specifically for this purpose [54,
67]. The Reactis tool environment [104] provides a similar approach to
deriving test cases from models, an approach which can also be applied to
the system under test (SUT).

Model-in-the-Loop for Embedded System Test (MiLEST) [131] is a method
that addresses the black-box functional testing of hybrid and continuous sys-
tems. In [131], a systematic approach for the derivation of so-called vali-
dation functions from requirements is described. The approach introduces
the notion of signal properties and their respective concatenations. A signal
property is an abstract description of certain — sometime very complex —
signal characteristics (e.g. value changes, increase or decrease of a signal, sig-
nal overshoots, etc). One or several signal properties can be used to closely
characterize a signal shape, or an expected evolution of a signal, during a
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Name Characteristic Description Locality
Signal Value value = exp the signal value equals exp local

value in [range exp) the signal value is local
in [range exp]

Value Change no a constant signal frame-local
increase an increasing signal frame-local
decrease an decreasing signal frame-local

Extremal Value minimum the signal has frame-local

a local minimum
maximum the signal has frame-local
a local maximum

Signal Type step-wise a step function global
linear a partially linear signal global
flat a partially flat signal global

Table 2.1: Signal Properties

black-box test run. The Milest box is based on Simulink/Stateflow and pro-
vides predefined test samples that help to form hierarchical test specifications
based on signal properties.

In [20, 48, 131], such predicates are used as an explicit part of a test spec-
ification in order to facilitate easier assessment of a hybrid system’s reaction.
In [20], a graphical modelling tool is outlined. This tool is dedicated to fa-
cilitating easier specification of signal properties for the off-line evaluation
of tests. Both approaches aim to systematically denote signal properties.
Table 2.1 shows a selection ofbasic properties adopted from [20].

While the actual signal value is a property that is completely local (i.e.
it is quantifiable without the history of the signal), the other properties only
become allocatable when the predecessor values are known and considered.
Properties are referred to as frame-local when the history can be limited to a
certain frame and referred to as global when this is not the case. Local prop-
erties are adequate for on-line analysis in any situation, whereas frame-local
properties are adequate only in instances of specific frame size. Large frames
may constrain the real-time capabilities of the test environment. Global
properties are normally not relevant or applicable for on-line analysis, be-
cause they depend on the complete signal. This thesis is confined to the
discussion of local and frame-local properties.

To address frequencies, monotony and the exact amount of decrease or
increase that a signal has, the notion of preprocessing functions are intro-
duced. A preprocessing function obtains a signal as input and then provides
the transformed signal in the form of output.
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2.4.8 Model-based testing for real-time systems

Model-based testing of real-time systems is mostly based on timed automata.
In the UPPAAL tool, it is possible to edit, simulate and check properties of
UPPAAL-timed automata in a graphical environment. Hessel et al [56] and
Stenh [108] use UPPAAL or UPPAAL model checking capabilities to generate
test cases. The idea behind their approach is to formulate the test problem
as a reachability problem in the model, and then solve it with existing model-
checking solution. UPPAAL has been used to generate test cases for real-time
systems.

UPPAAL-TRON [72, 25] is an extension to the UPPAAL verification
and simulation environment tool. It is a tool for model-based, black-box
testing of real-time systems. In UPPALL-TRON, tests are generated via
analysis of timed automata, which describe the system and knowledge of
the intended environment. The tests aim to state conformance between a
specification of S and an implementation of /. To assess this, the authors
define a conformance relation. The conformance relation rioco adapts the
rioco-theory of Tretmans et al. [120] and extends the theory to comply with
timed models. The rioco relation guarantees functional and time-intelligent
corrections in the application of timed traces.

Peleska et al. [94] describe an MBT approach for test case and data gen-
eration which is dedicated to concurrent, real-time systems. The approach
derives so-called symbolic test cases from within the abstract syntax of an
extended finite state machine. In the model, the test cases are then defined
as reachability goals. Concrete test data are calculated by an SMT solver
that takes guard conditions as variables and takes the transition relation as
input. The SMT solver then calculates possible valuation sequences that,
when applied to the system, will lead to situations where the reachability
goals are fulfilled within a finite number of transitions. The approach is de-
fined via timed automata with dense time. It has been used in models from
the automotive industry [93, 92, 94] as well as in the aviation industry [33].

2.4.4 Model-based testing approaches for hybrid systems

Model-based testing of hybrid systems is usually accomplished on a basis of
hybrid automata. The challenge in testing such systems stems from the lack
of adequate coverage criteria that can guide the test generation. Structural
model coverage criteria used for discrete systems in connection with (E)FSM
models cannot readily be transferred, because the discrete state space of
a hybrid automaton often provides insufficient explanatory power. Hybrid
states, in contrast, are infinite and are not represented in the model structure.
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The approaches presented below have two principle objectives. First,
the conformity of a hybrid specification and a hybrid realization is formally
defined. Second, metrics are presented to measure coverage in the hybrid-
state space and thus provide means for a meaningful test selection. The
approaches are mainly based on the ioco-theory of Jan Tretmans [120] and
provide different extensions to cover the properties of hybrid systems.

Conformance testing approaches for hybrid systems

Van Osch [123] has defined a conformance testing approach for hybrid sys-
tems. The approach is based on the well-known ioco-theory [120] and extends
this theory to the notion of hybrid transition systems (HTS) and a corres-
ponding conformance relation, the so-called hioco-relation. An HTS is based
on the ideas of hybrid automata (see Section 2.3.3) and is defined as a tuple
with a possibly infinite set of states: an initial state, a set of discrete transi-
tions and a set of hybrid transitions. While discrete transitions are included
in the original ioco-theory, hybrid transitions are new. They describe the
continuous evolution of values across a set of variables. Hybrid transitions
are characterized by so-called trajectories, i.e. partial functions that describe
the values of a set of variables over time. The execution of an HTS is seen as
a sequence of observable actions and trajectories. A sequence with the initial
state as the starting state is known as a trace.

The hioco-relation describes a relation between the observable inputs and
outputs of an implementation and a specification. It assumes that both im-
plementation and specification are specified by means of an HTS. Implemen-
tation [ is considered hybrid input-output conform to specification S (i.e.
ThiocoS) when, for both states of implementation, the observable input-
output actions and input-output trajectories are a subset of the actions and
trajectories allowed for the specification. All input is considered to be filtered
by the input allowed by the specification.

A conformance test is considered to be an HTS with the additional states
of pass and fail. A testing HTS is deterministic with respect to actions and
trajectories and forms a tree-like structure, with the additional states of pass
and fail as final states. The author has defined an inductive algorithm for
conformance test generation on the basis of the hioco-relation. Theoretically,
the algorithm produces tests that are sound and exhaustive; however, the
algorithm is not realizable because it produces an infinite number of hybrid
states and trajectories and is based on the notion of dense time. For practical
execution, a meaningful discretization of time and value would be necessary,
and this is currently missing.
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Coverage measures and test seclection for hybrid systems

Dang [24] has developed a method and a framework for model-based con-
formance testing. The approach encompasses the following: a formal frame-
work for conformance testing of hybrid systems; a coverage measure that
determines test coverage for hybrid automata; and a coverage-guided test
generation framework. The formal conformance testing framework has many
similarities to the work of van Osch [123]. It is based on hybrid automata
and defines a conformance relation that allows reasoning of the input-output
conformance of a specification (i.e. a hybrid automaton) with a SUT,

The coverage measure for hybrid automata is based on the degree to which
set of hybrid states are distributed over the hybrid-state space. The author
has chosen a geometric approach and uses the star discrepancy, an approach
to the reasoning of equal distribution that is well-known in statistics. The
challenging problem is to define a suitable distance measure for a hybrid-
state space. Dang proposes the use of euclidean distance when the discrete
portions of two hybrid states s = (¢, x),s = (¢/,2') are equal (i.e. ¢ = ¢).
The distance between two hybrid states with different discrete portions (i.e.
q # ¢') is calculated using the average length of the trajectories between the
two discrete states.

The test generation approach is based on the coverage measure described
above and an adapted version of the Rapidly-exploring Random Tree (RRT)
algorithm called hRRT. The hRRT algorithm allows a randomized explo-
ration of the reachable hybrid state space of a hybrid automaton. The com-
plete approach has been tested in various case studies.

In [16, 4], a technique called Qualitative Reasoning (QR) is used to model
the interaction between an embedded system and its environment on an ab-
stract, formal level. QR is based on differential equations and has been
developed as an Al technique. It has been mainly used to model physical
systems and their properties. In QR, numerical values of system properties
are mapped to so-called intervals and landmarks. An interval represents a
series of values and a landmark specifies the transition between two intervals.
Time progress is modelled by a sequence of temporal, ordered states. The
authors use a QR tool called Garp3 [121] to create QR models. Garp3 allows
the intuitive definition of QR models by describing causal dependencies of the
system properties and parts, without the need to explicitly define differen-
tial equations. QR models generally allow users to reason about systems,
even with incomplete knowledge; thus, they allow for user-defined quali-
tative abstraction. Brand and Auchernig emphasize the mapping between
QR models and Labeled Transition Systems (LTS), such that that a confor-
mance testing approach similar to that of Tretmans and van Osch [120, 123]
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is also applicable. The conformance testing approach that they introduce is
called a Qualitative Reasoning Transition System (QRLTS), and they also
introduce a conformance relation that defines the conformance between two
QRLTS’. A QRLTS consists of a set of states, an initial state and a tran-
sition relation between states. Each state associates all modelled quantities
of a QR model with a value and a delta. The delta is formally denoted
by § : S Q {mon,zero,plus} and describes the direction of value change.
Furthermore, the transitions are annotated with labels that correspond to
constraints upon the system’s quantities. The conformance relation is de-
fined as a modified iocon f relation. This modified iocon f relation relates the
output quantities of an implementation to a specification, after applying a
certain input vector. The input vectors are filtered by the inputs allowed for
the specification. The modified conformance relation is called grioconf.

Test generation is defined via formal test purposes that are themselves de-
fined as LTS specifications. The test cases are generated by the synchronous
product of the system specification, and the test purpose as it is introduced
by [16] and realized by the TGV tool [66]. In addition to normal LTS testing,
not only the states themselves but also the change of quantities inside a state
are relevant for testing. The authors thus propose modelling the constraints
of value quantities by means of regular expressions. These expressions are
transformed in the equivalent deterministic automaton, which represents an
LTS with labels that correspond to the modelled constraints.

The generated test cases are represented by a complete test graph (CTG).
Due to the inherent approximations and abstractions in the QR model, the
test cases are abstract with in both the time and value domain. They have,
therefore, to be refined by means of an abstraction /refinement relation before
they can be applied to a real system. The authors introduce an approach
to the refinement of abstraction/refinement relations and deciding whether a
concrete implementation is grioconf to a given QR specification. Since the
QR modelling reflects the entire hybrid system in its physical presence, the
approach supports conformance testing of the entire system, rather than only
of the software. This includes conformance testing of embedded actuators and
sensors, and consciousness of the physical environment. The main advantage
of the approach is the idea of abstraction, in combination with an existing
experimental tool chain. The approach is currently feasible, however, only in
small-scale cases; the state space of the QRLTS is already quite big in small
examples, such as the Garp3 tool, and quickly reaches its computational
limits.

Finally, Julius et al. [68] describe an approach for automatic generation of
robust tests on the basis of hybrid automata. The term "robust” is used in this
context to identify test parameters that describe qualitative properties with
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respect to the system behaviour (e.g. safety or correctness). The parameter
space is partitioned accordingly and used to carry out a systematic selection
of test cases with significantly different test performances. The authors show

that their approach works for small examples and they provide a toolchain
based on Matlab/Simulink.

2.4.5 Testing languages for continuous and hybrid systems

Testing languages are a special sort of programming language. Their main
focus is the definition of distinct application scenarios, which are then used
to test a system. Typically, testing languages provide a set of expressions
and statements that support the definition of messages or signals applied to
a system. Additionally, they provide a set of evaluation statements to assess
the system’s reaction. The levels of formalism used to define the expressions
and statements of a certain test language are different [22] and are strongly
dependent on the domain of application. Executable test languages in the
field of real-time testing are specifically defined using formalisms with precise
mathematical backgrounds.

In recent years, there have been many efforts to define and standardize for-
mal testing languages. In the telecommunications industry, the Testing and
Test Control Notation (TTCN-3) [36, 65] is well-established and widely used.
TTCN-3 is a complete redefinition of the Tree and Tabular Combination No-
tation (TTCN-2) [65]. Both notations have been standardized by the Euro-
pean Telecommunications Standards Institute (ETSI) and the International
Telecommunication Union (ITU). Other testing or simulation languages, es-
pecially those dedicated to continuous systems, have been developed for the
field of hardware testing or control system testing. The Very High Speed
Integrated Circuit Hardware Description Language (VHDL) [59] and VHDL
for analog and mixed-signal applications (VHDL-AMS) [62] can both be used
to simulate discrete and analogue hardware systems. Neither language, how-
ever, was directly designed as a testing language. The Boundary-Scan De-
scription Language (BSDL) [91] and The Analog Boundary-Scan Description
Language (ABSDL) [110] are testing languages and, as such, they directly
support the testing of chips using the boundary scan architecture [63] defined
by IEEE. The Classification Tree Method for Embedded Systems (CTM/ES)
is defined by the use of set theory and the notion of mathematical functions
(cf. [22]). The Time Partition Testing Method (TPT) [17] and the Test
Markup Language (TestML) [46] are approaches developed recently within
the automotive industry, but they have not yet become standardized. In
Time Partition Testing and TestML, mathematical functions are used to de-
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fine signals. The notions of streams [19] and hybrid automata [5] are used to
describe the overall control flow and the concatenation of simple signals to
more complex ones.

The Abbreviated Test Language for All Systems (ATLAS) [60] Language
and its supplement, the Signal and Method Modeling Language (SMK) [61],
define a language set that was mainly used to test control systems for military
purposes. ATLAS was replaced in 2010 by IEEE 1641 [58]. The IEEE 1641
provides a multilayered language framework that consists of several successive
specification layers and their respective language definitions. The base layer
is formed by a Signal Modelling Language (SML) that provides the math-
ematical foundations for signal definition and the Basic Signal Components
(BSC) layer is used to define formerly-defined and reusable signal-building
blocks. The Test Signal Frameworks (TSF) layer describes how BSCs are
combined to form more complex signals. TSFs are usually assembled into
libraries of related signals. The highest level is the test requirement itself,
which can be expressed in several different forms. Like ATLAS, IEEE 1641
also includes its own Test Procedure Language (TPL), which can be used to
describe the application and removal of signals.

Furthermore, the IEEE actually finalizes the standardization of a XML-
based test exchange format: namely, Automatic Test Mark-up Language
(ATML) [101]. ATML is dedicated to exchanging information about test
environments, test setups and test results in an accepted and accessible way.
Last but not least, there are also a huge number of privately-owned and -
developed test control languages that have been designed and made available
by commercial test system manufacturers.

Most of the languages mentioned above are not able to deal with complex
discrete data (which are extensively used in network interaction), nor are they
able to deal with distributed systems. TTCN-3 does not support discretized
or analogue signals to stimulate (or assess) sensors and actuators. ATML,
which potentially supports both, is still quite new. ATML is also, so far,
only an exchange format and still lacks a user-friendly representation format.
ATML can, however, be used to describe test requirements in the IEEE 1641
framework.

2.5 SUMMARY AND MOTIVATION FOR THIS THESIS

Current automobiles have dozens of control units, thousands of functional fea-
tures and software with tens of thousands of line of code. Future generations
of vehicles will be integrated into a comprehensive communications infras-
tructure, which will enable the exchange of data between individual vehicles,
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bulks of vehicles and traffic control centres. Such communication-enabled
vehicles will provide information about their speed, position, general status
and routing information. In return, intelligent transport software applica-
tions, located either in the vehicles themselves or in traffic control centres,
will be able to compute and evaluate this data and provide drivers with rel-
evant information about dangerous traffic situations (obstacles on the road,
dangerous weather events, traffic jams), traffic flow and the local environment
(e.g. free parking spaces, local traffic routing, etc). Ensuring systematic and
reliable quality in such systems introduce a new set of challenges, which, in
their combination, are unique. These challenges present special requirements
for test systems and the specification of test cases. In order to adequately
respond to these challenges, a testing infrastructure needs

e adequateness of concepts, i.e support for specifying tests for different
technologies and testing different kinds of systems (e.g. both commu-
nication systems and control systems),

e support for test automation and repeatability of test cases,
e adaptability to different test environments and simulation environments,
e integration with already-existing frameworks for model-based testing,

e long-term availability and understandability (e.g. an adequate level of
abstraction and specification languages with self-documenting capabil-
ities), and

e programmes for the qualification of test engineers.

Impending standards and legal norms such as [SO 26262 will demand
the long-term documentation and availability of test specification. This will
be best covered by standardized approaches and technologies. Standardized
approaches and technologies usually evolve in a controlled and slow manner,
and often have a longer lifetime than proprietary approaches.

The Testing and Test Control Notation, version 3 (TTCN-3) [65, 37, 36]
is a test specification and implementation language used to define test pro-
cedures for black-box testing. TTCN-3 was first developed in 1998 by a
European Telecommunications Standards Institute (ETSI) team of experts,
and is continually being developed. T'TCN-3 is the successor language for
TTCN. The development of this language was driven by the industry and its
need of a single test notation for the demands of black-box testing. TTCN-3
expands on TTCN with several additional concepts, including dynamic test
configurations, procedure-based communication and module control parts.
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It provides concepts for both local and distributed, and for both platform-
and technology-independent, testing. A TTCN-3-based test solution can
be adapted to concrete testing environments and to concrete systems under
test via its open test execution environment with well-defined interfaces for
adaptation. Since T'T'CN-3 is an established technology within the industry,
several best practices that support the efficient use of TTCN-3 exist. Fur-
thermore, there are certified training courses that enable their participants
to acquire TTCN-3 certificates. Although embedded systems (e.g. in mobile
phones) are already covered by TTCN-3, they are not its main target; hence,
dedicated support for real-time, continuous and hybrid behaviour in TTCN-3
is lacking. In order for TT'CN-3 to reach its full potential as a language for
testing hybrid and continuous systems, it needs to be extended.

Control systems in the automotive domain can be characterized as hybrid
systems that encompass both discrete and continuous behaviour (in time).
Discrete signals are used for communication and coordination between system
components. Continuous signals are used for the monitoring and controlling
of components, and scanning the system’s environment via sensors and ac-
tuators. An adequate test technology for control systems needs to be able to
control, observe and analyze the timed, functional behaviour of these systems.
This behaviour is characterized by a set of discrete and continuous input and
output signals and their relationships to each other. While the testing of
discrete controls is well-understood and available in T'T'CN-3, concepts for
specification-based testing of continuous controls and for the relationships be-
tween discrete and continuous system parts are lacking. TTCN-3 especially
lacks concepts for time-controlled processes, sampling, and the definition,
generation and assessment of signals.

To overcome its limitations and to empower TTCN-3 to test embedded
systems (particularly continuous and hybrid real-time systems), the standard
has to be extended. The first approaches were published in 2005 [102] and
2008 [103]. A revised proposal for such an extension, namely TTCN-3 em-
bedded, is the central theme of this thesis. The basis for the extension was
developed as part of the TEMEA [112] research project and the extension
has now been fully completed in this thesis. TTCN-3 has been chosen for
several compelling reasons. First of all, the TTCN-3 standard is a formal
testing language that has the power and expressiveness of a normal pro-
gramming language, as well as a formal semantic and a user-friendly textual
representation. Furthermore, the TTCN-3 standard provides strong concepts
to stimulate, control and assess message-based and procedure-based commu-
nication in distributed environments. It can be anticipated that, in the near
future, these kinds of communication will become much more important for
distributed control systems. Additionally, some of TTCN-3’s communica-
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tions concepts can be reused to define signal generators and assessors for
continuous systems; thus, they provide a solid basis for the definition of con-
tinuous and hybrid test behaviour.



CHAPTER 3

SELECTED CONCEPTS FOR TESTING CONTINUOUS
AND HYBRID SYSTEMS

Testing continuous and hybrid systems differ from testing ordinary computer
systems in many ways. On a practical level, embedded systems do not have
an ordinary user interface. Thus, tests have to be defined for the technical
interfaces like the network interface or the sensor and actuator interface.
Furthermore, most of the embedded systems are not testable without their
environment. Hence, a test system set up has to provide such an environment
either in form of a real physical environment during field tests or in form of
simulations for laboratory tests.

On a conceptual level continuous and hybrid systems show a completely
different input-output behaviour than ordinary computer systems. They have
a direct relationship to time, and, as the name suggests, the values at the
input-output interfaces are able to change continuously.

A test environment, which is dedicated to systematically test continuous
and hybrid systems has necessarily provide means to generate, measure and
evaluate continuous and discretized (sampled) signals. Furthermore, a large
number of embedded systems are real-time systems. Testing a real-time
system requires a test system, which is capable of exactly measuring the
timing of signals. A specification environment, which aims to support the
test engineer during the process of test specification, should ideally provide
the test engineer with specification concepts that ease the specification of
time triggered signal generation, time measurement and signal assessment in
an intuitive way.

In this chapter a number of formal requirements are introduced. These re-
quirements yield as a foundation of the testing approach, which is developed
in this thesis. The requirements relate to formal concepts and well-known
formalisms like clocks, sampling, and data streams. Throughout the fol-
lowing chapters, the concepts are used to define the TTCN-3 extensions for
continuous and hybrid systems.

39
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Figure 3.1: A typical black-box test set-up

3.1 TIME

The notion of time progress is essential for the stimulation and assessment of
hybrid systems. It is usually measured by so-called clocks or clock variables.
A clock clck € CLCK is a continuous quantity with the property ¢ = 1. The
function

t:CLCK — R"

returns the actual clock value. Each test system is considered to have at
least a globally accessible clock clcky. At the beginning of each test execution,
the actual clock value is stored in g4 so that t(clcky) — tsiare returns the
time that has elapsed since the start of a test case. In a distributed test set-
up, multiple clocks may be used that need to be synchronized. These clocks
need to be synchronized to form a logical global clock. In the following the
short form

t = t(clcko) — tsart

is used to denote the test case time.

3.2 PORT ALLOCATION AND TEST BEHAVIOUR

In a classical black box testing approach, the System Under Test (SUT) is
represented in terms of its interface — the so-called test interface. A test
interface is defined by a set of symbols usually referred to as channels or
ports. Formally speaking, a test interface is defined by an n-tuple of input
ports @ = (x1, 2, ..,x,) and an m-tuple of output ports y = (y1, Y2, -, Ym)
with m,n € N (see Figure 3.1). Each port is further characterized by a data
type, a communication characteristic, and a communication direction.

That is, for each port x,,,vy,, € Port there exists a set X,,,Y,, C T defin-
ing the domain of the port, a label dir : Port — {in,out} that denotes the
direction of communication and a label com : Port — {message, procedure,
flow} that denotes the communication characteristics. Message-based and
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procedure-based ports follow event-driven semantics, i.e. state changes are
propagated discretely and instantaneously. While standard TTCN-3 pro-
vides an FIFO queuing mechanism to ease the assessment of message- and
procedure-based ports, it currently provides no support for flow ports. The
allocation of flow ports are defined by partial functions over time o, : R* —
X; for input channels and o,, : RT — Y; for output channels, respectively.
The system behaviour is denoted as an operator H*VT[.] that continuously
operates on the inputs and the internal state of a system [77].

A black box test system, however, is a system that is dedicated to test
systems. For test systems, simply stimulation behaviour and evaluation be-
haviour, which both constitute the test behaviour H'[], is distinguished.
Test behaviour is considered to be formally defined by a hybrid automaton.
Hybrid automata are State-Transition-Networks (STNs) [5, 80, 8] that define
behaviour for each discrete state in terms of flows (i.e. by partial or ordinary
differential equations or algebraic equations). The transition between states,
which in fact models the discrete character of the hybrid system, takes place
when a certain logical condition becomes true. The following definition of
a hybrid automaton is used as a basis for defining control structures in the
next chapters. A hybrid automaton consists of:

e A finite control flow graph (V, F) with vertices in v € V' called modes
and edges in e € I called control switches.

e A set of input and output channels x,,, y,, and a set of internal variables
2 with types X,,, Y., Z, C T.

e An edge labeling function until that assigns to each control switch
e € E a predicate whose free variables are in (X,,,Y,,, Z,)

e A finite set of actions A, and an edge labelling function action : E — A*
that assigns a set of actions to each control switch. The actions are
triggered when e has the actual activated mode as source, a is assigned
to e, and the respective until predicate until(e) evaluates true.

e The vertex labelling functions flow, inv, onentry and onexit that as-
sign to each control mode a continuous behaviour operator flow(v) =
Trest[], an invariant predicate inv(v), an initial set of actions onentry(v),
and a final set of actions onexit(v).

3.3 SAMPLING AND STREAMS

Sampling becomes necessary to obtain an adequate and computable digital
representation for continuous signals at flow ports. It is defined as the trans-
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formation of a continuous signal ¢ € ¥ into a discrete structure. The notion
of streams [109, 19] is used to formally operate on such a discrete structure.

3.8.1 Streams

In telecommunications and computing, a data stream is a sequence of mes-
sages in the process of being transmitted. Given a set M of messages, the
term stream is used to denote the data structure s € M*, which represents
a finite or infinite sequence of messages

s+ (my) withm € M,k € N

and M* representing the super set of all messages. Each stream is asso-
ciated with a data type T' € T that specifies the domain of the messages my.
Thus, streams are considered as typed s” € (MT)*. They contain messages
mi € MT C M of the same type. In the following only finite streams are
considered, because testing is a process that is naturally finite in time and
sampling reduces the amount of signal values to a finite number.

Empty streams () and the empty message ¢ € M7T are introduced to
complete the definition from above. Both, empty streams and the empty
message are compatible with every type, thus ¢ € M7 and () € (MT)*.
The number of messages in a stream is denoted by || : (M7T)* — N. The
number of messages in an empty stream is zero by definition, thus |()| +— 0.
Furthermore, the index operation

N:(M")*xN— M”"
yields the " message of a stream s. The application of the index opera-
tion on an empty stream yields the empty message by definition.
(Vi eN) ()[i] — €

To operate on streams and their content, simple access and modification
operations are necessary. The > operation adds a message to a stream.

> M x (M7 — (MT)*, with m s — s’
m  when i =|s|+ 1

and s'[i] — {

slt] otherwise
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The concatenation of two streams is defined by the e operation.

o ((MT)* x (MT)* — (MT)*, with
(Yos—s and (m>s)es > m>(ses)

To obtain the top element of a stream, the head operation is introduced.

hd :(MT)* — M7T, with
hd.() — € and hd.(m>s) — m

The timing information relies on a time-stamp function ts that relates a
continuous time values to each message. Continuous time values allow for
exact timing information without additional transformations.

ts: (MT)" - R*

For the concatenation of timed streams, the following meaning of the
time-stamp function is required. Let s,s" € (MT)* be two timed streams of
arbitrary length. The time function for the concatenation (s e s’) is defined
as follows.

(Vie[L:]s|+]s]])

ts((s o s)[i]) — {

ts(s[i]) when i < |s|
ts(s[|s|]) +ts(s'[i — |s|]) otherwise

Finally interpolation operation that returns a message for each point in
time ¢t € R* is required.

@:R* — MT with
sQt — s[i] , when t € [ts(s[d]), ts(s[i + 1])]
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3.3.2  Sampling

For sampling, the simple time model ¢t = k£ * A with a fixed step size A and
t, A € R", k € Nis used.

Let samplea be an arbitrary sampling function and o € ¥ an arbitrary
signal, which is defined for t € [0 : k % A[, then

samplea (o) : ¥ — (MT)* | with s € (MT)*

o((i—1)*A) > sfi], and i € [1: |£|]

Considering an arbitrarily small step size, any other sampling model, even
dynamic sampling, can be derived by the concatenation of discrete streams
and down sampling.

3.3.3 Template streams

To be able to characterize and assess incoming streams with a common formal
structure, the concept of a template stream is introduced. While a stream is
an ordered set of messages a template stream is an ordered set of predicates.
Let P be a set of predicates with relational operators in {=,<,>,> <} a
set of bounded variables in M and a free variable in (M7)*, the structure
b € (P)*, which represents a finite or infinite sequence of predicates p — (p)
with p € P,k € N, is called template stream.

Template streams show similar access and modification methods than
ordinary stream, thus the size operation || : P* — N | the value operation
]: P — MT, the add or construction operation > : P x P* — P* and the
head operation hd : P* — P. Moreover they provide timed related access
with ts: P — R* and @ : R — P.

Template streams as well as streams are produced and applied by hybrid
automatas similar to the ones that have been defined in Section 3.2. To
describe the meaning of applying a template stream to a (value) stream the
notion of a generic evaluation function is introduced. The evaluation function
X(p, s) is defined by

x: P x (MDY = {T,L1}
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and evaluates as follows.

(Vp € P*,s € (MT)")

x(p, s) {I XEEE z(()tt € [ts(p(1)) : ts(hd(p))]), (pQt)(sQL) =T

3.4 DISCUSSION

This chapter provides an overview on base concepts that are considered to
be necessary building blocks for the specification of tests for continuous and
hybrid systems. None of these concepts are currently addressed by TTCN-3.
TTCN-3 is a procedural testing language, thus test behavior is defined by
algorithms that typically assign (send) messages to ports and evaluate (re-
ceive) messages from ports. For the evaluation of different alternatives of
expected (sets of) messages, or timeouts, the port queues and the timeout
queues are frozen when the evaluation starts. This so called snapshot se-
mantics guarantees a consistent view on the test system input during an
individual evaluation step. Whereas the snapshot semantics provides means
for a pseudo parallel evaluation of messages from several ports, there is no
notion of simultaneous stimulation and time triggered evaluation. To en-
hance the core language of TT'CN-3 for the requirements of continuous and
hybrid behavior, the following notions are introduced.

e the notions of time and sampling,

e the notions of streams, stream ports, stream variables and template
stream, and

e the definition of an automaton-like control flow structure that enables
the specification of hybrid behavior.

The following chapters describe the syntactical and semantical integration
of the concepts from above with the TTCN-3 core language. If possible, the
names of the constructs in TTCN-3 embedded are kept in line with terms
and concept names from this chapter, so that the relationship between the
TTCN-3 embedded constructs with their underlying base concepts remain
evident.






CHAPTER 4

TTCN-3 FOR HYBRID SYSTEMS

The  following  sections  describe the  concepts  defined  for
TTCN-3 embedded; these concepts are intended to ease the specification
of tests for continuous and hybrid systems. In this section, the semantics
of the concepts are described informally. The syntactic structure is defined
by BNF snippets that explain the setup of the new constructs. The BNF
snippets are based on the already-existing TTCN-3 grammar in [35]. To
highlight the differences between TTCN-3 embedded and standard T'T'CN-3,
the newly-introduced rules and terminals are marked. The complete gram-
mar for T'T'CN-3 embeddedcan be found in the appendix.

4.1 TIME AND SAMPLING

TTCN-3 embedded adopts the concept of a global clock and enhances this
concept with notions of sampling and sampled time. As in TTCN-3, all time
values are denoted as float values, and time is represented in seconds. For
sampling, simple equidistant sampling models and dynamic sampling models
are used. While equidistant sampling models show the same step size for a
longer period, dynamic sampling uses flexible step sizes, e.g. higher sampling
rates, to achieve a higher accuracy for certain signal forms and situations.

At a technical level, an equidistant sampling model of the form t = kx A
(where t describes the time progress, k specifies the number of executed
sampling steps and A yields the minimal achievable step size for a given test
system) is used as an overall base for modelling equidistant sampling with
larger step sizes, or dynamic sampling.

The basic sampling in TTCN-3 embedded has a minimal step size of A.
It is a property of a concrete test system and it is not intended to be specified
in the test case specification. Because of this underlying model, however, a
test system is only able to execute user-defined samplings if, and only if, all
specified sampling rates at test-specification level provide step sizes that are
multiples of A.

In TTCN-3 embedded, each reference to time, whether it is used for
definition or evaluation of signals, as well as those gathered by means of
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ordinary TTCN-3 timers, is considered to be completely synchronized with
the global clock and the base sampling.

4.1.1 Time

In order to specify time-dependent signal sequences, it must be possible to
track the passage of time. Time is accessed via a globally-available clock
whose value at any given time can be assessed using the now operation.
For the purpose of each test case, time progress starts at the beginning the
execution; time values are thus related to the start of the test case. The now
operation can be used in any expression that is referred to from within a test
case definition or a function definition. Its use is explicitly not allowed for
the TTCN-3 control part.

Intuitive semantics: The now operation yields the time as an amount of
seconds that have passed since the start of the test case. In TTCN-3, the
beginning of the test case is marked by the invocation of the TRI function
triEzecute TestCase [37]. The time value is returned as a float value. The
precision of the time value is, theoretically, unlimited, but, in fact, is bound
by the choice of sampling and limited by the capabilities of the executing
test framework.

Listing 4.1: The now operation

// Use of now to retrieve the lapsed time since the test case
// started 2
var float myTimeValue := now;

Syntactical structure (concrete syntax) 1.

OpCall == ConfigurationOps | VerdictOps | TimerOps |
| Testcaselnstance | FunctionlInstance | TemplateOps
| ActivateOp | NowOperation
NowOperation = NowKeyWord
NowKeyWord = ’now”

4.1.2  Define the step size for sampling

A TTCN-3 embedded test system provides a base sampling rate that is avail-
able system-wide. This sampling rate is given by the test system’s capabilities
and provides the basis for the sampling mechanism. The execution of each
computational task is aligned to this base sampling rate.

In addition, separate sampling rates can be set for each stream port.
Essentially, the sampling rates at ports multiply the base sampling. The
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sampling of ports can be modified as part of the test specification by means
of the step size annotation.

Intuitive semantics: The step size annotation defines the step size of
ports. It does this by means of charstring values that represent time values
in seconds. It is applicable to modules, test cases, groups, component types
and stream port types. The step size annotation affects the step size of the
port definitions contained in one of these entities, or, in case of stream port
types, the annotation affects the respective instances of a stream port.

Listing 4.2: Setting the stepsize for modules

module myModule{ 1

}
with {stepsize 70.0001”};

Listing 4.3: Setting the stepsize for testcases

// sets the stepsize for a testcase
testcase myTestcase() runs on myComponent{ 2

with {stepsize 70.00017};

Listing 4.4: Setting the stepsize for ports

type port StreamOut stream { out float} 1
with {stepsize 70.0001”};

Syntactical structure (concrete syntax) 2.

WithStatement =  WithKeyword WithAttribList
WithKeyword := "with”
WithAttribList == { SingleWithAttrib [ SemiColon | }
Single WithAttrib = AttribKeyWord | Override Keyword ]
[ AttribQualifier] AttribSpec
AttibKeyword =  EncodeKeyword | VariantKeyword | DisplayKeyword
| StepsizeKeyword | HistoryKeyword | ExtensionKeyword
StepsizeKeyword = ’stepsize”

4.1.83  The wait statement

The wait statement delays the execution of a component until a given time.
The given time is specified as a float value and relates to the internal clock
of the test system.
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Intuitive semantics: The execution of the wait statement delays the exe-
cution of the related component until the point in time specified by its argu-
ment. If the argument holds a value that precedes the current time value, an
error verdict is set. The wait statement has no impact on the overall sam-
pling. All stream ports of the given component are still sampled according
to their sampling rate.

Listing 4.5: The wait statement

y_1.value = 10.0;

wait (100.0 + now); // suspends the ezecution of 2
// a component until 100.0
// seconds after the start of 4
// the testcase

y_1.value = 12.0; 6

Syntactical structure (concrete syntax) 3.

WaitStatement = WaitKeyword ” (" Expression ”)”

4.2 DATA STREAMS

In computer science, the term "data stream” is used to describe a continuous
or discrete sequence of data. Normally, the length of any given stream can-
not be established in advance, and the data rate, i.e. the number of samples
per unit of time, may vary. Data streams are continuously processed and
are particularly suited to the representation of dynamically-evolving vari-
ables over time. Streams are, thus, an ideal representation of the different
kinds of discrete and continuous signals mentioned in the beginning of Sec-
tion 2.3.1. In standard TTCN-3, interactions between the test components
and the SUT are achieved by the sending and receiving of messages through
ports; the interaction between continuous systems, on the other hand, can
be represented via so-called streams. In contrast to scalar values, a stream
represents the whole allocation history applied to a particular port. In com-
puter science, streams are widely used to describe finite or infinite data flows.
So-called timed streams [19] represent the relation to time. Timed streams
are streams which provide timing information for each stream value and,
thus, make timed behaviour traceable. TTCN-3 embedded provides timed
streams. In the following chapter, the term "measurement (record)” is used
to denote a unit of stream value and the related timing in timed streams.
Thus, in the context of continuous data, a measurement record represents an
individual measurement which consists of a stream value. The said stream
value represents the data side and timing information: the temporal perspec-
tive of the measurement. Currently TTCN-3 offers no direct support for the
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specification, management and modification of data streams. In TTCN-3
embedded, two different and incompatible representations of data streams
are introduced. Consequently, in TTCN-3 embedded, a stream is considered
to be a sequence of samples, wherein each sample provides information about
its timing and value perspective.

e Static perspective: the static perspective provides a direct mapping
between a timed stream and the TTCN-3 data structures record and
record-of. This kind of mapping is referred to below as the static rep-
resentation of a data stream and allows random access to all elements
of the data stream.

e Dynamic perspective: to provide dynamic, online access to data streams
and their content, the existing concepts of TTCN-3 port type and
port are extended. A so-called stream port references exactly one data
stream and provides access to the dynamically-changing values of the
referenced data stream.

