
Models and Algorithms for Stochastic Online Scheduling 1

Nicole Megow
Technische Universität Berlin, Institut für Mathematik, Strasse des 17. Juni 136, 10623 Berlin, Germany.

email: nmegow@math.tu-berlin.de

Marc Uetz
Maastricht University, Department of Quantitative Economics, P.O. Box 616, 6200 MD Maastricht, The

Netherlands.

email: m.uetz@ke.unimaas.nl

Tjark Vredeveld2

Maastricht University, Department of Quantitative Economics, P.O. Box 616, 6200 MD Maastricht, The
Netherlands.

email: t.vredeveld@ke.unimaas.nl

We consider a model for scheduling under uncertainty. In this model, we combine the main characteristics of online
and stochastic scheduling in a simple and natural way. Job processing times are assumed to be stochastic, but in
contrast to traditional stochastic scheduling models, we assume that jobs arrive online, and there is no knowledge
about the jobs that will arrive in the future. The model incorporates both, stochastic scheduling and online
scheduling as a special case. The particular setting we consider is non-preemptive parallel machine scheduling,
with the objective to minimize the total weighted completion times of jobs. We analyze simple, combinatorial
online scheduling policies for that model, and derive performance guarantees that match the currently best known
performance guarantees for stochastic and online parallel machine scheduling. For processing times that follow
NBUE distributions, we improve upon previously best known performance bounds from stochastic scheduling,
even though we consider a more general setting.

Key words: scheduling; stochastic; online; total weighted completion time; approximation

MSC2000 Subject Classification: Primary: 90B36 ; Secondary: 68W40, 68W25, 68M20

OR/MS subject classification: Primary: Production/scheduling ; Secondary: approximation/heuristic

1. Introduction. Scheduling on identical parallel machines to minimize the total weighted comple-
tion time of jobs, P | |

∑
wj Cj in the three-field notation of Graham et al. [12], is one of the classical

problems in combinatorial optimization. The problem plays a role whenever many jobs must be processed
on a limited number of machines or processors, with applications in manufacturing, parallel computing [5]
or compiler optimization [6]. The literature has witnessed many papers on this problem, as well as its vari-
ant where the jobs have individual release dates before which they must not be processed, P | rj |

∑
wj Cj .

In the off-line (deterministic) setting, where the set of jobs and their characteristics are known in ad-
vance, the complexity status of both problems is solved; both are strongly NP-hard [17], and they admit
a polynomial time approximation scheme [1, 27].

In order to cope with scenarios where there is uncertainty about the future, there are two major
frameworks in the theory of scheduling, one is stochastic scheduling, the other is online scheduling. In
stochastic scheduling the population of jobs is assumed to be known beforehand, but in contrast to
deterministic models, the processing times of jobs are random variables. The actual processing times
become known only upon completion of the jobs. The respective random variables, or at least their
first moments, are assumed to be known beforehand. In online scheduling, the assumption is that the
instance is presented to the scheduler only piecewise. Jobs are either arriving one-by-one (in the online-list
model), or over time (in the online-time model) [22]. The actual processing times are usually disclosed
upon arrival of a job, and decisions must be made without any knowledge of the jobs to come.

We consider a model that generalizes both, stochastic scheduling and online scheduling. Like in online
scheduling, we assume that the instance is presented to the scheduler piecewise, and nothing is known
about jobs that might arrive in the future. Once a job arrives, like in stochastic scheduling, we assume
that its expected processing time is disclosed, but the actual processing time remains unknown until the

1Research partially supported by the DFG Research Center Matheon Mathematics for key technologies. An extended

abstract with parts of this work appeared in the Proc. of the 2nd Workshop on Approximation and Online Algorithms [19].
2Parts of this work were done while the author was with the Konrad-Zuse-Zentrum für Informationstechnik Berlin,

Germany.

1

mailto:nmegow@math.tu-berlin.de
mailto:nmegow@math.tu-berlin.de
mailto:m.uetz@ke.unimaas.nl
mailto:m.uetz@ke.unimaas.nl
mailto:t.vredeveld@ke.unimaas.nl
mailto:t.vredeveld@ke.unimaas.nl


2 Megow, Uetz, Vredeveld: Models and Algorithms for Stochastic Online Scheduling

job completes. Before we discuss the model and related work in more detail, let us fix some basic notation
and definitions.

Model and definitions. Given is a set J = {1, . . . , n} of jobs, with nonnegative weights wj , j ∈ J .
In the model with release dates, rj denotes the earliest point in time when job j can be started. Each
job must be processed non-preemptively on any of the m identical machines, and each machine can only
handle one job at a time. The goal is to find a schedule that minimizes the total weighted completion
time

∑
j wj Cj , where Cj denotes the completion time of job j. By P j we denote the random variable

for the processing time of job j, by E [P j ] its expected processing time, and by pj a particular realization
of P j . The processing time distributions P j are assumed to be independent. We assume that the jobs are
arriving over time upon their respective release dates rj in the order 1, . . . , n. Therefore, we can assume
w.l.o.g. that rj ≤ rk for j < k. Notice that the number of jobs n is not known in advance. When a job
arrives at time rj , the scheduler is informed about its weight wj and its expected processing time E [P j ].

The goal is to find a stochastic online scheduling policy that minimizes the expected value of the
weighted completion times of jobs, E [

∑
wj Cj ]. Our definition of a stochastic online scheduling policy

extends the traditional definition of stochastic scheduling policies by Möhring et al. [20] to the setting
where jobs arrive online. A scheduling policy specifies actions at decision times t. An action is a set of
jobs that is started at time t, and a next decision time t′ > t at which the next action is taken, unless
some job is released or ends at time t′′ < t′. In that case, t′′ becomes the next decision time. In order to
decide, the policy may utilize the complete information contained in the partial schedule up to time t, as
well as information about unscheduled jobs that have arrived before t. However, a policy is required to be
non-anticipatory, thus at any time, it must neither utilize any information about jobs that will be released
in the future, nor must it utilize the actual processing times of jobs that are scheduled (or unscheduled)
but not yet completed. An optimal scheduling policy is defined as a non-anticipatory scheduling policy
that minimizes the objective function value in expectation. An optimal scheduling policy generally fails
to yield an optimal solution for all realizations of the processing times; this because it is non-anticipatory.

For any realization p = (p1, . . . , pn) of processing times of the jobs, a scheduling policy yields a feasible
m-machine schedule. For a given policy, denoted by Π, let SΠ

j (p) and CΠ
j (p) the start and completion

times of job j for a given realization p, and let SΠ
j (P ) and CΠ

j (P ) denote the associated random variables.
Unless there is danger of ambiguity, we also write Sj and Cj , for short. We let

E [Π(P )] = E
[∑

j
wj CΠ

j (P )
]

=
∑

j
wj E

[
CΠ

j (P )
]

denote the expected performance of a scheduling policy Π. Let us denote the above defined model as
SoS, for stochastic online scheduling.

Generalizing the definitions by Möhring et al. in [21] for traditional stochastic scheduling, we define
the performance guarantee of a stochastic online scheduling policy as follows.