To denote exemplary streams or stream values, a tabular notation is
used. This tabular notation expresses the relation between the value axis
of a stream and the respective time axis. Such a stream table has three rows:
the first one represents the values of the stream and the second and third
represent the temporal perspective. While the second row provides times-
tamp information synchronized with the overall clock, the third row provides
a relative time value, which denotes the distance to the preceding stream
element. The following example shows a stream table that defines a stream
with the length of 1.4 seconds and float values that change between 1.0 and
1.5.

Stream segment 1:

value 12|14 |15 (17| 171512 10|11 | 14|15 |12
timestamp || 0.0 | 0.1 | 02 | 0.3 |04 05|06 |07]08]09]|10]1.1
delta 00(01}(01{01)01}(01}01]01|01]01]0.1]0.1

4.2.1 Data streams: static perspective

A TTCN-3 embedded data stream can be mapped directly onto existing
TTCN-3 data structures. The mapping considers each stream to be de-
noted with a TTCN-3 record-of data structure. The individual entries of
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this record-of data structure represent the state of the stream at a given
point in time. This entity, a so-called sample, represents thus either a mea-
surement of an incoming stream, or a stimulus that is to be applied to an
outgoing stream. A sample is represented as a TTCN-3 record data struc-
ture. Such a record is formed by three fields, which are similar to the three
columns in a stream table (see Stream Segment 1). The first value field is
a generic value field, which allows the instantiation of values for arbitrary
(predefined or user-defined) TTCN-3 data types. The value field (i.e. value_)
represents what is called the "value of a stream”. Its data type has to be
aligned to the data type of the represented stream.

The second and third fields describe the temporal perspective of a sample.
As its name suggests, the timestamp field provides time stamp information,
which is synchronous with the global clock. The delta field, on the other
hand, denotes the temporal distance to the preceding sample (the sampling
step size delta). The second field and the third field are float values and they
represent time values using units of seconds. The following example shows
the definition of a data structure that specifies individual samples.

Listing 4.6: The definition of a stream data record

type record Sample<T>{

T value_, 2
float timestamp_,
float delta_ 4

}

Because of this underlying structure, a timed-data stream with an arbi-
trary data type is modelled as a record-of sample (see Listing 4.7).

Listing 4.7: The definition of a record of stream data records

type record of Sample<I> MyStreamType<IT>; 1

The static representation of data streams can be used for the online and
offline evaluation of streams; it can also be used for the partial in-memory
definition of streams or stream templates to be applied to stream ports in
subsequent test case executions. The static representation of streams can
thus be used to assess incoming streams and to define outgoing, or reference,
streams and template streams (mostly by means of ordinary TTCN-3 oper-
ations and control structures). The static representation as such can also
provide an ideal interface between ordinary TTCN-3 concepts and TTCN-3
embedded concepts. The following example shows a specification of a sam-
pled stream via record of samples.
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Stream segment 2:

value 0.01]00]02]01]|00
timestamp || 0.0 | 0.1 | 0.3 | 04 | 0.7
delta 0.001]01|01]0.3

Listing 4.8: A record of samples

var MyStreamType<float> myStreamVar :=

{ 1
{value_:=0.0, timestamp_:=0.0, delta_:=0.0},
{value_:=0.0, timestamp_:=0.1, delta_:=0.1}, 3
{value_:=0.2, timestamp_:=0.3, delta_:=0.1},
{value_:=0.1, timestamp_:=0.4, delta_:=0.1}, 5
{value_:=0.0, timestamp_:=0.7, delta_:=0.3}
} 7

The creation of larger streams via a manual specification approach is not
feasible. The data-processing capabilities of TTCN-3 are much better suited
to the programmatic/algorithmic construction of desired record structures.

The data structures presented in this section are for illustration pur-
poses only. They show how timed-data streams can be mapped onto existing
TTCN-3 data structures and thus processed easily using existing TTCN-3
language features and operators. TTCN-3 embedded does not explicitly offer
the type declarations above as part of the language extensions. On the other
hand, those operations in TTCN-3 embedded that deal with the sampled
representation of data streams will provide data structures fully compatible
with the scheme explained above.

4.2.2  Data streams: dynamic perspective

In TTCN-3, ports are used for the communication with the outside world, i.e.
for communication with other test components and with the SUT. To be able
to initiate, modify and evaluate stream-based communication between the en-
tities of a test system, TTCN-3 embedded extends the concepts of TTCN-3
port types and ports to include the notion of stream-based communication
and stream ports. Stream ports are the endpoints of stream-based commu-
nication between test components and the SUT. Stream ports in TTCN-3
embedded are thus used to provide access to streams, their values and their
respective timing information. A stream port in TTCN-3 embedded refer-
ences exactly one data stream and provides access to that particular stream’s
values and timing information. The language concepts and extensions that
define stream ports and access to stream data are explained in the following
sections.
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4.2.83  Defining stream port types

Ports facilitate communication between test components, and between test
components and the test system interface. TTCN-3 currently supports message-
based and procedure-based ports. TTCN-3 embedded allows for the addi-
tional definition of stream-based ports. In TTCN-3, each port is defined as
message-based, procedure-based (or both at the same time as described by
Clause 7.4.1 in [65]), or stream-based. The keyword stream identifies stream-
based ports.

Ports in TTCN-3 are directional. The directions are specified by the
keywords in (for the in direction), out (for the out direction) and inout (for
both directions). In contrast to TTCN-3 and message- and procedure-based
ports, each stream port type definition must have one and only one entry,
indicating both the allowed type and the allowed communication direction.

Listing 4.9: Stream port definition

// Stream—based port which allows stream wvalues of
// type float to be received 2
type port StreamIn stream { in float }

// Stream—based port which allows stream wvalues of
// type float to be send 6
type port StreamOut stream { out float }

Syntactical structure (concrete syntax) 4.

PortDef := PortKeyword PortDefBody
PortDefBody = PortTypeldentifier PortDefAttribs
PortKeyword ::= ’port”
PortTypeldentifier ::= Identifier
PortDefAttribs  ::=  StreamAttribs | MessageAttribs | ProcedureAttribs
| Mized Attribs
StreamAttribs = StreamKeyword "{” StreamDirection Type "}’
StreamList =  Direction AllOrTypeList
StreamDirection = InParKeyWord | OutParKeyword
StreamKeyword ::= ’stream”

Listing 4.10: Stream port definition with sampling

// Stream—based port which allows stream wvalues of type 1
// float and which is sampled every millisecond
type port StreamOut stream { out float } 3

with { stepsize 70.01” };

4.2.4  Defining data stream ports

The definition of stream-based ports is actually quite similar to the definition
of message-based and procedure-based ports. The component type defines
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which ports are associated with a particular component. These definitions
are made in the module definitions part. The port names in a component
definition are local to that component, i.e. another component may have
ports with the same names. A component type can also have ports with
different communication characteristics (e.g. stream-based ports, message-
based ports, and procedure-based).

Listing 4.11: The definition of stream ports

type port FloatStreamIn stream { in float }

type port FloatStreamOut stream { out float } 2
type component Tester { 4
port FloatStreamIn x_1, x_2, x_3;
port FloatStreamOut y_1, y_2, y_3; 6
}

Outgoing-stream ports start to emit stream values right after the start-
ing of the component which contains the respective stream port. The same
applies for incoming-stream ports. They start receiving data right after the
component has been started. Both incoming and outgoing stream ports are
updated for each sampling step. If no explicit step size is defined (via step
size annotations on module level, test case level, port type level, etc.) the
port is initially sampled with the test systems’ base sampling, which is the
smallest-available step size.

Outgoing-stream ports may already be initialized before their first use, so
that their values before and at time 0.0 (start of the test) are defined. The
initialization occurs in the context of their declaration.

Listing 4.12: Initialization of stream ports

type component Tester { 1
port FloatStreamIn x_1, x_2, x_3;
port FloatStreamOut y_1:=1.0, y_2:=2.0, y_3; 3
}

Outgoing stream ports, which are not explicitly initialized, are automat-
ically initialized with a default value. The default values for the TTCN-3
basic data types can be found in the following table.

float | integer | boolean | charstring | bitstring | octetstring
0.0 0 False ” '0'B 00’0

The initial stream port value for an outgoing-stream port applies to the
time point 0.0 and, so long as no other stream value is set, for the following
sample steps. The value initialization for incoming streams is the responsibil-
ity of the data provider; either the system adapter, or the emitting component
(in case of a PTC), is responsible for initializing the streams.
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Stream ports can be mixed with message- and procedure-based ports
in the same component definition. Thus, the main concepts of standard
TTCN-3 and TTCN-3 embedded can be mixed and used together. In this
case, the sending of messages and the snap shot semantics are both synchro-
nized with the base sampling rate. Sending of new messages and reception
of messages are therefore synchronized with the sampling rate and limited to
the beginning of a new sampling step.

Listing 4.13: The definition of stream and message ports

type port FloatStreamlIn stream { in float }
type port FloatStreamOut stream { out float } 2
type port FloatMessageln message { in float }

type component Tester {

port FloatStreamIn x 1, x 2, x_3; 6
port FloatStreamOut y_1, y_2, y_3;
port FloatMessageln m_ 1, m 2, m_3; 8

}

Syntactical structure (concrete syntax) 5.

Portinstance =  PortKeyword PortType PortElement
{”,” PortElement }
PortElement =  Portldentifier [ ArrayDef ]
[ AssignmentChar PortInitialValue |
Portldentifier = Identifier
PortlInitialValue ::=  Expression

4.2.5 Stream-access operations

Similarly to message-based and procedure-based communication, TTCN-3
embedded allows the examination of the data of incoming stream-based ports
and the control of the data provision at outgoing stream-based ports. In
general, access to the current sample of a stream (i.e. the stream value, the
respective timing and sampling information) is provided by means of stream-
data operations. Furthermore, access to the preceding samples is provided
via dedicated stream-navigation operations. Last, but not least, it is possible
to extract record-structured stream data (as presented in Section 4.2.7 ) by
means of the history operation.

In contrast to message-based and procedure-based communication, stream-
data operations and stream-navigation operations are integrated on the ex-
pression level. This makes it possible to directly assign values to streams and
to read values from streams by means of TTCN-3 assignments. The stream-
data operations and the stream-navigation operations are designated for use
inside an automaton environment. They will, therefore, be used particularly
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within the hybrid-automata-like control flow structures described in Section
4.4.

Below, the complete syntactical integration of the stream-data opera-
tions, the stream-navigation operations, and the stream-evaluation operations
is shown. In the following chapters, these operations and statements will be
defined and explained, step-by-step.

Syntactical structure (concrete syntax) 6.

OpCall = VerdictOps | TimerOps | TestcaseInstance
| Functionlnstance | TemplateOps
| ActivateOp | StreamDataOps
| StreamNavigationOps | StreamFEvalOps

StreamDataOps =  StreamValueOp | Stream TimestampOp
| StreamDeltaOp
StreamNavigationOps == StreamPrevOp | StreamAtOp
[ "Dot” StreamDataOp ]
StreamFEvalOps = StreamHistoryOp

The value operation

Each data stream connected to a stream port can be used to access its current
value via the value operation. In the case of incoming streams, the value
operation yields the current value available at a stream port.

Listing 4.14: Accessing input values of a stream

// accessing the current input value of a stream 1
var float myVar:=x_1.value;

Listing 4.15: Comparing input values of a stream with expectations

// accessing the current input value of a stream
// and compare it with a given ezpectation 2
if (x_1.value>= 100.0) {...};

The value (provided by the value operation) is the value measured at the
beginning of the current sampling period.

In the case of outgoing streams, the value operation yields a handle that
allows the assignment of data to a stream. The assignment has to be type
compatible with the data type of the stream.

Listing 4.16: Setting output values of a stream

// setting the current output value of a stream 1
y_1.value:= 100.0;

Furthermore, the use of the value operation can be combined such that
TTCN-3 embedded supports the specification of complex equations and equa-
tion systems. This is particularly important because many physical problems
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and dynamic phenomena are expressed, in particular, by such equations. The
following example shows the T T'CN-3 embedded realization of a simple model
that calculates the velocity of a braking car. Let y 1, 21 be stream ports
that show the actual velocity of the car (in metres per second) and the brake
pedal angle (as a percent value of its maximum angle). The variable b_mazx
defines the maximum-achievable negative acceleration (when the brake pedal
is fully pressed). The term v.delta provides us with the duration of the sam-
pling period.

Listing 4.17: velocity of a braking car

// calculating the velocity of a braking car
y-1.value:= y_1.value — ((x_-1.value * b_max / 100)x y_1.delta); 2

The effectiveness of the stream port valuation is generally delayed. A
value assigned to a stream port value handle becomes effective inside and
outside the component only at the beginning of the next sampling step.

Syntactical structure (concrete syntax) 7.

StreamValueOp ::=  Port Dot PortValueOp
PortValueOp  ::= Value OpKeyword
ValueOpKeyword ::=  ’value”

The timestamp operation

Similarly to the value operation, the timestamp operation provides access
to the time-related information of the current sample. The application of
the timestamp operation to a stream port thus yields the exact time point at
which the current stream port value was measured. The sample time denotes
the moment at which a stream value was made available to the test system’s
input and, therefore, is strongly dependent on the sampling rate.

The time point is represented as a floating-point number (float data type
in TTCN-3) and is measured with the physical unit of seconds. The timing
information is completely synchronized with the test-system clock that is
described in Section 4.1.1.

Listing 4.18: Access to sample time

// access to the sample time for the current sample
var float measurementTime:=x_1.timestamp; 2

Syntactical structure (concrete syntax) 8.

StreamValueOp ::=  Port Dot PortTimestampOp
PortTimestampOp == TimestampOpKeyword
TimestampOpKeyword =  “timestamp”
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It should be noted that data streams represent samples in a dynamic
measurement process. A sample taken from a data stream is usually historical
information, which is to say that it usually represents the state of the system
(i.e. the SUT) from a moment in the past.

The delta operation

In TTCN-3 embedded, the step size of a data stream can dynamically change
during the execution of a test. The change can be initiated either by the test
specification, or by the measurement system (i.e. the system adapter). In
addition to the timestamp operator, T'T'CN-3 embedded allows access to the
step size that has been used to measure a certain value. This information is
produced by the delta operation. The delta operation can be used similarly
to how the value and the timestamp operations are used: it returns the size
of the last sampling step as a floating point number (in seconds).

Intuitive semantics: The delta operation allows read and write access to
the current step size of a port. When the delta operation is used for reading,
it yields the current step size for a given port. When the delta operation is
used for writing, it sets the length of the step size for future writing (and
reading) at the given port. The step size is defined as a floating point number
and is measured in seconds. A value assigned to a stream port delta handle
affects the length of the following sampling period, not the current one. The
delta operation cannot, therefore, be used to alter the current sampling step.

Listing 4.19: Accessing the current step size

var float actualStepSize;
// reads the current step size from a stream port 2
currentStepSize: = x_1.delta;

Listing 4.20: Setting the current step size

// sets the current step size for a stream port 1
x_1.delta:= 0.01;
y_1.delta:= 0.001; 3




60 TTCN-3 FOR HYBRID SYSTEMS

Syntactical structure (concrete syntax) 9.

StreamValueOp ::=  Port Dot PortDeltaOp
PortDeltaOp ::=  DeltaOpKeyword
DeltaOpKeyword =  ’timestamp”’

4.2.6  Stream-navigation operations

In addition to enabling access to the current values of a stream, TTCN-3
embedded embedded provides additional access to the history of streams. It
does this via so-called stream-navigation operations. A navigation operation
produces a handle, and a handle allows the application of the value, times-
tamp or delta operations onto preceding stream states. The preceding state
is identified using two different operations. The prev operation backtracks
the sample steps, beginning with the current step. It uses an integer index
value as an optional guiding parameter that defines the number of sampling
steps to be backtracked. The at operation uses time indices as mandatory
parameters; these parameters denote the passage of time since the beginning
of the test case. The stream-navigation operations are intended for use inside
an automaton environment. They will, therefore, be particularly important
within the hybrid-automata-like control flow structures described in Section
4.4.1.

The prev operation

The prev operation produces a handle for obtaining stream-related informa-
tion about the previous states of a given stream.

Intuitive semantics: The prev operation can be parameterized with an
index parameter and it returns a handle for retrieving values, timestamps
and sampling step sizes from previous stream states. The optional index
parameter defines the number of samples counted back in the stream’s history.
The prev operation should be used in combination with the value operation,
the timestamp operation and/or the delta operation in order to provide the
most useful results.

Listing 4.21: The prev operation used to access stream values

x_1.prev(0).value; // yields the actual stream wvalue 1
x_1.prev.value; // yields the previous stream value

x_1.prev(1l).value; // yields the previous stream value 3
x_1.prev(2).value; // yields the stream wvalue 2 steps ago
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It should be noted that the expressions z_1.prev and z_1.prev(1) yield
identical results.

Listing 4.22: The prev operation used to access timestamps and sample step length

x_1.prev (0).timestamp;

x_1.prev(0).

delta;

x_1.prev (1).timestamp;

x_1.prev(1).

delta;

yields the timestamp that
denotes the beginning the actual

sampling step
yields the length of the last
sampling step

yields

the timestamp that
denotes the beginning the preceding

sampling step
yields the length of the

sampling step 2 steps ago

10!

Stream segment 3:

value 1217|1715 |12{10|11 |14 }15|12]|10 1114
timestamp || 0.0 | 0.3 | 04 | 05|06 |07 08|09 |10 |11]12]|13 |14
delta 00(03}01{01]01(01}01|01]01(01]01]0.1]01

Listing 4.23: The prev operation (applied directly after Stream Segment 3 has been
recorded, i.e. now yields 1.4)

.prev (0).

1

1
_1.prev(1l).

1.prev(2).

value;

.prev.value;

value;
value;

.timestamp;
.delta;
.timestamp;
.delta;

yields
yields
yields
yields

yields
yields
yields
yields

~NON N~
S\

S~ QD
~ QY N B

Syntactical structure (concrete syntax) 10.

Stream ValueOp
PortPrevOp
IndexValue

Timestamp OpKeyword

The at operation

Port Dot PortPrevOp
PrevOpKeyword | 77 IndexValue )" ]
Ezxpression

77pre_V”

The at operation returns a handle for obtaining stream-related information
for previous states of a stream. These previous states are identified by means
of a timestamp value.
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Intuitive semantics: The at operation is parameterized with an index pa-
rameter i and returns a handle for retrieving values, timestamps and sampling
step sizes for preceding states of a stream. The mandatory index parameter
represents a timestamp, which identifies a sample at a particular place in
time. The timestamp denotes the time that has passed since the start of the
test case (see Section 3.1). It references a sample with either the same times-
tamp, or, if such a sample does not exist, the sample with the next-smaller
timestamp. The at operation should be used in combination with the value
operation, the timestamp operation and/or the delta operation in order to
provide the most relevant and useful results.

Listing 4.24: The at operation used to access stream values

x_1.at (now). value; // yields the current stream wvalue 1
x_-1.at (0.0).value; // yields the initial stream wvalue
// (i.e. the stream wvalue at beginning 3
// of the test case)
x_1.at(10.0).value; // yields stream value at the time 5
// point 10.0 (i.e. 10. Seconds after
// the beginning of the test case) 7

Listing 4.25: The at operation used to access timestamps and sample step length

x_1.at (now).timestamp; // yields the beginning of the 1
// current sampling step

x_-1.at (0.0).timestamp; // yields the beginning of the 3
// initial sampling step (i.e. 0.0)

x-1.at(10.0).timestamp; // yields the beginning of the 5

// sampling step at time point 10.0

Listing 4.26: The at operation (applied directly after Stream Segment 3 has been
recorded, i.e. now yields 1.4)

x_1.at (now).value; // yields 1.4

x_1.at (0.0).value; // yields 1.2 2
x_1.at(1.0).value; // yields 1.5

x_1.at(1.09).value; // yields 1.5 4
x_1.at (now).timstamp; // yields 1.4 6
x_1.at (0.0).timstamp; // yields 0.0

x_-1.at(1.09).timestamp; // yields 1.0 8
Syntactical structure (concrete syntax) 11.

StreamAtOp ::= Port Dot PortAtOp
PortAtOp ==  AtOpKeyword | 7" TimelndexValue )" ]
TimelndexValue ::=  FExpression

Topknot = 7at”
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4.2.7 The history operation

The history operation is a means by which the complete, or partial, history
of a stream as a TTCN-3 record-of data structure (see Section 4.2.1) can be
obtained. The history operation takes two parameters that characterize the
segment using absolute time values. The first parameter defines the lower
temporal limit and the second parameter defines the upper temporal limit of
the segment to be returned.

Listing 4.27: Setup to apply the history operation

type record FloatSample { float value_, float timestamp_, float delta_ }

type port FloatStreamIn { in float } 2
type component {

port x_1 FloatStreamlIn 4
}

var record of FloatSample myStreamRec;

myStreamRec:=x_1. history (0.0, now);

Intuitive semantics: The history operation provides a sample representa-
tion of a stream based on record-of data structures. The operation takes two
parameters: one denoting the start time and one denoting the end time of
the stream segment designated for export. The parameters are both floating
types of data. They represent the time that has passed since the beginning of
the test case. Time values are given in units of seconds. The first parameter
consists of the time at the moment of the first stream entry (sample) to be
considered for the history export. The second parameter states the time of
the last record. If the specified start-time value is greater than the end-time
value, the history operation results in an empty record-of data structure.

The first example illustrates the use of the history operation in order to
obtain the complete history of a stream-based port.

Listing 4.28: Application of the history operation until the current time

myStreamRec:= x_1.history (0.0, now); 1

In the second example, the history operation is applied in Line 2. This
yields a record-of structure that represents the first ten seconds at the
ti_Engine_Speed stream-based port.

Listing 4.29: Application of the history operation for a duration of 10 seconds

type record of Measurement<float> Float_Stream_Records;
var Float_Stream_Records speed:= 2
x_1.history (0.0,10.0);
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The overall size of the record-of data structure (i.e. the number of indi-
vidual measurement elements) depends on the given sampling rate and on
the time interval defined by the parameters of the history operation.

Listing 4.30: The size of a record of samples (data relate to Stream Segment 3)

myStreamRec:=x_2. history (0.0, now); 1
// yields

Syntactical structure (concrete syntax) 12.

StreamHistoryOp = Port Dot PortHistoryOp
PortHistoryOp = HistoryOpKeyword
[ 7" StartValue [ 7,” EndValue | 7)” |
StartValue = Ezxpression
EndValue =  FEzxpression
HistoryOpKeyword =  “history”’

4.2.8 Limiting the length of the stream history

A TTCN-3 embedded test system may have problems managing the large
amount of data stored in the history of a stream. This is especially the
case if the sampling rates are high, or if the duration of a test run is long
and restricts the real-time capabilities of the test system. The amount of
data to be managed can be reduced by limiting the length of the history
of a stream. This can be accomplished by means of the history annotation.
The history annotation consists of a history keyword and a charstring value.
The charstring value represents either the maximum number of elements,
or the maximum temporal length of the stream’s port history. When the
charstring is a float or integer number directly followed by the character ”s”,
it is assumed to represent a time value in seconds. It is applicable to modules,
test cases, groups, component types and stream port types. The charstring
value affects the history length for stream ports that are contained in one
of these entities, or, in case of stream port types, the value affects the the
respective instances of a stream port.

Intuitive semantics: The history annotation defines the overall length of
the history of a stream port. The history always provides the most recent
data and the history annotation causes, that the oldest stream elements are
removed, when the history has reached its limit. Thus, the elements that
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can be accesses by the stream-navigation operation and the stream-history
operation are reduced to the time-frame that is defined by the history anno-
tation. If the stream-navigation operation and the stream-history operation
are used to access data, that are no longer in the history of a stream port,
the error verdict is set.

Listing 4.31: Setting the length of a stream for all ports in a module

// Setting the length of a stream for all ports in a module 1
// to 10 elements

module myModule{ 3

with {history 7107};

Listing 4.32: Setting the length of a stream for all ports addressed in a testcases

// sets the stream history length for all ports adressed in a testcase
// to a wvalue of 10 seconds 2
testcase myTestcase() runs on myComponent{

with {history 710s”}; 6

Listing 4.33: Setting the length of streams of a given port type

type port StreamOut stream { out float}
with {history 7107}; 2

Syntactical structure (concrete syntax) 13.

WithAttribList == { SingleWithAttrib [ SemiColon | }
SingleWithAttrib = AttribKeyWord [ OverrideKeyword ]
[ AttribQualifier | AttribSpec
AttibKeyword =  EncodeKeyword | VariantKeyword | DisplayKeyword
| StepsizeKeyword | HistoryKeyword | ExtensionKeyword
HistoryKeyword ::= Thistory”

4.3 THE ASSERT STATEMENT

The assert statement is used as shorthand for the specification of expected
system behaviour.

Intuitive semantics: The assert statement specifies a predicate that ex-
presses expectations about the SUT and an optional list of log items that
can be communicated via the logging interface. The predicate consists of
an arbitrary TTCN-3 Boolean expression. If the predicate fails, the assert
statement automatically sets the verdict to "fail” and transmits the log items
to the logging system. The assert statement is allowed at any place in the
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TTCN-3 source code where the application of the set-verdict statement is al-
lowed. To assess continuous data, the assert statement is particularly useful
within the hybrid-automata-like control flow structures described in Section
4.4.1.

Listing 4.34: The assert statement

‘ assert (x_1.value==4.0); ‘

Listing 4.35: The assert statement with a log message

‘assert(x,l.value::4.0, "Value is not 4.07); 1‘

Syntactical structure (concrete syntax) 14.

VerdictStatements ::=  SetLocalVerdict | AssertStatement
AssertStatement = AssertKeyword |7 (" AssertionList ”)” |
AssertKeyword ::= ’Tassert”
AssertList =  Expression { ”,” Expression }

It should be noted that the semantics of the assert statement can be
mapped to existing TTCN-3 statements in the following way:

Listing 4.36: The semantics of the assert statement

assert (predl, pred2,...,predn); 1
// is fully equivalent to
if (! predl) setverdict(fail); 3

if (! pred2) setverdict(fail);

if (! predn) setverdict(fail);

// and 7
assert (predl, pred2,...,predn, ‘‘reason’’);

// is fully equivalent to 9
if (! predl) setverdict(fail, ‘‘reason’’);

if (! pred2) setverdict(fail, ‘‘reason’’); 11
if (! pred3) setverdict(fail, ‘‘reason’’); 13

4.4 CONTROL STRUCTURES FOR CONTINUOUS AND HYBRID BEHAVIOR

Currently, TTCN-3 control flow structures do not directly support the par-
allel and sampled application and assessment of stream values at ports. The
concepts defined in Section 4.2 allow the construction, application and as-
sessment of individual streams. For more advanced test behaviour, such as
the concurrent application and assessment of multiple streams or the detec-
tion of complex events (e.g. zero crossing or flag changes at multiple ports),
different concepts are necessary. To this end, the concepts defined in the last
sections are combined with state-machine-like specification concepts, the so
called modes.
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A mode expresses a certain runtime mode of a system or a system under
test. This kind of runtime mode is characterized by a defined behaviour at
ports and a set of predicates that limit the applicability of the behaviour.
Unlike the ordinary behaviour of TT'CN-3 statements, a mode applies its
behaviour over time (at least for one sampling step).

4.4.1 Modes

The term mode is used to specify the discrete and countable macro states of
a dynamic hybrid system. It mainly serves to distinguish the macro states of
a hybrid system from the (in theory, infinite) number of micro states. Modes
provide a layer of abstraction that helps to distinguish between two kinds of
discrete changes in a hybrid system: discrete changes that are relevant from
the user’s and tester’s perspective, and discrete changes introduced by the
underlying test environment in order to map continuous behaviour to a com-
putational environment (which is naturally discrete). The interpretation and
calculation of micro states depend on the underlying technical environment,
i.e. the sampling. A micro state is thus calculated by combining the active
macro states and the sampled evaluation of data at the stream ports.

Modes, and the transitions between them, can be represented by a state-
machine-like structure defined in the theory of hybrid automata [80, 5]. Fig-
ure 1 shows an abstract test specification that consists of three atomic modes,
transitions between them, and invariants and assertions that must hold dur-
ing their execution.

In order to realize such hybrid automata in TTCN-3, three new block
statements are required: the cont statement, the seq statement, and the par
statement. The cont statement is used for the specification of atomic modes,
and the par and seq statements are used to aggregate modes into larger
constructs via parallel and sequential composition.

Modes, in general, are characterized by their duration and their internal
behaviour (i.e. the assignment and assessment of values at stream ports).
The duration, or rather the duration of the mode’s activity, is defined by a
set of predicates, which relate to time or to the valuation of (stream) ports,
variables, etc. A mode specification in TTCN-3 embedded consists of five
syntactical compartments:

e an obligatory body for the specification of the mode’s internal behaviour;

e an invariant block that defines predicates that must hold while the
mode is active;
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e optional on-entry and on-exit blocks that define behaviour that is to
be executed only once, at the activation or deactivation of a mode;

e and a transition block that defines the exit conditions which end the
mode’s activity and the actions that must be taken when the transition
fires

Listing 4.37 shows the definition of an atomic mode. This atomic mode
consists of: two assignments to stream ports; an invariant that checks the
state of an outgoing stream port; an on-entry block that initializes the vari-
able x; an on-exit block that resets the stream port to_Set_Point to the value
of 0.0; and transitions that check the value of an incoming stream port.

Listing 4.37: Definition of atomic modes

cont { //body

onentry { x:=10.0; } 2
inv { //invariant
y_1.value > 20000.0; 4

}

y_1.value:=3.0 * now; 6

y_2.value:=0.0 + x;
onexit { y_1.value:=0.0 } 8
until { //transition 10

[x_1.value > 2000.0] { y_-2.value:=2.0; }

[x_1.value > 3000.0] { y_2.value:=1.0; } 12
}

In general, the structural setup of composite modes is nearly identical to
that of atomic modes. The only differences between composite and atomic
modes lie in their behavioural descriptions. Atomic modes contain assign-
ments and assert statements; composite modes, on the other hand, contain
other modes. In terms of invariants, on-entry and on-exit blocks, and tran-
sitions, the structural setup and behaviour of composite modes and atomic
modes are identical.

When a mode is active, each invariant of a composite mode has to hold
steady. When a transition fires in a composite mode, the activity of the live
mode stopped. Listing 4.38 shows the setup of a parallel mode that contains
two sequential modes. Each of the sequential modes contains further atomic
modes.
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Syntactical structure (concrete syntax) 15.

ModeSpecification
InvariantBlock
InvKeyword
InvariantList

UntilBlock

UntilKeyword
UntilGuardList
UntilGuardStatement

UntilGuardChar
UntilJump
BasicMode

ContKeyword
BasicModeOp

ComplexMode
ParKeyword
SeqKeyword

ComplexModeOp

Declaration

( BasicMode | ComplexMode ) [ UntilBlock ]
InvKeyword "{” | InvariantList | 7}’
77inv77

BooleanEzxpression { ”,” BooleanExpression }
UntilKeyword ( "{” UntilGuardList | GuardOp "}’ )
| ( 77 BooleanExpression )" )
"until”

{ UntilGuardStatement }

UntilGuardChar [ GuardOp| StatementBlock

[ UntilJump SemiColon ]

"[” [ BooleanEzpression | ModePredicate |17
GotoStatement | ContinueStatement | RepeatStatement
ContKeyword "{” { Declaration } | OnEntryBlock ]
[ InvariantBlock | { BasicModeOp } | OnExitBlock |7}’
"cont”

Assignment | AssertStatement | InvariantBlock

| IfStatement

( SeqKeyword | ParKeyword ) "{” { Declaration }
[ OnEntryBlock | [ InvariantBlock |

{ ComplexModeOp } | OnFEzitBlock |”}”
”par”
”Seq”

ModeSpecification | LabelStatement |
FunctionOrModelnstance

FunctionLocallnst

Listing 4.38: Mode composition

par {
inv { //invariant

seq { // stimulation sequence

cont { // stimulation action 1 5
cont { // stimulation action 2 7
/) .. 9
seq { // assessment sequence 11

cont { // assessment action 1

cont { // assessment action 2

/)
}

until { // transitions

13!

15

17

19!
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4.4.2  Definition of the until block

The until block allows the specification of two aspects of modes: the exit con-
ditions for modes and the explicit transitions between modes. The entries of
the until block are called transitions, and each transition specifies conditions
for its activation (i.e. guards and trigger events). In addition, transitions
may provide an explicit definition of the mode which is to be activated next
(this is known as the "target mode”). An until block can contain several al-
ternative transitions, each of which can specify different exit conditions and
target modes.

Definition of transition guards and events

The until block also defines a number of transitions between modes. A tran-
sition contains either a guard, or a trigger event specification, or both. The
guard and the trigger event specification are both used to determine whether
a transition can fire or not. A guard is modelled as a boolean TTCN-3 expres-
sion. A trigger event is modelled using TTCN-3 receiving-operations (receive
statement, trigger statement, getcall statement, etc). The guard and/or the
trigger may be followed by an optional statement block, which contains in-
structions that are to be executed upon the activation of the transition. The
syntax of the until block is inspired by the syntax of the TTCN-3 alt state-
ment: the syntactical structure of transitions is similar to the syntactical
structure of a TTCN-3 alt statement.

Intuitive semantics: A transition is considered to have been activated
when: the guard expression has been satisfied (when only a guard expression
has been specified); a valid receiving event has occurred at the TTCN-3
receiving operation (when only the receiving-operation has been specified);
or, when both the guard expression has been satisfied and a valid receiving
event has occurred at the TTCN-3 receiving operation (when both the guard
expression and the receiving operation have been specified).

At each sampling step, the transitions for the live mode are checked. If
a transition becomes active, the optional statement block is executed once.
Afterwards, the enclosing mode and all of its child modes are deactivated.
The control flow continues with the activation of the follow-up mode. The
transitions in an until block are checked in the sequential order given by the
specification (TTCN-3 embedded source code). If multiple transitions exist,
the first transition that fulfills the activation conditions is activated.
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Listing 4.39: The until block of a mode

cont { //mode

y_1.value:=3.0; 2
until { // transitions 4

[x_1.value > 4.0] m_1.receive(TemplExp) {

log (”statement block 17); } 6
[x-1.value > 4.0 and x_1.value > x_2.value] {

log (”statement block 27); } 8
[] m2.receive(TemplExp) {

log (”statement block 37); } 10

In addition, the following abbreviations or shorthand notations for the
specification of simple transitions are allowed.

Listing 4.40: A shorthand for an until block

until (y_1.value > 3.0); 1
// shorthand for wuntil { [ z_1.value > 3.0]{} }

Listing 4.41: A shorthand for an until block with a receive statement

until ( m_1.receive(tmpl) );
// shorthand for wuntil { [Jm_1.receive(tmpl){} } 2

In the optional statement block of a transition, any TTCN-3 statement
is, in principle, allowed, except for the following:

e blocking instructions (i.e. receive statements, alt statements) — such
constructs can block the execution of the statement block, causing the
next sampling step to be missed.

e any type of control-flow-related statement that can lead to the leaving
of the enclosing mode (e.g. goto or return).

Syntactical structure (concrete syntax) 16.

UntilBlock ==  UntilKeyword ( "{” UntilGuardList | GuardOp "}’ )
| ( 7" BooleanExpression ”)” )
UntilKeyword = Tuntil”
UntilGuardList  ::=  { UntilGuardStatement }

UntilGuardStatement = UntilGuardChar | GuardOp| StatementBlock
[ UntilJump SemiColon ]
UntilGuardChar "[" [ BooleanEzpression | ModePredicate | 71"
UntilJump ==  GotoStatement | ContinueStatement | RepeatStatement




72 TTCN-3 FOR HYBRID SYSTEMS

Definition of follow-up modes

TTCN-3 embedded allows the explicit definition of follow-up modes via the
goto statement. A mode specification can thus have a preceding label that
defines the target for a goto jump. Furthermore, each action block of a
transition can have an optional goto statement that refers to an arbitrary
label.

Goto statements, however, are only allowed after the statement block. If
such a transition is activated, the optional statement block is executed and
then the execution is continued at the label position with the activation of the
next mode. Listing 4.42 shows the application of labels and goto statements
in the context of modes.

Listing 4.42: The goto statements in modes

label statel;
cont { //mode 2
y_1.value:=3.0;

until (x_1.value > 2.0)

label state2; 6
cont { //mode

x_1.value:=4.0; 8
} until { // transitions

[x_1.value > 4.0] { log(”statement block 1”); } goto statel; 10
[x-1.value > x_2.value| { log(”statement block 27); } goto state2;

[] m1l.receive(TemplExp) { log(”statement block 37); } 12
}

The use of the goto statement is already restricted in standard TTCN-3,
and TTCN-3 embedded embedded defines additional restrictions for its use
in the context of modes. Goto jumps are only allowed in a sequential envi-
ronment: either inside sequential modes, or on the top level of a composition,
i.e. directly on the test case level. Furthermore, goto jumps are not allowed
to violate the composition hierarchy. It is, therefore, not possible to jump to
a parent mode or a child mode. Jumps are only allowed between modes that
exist at the same hierarchy level.

If, however, no follow-up mode is explicitly defined via a goto statement,
the sequential ordering of mode specification implicitly defines the follow-up
mode. Thus, when two atomic modes follow one another in the specification,
the second mode is the follow-up mode for all of the active transitions of the
preceding mode.

Listing 4.43: Subsequent modes

cont { y_1.value
cont { y_1.value
cont { y_1.value

3.0; } until (x_-1.value > 3.0
5.0; } until (x_1.value >=
7.0; } until (x_1.value >=

)s 1
0 * x_2.value)
0) 3

3.
3.

Syntactical structure (concrete syntax) 17.
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UntilBlock ==  UntilKeyword "{” UntilGuardList "}’
UntilKeyword = Tuntil”
UntilGuardList = { UntilGuardStatement } |”(” BooleanExpression 7)”
UntilGuardStatement =  UntilGuardChar GuardOp StatementBlock
UntilGuardChar = "[” [ BooleanExpression | ModePredicate | 1"

The use of the repeat statement

The repeat statement triggers the re-execution of a par statement, a seq
statement, or a cont statement. This means that the par statement, the
seq statement or the cont statement is activated again and the statement
is repeated with the next sampling step. When the repeat statement is
executed, the local time of the respective mode (see duration operation in
Section 4.4.4) is reset. When the repeat statement is executed in the case
of composite modes, the child modes are activated according to the type of
mode (i.e. according to whether it is parallel or sequential). In addition, the
respective on-entry and on-exit blocks are executed.

Listing 4.44: The repeat statement for modes

cont { //mode 1
y_1.value:=4.0;

} until { // transitions 3
[x-1.value > 4.0] { log(”statement block 1”); } goto statel;
[x-1.value > x_2.value] { log(”"repeat the execution”); } repeat; 5
[] m.1l.receive(TemplExp) { log(”statement block 27); }

} 7

It should be noted that the use of the repeat statement is functionally
equivalent to the use of a goto statement that addresses a label directly above
the live mode.

The use of the continue statement The continue statement triggers the
further execution of a par statement, a seq statement, or a cont statement.
This means that these statements are continued into the next sampling step
without a reset of the local time (see duration operation in Section 4.4.4).
The on-entry and on-exit blocks are not executed.

Listing 4.45: The continue statement for modes

cont { //mode 1
y_1.value:=4.0;
} until { // transitions 3

[x-1.value > 4.0] { log(”statement block 12”7); } goto statel;
[x-1.value > x_2.value] { log(”continue the execution”)} continue;
[] m.1l.receive(TemplExp) { log(”statement block 27); }

} 7

ot
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4.4.83  Definition of generic mode body elements

The mode body defines the behaviour of a mode. There are different kinds of
mode body elements for atomic modes, parallel modes, and sequential modes
(see Sections 4.4.5, 4.4.6, and 4.4.7). A mode body can also, however, contain
a number of elements that are syntactically and semantically identical across
all kinds of modes. These elements are explained in the following sections.

Definition of invariant blocks

An invariant block contains Boolean predicates (expressions) that character-
ize the applicability of a mode. An invariant block is thus always related to
its containing mode specification. It also specifies the terms and conditions
of validity for a mode, which are checked during runtime.

Intuitive semantics: For each mode, all invariants are checked during
each sampling step when the mode is active. While a mode is active, none of
its invariants can be violated. If an invariant of an active mode is violated,
the mode must be able to switch to another mode which can tolerate the
violation that has occurred. If this is not possible, the test system must give
an error verdict. The invariant block is always checked at the beginning of
each sampling step, before the body of each mode is executed.

Listing 4.46 shows the definition of an atomic mode that sets the value of
outport A continuously to 3.0. The invariant prescribes particular conditions
for the values of incoming ports B, C and D. When one of the invariants is
violated by a real value at one of the ports, the mode execution is stopped.

Listing 4.46: The invariant-block for modes

cont { 1
inv { x_1.value > 3.0, x_2.value >= 3.0 * x_3.value }
y_1.value := 3.0; 3
}

The specification of invariants allows for easy and unambiguous definition
of conditions that terminate modes. Sequences of modes that are executed
one after another (when the invariant state of the active mode changes) are
specified via a simple, sequential control flow paradigm.

Listing 4.47: Subsequent modes with invariants

cont {
inv { x_1.value > 3.0, x_2.value >= 3.0 * x_3.value } 2
y_1.value:=3.0;
} until (notinv) 4
cont {

inv { x_1.value <=3.0, x_2.value >= 3.0 % x_3.value } 6
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y_1.value:=5.0;
} until(notinv) 8

Syntactical structure (concrete syntax) 18.

InvariantBlock =  InvKeyword "{" | InvariantList | 7}’
InvKeyword = 7inv”
InvariantList  ::=  BooleanExpression { 7,” BooleanExpression }

Definition of the on-entry block

The on-entry block contains a statement list that is to be executed once, and
only once, during the activation of a mode. In an on-entry block, any TTCN-3
statement is allowed, except blocking instructions (i.e. receive-statements,
alt-statements). Blocking instructions are constructs that may block the
execution of the statement block. When the statement block’s execution is
delayed or terminated, the following sampling step can be missed, as can any
type of control-flow-related statement that would lead to the leaving of the
mode (e.g. the goto statement or the return statement).

Intuitive semantics: The execution of the on-entry block is part of the
activation of a mode. For an on-entry block to successfully start, all invariants
must hold. In hierarchically-ordered modes, the on-entry blocks are executed
sequentially, beginning with the on-entry block of the outermost mode to that
of the innermost mode.

Listing 4.48 shows the definition of an atomic mode. This atomic mode
sets the sampling of a port during its activation.

Listing 4.48: The onentry-block

cont{
onentry {y_1.delta := 0.001;} 2
y_1.value:=3.0;

} 4
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Syntactical structure (concrete syntax) 19.

OnEntryBlock =  OnEntryKeyword
"{” { NonBlockingStatement [ SemiColon | } "}
OnEntryKeyword ::= “onentry”

Definition of the on-exit block

The on-exit block contains a statement list that is to be executed once,
and only once, during the deactivation of a mode. In an on-exit block, any
TTCN-3 statement is, in principle, allowed, except for statements which
block instructions (i.e. receive statements or alt statements). Blocking con-
structs prevent the execution of the statement block, and, consequently, the
next sampling step can be missed, as can each type of control-flow-related
statement that leads to the leaving of the mode (e.g. the goto statement or
the return statement).

Intuitive semantics: The on-exit block is executed as a part of the deac-
tivation procedure of a mode. The execution of the on-exit block is triggered
either by an activated transition or by the violation of an invariant. Either
of these events can lead to the mode’s deactivation. In the case of an active
transition, the on-exit block is executed directly after the optional action
block has been executed. In hierarchically-ordered modes, the on-exit blocks
are executed sequentially, beginning with the on-exit block of the innermost
mode and moving towards that of the outermost modes.

Listing 4.49 shows the definition of an atomic mode. This atomic mode
sets the sampling of a port during its activation time.

Listing 4.49: The on-exit block

cont{
y_1.value := 3.0; 2
onexit {y_1.value := 0.0;}

} until(x_1.value > 3.0) 4

Syntactical structure (concrete syntax) 20.

OnFExitBlock =  OnFEzxitKeyword
"{” { NonBlockingStatement [ SemiColon | } 7}”
OnEzxitKeyword := Zonexit”

The not-inv operation in the context of modes

The not-inv operation can be used as a predicate that indicates the violation
of any local mode invariant. If a mode is active and one of its invariants
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is violated, the evaluation of the not-inv operation yields true. Otherwise,
it yields false. The not-inv operation thus allows an explicit response to
invariant violation by means of transitions.

Listing 4.50: The not-inv operation

cont { //mode
inv{x_1.value >= 5.0} 2
y_1.value := 3.0;

until { // transitions

[notinv] { 6
log (”Invariant violated”); }
[] m.1.receive(TemplExp) { 8

log (”Invariant not violated”); }
10

Syntactical structure (concrete syntax) 21.

UntilGuardChar = 7[” [ BooleanExpression | ModePredicate | 717
ModePredicate ::=  NotinvKeyword
NotinvKeyword := ’notinv”

4.4.4  Local temporal expressions in the context of modes

Within a mode, the time elapsed since the beginning of the test case can be
continuously accessed and read. This can be achieved by using the keyword

) Y

now .

Listing 4.51: The now operation in modes

cont{

y_1.value := 3.0; 2
until (now > 4.0) 4
// executes the content of the body block until
// the owverall test case time has reached 4.0 seconds 6

Measurement of the time elapsed since the enclosing mode construct’s ac-
tivation can be additionally provided via the duration operation. The dura-
tion operation is applicable in expressions in all mode-related substructures,
such as the body block, the invariant block, and the until block.

Listing 4.52: The duration operation in modes

cont{
y_1.value := 3.0; 2
until (duration > 4.0) 4

// executes the content of the body block for 4.0 seconds

The valuation of the duration operation depends on its context: it may
differ depending on its place of application.
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The following example shows the application of the duration operation
in two different modes. Both modes are activated at different times: the
application of the duration operation in the first and in the second cont mode
may, therefore, yield different results than the application of the duration
operation in the enclosing seq mode.

Listing 4.53: The duration operation in composite structures

par{ 1
cont{ y_1.value := 2.0;} until (duration > 4.0)
cont{ y_2.value := 3.0;} until (duration > 4.0) 3
} until(duration > 6.0)

Syntactical structure (concrete syntax) 22.

OpCall = ConfigurationOps | VerdictOps | TestCaselnstance
| TimerOps | FunctionInstance | ExtendedFieldReference |
| TemplateOps | EaxtendedFieldReference | | ActivateOp |
| NowOp | DurationOp | StreamDataOp |
| StreamNavigationOps | StreamFEvalOps

NowOp = NowKeyword
NowKeyword = "now”
DurationOp = DurationKeyword
DurationKeyword ::= “duration”

4.4.5 Atomic modes: the cont statement

The cont statement is used to define atomic modes. Atomic modes directly
define test behaviour at stream ports by means of value allocation and value
assessment. A cont statement, therefore, may contain assignments and assert
statements, but also if statements, loops, and function calls. In fact, in a cont
statement, any kind of non-blocking TTCN-3 statement can be used.

Intuitive semantics: The execution of instructions within a cont state-
ment can be theoretically considered as “continuous”. Cont statements are
executed periodically for each sample step. This kind of time-triggered and
periodic execution allows for continuous valuation, periodic revision and reg-
ular evaluation of values at stream ports.

When a cont statement is activated, all of the contained elements are
executed repetitively, for each sample step. The execution ends when a tran-
sition fires or an invariant is violated.

Listing 4.54: The cont statement

// exzecutes the assignments at each sample step
cont { // Mode 1 2
y_1.value := 10.0;
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y_2.value := 2.0 x duration; 4

}

until (duration > 5.0) 6

Listing 4.55: The cont statement without until block

cont { // mode 1
y_1.value := x_1.prev.value x 2.0; 2
y_-2.value := x_1.prev(5).value;

} 4

Listing 4.56: The cont statement with multiple transitions

cont { // mode 1

y_1.value := x_1.prev.value *x 2.0; 2

y-2.value := x_1.prev(5).value;

inv{ 4

y_2.value > 200.0;

} 6
until { // Transition 8

[y-2.value > 150.0] { y-2.value := 0; }

[y-2.value > 180.0] {} 10

}

Syntactical structure (concrete syntax) 23.

ModeSpecification ==  ( BasicMode | ComplexMode ) [ UntilBlock |
BasicMode = ContKeyword "{” { Declaration } [ OnEntryBlock |
[ InvariantBlock | { BasicModeOp } [ OnExitBlock |7}’
ContKeyword ::= ’cont”
BasicModeOp ::=  ContinuousStatement

4.4.6  Parallel mode composition: the par statement

The par statement specifies the parallel composition of modes. A paral-
lel composition may contain sequential modes, parallel modes and atomic
modes. When a parallel composition is activated, all of its composite (i.e.
directly contained) modes are executed.

The general structure of the par statement is similar to that of the cont
statement and that of the seq statement. A par statement consists of a body
part that defines the overall behaviour of the mode. A par statement’s the
body part contains the mode definitions that are to be composed in parallel.
The body part is preceded by an optional on-entry block and an optional
invariant block, and is followed by an optional on-exit block and an optional
transition part (see Sections 4.4.3 and 4.4.2). The invariant and the transition
parts define the exit conditions that are checked during execution.
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Intuitive semantics: The activation of a parallel mode leads to the acti-
vation of all of the child modes. During its execution, the parallel mode is
responsible for checking the status of all of its contained modes. While it is
active, each invariant of a composite mode must hold, and each transition of
a composite mode ends the activity of the mode when it fires. Furthermore,
each mode includes access to an individual local clock that contains the time
elapsed since the mode’s activation. The value of the local clock can be ob-
tained using the duration operation. The execution of a parallel mode ends
either when a transition in the transition block fires, or when the execution
of all child modes is complete.

Listing 4.57: The par statement

par { 1
cont {
y_1.value

.05
y_2.value 0;

1
2.

until { // Transition
[x-1.value > 1.0] { } 7
[] m1l.receive(msgl) { }

cont {
y_1.value
y-2.value

2.0;
1.0;

until { // Transition

[x-1.value > 10.0] { } 15
[] m1l.receive { }
} 17
until { // Transition 19
[x.value > 11.0] { }
[] m1l.receive(msg2) { } 21

}

Syntactical structure (concrete syntax) 24.

ModeSpecification =  ( BasicMode | ComplexMode ) [ UntilBlock
ComplezMode ==  ( SeqKeyword | ParKeyword ) "{” { Declaration }
[ OnEntryBlock | | InvariantBlock |
{ ComplexModeOp } | OnEzitBlock |7}’

ParKeyword := Tpar”
SeqKeyword == "seq’
ComplexModeOp ::=  ModeSpecification | LabelStatement |
FunctionOrModelnstance
Declaration =  FunctionLocallnst

Par statements organize the execution order of cont statements (as well
as the execution order of included seq and par statements); cont tatements,
on the other hand, directly define the valuation and assessment of values
at ports. In contrast to par and seq statements, cont statements form the
fundamental leaves of a hierarchical mode structure.
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4.4.7  Sequential mode composition: the seq statement

The seq statement specifies the sequential composition of modes. A sequen-
tial composition can contain sequential modes, parallel modes and atomic
modes. When activated, a sequential composition leads to the sequential
execution of all of its composite (i.e. directly contained) modes.

The general structure of the seq statement is similar to that of the cont
statement and that of the par statement. It contains a body part that defines
the overall behaviour of the mode. The body party of the seq statement
contains the mode definitions that are to be composed. The body part is
preceded by an optional on-entry block and an optional invariant block, and
is followed by an optional on-exit block and an optional transition part.
The invariant and the transtion part define the exit conditions that must be
checked during execution.

Intuitive semantics: The activation of a sequential mode prompts the
activation of its first child mode. During its execution, the sequential mode
is responsible for scheduling the execution of the contained modes in their
sequential order. So, when the first child mode has finished, the second child
mode is activated; when the second mode has finished, the next child mode is
activated; and so on. When a mode is active, each of its composite invariants
must hold. Each transition of a composite mode, when fired, ends that
mode’s activity. Furthermore, each mode includes access to an individual
local clock, which returns the time elapsed since the mode’s activation. The
local clock’s value can be obtained via the duration operation. The execution
of a sequential mode ends either when a transition in the transition block fires,
or when the execution of the last child mode is complete.

The following example defines the sequential execution of two atomic
modes. Both modes are composed sequentially, using a sequential mode.

Listing 4.58: The seq statement

seq {
cont { 2
y_1.value:=1.0;
y_-2.value:=2.0; 4
until { // Transition 6
[x_1.value > 2.0] { }
[] m.1.receive() { } 8
cont { 10
y_1.value:=2.0;
y_2.value:=1.0; 12
until { // Transition 14

[x-1.value > 1.0] { }
[] m_.l.receive { } 10
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}
18
until { // Transition
[x-1.value > 12.0] { } 20
[] m.l.receive(msg2) { }
} 22

Seq statements organize the execution order of cont statements (including
the execution order of included seq and par statements); cont statements, on
the other hand, directly define the valuation and assessment of values at
ports.

Syntactical structure (concrete syntax) 25.

ModeSpecification =  ( BasicMode | ComplexMode ) [ UntilBlock
ComplexMode =  ( SeqKeyword | ParKeyword ) "{” { Declaration }
[ OnEntryBlock | [ InvariantBlock |
{ ComplexModeOp } [ OnEzitBlock |”}”

ParKeyword = ’par”
SeqKeyword = 7seq’
ComplezModeOp ::=  ModeSpecification | LabelStatement |
FunctionOrModelnstance
Declaration ::=  FunctionLocallnst

4.4.8 Reusable modes

It is possible to specify modes that can be referenced and parametrized;
such modes provide a higher degree of flexibility, which can prove useful.
Values, templates, ports and modes can all be used as mode parameters.
The definition of such modes is quite similar to the definition of TTCN-3
functions. In order to be able to use modes as passable parameters, so-
called mode types are required. Mode types define the signatures of modes;
thus they can be used to classify mode definitions that can referenced. Unlike
functions, parametrizable modes are not called in the sense of a function call,
but, rather, are inserted by means of a substitution mechanism at compile
time. The recursive application of parametrizable modes is thus not possible.

Mode types

Mode types are the set of identifiers of mode definitions with specific param-
eter lists and runs-on clauses. They denote modes that have a compatible
parameter list and compatible runs-on clauses.

Listing 4.59: Mode type definitions

// mode type with no parameters
type mode ModeTypeWithoutParameter (); 2
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// mode type with a runs on clause 4
type mode ModeTypeWithoutParameter () runs on Tester;

// mode type with a value parameter
type mode ModeTypeWithValueParameter(in float valueParam); 8

// mode type with a port parameter 10
type mode ModeTypeWithPortParameter (FloatStreamIn portParam);

12
// mode type with a mode parameter

type mode ModeTypeWithModeParameter (MyModeType modeParam ); 14
// mode type with multiple parameters 16
type mode ModeTypeWithValueParameter(in float targetVal,

in StreamPort p, 18

in MdoeType myMode);

Syntactical structure (concrete syntax) 26.

ModeType =  TypeDefKeyword ModeKeyword ModeTypeldentifier
"(” ModePar { 7,” ModePar } ”)” [ RunsOnSpecOrSelf ]
ModePar =  FormalValuePar | FormalTimerPar | FormalTemplatePar
| FormalPortPar | FormalModePar
ModeTypeldentifier =  Identifier
RunsOnSpecOrSelf =  RunsKeyword OnKeyword [ ComponentType | SelfOp |
ModeKeyword =  "mode”

Named mode definitions

Like functions and function calls, it is possible to give modes declared names;
with a declared name, a mode can be referenced from any context that allows
the explicit declaration of modes. A named mode definition allows the defi-
nition of reusable modes and, consequently, the referencing (and the use) of
the definitions from inside modes, functions or test cases. A mode that can
be referenced may be defined within a module; it can also have parameters
of arbitrary data types, port types, timers, templates, and mode types. List-
ing 4.60 shows the definition of named modes and Listing 4.61 shows their
use within a test case specification.

Listing 4.60: Named mode definitions

mode myMode_1 runs on Tester cont { 1
assert (x_1.value >= 500.0)
} 3
mode myMode_2(float valueParam, FloatStreamIn portParam) cont {
assert (portParam.value >= valueParam) 5
}

Listing 4.61: The application of named modes

‘testcase myTestcase () runs on Tester {
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par { 2
cont { y_1.value:= 100.0 }
myMode_1; 4
myMode_2(500.0, x_1);

} 6

}

When the named modes are used as parameters for test cases, functions,
or modes, the specification of a named and parametrizable mode must contain
reference to the mode type. The number, kind and sequence of parameters
used in the mode definition must conform to the referenced specification of
mode type.

Listing 4.62: Named modes with parameters

type mode MySimpleModeType() runs on Tester; 1
type mode MyParamModeType(in float val_1,
in float val_2 3
in ModeType assertion);
// reusable mode declaration 5
mode MySimpleModeType assert_mode() runs on Tester cont {
assert (x_1.value >= 500.0) 7
mode MyParamModeType stim_seq(in float val_1, 9
in float val_2 ,
in ModeType assertion) 11
runs on Tester par {
seq{ // perturbation sequence 13
cont { y_1l.value := val 1 }
until (duration >= 2.0) 15
cont { y_1.value := val .1l + duration / y_1.delta *x val_2 }
until (duration >= 5.0) 17
}
assertion (); 19
}
21
testcase myTestcase() runs on EngineTester {
// reusable mode application 23
stim_seq (1000.0, 10.0, assert_mode);
stim_seq (5000.0, 1.0, cont { 25
assert (x_1.value >= 0.0) }
E 27
}

Listing 4.62 illustrates the application of parametrizable reusable modes.
Lines 24 and 25 inside the test case definition show two references to a named
and parameterized mode definition. The first one sets the parameter values
for wal_1 to 1000.0 and the parameter for val_2 to 10.0, and a mode called
assert_mode is passed as a parameter to be applied within the stim_seq mode.
The next line shows a more or less similar application of stim_seq; in this
application, an inline mode declaration is passed as the mode parameter.

The behaviour of a named mode can be defined using the statements and
operations described in Sections 4.4.2 to 4.4.7. If a mode uses variables, con-
stants, timers and ports that are declared in the component type definition,
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the component type is selected by means of the runs-on clause in the mode
header. The one exception to this rule is: if all component-wide information
is used within, the mode is passed in as a parameter. A mode without a
runs-on clause shall never locally invoke functions, or modes with a runs-on
clause.

Syntactical structure (concrete syntax) 27.

NamedMode :=  ModeKeyword Modeldentifier | ModeTypeldentifier ]
"(” ModePar { 7,” ModePar } ”)” [ RunsOnSpecOrSelf ]
ModeSpecification
ModePar ==  FormalValuePar | FormalTimerPar | FormalTemplatePar
| FormalPortPar | FormalModePar
ModeTypeldentifier =  Identifier
Modeldentifier ::=  Identifier
ModeKeyword = ”"mode”

ModeSpecification =  ( BasicMode | ComplexMode ) [ UntilBlock






CHAPTER 5

OPERATIONAL INTEGRATION WITH TTCN-3

The integration of new concepts into an existing language must be carefully
planned, specified and documented. Many modern programming languages
are specified in an informal way or via reference implementation; TTCN-3 ,
in contrast, is documented formally with respect to both its syntactical struc-
ture and its operational semantics. The syntactical and semantic integration
of the concepts specified in Section 3 with TTCN-3 will, therefore, partially
make use of these specifications.

While the syntactical structure of TTCN-3 is specified in [35] via the
Extended Backus Naur Form (EBNF) [71, 64], so-called flow graphs are used
for the operational semantics [36]. EBNF is widely accepted as a formal-
ism that denotes the syntax of textual language; therefore, it will be reused
in this thesis for the purpose of describing the syntactical structures of the
language extension, as well as for their integration with Standard TTCN-3.
Flow graphs are not very popular for this purpose, nor do they provide a
compact representation. Abstract state machines (ASMs) [51, 14] are, in
contrast, widely accepted; they allow algorithms to be described in a clear,
purely mathematical form. ASMs were originally introduced in order to meet
the requirements of complexity theory. Their applicability for formal specifi-
cation in multiple fields has been demonstrated in various publications [13].

The following sections describe the operational semantics of the
TTCN-3 embedded concepts introduced in Section 4. The chapters also
highlight how the new concepts integrate with the already-existing TTCN-3
concepts documented in [35, 37, 36]. The general approach — that is to
say, the ASM framework and the definition and redefinition of consecutive
subsets of the language — is inspired by [15].

5.1 ABSTRACT STATE MACHINES

ASM specifications have already been successfully applied to the seman-
tics definition for various programming languages. Examples include Prolog,
C++ [127], and Java [107]. Furthermore, the complete dynamic semantics
of the ITU standard SDL 2000 were described by means of ASMs [41].

87
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An abstract state machine performs state transitions with algebras. Each
algebra is represented by a state. An ASM program is defined by means of
guarded function updates, so-called rules. These rules are nested conditional
clauses of the form

if Condition then Updates
else Updates
end if

Each rule specifies a set of function updates, known as a "block”. When a
set of rules fires, a state transition is performed in an ASM with function up-
dates f(ty,...,t,) := to, where t; are terms. Each individual function update
of each block is executed simultaneously.

ASMs are multi-sorted and based on the notion of universes. The math-
ematical universes of Boolean, Integer, Real, etc., as well as the standard al-
gebraic operations, are considered available. Furthermore, a set of high-level
constructs eases the specification process by providing often-used, standard-
ized functionalities. A universe can be dynamically extended with individual
entities by

extend Universe by v
Rule
end extend

where v is a variable that is bound by the extend constructor to the
element that has been added to Universe. The ranges over constructor si-
multaneously defines the instantiation of a rule for each element in Universe.

var v rangesover Universe
Rule

end var

The constructor basically spawns n rules so that v iterates overall values
in Universe and n is the number of elements in Universe.

Sequences of entities are also introduced. A sequence is denoted with
(e9,e1) € Universe*. The concatenation of sequences is simply expressed
by the row position of two single sequences. Thus (e3)(ea, €1) +— (e3, €2, €1).
The length of a sequence is defined by len({f., fo_1, .-, f1)) = n. On this
basis, the most common stack (lifo) functions are defined as follows,
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push : Universe x Universe® — Universe®,
with push(ey, ()) — (e1)
and push(eni1, (€ny€n—1,..,€1)) > (€nt1){€n, .., €1) > (€nt1,En,..,€1)
top : Universe® — Universe,
with top({en, €n_1,..,€1)) — €n
and top(()) — undef
pop : Universe® — Universe™,
with pop({en, €n_1,..,€1)) > (€n_1,..,€1)
and pop((}) + {

and the most common queue (fifo) functions are defined as follows

enqueue : Universe® x Universe — Universe®,

with enqueue(eq, () — (e1)

with enqueue(eni1, (€1, .., €n)) > (€nt1){(€1, .., €n) > (€1, .., €n, Ent1).
dequeue : Universe® — Universe®,

with dequeue((eq, ea, .., €,)) — (€2, .., €,)

and dequeue(()) — ()

5.2 APPROACH TO OPERATIONAL SEMANTICS DESCRIPTION

TTCN-3 is a procedural, statement-based testing language. The testing be-
haviour is defined by algorithms, and these algorithms interact with the en-
vironment by assigning messages to ports and evaluating incoming messages
from ports. Without losing generality, we can consider a T T'CN-3 program
to consist of definitions (i.e. def € DEF'), statements (i.e. stmt € STMT)
and expressions (i.e. exp € EX P). Formally speaking, we define

TTCN Prog € P(DEF USTMT U EXP)

The whole semantics is defined as a set of subsequent extensions; this de-
notes the operational semantics cleanly and clearly. This kind of step-by-step
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approach provides iterative language refinements that begin from an imper-
ative core. The imperative core defines the basic and, so far, unspecialized
core of the language. This core has a lot in common with other widely-used
imperative languages such as C, C# and Java.

The imperative core TT'C Nz of TTCN-3 describes the basic imperative
language features, i.e., the statement execution, expression evaluation and
control structures of TTCN-3. On the basis of that core, subsequent language
refinements are specified. Each of these refinements introduces new language
constructs and thus improves the original semantics.

e TT'C'N¢ is based on T'T'C' Nz and specifies TTCN-3 with features like
test case execution, components and function calls.

e TTCN7 is based on TTC N¢ and specifies TTCN-3 with features like
sending and receiving messages, alt statements, altsteps and timers.

e TTCNp is based on TTC N7 and specifies TTCN-3 embedded with
features like global time and sampling.

e TTCNg¢ is based on TTCN¢ and specifies TTCN-3 embedded with

modes.

TTCNz, TTC N and especially TT'C' Nt cover the existing T'T'CN-3 stan-
dard; TTCNa and TTC Ng, on the other hand, explicitly introduce the con-
cepts of TTCN-3 embedded. Because the purpose of this thesis is to present
TTCN-3 embedded, the semantics are stripped down to fully define TTCNa
and TT'C'Ng. To provide an understandable basis for TT'C' N and TTC Ng,
TTCNz, TTCNe and TTC Ny are presented partially (see Section 5.4).

The interaction between the T'TCN-3 abstract test execution environment
(TE) and its environment is specified by means of standardized interfaces.
The semantics address these standard interfaces, thereby restricting their
interactions with the environment, in particular the Test Runtime Interface
(TRI). The interactions with the Test Control Interface (TCI) as well as the
Encoding/Decoding of messages are not, considered.

Finally, the original TTCN-3 operational semantics [36] make intensive
use of so-called statement replacements. Assuming that a set of TTCN-3
statements of a certain kind can be completely replaced by a combination
of different TTCN-3 statements, the original operational semantics focus on
TTCN-3 constructs which cannot be replaced. In a similar manner, the ASM

specification only provides formalisms for non-replaceable
TTCN-3 embedded statements.
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5.3 THE BASIC ASM FRAMEWORK

A run of a TTCN-3 program generally consists of statement execution and
expression evaluation. Expression evaluation is used to calculate values and
statement execution either controls the program flow, initiates the calculation
of values or defines the interaction with the environment. Each run of a
TTCN-3 program or TTCN-3 embedded program can be seen as a walk
through an annotated Abstract Syntax Tree (AST). The grammar below
exemplifies the overall set up of the AST and shows the statements and
expressions used in TT'C'Nz. The term finished is an auxiliary construct
and is used to denote the end of a program or of a statement block.

Abstract syntax 1: Extracts from the TTCN-3 basic behavioural constructs.

EXP == LIT|VAR|CONST | UNOP|BOP | OpCall
STMT = Assignment| LogStatement | Loop Construct
| ConditionalConstruct | GotoStatement
| StatementBlock
PHRASE = EXP|STMT |’finished”

In the following, the abstract syntax is considered complete with respect
to the behavioural entities (i.e. statements and expressions) of TTCN-3 and
TTCN-3 embedded. Definitions, such as type definitions, variable definitions,
template definitions and function definitions, are considered to be known
and to have already been checked for validity and structural correctness.
The abstract test execution environment (TE) is aware of these definitions
and it provides the means to discover and use the definitions whenever they
are needed. Furthermore, the definitions are considered to be organized in
optimal execution order. The TE, in theory, provides enough memory and
a processor that is able to process a finite number of ordinary statements
within a given, arbitrary, small timebound A.

We use the same identifiers within the ASM universes, the abstract syntax
and the concrete syntax; this allows exchange between all three formalisms.
Identifiers starting with a capital letter, those that may be written in camel-
case notation (e.g. Assignment, AltConstuct, etc.), are directly connected
to the concrete syntax. Identifiers that are written completely in capital
letters (e.g. PHRASE, EXP, STMT, etc.) are used to sum up constructs
that are not distinguished in regards to their behavioural semantics; these
identifiers generally represent more abstract nodes in the AST. Identifiers in
small letters represent instances of nodes or elements of AST universes — for
example, phrase € PHRASE.

Operational progress in TTCN-3 is achieved by means of a program
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counter that points to the individual nodes of an AST. Following the ex-
ample of [15], we define the operational core of the TTCN-3 language using
such a program counter. The main required entities are representations for
components and so-called agents. Components with ¢ € Component describe
the variety of T'TCN-3 components. The following definition of the opera-
tional semantics of TTCN-3 embedded uses distributed ASMs. These ASMs
consist of a set of autonomously operating agents a € AGENT. An agent is
the abstract executer of a TTCN-3 component. The 0-ary dynamic function
Self is interpreted by each agent a as a. If the context provides us with a
clear interpretation of Self, we denotationally suppress Self.

Let AGENT be the abstract set of agents a that move over the hierar-
chical syntax structure of a TTCN-3 program. An agent is associated with
exactly one T'T'CN-3 component at any given time, and current : AGENT —
Component is a dynamic function that indicates the component under exe-
cution. Because a component is considered the carrier of a TT'CN-3 program
execution, each ¢ € Component has a program pointer which designates the
next phrase € PHRASFE to be executed. A phrase defines the occurrence
of a certain programming construct, and all constructs are subject to the
TTCN-3 ASM semantics. The abstract function task triggers an abstract
program counter; the program counter allows the current phrase to execute
until finished is reached.

task : Component - PHRASFE

The program counter task will update according the TTCN-3 control flow.
The execution of expressions, subexpressions, statements and sub-statements
is defined by the static functions fst and nat.

fst,nxt : PHRASE — PHRASE

The definition of each of these functions depends upon the respective
element phrase € PHRASE; the definition is provided recursively during
the refinement of the language elements. The formal function loc describes
the relation between the variables and their values:

loc : Component — Value® with T'e T

The access to intermediate values — values not assigned to a variable but
rather used during expression evaluation, for operand handling, for parameter
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passing and for return-value passing, as well as for expressions in conditional
statements — is formalized by the function wval.

val : Component — Value® with T'e T

The universe Value® contains all kinds of TTCN-3 values of a certain
type T € T = {integer, float,boolean, ..., } so that Value/"** denotes all
TTCN-3 float values, Value™*®" denotes all TTCN-3 integer values, and
so on and so forth. For simplicity’s sake, the TT'CN-3 Boolean values are
associated with the ASM values true and false.

The macro is reflects the current execution status within the ASM se-
mantic. It also controls the execution of ASM rules.

task is phrase = task = phrase A phrase € PHRASE

TTCN-3 and TTCN-3 embedded provide statements contained within
other statements, in the form of statement blocks (e.g. alt statements or
modes). For the purposes of control flow, it is necessary to be able to refer
from such "contained” statements to their enclosing block statements during
runtime. This system of referral allows the operand to manifest abrupt breaks
and other exit behaviour. The function up provides the TE with this feature.

up: PHRASE — PHRASFE

The function up takes an arbitrary phrase as a parameter and always
returns the enclosing phrase. This hierarchy, which is used to resolve the
containment relationship, is defined in the abstract syntax tree.

5.4 EXTRACTS FROM TTC'Nz, TTCN¢, AND TTC Ny
This section provides a summary of the relevant signatures and rules that
define the behaviour of TT'C' Nz, TTCNg¢, and TTC Nr.

5.4.1 Component signature

A TTCN-3 component has ports, a status and a type. It provides value-of-
type verdicts that indicate the test verdict. Formally, these properties are
indicated using the following functions:
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ports : Component — Port

status : Component — {running, inactive, stopped, killed}
type : Component — {control, mte, tc}

alive : Component — {true, false}

verdict : Component — {none, pass, inconclusive, error, fail}

The function ports returns the set of ports associated with an individual
component. The function status returns the processing state of a component.
The label running indicates that the component is active and processing a
TTCN-3 program; the label inactive indicates a pause of execution; the label
stopped indicates that the component has finally stopped the execution; and
the label killed indicates a component that has been killed. The function
type returns either control (for a component that started to execute the
control part of a module), mtc (for the main test component) or tc (for an
arbitrary test component). The function alive returns true if the component
is flagged as "alive”; otherwise, it returns false. And, finally, the function
verdict returns the actual verdict value for a component.

5.4.2 Message signature

TTCN-3 supports message-based and procedure-based unicast, multicast and
broadcast communication. Technically speaking, a message is a piece of
information that has been prepared for transportation between two enti-
ties. A message may be encoded and enriched with transport-related in-
formation (sender, receiver, timing information, etc.). A TTCN-3 message
m € Message is a structure that encapsulates information about the trans-
mitted value and its nature, and the sender and receiver of the message. In
TTCN-3, both sender and receiver of messages are components. The ASM
signatures below define the functions that address the individual elements of
the message structure.

type : Message — T
sender : Message — Component
recipient : Message — Component
val : Message — Value' with t = type(m) €T

Furthermore, TTCN-3 provides a mechanism for matching messages against
a pattern expression. The pattern expression is called a template and it char-
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acterizes messages according to their content and structure. Without losing
generality, a template can be considered as an expression exp € EXP. A
function map allows to check whether or not a message matches a template.

match : Message x EXP — Value?°en

The function returns "true” if the template matches the message; other-
wise, it returns "false”.

5.4.3 Port signature

TTCN-3 uses ports to communicate with the external environment (i.e. the
SUT ) and to communicate between TTCN-3 components. Message ports are
used for non-blocking (asynchronous), message-based communication; proce-
dure ports, on the other hand, are used for classical client-server communi-
cation. The signatures for TTCN-3 ports are defined below.

kind : Port — {message, procedure}
direction : Port — {in,out,inout}
msgs : Port — (Message)*
types : Port — P(T)
owner : Port — Component
status : Port — {started, halted, stopped}

The function kind is used to refer to the different communication char-
acteristics of a port. Furthermore, each port has a direction that specifies
the communication direction, namely in, out, and tnout. The function msgs
obtains the port queues (i.e. the chronologically-sorted sequence of received
messages) and the function types returns the data types that can be com-
municated. Finally, the function owner returns the component that holds a
given port and the function status returns the execution status of port.

In TTCN-3, ports can be mapped or connected to other ports. This forms
the base communication architecture of the test system setup and defines the
general conditions for the flow of messages between components. TTCN-3
allows one or more connections and it distinguishes port connections between
test components and the system under tests from port connections between
test components. The first kind of connection is called port "mapping”; it
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can be dynamically defined by means of the map statement. The second
kind of connection is called “connection”; it can be dynamically defined via
the connect statement. These operational semantics do not explicitly define
meaning for the statements that directly handle the mapping and connec-
tion of ports; rather, these operational semantics refer to the mapping and
connection information. Thus, the function

mapsto : Port — Port x U{undef}

returns the set of port that contains all ports mapped or connected to
a particular port. When a port is not mapped or connected, the function
returns undef.