Definition 1.1 A stochastic online scheduling policy (SoS policy) Π is a ρ–approximation if, for some
ρ ≥ 1, and all instances of the given problem,

E [Π(P )] ≤ ρ E [OPT(P )] .

Here, OPT denotes an optimal stochastic scheduling policy on the given instance, assuming a priori
knowledge of the set of jobs J , their weights wj, release dates rj, and processing time distributions P j.
The constant ρ is called the performance guarantee of policy Π.

Notice that the stochastic online scheduling policy Π in this definition does not have a priori knowledge
of the set of jobs J , their weights wj , release dates rj , and processing time distributions P j . Policy Π is
an online policy, and only learns about the existence of any job j upon its release date rj . Hence, the
policy has to compete with an adversary that knows the online sequence of jobs in advance. However,
with respect to the processing times P j of the jobs, the adversary is just as powerful as the policy Π
itself, since it does not foresee their actual realizations pj either.

Probably the best known scheduling policy in stochastic scheduling is the WSEPT rule. Its online
version will also play a prominent role in this paper, and is defined next. To this end, call a job j available
at a given time t if it has not yet been scheduled, and if its release date has passed, that is, if rj ≤ t.



Megow, Uetz, Vredeveld: Models and Algorithms for Stochastic Online Scheduling 3

Definition 1.2 (Online WSEPT, weighted shortest expected processing time first) At any point in
time when a machine is idle, among all jobs that are available, schedule the job with the highest ra-
tio of weight over expected processing time, wj/E [P j ].

Whenever release dates are absent, it reduces to the traditional WSEPT rule known from stochastic
scheduling, and the jobs appear in the schedule in order of non-increasing ratios wj/E [P j ]. For unit
weights, it reduces to SEPT, shortest expected processing time first. For single machine (stochastic)
scheduling without release dates, 1 | |

∑
wj Cj , the WSEPT rule is optimal; this follows by a simple job

interchange argument [23, 29].

Related work. Stochastic machine scheduling models have been addressed mainly since the 1980s [9].
In the traditional stochastic setting, Weiss [33, 34] analyzes the performance of the WSEPT rule. He
derives additive performance bounds for the stochastic parallel machine model without release dates,
P| |E [

∑
wj Cj ]. His bounds yield asymptotic optimality of the WSEPT rule for a certain class of pro-

cessing time distributions. More recently, approximation algorithms for stochastic machine scheduling
have been derived by Möhring et al. [21] and Skutella and Uetz [26]. In these papers, the expected
performance of the WSEPT rule, and linear programming based stochastic scheduling policies, are com-
pared against the expected performance of an optimal stochastic scheduling policy. The results are
constant-factor approximations for models without or with release dates [21], and also with precedence
constraints [26]. However, these papers do not address the situation where jobs arrive online.

In contrast to traditional stochastic scheduling, in online scheduling it is assumed that nothing is
known about jobs that are about to arrive in the future. However, once a job becomes known, its weight
wj and its actual processing time pj are disclosed. The quality of online algorithms is assessed by their
competitive ratio [15, 28]. An algorithm is called ρ-competitive if, for any instance, a solution is achieved
with value not worse than ρ times the value of an optimal off-line solution. In the online-time model jobs
become known upon their release dates rj . In the online-list model, jobs are presented one-by-one, all
at time 0. Upon presentation, a job has to be scheduled immediately before the next job can be seen (at
some time that is feasible with respect to release dates and the already scheduled jobs). We omit further
details and refer to Borodin and El-Yaniv [3] or Pruhs et al. [22].

In the online-list model, Fiat and Woeginger [11] show that the single machine problem 1 | rj |
∑

Cj

does not allow a deterministic or randomized online algorithm with a competitive ratio of log n. In the
online-time model, Anderson and Potts [2] provide a 2-competitive online algorithm for the same problem.
This result is best possible, since Hoogeveen and Vestjens [14] prove a lower bound of 2 on the competitive
ratio of any deterministic online algorithm. For settings with parallel machines, Vestjens [32] proves a
lower bound of 1.309 for the competitive ratio of any deterministic online algorithm for P | rj |

∑
wj Cj ,

even for unit weights. The currently best known deterministic algorithm for P | rj |
∑

wj Cj is 2.62-
competitive, proposed by Correa and Wagner [8]. The currently best known randomized algorithm for
the problem has an expected competitive ratio of 2; see Schulz and Skutella [25].

A model that combines features of stochastic and online scheduling has also been considered by Chou
et al. [7]. They prove asymptotic optimality of the online WSEPT rule for the single machine problem
1 | rj |

∑
wj Cj , assuming that the weights wj and processing time pj can be bounded by constants. The

definition of the adversary in their paper coincides with our definition. Hence, asymptotic optimality
means that the ratio of the expected performance of the WSEPT rule over the expected performance of
an optimal stochastic scheduling policy tends to 1 as the number of jobs tends to infinity.

A different type of analysis for stochastic scheduling has been proposed by Steger et al. [24, 30]. Both
papers address the parallel machine model without release dates. They compare the performance of the
(W)SEPT rule to the optimal solution per realization, and take the expectation of this ratio on the basis
of the given processing time distributions. Their analysis is thus different from the traditional stochastic
scheduling model; in particular is it not based upon an comparison to the optimal stochastic scheduling
policy. Although the underlying adversary is stronger than in traditional stochastic scheduling, they
derive constant bounds on what they call the expected competitive ratio.

Results and methodology. We propose simple, combinatorial online scheduling policies for stochas-
tic online scheduling models on parallel machines with and without release dates, and derive constant



4 Megow, Uetz, Vredeveld: Models and Algorithms for Stochastic Online Scheduling

performance bounds for these policies.

For identical parallel machine scheduling without release dates, P| |E [
∑

wj Cj ], the performance guar-
antee is

ρ = 1 +
(m− 1)(∆ + 1)

2m
.

Here, ∆ is an upper bound on the squared coefficients of variation of the processing time distributions
P j , that is,

CV [P j ]
2 = Var [P j ]/E [P j ]

2 ≤ ∆ for all jobs j .

This performance guarantee matches the previously best known performance guarantee of Möhring et
al. [21]; they obtain the same bound for the performance of the WSEPT rule in the traditional stochastic
scheduling model. However, we derive this bound for a model other than traditional stochastic schedul-
ing. More precisely, we consider a stochastic online model where the jobs are presented to the scheduler
sequentially, and the scheduler must immediately and irrevocably assign jobs to machines, without knowl-
edge of the jobs to come. Therefore we also speak of fixed-assignment policies. Once the jobs are assigned
to the machines, the jobs on each machine can be sequenced in any order. We thus show that there exists
a fixed-assignment policy that achieves the same performance guarantee as the above mentioned bound
for the WSEPT rule. In this context, notice that the traditional WSEPT rule is not a fixed-assignment
policy, since the assignment of jobs to machines depends on the actual realizations of the processing
times.

For the model with release dates, P | rj |
∑

wj Cj , we prove a slightly more complicated performance
guarantee that is valid for a class of processing time distributions that we call δ-NBUE, generalizing the
well known class of NBUE distributions (new better than used in expectation).

Definition 1.3 (δ-NBUE) A non-negative random variable X is δ-NBUE if, for δ ≥ 1,
E [X − t |X > t ] ≤ δ E [X] for all t ≥ 0.