5.4.4 Timer signature

A TTCN-3 timer is a counter incremented according to current time progress.
Such a timer can be configured with a timeout value. If a timer reaches its
timeout value, the timer is considered to have timed out, i.e., it changes from
the status running to the status timedout. In general, a TTCN-3 timer
has the status of running, inactive, or expired. The status of a timer is
modelled using the function status. The status running corresponds to a
running timer — that is to say, to a timer that counts. The status inactive
corresponds to a stopped timer: to a timer that has not been started or that
has been stopped using the function stop.

float

start : Timer x Value —

stop : Timer —

status : Timer — {running, inactive, expired}

val : Timer — Valuef**

timeoutval : Timer — Valuefl*®

The function start sets the timer’s timeout value and starts the timer.
The status of the timer is set to running. The function stop stops a timer.
The respective status changes to inactive. The function status returns the
current status of a timer, the function val returns the current timer value
and the function timoutval the value, at which the timer will time out, or
has timed out.
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5.4.5 Snapshots

The assessment of ports in TT'CN-3 is organized according to so-called snap-
shot semantics. Snapshot semantics enforce that the relevant test system
state is frozen when an assessment starts. This kind of snapshot guarantees
a consistent view on the test system input during an individual assessment
step. A snapshot covers all relevant stopped test components, all relevant
timeout events and the top messages (as well as calls, replies and exceptions,
in the case of procedure-based communication) in the relevant incoming port
queues. To access the state of ports and timers of a snapshot, primed versions
of the functions value, status and msgs are introduced.

val' : Timer — Valuef'*™

status’ : Timer — {running, inactive, expired}

msgs' : Port — Message*

The functions val’, status’ and msgs’ can be used similarly to the non-
primed version of the functions. The difference is that, where val, status and
msgs return the actual values or messages, val’, status’ and msgs’ return
the state of the timers and queues at the last snapshot.

5.4.6  Statements and expression execution

The control flow in TTCN-3 and TTCN-3 embedded is determined by state-
ments. Each statement in TTCN-3 occurs in a statement block, and a state-
ment block itself is a statement. The behavioural semantics of an empty
statement block are defined by fst(statement Block) = nxt(statementBlock).
The dynamics of a statement block with one or more statements is defined
as follows:

let statementBlock = (stmty, stmta, ..., stmt,) in
fst(statementBlock) = fst(stmty)
nxt(stmt;) = fst(stmti11), 0 <i<n

nxt(stmt,) = nxt(statement Block)
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Expressions in TTCN-3 are either literals, variables or constants, and op-
erators can have one or more operands or function calls. An expression may
be composed of sub-expressions. The order of expression evaluation is given
by the recursive definition of the static functions fst and nxt. For expressions
without any sub-expression, we define fst(exp) = exp. Any other expres-
sion model can be handled through the generalization of expressions with
an arbitrary number of sub-expressions to fe,(exp1, exps, ..., exp,), where
fexp Tepresents the n-ary expression constructor for the expression exp and
exps, exps, ..., exp, the respective sub-expressions. In this case, the control
flow is determined by the following definitions:

let exp = (expy, exps, .., exp,) in

fst(exp) = fst(expr)
nxt(exp;) = fst(expip1),0 <i<n

nxt(exp,) = exp

In the simple case of an unconditioned execution of atomic statements
and expressions, TTCN-3 control flow is defined with the following ASM
macro.

proceed = task := nzt(task)

5.4.7 Further refinements to support TTC Ne and TTC N+

In contrast to TTCNz, TTCNg and TTC N+ support parallel test compo-
nents and user-defined functions with recursions. To support these and other
features in TT'C' Ny and TTC N7, the basic macros and functions that have
been defined in Section 5.3 need to be redefined.

Parallel test components are supported by multiple ASM agents. As has
already been defined, an agent a € AGENT is associated with exactly one
TTCN-3 component at any given time. The function Self is interpreted by
each agent a as a. If the context provides a clear interpretation of Self,
Self is denotationally suppressed. Each ¢ € Component has an agent a and
a program pointer, which signals the the next phrase € PHRASE to be
executed.

The program pointer and the functions loc and val must have a stack-alike
functionality, so that they can support nested scope units, due to nested and
potentially recursive function calls or altstep calls. To this end, the signatures
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of these functions are refined such that they provide sequences of dynamic
functions as return values.

taske : Component — PHRASE”™
loce : Component — (VAR — V)*
vale : Component — (EXP — V)*

For simplicity’s sake, the term frames is used to bundle together the
functions needed for the recursive calling. Thus, for every ¢ € Component
let

frames(c) = (taske(c),loce(c), vale(c))

In the case of a TTCN-3 function call, the sequences in frames(c) are
enlarged with further dynamic functions, now representing either the program
counter, the local environment, or the temporary values of the function’s
scope. When a TTCN-3 function is left, the original state — that is to say,
the state before the function was called — can be restored by removing the
recently-added dynamic functions from the list.

task = top(taske(Sel f))
loc = top(loce(Self))
val = top(vale(Self))

TTC Nz and the basic framework do not provide support for nested scopes
and recursions. As shown above, however, the functions task, loc and val
defined in the previous sections can be mapped to the functions taske(Self),
loce(Self) and wvale(Self) in TTCNg by associating Self and by taking
the topmost elements. This ensures that the rules from T7TCNz can be
transferred directly to TT'C' Nz. For reasons of simplicity, Sel f is notationally
suppressed by writing taske, loce and vale instead of taske(Sel f), loce(Self)
and vale(Self). Finally, the terms task, loc and val are used like they
are used in TT'C'Nz, except when the stack functionality must explicitly be
mentioned.

Introducing parallel components implicitly requires the management of
the status of components; therefore, the macro is is refined.

task is phrase =
task = phrase A phrase € PHRASE A status ¢ {inactive, stopped, killed}
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Unless stated otherwise, rules are executed only if the execution status is
not tnactive, stopped, or killed.

5.5 TTCNp: TTCN-3 WITH STREAMS, GLOBAL TIME AND SAMPLING

TTCNx describes the operational semantics of TT'CN-3 with streams, global
time and sampling. Whereas the previous specifications describe the be-
haviour of standard TTCN-3, this section introduces new concepts that have
been sketched in 3 and structurally defined in Section 4.1, Section 4.2, and
Section 4.3.

5.5.1 Refinement of statements and expression universes

TTCNyx includes statements and expressions that can be used to control
timing issues and to handle messages in stream ports. These statements and
expressions are introduced in Section 4.1 and Section 4.2. To cover these
statements within the ASM context, the universes EX P and STMT must
be extended in the following way.

Abstract syntax 2: TTCNa basic behavioural constructs.

EXPn ==  EXP¢|StreamDataOps | StreamNavigationOps
| StreamFvalOps
STMTA == STMT.| WaitStatement
StreamDataOps = StreamValueOp | Stream TimestampOp
| StreamDeltaOp
StreamNavigationOps = StreamPrevOp | StreamAtOp
[ "Dot” StreamDataOp ]
StreamFEvalOps = StreamHistoryOp

5.5.2 TTCNA time and sampling signatures

In standard TTCN-3, time progress itself has only implicit semantics. It
is possible to measure time progress with the timer operations and thus
change the control flow of a TTCN-3 program as a function of time. In
TTCNa, time and time progress become a more central concept. TTCNa
is a synchronous language. That means that the statement execution and
especially the interaction through ports are synchronized on the basis of a
system-wide valid sampling rate (see sampling in Sections 3.3 and 3.3.2).
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Time is referred to by the functions time, tsampie; tagmpie-

t :— Valuefo®

tsample == Valuel*

t — Valuel

sample

The function ¢ provides access to the exact time that has passed since
the beginning of a test case and t,4mpie represents the time point of the next
sample step. The function is initialised at the beginning of a test case with
tsample = t + A and updated for every new sample step. Its former value is
preserved by t{,.. ;.. The function A represents the minimum base sampling
rate of the test execution environment. It is set at the beginning of the test
execution and remains fixed during the complete test execution.

While t is considered to be updated automatically, the other functions
represent time with respect to sampling. They are updated by a so-called
test execution controller. The test execution controller is precisely specified
in one of the next sections.

5.5.8 TTCNa stream port signature

Stream ports differs from ordinary TTCN-3 message ports and procedure
ports in that they provide a sampled access to the actual value and (theo-
retically, at least) also provide access to the complete history of a continuous
signal. The underlying data structure, however, is quite similar to the data
structure defined for TTCN-3 message and procedure ports. Most of the
functions that have been defined for message and procedure ports (see Sec-
tion 5.4.3) are thus adapted for stream ports.

typen : Porta — P(T)
msgsa : Porta — Message®
msgs : Porta — Message”*

directionp : Porta — {in,out,inout}

with

Porta =Portr V Port.
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There are, however, some slight differences. A stream port has a distinct
data type; hence, the function type returns a set with one element if it is
applied to a stream port. Furthermore, the functions msgs and msgs’ return
a sequence of messages — for incoming as well as for outgoing stream ports.
Last but not least, a newly-introduced function delta enables access to the
currently-used sampling time of that stream port.

deltan : Port®ree™ — Valuelo

Finally, the function kind, which helps to distinguish between the different
kinds of ports, must also be refined in order to address stream ports.

kindp : Porta — {message, procedure, stream?}

The main differences between stream ports and message or procedure
ports are twofold. The first difference regards the sampling: for each sam-
ple step, there is a message that is stored in the port’s message sequence.
The second difference regards the ability to randomly access all messages
that have been sent or received at a port. The latter feature is realized by
introducing the two functions [| and @ .

] : Message® x V-— Message, with

(M ooy Mg, M) 1] = My

@ : Message® x V — Message, with
(My, .., Mg, my)Qt — My, with
t € [0..tsampie) Az € [0..n], where
Vi € [0..n], (ts(m;) —t) < (ts(mg) —1t) — ts(m;) >t

For a more detailed explanation of these functions, please refer to Sec-
tion 3.3.1.
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5.5.4 Further TTCNa signatures

Components in TT'C' Na have quite similar signatures to those of the pre-
ceding definitions. The only change is that function ports, which returns
all ports that are available at a component (see Section 5.4.3), is refined to
return not only message and procedure ports, but to additionally include
stream ports.

portsa : Componenta — Porta

Furthermore, in TTC N, there is another status called wast. This status
is used to suspend the actions of a component, causing it to wait for the next
sampling step. It is usually used to suspend a component after the successful
completion of all necessary tasks in a particular sampling step.

statusp : Componentan — {running, inactive, stopped, killed}

Finally, messages have timestamps. These timestamps are stored with the
message and they contain both the arrival and sending times of the individual
message. The timestamp can be accessed by means of the ts function.

tsa : Messagea — Value/'*

5.5.5 TTCNA sampling controller

The sampling controller is part of the TE structure. It is responsible for pro-
viding the overall sampling and controlling the timing of the test execution.
The sampling controller controls time progress, calculates the next sample
time, schedules the update of the input and output ports and triggers the
resumption of execution for components that have been suspended via the
status wait.

The functions ¢, tsampie; togmpe and A are dynamically updated. ¢ is con-
sidered to receive automated updates from clcky; the updates of the functions

/
tsample and €, ., however, are defined below.

Rule 1: ASM transition rule for the Sampling Controller.

if ¢ > tsample then > (sampling controller)
75i9(1mple = tsample
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tsample = tsample +A
for all ¢ € Component do
updateStreams(c)
takeSnapshot(c)
status(c) := running
end for
end if

The function ¢sgmpre represents the time point of the next sample step.
The function is initialised at the beginning of a test case with ¢spe =t + A
and is updated with each new sample step. Its former value is preserved by

tample- Lhe function A represents the minimum base sampling rate of the

test execution environment. It is set at the beginning of test execution and
remains fixed throughout the complete test execution.

The macro takeSnaphot describes the actions undertaken to provide a
snapshot for TTCN-3 timers, as well as those used for message and procedure
ports. A snapshot is local to a component; it stores the actual status of each
port available at the component, for each timer declared in the component.

takeSnapshot(c) =
for all p € ports(c) do
if status(p) = started then
msgs'(p) = msgs(p)
end if
end for
for all t € timer(c) do
if status(t) = running then
status'(t) := status(t)
val'(t) := val(t)
end if
end for

The macro updateStreams iterates over components and ports and is
responsible for updating the values at ports. When the individual duration
of the port’s sampling step has expired, the port’s message lists and the
external environment are updated with the port’s current values. Please
note that the term wal(p) is the value currently associated to a port by
means of an assignment in a TTCN-3 program or, coming from the SUT, via
triGetGetStream Value.
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updateStreams(c) =
for all p € ports(c) do
if status(p) = started A kind(p) = stream A stepExpired(p) then
extend M by m
value(m) := val(p)
ts(m) = tlsample
push(m, msgs(p))
delta(p) := ts(msgs(port)[0]) — ts(msgs(port)[1])
end extend
end if

end for

A port’s sample step has expired when the actual step time is greater
than or equal to the step time of the port.

stepExpired(p) = tsample > ts(p) + delta(p)

5.5.6 TTCNA time control

This section defines both the operational semantics for the wait statement
and the now expression. Both constructs have been informally specified in
Section 4.1.

TTCNA wait statement

The wait statement suspends the execution of a component until a given
time.

Abstract syntax 3: The wait statement.

WaitStatement = Twait” EXP

let wait = (wait, exp) in
fst(waitStatement) = fst(exp)

nxt(exp) = waitStatement

The first step of the execution of the wait statement occurs, when the
TE evaluates the wait expression and calculates how long the wait statement
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should hold. Once its endpoint has been determined, the status of the com-
ponent is set to wait. The TE repeats this rule for each sampling step, as
long as the end of the waiting period is reached. Then, the status of the
component is changed back to the status running and the TE executes the
next statement.

Rule 2: ASM transition rule for the wait statement.

if task is waitStatement then > (wait statement)
if val(exp) <t 1. N status(Self) = running then
verdict(Self) := error
proceed
end if
if val(exp) > t,,,,,;. then
status(Self) = wait
else
status(Self) := running
proceed
end if
end if

If the end of the waiting period has already been reached before the wait
statement is executed, the error verdict is set.

TTCNp now operation

The now operation returns the start time of the current sampling step.

Abstract syntax 4: The now operation.

nowOperation = ’now

Rule 3: ASM transition rule for the now operation.

if task is nowOperation then > (now operation)
val(nowOperation) ==t .
proceed

end if
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5.5.7 TTCNu stream-data operations

The main purpose of stream-data operations is to read and modify the values
and the properties of a stream port.

Abstract syntax 5: Stream-data operations.

StreamDataOp == StreamValueOp | StreamTimestampOp | StreamDeltaOp
StreamValueOp ==  ’value” VAR

StreamTimestampOp =  “timestamp” VAR
StreamDeltaOp =  ’delta” VAR

let streamValueOp = (value, var) in

fst(streamValueOp) = streamV alueOp

let streamDeltaOp = (delta, var) in
fst(streamDeltaOp) = streamDeltaOp

let streamValueOp = (timstamp, var) in

fst(streamTimestampOp) = streamTimestampOp

The execution of the stream-value operation begins with a lookup of the
port that is being referenced by the port variable. Afterwards, the val func-
tion of the stream-value operation is set to the message value of the referenced
port (respecting sampling). Thus is the returned message value measured to
the beginning of the actual sampling step.

Rule 4: ASM transition rule for the stream-value operation.

if task is streamV alueOperation then > (stream-value operation)
val(streamV alueOperation) := value(top(msgs' (port)))
where port = val(var)

end if

The execution of the stream timestamp and the stream delta operation
is quite similar. Both start with the lookup of the port. When the port is
retrieved, the val function is set according to the kind of operation. In the
case of the value operation, it is set to the timestamp of the current sample
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step’s message,

Rule 5: ASM transition rule for the timestamp operation.

if task is streamTimestampOperation then > (timestamp operation)
val(streamTimestampOperation) = ts(top(msgs' (port)))
where port = val(var)

end if

and, in the case of the delta operation, it is set to the size of the actual
sampling step.

Rule 6: ASM transition rule for the delta operation.

if task is streamDeltaOperation then > (delta operation)
val(streamDeltaOperation) := delta(port)
where port = val(var)

end if

The value operation and delta operation, additionally, are allowed to ap-
pear on the left side of an assignment.

Abstract syntax 6: Assignment.

Assignment = Tassign” LeftSide EXP
LeftSide == VAR | StreamValueOperation | StreamDeltaOperation

In this case, they are treated similarly to the way in which ordinary
variables are treated. The expression values of the right side of the assignment
are assigned to the properties of the stream port (which are characterized by
the stream-data operation). In the case of the value operation, the value for
the message that is to be sent at the next sample step is set. In the case of
the delta operation, the step size of the sampling can be changed for the port
referenced by the stream-data operation.

Rule 7:  ASM transition rule for assignments (refines Rule 31).

if task is assignment then > (assignment)
if leftSide is var then
loc(var) := val(exp)
end if
if leftSide is streamV alueOp then
val(port) := val(exp)
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where port = val(var)

end if

if leftSide is streamDeltaOp then
delta(port) := val(exp)
where port = val(var)

end if

proceed

end if

5.5.8 TTCNa stream-navigation operations

Stream-navigation operations are used to organize the random access to
stream port values and properties. They must, therefore, necessarily be com-
bined with a stream-data operation.

Abstract syntax 7: Stream-navigation operations.

StreamNavigationOp ::=  ( StreamPrevOp | StreamAtOp ) StreamDataOp
StreamPrevOp =  "prev’ VAR
StreamAtOp = "at” VAR

Because the use of the stream-navigation operation has an impact on the
meaning of the associated stream-data operation, the semantics of both need
to be defined in conjunction.

let prevOp = (prev, var, exp, streamDataOp) in
fst(prevOp) = fst(exp)
nxt(exp) = prevOp

The execution of a prev operation starts with the evaluation of the index
expression. If the index expression outnumbers the messages available at the
port, it is set automatically to the oldest value in the message list.

Rule 8: ASM transition rule for the prev operation.

if task is prevOp then > (prev operation)
if val(exp) > |msgs(p)| then
val(exp) = |msgs(p)
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end if
if streamDataOp is valueOp then

val(prevOp) := (msgs(p))[val(exp)])
else if streamDataOp is timestampOp then

val(prevOp) = ts((msgs(p) [ (msgs(p))| — val(exp)]))
else if streamDataOp is deltaOp then
val(prevOp) :=
ts((msgs(p))[|(msgs(p))| — val(exp)]))—

ts((msgs(p))[|(msgs(p))| — val(exp)] + 1))
end if

end if
where p := val(var)

In case the prev operation is associated with the value operation, it re-
trieves the message with the index value val(exp) and sets the val function
for the complete construct to the value of the retrieved message. In the case
that the prev operation is associated with the timestamp operation, it does
the same with the timestamp of that message. In the case of an associa-
tion with a delta operation, it calculates the respective distance between the
message referenced by the index and its predecessor.

let atOp = (at, var, exp, streamDataOps) in

fst(atOp) = fst(exp)
nxt(exp) = atOp
nxt(atOp) = streamDataOps

The execution of the at operation also starts with the evaluation of the
index expression. The main difference lies in the fact that the index expres-
sion addresses the timestamp value of a message in the message list of a port.
If the index expression outnumbers the timestamp of the available messages,
i.e. the index expression is larger than the time of the actual sample step,
or smaller than the timestamp of the first message available, an error verdict
occurs. In either case, the message with the timestamp nearest to value of
the index value will be used for further processing.

Rule 9: ASM transition rule for the at operation.

if task is atOp then > (at operation)
if val(exp) >t then

sample

verdict(Self) := error
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val(exp) = ts(hd(p))
end if
if val(exp) < ts((msgs(p))[|(msgs(port))|]) then
verdict(Self) := error
val(ezp) = ts((msgs(port))||(msgs(port)))
end if
if streamDataOp is valueOp then
val(atOp) := (msgs(p))Q(val(exp)))
else if streamDataOp is timestampOp then
val(atOp) := ts((msgs(p))Q(val(exp)))
else if streamDataOp is deltaOp then
val(atOp) :=
ts(msgs(port)Q(val(exp)))—
ts(pred(msgs(port)Q(val(exp))))
end if
end if
where p = val(var)

In any case, the val function of the at operation is set to return the values
and properties of the stream content, according to the associated stream value
operation. The main difference to the prev operation lies in the retrieval of
the messages subject to evaluation. The TTCN-35 at operation thus makes
intensive use of the function @ as defined in section 3.3.1 and refined in
section 5.5.3.

5.5.9 TTCNa history operation

The history operation is used to retrieve and evaluate a larger set of messages
at a stream.

Abstract syntax 8: History operation.

StreamHistoryOp =  “history” PortVar Ezp Exp

The history operation returns a list of a stream’s messages. The messages
on this list are characterized by their upper and lower temporal bound. The
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execution of the history operation starts with the calculation of the bounds.

let streamHistoryOp = (history, var, exp;, exps) in
fst(streamHistoryOp) = fst(expr)
nxt(exp,) = fst(exp, + 1)
nxt(exps) = streamHistoryOp

If the lower bound exceeds the timestamp of the first message available
at a port, or if the upper bound exceeds the time of the current sample step,
the index values are adjusted so that they point to the most suitable of the
messages available. In both cases, an error verdict is set. The error verdict
happens as well when the lower bound exceeds the upper bound. In this case,
the history operation returns an empty list of messages.

Rule 10: ASM transition rule for the history operation.

if task is streamHistoryOp then > (history operation)
if val(exp1) > t,,,,,. then
verdict(Self) := error
val(expy) := ts(current(port))
end if
if val(exps) < ts(msgs'(porta)[len(msgs’(port))]) then
verdict(Self) := error
val(exps) := ts(msgs' (port)[len(msgs’ (port))])
end if
if val(expr) > val(exps) then
verdict(Self) := error
val(streamHistoryOp) = ()
else
val(streamHistoryOp) = (mg..my), textwith
mg = msgs' (port)Qual(expr) A my = msgs'(port)Qual(exps)
end if
end if
where port := lookup(val(var))

In any other case, the history operation returns the list of messages char-
acterized by the upper and lower bounds. The messages, however, are re-
turned in a special data format; this format is explained in detail in Sec-
tion 4.2.7.
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5.6 TTCNg: TTCN-3 WITH MODES

TTC Ng contains all of the features of TTCN-3 embedded. It provides sup-
port for the simultaneous updating and evaluation of stream values at ports.
The modes — hybrid automata alike control flow constructs — allow TT'C N¢
to define multiple execution paths via defining different modes of execution
(i.e. different modes of signal generation and assessment). TT'C'Ng can also
define transitions between these modes using predicates on values at ports.

The transition between TT'C'Nx and TTC N¢ is accomplished by simply
extending TT'C' Na with modes. This requires only minimal changes in the
signatures defined for n TT'CNa. Firstly, the sets for statements and expres-
sions need to be extended to catch up with the constructs that have been
introduced for mode definition and control. Equally, there is also a need to
explicitly handle the state of the modes during runtime.

5.6.1 TTCNg statements and expressions

The extension of the sets EX P and ST MT is relatively straightforward. For
expressions, the duration expression is introduced (see Section 4.4.4) and, for
statements, the definitions for each kind of mode (i.e. atomic mode, parallel
mode, sequential mode) are added.

Abstract syntax 9: TTC N¢ basic behavioural constructs.

EXPn == EXP¢|duration
STMTA L= STMTg ‘ Mode
Mode ::=  ContMode| ParMode | SeqgMode

5.6.2 TTCN¢ mode signature

On a conceptual level, modes are categorized as atomic, parallel or sequential
(see Section 4.4.1). During runtime, this is reflected by the introduction of
a set called Mode; this set contains all kind of modes, and also contains
individual subsets that contain specific kinds of modes.

Mode = AtomicMode U ParMode U SeqM ode
Regardless of the type of mode, the TE provides a structure called runtime €

Runtime. This structure stores runtime information for each mode cur-
rently being executed. The information is maintained for each component
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separately. This allows the execution of functions and the testing of differ-
ent components that potentially refer to the same mode definitions. There
is, therefore, a set Runtime. C Runtime for each individual component
¢ € Component.

The runtime structure provides a set of properties that allows a fine-
grained control of the mode’s execution during sampling. The properties are
made available via the functions defined below.

status : Runtime, — {init, running, stopped}
subtask : Runtime, — {invariants, guards,body, finalize}

mode : Runtime, — Mode

stime : Runtime, — Value/"

trans : Runtime, — PHRASFE

The function status returns the current runtime status of a mode. It can
either yield init (when the mode is initialized), running (when the mode
executes its contents) or stopped (when the execution has ended). For each
mode there is an additional execution subtask; the subtask can be obtained
by using the function subT'ask. The subtask of a mode defines which parts
of a mode are to be executed executed. It can vary between the values
mvariants, guards, body, and wait; the subtask, therefore, directly relates
to the overall structure of a mode. The function mode provides a link to the
specific AST node, which, in turn, provides the definition of the mode for
which the status is being maintained. When only the AST node is known,
the mode function can be used to look up the mode state. Last but not
least, the runtime structure contains the point in time where the associated
mode was first initialized. The time value is provided by the function time.
Finally, the function trans specifies the phrase to be executed when a mode
is finished. It normally points to nxt(mode) but this can change if transition
statements are being used.

The function runtime is used to obtain the runtime information r €
Runtime for a concrete AST node that represents a mode. The function
uses the mode function in order to decide if the correct runtime structure has
been found.

runtime : Component x Mode — Runtime,,
with runtime(c, mode) — ms

and ms.mode = mode A ms € Runtime,
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The function is parametrized with a component and a mode and it returns
the correspondent runtime structure. If no such runtime structure exists, the
function returns undef.

The execution of modes differs from the execution of ordinary statements
and expressions because it provides an implicit sampling loop. The content
of a mode is executed once at each sample step. In order to describe this
kind of control flow, the function

loop: PHRASE — PHRASE

is introduced in TT'C Ng. It complements the already-existing functions
next and fst. It also introduces a third control flow option, which is used if
a mode is in a sampling loop. This function is used to indicate the phrase
that must be executed if a mode repeats its content. It is set as an aspect of
preparation for the next sample step. If not defined otherwise, the function
points to the phrase given as its parameter. The trick, however, is that the
function can be changed to reflect special cases.

loop(phrase) := phrase

Last but not least, a reactivation flag is needed in order to indicate the
reactivation to already-stopped modes. This flag enables transitions between
modes that have already been executed and must be reactivated. The reac-
tivation flag is located at the component level.

reactivateNext : Component — B

5.6.83 TTCNg modes

A mode is a block construct that consists of different substructures. Each of
the substructures can be executed separately. The structure starts with the
on entry block, which is followed by an invariant block, the mode’s body, the
on exit block and, finally, the until block (please also refer to Section 4.4.1
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for a precise definition of the static structure of a mode).

Abstract syntax 10: Modes.

Mode := ( "cont” |”seq’ |"par’ )
OnEntry InvariantList Body OnExit Until
Body :=  ContBody| SeqBody | ParBody
InvariantList == { EXP}
Until == Tuntil” { UntilGuardStatement }

Mode substructures show similarities with both compound expressions
and ordinary statement blocks. They generally contain expressions or state-
ments and their content is executed subsequently. In the context of sampling,
however, modes show a specific behaviour defined in the following sections.

Most of the substructure of a mode is, in fact, optional (see grammar in
Section 4.4.1). In order to facilitate easier specification of their operational
semantics, the optional blocks appear in the AST as non-optional but po-
tentially empty. If such a block is missing in the original specification, the
parser is expected to create an empty block (i.e. a statement or expression
list with no content). Parts of a mode’s overall execution order can, therefore,
be statically defined by the following functions.

let Mode = (onEntry, invariantList, body, on Exit, until) in
fst(mode) = fst(invariantList)
nat(invariantList) = mode
nxt(onEntry) = mode
nxt(until) = fst(onExit)
nxt(onExit) = nxt(mode)
(

nxt(body) = loop(mode)

The execution of a mode starts with the calculation of the invariants in
the invariant list. After the calculation, the substructure of the mode is exe-
cuted, depending on the current runtime status of a mode. In this phase, the
invariants and guards are normally checked and the contents of the mode’s
body are subsequently executed. It is important to note that the different
bodies of the different kind of modes (atomic, parallel and sequential) are exe-
cuted in different ways. The precise semantics for the execution of each body
are given below by specific ASM rules. When the execution of the mode’s
body is finished, the next task to be executed is determined by loop(mode).
This function points to the next mode or statement that is to be scheduled
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within the current sampling step. It is set according to the current execution
context and either loops back to the mode itself or points to nxt(mode).

The execution of a mode ends when one of the guards in the until block
is triggered. In this situation, the task switches to nzt(until) and the on exit
block is executed. Afterwards, the TE proceeds with the phrase that directly
follows the mode.

As already mentioned, the static order is by any means incomplete and
needs to be extended with updates of the dynamic functions in the rules
below. This is especially necessary because the substructure of a mode is
executed in different ways, dependent on the runtime status (see function
status for mode runtime states) and the type of the mode.

The invariant list

Abstract syntax 11: Invariant lists.

InvariantList == { EXP}

The invariantList € InvariantList is handled similarly to a compound
expression.

let invariantList = (inv, expy, exps, ..., exp,) in
fst(invariantList) = fst(exp;)
nxt(exp;) = fst(exp; +1),0<i<n

nxt(expy) = nxt(invariant List)

let invariantList = (inv) in

fst(invariantList) = nxt(invariant List)

All invariant expressions in the invariant list are calculated one after the
other. If the invariant list is empty, the list is simply skipped and the TE
directly executes the statement that follows the invariant block. Finally, the
invariant list is evaluated as a coherent expression, and it evaluates to

expr Nexps A ... \exp, whenn >0
val(invariant List) — h b2 b _
false otherwise
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Initialization of modes

If a mode structure is executed for the first time, there is no preexisting
runtime element that can be retrieved (from the current component) for that
specific mode.

Rule 11: ASM transition rule for mode execution (entering a mode).

if task is mode > (mode execution ,initialization)
A runtime(Sel f,mode) = undef then
extend Runtimesge; by runtime
status(runtime) := init
end extend
end if

During this phase (i.e. during a mode’s first appearance), a runtime
element is created and added to the component’s set of runtime elements. The
function runtime thus returns this value (i.e. runtime(sel f,mode) # undef)
from this point on. After the mode’s runtime element is created, the mode is
initialised. During initialisation, the invariants are checked. If the invariants
are violated, the execution of the mode is skipped and the error verdict is set.
If the invariants match, the basic runtime information is set. The execution
of the on entry block and the mode’s body is then triggered and the on entry
block is set as the next task to execute. The mode’s runtime status changes
to run.

Rule 12: ASM transition rule for mode execution (first loop).

if task is mode > (mode execution, first loop)
A status(runtime(sel f,mode)) = init then
reactivateNext(Self) := false
if isViolated(invariantList) then
verdict(Self) := error
status(modeState(Sel f, mode)) = stopped
task := nzt(mode)
else
subtask(runtime(sel f, mode)) := body
mode(runtime(sel f, mode)) := mode
starttime(runtime(sel f, mode)) ==t 1.
trans(runtime(sel f, mode)) := nxt(mode)
status(runtime(sel f,mode)) = run
task := onEntry
end if
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end if

The invariants are evaluated by checking each invariant expression on the
list.

isViolated(invariantList) =
3 exp € invariantList, val(exp) = false

If one of the invariants is violated, the mode is skipped and the error
verdict is set. As a consequence, the runtime status is set to stopped. If
none of the invariants is violated, the on entry block and the mode’s body
are executed and the runtime status of the mode changes to run.

The on entry block

The on entry block is executed when a mode is successfully entered (i.e. when
none of the invariants are violated). It is an ordinary statement block, and,
therefore, all of its contained statements are subsequently executed.

let onEntry = (onEntry, stmty, stmta, ..., stmt,) in
fst(onEntry) = fst(stmt;)
nxt(stmt;) = fst(stmt; +1),0 <i<n
nxt(stmt,) = naxt(onEntry)

let onEntry = (onEntry) in
fst(onEntry) = nxt(onEntry)

When it is empty, a block is skipped. According to the specification
above, when it ends, the on entry block triggers the execution of the mode’s
body.

The repeated execution of modes

In runtime status run, the execution of a mode is repeated for each sampling
step. During this step, the TE triggers different subtasks of a mode; each
subtask, in turn, initiates the execution of one of the modes’s subblocks. The
subtask invariants triggers the calculation or recalculation of the invariant
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expressions; the sub-task guards triggers the execution of the until block
and the evaluation of the guards; the sub-task body triggers the execution of
the mode’s body; and the sub-task finalize completes the processing of the
mode’s current sampling step.

Rule 13: ASM transition rule for mode execution (repeating).

if task is mode > (mode execution, repeating)
A status(runtime(Sel f, mode)) = run then
if subtask(runtime(Self,mode)) = invariants then
task := fst(invariantList)
subtask(runtime(Sel f, mode)) = guards
else if subtask(runtime(Self, mode)) = guards then
task := fst(until)
if isViolated(invariantList) then
verdict(Self) := error
status(modeState(Sel f,mode)) = stopped
task := nzt(mode)
else
subtask(mode) = body
end if
else if subtask(runtime(Self,mode)) = body then
subtask(mode) = finalize
if endO fChilds then
task := onExit
else
task := fst(contBody)
end if
else if subtask(runtime(Self,mode)) = finalize then
if endO fStepEzxecution then
resetModes(Sel f)
status(Sel f) := wait
else
task := up(up(mode))
end if
end if
end if

Before the body is executed, it is important to check whether a parallel
or sequential mode has come to its natural end. This is important for both
kinds of mode, if there is no contained mode that still has the runtime status
running. The check is achieved by the macro endO fChilds. This macro
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iterates over all runtime states. It checks whether or not the runtime status
is running, and checks if the belonging mode is a child of the current mode.

endO fChilds(mode, c) =
Vrs € Runtime., (mode = up(up(mode(rs)))) — status(rs) # running

After the mode’s body has been executed, the mode retains the run-
time status running and executes the runtime subtask finalize. In this
phase, some final checks are carried out before the execution of the mode
is suspended; the mode waits until the next sampling step triggers its re-
execution. Before the execution is suspended, the runtime subtask finalize
checks whether all running modes of a component have been suspended (i.e.,
whether all have reached the subtask finalize). This indicates that the
execution has returned to the outermost mode and that all tasks (for this
sampling step, on this component) have been accomplished. The check is
done by the macro endO fStepExecution. If the macro evaluates as true,
the mode’s runtime states are reset by reset Runtimes and the overall status
of the component is set to wait. The execution of the component is then
completely suspended until the next sampling step begins.

endO fStepExecution =
3 runtime € runtimes(Self) , subtask(runtime) # finalize

resetModes(c) =
var runtimes rangesover Runtime,
if status(runtime) = running then
subtask(runtime) = invariants
end if
end var

It should be noted that the execution of the mode’s body shows different
behaviour for each different kind of mode. The exact description can be found
in the definition of the static execution order for the different elements, in
the corresponding sections below.

If a mode is in runtime status stopped, it is checked whether an activation
flag has been set. If it is set — and this is normally the case when a transition
statement has already been executed once before — the mode is set to the
runtime status init and is thus reactivated again. If not, it is simply skipped
and the execution proceeds with the statement that directly follows the mode.

Rule 14: ASM transition rule for mode execution (stopped mode).

if task is mode > (mode execution, stopped mode)
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A status(runtime(Sel f, mode)) = stopped then

if reactivateNext(Self) then
reactivateNext(Self) := false
status(runtime(Sel f, mode)) := init

else
proceed

end if

end if

The until block

The until block contains a set of until guard statements; these statements
define transitions to other modes. It should be noted that the concrete syntax
alllows certain short forms and omissions. In the abstract syntax, these short
forms and omissions are all resolved into the below-depicted form.

Abstract syntax 12: The until block.

UntilBlock = Tuntil” { UntilGuardStatement }
UntilGuardStatement =  EXP GuardOp StatementBlock [ UntilJump |

An until block consists of so-called until guard statements. An until
guard statement specifies a guard that, when passed, ends the enclosing
mode. If the predicates of such a guard match, the rest of the until guard
statement is triggered; the mode is then left, without the other until guard
statements being evaluated. The until guard statements in an until block are
subsequently evaluated.

let until Block = (inv, stmtq, stmta, ..., stmt,) in
fst(untilBlock) = fst(stmty)
nat(stmt;) = fst(stmtiy1), 0 <i<n
nxt(stmt,) = up(until Block)

let untilBlock = () in
fst(until Block) = up(until Block)
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If none of the until guard statements are triggered the execution loops
back to the beginning of the enclosing mode. If the until block is empty, it
is simply skipped.

The execution of an until guard statement begins with the calculation
of the guard expression. It should be noted that the concrete syntax allows
guard expressions to be omitted. In such a case, the guard expression in the
abstract syntax is set to true.

let untilGuardStatement = (exp, guardOp, statementBlock) in
fst(untilGuardStatement) = fst(exp)
nxt(exp) = untilGuardStatement

nxt(statement Block) = nxt(up(untilGuardStatement))

let untilGuardStatement = (exp, guardOp, statementBlock, transition) in
fst(untilGuardStatement) = fst(exp)
nat(exp) = untilGuardStatement
nat(statement Block) = until Jump
nat(until Jump) = nxt(up(untilGuardStatement))

Afterwards, the guard expression and guard operation are both evaluated
(see rule below). The respective function updates respect the evaluation of
the guard expression and initiate the execution of the guard operation.

Rule 15: ASM transition rule for the until-guard statement.

if task is untilGuardStatement then > (until-guard statement)
if val(exp) then
if guardOp = undef then
task := statementBlock

else
task := guardOp
end if
else
task := nxt(guardStatement)
end if
end if

If the guard operation has not been specified in the concrete syntax, it
appears as guardOp = unde f in the abstract syntax. Finally, if the statement
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block of the until guard statement has been executed, the enclosing until
block’s successor determines the next task.

Transition statements

Transition statements are transfer the control flow between modes. Normally,
if a mode ends, the next mode is executed. In a sequential environment, this
is usually the mode following the mode that has just ended.

Abstract syntax 13: Transition statements.

Transition =  GotoTransition RepeatTransition ContinueTransition

The go to transition allows ”"jumping” between modes that reside in the
same statement block. During the creation of AST, the go to transition is
enriched with information about the jump target. nxzt(gotoTransiton) thus
automatically points to the statement which follows the label in the original
specification. In the context of a mode, the go to transition initiates the
potential reactivation of a mode, and also directs the control flow to execute
the jump target after the on exit block has been executed.

Rule 16: ASM transition rule for the goto statement in modes.

if task is GotoTransition then > (goto statement in modes)
reactivateNext(Self) := true
trans(runtime(up(up(up(RepeatMode))), Sel f)) := nxt(gotoTransition)
end if

The repeat transition allows repetition of the current mode. It initiates
the reactivation of the mode by setting the reactivate Next flag and directs
the control flow to repeat the current mode after the on exit block has been
executed.

Rule 17: ASM transition rule for the repeat statement in modes.

if task is RepeatTransiton then > (repeat statement in modes)
reactivateNext(Sel f) := true
trans(runtime(up(up(up(RepeatMode))), Self)) := up(up(up(RepeatMode)))
end if
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The continue transition allows repetition of the current mode without a
reinitialization. It signals to the control flow to directly execute the current
mode again. The on exit block, in this case, is skipped.

Rule 18: ASM transition rule for the continue statement in modes.

if task is ContinueMode then > (continue statement in modes)
task := up(up(up(ContinueM ode)))
end if

The on exit block

The on exit block behaves, in fact, like an ordinary statement block: it is
executed when a mode is left. Its execution, however, is preceded by the
runtime status of a mode being set to stopped

let onFExit = (onExit, stmty, stmty, -+, stmty) in
fst(onExit) = fst(stmty)
nxt(stmt;) = fst(stmt; +1),0 <i<n

nxt(stmt,) = onExit

Rule 19: ASM transition rule for the on-exit statement.

if task is onExit then > (on-exit statement)
status(runtime(Sel f, mode)) := stopped
task := folowUp(runtime(Sel f, mode))

end if

Body execution for atomic modes

An atomic mode is structured and executed according the scheme defined in
the main Section above.
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Abstract syntax 14: Atomic modes.

ContMode ::= ’cont” OnEntry Invariant ContBody
OnEzit Until

The execution of an atomic mode differs from the execution of other
modes in that it shows different behaviour for its body. The cont body is an
ordinary statement block. The static order of its elements is defined below.
When the cont body is entered, all containing statements are subsequently
executed. When the end of the body is reached, the execution proceeds with
the next statement scheduled to be executed within the current sampling
step.

let contBody = (contBody, mode;, modesy, ---, mode,) in
fst(contBody) = fst(modey)
nxt(mode;) = fst(mode;y1), 0 <i<n
nxt(mode,) = loop(up(cont Body))

let contBody = () in
fst(contBody) = loop(up(contBody))

Body execution for sequential modes

A sequential mode defines a sequential execution order for all directly-contained
modes.

Abstract syntax 15: Sequential modes.

SeqMode = 7seq” OnEntry Invariant SeqBody
OnExit Until
SeqBody == { Mode }

The body of a sequential mode (the seq body) starts with the execution
of the first mode statement and ends either when a mode statement with
runtime status running executes its body (see definition of the function loop),
or when the end of the seq body is reached (see definition of the function
next). When a contained mode ends during the execution, the next mode in
the sequence of contained modes activates and executes (see definition of the
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function nat).

let seqBody = (seqBody, modej, modes, -+, modey,) in
fst(seqBody) = fst(modey)
loop(mode;) = up(seqBody), 0 <i<n
nxt(mode;) = fst(modeny1), 0 <i<n
nat(mode,,) = loop(up(seqBody))

let seqBody = () in
fst(seqBody) = loop(up(seqBody))

Body execution for Parallel modes

A par mode defines a parallel execution order for all directly-contained modes.

Abstract syntax 16: Parallel modes.

ParMode ::= 7cont” OnEntry Invariant ParBody
OnEzxit Until
ParBody == {Mode}

The body of a parallel mode (the par body) starts with the execution of
the first mode statement and ends when the end of the par body is reached
(see the definitions for the function loop).

let par Body = (parBody ,mode; ,modea, ---, modey) in
fst(parBody) = fst(modey)
loop(mode;) = fst(moden11), 0 <i<n
loop(mode,,) = nat(up(par Body))
nxt(mode;) = loop(mode;), 0 <i<n

let seqBody = () in
fst(parBody) = loop(up(par Body))
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5.6.4 TTCNg duration expression

The duration expression yields the time period (in seconds) for which a mode
has been running.

Rule 20: ASM transition rule for the duration expression in modes.

if task is duration then > (duration expression)
val(duration) := t(, .. — starttime(runtime(parent(duration), Sel f)
proceed

end if

5.7 DISCUSSION

These operational semantics discuss the basic statements of TT'CN-3 embed-
ded. Constructs for describing reusable modes are not part of this specifi-
cation; this is because they are resolved to normal modes at compile time.
The semantics have been developed to simplify discussions about the differ-
ent possible interpretations of the runtime behaviour of TTCN-3 embedded’s
intuitive semantics. The aim of this chapter is to provide a means of describ-
ing the open issues regarding the runtime behaviour and to document their
solution in an easily-understandable form.

These operational semantics have been developed without concrete tool
support. They have not been checked by a compiler, nor by a runtime en-
vironment. These semantics have, however, been the basis for both of the
TTCN-3 embedded runtime implementations developed and used in this the-
sis as proof of concept. These implementations are the basis for both the
Vector CANoe integration and the Matlab/Simulink integration; these in-
tegrations are outlined in the next sections. When creating the TTCN-3
embedded runtime environment, these semantics have been revised and ad-
justed several times. This means that the basic rules can be improved upon.
Even so, there is currently no explicit proof that these semantics are free of
small — especially syntactical — errors.



CHAPTER 6

ARCHITECTURE FOR REALIZATION

This chapter describes the base architecture for a runtime environment which
allows for the realization and application of the language constructs described
in the previous chapters. Since TTCN-3 already specifies a runtime archi-
tecture, this same architecture is used as the basis for TTCN-3 embedded,
it is extended to incorporate the requirements for the testing of hybrid and
continuous real-time systems.

6.1 THE OVERALL RUNTIME ARCHITECTURE

A TTCN-3 test system consists of several entities that perform distinct and
different tasks during test execution. The overall architecture of a TTCN-3
test system is depicted in Figure 6.1. For this thesis, the most relevant
entities are the Test Executable (TE), the SUT Adaptor (SA), the Platform
Adaptor (PA) and the Component Handling (CH).

e The TE is responsible for the interpretation and/or execution of the
TTCN-3 programmes. It provides services for the interpretation of the
language constructs and an environment for the handling of messages.
In this thesis, the TE is extended, so that the language constructs
of TTCN-3 embedded are supported and the sampled dispatch and
reception of messages from data streams becomes possible.

e The SA adapts the TTCN-3 test system for the SUT. The SA is aware of
the mapping between the TTCN-3 communication ports and the test
system interface ports. It implements the real test system interface.
During the test execution, it broadcasts send requests from the TE to
the SUT. Furthermore, it notifies the TE of any received test events; it
does this by appending the events to the port queues of the TE. In this
thesis, the SA is extended to enable the stream-based communication
of TTCN-3 embedded.

e The PA binds the TE and test platform with respect to their time-
controlled operations and the TTCN-3 external functions. The inter-
face between the TE and the PA allows for the TE to have transparent

129
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Figure 6.1: The overall TTCN-3 test architecture

timer control (creating, starting, stopping). Additionally, the PA no-
tifies the TE if a timer has expired. In TTCN-3 embedded, the PA is
extended to provide the status of the overall clock and to actualize the
sampling controller. With respect to sampling, the PA notifies the TE
of every new sampling step.

e The CH is responsible for managing distributed, parallel test compo-
nents. This distribution can occur across one, or many, physical sys-
tems. In this thesis, the CH is extended to support time synchroniza-
tion between physically-distributed test components.

Other entities of the TTCN-3 test architecture depicted in Figure 6.1 do
not change in this thesis. These entities are needed in both TTCN-3 and
TTCN-3 embedded test systems. Their main purposes are discussed briefly
below.

The Test Management (TM) is responsible for overall test management
and functionality. The unit’s main responsibility is the initiation of test
execution; additionally, it usually provides the interface used by test system
users. The Test Logging (TL) maintains the overall test log. It provides an
unidirectional interface that receives logging requests from the TE and stores
the test logs in a dedicated format. Last but not least, the external encoding
and decoding of data associated with message-based, procedure- or stream-
based communication is achieved by the Coding (CD). The external codecs
have a standardized interface which allows for their reuse between different
TTCN-3 systems and tools.

The TTCN-3 standard defines the interfaces that enable the exchange of
information between the entities described above. Through this standardiza-
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tion, the application of the entities is mostly defined and it becomes possible
to replace individual entities.

The TTCN-3 standard distinguishes two interface sets, the TTCN-3 Con-
trol Interface (TCI) and the TTCN-3 Runtime Interface (TRI). The TCI
specifies the interface between Test Management, Test Logging, Component
Handling, Encoding/Decoding and the TTCN-3 Test Executable; the TRI,
on the other hand, specifies the interface between the TTCN-3 Test Exe-
cutable, the SUT Adaptor and the Platform Adaptor.

In the following text, the functional extensions of the test system enti-
ties are described in detail on the basis of their interfaces (TRI and TCI)
and complementary sequence diagrams. The basis for the extension is the
TTCN-3standard. TTCN-3 embedded, which is an extension of the TTCN-3
standard, provides the interfaces defined in the TTCN-3 standard, as well as
the extensions defined in the following sections.

6.2 EXTENSIONS OF THE TTCN-3 TEST RUNTIME INTERFACE (TRI)

The TRI is responsible for the interaction between the TE and the SA and
PA. Tt controls the interaction with the SUT and allows singular access to
time. To ensure the functionality of TTCN-3 embedded, the TRI has to
be extended; this enables the sending and receiving of messages, which is a
necessary tool for stream-based communication. In addition, the TRI defines
access to the global clock, and provides functions for the realization of the
sampling.

6.2.1 Access to time

All time-related operations in TTCN-3 are accessed via the platform adapter.
This allows a controlled and singular-access time; it also facilitates the sup-
port of different time models that can be implemented via different implemen-
tations of the interfaces. TTCN-3’s original TRI already supports timer func-
tionality, but the access to a global clock must be added for TTCN-3 embed-
ded. Global clock access is added via the TRI operations triStartClockand
triReadClock. The operation triStartClock starts the test system clock with
a given precision. The precision is defined by the parameter ticksPerSecond;
this parameter specifies the number of time units (ticks) that constitute one
second.

The TRI operation triReadClock yields the actual clock value. The clock
value is made available through out parameter timepoint, which represents
the number of time units (ticks) that have elapsed since the clock’s start.
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Signature TriStatus triStartClock(

in long ticksPerSecond

in integer initalTimeValue)

In Parameters ticksPerSecond: the precision of the clock given in ticks per
second.

inatial Time Value: the initial test case start time value e.g.
in case an the test case has been started remotely. If the
value is set to 0 it is ignored and the current time is taken.
Out Parameters | n.a.

Return Value The return status of the operation. The return status indi-
cates the success (TRILOK) or failure (TRI Error) of the
operation.

Constraints n.a.

Table 6.1: TRI operation: triStartClock

Signature TriStatus triReadClock(out long timepoint)

In Parameters n.a.

Out Parameters | timepoint: current time

Return Value The return status of the operation. The return status indi-
cates the success (TRLOK) or failure (TR Error) of the
operation.

Constraints There was a preceding invocation of triStartClock(int lont
ticksPerSecond.)

Table 6.2: TRI operation: triReadClock

Figure 6.2 shows the interaction between the test executable (TE) and the
TRI. After the test executable has called the operation triExecuteT estcase
on the SA, the operation triStartClock is called and the global clock starts.
Afterwards, the TE can call the operation triReadClock to check the current
time value at any point during the test.

6.2.2 TRI wait operations

The TRI realization for the wait-statement requires the operations
triBeginWait and triEndWait. The operation triBeginW ait is called by
the TE and provided by the PA, and the operation triEndW ait is initiated
by the PA and provided by the TE.

The begin wait operation signals that the execution of a component should
be suspended until a specified point of time. A call to the begin wait opera-
tion returns immediately. If the begin wait operation’s parameter timepoint
represents a point of time in the past, the operation returns a TRI_Error
value and has no further effect.
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Figure 6.2: The initialisation of the test system clock

Signature TriStatus triBeginWait(

in long timepoint,

in TriComponentIDType componentld)

In Parameters timepoint: point in time until which the execution of a
component should be suspended.

componentld: component whose execution should be sus-
pended.

Out Parameters | n.a.

Return Value The return status of the operation. The return status indi-
cates the success (TRLOK) or failure (TRL Error) of the
operation.

Constraints There was a preceding invocation of triStartClock(int lont
ticksPerSecond).

Table 6.3: TRI operation: triBeginWait

If the test component is suspended, the values at the test component’s in-
put ports are not evaluated and the values at the output ports do not change.
Incoming stream values and messages are, however, stored in the streams and
message queues, so that they will be available when the component is once
again reactivated. For reactivation, the PA will issue a call of the operation
tri EndW ait(component).

Figure 6.3 shows the interaction that occurs between the test executable



134 ARCHITECTURE FOR REALIZATION

Signature TriStatus triEnd Wait(
in TriComponentIDType componentld)
In Parameters componentld: the component ID referring to the compo-

nent that shall be reactivated at the operation call.
Out Parameters | n.a.

Return Value The return status of the operation. The return status indi-
cates the success (TRLOK) or failure (TRI Error) of the
operation.

Constraints There was a preceding invocation of {riNextSam-

pling(timepoint, port).
Table 6.4: TRI operation: triEndWait
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Figure 6.3: The wait operations
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(TE) and the TRI when the begin wait operation is called. After the test
executable has called the operation triBeginWait at the PA, the PA starts
the wait process. This holds until the point in time set by the begin wait
operation. Once this end time has been reached, the PA immediately triggers
the execution of triEndWait and the suspended component is reactivated
again.

6.2.3 TRI stream value access

The TRI operations triSetStreamV alue and triGetStreamV alue facilitate
message exchange between the TE and the SA. While the set stream value
operation is used to update messages sent to the SUT, the get stream value
operation can update the messages coming from the SUT. Both operations
are typically called after the TE has been informed that a new sampling step
for the respective port has started.
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Signature TriStatusType triSetStreamValue(

in TriComponentldType componentld,

in TriPortIdType tsiPortld,

in TriAddressType SUTaddress,

in TriMessageType streamValue)

In Parameters componentld: identifier of the sending test component.
tsiPortld: identifier of the test system interface port, via
which the message is sent to the SUT Adaptor.
SUTaddress (optional): destination address within the

SUT.
streamValue: the encoded stream value (message) to be
sent.

Out Parameters | n.a.

Return Value The return status of the operation. The return status indi-
cates the success (TRILOK) or failure (TRL Error) of the
operation.

Constraints The TE calls this operation when it executes a new sam-

pling step (on a sampled-output stream port that has been
mapped to a TSI port). Unless one particular system com-
ponent is specified for a test case (e.g. only a MTC test
component is created for a test case), the TE calls the op-
eration for all sampling steps of all outgoing stream ports.
The encoding of streamValue has to be done in the TE prior
to this TRI operation call.

Table 6.5: TRI operation: triSetStreamValue

The set stream value operation sets a message that is to be sent to the
SUT. If the case has been completed successfully, it returns TRI_OK. Oth-
erwise, it returns TRI_Error. It is important to note that the return value
TRI_OK does not necessarily imply that the SUT has received the stream
value.

The get stream value operation obtains the actual stream value for an
input port. The operation returns T'RI_OK if it is completed successfully.
Otherwise, it returns TRI_Error.

6.2.4 TRI sampling

Sampling is one of the most powerful new features that TTCN-3 embed-
ded introduces to the TTCN-3 language. The sampling of component ports
is achieved via the TRI operations triNextSampling, triProcessStep, and
triEndProcessing.

The next sampling operation signals that the next sample-step for a
given port will start at the specified point in time. The next sampling
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Signature TriStatusType triGetStreamValue(

in TriComponentldType componentld,
in TriPortIdType tsiPortld,

in TriAddressType SUTaddress,

out TriMessageType streamValue)

In Parameters componentld: identifier of the receiving test component.
tsiPortld: identifier of the test system interface port via
which the message is received from the SUT Adaptor.
SUTaddress (optional): destination address within the
SUT.

Out Parameters | streamValue: the encoded stream value (message) that has
been received from the SUT.

Return Value The return status of the operation. The return status indi-
cates the success (TRLOK) or failure (TRIL Error) of the
operation.

Constraints The TE calls this operation when it executes a new sam-

pling step onto a sampled-input stream port that has been
mapped to a TSI port. Unless a particular system compo-
nent has been specified for the test case (e.g. only a MTC
test component is created for the test case), the TE calls
the operation for all sampling steps of all incoming stream
ports. After this TRI operation is called, the TE must de-
code the streamValue.

Table 6.6: TRI operation: triGetStreamValue

Signature TriStatus triNextSampling(

in long timepoint,

in TriPortIDType port)

In Parameters timepoint: point in time when the execution of the next
sample step for a given stream port shall be started.

port: the stream port the sample step is requested for.
Out Parameters | n.a.

Return Value The return status of the operation. The return status indi-
cates the success (TRILOK) or failure (TRI Error) of the
operation.

Constraints There was a preceding invocation of triStartClock(int lont
ticksPerSecond).

Table 6.7: TRI operation: triNextSampling

operation’s timepoint parameter is described as the number of time units
(ticks) that have elapsed since the start of the test case (see TRI operation
triStartClock). A call to this operation returns immediately. The operation
simply triggers a corresponding operation (the process step operation). If the
parameter timepoint represents a point in the past, the operation returns a
TRI_Error value and has no further effect.
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Signature void triProcessStep(in TriPortIDListType ports)

In Parameters ports: a list of ports that shall be sampled at the operation
call.

Out Parameters | n.a.

Return Value The return status of the operation. The return status indi-
cates the success (TRILOK) or failure (TRL Error) of the
operation.

Constraints There was a preceding invocation of triNextSam-
pling(timepoint, port).

Table 6.8: TRI operation: triProcessStep

If the point in time for a new sampling step is reached, the PA issues
a call for the operation triProcessStep to inform the TE which ports (and
thus components) shall be sampled next. The operation tri EndProcessing
signals that the results for the step have been calculated and that the TE is
ready to process the next sampling step.

Signature void triEndProcessing()

In Parameters n.a.

Out Parameters | n.a.

Return Value The return status of the operation. The return status indi-
cates the success (TRLOK) or failure (TRL Error) of the
operation.

Constraints There was a preceding invocation of triProcessStep(ports).

Table 6.9: TRI operation: triProcessStep

Figure 6.4 shows the interaction between the test executable (TE) and
the TRI during an example of a sampling loop. It starts with the preamble
that initializes the PA and resets the global clock at the beginning of each
test case. Afterwards, the step size for each port is transmitted to the PA by
the execution of the next sampling operation for each activated port. The
PA then takes that, for each port, each new sampling step is communicated
to the TE. Each new sampling step is communicated via the the process
step operation, and thusly the TE can start any sampling-dependent actions.
Typically the TE updates the values for the input streams (see the get stream
value operation) and output ports (see the set stream value operation) and
calculates the new values (to be updated at the next sampling step).

6.3 EXTENSIONS OF THE TTCN-3 TEST CONTROL INTERFACE (TCI)

The TCI covers operations that govern the overall management of the test
system, the external encoding and decoding of TTCN-3 values, the man-
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agement of potentially distributed components, and the test logging. For
TTCN-3 embedded, an extension of the interface is necessary to allow for
stream-based communication between components and synchronisation of
(potentially distributed) components with respect to the global clock.

6.3.1 TCI stream value access

In addition to the TRI operations defined in Section 6.2.3, further TCI
operations are required in order to enable the stream-based communica-
tion between (potentially distributed) test components. The TCI opera-
tions tciSetStreamValue and tciGetStreamV alue are nearly identical to
the aforementioned TRI operations: they realize stream-based interactions
between distributed test components. The set stream value operation sets a
message that is to be sent to another component.

Signature void tciSetStreamValue(

in TriComponentIdType componentld,

in TriPortIdType tsiPortld,

in Value streamValue)

In Parameters componentld: identifier of the sending test component.
tsiPortld: identifier of the test system interface port via
which the message is sent to the SUT Adaptor.

stream Value: the stream value (message) to be sent.

Out Parameters | n.a.

Return Value void

Constraints The TE calls this operation when it executes a new sam-
pling step on a sampled-output stream port that has been
mapped to another component port. The TE calls the op-
eration for all sampling steps of all outgoing stream ports.

Table 6.10: TCI operation: tciSetStreamValue

The get stream value operation (see Table 6.11) obtains the actual stream
value for an input port that is mapped to another component.

6.3.2 Component synchronisation and global clock

If the hardware being tested is distributed, time synchronisation needs to be
considered carefully. In standard TTCN-3, distribution exists on the com-
ponent level; time synchronisation, therefore, must to be achieved between
distributed test components. Synchronisation becomes a general problem,
however, when test components are executed on distributed hardware enti-
ties that have their own clocks. The synchronisation of distributed hardware
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Signature void tciGetStreamValue(

in TriComponentldType componentld,

in TriPortIdType tsiPortld,

out Value streamValue)

In Parameters componentld: identifier of the receiving test component.
tsiPortld: identifier of the test system interface port via
which the message is received from the SUT Adaptor.
stream Value: the stream value (message) that has been re-
ceived from the SUT.

Out Parameters | n.a.

Return Value void

Constraints The TE calls this operation when it executes a new sam-
pling step on a sampled-input stream port that has been
mapped to another component port. The TE calls the op-
eration for all sampling steps of all incoming stream ports.

Table 6.11: TCI operation: tciGetStreamValue

clocks is not an objective of T T'CN-3 embedded. Such a synchronisation can
be achieved by common methods such GPS time synchronisation or the use
of the NTP protocol. Distributed clock synchronisation thereby achieved, the
TTCN-3 embedded test infrastructure must ensure that the global test clock,
i.e. the call to triGetClock, returns an identical time value to all distributed
test components. Synchronizing the test clock with the test clock of the MTC
at the beginning of a test component achieves this desired time synchronisa-
tion. In the following considerations, it has been assumed that the clocks of
the distributed hardware are synchronised with acceptable accuracy.

In order to get synchronised time for distributed test components, related
time values need to be exchanged by means of the TCI interface at both test-
case start time and component start time. At testcase start time, the value
of tgare is distributed by means of the TCI operations tci FxecuteT estCase
and tciExecuteTestCaseReq respectively. This enables each test entity to
calculate the current testcase time. For this purpose, the already-existing op-
eration tci Fxecutel estCase and tci ExecuteTestCase Req are extended with
an additional parameter: startTime, which is an integer-type parameter that
holds the start time of the test case in UNIX time. Table 6.12 specifies the
corresponding changes in the operation signature of tci ExecuteTestCase.

At component start, the test-case-related time values ts4mpe and A are
propagated  via  the  operations  tciStartTestComponent  and
taiStartTestComponent Req. This means that each test component is there-
fore aware of its start time and the time at which it must proceed with
the next sampling step. All of the asynchronous TTCN-3 concepts, such as
timers and snapshot semantics, are generally controlled by the sampling loop.
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Signature

void tciExecuteTestCase(
inTciTestCaseldType testCaseld,
in TriPortIdListType tsiPortList,
in Integer testCaseStartTime)

In Parameters

testCaseld: a test case identifier as defined in the TTCN-3
standard.

tsiPortld: a list of port identifiers as defined in the TTCN-3
standard.

startTime: the start time of the test case in UNIX time.

Out Parameters

n.a.

Return Value

void

Constraints

This operation shall be called by the CH at the appropriate
local TE when at a remote TE an execution request (in
course of a TTCN-3 execute operation) has been called.

Table 6.12: TCI operation: tciExecuteTestCase

Communication-related delays and synchronization, however, may impose re-
strictions on the accuracy of time measurement and the highest-achievable
sampling rate. Table 6.13 specifies the corresponding changes in the opera-
tion signature of tciStartTestComponen

Signature

void tciStart TestComponent(
inTriComponentIdType componentld,
in TciBehaviourIldType behaviour,
in TciParameterListType parameterList,
in Float componentStartTime)

In Parameters

componentld: identifier of the component to be started as
defined in the TTCN-3 standard

behaviour: identifier of the behaviour to be started on the
component.

parameterList: a list of Values where each value defines a
parameter from the parameter list as defined in the TTCN-
3 function declaration of the function being started.
componentStartTime: the start time of the test case in
UNIX time.

Out Parameters

1n.a.

Return Value

void

Constraints

This operation shall be called by the CH at the local TE
when at a remote TE a TTCN-3 start operation has been
called.

Table 6.13: TCI operation: tciStartTestComponent

Figure 6.5 describes the synchronization of distributed test components.
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6.4 INTEGRATION WITH MATLAB SIMULINK

Matlab Simulink [117] has become one of the major platforms for modelling,
simulating and testing embedded automotive real-time systems. It provides
exhaustive means for the modelling of both continuous and hybrid behaviour,
and it allows for the execution of models on different hardware platforms.
Matlab Simulink’s execution and simulation environment is open for exten-
sions; this means that complementary tools, e.g. testing tools, can be adapted
to the simulation infrastructure and provide their services during a simulation
run.

The integration of TTCN-3 embedded into the MATLAB and Simulink
tool suites shows the ability of TTCN-3 embedded to interact with the for-
malisms of MATLAB Simulink. When integrated into the MATLAB and
Simulink suites, TT'CN-3 embedded becomes able to perform systematic MiL
test cases. The TTCN-3 embedded test executable code is integrated as a
Simulink S-function that automatically executes during a simulation run.

6.4.1 Simulink S-function overview

A Simulink S-function is a computer language realization of a Simulink block.
Such blocks can represent multiple equations and formally consist of a set of
inputs u, a set of states x and a set of outputs y. The inputs and outputs
are referred to as signals; these signals describe time-varying quantities that
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have both a name and a data type. The outputs are calculated formally by
the algorithim y := fg(t,z,u). The execution of an S-function is divided
into an initialization phase (wherein the S-function and its states, inputs
and outputs are initialized), a simulation phase (wherein the outputs are
calculated for each time step) and a finalization phase (wherein the S-function
and its resources are freed).

u

Figure 6.6: Simulink block principles

To serve the tasks of all three phases, a Simulink S-function provides a
set of callback methods. These callback methods can be used for the overall
initialization of the S-function, for the calculation of the block’s outputs and
for the updating of the block’s states. During a simulation run, Simulink
calls the appropriate methods for each S-function block in the model. The
main functions are described below.

e The functions mdlInitializeSizes, mdllnitializeSampleTimes,
mdlStart and similar functions (see Matlab documentation for details)
initialize the S-function prior to execution. These functions are used
to initialize the data structures, to set the number and dimensions of
input and output ports, to set the block’s sample times and to allocate
storage areas.

e The function mdlGetTimeO f NextV ar Hit calculates the next sample
step; this is only necessary if the block uses a variable sample time.

e The function mdlOutputs calculates the outputs for major and minor
time steps.

e The function mdlUpdate updates the discrete states of the S-function
for each major time step; this function is optional.

e The functions mdlDerivative and mdlZeroCrossing apply to blocks
with continuous states. The functions are called for each minor time
step and calculate the continuous states of an S-function.

e The function mdlT erminate is called at the end of a simulation.
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To drive the simulation, Simulink provides discrete solvers and continuous
solvers. Discrete solvers either have a fixed step size or a variable step size.
A fixed-step solver chooses an optimal step size that is fast enough to execute
state changes in the fastest block of a model. A variable-step solver adjusts
the step size during the simulation such that unnecessary steps are avoided
and, thus, the simulation time is optimized. Both kinds of discrete solver
trigger (subsequently and for each major step) the execution of mdlOutputs
and mdlUpdate. Some continuous solvers subdivide the simulation timespan
into major and minor time steps. These types of solvers initiate the calcula-
tion of results at each major time step and at each minor time step. Minor
time steps, in this case, represent a subdivision of the major time step and
are used to improve the accuracy of the results at major time steps. Just
like discrete solvers, these kinds of continuous solvers trigger the execution
of mdlOutputs and mdlUpdate subsequently. Additionally, mdlOutputs and
mdlDerivatives are called for each minor time step.

6.4.2 The Simulink S-function adapter and codec

The Simulink S-function Adapter adapts TTCN-3 embedded to Matlab
Simulink S-functions and allows for the integration of the TTCN-3 TE as
a Matlab Simulink S-function block. The adapter implements the callback
function from Simulink and then implements the TTCN-3 embedded TCI/TRI
operations defined in Section 6.2 and Section 6.3. The Matlab Simulink S-
function CoDec allows for the mapping of TTCN-3 embedded data structures
onto Matlab Simulink native C types. The current implementation of the
Matlab Simulink S-function CoDec only supports encoding and decoding of
basic TTCN-3 types, such as integer, float, boolean and enumerations. It
should, however, be possible to extend the CoDec. A principal approach on
how complex data (such as that which occurs in TTCN-3) can be mapped
is already outlined in [9]. Figure 6.7 shows the high-level architecture of the
Simulink S-function adapter. Please note that the adapter provides the func-
tionality of a TTCN-3 Platform Adapter (PA) and System Adapter (SA).

In the following, the mapping of TCI/TRI operations with correspond-
ing S-function callback functions are explained; the different phases passed
through during the execution of a Matlab Simulink simulation are also dis-
cussed. The interactions between related components are illustrated with
sequence diagrams.

During the initialization phase Matlab Simulink calls mdlInitializeSizes,

mdlInitializeSampleTimes, and mdlStart. mdlInitializeSizes and
mdlInitializeSampleTimes are used to set internals of the adapter, and
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Figure 6.7: Architecture of the Simulink S-function adapter

the function mdlStart triggers the TCI operation tciStartTestCase at the
TE. The TE itself initialises the test case that is being executed and calls
triFxecuteTestCase at the S-function adapter.

The operation triExzecuteTestCase resets the adapter and prepares it
for test execution (i.e., it transfers the amount and names of the input and
output ports). Afterwards, the TE triggers the starting of the clock and sets
the initial sample times for each of the ports via triNextSampling. After
these operations, Matlab Simulink begins the execution of the simulation
loop.

During  the simulation  phase, Matlab Simulink calls
mdlGetTimeO f NextVar Hit, mdlOutputs and mdlUpdate for each simu-
lation step. The function mdiGetTimeO f NextVarHit is used to broad-
cast the sample times within the Matlab Simulink environment; the function
mdlOutputs, on the other hand, triggers the call of tri ProcessStep at the TE,
which triggers the calculation of the T T'CN-3 values for the current sampling
step. The TE itself updates the input values by calling triGetStreamV alue,
propagates the output values to the Simulink S-function Adapter by calling
triSetStreamV alue, and informs the adapter about the new sample times by
calling triNextSampling. Afterwards, the TE calls tri EndProcessing, which
calculates the outputs for the next sample step and returns.

During the finalisation phase, Matlab Simulink calls mdiTerminate. This
function internally calls tri EndTestCase and thus frees all adapter resources
from the perspective of both Matlab Simulink and and TTCN-3.

The current version of the Simulink S-function adapter does not support
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advanced features like zero-crossing detection or explicit handling of continu-
ous states. It can, however, be used with discrete and continuous solvers and
has already been used for MiLi testing of several typical automotive control
systems (including an Adaptive Cruise Control, an Automatic Transmission
Engine, and an Engine Controller) [45]. The examples have shown the ap-
plicability of the TTCN-3 embedded concepts for the intuitive definition of
stimulation and assessment procedures, and particularly for the testing of
systems with continuous signals and the execution of tests with simulation
time.
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6.5 INTEGRATION WITH VECTOR CANOE

The integration with Vector CANoe [125] allows for the testing of control
systems in a simulation environment, as well as with real hardware in a
networked environment. In this integration, the TTCN-3 test executable is
integrated as an independent test component of the CANoe test environment.
The TTCN-3 test executable interacts with the CANoe test environment and
the SUT by adapting to the CANoe environment variables and the CANoe
network API. The overall architecture and the adaptation scheme is similar to
the approach described for Matlab Simulink, except that the CANoe adapter
is realized in C# and, additionally, CANoe uses a real-time clock to indicate
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time progress. In particular, the case studies realized on the basis of the
TTCN-3 embedded-CANoe integration address the testing of control systems
on both HilL and SiL levels. Case studies are available for an indicator and
light control system [83], as well as for a window-lifter control system.



CHAPTER 7

CASE STUDY EXPERIENCES

This section describes the results of two small case studies. These two case
studies demonstrate the newly introduced concepts and show their applica-
bility to automotive test tasks: both studies include test tasks typical for
the automotive industry. The first case study (the MiL case study) shows
the integration of TTCN-3 embedded with Matlab/Simulink. This setup
demonstrates the applicability of T'TCN-3 embedded concepts to the intu-
itive definition of stimulation and assessment procedures, particularly those
which involve continuous signals and the execution of tests with simulation
time. The second case study (the HiLi case study) concerns the integration
of TTCN-3 embedded with Vector CANoe. This case study is especially rel-
evant because it addresses the testing of control systems on both Hil. and
SiL levels. Additional case studies discussing TTCN-3 embedded and its im-
plementation in an automatic transmission engine, an engine controller, and
an indicator and light control system [45], [83] have also been carried out.
These case studies are available but are not included in this thesis.

7.1 THE MIL CASE STUDY

The first case study concerns a cruise control system that includes a distance
control mode. This cruise control system is known as Adaptive Cruise Control
(ACC), because it manages the speed of the ego vehicle while, at the same
time, ensuring that it maintains a safe distance from the vehicle ahead. An
activated ACC system monitors the road ahead and automatically detects
vehicles in front of the car. If the ACC detects a slow vehicle ahead (this is
known as a ’target’ vehicle), it adjusts the running speed (v_ego) so that a
safe distance from the detected vehicle ahead can be guaranteed. This is an
example of ACC’s distance control function. When there is no vehicle ahead,
an ACC works like any other cruise control: it controls velocity.

Simple systems provide visual and acoustic warnings for the driver. A
maximum brake activation of up to 25% of the maximal possible decelera-
tion is allowed. Advanced systems are also equipped for the possibility of
emergency braking: they aim to shorten the distance required to fully and

149
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completely brake. Vehicles with adaptive cruise controls have been available
on the market for several years, from a number of different manufacturers.
The following sections describe how TTCN-3 embedded can be used to test
an ACC. To ensure the industrial relevance of this case study’s results, the
overall test approach has been taken from [22].

7.1.1 The ACC system

Like many specified functions of contemporary automobiles, an ACC’s func-
tions are model-based. These models are often developed using the MATLAB®
[116] and Simulink® tool suites. Figure 7.1 shows the outer view of the
Simulink model used for a Model-in-the-Loop (MiL) testing of an ACC sys-
tem (ACCS). This picture provides an overview of the testable interface of

the ACCS.

e ——
v_ego
- phi_acc M_Br_b »(2)
M_Br_b
M_Mot_b > 3)
v_desired #@
l—_ v_desired
d_other
d_rel ;@
driver warning ;@
- lever_pos l—_ driver warning
accs_mod p( 8
accs_mode
a_vehicl »( 9
a_ego
n_engi p( 10
- v_other n_engine
i_all »(11)
Gear_i ;@
v_rel ;@
t_des_braki (15
l—_ t_des_brake
t_des_dri »( 14
l—_ t_des_drive
brake_pedal »( 17

ACCS and Environment brake_pedal

Figure 7.1: Testable interface of the Adaptive Cruise Control

In typical ECU software-testing protocol, feedback from the environment
is essential. Usually, it is simulated and, normally, this simulation is defined
by so-called environment models that are directly linked with the system
during testing.
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Figure 7.2 shows the interior design of the ACCS and its environment.
The ACCS consists of three subsystems, which, taken together, constitute
the overall software functionality. The ACC-control unit delivers the main
functional behaviour. It is responsible for controlling the running velocity
(v_ego) of the vehicle, monitoring the distance to the vehicle ahead (d_other)
and providing a warning signal that informs the driver when the safe distance
has been violated (driver_warning). The ACC-Control is supplemented by the
target detection unit. This unit preprocesses sensed information about the
velocity of the target vehicle (v_other). The third unit, the pedal interpreta-
tion unit, preprocesses the driver’s input (phi_brake, phi_acc). These three
units, taken together, constitute the wvehicle model, which models the com-
prehensive behaviour of the vehicle and serves as the environment model for
closed-loop simulation and testing.