For identical parallel machine scheduling with release dates P | rj |
∑

wj Cj , and δ-NBUE distributions,
we obtain a performance guarantee of

ρ = 1 + max
{

1 +
δ

α
, α + δ +

(m− 1)(∆ + 1)
2m

}
.

Here, α > 0 is an arbitrary parameter, and again, ∆ is an upper bound on the squared coefficients of
variation Var[P j ]/E [P j ]

2 of the processing time distributions P j . In particular, since we show in the
appendix that Var[P j ]/E [P j ]

2 ≤ 2δ − 1 for δ-NBUE distributions, we get

ρ ≤ 1 + max {1 + δ/α , α + δ(2m− 1)/m} .

Optimizing for α yields that ρ < 3/2+(1−1/(2m))δ+
√

1 + 4δ2/2. For for ordinary NBUE distributions,
where δ = 1, we thus obtain a performance bound strictly less than (

√
5+5)/2−1/(2m) ≈ 3.62−1/(2m).

Thereby, we improve upon the previously best known performance guarantee of 4− 1/m for traditional
stochastic scheduling, which was derived for an LP based list scheduling policy [21]. Again, this improved
bound holds even though we consider an online model in which the jobs arrive over time, and the scheduler
does not know anything about the jobs that are about to arrive in the future. Moreover, for deterministic
processing times, where ∆ = 0 and δ = 1, we get ρ = 2 + max{1/α , α + (m− 1)/(2m)}; optimizing for
α yields ρ ≈ 3.28, matching the bound from deterministic online scheduling by Megow and Schulz [18].

For both models, our results are in fact achieved by fixed-assignment policies. That is, whenever a job
is presented to the scheduler, it is immediately and irrevocably assigned to a machine. The sequencing
of jobs on the individual machines is in both cases (an online version of) the traditional WSEPT rule.

2. Discussion and further preliminaries. As a matter of fact, results in stochastic scheduling
either rely on the traditional (W)SEPT rule [21, 24, 30, 33, 34] for models without release dates, or they
use linear programming relaxations to define list scheduling policies other than WSEPT [21, 26]. As soon
as we assume that jobs arrive online, these approaches fail: the traditional off-line (W)SEPT rule cannot
be implemented since it requires an a priori ordering of jobs in order of ratios wj/E [P j ]. Moreover, for
the models with release dates, optimal LP solutions are not only required for the purpose of analysis, but
also to define the corresponding list scheduling policies [21]. Hence, it is required to know beforehand the



Megow, Uetz, Vredeveld: Models and Algorithms for Stochastic Online Scheduling 5

set of jobs J , their expected processing times E [P j ], and in the case with release dates also a uniform
upper bound ∆ on the squared coefficient of variation of all processing times distributions. Although
we still use the same linear programming relaxation as Möhring et al. [21] within our analysis, the main
difference lies in the fact that the algorithms we propose are purely combinatorial, and do not require
the solution of linear programs in advance.

As in traditional online optimization, the adversary in the SoS model may choose an arbitrary sequence
of jobs as well. These jobs, however, are stochastic, with corresponding processing time distributions.
The actual processing times are realized according to exogenous probability distributions. Thus, the best
the adversary can do is indeed to use an optimal stochastic scheduling policy in the traditional definition
of stochastic scheduling policies by Möhring et al. [20]. In this view, our model somewhat compares to
the idea of a diffuse adversary as defined by Koutsoupias and Papadimitriou [16]. Since deterministic
processing times are contained as a special case, however, all lower bounds on the approximability known
from deterministic online scheduling also hold for the SoS model of the present paper. Hence, no SoS
policy can exist with a performance bound better than 1.309 [32].

Observe that the expected performance of any stochastic online policy is by definition no less than the
expected performance of an optimal policy for a corresponding traditional stochastic problem, where the
set of jobs J , their weights wj , and their processing time distributions P j are given at the outset. Hence,
lower bounds on the expected objective value of an optimal stochastic scheduling policy carry over to the
stochastic online setting that we consider in this paper. Therefore, we have the following lower bound
on the performance of any stochastic online scheduling policy; it is a generalization of a lower bound by
Eastman et al. [10] to stochastic processing times.

Lemma 2.1 (Möhring et al. [21]) For any instance of P | rj |E [
∑

wj Cj ], we have that

E [OPT(P )] ≥
∑

j

wj

∑
k∈H(j)

E [P k]
m

− (m− 1)(∆− 1)
2m

∑
j

wjE [P j ] ,

where ∆ bounds the squared coefficient of variation of the processing times, that is, Var[P j ]/E [P j ]
2 ≤ ∆

for all jobs j = 1, . . . , n and some ∆ ≥ 0.

Here, we have used a piece of notation that comes handy also later. For a given job j ∈ J , H(j) denotes
the jobs that have a higher priority in the order of ratios wj/E [P j ], that is

H(j) =
{

k ∈ J | wk

E [P k]
>

wj

E [P j ]

}
∪

{
k ≤ j | wk

E [P k]
=

wj

E [P j ]

}
.

Accordingly, we define
L(j) = J\H(j)

as those jobs that have lower priority in the order of ratios wj/E [P j ]. As a tie-breaking rule for jobs k
with equal ratio wk/E [P k] = wj/E [P j ] we decide depending on the position in the online sequence
relative to j. That is, if k ≤ j then k belongs to set H(j), otherwise it is included in set L(j). Notice
that, by convention, we assume that H(j) contains job j, too.

3. Stochastic online scheduling on a single machine. In this section we consider the stochastic
online scheduling problem on a single machine. When release dates are absent, it is well known that the
WSEPT rule is optimal [23, 29].

For the problem of scheduling jobs with nontrivial release dates on a single machine, the currently
best known result from traditional stochastic scheduling is an LP-based list scheduling algorithm with a
performance bound of 3 [21]. Inspired by a corresponding algorithm for the deterministic online setting
on parallel machines from [18], we propose the following scheduling policy.

Algorithm 1: α-Shift-WSEPT

Modify the release date rj of each job j to r′j = max{rj , α E [P j ]}, for
some fixed α > 0. At any time t, when the machine is idle, start the
job with highest ratio wj/E [P j ] among all available jobs, respecting
the modified release dates. (In case of ties, smallest index first.)



6 Megow, Uetz, Vredeveld: Models and Algorithms for Stochastic Online Scheduling

We first derive an upper bound on the expected completion time of a job, E
[
Cα

j

]
, when scheduling jobs

on a single machine according to the α-Shift-WSEPT policy.

Lemma 3.1 Let all processing times be δ-NBUE. Then the expected completion time of job j under α-
Shift-WSEPT on a single machine can be bounded by

E
[
Cα

j

]
≤ (1 + δ/α) r′j +

∑
k∈H(j)

E [P k] .