The following examples show how TTCN-3 embedded can be used to de-
scribe tests that assess either the complete ACC system, a selected subsystem
thereof, or both. The test requirements and high-level specifications in this
case study are similar to those currently used in the automotive industry.
The TTCN-3 embedded specifications are used to unambiguously describe
the executable test cases in an efficient and highly reusable fashion.

The case study starts with scenarios that are used to test the pedal in-
terpretation, one of the ACC subsystems. The abstract test specifications
that are the basis for that scenarios are taken from Mirko Conrad’s thesis
[22] and from previous work in the IMMOS project [50]. Thereafter, the case
study elaborates tests for the complete ACC system. Both, the subsystem
test and the system tests, show clearly how T'T'CN-3 embedded can be used
to unambiguously specify MilL tests across various levels of integration.

7.1.2  Testing the pedal interpretation

The subsystem pedal interpretation reads the current positions of the gas
pedal and the brake pedal. Taking into account the current speed of the
vehicle and the pedal positions, the pedal interpretation subsystem calculates
the corresponding input and output torques. In addition, two flags are used to
monitor whether one of the pedals is further pressed or not. Figure 7.3 shows
the internals of the Matlab/Simulink model. Figure 7.4 and Table 7.1 show
the effective test interface as seen in Matlab/Simulink, from the perspective
of the tester (i.e. the system inputs are declared as outputs and system
outputs as inputs), in TTCN-3 embedded.

This first example illustrates tests that check the correct values of the
pedal flags. The subsystem pedal interpretation is tested via a set of selected
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Figure 7.4: The test system perspective of the Adaptive Cruise Control

input vectors which are dedicated to triggering the pedal recognition. The
pedal recognition subsystem reads the status of the pedals via the values of
the pedal flags. To illustrate the overall test objectives, the Classification Tree
Editor (CTE) is used. The tests can be carried out without the environment
model because all of the relevant input data are either configured statically,
i.e. by parameters in Matlab/Simulink, or are generated by the TTCN-3
embedded test program itself.

Figure 7.5 shows a classification tree for expected interface values. It pro-
vides a classification over the value domain for the input and output interfaces
of the subsystem by providing typical classifications, i.e. for the boundary
values and for the mean value of the pedal positions. These classifications
are supplemented by an additional partitioning of the input space that allows
for the testing of threshold values outside of those which the system already
recognizes when a pedal is pressed. The overall partitioning is accomplished
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Table 7.1: ACC test interface (pedal interpretation)

symbol dir unit datatype

vego_stim  out m/s double
phi_brake out % double

phi_acc out % double
brake_pedal in - boolean
acc_pedal in m boolean

via the introduction of the variable ped_min. The variable ped_min specifies
the threshold and divides the overall interval ]0.100] for valid input into the
areas above and below ped_min. Finally, additional classifications have been
defined to represent the boundary values 0 and 100 and the exact threshold
ped_min. The classes for the velocity inputwv_ego are defined including the fol-
lowing considerations: reverse driving (negative velocity), halting, and both
slow and fast riding.

pedal interpretation

ped_min 10.ped_min[

110.0.0

Iped_min, 100.0[

ped_min

100.0 Iped_min,100.0[

Figure 7.5: The high-level test specification for the pedal interpretation
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e The first test scenario (named test sequence PedalRecognition_1, see Fig-
ure 7.5) assesses the recognition of the pedal input. Characteristic value
sets are applied one-by-one to the system for a pre-defined period of
time. This period must be significantly larger than the simulation step
size and must be kept constant throughout the test. The velocity is
varied across different input classes. Each input set is supplemented by
the expected outputs for brake_pedal and acc_pedal.

e A second test scenario (named test sequence PedalRecognition_2, see Fig-
ure 7.5) analyzes the specific characteristics of the pedal recognition
hysteresis. A ramp-shaped signal is introduced across the entire range
of possible pedal positions. The velocity v_ego is set with selected con-
stant values. The values for brake_pedal and acc_pedal are expected to
change, respectively, from true and false to false and true. The actual
checking mechanism of the hysteresis is only specified in the TTCN-3
embedded test cases.

e A third test scenario (named test sequence Pedallnterpretation_1, see
Figure 7.5) varies in a linear fashion across different accelerator pedal
positions from 0.0 to 100.0. The velocity is ramped up in the non-
negative speed range from 0.0 to 80.0 ms. The value phi_acc is varied
across all of the classes, while the other two input values are both
stimulated with a constant behaviour (phi_Brake = 0.0, v_act increases
linearly and uniformly). The output value at brake_pedal is expected to
remain false and the value at acc_pedal is expected to change according
to the input at phi_acc.

It should be noted that these three scenarios are only a subset of the possi-
ble test cases which could be used to test the subsystem pedal interpretation.
These specific cases have been chosen, however, because they succinctly dis-
play TT'CN-3 embedded’s range of possibilities. These cases, as the following
subsection shows, demonstrate how TTCN-3 embedded can be used to de-
velop intuitive concepts for the realization of any given specification and show
how such specifications can be converted to directly executable, automated
test cases.

The TTCN-3 embedded test (case) specification

The TTCN-3 embedded test specification begins with the definition of the
data types and the test components. The test interface is not restricted to the
input/output vector defined in Figure 7.5; rather, it contains the complete
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output interface of the subsystem pedal interpretation, such that it can be
used to test system properties other than the pedal recognition.

The type definition starts by providing the port types for the data streams.
There are Float streams for the Float-valued outputs phi_brake, phi_acc and
for the Float-valued inputs t_.des_brake, t.des_drive. The Boolean-valued
brake_pedal, acc_pedal inputs are modelled as Boolean streams.

Listing 7.1: Definition of the pedal interpretation test component

module Pedallnterpretation{
import from signal_generators all; 2

type port FloatOut stream {out float }; 4
type port Boolln stream {in boolean};

type component PedIntTester {

port FloatOut v_ego_stim , phi_acc, phi_brake; 8
port Boolln brake_pedal, acc_pedal;

} 10

} with {stepsize 70.017} 12

The component PedIntTester specifies the test interface using the port
names defined in Figure 7.4. The step-size for the test execution is set to one
millisecond and stays constantly thus.

For the resolution of the test data, all variables and ports used in the clas-
sification tree are assigned specific values. For all classes, specific constants
are created that provide a representation value for each respective class (e.g.
the class |ped_min, 100.0[) is represented by the constant c_phi_4, which has
the value ped_min + 45.0).

Listing 7.2: Testing the pedal recognition, constant defintions

// definition of the class wvalues
const float tol:= 0.1; 2
const float ped_min:= 5.0;

const float c_phi_1:= 0.0;
const float c_phi_2:= ped_min — 2.5; 6
const float c_phi_3:= ped_min;
const float c_phi_4:= ped_min + 45.0; 8
const float c_phi_5:= 100.0;

10
const float c_vel_1:= —10.0; 12
const float c_vel_2:= — 5.0;
const float c_vel_3:= 0.0; 14
const float c_vel_4:= 50.0;
const float c_vel_5:= 80.0; 16

The variable ped_min is set to 5.0%. The variable tol specifies the max-
imum allowed tolerance (i.e. the hysteresis) between a change of the pedal
position and the output of the system.
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Test case PedalRecognition_1: FEach test step from Figure 7.5 is repre-
sented in the TTCN-3 embedded program by an atomic mode that assigns
values to the output ports and also checks the values at the input ports (see
Listing 7.6). The atomic modes are executed successively with a duration of
two seconds each. The checking of the input ports brake_pedal and acc_pedal
is delayed with respect to the hysteresis.

Listing 7.3: Testing the pedal recognition, test step definitions

testcase PedalRecognition_1() runs on PedIntTester{

setverdict (pass); 2
// Teststep 1 4
cont{
phi_brake.value := c_phi_1; 6
phi_acc.value:= c_phi_5;
v_ego_stim .value:= c_vel_3; 8
if (duration >= tol ){
assert (brake_pedal.value = false); 10
assert (acc_pedal.value = true);};

12
until (duration >= 2.0)

14
// Teststep 2
cont { 16
phi_brake.value:= c_phi_2;
phi_acc.value:= c_phi_4; 18
v_ego_stim .value:= c_vel_2;
if (duration >= tol ){ 20
assert (brake_pedal.value = false);
assert (acc_pedal.value = true);}; 22
until (duration >= 2.0) 24
// Teststep 3 26
cont{
phi_brake.value:= c_phi_3; 28
phi_acc.value:= c_phi_3;
v_ego_stim .value:= c_vel_1; 30
if (duration >= tol ){
assert (brake_pedal.value = true); 32
assert (acc_pedal.value = true);};
} 34
until (duration >= 2.0)
36
// Teststep 4
cont{ 38
phi_brake.value:= c_phi_4;
phi_acc.value:= c_phi_2; 40
v_ego_stim .value:= c_vel_1;
if (duration >= tol ){ 42
assert (brake_pedal.value = true);
assert (acc_pedal .value = false );}; 44
until (duration >= 2.0) 46
// Teststep & 48
cont{
phi_brake.value:= c_phi_5; 50

phi_acc.value:= c_phi_1;
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v_ego_stim .value:= c_vel_1;
if (duration >= tol ){
assert (brake_pedal.value = true);
assert (acc_pedal.value = false);};

until (duration >= 2.0)

}

52

54

56

58

Refinement option:  The test case specification in Listing 7.3 uses redun-
dant code fragments. A more compact test specification can be found in the
parameterizable modes which belong to the advanced programming features
of TTCN-3 embedded. Listing 7.4 shows one such specification, including

parameters for all relevant variables.

Listing 7.4: Testing the pedal recognition

mode pedRecStep (in float brake,
in float acc,
in float v,
in float tol_,
in boolean assert_brake ,
in boolean assert_acc ,
in float dur) runs on PedIntTester
cont{
phi_brake.value := brake;
phi_acc.value := acc;
v_ego_stim .value := v;
if (duration >= tol_){
assert (brake_pedal.value =— assert_brake);
assert (acc_pedal .value = assert_acc)

}

until (duration >= dur)

10

12

14

16

The specification of the individual test steps can be reduced when the
parameterizable mode specification from Listing 7.4 is used, because it elim-
inates repeated code. This makes testing more efficient and faster. Listing

7.5 depicts the application of this kind of mode.

Listing 7.5: Testing the pedal recognition, first test case, refinement

testcase PedalRecognition_1_refined () runs on PedIntTester{

setverdict (pass);

// Teststep 1
pedRecStep(c_phi_1, c_phi_5, c_vel_3, tol, false,
// Teststep 2
pedRecStep(c_phi_2, c_phi_4, c_vel_ 2, tol, false,
// Teststep 3

true,

true,

pedRecStep (c_phi_3, c_phi_3, c_vel_1, tol, true, true,

// Teststep 4

pedRecStep (c_phi_4, c_phi_2, c_vel_1, tol, true, false,

// Teststep 5

pedRecStep (c_phi_5, c_phi_1, c_vel_1, tol, true, false,

2.0);

2.0);
2.0);

2.0);

2.0);

<

11

13
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Test case PedalRecognition._2: The second test sequence depicted in
Figure 7.5 conventionally differs from the first by requiring ramp-shaped in-
put stimuli. The overall setup (i.e. the test component and the constant
specification) of the TTCN-3 embedded test case is, however, the same as
that proposed for the first test sequence. The TTCN-3-3 source code is given
in Listing 7.6. Again, each test step is represented by an atomic mode. To
provide a ramp-shaped output signal, the respective ports are continuously
assigned increasing values that are calculated following a simple ramp func-
tion (see Listing 7.6, line 5,6 and line 14,15).

Listing 7.6: Testing the pedal recognition, second test case

testcase PedalRecognition_2() runs on PedIntTester{

setverdict (pass);
cont { 4
phi_brake.value:=c_phi_5 — (duration * c_phi_5);
phi_acc.value:= c_phi_1 + (duration * c_phi_5);

v_ego_stim .value:= c_vel_1;
if (phi_brake.value >= ped_min){ 8
assert (brake_pedal.value = true)

if (phi_acc.value >= ped_min){

assert (brake_pedal.value = true) 12
b
14
until (duration >= 1.0)
16
cont{
phi_brake.value:= c_phi_1 + (duration * c_phi_5); 18
phi_acc.value:= c_phi_5 — (duration *c_phi_5);
v_ego_stim .value:= c_vel_1; 20
if (phi_brake.value >= ped_min){
assert (brake_pedal.value = true) 22
b
if (phi_acc.value >= ped_min){ 24
assert (brake_pedal.value = true)
} 26
until (duration >= 1.0) 28

Refinement option: The use of libraries with predefined modes and
functions allow for even further simplification of the test specification pro-
cess. These predefined modes and functions can provide parmeterizeable
signal generators for commonly used signal shapes, such as ramps, square
waves, sine waves, saw-tooth waves, etc. Libraries in TTCN-3 are usually
provided as separate modules that can be imported into the main testing
module. Listing 7.7 shows a possible definition of one such library of modes
and functions.
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The ramp function provides the values for a ramp with a range of 0.0 to
dur. The ramp is normalized to 1.0 and has a slope of 1/dur, a figure which

also represents the major length of the ramp in seconds.

Listing 7.7: Library with signal generators

module signal_generators {
type port FloatOut message {out float };

function ramp(in float dur, in float actual_t) return float

if (actual_t > dur or actual_t < 0.0) {return 0.0;}
else {return actual_t * (1.0/dur);}

}

mode apply_ramp (in FloatOut p,
in float dur,
in float startval,
in float amplitude,
in float actual_t ,
in integer repetitions)

cont {
inv{repetitions > 0}
p.value:= startval + (ramp(dur,actual_t) * amplitude);
until{
[duration >= dur] {
repetitions := repetitions — 1;

if(repetitions > 0){repeat}
}
}

}

10

12

14

16

18

20

22

24

26

This parameterizable mode apply_ramp applies a ramp with a given number
of seconds (parameter dur) and a given amplitude (parameter amplitude) to a
given port (parameter p). The signal starts at a given start value (parameter
startval ), can be repeated randomly and is controlled via the parameter
repetitions . Listing 7.8 redefines the previous test case pedallnterpretation_2

(see Listing 7.6) by applying this parameterizable mode.

Listing 7.8: Testing the pedal recognition, second test case, refinement

testcase PedalRecognition_2_refined () runs on PedIntTester{

setverdict (pass);
// test sequence 1
par{
apply_ramp (phi_brake, 1.0, c_phi_5,
c_phi_1 — c_phi_5, duration, 1);
apply_ramp (phi_acc, 1.0, c_phi_1,
c_phi_5 — c_phi_1, duration, 1);

cont{
v_ego_stim .value:= c_vel_1;
if (phi_brake.value >= ped_min){
assert (brake_pedal.value = true)
b

if (phi_acc.value >= ped_min ){
assert (brake_pedal.value = true)

10

12

14

16
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s
} 18
until (duration >= 1.0) 20
// test sequence 2
par{ 22
apply_ramp (phi_brake, 1.0, c_phi_1,
c_phi_5 — c_phi_1, duration, 1); 24
apply_ramp (phi_acc, 1.0, c_phi_5,
c_phi_1 — c_phi_5, duration, 1); 26
cont{
v_ego_stim .value:= c_vel_1; 28
if (phi_brake.value >= ped_min){
assert (brake_pedal.value = true) 30
b
if (phi_acc.value >= ped_min){ 32
assert (brake_pedal.value = true)
b 34

}

until (duration >= 1.0)}

36

Test case PedalRecognition_3:  The third test sequence from Figure 7.5
uses parameterizable modes from the outset. Listing 7.9 shows two definitions
and demonstrates how parameterizable modes can be combined. The pa-
rameterizable mode definition flag assertions describes the assertions for the
pedal flags brake_pedal and acc_pedal. The parameterizable mode pedRec3Step
is comprised of stimuli and assertions. It contains both a parameter that sets
the values for the phi_brake port and a mode parameter.

Listing 7.9: Testing the pedal recognition, third test case, parameterizable modes

mode flag_assertions (in boolean b_pedal, in boolean a_pedal)

runs on PedIntTester 2
cont{
if (duration >= 0.1 ){ 4
assert (brake_pedal.value = b_pedal);
assert (acc_pedal.value = a_pedal); 6
}
} 8
mode pedRec3Step (in float ac_acc, 10
in mode assertions)
runs on PedIntTester 12
par{
onentry { 14
phi_acc.value:= ac_acc;
} 16
assertions;
apply_ramp(v_ego_stim , 2.0, c_vel_3, 18
c_vel_5 — c_vel_3, duration, 1);
} until (duration >= 2.0) 20

The mode parameter is used to flexibly add individual assertions, in or-
der to evaluate each test step in a focused and specific way. This kind of
flexibility might also be used to provide different versions of a particular test
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case by means of different kind of assertions. Both parameterizable modes
use the runs on clause, which enables them to directly access the ports of
PedlIntTester.

Listing 7.10 shows the application of the predefined modes in the per-
formance of the third test in the Figure 7.5 sequence. The test case starts
by setting the verdict and the value for phi_brake. The value for phi_brake
remains constant, so that the port need not be adjusted further. The test
steps are then subsequently defined. Each step is parameterized with the
actual value for phi_acc and the respective assertions for the pedal flags.

Listing 7.10: Testing the pedal recognition, third test case

testcase pedalRecognition_3() runs on PedIntTester{

setverdict (pass);

phi_brake.value:= c_phi_1; 4
pedRec3Step (c_phi_1, flag_assertions (false, false)); 6
pedRec3Step (c_phi_2, flag_assertions (false, false));

pedRec3Step (c_phi_3, flag_assertions (true, false));
pedRec3Step (c_phi_4, flag_assertions (true, false));
pedRec3Step (c_phi_5, flag_assertions (true, false)); 10

—~

Results of the test run

The TTCN-3 embedded test specifications given in the listings above can
be compiled and executed in principle. The execution is driven by a Mat-
lab/Simulink simulation run. The executable code has been compiled via
a prototypic TTCN-3 embedded compiler and integrated into a Simulink
S-Function via the Simulink adapter discussed in Section 6.4. The tests were
executed successively and were not performed in real time, but rather in a
simulation time generated by the Matlab/Simulink simulation solver.

Figure 7.6 shows the testing results recorded during the entire simula-
tion run. The recordings of the first 10 seconds belong to the test case
PedelRecognition_1, the recordings of the following 2 seconds (from second 10
to second 12) belong to the test case PedalRecognition_2 and the recordings
at the end of the test log (from second 12 to 20) belong to the test case
PedalRecognition_3.

The signals 4 : phi_acc, 3 : phi_brake and v_ego_stim are generated by
the TTCN-3 embedded test system. These signals drive the test run and
try to provoke an unspecified system reaction. The signals 1 : acc_pedal and
0 : brake_pedal represent the reaction of the system which is used for the
automatic generation of verdicts. These two signals are continuously checked
during each test run and across all of the three test cases. If one of the values
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Figure 7.6: Signal logs of the pedal interpretation test

changes to an unexpected value, the system sets the overall verdict of that
test case to fail == 0.0. Otherwise, the verdict value remains pass == 5.
The tests are executed with different configurations for the values tol and
ped_min. While a change of ped_min within the range of [1.0..10.0] did not
lead to an error, a small tol value tol < 0.05 in the first test case sometimes
provoked errors.

7.1.83 Testing the complete ACC system

To test the complete ACC system, a scenario-oriented paradigm is used. The
scenarios mimic common driving situations and are applied to the system
using a slightly different test interface than that which is used in the previous
example. Unlike the pedal interpretation test cases, the following test cases
need the input of an environment model that simulates the overall behaviour
of the vehicle’s engine (see Figure 7.2). The test interface is specified in Figure
7.7 and in Table 7.2. The table provides a test-system-centric perspective of
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the test interface: system inputs are declared as outputs and system outputs
as inputs.
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Figure 7.7: The test system perspective of the Adaptive Cruise Control

Table 7.2: ACC test interface (system)

symbol dir unit datatype

df out - double
phi_brake out % double
phi_acc out % double
lever_pos out - enumeration
v_other out m/s double

v_ego in  m/s double
driver_warning in - boolean
v_desired in  m/s double
accs_mode in - enumeration
d_other in m double

The complete test setup is depicted in Figure 7.2 and Figure 7.7. It
consists of the ACC system, an environment model and the test system. The
test is conducted as a closed-loop test. This means that the system output is
played back into the system from which it originates via the vehicle model and
test system. The environment model provides the overall behaviour of the
vehicle’s engine. The test system is responsible for both for the stimulation
of the system and the evaluation of its output.
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Exemplary test purposes: Changeover velocity control mode and distance con-
trol mode

In this first scenario, the changeover between velocity control mode and dis-
tance control mode is tested. Velocity control mode is a simple control mode
which does not include distance control. This mode is used when no other
vehicle is directly ahead. Distance control mode, on the other hand, provides
active distance control. It is activated automatically when there is a slower
vehicle directly in front of the car. A correct changeover between velocity
control and distance control shows that the ACCS is able to detect slower
vehicles correctly and thus one of the major indicators that the system is
functioning correctly. The corresponding scenario specification is given be-
low.

Test scenario 1: Switch to distance control mode

1. Init: Introduce a vehicle ahead by setting the velocity of the vehi-
cle ahead to v_other:= 25 m/s. The initial distance d_init:=90 m is
set before the test execution using the parameter interface in Mat-
lab/Simulink. Accelerate the vehicle phi_acc:=80 until the velocity
v_ego rises to more than 35 m/s. Then activate the cruise control by
setting the leverpos:=HOLD_ACC.

2. Activate Velocity Control Mode: The ACC shall switch to the
velocity control mode and the vehicle shall hold the current velocity
with a tolerance of 10 per cent. After a few seconds, the vehicle reaches
the safe distance to the vehicle ahead. The safe distance to the vehicle
ahead can be calculated with v_acc/2xdf. The symbol df represents a
distance factor that is set to the value of 2.0 here.

3. Activate Distance Control Mode: When the safe distance is reached,
the ACC switches to distance control mode. The ACC should now ad-
just the running velocity according to the vehicle ahead with a tolerance
of 10% here. The safe distance to the vehicle ahead must be guaranteed.

In a second scenario, the changeover between distance control mode —
when there is a slow vehicle just in front— and back to velocity control mode
— when the vehicle directly ahead accelerates— is tested. This changeover
is one of the more complex tasks of an ACC and can be evaluated using
the following test behaviour. In this second scenario, the original scenario is
supplemented with an additional step.
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Test scenario 2: Back to velocity control mode
1. Init: see similar step in test scenario 1
2. Activate Velocity Control Mode: see similar step in test scenario 1
3. Activate Distance Control Mode: see similar step in test scenario 1

4. Accelerate Target: To test whether the ACC switches back to ve-
locity control mode, we accelerate the target vehicle using a smooth
ramp. The ACC should now adjust the velocity of the ego vehicle in
response to the behaviour of the the target vehicle (whose velocity must
exceed 40 m/s). For this assessment, a velocity tolerance of 10% can
be allowed. Once the target vehicle’s velocity is assessed and deemed
sufficient, the ACC should switch back to velocity control mode.

The TTCN-3 embedded test (case) specification

The TTCN-3 embeddedtest specification starts with the definition of the
data, port and test component types. The data type definition sets the
figures which depict both the states of the lever and the different modes
of the ACCS. The port type definitions articulate the port types that will
be used for the data streams. There are Float streams for the Float-valued
outputs (like the dist factor (df), the brake pedal (phi_brake), the acceleration
pedal (phi_acc), and the velocity of the vehicle ahead (v_other)). There is also
another data output stream, known as lever_pos, which communicates the
position of the lever and is used to appropriately adjust the position of the
lever. The Float-valued inputs v_ego, v_desired, and d_desired are modeled as
Float streams, the Boolean-valued input (driver_warning as a Booelan stream
and the current ACCS mode accs-mode) as an ACCSMode stream.

Listing 7.11: Definition of the ACCS tester component

module ACCSystemTest{
type enumerated LeverState { MIDDLE, HOLD_ACC, HOLD_DEC, OFF }; 2
type enumerated ACCSMode { PASSIVE, PRESSED, VCM, DCM};

type port FloatOut stream {out float };

type port LeverOut stream {out LeverState }; 6
type port FloatIn stream {in float };
type port Boolln stream {in boolean}; 8

type port ACCSModeln stream {in ACCSMode};
10
type component ACCSTester {

port FloatOut df; 12
port FloatOut phi_brake;
port FloatOut phi_acc; 14

port LeverOut lever_pos;
port FloatOut v_other; 16
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port Floatln v_ego; 18
port Boolln driver_warning;
port FloatIn v_desired; 20
port ACCSModeln accs_mode;
port FloatIn d_other; 22
}
24
}with {stepsize 70.17} 26

The test cases themselves begin with the setting of the initial verdict and
the initial values at ports. In the first test case in Listing 7.12, the distance
factor df is set to 2.0 and the lever is set to the position "OFF”. Additionally,
the velocity for the vehicle ahead is set to 25 ms. In Lines 10 to 18, the
velocity is steadily accelerated until it reaches 35 ms. At this point, the lever
is set to the middle position, thereby activating the ACCS.

Listing 7.12: Testing the changeover from velocity to distance control mode

testcase Switch_to_distance_control_1() runs on ACCSTester{

setverdict (pass);

df.value:= 2.0; 4
lever_pos.value:= OFF;
v_other.value:= 25.0; 6

phi_brake.value:= 0.0;

// accelerate wvehicle until 35 ms and activate ACCS
cont{ 10
phi_acc.value:=80.0;

until{
[v_ego.value > 35.0] { 14
phi_acc.value:=0.0;
lever_pos.value:= MIDDLE; 16
}
} 18
// wait for several seconds 20

wait (now + 10.0) ;

// check if the wvelocity has not increased

// and if the distance control mode has been activated 24
cont{
onentry{assert (accs_mode.value = DCM)} 26

assert (v_ego.value <= 38.0);

until{
[duration > 10.0] {} 30
}

} 32

After the ACCS has been activated, the test case waits for 10 seconds. For
the next 10 seconds, the test case checks to see if the velocity of the primary
vehicle has not, in fact, increased (line 27) and if the distance control mode
has rather been activated due to the detection of a vehicle ahead (line 28).
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Figure 7.8 shows the data recorded during the execution of the test case.
Signal 3 : v_other shows the velocity of the vehicle ahead (which is set at
the beginning of the test case). The acceleration phase (seconds 0 to 25) is
defined by the signals 1 : phi_brake and 4 : v_ego. 1 : phi_brake shows that
the gas pedal has been pressed and 4 : v_ego shows the increase in velocity.
Afterwards, the ACCS adjusts the velocity of the ego vehicle in response to
the target vehicle.

—— 5:d_other
4:v_ego

3:v_other

2:phi_acc
—— 1:phi_brake

0:accs_mode

150

100

2
L o O time (sec)
signals

Figure 7.8: Execution of Switch_to_distance_control_1

The signal 0 : accs_mode shows the settings of the ACCS mode. It should
be noted that the original value range is 0 to 2. To make the signal changes
visible in the signal log, the values must be scaled up by a factor of 5. The
signal, however, shows that the ACCS mode changes from passive mode to
velocity control mode when the ACCS is activated. After a while, when the
vehicle has reached the (pre-defined) critical distance to the vehicle ahead,
the distance control mode is activated.

The second test case is, in fact, a simple extension of the first. The
beginning of the scenario is completely unchanged; Listing 7.13 shows its im-
plementation. A vehicle ahead is introduced with a fixed velocity of 25 ms,
the ego vehicle is accelerated and thus the ACCS switches into distance con-
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trol mode. Afterwards, however, the vehicle ahead is accelerated gradually
by ramping up wv_other in line 33 of Listing.

Listing 7.13: Testing the change back from distance to velocity control mode

testcase Back_to_velocity_control_1() runs on ACCSTester{

}

setverdict (pass);
df.value:= 2.0;

v_other.value:= 25.0;
phi_brake.value:= 0.0;
lever_pos.value:= OFF;

// accelerate vehicle until 35 ms and activate ACCS
cont{

phi_acc.value:=80.0;
}

until{

[v_ego.value > 35.0] {
phi_acc.value:= 0.0;
lever_pos.value:= MIDDLE;

}

}

// wait for several seconds
wait (now + 10.0);

// check if the welocity has not increased
// and if the distance control mode has been activated
cont{

onentry{assert (accs_mode.value =— DCM) }

assert (v_ego.value <= 38.0);

until (duration > 50.0)

// accelerates the the wvehicle ahead
// and checks whether ACCS switches back to wvelocity control mode
cont{

v_other.value:= 25.0 + (duration * 0.5) ;

until{
[duration > 50.0] {setverdict(fail)}
[accs_mode . value = VCM] {setverdict (pass)}
}
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During the acceleration of the target vehicle, the test case checks if the
ego vehicle switches properly back from distance control mode into velocity
control mode. If this indeed happens during the subsequent 50 seconds, the
test case ends with a verdict of success (a pass); otherwise, it ends with a
verdict of failure (a fail).
Similarly to Figure 7.8, Figure 7.9 shows the recordings of the signals.
Signal 3 : v_other shows the gradual acceleration of the vehicle ahead about
70 seconds after its initial appearance. The signal 5 : d_other shows that the
distance to the target vehicle ahead is increasing as the target accelerates and
the signal v_ego shows that the ego vehicle starts to accelerate concomitantly.
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Figure 7.9: Execution of Back_to_velocity_control_1

Finally, after about 100 seconds, signal 0 : accs_mode shows that the
ACCS has returned to velocity control mode and, ergo, the vehicle returns
to its former fixed velocity of 35 ms (signal 4 : v_ego).

The test results

The ACCS test cases above belong to a test suite for which tests have been
executed with multiple different settings: df, v_other, and phi_acc. It could
be shown that, if the difference between the velocities is high (i.e. wv_ego is
high and wv_other is quite low), the ACCS needs time to properly adjust the
velocity of the ego vehicle. This leads sometimes to overshots, wherein the
ACCS switches between velocity control mode and distance control mode
several times. This behaviour is not problematic so long as the change of the
velocity in the ego vehicle remains smooth. The information from the signals
in Figures 7.8 and 7.9 show this kind of behaviour after about 50 seconds,
when the signal 0 : accs_mode suddenly changes from distance control mode
to velocity control mode, and then back again.
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7.2 THE HiL CASE STUDY

The HiL. case study is executed using a Vector CANoe test environment
that has been extended to integrate TTCN-3 embedded test executables.
The SUT is a window-lifting ECU and is part of an Automotive Application
Evaluation System (AAES). This case study has been designed to show that
the concepts already used for testing simulations could be also used in an
environment with real-time requirements.

7.2.1  Automotive Application Evaluation System (AAES)

The Automotive Application Evaluation System (AAES) is used to develop
and test software for automotive ECUs, under realistic conditions. The
AAES is made up mostly of components which are used in the automotive
industry. The softwares of the individual vehicle functions are designed and
implemented as a distributed application. The components are connected by
a typical vehicle CAN network, which can be controlled by CANoe software.
The Figure 7.10 shows the AAES.

Figure 7.10: The Automotive Application Evaluation System (AAES)

The window-lifter module consists of a control unit with actuators that
drive the motor of the window lifter. The keypad can be used to control
the lifter and a hall sensor is used to control the power of the window-lifting
motor.
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7.2.2  Testing the window lifter module

In the following case study, the AAES window-lifter module is tested under
realistic conditions. The window lifter can be controlled by driver commands
and by passenger commands, both of which are normally applied to the
window-lifter module by means of a keypad. The commands are: up, down
or neutral. When a driver or a passenger holds the up command, the window
position increases until the window is closed. When a driver or a passenger
holds the down command, the window position decreases until the window
is completely open. The window controller has an obstacle detection mecha-
nism: that is to say, when an obstacle is introduced as the window is closing,
the obstacle is detected and the closing process stops immediately.

ECU ECU ECU
ECU_PWL ECU_BAT ECU_LIGHT
o o Prac

T re re

Bus
CAN
CAN 1
ECU ECU ECU I-Generator ECU
ECU_ABS ECU_DL RBSIM 16 AES_Adapter
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Figure 7.11: Setup of the window lifter module in the Vector CANoe environment

For testing the window-lifter module, the TTCN-3 embedded test exe-
cutable has been integrated into the Vector CANoe environment, as depicted
in Section 6.5. The inputs and outputs of the test executable are adapted to
the respective environment variables in CANoe which, by themselves, control
the CAN bus interaction with the SUT.

Table 7.3: The test interface of the AAES window lifter module

symbol dir unit datatype
PWLMoveState out - enumerated
UV_Crash out - enumerated
Window_Position 1n - double

Window_Current in - double
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The test cases simulate user interaction by setting the values idle, auto_up,
up, down, auto_down, or unknown at PWLMoveState. When these values change,
the CANoe environment is triggered to generate CAN messages, which are
then sent on the CAN bus and transmitted to the window lifter ECU.

The test cases performed upon the AAES system can be used as simple
regression tests to evaluate the basic behaviour of the window-lifter module.
They are designed to correspond to the level of overall user interaction. This
is helpful principally because it allows the application of the tests in MiLL and
HiLL environments without the trouble of adding extra test interfaces. The
following scenario depicts the level of abstraction used in the test design.

e The driver presses and holds the down button. The window opens (i.e.
the position value increases).

e When the window position reaches the down position (value <= -1000)
or the test has exceeded its maximum duration, the test ends.

e [t is checked if the window has reached the down position after a min-
imum of 6 seconds.

All TTCN-3 embedded scenarios are based on a common test interface
specification, which is depicted in 7.14.

Listing 7.14: Window lifter test (test interface)

type enumerated MoveState {idle, auto_up, up, down, auto_down, unknown};

type enumerated CrashState {OK, Crashl, Crash2}; 2
type port Streamln stream {in float }; 4
type port StreamPWLOut stream {out MoveState };
type port StreamCrashOut stream {out CrashState}; 6
type component Tester { 8

port StreamPWLOut PWLMoveState;

port StreamCrashOut UV_Crash; 10

port StreamIn Window_Current;

port StreamIn Window_Position; 12
}

14

function setUp() runs on Tester{

PWLMoveState. value:= idle; 16

UV _Crash.value:= OK;
18

cont{

PWLMoveState . value:= up; 20
Juntil{

[Window_Position.value >= 0.0]{ PWLMoveState. value:= idle} 22
}
setverdict (pass); 24

}

function tearDown() runs on Tester{
PWLMoveState. value:= idle; 28

26
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UV_Crash.value:= OK;
} 30

Furthermore, the general set-up and tear-down functions are defined to con-
tain actions which reset the AAES window-lifter module. The set-up func-
tion ensures that the window is indeed fully closed when the test starts. The
tear-down function is simply used to turn off every action that triggers an
actuator, so that the hardware stops moving altogether. Listing 7.15 shows
the TTCN-3 embedded implementation of the scenario defined above.

Listing 7.15: Window lifter test (down mode)

// tests the window down function of the window lifter

testcase test_.down_mode() runs on Tester { 2
setUp ();
cont{ 4
PWLMoveState. value:= down;
assert (duration <= 6.0); 6
Yuntil{
[Window_Position.value < — 1000.0]{} 8
[duration > 10.0]{setverdict(fail)}
} 10
tearDown () ;
}Y//testcase 12

Other test cases check not only if the window has reached a certain posi-
tion, but also check if it continuously change position while the window-lifter
is activated. The test case in Listing 7.16 tests if the window reaches its half-
open position after 3 seconds and if the window position decreases during
the test run; this is determined by comparing the previous values and with
the extant values (see line 6).

Listing 7.16: Window lifter test (open half)

testcase test_open_half() runs on Tester {

setUp (); 2
cont{
PWLMoveState. value:= down; 4
assert (duration <= 3.0);
assert (Window_Position.prev.value > Window_Position.value); 6
}until(Window_Position.value < — 500.0)
tearDown () ; 8
}Y//testcase

Figure 7.12 shows the log window of the CANoe environment. The
TTCN-3 embedded logs and the verdict results are transferred to this win-
dow and thereby shown to the tester. Figure 7.13 shows the signals for the
window position and the window current as they are presented to the tester.
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Figure 7.12: The results of the window lifter application
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Figure 7.13: The outputs of the window lifter application

7.3 DISCUSSION

The two case studies documented above show that TTCN-3 embedded is
suited for the testing of continuous systems in a MiL. simulation, as well as
for the testing of real controller hardware in a HiLL simulation. The MiL study,
in particular, shows that TT'CN-3 embedded is specifically appropriate and
useful for the stimulation and analysis of continuous systems. Furthermore,
it is demonstrated that the language constructs are powerful enough to allow
the simplification of test descriptions and the reuse of test fragments in other
contexts. The examples from the case studies mainly address the capabili-
ties of the new language constructs and, therefore, show only a subset of the
overall capabilities of TT'CN-3. Thus, in combination with the concept of pa-
rameters in TTCN-3 (e.g. parameterized test cases, parameterized functions
and parameterized templates), TTCN-3 embedded allows for both combina-
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tion of and reuse of test fragments and includes the variability required for
such manoeuvres. It has additionally been shown that TTCN-3 embedded
can be used to test individual components and subsystems, such as the pedal
interpretation, and to apply complex driving scenarios that test an applica-
tion in the context of its integration with the overall vehicle. In the latter
case, the TTCN-3 embedded tester is used as integral part of the simulation
that generates or perpetuates outgoing signals and assesses incoming signals.

The HiL case study shows that TTCN-3 embedded language constructs
are suitable for the testing of time-dependent processes in a real-time envi-
ronment. Since the window-lifter application only has soft real-time require-
ments and the execution in Vector CANoe is also limited to soft real-time
requirements, a proof of concepts for harder real-time requirements remains
pending.

Apart from the two case studies documented here, a number of addi-
tional case studies have been carried out. These studies show other relevant
aspects of the language. In the course of the project TEMEA, it was shown
that TTCN-3 embedded test cases can be reused between Mil., SiL. and HiL
simulations. The case study was based on tools from dSpace. A thesis writ-
ten in cooperation with the Technical University of Aachen and the ESG also
showed how T'TCN-3 embedded could be effectively integrated in the testing
processes of a large OEM [83].



CHAPTER 8

CONCLUSION AND RESEARCH PROSPECTS

This thesis has specified and designed a uniform test-specification technology
for embedded real-time systems in the automotive industry. The technology
addresses the various aspects of automotive components and control systems
and allows for the testing of: discrete behaviour for communication; contin-
uous behaviour for the interaction with physical processes; and hybrid be-
haviour for the technical control of the physical processes and interaction be-
tween the environment, other components and the user. This technology fa-
cilitates testing and assessment of the functionality, robustness, performance
and scalability of automotive components and their configuration. The main
results of this thesis, the language TTCN-3 embedded, is technically based on
the standardized test-specification language TT'CN-3. TTCN-3 has been se-
lected as a foundation language because it already provides dedicated testing
instruments that can test message-based and procedure-based systems. Fur-
thermore, it is standardized within the industry and is thus already in broad
use. TTCN-3 embedded is a systematic extension of TTCN-3 that seamlessly
aligns new concepts for testing continuous and hybrid systems with the ex-
isting TT'CN-3 approach and tools.

The thesis began by describing the current state of embedded systems
testing in the automotive industry and identifying industrial and academic
approaches towards the testing of hybrid and continuous systems. Based on
this, a set of dedicated concepts for testing continuous and hybrid systems
were identified and deduced in Chapter 3. The syntactic and semantic inte-
gration of the newly introduced concepts with TT'CN-3 followed in Chapter 4
and Chapter 5. Chapter 6 was concerned with the integration of the new
language constructs, their communication-related requirements within the
overall TTCN-3 test architecture, and the integration of TTCN-3 embedded
into test and simulation environments typically found in the automotive in-
dustry. Finally, Chapter 7 showed the applicability of the concepts to two
automotive case studies.

In addition to the results of this thesis, the project TEMEA has devel-
oped a methodology that systematically integrates TTCN-3 embedded into
the research and development processes of the automotive industry. This

177
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methodology specifically supports an objective, implementation- and device-
independent and technically detailed definition of test requirements and test
procedures. The methodology also specifically addresses development pro-
cesses and technologies that are already established in the automotive in-
dustry, thus creating a common platform that is interesting for industrial
applications. Especially by addressing TT'CN-3 embedded’s integration with
the tools Mathworks Matlab/Simulink, Vector CANoe, and dSPACE Au-
tomation Desk, this thesis and TEMEA have shown that TTCN-3 embedded
can smoothly integrate into existing automotive tool chains. Furthermore,
TTCN-3 embedded was standardized by the ETSI in 2012 [38].

8.1 THE DEFINITION OF TTCN-3 embedded

TTCN-3 embedded is a test-specification language that has been specifically
tailored to meet the requirements of the automotive industry and to integrate
with various testing protocols of automotive software and system components
that are already in use across the industry. Particular attention has been
paid to the combined testing of discrete and continuous behaviour and to the
ability of TTCN-3 embedded to test real-time systems. TTCN-3 embedded
supports

e the integrated testing of discrete and continuous behaviour,
e the cross-platform exchange of test definitions (MiL / SiL / HiL)
e the definition of tests for the entire test and integration process.

TTCN-3 is a high-level language that allows a particular abstraction from
technical details and from technology to be tested and its implementation as-
sessed. By means of TTCN-3, users are able to specify tests at an abstract
level and focus on the definition of the test cases rather than testing the adap-
tation and execution of the system as a whole. TT'CN-3 enables, therefore,
a systematic and specification-based test development for various kinds of
tests, including tests that assess functionality, scalability, load, interoperabil-
ity, robustness, regression, total system and integration. TTCN-3 embedded
has been designed using the same level of abstraction. It has extended this
common technological foundation to now include various testing activities
like integration testing and system and acceptance testing for a large por-
tion of the software-based systems that exist in the automotive industry. In
general, TTCN-3, when combined with T TCN-3 embedded, has shown the
potential to serve as a testing infrastructure that positively influences the
degree of automation and reuse in industrial processes.
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One of the biggest challenges in the writing of this thesis was to link
the concepts for testing of continuous and hybrid systems with the existing
concepts of TTCN-3. TTCN-3 is an asynchronous language that has rarely
been used for testing real-time systems. The concepts for TT'CN-3 embedded,
however, require that the language is synchronized and can be used in a real-
time setup.

The basis for synchronization in TTCN-3 embedded is sampling. Con-
sequently, all processing steps of a TTCN-3 embedded test program must
be incorporated in the sampling mechanism. Inherent processes, such as the
TTCN-3 snapshot semantics, must also be aligned with the sampling, rather
than with the explicit processes that create and start distributed compo-
nents. Section 5.4.5 describes how the integration of the snapshot semantics
was accomplished. Snapshots are simply timed to occur at full steps of the
underlying base sampling, i.e. at the steps of the fastest possible clock rate
of the test system. The synchronized start of distributed components is
described in Section 6.3.2. Basically, it is assumed that the distributed hard-
ware clocks are synchronized with a mechanism that is outside of TTCN-3.
This can be done using established methods such as GPS synchronization and
NTP synchronization. In this case, the TTCN-3 embedded environment is
only responsible for communicating the start time of a component correctly.

Challenges with respect to the real-time capability of the language occur
in two notable areas: the language structures are time-consuming during
execution simply due to their complexity, and they can block instructions
that contradict the idea of sampling. The latter has led to some TTCN-3
statements not being used in time-critical sections of a TT'CN-3 embedded
program. So, for example, using receive-statements in the body of a mode
construct is not allowed; therefore, TTCN-3 statements are not used in such
a construct. These limitations are, however, acceptable and their compliance
with the respective rules is ensured by the grammar. The issue of complex
constructs (like, for example, stream ports) may, at high sample rates and
long test times, produce a considerable execution and management effort.
This effort may have a negative impact on overall execution time and thus
hinder the real-time capabilities of the test system. To counteract this special
issue, the length of the stream history can be fixed, so that only a small
amount of messages needs to be managed. In general, the language has
been designed in such a way that there is no conceptual level construct that
undermines the language’s ability to perform as a real-time test system.

On the practical level, real-time performance is a matter of speed of exe-
cution, which is determined by the real-time capabilities of the language and
the capacities of the operating system that is used to implement the test. For
professional use, versions based on higher programming languages (e.g. Java)
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are currently used. These languages bring along uncertainties and introduce
some non-determinism regarding real-time behaviour.

In order to prove and test concepts, a prototypical TTCN-3 compiler
has been developed. The compiler supports the main TT'CN-3 embedded
concepts and generates executable test code in C# or C which integrates with
typical automotive testing environments. The C# code-based test system has
been used to integrate TTCN-3 embedded with CANoe and the C code-based
test system to integrate T'T'CN-3 embedded with Simulink S-Functions.

The integration with Simulink S-Functions allows T'TCN-3 embedded to
perform systematic MiLi test cases. The TTCN-3 embedded test executable
fits neatly in the S-Function interface, which automatically executes during
a simulation run. Details of the integration can be found in Section 6.4.
Based on this integration, several MiL test cases for several typical automo-
tive control systems (including an Adaptive Cruise Control, an Automatic
Transmission Engine and an Engine Controller) [45] have been carried out.
The case study concerning the Automotive Cruise Control is documented
in Chapter 7. Generally, the case studies showed the applicability of the
TTCN-3 embedded concepts for the intuitive definition of stimulation and
assessment procedures, especially for continuous signals and the execution
of tests with simulation time. The integration of TTCN-3 embedded with
Vector CANoe [125] allows for the possibility of testing control systems in
both a simulation environment and with real hardware in a networked en-
vironment. In this particular integration, the TTCN-3 test executable was
integrated as an independent test component of the CANoe test environ-
ment. The test executable interacts with the CANoe test environment and
the SUT by adapting to the environment variables and the CANoe network
API. The case studies performed using the TTCN-3 and embedded CANoe
integration are especially relevant because they address the testing of control
systems on HilL and SiLi levels. Other available case studies about TTCN-3
include an indicator and light control system test [83] and a window lifter
control system test [43]. The main concepts of this thesis and their integra-
tion with TTCN-3 have been submitted to the ETSI for standardization. In
the meantime, TTCN-3 embedded has been accepted and published [38].

8.2 FUTURE WORK AND PROSPECTS FOR INDUSTRIALIZATION

Today’s automobiles have dozens of control units, thousands of functional
features and software with tens of thousands of line of code. The dispersed
production of automobile component parts has produced inconsistency and
inefficiency in the testing of said parts. This work has shown that, with
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TTCN-3 embedded, a standardized solution is available. A standardized so-
lution is valuable because it allows for the convergence and harmonization of
test technologies that aim to evaluate discrete telecommunications systems
and continuous control systems. TTCN-3 embedded enables the development
of test cases which can be exchanged between different platforms, because
it allows users to compose tests with suitable and variable levels of abstrac-
tion and particular design specifications. In TTCN-3 embedded, users also
have the ability to directly execute test specifications. These factors make
TTCN-3 embedded an ideal language for industry-wide use in the testing of
telecommunications systems and continuous control systems.

The reuse of tests and testing artifacts based on TTCN-3 embedded in
model-based testing approaches has been outlined in [45]. The fact that
TTCN-3 embedded is standardized increases the chances that the language
can be used by suppliers as well as the OEM. In addition, it increases the
chance that reliable training programmes will become available for disposal.
Future generations of vehicles will be integrated into a comprehensive com-
munications infrastructure which will enable the exchange of data between
individual vehicles, bulks of vehicles and traffic control centres. Ensuring the
quality of these systems presents a new set of distinct challenges, because
the combination of systems is unique and unprecedented, and because the
testing systems and the specification of test cases have particular require-
ments. TTCN-3 embedded has shown that it has the potential to meet the
requirements of these kinds of systems [47]. However, the approach described
in the aforementioned research has yet not rolled out due to the absence of
an industrial grade T'TCN-3 embedded compiler.

During the development of TT'CN-3 embedded, there were parallel re-
search endeavours and attempts to introduce so-called signal assessment
patterns. Assessment patterns are an approach that introduce regular ex-
pressions for signal evaluation, like syntax. These expressions follow the
idea of TTCN-3 templates and have been optimized in such a way that they
can express the evaluation of larger data stream segments. A first approach
addressing this issue has been published in [48]. Unfortunately, these ex-
pressions do not match the advantages of expressiveness and clarity that are
offered by the automaton model described in this thesis, and thus they have
not been further pursued. There is still the need, however, to find suitable ab-
stractions to concisely define signal quality properties and signal assessments
in an intuitive way. Moreover, the link to model-based testing approaches
needs to be clarified. TTCN-3 embedded already provides a higher degree
of abstraction and automation with respect to test execution, but a link to
methods and techniques that provide automated test generation based on
models is still lacking. TTCN-3 embedded can provide a common execution
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environment for testing these approaches; the concrete role, however, still
needs to be defined.

Last but not least, the overall interest of the automotive industry is still,
so far, low. The reasons are manifold: they range from a basic skepticism
about technologies that have not been developed in the automotive indus-
try itself, to the existence of well-established alternative technologies, and
the lack of an industrial-grade implementation of the concepts that have
been developed in this thesis. Furthermore, car manufacturers have invested
heavily in recent years in developing their own test infrastructure. These
include test infrastructures developed at VW, Audi (Exam) and Mercedes
(ProveTechTA). However, at present, the Fraunhofer Institute FOKUS is
developing an open source TT'CN-3 compiler, which will provide another op-
portunity to put the concepts described in this thesis onto a solid tool basis
and thus make them of greater interest for the industry.



(GLOSSARY

Abstract state machine (ASM) An abstract state machine (ASM) is a computational
model that operates on states defined by algebras. Abstract state machine perform
state transitions via guarded function updates, which are known in the parlance
as rules; these rules describe how one algebra can be transformed into another.
Abstract state machines were originally introduced in complexity theory. Their
applicability to formal specification in multiple fields has been demonstrated in
various publications; likewise, their applicability to the definition of semantics in
various programming languages has also been shown.

Continuous signal A continuous signal is a time-varying quantity that can be measured
by a technical system and whose values show continuous representation (i.e. are
represented by real values).

Continuous system A dynamic system whose inputs and outputs are capable of chang-
ing at any instant of time; also known as a continuous-time signal system.

Control system A control system is a device, or a set of devices, that manages, com-
mands, directs or regulates the behaviour of other devices or systems. In this thesis,
software-based control systems (defined as control systems that rely heavily on soft-
ware in order to produce the required functions) are given special consideration.

Electronic control unit (ECU) An electronic control unit (ECU) is a software-based
control systems that consists of a single piece of hardware. This contrasts with the
already-introduced term ”control system”, which can refer to compound systems
(i.e. systems that consist of multiple control units).

Hardware in the Loop (HiL) Is a simulation environment that contains both real hard-
ware and partially-simulated sensors, actuators, and mechanical and electrical com-
ponents. Hili environments enable the testing of electronic characteristics and they
can also simulate a complete network of interacting ECUs. OEMs generally use
HiLL Environments during the final stages of development to test and simulate the
complete electronic infrastructure of a vehicle. The realtime HilL computer that
controls the test execution offers a realistic test of time-critical requirements and
the interaction of sensors, actuators and ECUs over a bus system. It also simulates
an environment that shows at least some of the electrical properties of the origi-
nal system. Hil testing also tests ECUs in their composition and, thus, possible
communication errors can be identified.

Hybrid automaton Hybrid automata are a conceptual extension of Timed Automata.
They where first introduced by Alur et al. in 1992, when they were used to analyze
the properties of hybrid systems. Hybrid Automata consist of State Transition
Networks (e.g. Finite State Machines) that define so-called phases or modes. Each
phase or mode shows different continuous behaviour.
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Hybrid system A hybrid system is a dynamic system, the behavioural evolution of which
depends on variables with continuous and discrete quantities. This term encom-
passes a larger class of dynamic systems that show similar dynamic phenomena.

Model-in-the-Loop (MiL) A MiL environment is a simulation environment dedicated
to model-based system development. The simulation environment ensures the exe-
cution of the model and its integration with any other present environment models.
The tests assess the correct modelling of the functional requirements and, addition-
ally, produce feedback about the suitability of the test algorithms.

Processor in the Loop (PiL) A PiL environment is a simulation environment in which
the executable code of the application (or functionality) being tested is placed on
an evaluation board, or on an appropriate processor simulation. PiL tests aim to
find target-specific sources of failure, such as target-specific compilation issues or
specifics for a concrete processor architecture. In comparison with tests executed
upon original hardware, Pil. tests are executed in a controlled and instrumented
environment. This allows for additional measurement and observation. The test
results can be compared with the results of previously-executed MiL. and SiL tests,
in order to find any unexpected deviations in the system reaction.

Software-in-the-Loop (SiL) A SiL environment is a simulation environment in which
the code (which can be either hand-coded or system-generated, using the application
of model-based development techniques) is tested in a software environment in the
development machine. This sort of test attempts to assess the implementation of
the functional requirements and the correctness of the code that has been generated
out of the previously-validated model. Compilation-specific issues, like the scaling
of fix point arithmetic results, are considered.

Test case A test case is a set preconditions, inputs (including actions, where applicable),
and expected results; it is developed in order to determine whether or not the
covered part of the SUT has been implemented correctly.

Test result A test result is an indication of whether or not a specific test case has passed
or failed, i.e. if the actual result corresponds to the expected result or if deviations
were observed. Relevant testing standards refer to test results with the verdict
values of none, pass, inconclusive, fail or error.

Test suite A test suite is sequence of test cases in execution order, and any associated
actions that may be required to set up the initial preconditions and any wrap up
activities post execution.

Testing and Test Control Notation (TTCN-3) The Testing and Test Control No-
tation (The Testing and Test Control Notation (TTCN-3) is a well-established and
widely-used test specification and execution environment. TTCN-3 is a complete
redefinition of the Tree and Tabular Combination Notation (TTCN-2). Both nota-
tions have been standardized by the ETSI and the ITU.
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APPENDIX A

TTCN-3 embedded GRAMMAR,

Appendix A defines the syntax of TTCN-3 embedded embedded using ex-
tended Backus Naur Form (BNF). The syntax definition is based on the
TTCN-3 syntax definition in the current TTCN-3 standard (ES 201 873-1
V4.4.1), which has been altered with the newly introduced TTCN-3 embed-
ded constructs. Listing A.1 show the modifications to the original TTCN-3
syntax definition. The newly introduced symbols are underlined and marked
in red. The rule numbers refer to the original rules as defined in ES 201 873-1
V4.4.1. Listing A.2 show the additional rules that need to be integrated to
define the TTCN-3 embedded syntax.

Listing A.1: Modified rules in TTCN-3 grammar

07. ModuleDefinition ::= ( ([ Visibility]
( TypeDef |
ConstDef |
TemplateDef |
ModuleParDef |
FunctionDef |
SignatureDef |
TestcaseDef |
AltstepDef |
ImportDef |
ExtFunctionDef |
ExtConstDef |
ModeDef
ModeType)
)
([”public”] GroupDef ) |
([?private”] FriendModuleDef )
) [WithStatement |

49. PortDefAttribs ::= MessageAttribs | ProcedureAttribs
| MixedAttribs | StreamAttribs
78. PortElement ::= PortIdentifier [ArrayDef]
[AssignmentChar PortlnitialValue]
377. TimerStatements ::= TimeoutStatement | NonBlockingTimerStatements
419. ReferencedValue ::= ValueReference [ExtendedFieldReference] |

StreamOperation

455. AttribKeyword ::= EncodeKeyword |
VariantKeyword |
DisplayKeyword |

197



198 TTCN-3 embedded GRAMMAR

ExtensionKeyword |
OptionalKeyword |
StepsizeKeyword |
HistoryKeyword

467. VerdictStatements ::= SetLocalVerdict ”(” SingleExpression
{”,” Logltem} ”)” | AssertStatement
497. BasicStatements ::= ModeSpecification | NonBlockingBasicStatements |

WaitStatement | StatementBlock

512. Assignment ::= ( VariableRef | AssignableStreamOps ) AssignmentChar
(Expression | TemplateBody)

529. OpCall ::= ConfigurationOps |
VerdictOps |
TimerOps |
Testcaselnstance |
( FunctionOrModelnstance | ExtendedFieldReference | ) |
( TemplateOps [ ExtendedFieldReference | ) |
ActivateOp |
NowOp
DurationOp
StreamDataOps |
StreamNavigationOps |
StreamEvalOps

Listing A.2: New rules in TTCN-3 embedded grammar

007a. ModeDef ::= ModeKeyword ModeDefldentifier
”(” [FunctionFormalParList] ”)”
[RunsOnSpec] ModeSpecification
007b. ModeKeyword ::= "mode”
007c. ModeDefldentifier ::= Identifier
007d. ModeSpecification ::= BasicMode | ComplexMode [UntilBlock]
007e¢. BasicMode ::= ContKeyword ”{” {Declaration} [OnEntryBlock]

[InvariantBlock] {BasicModeOp}
[OnExitBlock] 717

007f. ContKeyword ::= ”"cont”
007g. BasicModeOp ::= ContinuesStatement
007h. ComplexMode ::= (ParKeyword | SeqKeyword ) ”{” {Declaration}

[OnEntryBlock] [InvariantBlock] {ComplexModeOp}
[OnExitBlock] ”}”

007i. ParKeyword ::= ”"par”
007j. SeqKeyword ::= ”seq”
007k. ComplexModeOp ::= ModeSpecification | FunctionOrModelnstance |
LabelStatement
0071. UntilBlock ::= UntilKeyword ( ”{” { UntilGuardList | GuardOp } ”}”
| 7(” [BooleanExpression] ”)” )
007m. UntilKeyword ::= "until”
007n. UntilGuardList ::= {UntilGuardStatement}
0070. UntilGuardStatement ::= UntilGuardChar [GuardOp| StatementBlock
[UntilJump SemiColon]
007p. UntilJump ::= GotoStatement | ContinueStatement | RepeatStatement
007q. UntilGuardChar ::= ”[” [BooleanExpression | ModePredicate] ”]”
007r. ModePredicate ::= NotinvKeyword

007s. NotinvKeyword ::= ”"notinv”
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007t. ModeType ::= TypeDefKeyword ModeKeyWord ModeTypeldentifier
”(” | ModePar { ”,” ModePar } | ”)”
[ RunsOnSpecOrSelf |
007u. ModePar ::= FormalValuePar | FormalTimerPar
| FormalTemplatePar | FormalPortPar | FormalModePar
007v. RunsOnSpecOrSelf ::= RunsKeyword OnKeyword ( ComponentType | SelfOp )
007w. ModeTypeldentifier ::= Identifier
007x. ModeKeyWord ::= "mode”
007y. NamedMode ::= ModeKeyword Modeldentifier [ModeTypeldentifier ]
?(” [ ModePar { ”,” ModePar } | ”)”
[RunsOnSpec] ModeSpecification
007z. Modeldentifier ::= Identifier
007aa. InvariantBlock ::= InvKeyword ”{” [InvariantList] ”}”
007ab. InvKeyword ::= "inv”
007ac. InvariantList ::= BooleanExpression { SemiColon BooleanExpression }
007ad. OnEntryBlock ::= OnEntryKeyword NonBlockingStatementBlock
007ae. OnEntryKeyword ::= ”onentry”
007af. OnExitBlock ::= OnExitKeyword NonBlockingStatementBlock
007ag. OnExitKeyword ::= "onexit”
007ae. Declaration ::= FunctionLocallnst
007af. NonBlockingStatementBlock ::= 7{” { NonBlockingStatement

[SemiColon] } ”}”

007ag. NonBlockingStatement ::= NonBlockingFunctionStatement |
FunctionLocalDef |
FunctionLocallnst

007ah. NonBlockingFunctionStatement ::= NonBlockingTimerStatements |
NonBlockingConfigurationStatements |
ContinuesStatement
007ai. ContinuesStatement ::= FunctionOrModelnstance |
VerdictStatements |
NonBlockingBasicStatements |
NonBlockingCommunicationStatements

007aj. FunctionOrModelnstance ::= FunctionOrModeRef
”(” [FunctionActualParList] ”)”
007ak. FunctionOrModeRef ::= [GlobalModuleld Dot] (FunctionIdentifier |

ExtFunctionIdentifier | Modeldentifier ) |
PreDefFunctionIdentifier

007al. ConfigurationStatements ::= DoneStatement |
NonBlockingConfigurationStatements
007am. NonBlockingConfigurationStatements ::= ConnectStatement |
MapStatement |
DisconnectStatement |
UnmapStatement |
KilledStatement |
StartTCStatement |
StopTCStatement |
KillTCStatement

007af. NonBlockingCommunicationStatements ::= SendStatement |
ReplyStatement |
RaiseStatement |
CheckStatement
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049a.
049b.

078a.

377a.

419a.
419b.

455a.
455b.

467a.
467b.

497a.

497b.
497c.

512a.
512b.
512c.
512d.

529a.
529b.
529c.
529d.

529e.
529f.
529g.

529h.
5291 .
5295 .
529k .
5291.
529m.
529n.

5290.
529p.
529q.
529r.
529s.
529t .
529u.
529v.
529w.

529x.
529y .

529z.
529aa .

StreamAttribs ::= StreamKeyword 7”{” { MessageList [SemiColon] }+ 7}”
StreamKeyword ::= ”stream”
PortInitialValue ::= Expression
NonBlockingTimerStatements ::= StartTimerStatement |
StopTimerStatement
StreamOperation ::= Streamldentifier Dot MatchKeyword
”(” [TemplateBody] ”)”
StreamIdentifier ::= Identifier
StepsizeKeyword ::= ”stepsize”
HistoryKeyword ::= ”"history”
AssertStatement ::= AssertKeyword ”(” Expression {”,” Expression } 7)”
AssertKeyword ::= ”"assert”
NonBlockingBasicStatements ::= Assignment | LogStatement |
LoopConstruct | ConditionalConstruct
SelectCaseConstruct
WaitStatement ::= WaitKeyword ”(” SingleExpression 7)”
WaitKeyword ::= "wait”
AssignableStreamOps ::= Port Dot StreamDataAssignableOps
StreamDataAssignableOps ::= ValueKeyword | DeltaKeyword
ValueOpKeyword ::= ”value”
DeltaKeyword ::= ”delta”
NowOp ::= NowKeyword
NowKeyword ::= ”"now”
DurationOp ::= DurationKeyword
DurationKeyword ::= ”duration”
StreamDataOps ::= StreamValueOp | StreamTimestampOp | StreamDeltaOp
StreamValueOp ::= Port Dot PortValueOp
PortValueOp ::= ValueOpKeyword
StreamTimestampOp ::= Port Dot PortTimestampOp
PortTimestampOp ::= TimestampOpKeyword
TimestampOpKeyword ::= "timestamp”
StreamDeltaOp ::= Port Dot PortDeltaOp
PortDeltaOp ::= DeltaOpKeyword
DeltaOpKeyword ::= "delta”
StreamNavigationOps ::= ( StreamPrevOp | StreamAtOp )
[ Dot StreamDataOps |
StreamPrevOp ::= Port Dot PortPrevOp
PortPrevOp ::= PrevOpKeyword [ 7(” IndexValue ”)” ]
IndexValue ::= Expression
PrevOpKeyword ::= "prev”
StreamAtOp ::= Port Dot PortAtOp
PortAtOp ::= AtOpKeyword [ 7(” TimelndexValue 7)” |
TimelndexValue ::= Expression
AtOpKeyword ::= ”at”
FormalModePar ::= [InOutParKeyword] ModeTypeldentifier
ModeParldentifier
ModeParldentifier ::= Identifier
StreamEvalOps ::= StreamHistoryOp
StreamHistoryOp ::= Port Dot PortHistoryOp

PortHistoryOp ::= HistoryOpKeyword
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[ 7(” StartValue [ ”,” EndValue | ”)” |
529ab. StartValue ::= Expression
529ac. EndValue ::= Expression

529ad. HistoryOpKeyword ::= ”"history”






APPENDIX B

THE OPERATIONAL SEMANTICS OF T'TCN-3 embed-
ded

Appendix B describes the ASM semantics of TTCN-3. The whole semantics
is defined as a set of subsequent extensions. This kind of stepwise approach
provides iterative language refinements beginning from an imperative core
TTC Nz of TTCN-3 that describes the basic imperative language features i.e.
statement execution, expression evaluation, control structures of TTCN-3.
On basis of that core, subsequent language refinements are specified. Each
of them introduces new language constructs and thus refines the original
semantics subsequently.

o T'T'CN¢ is based TTC Nt and specifies TTCN-3 with features like test
case execution, components and function calls.

o T TCN7isbased T'T'C' N¢ and specifies TTCN-3 with features like send-
ing and receiving messages, alt statements, altsteps and timers.

e TTCN, is based TTC Ny and specifies TTCN-3 embedded with fea-
tures like global time and sampling.

e TT'C'Ng¢ is based TT'C N¢ and specifies T'T'CN-3 embedded with modes.

While TTCNz, TTCNg, and especially TTCNy covers the existing
TTCN-3 standard, TT'CNa and TTC N¢ explicitly introduce the concepts of
TTCN-3 embedded. Please note, the operational semantics of TTCN-3 given
below will not cover all aspects of the TTCN-3 core language. It is restricted
to the definition of behavioural elements in TTCN-3, which provide the be-
havioral basis for TTCN-3 embedded (i.e. expression evaluation, control
structures, send and receive operations, the alt statement etc.).
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B.1 ABSTRACT SYNTAX

The following sections denote the abstract syntax that is used as a basis
for the abstract state machine specification. To allow back referencing be-
tween the abstract syntax used for the behavioral semantics and the concrete
syntax of TTCN-3 the node identifiers from the original TTCN-3 grammar
are also used for the AST definitions. The node identifiers, which are com-
pletely aligned with original TTCN-3 grammar start with a capital letter and
are written in camel case notation (e.g. Assignment, ConditionalConstuct
etc.). However, to reduce complexity and to provide a better understand-
ing of the AST, abstract nodes with identifiers completely written in cap-
ital letters (e.g. PHRASE, EXP, STMT, UOP, BOP etc.) are intro-
duced. These identifiers are used to sum up constructs that, regarding the
behavioural semantics, need not to be distinguished (e.g. BOP stands for a
binary operation of the form BOP ::= EXP ® EX P with binary operators
in® € {+,*,—,/,mod,rem,...}).

B.1.1 TTCNz abstract syntax

Abstract syntax 17: TTCN-3 basic behavioural constructs.

EXP = LIT|VAR|CONST | UNOP|BOP | OpCall
STMT == Assignment| LogStatement | Loop Construct
| ConditionalConstruct | GotoStatement
| StatementBlock
PHRASE = EXP|STMT |’finished”
UOP := ©FEXP
BOP = FEXPOEXP
OpCall =  FunctionInstance
FunctionInstance =  Function { FunctionActualPar }

Assignment = “assign” VAREXP
LogStatement = 7log” { EXP}
LoopConstruct ==  ForStatement | WhileStatement | DoWhileStatement
ForStatement = 7"for” Assignment EXP Assignment StatementBlock
WhileStatement = “while” EXP StatementBlock
Do WhileStatement = "do” StatementBlock "while” EXP StatementBlock
ConditionalConstruct = 7if” EXP StatementBlock | StatementBlock ]

GotoStatement = ’goto” Labelld
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B.1.2 TTCN¢ abstract syntax

Abstract syntax 18: T7TCN¢ basic behavioural constructs.

EXP: := EXPz|CreateOP | StartTCStatement
STMTe ==  STMTz| Testcaselnstance | Start TCStatement Stop TCStatement
| ReturnStatement |
TTCN3Module ::= ’'module” Identifier DefinitionList StatementBlock
Testcaselnstance ::= “execute” TestcaseRef { TestcaseActualPar}
ReturnStatement = ’return” [EXP]
CreateOP = 7create”Component Exp Alive

StartTCStatement = 7start”VAR Functionlnstance
StartTCStatement = 7kill”VAR
StopTCStatement = "stop”’ VAR

B.1.3 TTCNy abstract syntax

Abstract syntax 19: TTC Ny basic behavioural constructs.

EXPr == EXP¢|ReadTimerOP | Receive
STMTr ==  STMT¢| SendStatement | ReceiveStatement |
| StartTimerStatement | Stop TimerStatement
StartTimerStatement = 7start” VAR EXP
| AltConstruct |
Stop TimerStatement = "stop” VAR
ReadTimerOperation = “"read” VAR
SendStatement = 7"send” PortVar EXP Addresses
AltConstruct == 7alt” { GuardStatement | ElseStatement }
GuardStatement = EXP AltStepInstance [ StatementBlock ]
| GuardOp StatementBlock
ElseStatement = 7else” StatementBlock
GuardOp == TimeoutStatement | ReceiveStatement | TriggerStatement

| GetCallStatement | CatchStatement | CheckStatement
| GetReplyStatement | DoneStatement | KilledStatement
ReceiveStatement ::=  Port "receive” TemplatelInstance
["from” FromSpec]
[7->” RedirectSpec]
TimeoutStatement =  Timer "timeout”
ReceiveStatement ::=  Port "receive” Templatelnstance
["from” FromSpec]
["->" RedirectSpec |
TimeoutStatement =  Timer "timeout”
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B.1.4 TTCNa abstract syntaz

Abstract syntax 20: TTCNa basic behavioural constructs.

EXPa
STMTa
StreamDataOps

StreamNavigationOps

StreamFEvalOps
WaitStatement
nowOperation
StreamDataOp
Stream ValueOp
Stream TimestampOp
StreamDeltaOp
Assignment

LeftSide
StreamNavigationOp
StreamPrevOp
Stream AtOp
StreamFEvalOps
StreamHistoryOp

EX Py | StreamDataOps | StreamNavigationOps
STMTy | StreamEvalOps | WaitStatement

Stream ValueOp | StreamTimestampOp

| StreamDeltaOp

StreamPrevOp | StreamAtOp

[ "Dot” StreamDataOp ]

StreamHistoryOp

"wait” EXP

“now”

Stream ValueOp | StreamTimestampOp | StreamDeltaOp
"value” PortVar

"timestamp” PortVar

“delta” PortVar

"assign” LeftSide EXP

VAR | StreamValueOperation | StreamDeltaOperation
( StreamPrevOp | StreamAtOp ) StreamDataOp
"prev” PortVar

"at” PortVar

StreamHistoryOp

“history” PortVar Exp Exp
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B.1.5 TTCNg¢ abstract syntaz

Abstract syntax 21:

EXP¢
STMT¢
Mode
Mode

Body

InvariantList

Until

UntilBlock
UntilGuardStatement
Transition

ContMode

SeqMode

SeqBody
ParMode

ParBody

TTC Ng basic behavioural constructs.

EX Pa | Duration

STMTa | Mode
ContMode | ParMode | SeqgMode
( 7’Cont77 | ”Seq” | 77par77 )

OnEntry InvariantList Body OnFExit Until
ContBody | SeqBody | ParBody

{ EXP}

"until” { UntilGuardStatement }

"until” { UntilGuardStatement }

EXP GuardOp StatementBlock [ UntilJump ]
GotoTransition RepeatTransition ContinueTransition
“cont” OnEntry Invariant ContBody

OnExit Until

"seq” OnEntry Invariant SeqBody

OnEzxit Until

{ Mode }

“cont” OnEntry Invariant ParBody

OnFExit Until

{Mode}
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B.2 SIGNATURES

The following sections define the signatures that are used as a basis for the
abstract state machine definition. In the following the same identifiers and
denotations are used for the AST nodes and the ASM universes. Eventu-
ally, this kind of double definition facilitates the understanding of the ASM
rules because it directly relates the terms used in the ASM rules with the
AST definition and therefore with the TTCN-3 grammar. Thus, the AST
definition

PHRASE = EXP|STMT |’finished”

is considered to define the set-theoretic structure

PHRASE = EXP U STMT U { finished}

with elements

stmt € STMT, exp € EXP, phrase € PHRASE.

These elements themselves are each representing n-ary tuples, which are
referred to either in a compact or a developed form.

B.2.1 TTC Nz signatures

A run of a TTCN-3 program is considered to be a subsequent run over
the executable entities of an annotated AST. The entities are called phrases
and are defined as elements of the universe PHRASE. A phrase defines
the occurrence of a certain programming construct, which is subject of the
formal specification in the following ASM semantics. For procedural, state-
ment based languages, the operational progress can be described by means of
program counter task that points to the individual nodes of an AST. The pro-
gram counter yields the current phrase to execute until finished is reached.
The abstract program counter task will update according the TTCN-3 con-
trol flow. The execution of expressions, subexpressions, statements and sub-
statements is defined by the static functions fst and nat. The definitions of
these functions depend on the respective element phrase € PHRASE and
will provided recursively during the refinement of the language elements.

task : = PHRASE
fst,nxt : PHRASE — PHRASE
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The universe Value” contains all kinds of TTCN-3 values of a certain
type T € T = {integer, float,boolean, ..., } so that Value/'*® denotes all
TTCN-3 float values, and Value™e%" denotes all TTCN-3 integer values
and so forth. For reasons of simplicity, the TTCN-3 Boolean values are
associated with the ASM values true and false.

To describe the relation between variables and their values the formal
function loc is used.

loc : Component — Value® with T'e T

The access to intermediate values —which are not assigned to a variable
but used during expression evaluation, for operand handling, for parameter
passing and for return-value passing, as well as for expressions in conditional
statements— is formalized by the function val.

val : Component — Value® with T'e T
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B.2.2 TTCN¢ signatures

This section defines the operational semantics of TT'C'Ng. In addition to
TTC Nz, TTC Neprovides a component based test architecture. To realize a
test setup at least one test component and an SUT are required. Test com-
ponents and the SUT are communicating by means of dedicated channels, so
called ports. TTCN-3 distinguishes three different types of components. A
component type called “control” that is used to execute the control parts of
modules, a component type called “Main Test Component (MTC)” that is
used to execute test case bodies and a component type called “Test Compo-
nent (TC)” that is used to realize test set ups with multiple components.

The main entities that are needed in TT'C' N are representations for com-
ponents and so called agents. Components with ¢ € Component describe the
variety of TTCN-3 components.

ports : Component — Port

status : Component — {running, inactive, stopped, killed}
type : Component — {control, mte,tc}

alive : Component — {true, false}

verdict : Component — Value? 4

Moreover, sequences of entities are introduced. A sequence is denoted
with (es,e1) € Universe*. The concatenation of sequences is simply ex-
pressed by a row position of two single sequences. Thus (e3){es, 1) — (e3,€2,€1).
The length of a sequence is defined by len({f,, fn_1, .., f1)) = n. On basis of
this the most common stack (lifo) functions are defined as follows.

push : Universe x Universe® — Universe®,
with push(e, ()) — (e1)
and push(eni1, (€n,€n_1, ., €1)) > (ent1){€n, -, €1) > (€nt1,€n, .., €1)
top : Universe® — Universe,
with top({en, €n_1,..,€1)) — €n
and top(()) — undef
pop : Universe® — Universe®,
with pop({en, €n_1,.,€1)) +— (€n_1,..,€1)
and pop(()) + ()

For simplicity, the term frames is used in order to bundle the functions
needed for the recursive calling. Thus, for every ¢ € Component let
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frames(c) = (taske(c),loce(c),vale(c))

TTCNz does not support nested scopes and recursions. However, as
shown above, the functions task, loc and val in TT'C' Nz can be mapped to
the functions taskc(Self), loce(Self) and vale(Self) in TTC N by associ-
ating Self and by taking the topmost elements. This ensures that the rules
from TTC Nz can be transfered directly to TT'C'Nz. For reason of simplic-
ity, Self is notational suppressed by writing taskc, loce and vale instead of
taske(Self), loce(Self) and vale(Self). Finally the terms task, loc and val
are used like in TT'C' Nz, except when the stack functionality needs explicitly
be mentioned.

taske :Component —- PHRASE”
loce :Component — (VAR — Value)*
vale :Component — (EXP — Value)*

current : AGENT — Component

An agent is the abstract executer of a T T'CN-3 component. Let AGENT
be the abstract set of agents a that move over the hierarchical syntax struc-
ture of an TTCN-3 program. An agent is associated with exactly one
TTCN-3 component at any time, thus current : AGENT — Component
is a dynamic function that denotes the component under execution. The
0-ary dynamic function Self is interpreted by each agent a as a. Because
a component is considered the carrier of TTCN-3 program execution, each
¢ € Component has a program pointer, which points to the next phrase €
PHRASE to execute. To support nested scope units due to nested and po-
tentially recursive function calls or altstep calls, the program pointer as well
as the functions loc and val have to realize a stack alike functionality. To
this end, the signatures of these functions are refined to the effect that they
provide sequences of dynamic functions as return values.
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B.2.3 TTCNy signatures

TTCN-3 supports message-based and procedure-based unicast, multicast and
broadcast communication. Technical speaking a messages is a piece of infor-
mation, which is prepared for transportation between two entities. Thus it
may be encoded and enriched with transport related information (sender,
receiver, timing information etc.).

A TTCN-3 test system supports the sending of messages and the sys-
tematic evaluation of incoming messages at ports. A port is associated with
a message queue that stores all incoming messages in order of arrival. The
evaluation of individual messages always refers to top elements of the port
queues. Access control to ports and evaluation of the port queues’ content
is done by means of so called communication operations. In addition, time-
dependent processes are controlled by providing access to so-called timer.

The main entities that are needed to specify the behaviour of port and
timer handling in TT'C N7 are covered by the respective ASM universes Port,
Message and Timer.

A TTCN-3 timer is a counter that is incremented according to the current
time progress. Such a timer can be configured with a timeout value. If a timer
reaches its timeout value the timer is considered to have timedout, thus it
changes from the status running to the status expired.

float

start : Timer x Value —

stop : Timer —

status : Timer — { running, inactive, expired}

val : Timer — Value'*®

timeoutval : Timer — Value!**

TTCN-3 uses ports to communicate with the external environment (i.e.
the SUT ) as well as between TTCN-3 components. Ports are defined by
means of port type definitions. TTCN-3 distinguishes between ports of kind
message and procedure. Message ports are used for non-blocking (asyn-
chronous) message based communication while procedure ports are used to
realize classical client-server communication. A port can have a set of types.
The set of types define the types for the message values that are allowed to
be communicated via a certain port.
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kind : Port — {message, procedure}
direction : Port — {in,out,inout}
types : Port — P(T)
msgs : Port — Message®
owner : Port — Component
status : Port — { started, halted, stopped}

Using the function msgs it is possible to obtain the port queues, i.e.
the chronological sorted sequence of messages that has been received at a
port. The function owner returns the component that holds a given port.
Please note, in TTC N the sequence of incoming messages (message from
the external environment or from other TTCN-3 components) at a port are
handled by means of queue operations. Incoming messages are enqueued.
They can be retrieved and assessed by a TTCN-3 program using the queue-
based operations that are defined below.

enqueue : Universe® x Universe — Universe®,

with enqueue(eq, () — (e1)

with enqueue(eni1, (€1, .., €n)) > (€ns1){(€1, .., €n) > (€1, .., €n, Ent1).
dequeue : Universe® — Universe®,

with dequeue({ey, ea, .., €,)) > (€a, .., €,)

and dequeue(()) — ()

In T'TCN-3 ports can be mapped or connected to other ports. This forms
the base communication architecture of test system set up and defines the
general condition for the message flow between components. TTCN-3 allows
one to many connections and distinguishes port connections between a test
component and the system under tests and port connections between test
components. This operational semantics does not explicitly define meaning
for statements that are directly handle the mapping and connection of ports
but requires to refer to the mapping and connection information. Thus, the
function

mapsto : Port — Port x U{undef}
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returns the set of port that contains all ports that are mapped or con-
nected to a given port. The function returns undef in the case that a port
is not mapped or connected.

A TTCN-3 message is a structure that encapsulates information about
the transmitted value, the type of the transmitted value and the sender and
receiver of the message. In TTCN-3 sender and receiver of messages are
components. Moreover TTCN-3 provides a mechanism to match messages
against a pattern expression. The pattern expression is called template and
characterizes messages according to their content and structure. Without any
loss generality a template can be considered as an expression exp € EXP.
A function map allows to check whether a message matches a template or
not.

type : Message — T
sender : Message — Component
recipient : Message — Component

val : Message — Value™

ts : Message — Value'"

match : Message x EXP — V aluebooelen

The assessement of ports in TTCN-3 is organized according to the so
called snapshot semantics. The snapshot semantics enforces that the relevant
test system state is frozen when an assessment starts. This kind of snapshot
guarantees a consistent view on the test system input during an individual
assessment step. A snaphsot covers all relevant stopped test components, all
relevant timeout events and the top messages (as well as calls, replies and
exceptions in the case of procedure based communication) in the relevant
incoming port queues. Let me introduce the following primed functions to
cover snapshots for timer and ports.

val' : Timer — Valueflo™

status’ : Timer — {running, inactive, expired}

msgs’ : Port — Message*
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The functions val’, status’ and msgs’ can be used similarly to the non-
primed version of the functions. The difference is that, where val, status and
msgs return the actual values or messages, val’, status’ and msgs’ return
the state of the timers and queues at the last snapshot.

Finally TTCN-3 and TT'CN-3 embedded provide statements that contain
other statements in form of a statement block (e.g. alt statements or modes).
For control flow purposes it becomes necessary to be able to refer from such a
contained statement to the enclosing block statement during runtime. This
helps realizing abrupt breaks and other exit behaviour. The function up
provides the TE with such a feature.

up: PHRASE — PHRASFE

The function up gets an arbitrary phrase as a parameter and always
returns the enclosing phrase. The hierachy, which is used to resolve the
containment relationship, is given by the definition of the abstract syntax
tree.
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B.2.4 TTCNa signatures

In all foregoing specifications time progress itself only has had an implicit se-
mantics. It was possible to measure time progress with the timer operations
and thus change the control flow of a T T'CN-3 programm as a function of
time. In TTCNx time and time progress becomes a more central concept.
TTC Ny is a synchonuous language. That is, statement execution and espe-
cially the interaction through ports is synchronized on basis of a system-wide

valid sampling rate. Time is referred to by the functions time, tsampie; Uoqmpic-

t :— Valuele®

tsample “— Valuelo

/
sample

— Valuellot

The function t provides access to the exact time that has passed since
the beginning of a test case, tsqgmpre Tepresents the time of the next sampling
step whereas ¢, ;. represents the time of the actual sampling step. The last
two functions are directly related to each other by the step size delta that
defines the length of the minimal overall sampling. It is tsampie = tigmpre + 0
.All time functions return time in seconds as a Float value.

TTCNp introduces a new kind of port, a so called stream port. Such
a port differs from ordinary TTCN-3 message ports and TTCN-3procedure
ports by providing a sampled access to the actual value as well as (theoreti-
cally) the complete history of a continuous signal. However, the underlying
data structure is quite similar to the data structure defined for TTCN-3
message and procedure ports.

Stream ports port € Port®'¢*™ in general show similar basic properties
than message ports and procedure ports. Thus, most of the functions that
have been defined for message and procedure ports (see B.3.3) are adopted
for stream ports.

typen : Porta — P(T)
msgsa : Porta — Message®
msgs : Porta — Message*

directiona : Porta — {in,out,inout}

with
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Porta =Portr V Port.

However,there are slight differences. A stream port has a distinct data
type. Hence, the function type returns a set with one element only for a
stream ports. Moreover, only message and procedure ports with direction in
or inout are normally associated with a queue (i.e. list) of message values.
In contrast, stream ports always have a message queue, regardless of their
direction of communication. Last bit not least the newly introduced function
delta returns the currently used sampling rate of a stream port and the
function current returns the actual value of a stream port.

deltan : Port®e™ — Valuefat

currenta : Port®™ — Value®

The function kind helps distinguishing between the different kind of ports.
The function has to be refined to also address stream ports.

kinda : Porta — {message, procedure, stream}

Moreover I consider that the function ports that returns all ports that
are available at a component (see Section B.3.2), is refined to support stream
ports as well.

portsa : Componenta — Porta

Furthermore, in TT'C Na components get another state called wait. This
status allows a component to wait after completing all necessary actions in
a sampling step to the end of the sampling step.

statusp : Componentan — {running, inactive, stopped, killed}

The main differences between stream ports and message or procedure
ports is sampling on one hand side and the ability to access all messages sent
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or received a port randomly. This feature is realized by extending the queue
related function with additional list related functions that allow an indexed
based access to the messages that have been communicated through a port.

| : Message® x Value — Message, with

(my, ma, .., [i] — My

Q : Message® x Value — Message, with
(my,ma, .., my,)Qt — my,, with
t € [0..tsample) A @ € [0..n], where
Vi e [0.n], (ts(m;) —1t) < (ts(my) —1t) = ts(m;) >t
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B.2.5 TTCNg signatures

TTCNg contains all features of TTCN-3 embedded. In addition to TT'C'Na
it allows to change simultaneous update and evaluation of stream values at
ports. With the implementation of hybrid automaton like control flow con-
structs TT'C'Ng allows to define multiple execution path using predicate on
value at ports to describe alternative stimulation and assessment for sampled
(i.e. time discrete) streams.

Modes are distinguished on a conceptual level in atomic modes, parallel
modes and sequential mode). During runtime this is

Mode = AtomicMode U ParMode U SeqM ode

Regardless of the kind of mode, the TE provides a structure called runtime €
Runtime to store run time information for each mode that is under execution.
The information is maintained for each component separately. This allows
the execution of functions and testcases on different components that poten-
tially refer to the same mode definitions. Thus, there is a set Runtime, C
Runtime for each component ¢ € Component.

status : Runtime, — {init, running, stopped}
subtask : Runtime. — {invariants, guards,body, finalize}

mode : Runtime. — M ode

stime : Runtime, — Value'"®

trans : Runtime, — PHRASFE

runtime : Component x Mode — Runtime,., with
runtime(component, mode) — ms € Runtime,

where ms.mode = mode

The runtime structure provides a set of properties that allows a fine grained
control of the mode execution in the context of sampling. The properties
are available by means of a set of function. The function status returns the
current runtime status of a mode. It can either be init when the mode is
initialized, running when the mode is executing its contents and stopped
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when the execution has ended. Moreover, for each mode there exist an exe-
cution sub task, which can be obtained by means of the function subT ask.
The sub task of mode defines which part of a mode is currently under exe-
cution. It can vary between the values tnvariants, guards, body, and wait.
The function mode provides a link to the AST node, for which the status is
maintained. It can be used to look up the mode state for a concrete mode
during execution. Last but not least, the runtime structure maintains the
point in time when the associated mode has been initialized. The time value
is provided by the function stime.

The loop function complements the already existing functions next and
fst and introduces a third control flow option, which is taken if a mode is in
a sampling loop. The function is used to denote the phrase that has to be
executed in case that a mode repeats its content as the preparation for the
next sample step. If not defined otherwise, the function points to the phrase
that is given as a parameter, thus normally

loop: PHRASE — PHRASE
loop(phrase) := phrase

Last but not least, a reactivation flag is needed to indicate the reactivation
for already stopped modes. This is necessary to enable transitions between
modes. The reactivation flag is located on component level.

reactivateNext : Component — B
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B.3 RULES

B.3.1 TTCNz: The imperative core of TTCN-3

Rule 1: ASM transition rule for literals.
if task is lit then
val(lit) = lit
proceed

end if

Rule 2: ASM transition rule for variables.

if task is var then
val(var) = loc(var)
proceed

end if

Rule 3: ASM transition rule for constants.

if task is const then
val(const) := loc(const)
proceed

end if

Rule 4: ASM transition rule for unary operators.

if task is uop then
val(uop) := ® val(exp)
proceed

end if

Rule 5: ASM transition rule for binary operators.
if task is bop then
val(bop) := val(expy) ® val(exp)
proceed
end if

Rule 6: ASM transition rule for log statements.

if task is functionInstance
A kind( functionInstance) € {ext,pre} then

val( functionInstance) := functionId(expy, expa, ..

proceed
end if

Rule 7: ASM transition rule for assignments.

> (literal)

> (variable)

> (constant)

> (unary operator)

> (binary operator)

> (function instance)

) e$pn)



222 THE OPERATIONAL SEMANTICS OF T'TCN-3 embedded

if task is assignment then
loc(var) := val(exp)
proceed

end if

Rule 8: ASM transition rule for log statements.

if task is logStatement then
proceed
end if

Rule 9: ASM transition rule for for statements.

if task is forStatement then
if val(exp) then
task := fst(statementBlock)
else
task := next(forStatment)
end if
end if

Rule 10: ASM transition rule for while statements.

if task is whileStatement then
if val(exp) then
task := fst(statementBlock)
else
task := next(whileStatment)
end if
end if

Rule 11: ASM transition rule for do-while statements.

if task is dowhileStatement then
if val(exp) then
task := fst(statementBlock)
else
task := next(whileStatment)
end if
end if

Rule 12: ASM transition rule for if statements.

if task is i fStatement then
if val(exp) then
task := fst(statementBlock;)
else
task := fst(statementBlocks)

> (assignment)

> (log statement)

> (for statement)

> (while statement)

> (do-while statement)

> (if statement)



B.3 RULES 223

end if
end if

Rule 13: ASM transition rule for goto statements.

if task is gotoStatement then > (goto statement)
proceed
end if

B.3.2 TTCNg: TTCN-3 with testcases, functions and components

Rule 14: ASM transition rule for the module control.

if task is TTCN3Module then > (module control)
extend Component by control
initControl(control)
task := stmty
end extend
end if

Rule 15: ASM transition rule for the end of control part.

if task is finished > (end of control part)
Nlength(taske) = 1 A type = control then

status := stopped
end if

Rule 16: ASM transition rule for the start of testcase instances.

if task is testcaselnstance then > (testcase instance, start mode)
startTest({(val(exp), ..., val(expy)), args, fst(body), cRef)
where (args, body, cRef) := lookupTest(testcaseInstance)
status := inactive
proceed
end if

Rule 17: ASM transition rule for the return of testcase instances.

if task is finished > (testcase instance)
Nlength(taske) = 1 A type = MTC then

startControl
end if

Rule 18: ASM transition rule for the start of function instances.

if task is functionInstance > (function instance, start mode)
A kind(functionInstance) € {def} then
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startF ((val(exp), ..., val(expy)), args, fst(body), frames)
where (args, body) = lookupF ( functionInstance)
end if

Rule 19: ASM transition rule for the simple return of function instances.

if task is finished A length(taske) > 1 then > (simple return)

return( frames)
end if

Rule 20: ASM transition rule for return statements.

if task is returnStatement then > (return statement)
if exp = undef then
return( frames)
else
result( frames,val(exp))
end if
end if

Rule 21: ASM transition rule for the creation of test components.

if task is createOP then > (create operation)
extend Component by c
init(inits,vars, c)
where ((c, ports,vars,inits)) := lookup(cRef)
val(createOP) := ¢
if alive = undef then
alive(c) := false
else
alive(c) = true
end if
end extend

proceed
end if

Rule 22: ASM transition rule for the start of test components.
if task is startTCStatement then > (start test component)
startF ((val(expi), ..., val(expy)), args, fst(body), frames(val(var)))
where (args, body) = lookupF ( functionInstance)
status(val(var)) := running
proceed
end if

Rule 23: ASM transition rule for the killing test components.
if task is killT CStatement then > (kill test component)



B.3 RULES 225

if type(val(var)) = mtc then
var ¢ rangesover Component
kEillTC(c)
end var
else
killTC (val(var))
end if
proceed
end if

Rule 24: ASM transition rule for the stop of a test components.

if task is stopT'CStatement then > (stop test component)
if type(val(var)) = mtc then
var ¢ rangesover Component
stopT'C(c)
end var
else
stopT'C(val(var))
end if
proceed
end if

B.3.3 TTCNy: TTCN-3 with messages, alt statements, altsteps and timers

Rule 25: ASM transition rule for the start of timers.
if task is startTimerStatement then > (start timer)
startTimer(timer, exp)
where (timer) := lookupTimer(val(var), Sel f)

proceed
end if

Rule 26: ASM transition rule for the stop of timers.
if task is stopTimerStatement then > (stop timer)
stopTimer(timer)
where (timer) := lookupTimer(val(var), Sel f)

proceed
end if

Rule 27: ASM transition rule for read timers.

if task is readTimerOperation then > (read timer)
if status(Self) = snapshot then
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val(readTimerOperation) := val’ (timer)

else
val(readTimerOperation) := val(timer)
end if
where (timer) := lookupTimer(val(var), Sel f)
proceed
end if

Rule 28: ASM transition rule for send statements.

if task is sendStatement then > (send statement)
sendMessage(exp, port, adresses)
where ((port)) := lookup(val(portVar))
proceed

end if

Rule 29: ASM transition rule for alt statements.

if task is altConstruct then > (alt statement)
takeSnapshot(Sel f)
task := fst(stmty)

end if

Rule 30: ASM transition rule for guard operations.

if task is guardStatement > (guard statement, guard operation)
A guardStatement = (exp, guardOp, statementBlock) then
if val(exp) then
task := guardOp
else
task := nxt(guardStatment)
end if
end if

Rule 31: ASM transition rule for alt steps.
if task is guardStatement > (guard statement, alt step)
A guardStatement € EX P x AltStepInstance x StatementBlock then
if val(exp) then
task := fst(altStepInstance)
else
task := nxt(guardStatment)
end if
end if

Rule 32: ASM transition rule for alt step instances.

if task is altStepInstance then > (alt step instance)
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startF ((val(exp1), ..., val(expy)), args, fst(body), frames)
where (args,body) := lookupF (altSetpInstance)
end if

Rule 33: ASM transition rule for receive statements.
if task is receiveStatement then > (receive statement)
if match(port,val(exp)) A sender(top(msgs'(port))) € fromSpec then
handleRedirect(top(msgs' (port)), redirectSpec)

pop(msgs'(port))
task := nxt(receiveStatement)
else
task := nxt(up(receiveStatement))
end if
where port := lookup(val(var))
end if

Rule 34: ASM transition rule for timeout statements.
if task is timeoutStatement then > (timeout statement)
if status'(timer) = expired then
task := nat(timeoutStatement)
else
task := nxt(up(timeoutStatement))
end if
where ((timer)) := lookup(val(var))
end if

B.3.4 TTCNa: TTCN-3 with streams, global time and sampling

Rule 35: ASM transition rule for the test execution controller.
if time > tggmple + 0 then > (test execution controller)
75i9(1mple = tsample
tsample = tsample +90
for all ¢ € Component do
takeSnapshot(c)
updateStreams(c)
status(c) := running
end for
end if

Rule 36: ASM transition rule for wait statements.

if task is waitStatement then > (wait statement)
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if val(exp) <t .1 A\ status(Self) = running then

verdict(Self) := error

end if

if val(exp) > t,,,,,;. then
status(Self) = wait

else
status(Self) := running
proceed

end if

end if

Rule 37: ASM transition rule for now operations.

if task is nowOperation then > (now-expression)
val(nowOperation) =t ..
proceed

end if

Rule 38: ASM transition rule for value operations.
if task is streamV alueOperation then > (value operation)
val (streamV alueOperation) := value(msgs' (port)([0])

where port := lookup(val(var))
end if

Rule 39: ASM transition rule for timestamp operations.
if task is streamTimestampOperation then > (timestamp operation)
val(streamTimestampOperation) := ts(msgs'(port)[0])
where port := lookup(val(var))
end if

Rule 40: ASM transition rule for delta operations.
if task is streamDeltaOperation then > (delta operation)
val(streamDeltaOperation) := delta(port)
where port := lookup(val(var))
end if

Rule 41: ASM transition rule for assignments (refines assignment rule).

if task is assignment then > (assignment)
if leftSide is var then
loc(var) := val(exp)
end if
if leftSide is streamV alueOp then
currentVal(port) := val(exp)
where port := lookup(val(pvar))
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end if
if leftSide is streamDeltaOp then
delta(port) := val(exp)
where port := lookup(val(pvar))
end if
proceed
end if

Rule 42: ASM transition rule for prev operations.

if task is prevOp then > (prev operation)
if val(exp) > len is valueOp then
val(exp) := len(msgs’(port))
end if
if streamDataOp is valueOp then
val(prevOp) := value(msgs' (port)[val(exp)])
else if streamDataOp is timestampOp then
val(prevOp) := ts(msgs’ (port)[val(exp)))
else if streamDataOp is deltaOp then
val(prevOp) :=
ts(msgs' (port)[val(exp)]) — ts(msgs' (port)[val(exp) + 1))
end if
end if
where port := lookup(val(var))

Rule 43: ASM transition rule for at operations.

if task is atOp then > (at operation)
if val(exp) >t then
verdict(Self) := error
val(exp) := ts(current(port))
end if
if val(exp) < ts(msgs'(port)[len(msgs’(port))]) then
verdict(Self) := error
val(exp) := ts(msgs' (port)[len(msgs’ (port))])
end if
if streamDataOp is valueOp then
val(atOp) := value(msgs' (port)@Q(val(exp)))
else if streamDataOp is timestampOp then
val(atOp) := ts(msgs'(port)Q(val(exp)))
else if streamDataOp is deltaOp then
val(atOp) :=
ts(msgs'(port)Q(val(exp))) — ts(pred(msgs’ (port)Q(val(exp))))
end if
end if
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where port := lookup(val(var))

Rule 21: ASM transition rule for the history operation.

if task is streamHistoryOp then > (history operation)
if val(exp1) > t,,,,,. then
verdict(Self) := error
val(expr) := ts(current(port))
end if
if val(exps) < ts(msgs'(ports)[len(msgs’(port))]) then
verdict(Self) := error
val(exps) := ts(msgs' (port)[len(msgs’ (port))])
end if
if val(expy) > val(exps) then
verdict(Self) := error
val(streamHistoryOp) = ()
else
val(streamHistoryOp) := (my..my), textwith
mg = msgs' (port)Qual(expr) A my = msgs' (port)Qual(exps)
end if
end if
where port := lookup(val(var))

B.3.5 TTCNg: TTCN-3 with modes

Rule 44: ASM transition rule for mode execution (entering a mode).

if task is mode > (mode execution ,initialization)
A runtime(Sel f,mode) = undef then
extend Runtimesge s by runtime
status(runtime) := init
end extend
end if

Rule 45: ASM transition rule for mode execution (first loop).

if task is mode > (mode execution, first loop)
A status(runtime(sel f,mode)) = init then
reactivateNext(Self) := false
if isViolated(invariantList) then
verdict(Self) := error
status(modeState(Sel f, mode)) = stopped
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task := nxt(mode)
else
subtask(runtime(sel f, mode)) := body
mode(runtime(sel f, mode)) := mode
starttime(runtime(sel f, mode)) ==t ..
trans(runtime(sel f, mode)) := nxzt(mode)
status(runtime(sel f,mode)) = run
task := onEntry
end if
end if

Rule 46: ASM transition rule for mode execution (repeating).

if task is mode > (mode execution, repeating)
A status(runtime(Sel f,mode)) = run then
if subtask(runtime(Sel f,mode)) = invariants then
task := fst(invariantList)
subtask(runtime(Sel f, mode)) = guards
else if subtask(runtime(Self, mode)) = guards then
if isViolated(invariantList) then
verdict(Self) := error
status(modeState(Sel f, mode)) = stopped
task := nzt(mode)
else
task := fst(until)
subtask(mode) = body
end if
else if subtask(runtime(Self, mode)) = body then
subtask(mode) = finalize
if endO fChilds then
task := onEbxit
else
task := fst(contBody)
end if
else if subtask(runtime(Sel f,mode)) = finalize then
if endO f StepFExecution then
resetModes(Self)
status(Self) := finalize
else
task := up(up(mode))
end if
end if
end if
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Rule 47: ASM transition rule for mode execution (stopped mode).

if task is mode > (mode execution, stopped mode)
A status(runtime(Sel f, mode)) = stopped then
if reactivateNext(Self) then
reactivateNext(Self) := false
status(runtime(Sel f, mode)) := init
else
proceed
end if
end if

Rule 48: ASM transition rule for until-guard statements.
if task is untilGuardStatement then > (until-guard statement)
if val(exp) then
if guardOp = undef then
task := statementBlock

else
task := guardOp
end if
else
task := nat(guardStatement)
end if
end if

Rule 49: ASM transition rule for goto statements in modes.
if task is GotoTransition then > (goto statement in modes)
reactivateNext(Self) := true
trans(runtime(up(up(up(RepeatMode))), Sel f)) = nxt(gotoTransition)
end if

Rule 50: ASM transition rule for repeat statements in modes.
if task is RepeatTransiton then > (repeat statement in modes)
reactivateNext(Self) := true
trans(runtime(up(up(up(RepeatMode))), Sel f)) := up(up(up(RepeatMode)))
end if

Rule 51: ASM transition rule for continue statements in modes.

if task is ContinueMode then > (continue statement in modes)
task := up(up(up(ContinueM ode)))
end if

Rule 52: ASM transition rule for on-exit statements.
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if task is onExit then > (on-exit statement)
status(runtime(Sel f, mode)) := stopped
task := folowUp(runtime(Sel f,mode))

end if

Rule 53: ASM transition rule for duration-expressions in modes.
if task is duration then > (duration-expression)
val(duration) =t/ — starttime(runtime(parent(duration), Sel f)

sample
proceed
end if
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B.4 MACROS

B.4.1 TTCNz macros

proceed = task := nzt(task)

task is phrase = task = phrase N phrase € PHRASE

B.4.2 TTCNc macros

task = top(taske(Self))

loc = top(loce(Self))

val = top(vale(Self))

frames(c) = (taske(c), loce(c), vale(c))

task is phrase =
task = phrase A phrase € PHRASE A status ¢ {inactive, stopped, killed}

startTC((valy, ..., valy), (argy, ..., argy), tcRef, phrase) =
extend Component by ¢
init(inits, vars, c)
where ((c,ports,vars,inits)) := lookup(cRef)
var i rangesover (1..n)
(locc () (args) := (vale(c))(valy)
end var
status(c) := running
type(c) := mtc
end extend

init((valy, ...,val,), (vary, ...,vary), c) =

7<
frames(c) := ((0), (D), ({(vary,valy), ..., (vary, valy)}))

initControl(control) =
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verdict(control) := none
status(control) := running
type(control) := control

startControl =
choose c in {c | type(c) = control A ¢ € Component }

status(c) := running
end choose

startF((valy, ..., valy), (argy, ..., argy), phrase, (tasks, vals,locs))
frames := ((phrase) tasks, (0) vals, ({(argi,valy), ..., (argy,val,)}) locs)

return((?,inv) tasks, (?) env, (?) vals) =
frames := ((next(inv)) tasks, env, vals)

result(((7,inv) tasks, (?) env, (7, val) vals),res)
frames := ((next(inv)) tasks, env, (vallinv/res]) vals)

init((valy, ...,valy), (vary, ..., vary), c)
frames := ((0), (0), ({(vary,valy), ..., (var,, valy) }))

status(c) := inactive

EillTC(c) =
status(c) := killed

stopTC(c) =
if alive(c) then
status(c) := stopped
else
killTC/(c)
end if

startTimer(timer, exp) =
timeoutval (timer) := val(exp)
val(timer) := 0.0
status(timer) := running
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stopTimer(timer) =
status(timer) := inactive

sendMesssage(m, port, addresses) =
if mapsto(port) = undef then
setverdict(error)
else
var r rangesover mapsto(port)
extend Messages by m
value(m) = val(exp)
sender(m) := Sel f
if owner(mapsto(port)) = SYSTEM then
triSendM essage(m, port, adresses)
else
tciSendConnected(m, port, adresses)
end if
end extend
end var

end if

takeSnapshot(c) =
for all p € ports(c) do
if status(p) = started then
msgs' (p) := msgs(p)
end if
end for
for all t € timer(c) do
if status(t) = running then
status'(t) := status(t)
value' (t) := value(t)
end if
end for

B.4.3 TTCNa macros

updateStreams(c) =
for all p € ports(c) do
if status(p) = started A kind(p) = stream A stepExpired(p) then
if direction(p) = in then
enqueue(msgs(p), triGet Message(p))
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end if
if direction(p) = out then
extend Message by m
value(m) = value(p)
delta(m) := delta(p)
ts(m) = tlsample
enqueue(msgs(p), m)
end extend
end if
if direction(p) = in then
value(p) := value(msgs'(p)(]0])
delta(p) := ts(msgs'(port)[0]) — ts(msgs’(port)[1])
end if
end if

end for

stepExpired(p) = tsampie > ts(p) + delta(p)

B.4.4 TTCNg macros

isViolated(invariantList) =
3 exp € invariantList, val(exp) = false

endO fChilds(mode, c) =
Vrs € Runtime., (mode = up(up(mode(rs)))) — status(rs) # running

endO fStepFExecution =
3 runtime € runtimes(Self) , subtask(runtime) # finalize

resetModes(c) =
var runtimes rangesover Runtime,
if status(runtime) = running then
subtask(runtime) = invariants
end if
end var






APPENDIX C

PUBLICATIONS

The work presented in this thesis is original work undertaken at the Fraun-
hofer Institute for Open Communication Systems, Competence Center —
Modeling and Testing for System and Service Solutions. Portions of this
work have been already presented at conferences, in books and in journals
and resulted in the following publications:

e J. GROSSMANN, Testing hybrid systems with TTCN-3 embedded, In-
ternational Journal on Software Tools for Technology Transfer (2014),
pp. 247-267.

e J. GROSSMANN, P. MAKEDONSKI, H.-W. WIESBROCK, J. SVACINA,
I. SCHIEFERDECKER, AND J. GRABOWSKI, Model-based X-in-the-loop
testing, CRC Press, Sept. 2011.

e J. GROSSMANN, D. A. SERBANESCU, AND I. SCHIEFERDECKER,
Testing Embedded Real Time Systems with TTCN-3, in ICST 2009,
IEEE Computer Society, pp. 81-90.

e J. GROSSMANN, I. SCHIEFERDECKER, AND H.-W. WIESBROCK, Mod-
eling property based stream templates with TTCN-3, in TestCom /FATES,
K. Suzuki, T. Higashino, A. Ulrich, and T. Hasegawa, eds., Lecture
Notes in Computer Science 5047, Springer, 2008, pp. 70-85.

e J. GROSSMANN AND I. SCHIEFERDECKER, Testing Hybrid Control
Systems with TTCN-3, International Journal on Software Tools for
Technology Transfer (2008), pp. 383—400.

Moreover the work of this thesis constituted the project deliverable TEMEA
Deliverable D2.4 concepts for the specification of tests for systems with con-
tinuous or hybrid behaviour that later on was used as a basis for an European

Standard at the ETSI.

e ETSI: ES 202 786 V1.1.1, Methods for Testing and Specification
(MTS). The Testing and Test Control Notation Version 3, TTCN-3

Language Eztensions: Support of interfaces with continuous signals,
Febr. 2012.

239






	1 Introduction
	1.1 Background and motivation
	1.2 Contribution of this thesis
	1.3 Structure of this thesis

	2 Testing continuous and hybrid automotive systems
	2.1 Testing software-based systems
	2.1.1 Testing techniques and approaches
	2.1.2 Test automation
	2.1.3 Model-based testing

	2.2 Testing automotive control systems
	2.2.1 Processes and test processes in the automotive domain
	2.2.2 Test platforms in the automotive domain
	2.2.3 Testing languages and approaches in the automotive domain

	2.3 Introduction to continuous and hybrid systems
	2.3.1 Continuous and discrete signals
	2.3.2 Systems of equations
	2.3.3 Hybrid automata
	2.3.4 Data streams and stream processing
	2.3.5 Specification languages for continuous and hybrid systems

	2.4 Testing techniques and approaches for continuous and hybrid real-time systems
	2.4.1 Test modelling approaches for hybrid systems
	2.4.2 Assessment of signals via signal properties
	2.4.3 Model-based testing for real-time systems
	2.4.4 Model-based testing approaches for hybrid systems
	2.4.5 Testing languages for continuous and hybrid systems

	2.5 Summary and motivation for this thesis 

	3 Selected concepts for testing continuous and hybrid systems
	3.1 Time
	3.2 Port allocation and test behaviour
	3.3 Sampling and streams
	3.3.1 Streams
	3.3.2 Sampling
	3.3.3 Template streams

	3.4 Discussion

	4 TTCN-3 for hybrid systems
	4.1 Time and sampling
	4.1.1 Time
	4.1.2 Define the step size for sampling
	4.1.3 The wait statement

	4.2 Data streams
	4.2.1 Data streams: static perspective
	4.2.2 Data streams: dynamic perspective
	4.2.3 Defining stream port types
	4.2.4 Defining data stream ports 
	4.2.5 Stream-access operations
	4.2.6 Stream-navigation operations
	4.2.7 The history operation
	4.2.8 Limiting the length of the stream history

	4.3 The assert statement
	4.4 Control structures for continuous and hybrid behavior
	4.4.1 Modes
	4.4.2 Definition of the until block
	4.4.3 Definition of generic mode body elements
	4.4.4 Local temporal expressions in the context of modes
	4.4.5 Atomic modes: the cont statement
	4.4.6 Parallel mode composition: the par statement
	4.4.7 Sequential mode composition: the seq statement
	4.4.8 Reusable modes


	5 Operational integration with TTCN-3
	5.1 Abstract state machines
	5.2 Approach to operational semantics description
	5.3 The basic ASM framework
	5.4 Extracts from TTCNI, TTCNC, and TTCNT
	5.4.1 Component signature
	5.4.2 Message signature
	5.4.3 Port signature
	5.4.4 Timer signature
	5.4.5 Snapshots
	5.4.6 Statements and expression execution
	5.4.7 Further refinements to support TTCNC and TTCNT

	5.5 TTCN: TTCN-3 with streams, global time and sampling
	5.5.1 Refinement of statements and expression universes
	5.5.2 TTCN time and sampling signatures
	5.5.3 TTCN stream port signature
	5.5.4 Further TTCN signatures
	5.5.5 TTCN sampling controller
	5.5.6 TTCN time control
	5.5.7 TTCN stream-data operations
	5.5.8 TTCN stream-navigation operations
	5.5.9 TTCN history operation

	5.6 TTCNE: TTCN-3 with modes
	5.6.1 TTCNE statements and expressions
	5.6.2 TTCNE mode signature
	5.6.3 TTCNE modes
	5.6.4 TTCNE duration expression

	5.7 Discussion

	6 Architecture for realization
	6.1 The overall runtime architecture
	6.2 Extensions of the TTCN-3 Test Runtime Interface (TRI)
	6.2.1 Access to time
	6.2.2 TRI wait operations
	6.2.3 TRI stream value access
	6.2.4 TRI sampling

	6.3 Extensions of the TTCN-3 Test Control Interface (TCI)
	6.3.1 TCI stream value access
	6.3.2 Component synchronisation and global clock

	6.4 Integration with Matlab Simulink
	6.4.1 Simulink S-function overview
	6.4.2 The Simulink S-function adapter and codec

	6.5 Integration with Vector CANoe

	7 Case Study Experiences
	7.1 The MiL case study
	7.1.1 The ACC system
	7.1.2 Testing the pedal interpretation
	7.1.3 Testing the complete ACC system

	7.2 The HiL case study
	7.2.1 Automotive Application Evaluation System (AAES)
	7.2.2 Testing the window lifter module

	7.3 Discussion

	8 Conclusion and research prospects
	8.1 The definition of TTCN-3 embedded
	8.2 Future work and prospects for industrialization

	Glossary
	Bibliography
	A TTCN-3 embedded grammar
	B The operational semantics of TTCN-3 embedded
	B.1 Abstract syntax
	B.1.1 TTCNI abstract syntax
	B.1.2 TTCNC abstract syntax
	B.1.3 TTCNT abstract syntax
	B.1.4 TTCN abstract syntax
	B.1.5 TTCNE abstract syntax

	B.2 Signatures
	B.2.1 TTCNI signatures
	B.2.2 TTCNC signatures
	B.2.3 TTCNT signatures
	B.2.4 TTCN signatures
	B.2.5 TTCNE signatures

	B.3 Rules
	B.3.1 TTCNI: The imperative core of TTCN-3
	B.3.2 TTCNC: TTCN-3 with testcases, functions and components
	B.3.3 TTCNT: TTCN-3 with messages, alt statements, altsteps and timers
	B.3.4 TTCN: TTCN-3 with streams, global time and sampling
	B.3.5 TTCNE: TTCN-3 with modes

	B.4 Macros
	B.4.1 TTCNI macros
	B.4.2 TTCNC macros
	B.4.3 TTCN macros
	B.4.4 TTCNE macros


	C Publications