Proof. We consider some job j. Let X denote a random variable measuring the remaining processing
time of a job being processed at time r′j , if such a job exists. Otherwise X has value 0. Moreover, for
any job k, let ξk be an indicator random variable that equals 1 if and only if job k starts processing at
the earliest at time r′j , i.e., ξk = 1 if and only if Sα

k ≥ r′j . The start of job j will be postponed beyond r′j
by X, and until there are no more higher priority jobs available. Hence, the expected start time of job j
can be bounded by

E
[
Sα

j

]
≤ E

[
r′j + X +

∑
k∈H(j)\{j}

Pkξk

]
= r′j + E [X] +

∑
k∈H(j)\{j}

E [Pkξk]

≤ r′j + E [X] +
∑

k∈H(j)\{j}

E [Pk] ,

where the last inequality follows from the fact that Pkξk ≤ Pk for any job k.

Next, we show that E [X] ≤ (δ/α)r′j . If the machine just finishes a job at time r′j or is idle at that
time, X has value 0. Otherwise, some job ` is in process at time r′j . Note that this job might have
lower or higher priority than job j. Such job ` was available at time r′` < r′j , and by definition of the
modified release dates, we therefore know that E [P `] ≤ (1/α)r′` < (1/α)r′j for any such job `. Moreover,
letting t = r′j − Sα

` , the expected remaining processing time of such job `, given that it is indeed in
process at time r′j , is E [P ` − t | P ` > t ]. Due to the assumption of δ-NBUE processing times, we thus
know that

E [P ` − t | P ` > t ] ≤ δ E [P `] ≤ (δ/α)r′j
for any job ` that could be in process at time r′j . Hence, we obtain E [X] ≤ (δ/α)r′j . Finally, the fact
that E

[
Cα

j

]
= E

[
Sα

j

]
+ E [P j ] concludes the proof. �

In fact, it is quite straightforward to use Lemma 3.1 in order to show the following.

Theorem 3.1 The α-Shift-WSEPT algorithm is a (δ+2)-approximation for the stochastic online single
machine problem 1|rj |E [

∑
wjCj ], for δ-NBUE processing times. The best choice for α is α = 1.

Proof. With Lemma 3.1 and the definition of modified release dates r′j = max{rj , α E [P j ]} we can
bound the expected value of a schedule obtained by α-Shift-WSEPT.∑

j

wj E
[
Cα

j

]
≤ (1 + δ/α)

∑
j

wj max {rj , α E [P j ]}+
∑

j

wj

∑
k∈H(j)

E [P k]

=
∑

j

wj max
{

(1 + δ/α) rj , (α + δ) E [P j ]
}

+
∑

j

wj

∑
k∈H(j)

E [P k]

≤ max
{

(1 + δ/α) , (α + δ)
} ∑

j

wj (rj + E [P j ]) +
∑

j

wj

∑
k∈H(j)

E [P k] .

We can now apply the trivial lower bound
∑

j wj(rj + E [P j ]) ≤ E [OPT(P )], and exploit the fact that∑
j wj

∑
k∈H(j) E [P k] ≤ E [OPT(P )] by Lemma 2.1 (for m = 1), and obtain∑

j

wj E
[
Cα

j

]
≤

(
1 + max

{
1 +

δ

α
, α + δ

})
E [OPT(P )] .

Simple analysis shows that α = 1 minimizes the expression above, independently of δ, and the theorem
follows. �



Megow, Uetz, Vredeveld: Models and Algorithms for Stochastic Online Scheduling 7

Note that for NBUE processing times, the result matches the best known performance bound of 3
derived by Möhring et. al in [21] for the traditional stochastic scheduling model. In contrast to α-Shift-
WSEPT, however, their LP-based policy requires an a priori knowledge of the set of jobs J , their weights
wj , and their expected processing times E [P j ]. Moreover, in the deterministic online setting, the best
possible algorithm is 2-competitive as shown in [14], hence the corresponding lower bound of 2 holds for
the stochastic online setting as well.

4. Stochastic online scheduling on parallel machines. In this section, we define stochastic
online scheduling policies for the problem on parallel machines. We first consider the problem without
nontrivial release dates, i.e., rj = 0 for all jobs j ∈ J . Later, we generalize the policy for the problem
with nontrivial release dates.

4.1 Scheduling jobs without release dates. In the case that all jobs arrive at time 0, the problem
effectively turns into a traditional stochastic scheduling problem, P | |E [

∑
wj Cj ]. For that problem, it

is known that the WSEPT rule yields a (1 + (m − 1)(∆ + 1)/(2m))-approximation, ∆ being an upper
bound on the squared coefficients of variation of the processing time distributions [21].

Nevertheless, we consider an online variant of the problem P | |E [
∑

wj Cj ] that resembles the online-
list model from online optimization. We assume that the jobs are presented to the scheduler sequentially,
and each job must immediately and irrevocably be assigned to a machine: a fixed-assignment policy.
In particular, during this assignment phase, the scheduler does not know anything about the jobs that
are still about to come. Once the jobs are assigned to the machines, the jobs on each machine may
be sequenced in any order. We show that an intuitive and simple fixed-assignment policy exists that
eventually yields the same performance bound as the one proved in [21] for the WSEPT rule. Note,
however, that the WSEPT rule is not a feasible online policy in the model we consider here.

We introduce the following notation: If a job j is assigned to machine i, this is denoted by j → i. Now
we can define the MinIncrease policy as follows.

Algorithm 2: MinIncrease (MI)

When a job j is presented to the scheduler, it is assigned to the machine i that
minimizes the expression

z(j, i) = wj ·
∑

k∈H(j), k<j, k→i

E [P k] + E [P j ] ·
∑

k∈L(j), k<j, k→i

wk + wjE [P j ] .

Once all jobs are assigned to machines, the jobs on each machine are sequenced in
order of non-increasing ratios wj/E [P j ].

Since WSEPT is known to be optimal on a single machine, MinIncrease in fact assigns each job j
to that machine where it causes the least increase in the expected objective value, given the previously
assigned jobs. This is expressed in the following lemma.

Lemma 4.1 The expected objective value E [MI(P )] of the MinIncrease policy equals
∑

j mini z(j, i) .

Proof. The assignment of jobs to machines is independent of the realization of processing times.
Hence, the expected completion time E [Cj ] for some job j that has been assigned to machine ij by
MinIncrease is

E [Cj ] =
∑

k∈H(j), k→ij

E [Pk] ,

because all jobs that are assigned to the same machine ij are sequenced in order of non-increasing ratios
wj/E [P j ]. Now, weighted summation over all jobs gives by linearity of expectation

E [MI(P )] = E
[∑

j
wjCj

]
=

∑
j

wj

∑
k∈H(j), k→ij

E [P k]

=
∑

j

wj

∑
k∈H(j), k→ij ,k<j

E [P k] +
∑

j

wj

∑
k∈H(j), k→ij ,k>j

E [P k] +
∑

j

wjE [P j ] .



8 Megow, Uetz, Vredeveld: Models and Algorithms for Stochastic Online Scheduling

This allows us to apply the following index rearrangement.∑
j

wj

∑
k∈H(j), k>j

E [P k] =
∑

j

E [P j ]
∑

k∈L(j), k<j

wk . (1)

Thus, we have

E [MI(P )] =
∑

j

wj

∑
k∈H(j), k→ij ,k<j

E [P k] +
∑

j

E [P j ]
∑

k∈L(j), k→ij ,k<j

wk +
∑

j

wjE [P j ]

=
∑

j

(
wj

∑
k∈H(j), k→ij ,k<j

E [P k] + E [P j ]
∑

k∈L(j), k→ij ,k<j

wk + wjE [P j ]
)

=
∑

j

min
i

z(j, i) ,

where the second equality makes use of (1) applied to each individual machine ij , and the last equality
holds since ij is the machine minimizing z(j, i) over all machines i. �

Now, we can derive the following performance guarantee for the MinIncrease policy.

Theorem 4.1 Consider the stochastic online scheduling problem on parallel machines, P| |E [
∑

wj Cj ],
as described above. Given that Var[P j ]/E [P j ]

2 ≤ ∆ for all jobs j and some constant ∆ ≥ 0, the
MinIncrease policy is a ρ–approximation, where

ρ = 1 +
(m− 1)(∆ + 1)

2m
.

Proof. From Lemma 4.1 we know that E [MI(P )] =
∑

j mini z(j, i) and, thus,

E [MI(P )] =
∑

j

min
i

{
wj

∑
k∈H(j), k<j, k→i

E [P k] + E [P j ]
∑

k∈L(j), k<j, k→i

wk + wjE [P j ]
}

≤
∑

j

1
m

(
wj

∑
k∈H(j), k<j

E [P k] + E [P j ]
∑

k∈L(j), k<j

wk

)
+

∑
j

wjE [P j ] ,

where the inequality holds because the least expected increase is not more than the average expected
increase over all machines.

Now, we first apply the index rearrangement (1) as in Lemma 4.1, and then plug in the inequality
of Lemma 2.1. Using the trivial fact that

∑
j wjE [P j ] is a lower bound for the expected performance

E [OPT(P )] of an optimal policy, we thus obtain

E [MI(P )] ≤ 1
m

∑
j

(
wj

∑
k∈H(j), k<j

E [P k] + wj

∑
k∈H(j), k>j

E [P k]
)

+
∑

j

wjE [P j ]

=
1
m

∑
j

wj

∑
k∈H(j)

E [P k] +
m− 1

m

∑
j

wjE [P j ]

≤ E [OPT(P )] +
(m− 1)(∆− 1)

2m

∑
j

wjE [P j ] +
m− 1

m

∑
j

wjE [P j ]

≤
(

1 +
(m− 1)(∆ + 1)

2m

)
· E [OPT(P )] .

�

As mentioned above, this performance guarantee matches the currently best known performance guar-
antee for the traditional stochastic setting, which was derived for the performance of the WSEPT rule
in [21]. The WSEPT rule, however, requires the knowledge of all jobs with their weights wj and ex-
pected processing times E [P j ] at the outset. In contrast, the MinIncrease policy decides on machine
assignments online, without any knowledge of the jobs to come. Finally, notice that these two policies
are indeed different; this follows from simple examples.



Megow, Uetz, Vredeveld: Models and Algorithms for Stochastic Online Scheduling 9

Lower bound for fixed assignment policies. The requirement of a fixed assignment of jobs to
machines beforehand may be interpreted as ignoring the additional information that evolves over time in
the form of the actual realization of processing times. In the following, we therefore give a lower bound
on the expected performance E [FIX(P )] of an optimal stochastic scheduling policy FIX that assigns jobs
to machines beforehand. A fortiori, this lower bound holds for the best possible SoS policy, too.

Theorem 4.2 For stochastic parallel machine scheduling with unit weights and i.i.d. exponential pro-
cessing times, P|pj ∼ exp(1)|E [

∑
Cj ], there exist instances such that

E [FIX(P )] ≥ 3(
√

2− 1) · E [OPT(P )]− ε ,

for any ε > 0. Here, 3(
√

2− 1) ≈ 1.24. Hence, no policy that uses fixed assignments of jobs to machines
can perform better in general.

Notice that the theorem is formulated for the special case of exponentially distributed processing times.
Stronger bounds can be obtained for arbitrary distributions. However, since our performance guarantees,
as in [21], depend on the coefficient of variation of the processing times, we are particularly interested
in lower bounds for classes of distributions where this coefficient of variation is small. The coefficient
of variation of exponentially distributed random variables equals 1. For example, for the case of m = 2
machines, we get a lower bound of 8/7 ≈ 1.14 on the performance of any fixed-assignment policy, and for
that case the performance bound of MinIncrease equals 2− 1/m = 1.5.

Proof of Theorem 4.2. Let us consider an instance with m machines and n = m+k exponentially
distributed jobs, P j ∼ exp(1), where k ≥ 1 is an integer. The optimal stochastic scheduling policy is
SEPT, shortest expected processing time first [4, 35], and the expected performance is (see, e.g., [31,
Cor. 3.5.17])

E [OPT(P )] = E [SEPT(P )] =
∑

j

E
[
CSEPT

j

]
= m +

n∑
j=m+1

j

m
= m + k +

k(k + 1)
2m

.

When, in a fixed assignment, one machine has to process at least two jobs more than another machine,
the assignment can be improved by moving one job from the most loaded machine to the least loaded
machine. Therefore, the best fixed assignment policy tries to distribute the jobs evenly over the machines.
That is, it assigns 1 + b k

mc jobs to m − k + mb k
mc machines and 1 + d k

me jobs to k − mb k
mc machines.

Hence, there are m jobs with E [Cj ] = l (l = 1, . . . , 1 + b k
mc) and k − mb k

mc jobs with E [Cj ] = 2 + b k
mc.

The expected performance for the best fixed assignment policy FIX is

E [FIX(P )] =
∑

j

E
[
CFIX

j

]
= m + 2k +

(
k − m

2
− m

2

⌊
k

m

⌋)
·
⌊

k

m

⌋
.

For m < k ≤ 2m, this value is equal to E [FIX(P )] = 3k. Hence, for m < k ≤ 2m, the ratio
E [FIX(P )]/E [OPT(P )] is

E [FIX(P )]
E [OPT(P )]

=
3k

m + k + k(k + 1)/(2m)
,

which is maximized for k(m) ∈ {b
√

2mc, d
√

2me}. With this choice of k, the ratio E [FIX(P )]/E [OPT(P )]
tends to 3

√
2/(2 +

√
2) = 3(

√
2− 1) ≈ 1.24 as m tends to infinity. �

Notice that the lower bound of 1.24 holds whenever m, the number of machines, tends to infinity.
For smaller numbers of machines, e.g. m = 2, 3, 4, . . . we use smaller numbers k = k(m), namely
k(2) = 1, k(3) = 2, k(4) = 2, . . . , and obtain the lower bounds 8/7 ≈ 1.14, 7/6 ≈ 1.16, 32/27 ≈ 1.18, . . . .

Lower bound for MinIncrease. The lower bound on the performance ratio for any fixed assignment
policy given in Theorem 4.2 holds for the MinIncrease policy, too. Hence, MinIncrease cannot be
better than 1.24-approximative. For general (i.e., non-exponential) probability distributions we obtain a
lower bound of 3/2 on the expected performance of MinIncrease relative to the expected performance
of an optimal scheduling policy, as shown by the following instance.

Example 4.1 The instance consists of n− 1 deterministic unit length jobs and one job with a stochastic
two-point distributed processing time. There are m = 2 machines, and we assume that n, the number



10 Megow, Uetz, Vredeveld: Models and Algorithms for Stochastic Online Scheduling

of jobs is even. The n − 1 deterministic jobs have unit weight wj = 1; they appear first in the online
sequence. The final job in the online sequence is the stochastic job. It has processing time pj = n2/4 with
probability 2/n, and pj = 1 with probability 1− 2/n. The weight wj of the stochastic job equals the value
of its expected processing time, i.e. 1− 2/n + n/2 .

The MinIncrease policy assigns n/2 − 1 deterministic jobs to one machine, and n/2 deterministic
jobs to the other. The stochastic job is assigned to the machine with n/2− 1 deterministic jobs. Hence,
the expected objective value of the schedule under MinIncrease is E [

∑
wj Cj ] = 3n2/4 + o(n2) . An

optimal stochastic policy would start the uncertain job and one deterministic job at time 0. At time
t = 1 it is known if the stochastic job has completed, or if it blocks the machine for another n2/4 − 1
time units. If the stochastic job has completed then the remaining unit jobs are distributed equally on
both machines, otherwise all deterministic jobs are scheduled on the same machine. Thus, the expected
objective value of an optimal schedule is E [OPT(P )] = n2/2 + o(n2). The ratio of both values tends to
3/2 if the number of jobs tends to infinity.

Notice, however, that this result is less meaningful in comparison to the performance bound of Theo-
rem 4.1, which depends on an upper bound ∆ on the squared coefficient of variation.

4.2 Scheduling jobs with nontrivial release dates. In this section, we consider the setting where
jobs arrive over time, that is, the stochastic online version of P | rj |E [

∑
wj Cj ]. The main idea is to

adopt the MinIncrease policy to this setting. However, the difference is that we are no longer equipped
with an optimal policy (as it was WSEPT in the previous section) to schedule the jobs that are assigned
to a single machine. Even worse, even if we knew such a policy for a single machine, it would not be
straightforward how to use it in the setting with parallel machines to define a feasible online scheduling
policy. However, we propose to use the α-Shift-WSEPT rule as introduced in Section 3 to sequence
the jobs that we have assigned to the same machine. The assignment of jobs to machines, on the other
hand, remains the same as before in the case without release dates. In a sense, when assigning jobs to
machines, we thus ignore the possible gain of information that occurs over time in the online-time model.

Algorithm 3: Modified MinIncrease

When a job j is presented to the scheduler at its release date rj , it is assigned to
the machine i that minimizes the expression

z(j, i) = wj

∑
k∈H(j), k<j, k→i

E [P k] + E [P j ]
∑

k∈L(j), k<j, k→i

wk + wjE [P j ] .

On each machine, the jobs assigned to this machine are sequenced according to
the α-Shift-WSEPT rule.

The crucial observation is that the α-Shift-WSEPT policy on machine ij learns about job j’s existence
immediately at time rj . Hence, for each single machine, it is indeed feasible to use the α-Shift-WSEPT
rule, and the so-defined policy is a feasible SoS policy.

Theorem 4.3 Consider the stochastic online scheduling problem on parallel machines with release dates,
P|rj |E [

∑
wj Cj ]. Given that all processing times are δ-NBUE, the modified MinIncrease policy running

α-Shift-WSEPT on each single machine is a ρ–approximation, where

ρ = 1 + max
{

1 +
δ

α
, α + δ +

(m− 1)(∆ + 1)
2m

}
,

Here, ∆ is such that Var[P j ]/E [P j ]
2 ≤ ∆ for all jobs j. In particular, since all processing times P j are

δ-NBUE, Lemma A.1 yields that ∆ ≤ 2δ − 1, hence ρ ≤ 1 + max {1 + δ/α, α + δ(2m− 1)/m}.

Proof. Let ij be the machine to which job j is assigned. Then, by Lemma 3.1 we know that

E [Cj ] ≤
(
1 +

δ

α

)
r′j +

∑
k∈H(j), k→ij

E [P k] , (2)



Megow, Uetz, Vredeveld: Models and Algorithms for Stochastic Online Scheduling 11

and the expected value of MinIncrease can be bounded by

E [MI(P )] ≤
(
1 +

δ

α

) ∑
j

wj r′j +
∑

j

wj

∑
k∈H(j), k→ij

E [P k] . (3)

For the second part of the right hand side of (3), we can use the same index rearrangement as in the
proof of Theorem 4.1; see (1). We thus obtain

∑
j

wj

∑
k∈H(j), k→ij

E [P k] =
∑

j

wj

∑
k∈H(j), k→ij , k<j

E [P k] + E [P j ]
∑

k∈L(j), k→ij , k<j

wk + wjE [P j ]

 .

By definition of the modified MinIncrease algorithm, we know that any job j is assigned to the
machine which minimizes the term in parenthesis. Hence, by the same averaging argument as before, we
know that ∑

j

wj

∑
k∈H(j), k→ij

E [P k] ≤
∑

j

wj

∑
k∈H(j), k<j

E [P k]
m

+ E [P j ]
∑

k∈L(j), k<j

wk

m
+ wjE [P j ]


=

∑
j

wj

∑
k∈H(j)

E [P k]
m

+
m− 1

m

∑
j

wjE [P j ] ,

where the last equality again follows from index rearrangement. Plugging this into (3), leads to the
following bound on the expected performance of MinIncrease.

E [MI(P )] ≤
(
1 +

δ

α

) ∑
j

wjr
′
j +

∑
j

wj

∑
k∈H(j)

E [P k]
m

+
m− 1

m

∑
j

wjE [P j ] .

Plugging the bound of Lemma 2.1 into the above inequality, we obtain

E [MI(P )] ≤
(
1 +

δ

α

) ∑
j

wjr
′
j + E [OPT(P )] +

(m− 1)(∆ + 1)
2m

∑
j

wjE [P j ]

= E [OPT(P )] +
∑

j

wj

((
1 +

δ

α

)
r′j +

(m− 1)(∆ + 1)
2m

E [P j ]
)

, (4)

where again, ∆ is an upper bound on the squared coefficient of variation of the processing time distribu-
tions P j . By bounding r′j by rj + αE [P j ], we obtain the following bound on the term in parenthesis of
the right hand side of (4).(

1 +
δ

α

)
r′j +

(m− 1)(∆ + 1)
2m

E [P j ]

≤
(
1 +

δ

α

)
rj +

(
α + δ +

(m− 1)(∆ + 1)
2m

)
E [P j ]

≤
(
rj + E [P j ]

)
max

{
1 +

δ

α
, α + δ +

(m− 1)(∆ + 1)
2m

}
.

By using this inequality in equation (4), and applying the trivial lower bound
∑

j wj(rj + E [P j ]) ≤
E [OPT(P )] on the expected optimum performance, we get the claimed performance bound of

ρ = 1 + max
{

1 +
δ

α
, α + δ +

(m− 1)(∆ + 1)
2m

}
.

Since all processing times are δ-NBUE, we know by Lemma A.1 in the appendix that ∆ ≤ 2δ − 1 and
thus the second claim of the theorem follows, namely ρ ≤ 1 + max{1 + δ/α, α + δ(2m− 1)/m}. �

For NBUE processing times, where ∆ = δ = 1, Theorem 4.3 yields a performance bound of

ρ = 2 + max
{

1
α

, α +
m− 1

m

}
.

This term is minimal for α = (
√

5m2 − 2m + 1−m + 1)/(2m), which yields a ratio of ρ = 2 +
(
√

5m2 − 2m + 1 + m− 1)/(2m). This is less than (5 +
√

5)/2 − 1/(2m) ≈ 3.62 − 1/(2m) improving



12 Megow, Uetz, Vredeveld: Models and Algorithms for Stochastic Online Scheduling

upon the previously best known bound of 4−1/m from [21] for the traditional stochastic problem. More
generally, for δ-NBUE processing times, optimizing the term max{1+δ/α, α+δ(2m−1)/m} for α yields
ρ < 3/2 + δ(2m− 1)/2m +

√
4δ2 + 1/2.

Moreover, for deterministic processing times, where ∆ = 0 and δ = 1, Theorem 4.3 yields a performance
bound of

ρ = 2 + max
{

1
α

, α +
m− 1
2m

}
.

Optimizing for α yields α = (
√

17m2 − 2m + 1−m + 1)/(4m), which yields a ratio of ρ = 2 +
(
√

17m2 − 2m + 1 + m− 1)/(4m). This is less than 3.281 for any value of m, leaving only a small gap
to the currently best known bound of 2.62 for deterministic online scheduling [8]. In fact, it matches the
competitive ratio of the deterministic parallel machine version of α-Shift-WSEPT from [18].

4.3 Randomized job assignment. As a matter of fact, the MinIncrease policy can be inter-
preted as the derandomized version of a policy that assign jobs uniformly at random to the machines.
Even though randomly assigning jobs to machines ignores much information, it is nevertheless known to
be quite powerful as has been observed already by, e.g., Schulz and Skutella [25]. They apply a random
assignment strategy, based on the solution of an LP-relaxation, for scheduling jobs with deterministic
processing times on unrelated machines. For the special case of identical machines, their approach corre-
sponds to assigning jobs uniformly at random to the machines. The random assignment strategy for the
stochastic online scheduling problem at hand is as follows.

Algorithm 4: RandAssign

When a job is presented to the scheduler, it is assigned to machine i
with probability 1/m for all i = 1, . . . ,m. The jobs assigned to
machine i are scheduled according to the α-Shift-WSEPT policy.

Theorem 4.4 Consider the stochastic online scheduling problem on parallel machines with release dates,
P|rj |E [

∑
wj Cj ]. Given that all processing times are δ-NBUE, the RandAssign policy running α-Shift-

WSEPT on each single machine is a ρ–approximation, where

ρ = 1 + max
{

1 +
δ

α
, α + δ +

(m− 1)(∆ + 1)
2m

}
,

Here, ∆ is such that Var[P j ]/E [P j ]
2 ≤ ∆ for all jobs j. In particular, since all processing times P j are

δ-NBUE, Lemma A.1 yields that ∆ ≤ 2δ − 1, hence ρ ≤ 1 + max {1 + δ/α, α + δ(2m− 1)/m}.

Proof. Consider a job j and let i denote the machine to which it has been assigned. Let Pr [j → i]
be the probability for job j being assigned to machine i. Then, by Lemma 3.1 we know that

E [Cj | j → i] ≤
(
1 +

δ

α

)
r′j +

∑
k∈H(j)

Pr [k → i | j → i] · E [P k | j → i]

=
(
1 +

δ

α

)
r′j +

∑
k∈H(j)

Pr [k → i | j → i] · E [P k] .

The probability that a job is assigned to a certain machine is equal for all machines, i.e., Pr [j → i] = 1/m
for all i = 1, . . . ,m, and for any job j. Unconditioning the expected value of job j’s completion time
yields

E [Cj ] =
m∑

i=1

Pr [j → i] · E [Cj | j → i]

≤
(
1 +

δ

α

)
r′j +

m∑
i=1

Pr [j → i] ·
∑

k∈H(j)

Pr [k → i | j → i] · E [P k]

=
(
1 +

δ

α

)
r′j +

∑
k∈H(j)

E [P k]
m

+
m− 1

m
E [P j ] ,



Megow, Uetz, Vredeveld: Models and Algorithms for Stochastic Online Scheduling 13

where the last equality is due to the independence of the job assignments to the machines. Then, the
expected objective value of RandAssign, E [RA(P )], can be bounded by

E [RA(P )] =
∑

j

wjE [Cj ]

≤
(
1 +

δ

α

) ∑
j

wjr
′
j +

∑
j

wj

∑
k∈H(j)

E [P k]
m

+
m− 1

m

∑
j

wjE [P j ] .

This bound equals the upper bound that we achieved on the expected performance of the MinIncrease
policy in the proof of Theorem 4.3. Hence, we conclude the proof in the same way and with the same
result as for MinIncrease. �

Acknowledgments. The authors thank the two anonymous referees for valuable comments, and
Martin Skutella for pointing out that the MinIncrease algorithm can be interpreted as the derandom-
ization of an algorithm that distributes jobs to machines at random. Thanks to Rolf H. Möhring for
helpful discussions, and Andreas S. Schulz and Sven O. Krumke for pointing out some misinterpretations
in an earlier version of this paper.

References

[1] F. N. Afrati, E. Bampis, C. Chekuri, D. R. Karger, C. Kenyon, S. Khanna, I. Milis, M. Queyranne,
M. Skutella, C. Stein, and M. Sviridenko, Approximation schemes for minimizing average weighted
completion time with release dates, Proceedings of the 40th Annual Symposium on Foundations of
Computer Science (FOCS), 1999, pp. 32–43.

[2] E. J. Anderson and C. N. Potts, On-line scheduling of a single machine to minimize total weighted
completion time, Mathematics of Operations Research 29 (2004), 686–697.

[3] A. Borodin and R. El-Yaniv, Online computation and competitive analysis, Cambridge University
Press, 1998.

[4] J. L. Bruno, P. J. Downey, and G. N. Frederickson, Sequencing tasks with exponential service times
to minimize the expected flowtime or makespan, Journal of the ACM 28 (1981), 100–113.

[5] S. Chakrabarti and S. Muthukrishnan, Resource scheduling for parallel database and scientific appli-
cations, Proc. 8th Ann. ACM Symp. on Parallel Algorithms and Architectures (Padua, Italy), 1996,
pp. 329–335.

[6] C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B. Rau, and M. Schlansker, An analysis
of profile-driven instruction level parallel scheduling with application to super blocks, Proc. 29th
IEEE/ACM Int. Symp. on Microarchitecture (Paris, France), 1996, pp. 58–69.

[7] M.C. Chou, H. Liu, M. Queyranne, and D. Simchi-Levi, On the asymptotic optimality of a simple on-
line algorithm for the stochastic single machine weighted completion time problem and its extensions,
2005, To appear in Operations Research.

[8] J. Correa and M. Wagner, LP-based online scheduling: From single to parallel machines, Integer
Programming and Combinatorial Optimization (M. Jünger and V. Kaibel, eds.), Lecture Notes in
Computer Science, vol. 3509, Springer, 2005, pp. 196–209.

[9] M. A. H. Dempster, J. K. Lenstra, and A. H. G. Rinnooy Kan (editors), Deterministic and stochastic
scheduling, D. Reidel Publishing Company, Dordrecht, 1982.

[10] W. Eastman, S. Even, and I. Isaacs, Bounds for the optimal scheduling of n jobs on m processors,
Management Science 11 (1964), 268–279.

[11] A. Fiat and G. J. Woeginger, On-line scheduling on a single machine: Minimizing the total comple-
tion time, Acta Informatica 36 (1999), 287–293.

[12] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, Optimization and approx-
imation in deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics 5
(1979), 287–326.

[13] W. J. Hall and J. A. Wellner, Mean residual life, Proc. Int. Symp. on Statistics and Related Topics
(Ottawa, ON, Canada) (M. Csörgö, D. A. Dawson, J. N. K. Rao, and A. K. Md. E. Saleh, eds.),
North-Holland, Amsterdam, The Netherlands, 1981, pp. 169–184.



14 Megow, Uetz, Vredeveld: Models and Algorithms for Stochastic Online Scheduling

[14] H. Hoogeveen and A. P. A. Vestjens, Optimal on-line algorithms for single-machine scheduling,
Integer Programming and Combinatorial Optimization (W. H. Cunningham, S. T. McCormick, and
M. Queyranne, eds.), Lecture Notes in Computer Science, vol. 1084, Springer, 1996, pp. 404–414.

[15] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator, Competitive snoopy paging, Algorithmica 3
(1988), 70–119.

[16] E. Koutsoupias and C. H. Papadimitriou, Beyond competitive analysis, SIAM Journal on Computing
30 (2000), 300–317.

[17] E. L. Lenstra, A. H. G. Rinooy Kan, and P. Brucker, Complexity of machine scheduling problems,
Annals of Discrete Mathematics 1 (1977), 243–362.

[18] N. Megow and A. S. Schulz, On-line scheduling to minimize average completion time revisited, Op-
erations Research Letters 32 (2004), 485–490.

[19] N. Megow, M. Uetz, and T. Vredeveld, Stochastic online scheduling on parallel machines, Approx-
imation and Online Algorithms (G. Persiano and R. Solis-Oba, eds.), Lecture Notes in Computer
Science, vol. 3351, Springer, 2005, pp. 167–180.

[20] R. H. Möhring, F. J. Radermacher, and G. Weiss, Stochastic scheduling problems I: General strategies,
ZOR - Zeitschrift für Operations Research 28 (1984), 193–260.

[21] R. H. Möhring, A. S. Schulz, and M. Uetz, Approximation in stochastic scheduling: the power of
LP-based priority policies, Journal of the ACM 46 (1999), 924–942.

[22] K. Pruhs, J. Sgall, and E. Torng, Online scheduling, Handbook of Scheduling: Algorithms, Models,
and Performance Analysis (J. Leung, ed.), CRC Press, 2004.

[23] M. H. Rothkopf, Scheduling with random service times, Management Science 12 (1966), 703–713.

[24] M. Scharbrodt, T. Schickinger, and A. Steger, A new average case analysis for completion time
scheduling, Proc. 34th Ann. ACM Symp. on the Theory of Computing (Montréal, QB, Canada),
2002, pp. 170–178.

[25] A. S. Schulz and M. Skutella, Scheduling unrelated machines by randomized rounding, SIAM Journal
on Discrete Mathematics 15 (2002), 450–469.

[26] M. Skutella and M. Uetz, Stochastic machine scheduling with precedence constraints, SIAM Journal
on Computing 34 (2005), 788–802.

[27] M. Skutella and G.J. Woeginger, A PTAS for minimizing the total weighted completion time on
identical parallel machines, Mathematics of Operations Research 25 (2000), 63–75.

[28] D. Sleator and R. Tarjan, Amortized efficiency of list update and paging rules, Communications of
the ACM 28 (1985), 202–208.

[29] W. Smith, Various optimizers for single-stage production, Naval Research Logistics Quarterly 3
(1956), 59–66.

[30] A. Souza and A. Steger, The expected competitive ratio for weighted completion time scheduling,
Proc. 21st Symp. on Theoretical Aspects of Computer Science (V. Diekert and M. Habib, eds.),
Lecture Notes in Computer Science, vol. 2996, Springer, 2004, pp. 620–631.

[31] M. Uetz, Algorithms for deterministic and stochastic scheduling, Cuvillier Verlag, Göttingen, Ger-
many, 2002.

[32] A. P. A. Vestjens, On-line machine scheduling, Ph.D. thesis, Eindhoven University of Technology,
Netherlands, 1997.

[33] G. Weiss, Approximation results in parallel machines stochastic scheduling, Annals of Operations
Research 26 (1990), 195–242.

[34] , Turnpike optimality of Smith’s rule in parallel machines stochastic scheduling, Mathematics
of Operations Research 17 (1992), 255–270.

[35] G. Weiss and M. Pinedo, Scheduling tasks with exponential service times on non-identical processors
to minimize various cost functions, Journal of Applied Probability 17 (1980), 187–202.



Megow, Uetz, Vredeveld: Models and Algorithms for Stochastic Online Scheduling 15

Appendix A. Coefficient of variation for δ-NBUE random variables In this section, we show
the relation between the value of δ and the (squared) coefficient of variation CV [X]2 = Var [X] /E [X]2

for a δ-NBUE random variable X.

Lemma A.1 Let X be a δ-NBUE random variable and let CV[X] denote the coefficient of variation of
X. Then CV[X]2 ≤ 2δ − 1.

Proof. We prove the lemma for continuous random variables X; the proof for discrete random
variables goes along the same lines. Let X be a non-negative δ-NBUE random variable, with cumulative
distribution function F and density f .

By definition of conditional expectation, we know that

E
[
X − t

∣∣∣∣ X > t

]
=

∫∞
t

(x− t)f(x)dx

1− F (t)
. (5)

As x− t =
∫ x−t

0
dy, we can write the nominator of the right hand side as∫ ∞

x=t

(x− t)f(x)dx =
∫ ∞

x=t

∫ x−t

y=0

f(x)dydx =
∫ ∞

y=0

∫ ∞

x=y+t

f(x)dxdy

=
∫ ∞

x=t

1− F (x)dx, (6)

where the second equality is obtained by changing the order of integration.

As X is δ-NBUE, i.e., E [X − t |X > t] ≤ δE [X], it follows from (5) and (6) that∫ ∞

x=t

1− F (x)dx = E
[
X − t

∣∣∣∣ X > t

]
(1− F (t)) ≤ δE [X] (1− F (t)). (7)

By integrating the right hand side of the above inequality over t, we obtain

δE [X]
∫ ∞

t=0

1− F (t)dt = δE [X]2 . (8)

Hall and Wellner [13, Equality (4.1)] showed that integrating the left hand side of (7) over t yields∫ ∞

t=0

∫ ∞

x=t

1− F (t)dt =
1
2

E
[
X2

]
. (9)

Hence, using (8) and (9) in (7), we have

E
[
X2

]
≤ 2δE [X]2 .

Rearranging terms yields the desired bound on the squared coefficient of variation:

CV[X]2 =
E

[
X2

]
− E [X]2

E [X]2
≤ 2δ − 1.

�


