
Modeling Attack Security of Physical Unclonable
Functions based on Arbiter PUFs

vorgelegt von

Master of Science (SUNY)

Nils Wisiol

ORCID: 0000-0003-2606-614X

an der Fakultät IV – Elektrotechnik und Informatik

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Jan Nordholz
Gutachter: Prof. Dr. Jean-Pierre Seifert
Gutachter: Prof. Dr. Marian Margraf
Gutachter: Prof. Dr. Stefan Katzenbeisser
Gutachter: Prof. Debdeep Mukhopadhyay, Ph.D.

Tag der wissenschaftlichen Aussprache: 25. April 2022

Berlin 2022

The concept of Physical Unclonable Functions (PUFs) is an attempt to base cryptog-
raphy on physical possession. This is in contrast to conventional cryptography, where
the essential difference of participants in a cryptographic protocol is their knowledge of
secret information such as keys and nonces.

The literature has a rich body of suggestions for the realization of PUFs. This thesis
explores designs of variants and compositions of the Arbiter PUF, which has been in-
troduced in 2002 as a CMOS-compatible, electrical PUF design, and has received much
research attention since then, albeit being insecure with respect to modeling attacks.

After revisiting modeling attacks on the Arbiter PUF and XOR Arbiter PUF, we
demonstrate attacks against the Lightweight Secure XOR Arbiter PUF, Feed-Forward
Arbiter PUF, and the Interpose PUF. We introduce two novel PUF designs, the Beli PUF
and the LP-PUF, and analyze their security against modeling attacks. We concluding
that the LP-PUF is resilient against currently known modeling attacks.

Physical Unclonable Functions (PUFs) sind ein Versuch, Kryptographie auf der Ba-
sis von physikalischem Besitz aufzubauen, anstatt, wie bisher üblich, Teilnehmer eines
kryptographischen Protokolls anhand ihrer Kenntnis oder Unkenntnis eines kryptogra-
phischen Geheimnisses wie beispielsweise Schlüsseln oder Nonces zu unterscheiden.

In der Literatur gibt es viele Vorschläge für die Implementierung von PUFs. Diese
Dissertation untersucht PUF Designs, welche auf Variationen und Kombinationen des
Arbiter PUF Designs beruhen. Arbiter PUFs wurden 2002 als CMOS-kompatibles, ele-
krtisches PUF Design vorgestellt und haben in der Wissenschaft viel Aufmerksamkeit
erhalten, wenn auch die Arbiter PUF unsicher hinsichtlich Modellierungsangriffen ist.

Nach der Vorstellung bisheriger Modellierungsangriffe auf die Arbiter PUF und XOR
Arbiter PUF zeigen wir Angriffe auf die Lightweight Secure XOR Arbiter PUF, Feed-
Forward PUF und Interpose PUF. Anschließend stellen wir zwei neue PUF Designs, die
Beli PUF und die LP-PUF vor und untersuchen ihre Sicherheit gegen Modellierungs-
angriffe. Wir folgern, dass die LP-PUF resilient gegen bekannte Modellierungsangriffe
ist.

Contents

1. Introduction 5

2. Physical Unclonable Functions 9
2.1. Security Properties and Metrics . 9
2.2. Attacker Model . 12
2.3. Modeling Attacks . 12

2.3.1. Machine Learning Attacks . 13
2.3.2. Specialized Attacks . 13
2.3.3. Provable Attacks . 13

2.4. Hardware Security . 14

3. XOR Arbiter PUF 16
3.1. Arbiter PUF . 16
3.2. XOR Arbiter PUF . 18
3.3. Metrics . 20

3.3.1. Systematic Bias of XOR Arbiter PUFs 20
3.3.2. Implementation . 23

3.4. Logistic Regression Attack . 23
3.5. Physical Attacks . 28
3.6. Neural Network Attacks . 28

3.6.1. Revisited: Santikellur et al. 29
3.6.2. Revisited: Aseeri et al. 30
3.6.3. Revisited: Mursi et al. 32
3.6.4. Comparison . 40

3.7. Arbitrarily Large XOR Arbiter PUFs . 41
3.7.1. Stability . 42
3.7.2. Arbiter PUF . 43
3.7.3. Majority Vote Arbiter PUF . 44
3.7.4. XOR Arbiter PUF . 46
3.7.5. Number of Votes Required . 48
3.7.6. Simulation . 50

3.8. Reliability-Based Attacks . 50

4. XOR Arbiter PUFs with Input Transformation 53
4.1. Input Transformations: Classic vs. Random 53

4.1.1. Pseudorandom Input Transformation 54
4.1.2. Local Minima . 55

3

4.2. Input Transformations: Lightweight Secure 55
4.2.1. Feature Vector Correlation . 56
4.2.2. Improved Attack . 58

4.3. Permutation PUF . 60

5. Interpose PUF 62
5.1. Splitting Attack . 63

5.1.1. Initial Modeling of the Lower Layer via Random Interpose Bits . . 63
5.1.2. Modeling of the Upper Layer . 65
5.1.3. Divide-and-Conquer Attack . 67

5.2. Results and Performance Analysis . 68
5.3. Neural Network Splitting Attack . 69
5.4. Variants of the Interpose PUF . 71

5.4.1. Design Details and Motivation . 71
5.4.2. Empirical Results of Deep Learning Modeling Attacks 75

6. Feed-Forward Arbiter PUF 77
6.1. Design . 77
6.2. Evolution Strategies Attacks . 77
6.3. Neural Network Attack . 77

7. Beli PUF 82
7.1. Design . 82
7.2. Model Based on Additive Delay Model . 83
7.3. Implementation and Metrics . 85
7.4. Generic MLP Attack . 87
7.5. Specialized Neural Network Attack . 87

8. LP-PUF 91
8.1. Design . 91
8.2. Metrics . 93
8.3. Splitting Attack . 95
8.4. Reliability Attack . 96
8.5. MLP Attack . 98
8.6. Limitations . 99

9. pypuf: Python Software Library for PUF Research 101

10.Conclusion 102

Bibliography 105

A. Arbiter PUF Additive Delay Model 114

B. Permutation PUF 116

4

1. Introduction

In all cryptographic applications deployed today, what distinguishes the legitimate user
from an adversary is the knowledge of secret information, usually called the secret key.
Such secret keys are found everywhere where cryptography is used, including in comput-
ers of microscopic scale embedded in digital door keys, credit cards, and passports. As
cryptographic algorithms and implementations matured over the years, attacks based on
weaknesses of the used ciphers and software code became harder, and gaining access to
the secret key itself became an important attack strategy, as a revealed secret key causes
all security guarantees of the employed scheme to collapse [AK96; Mah97; KK99].

To remove this weakness, a branch of research on Physical Unclonable Functions
(PUFs) emerged [Pap+02], where the difference of the legitimate user and adversary
is not defined by knowledge, but by possession of a physical object. The physical ob-
ject, called PUF token, is assumed to exhibit highly individual physical behavior when
prompted with an electric or optical input. Further, it is assumed to be (physically) un-
clonable, meaning that it is inherently impossible to produce two exactly identical tokens.
The envisioned secret-free cryptography shall be based on this unique response behavior
of each individual unclonable token.

While such PUF-based, secret-free cryptography is by definition immune against at-
tacks that recover any secret key, it may be possible to study the individual behavior of a
PUF token and extrapolate its behavior using a mathematical model, in which case it is
impossible for a remotely connected party to tell original PUF token and mathematical
model apart. In this case, the security of any cryptographic application would collapse,
just like in the case of a leaked secret key.

An important tool to create such models from observed behavior is machine learning,
a highly parameterized and generic approach to create predictions from observed data by
using specialized software. In the past two decades, machine learning has emerged as the
tool of choice for PUF modeling attacks [Gas+04; Rüh+10], where an attacker creates a
model of a PUF token which can be used to predict PUF responses with high accuracy,
thereby breaking the token’s security. Studies on modeling attacks hence represent an
essential part of research on PUFs and secret-free cryptography.

In the past 20 years, a large variety of PUF designs and attack strategies have been
developed. In this thesis, we revisit milestone designs and attacks, present new analysis
strategies, and conclude with a novel PUF design secure against all known modeling
attacks.

In Chapter 2, we formally introduce the notion of Physical Unclonable Functions and
discuss desired security properties, most importantly, existential unforgeability under
chosen and known message attacks.

In Chapter 3, we discuss the design rationale of the Arbiter PUF and XOR Arbiter

5

PUF, and detail on a variety of different attacks on this PUF design. This includes
a discussion of a mathematical model for XOR Arbiter PUF behavior, comparison of
different machine learning attacks (including different attacker models), a summary of
physical attacks, an extension of the XOR Arbiter PUF that enables mitigation of some
attacks by increasing security parameters.

As a different extension of the XOR Arbiter PUF, we discuss XOR Arbiter PUFs with
input transformations in Chapter 4. Here, we introduce the correlation attack on the
Lightweight Secure PUF and propose a mitigation against it, the Permutation PUF.

In Chapter 5, we discuss the Interpose PUF design as an extension of the XOR Ar-
biter PUF and demonstrate the Splitting Attack, which reduces the security level of the
Interpose PUF to the level of an XOR Arbiter PUF (with respect to the corresponding
attacker model).

Subsequently, we discuss modeling attacks on Feed Forward Arbiter PUFs in Chapter 6.
In Chapter 7, we discuss the Beli PUF, an extension of the Arbiter PUF design with

respect to its inner works (as opposed to composing larger PUFs out of Arbiter PUFs).
We derive a model of the Beli PUF and demonstrate a modeling attack based on it.

Chapter 8 proposes the LP-PUF, a PUF design that we show is resilient against all
modeling attacks discussed in this thesis, both for the known and chosen message attack
model.

Chapter 9 gives an overview over pypuf, a Python library that includes most code and
data used in this thesis. Finally, Chapter 10 summarizes our work and suggests future
research directions.

List of Publications

This dissertation is based on the following publications. The contributions of the author
are detailed below.

• [WM19] Nils Wisiol and Marian Margraf. “Why Attackers Lose: Design and Se-
curity Analysis of Arbitrarily Large XOR Arbiter PUFs”. In: Journal of Crypto-
graphic Engineering 9.3 (Sept. 2019), pp. 221–230. issn: 2190-8516. url: https:
//doi.org/10.1007/s13389-019-00204-8 (visited on 10/11/2019)

The authors of the paper jointly developed the theorems and proofs. The author
of this dissertation further contributed implementation, data collection, and data
analysis of the empirical PUF stability values.

• [Wis+20a] Nils Wisiol et al. “Breaking the Lightweight Secure PUF: Understand-
ing the Relation of Input Transformations and Machine Learning Resistance”. In:
Smart Card Research and Advanced Applications. Ed. by Sonia Belaïd and Tim
Güneysu. Lecture Notes in Computer Science. Cham: Springer International Pub-
lishing, 2020, pp. 40–54. isbn: 978-3-030-42068-0

In this work, the author of this dissertation provided an efficient implementation of
the attack, developed the analysis methodology, collected and analyzed the exper-

6

https://doi.org/10.1007/s13389-019-00204-8
https://doi.org/10.1007/s13389-019-00204-8

imental data, and developed the countermeasure for the attack, the Permutation
PUF.

• [WP20] Nils Wisiol and Niklas Pirnay. “Short Paper: XOR Arbiter PUFs Have
Systematic Response Bias”. In: Financial Cryptography and Data Security. Ed. by
Joseph Bonneau and Nadia Heninger. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2020, pp. 50–57. isbn: 978-3-030-51280-4

The author of this dissertation contributed data collection and analysis as well
as a theoretical explanation for the observed phenomenon. He further added the
corresponding interpretation and drew the suggested conclusions.

• [Wis+20b] Nils Wisiol et al. “Splitting the Interpose PUF: A Novel Modeling At-
tack Strategy”. In: IACR Transactions on Cryptographic Hardware and Embedded
Systems (June 2020), pp. 97–120. issn: 2569-2925. url: https://tches.iacr.
org/index.php/TCHES/article/view/8584 (visited on 09/01/2020)

The author of this dissertation developed the attack strategy of this work jointly
with Christopher Mühl. He contributed the formalization of the attack, as well as
the implementation, data collection, data analysis, and interpretation of the attack
complexity. The authors of this paper jointly contributed the interpretation of the
results.

• [Wis+21a] Nils Wisiol et al. Neural-Network-Based Modeling Attacks on XOR Ar-
biter PUFs Revisited. Tech. rep. 555. 2021. url: https://eprint.iacr.org/
2021/555 (visited on 04/28/2021)

The author of this dissertation discovered the discussed implementation error as
well as the replication experiments (with the exception of the replication of Mursi
et al. [Mur+20], which was developed jointly). He further developed the improved
LR attack, conducted the hyperparameter optimization, data collection, and data
analysis. He also contributed the presentation of the results.

• [Agh+22] Anita Aghaie et al. “Security Analysis of Delay-Based Strong PUFs with
Multiple Delay Lines”. Jan. 2022

In this work, Johannes Tobisch and the author of this dissertation jointly authored
the mathematical model of the Beli PUF and the modeling attacks. The author
was responsible for the formal analysis of the Beli PUF delay model as well as for
implementation and analysis of the modeling attacks.

• [Wis21] Nils Wisiol. Towards Attack Resilient Arbiter PUF-Based Strong PUFs.
Tech. rep. 1004. 2021. url: https://eprint.iacr.org/2021/1004 (visited on
08/19/2021)

This work was authored without collaboration.

• [Wis+21b] Nils Wisiol et al. Pypuf. Zenodo. June 2021. url: https://zenodo.
org/record/3901410 (visited on 07/07/2021)

7

https://tches.iacr.org/index.php/TCHES/article/view/8584
https://tches.iacr.org/index.php/TCHES/article/view/8584
https://eprint.iacr.org/2021/555
https://eprint.iacr.org/2021/555
https://eprint.iacr.org/2021/1004
https://zenodo.org/record/3901410
https://zenodo.org/record/3901410

The author of this dissertation is the maintainer of pypuf and, at the time of
writing (Version 3.2.1), contributed virtually all simulation, attack, and metric
implementations.

Additionally, the author also collaborated in the following publications.

• [WM18] Nils Wisiol and Marian Margraf. Attacking RO-PUFs with Enhanced
Challenge-Response Pairs. Tech. rep. 862. 2018. url: https://eprint.iacr.
org/2018/862 (visited on 10/11/2019)

The author developed and formalized the attack.

8

https://eprint.iacr.org/2018/862
https://eprint.iacr.org/2018/862

2. Physical Unclonable Functions

Physical1 Unclonable Functions (PUFs) have been proposed as a method to tie cryp-
tography to a computing device or possession of a physical token. While the exact
notion varies, PUFs are usually physical objects that represent a noisy implementation
of a mathematical function. Several different use cases have been envisioned, including
FPGA IP-protection [SS06; Gua+07], secure key storage [HBF07], and authentication
[Pap+02]; also using PUFs as cryptographic primitives has been considered [Brz+11].

In the literature, several different notions of PUFs exist. In this thesis, we opt to
use the notions given by Armknecht et al. [Arm+16], which summarize and generalize
earlier notions found in the literature [Pap+02; Gas+02; Gua+07; Arm+09; Arm+11;
Brz+11; Mae13]. In this framework, a PUF token (also PUF instance or, abbreviated,
PUF) is modeled as a probabilistic mapping f : D → R, often with D = {−1, 1}n and
R = {−1, 1}. The notion of probabilistic mapping is used in favor of using functions
to stress that due to noise, the same input may yield different responses on different
occasions. We write r ← f(c) to denote that a response (a.k.a. output, behavior) r ∈ R
is generated by PUF f on challenge (a.k.a. input, stimulus) c ∈ D.

We define a PUF design to be the list of all PUFs originating from the same manufac-
turing process along with the according probability distribution.

Some authors distinguish strong and weak PUFs depending on the size of their do-
main D, where in the case of strong PUFs, the size of the domain is exponential in the
security parameter, and sub-exponential otherwise. PUFs considered in this work have
exponentially-sized domains, i.e. are considered strong PUFs.

2.1. Security Properties and Metrics

Armknecht et al. [Arm+16] define a variety of PUF security properties with respect to a
security parameter λ and attackers using probabilistic polynomial time algorithms. Not
all PUF applications require that all of the following properties hold; security definitions
predating these general notions considered only subsets.

We re-state some of the security requirements defined by Armknecht et al. [Arm+16]
and derive the security metrics of reliability, uniqueness, and bias to be used in this work.
The reason to use metrics instead of requirements is that we are usually unable to conduct
an asymptotic analysis of the relevant quantities, but have to resort to simulations fixed

1Sometimes, a distinction between Physical Unclonable Functions and Physically Unclonable Functions
is made, where the former refers to physical functions that are unclonable (in some sense), and the
latter refers to functions (in some sense) which are physically unclonable. We note that both notions
can be abbreviated as PUF; the precise meaning of PUF in the context of this work is given by the
formal definitions in this chapter.

9

to security parameters from a certain set. Motivated by the structure of the Arbiter
PUF (introduced in Chapter 3), we simplify the notions to the case D = {−1, 1}n and
R ={−1, 1}. In this work, the challenge length n is closely related to the security
parameter λ. For the Arbiter PUF, we have λ = n; for other PUF designs, n is one of
several security parameters.

For the sake of easier notation, we chose to model bits as values from {−1, 1} rather
than {0, 1}. All results can be transformed into {0, 1} notation by “encoding” bits with
the function ρ : {−1, 1} → {0, 1}, where ρ(1) = 0 and ρ(−1) = 1. This way, we can write
ρ(b) = 1/2− b/2 and have the convenient property ρ(b1 · b2) = ρ(b1)⊕ ρ(b2), i.e. a group
homomorphism, where ⊕ denotes addition modulo 2 and · denotes multiplication over
Z.

Definition 1 (Intra-Distance Requirement). [Arm+16] Whenever a single PUF is re-
peatedly evaluated with a fixed input, the maximum distance between the corresponding
outputs is at most δ1. That is for any PUF f and any c ∈ D, it holds that

Pr

[︃
max
i ̸=j
{d (ri, rj)} ≤ δ1 | c ∈ D, ri ← f(c) for 1 ≤ i ≤ t

]︃
= 1− ϵ(λ).

We restrict the intra-distance requirement to PUFs mapping n bits to 1 bit and set
δ1 = 0 and t = 2 to obtain the notion of reliability.

Definition 2 (Reliability). For a fixed PUF instance f and challenge c, we define relia-
bility to be the probability that f will return the same response when queried twice with
c, i.e.

Pr [r1 = r2 | ri ← f(c), i ∈ {1, 2}] .
For a fixed PUF instance f , we define the reliability R (f) to be

R (f) = Ec∈D [Pr [r1 = r2 | ri ← f(c), i ∈ {1, 2}]] .

Some reliability of the PUF is needed for it to be practically usable. Higher reliability
values are desirable, with values of 1 meaning perfectly reliable. For low reliability,
PUF responses are no longer reproducible, depriving the PUF of one of its key features.
Note that this definition explicitly includes the case that different challenges c may have
different reliability values, which plays an important role on reliability-based attacks on
XOR Arbiter PUFs (Section 3.8).

Definition 3 (Inter-Distance II Requirement). [Arm+16] Whenever multiple PUFs are
evaluated on a single, fixed input, the minimum distance among them is at least δ3. That
is for any PUF fi for 1 ≤ i ≤ m and any c ∈ D, we have

Pr

[︃
min
i ̸=j
{d (ri, rj)} ≥ δ3 | c ∈ D, ri ← fi(c) for 1 ≤ i ≤ m

]︃
= 1− ϵ(λ).

We restrict the inter-distance II requirement to PUFs mapping n bits to 1 bit and set
δ3 = 1 and m = 2 to obtain the notion of uniqueness.

10

Definition 4. [Uniqueness] For a PUF design P, we define the uniqueness U (P) to be

U (P) = 1− 2Efi∼P

[︃⃓⃓⃓⃓
1

2
− Pr

c∈D
[r1 = r2 | ri ← fi(c)]

⃓⃓⃓⃓]︃
.

The uniqueness measures the difference in behavior of randomly chosen PUF tokens of
the same PUF design. If they show correlation or similarity in their behavior, an attacker
can use this fact to guess PUF responses of one instance with the assistance of another,
unrelated PUF instance. The optimal value of U (P) hence is 1, arising from the case
when r1 = r2 happens with probability 1/2.

Definition 5. For a PUF design P, we define the bias B(P) to be

B (P) = Ef∼P [Ec∈D [f(c)]] ,

with zero being the optimal value, given that the responses are from {−1, 1}. (For PUFs
with more than one response bit, which are not studied in this work, Armknecht et al.
[Arm+16] generalize this to the notion of min-entropy.) A low bias is required to reduce
the probability that the attacker guesses correctly by choosing the most likely response.

Armknecht et al. [Arm+16] define the notion of unforgeability capturing the idea that
the PUF’s responses should not be predictable based on observed examples of its behav-
ior. While this is also referred to as unpredictability, the notion as defined by Armknecht
et al. is closely related to the security notions in the context of digital signatures schemes,
where “unforgeability” is used. The notion can be parameterized in two dimensions, one
specifying precisely which responses of the PUF are unforgeable, the other specifying
which capabilities the attacker precisely has available. We give an informal overview over
the different flavors of unforgeability, referring the reader to Armknecht et al. [Arm+16]
for precise definitions.

In its strongest sense, unforgeable means that the attacker is unable to predict the
behavior of the PUF for any (unseen) challenge. This case is referred to as existential
unforgeability (EUF). The weaker version of universal unforgeability (UUF) asserts that
the attacker is unable to predict the behavior of the PUF for a challenge chosen uniformly
at random.

There are two important classes of attacks the adversary can use to predict (“forge”)
PUF responses. The weaker attack is the known message attack (KMA), where the
attacker has knowledge of the challenge to the PUF, but cannot choose. The stronger
attack setting is the chosen message attack (CMA), where the attacker can choose the
input to the PUF.

We obtain the four PUF unforgeability notions of EUF-CMA, EUF-KMA, UUF-CMA,
and UUF-KMA, with EUF-CMA being the strongest notion of security among the four,
and UUF-KMA being the weakest.

Even stronger than EUF-CMA unforgeability are the notions of indistinguishability
(different PUF instances cannot be distinguished based on their observed behavior) and
pseudorandomness (PUF instances cannot be distinguished from random functions based
on their behavior) [Arm+16].

11

Related to the notion existential unforgeability (EUF) is the question if observed be-
havior reveals information about the PUF behavior on related, i.e. slightly modified,
challenge inputs [GTS18].

Definition 6. For a PUF design P, we define bit sensitivity BSi (P) to be the probability
that the response of the PUF changes when the i-th input bit is flipped (denoted x⊕i),

BSi (P) = Ef∈P

[︃
Pr
c∈D

[︁
f(c) ̸= f(c⊕i)

]︁]︃
.

A proper bit sensitivity for all input bit positions i ∈ {1, . . . , n} is necessary (but not
sufficient) to prevent attackers from predicting responses when the response to a related
challenge is known. The optimal value is 1/2.

While bit sensitivity can only capture one aspect of existential unforgeability, it is an
interesting value, as it also relates to the learnability of a PUF (when viewed as a Boolean
function, Section 2.3.3). Furthermore, Arbiter PUFs have a non-optimal bit sensitivity,
so this is an important metric for the analysis of PUF designs based on Arbiter PUFs.

2.2. Attacker Model

The standard attacker model for PUFs is based on the promise of increased hardware
security of PUF tokens, compared to the traditional approach of cryptographic hardware
extended by secure key storage. Hence, in the standard PUF attacker model, the adver-
sary gets physical access to the PUF token for some limited amount of time [Wis+20b].
During this time, a large number of different attacks is conceivable. While this work
considers attacks operating on the challenge-response behavior of the PUF, the assumed
physical access to the PUF hardware also enables other important classes of attacks
which we summarize in Section 2.4.

For the attacks using information about the challenge-response behavior of the PUF,
we distinguish chosen message attacks (CMA) and known message attacks (KMA). While
the physical access to the PUF generally motivates the study of CMAs, in some cases it
is also appropriate to study the weaker KMAs, as done in prior works [Gas+02; Gua+07;
Arm+11]. This can be motivated by suggestions for PUF-based authentication protocols
which mitigate CMAs by technical means [Maj+12; Yu+16; Yu+14] or by the fact that
some KMAs are successful even without choosing challenges (Table 10.1).

2.3. Modeling Attacks

Attacks that build a mathematical model from observed challenge-response behavior
of the PUF are the main focus of this work. Models that can predict PUF responses
with high accuracy can be used as drop-in replacement for the PUF token and can be
used to make remote parties believe that the attacker is in possession of the PUF when
they are actually not. Security against modeling attacks is captured by the notion of
unforgeability as defined in Section 2.1. There exists a large body of research on PUF

12

modeling attacks in the literature, which can roughly be divided into modeling attacks
using (practical) machine learning algorithms, modeling attacks using provable methods,
and modeling attacks that use specialized machine learning algorithms.

2.3.1. Machine Learning Attacks

Machine learning is the field of using algorithms for making predictions based on observed
data. Based on a number N of observed examples given as pairs of input xi ∈ D and
output yi ∈ R, called the training set T = {(xi, yi) | 1 ≤ i ≤ N}, a machine learning
algorithm outputs a model M : D → R. The model has high accuracy if the predictions
M(x) match observed data well, with x chosen uniformly at random in D but omitting
known examples from T .

The concept of machine learning matches the attacker definition of the notion of PUF
unforgeability (Section 2.1) and is thus well-suited to study PUF modeling attacks. Ma-
chine learning was also outside the context of PUFs portrayed as the “opposite” of cryp-
tography [ODo14].

One of the first machine learning algorithms is the Perceptron [MP69], which is also
used for the first PUF modeling attack [Gas+04]. While this modeling attack and follow-
up work [Rüh+10] used machine learning algorithms that can only output models of a
certain class of functions, with increasing popularity of deep learning, also PUF modeling
attacks started to use machine learning algorithms that are not restricted to a certain
class of models [Yas+16; SBC19; Mur+20; Wis+21a].

Machine learning modeling attacks are usually demonstrated on data obtained either
by simulating PUF behavior, or by collecting data from a PUF prototype, or both. They
are hence fixed to a certain set of used security parameters. The run time of the attacks
is often measured as wall-clock time and thus highly dependent on the used software and
hardware, operating system, and configuration.

2.3.2. Specialized Attacks

In contrast to fully generic approaches and approaches only restricted to a broad class
of model functions, machine learning algorithms can also be combined with classical
algorithms to design highly specialized attacks. This is often useful when attacking PUF
embedded in additional logic or when attacking PUFs composed of several different PUF
primitives. Delvaux [Del19] demonstrated a collection of such attacks, targeting five
PUFs with accompanying obfuscation logic. In Section 3.8, we present a specialized
reliability-based attack on the Arbiter PUF. Also the Splitting Attack on the Interpose
PUF [Wis+20b] presented in Section 5.1 can be understood as a specialized attack in
this sense.

2.3.3. Provable Attacks

A third important class of PUF modeling attacks is constituted by applying the theory
of probably approximately correct (PAC) learning algorithms to mathematical models of
PUFs. Let Bn denote the set of all Boolean functions f : {−1, 1}n → {−1, 1}. Informally,

13

a subset C ⊆ Bn is said to be PAC-learnable if there exists an efficient probabilistic
algorithm A that, given access to examples of a function f ∈ C, outputs, with high
probability, a hypothesis that achieves high prediction accuracy. C is referred to as the
concept class of A.

For a more formal definition, we quantify the notions of high probability and high
accuracy, as well as detail on the access that Algorithm A has on the function f .

Definition 7. [ODo14] A probabilistic algorithm A learns a concept class C with error
0 < ε < 1

2 if for any f ∈ C, with probability at least 90%, A outputs a hypothesis h
which satisfies

Pr
x∈{−1,1}n

[f(x) ̸= h(x)] ≤ ε.

Algorithm A can either have access to random examples, i.e. A can draw pairs (x, f(x))
where x is uniformly random in {−1, 1}n, or have access to queries, i.e. A can request
the value f(x) for any x ∈ {−1, 1}n of its choice.

The access models correspond to the definitions of known message attack (KMA) and
chosen message attack (CMA) of Section 2.1. The choice of 90% is arbitrary; choosing
other numbers such as 51% or larger will yield equivalent definitions [ODo14]. The study
of PAC learning was initiated by Valiant [Val84] and first used in the context of PUFs
by Ganji, Tajik, and Seifert [GTS16]. In contrast to empirical machine learning attacks,
algorithms in the PAC learning framework are analyzed on concept classes derived from
mathematical models of PUFs, rather than on simulated or real-world data. Hence,
analysis of PAC learning algorithms can yield information on the asymptotic complexity
of such modeling attacks, rather than just information on a fixed security parameters.

In follow up work, Ganji, Tajik, and Seifert [GTS18] used the PAC-framework to
demonstrate modeling attacks against the Bistable Ring PUF using the LMN-Algorithm
[LMN93] that are provably resilient to noisy examples in the training set. The proof relies
on the assumption that the PUF exhibits only a very limited number of influential bits
[Gan+16]. This assumption is justified by observing FPGA data provided by Yamamoto
et al. [Yam+14].

The observation that certain properties of the Boolean function implemented by PUFs
can give way to provable learnability enabled the use of testing function metrics to gauge
the PUF modeling attack resilience [Ngu+16; GFS19].

Using a semi-automated approach, Chatterjee, Mukhopadhyay, and Hazra [CMH20]
extended this approach by using metrics in the PAC-framework to analyze composite
PUF designs for their PAC learnability. This way, they found the Interpose PUF (Chap-
ter 5), the Feed-Forward Arbiter PUF (Chapter 6), and others to be PAC-learnable.

2.4. Hardware Security

As PUFs are considered an alternative to cryptography based on secret keys [Gas+02;
Pap+02] to mitigate hardware attacks [AK96; Mah97; KK99], such attacks are included
in the attacker model (Section 2.2) and need to be considered when assessing the security
of PUFs.

14

Here, we review hardware attacks on SRAM PUFs [Gua+07] and (XOR) Arbiter PUFs
(Chapter 3); later we restrict our attention to modeling attacks in the known message
attack or chosen message attack model (Section 2.1) for the remainder of this work.

For SRAM PUFs2, Helfmeier et al. [Hel+13] and Nedospasov et al. [Ned+13] demon-
strated attacks that are not only able to extract the supposedly secret SRAM value using
a variety of methods, but also showed that a SRAM hardware clone can be produced.
This goes beyond modeling attacks presented in this work not only by using hardware
attack surface, but also by producing a functionally identical piece of hardware, rather
than just a simulation based on a model. Further extraction methods for SRAM PUFs
were later presented by Lohrke et al. [Loh+16].

Tajik et al. [Taj+14] demonstrated an attack based on photon emission analysis on the
Arbiter PUF (Chapter 3) that can create a high-precision model even when challenges
and responses to the PUF are unknown. Their methodology has data complexity linear
in the security parameter. For these reasons, their methodology must be considered a
very powerful attack, albeit requiring some preparation on the hardware under attack.

Power and other side-channel attacks also can be threat to PUF implementations.
Aghaie and Moradi [AM20] proposed a general technique to protect PUF implementa-
tions against attacks based on power side channel analysis.

Ruhrmair [Ruh20] offers a taxonomy with respect to hardware attacks on PUFs.

2Note that SRAM PUFs f : D → R have domains of small size and are thus trivially insecure in the
EUF-KMA model considered in this work, but constitute an important area of research for PUF
hardware attacks.

15

3. XOR Arbiter PUF

3.1. Arbiter PUF

An Arbiter PUF is a PUF based on electrical signal delays that vary from chip to chip. It
was introduced by Gassend et al. [Gas+02], who argue that the due to mask, temperature,
and pressure variations during manufacturing, differences in delays can exceed 5% of the
total delay value and are increasing with shrinking device sizes.

To utilize this intrinsic variability of Arbiter PUFs, two electrical signals start at the
same time and travel through a circuit of n stages for a chosen design parameter n ∈ N.
At each stage, one bit of the n-bit challenge determines whether the signals travel straight
through or are interchanged. With the hardware implementation in mind, the stages are
sometimes called multiplexers. At the end of this arbiter chain, an arbiter determines on
which input a signal arrives first and outputs the result as the response. The schematics
of an Arbiter PUF are shown in Figure 3.1.1.

Gassend et al. [Gas+04] showed how to model the behavior of Arbiter PUFs using the
additive delay model. In this model, it is assumed that the total delay of the signal in
the Arbiter PUF is the sum of all individual delays along its path. This enabled them to
conduct a modeling attack using the Perceptron algorithm [MP69] and to demonstrate
high prediction accuracy of their model. Even though their experiments were conducted
on FPGAs, this indirectly confirms the accuracy of the additive delay model. A detailed
evaluation of the parameters of the additive delay model was done by Lim et al. [Lim+05].
A CMOS implementation of the Arbiter PUF has been studied by Maes et al. [Mae+12].
Delvaux and Verbauwhede [DV13] and Tajik et al. [Taj+14] later confirmed the accuracy
of the additive delay model also for proof-of-concept designs implemented in CMOS
and FPGA technology, respectively; Utz, Tobisch, and Becker [UTB16] confirmed the

c1 = 1

c2 = −1
cn−1 cn

f(c)

Figure 3.1.1.: Schematic representation of an Arbiter PUF. After setting up the challenge
c1, . . . , cn on the bottom (one for each stage), an electrical signal is input
on the left-hand side and travels though the circuit. The arbiter shown
on the right-hand side (gray box) detects if a signal arrives at the top or
bottom input first and outputs the response bit f(c) accordingly.

16

accuracy of the model for commercial Arbiter PUFs.
The additive delay model of Arbiter PUFs is convenient to write when using {−1, 1}

as bit values (instead of the more traditional {0, 1}), as done by Wisiol et al. [Wis+21a].
An Arbiter PUF with n stages, once set up with a challenge c ∈ {−1, 1}n, accumulates

signal propagation delays for two electrical signals traveling though the stages of the
Arbiter PUF. At the i-th stage, the additional delays for the two signals are either dTT

i

and dBB
i (if c = −1 and the signals travel straight through) or dTB

i and dBT
i (if c = 1

and the signals are interchanged). We define the total accumulated delay after the i-th
stage as dTi for the top output of that stage, and dBi for the bottom output of that stage.
Additional delays are added at each stage, i.e.

dTi =

{︄
dTi−1 + dTT

i (c = −1) ,
dBi−1 + dBT

i (c = 1) ,

dBi =

{︄
dBi−1 + dBB

i (c = −1) ,
dTi−1 + dTB

i (c = 1) .

The initial delays are zero, dT0 = dB0 = 0. The delay difference after the i-th stage
is ∆Di = dTi − dBi ; we abbreviate the delay difference after the n-th stage to ∆Dn =
∆DModel. This value depends on the given challenge, often denoted c, so we sometimes
also write ∆DModel(c) to emphasize on this dependency.

Theorem 8. For n ∈ N and given stage delay values dTT
i , dTB

i , dBT
i , dBB

i ∈ R+, with
1 ≤ i ≤ n, there exists w ∈ Rn and b ∈ R such that for all c ∈ {−1, 1}n ,it holds that

∆DModel(c) = ⟨w, x⟩+ b,

where x = (xi)i =
(︂∏︁n

j=i cj

)︂
i
. For even n we have

w =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dTT
1 − dBB

1 − dBT
1 + dTB

1

−dTT
2 + dBB

2 + dBT
2 − dTB

2 + dTT
1 − dBB

1 + dBT
1 − dTB

1

dTT
3 − dBB

3 − dBT
3 + dTB

3 − dTT
2 + dBB

2 − dBT
2 + dTB

2
...

−dTT
n−2 + dBB

n−2 + dBT
n−2 − dTB

n−2 + dTT
n−3 − dBB

n−3 + dBT
n−3 − dTB

n−3

dTT
n−1 − dBB

n−1 − dBT
n−1 + dTB

n−1 − dTT
n−2 + dBB

n−2 − dBT
n−2 + dTB

n−2

−dTT
n + dBB

n + dBT
n − dTB

n + dTT
n−1 − dBB

n−1 + dBT
n−1 − dTB

n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

b = 1/2
(︁
dTT
n − dBB

n + dBT
n − dTB

n

)︁
;

Similar formulae exist for odd n.

The proof is relegated to Appendix A.
As the final response bit of the Arbiter PUF is determined by whether there is a signal

at the top or bottom input of the arbiter element first, we can conclude that for an n-bit
Arbiter PUF with physical parameters w ∈ Rn and given challenge c ∈ {−1, 1}n, the
response r will be

r = sgn∆DModel = sgn (⟨w, x⟩+ b) ,

17

using the above definition for x ∈ {−1, 1}n. Assuming there is no evaluation noise, from
this model we can derive a function f : {−1, 1}n → {−1, 1} which models the Arbiter
PUF behavior by setting f(c) = ⟨w, x⟩+ b.

The additive delay model can thus be understood as a hyperplane in n dimensions,
dividing the edges of the Boolean cube {−1, 1}n (and, by extension, Rn) into two regions
labeled by the -1 and 1 responses of f . The boundary between the two regions is a
linear, or in case of nonzero bias, affine subspace of Rn. In this sense, the model can be
understood as linear ; the behavior of the PUF can be described as linearly separable.

For a given challenge c, the corresponding value of x according to above definition is
referred to as feature vector, as it facilitates the modeling of the Arbiter PUF as linearly
separable function. Note that the values of w and b only depend on the physics of the
PUF, whereas the values of x only depend on the given challenge.

The observation that Arbiter PUFs can be modeled as hyperplanes in Rn lead Gassend
et al. [Gas+04] to use the Perceptron algorithm to create models of Arbiter PUF in-
stances, as it is suitable to learn linearly separable functions.

If we assume certain properties of the Arbiter PUF manufacturing process, such as
that the delays are distributed according to a Gaussian distribution [Gas+02], we can
also derive statements about the distribution of the w and b in the class of all Arbiter
PUFs.

Corollary 9. Assuming the delays dTT
i , dTB

i , dBT
i , dBB

i for an Arbiter PUF are distributed
according to a Gaussian with all the same mean and variance σ2

Model, the weights w and
bias b of ∆DModel = ⟨w, x⟩+ b are distributed according to

w0 ∼ N
(︁
0, σ2

Model

)︁
, wi ∼ N

(︁
0, 2σ2

Model

)︁
, b ∼ N

(︁
0, σ2

Model

)︁
.

Implementation of arbiter chains in hardware produce noisy responses. To obtain valid
predictions for the behavior and security of Arbiter PUFs, this noise needs to be modeled,
but is not covered by the additive delay model. For any challenge c ∈ {−1, 1}n, we thus
model the noisy PUF delay value ∆D as

∆D(c) = ∆DModel(c) + ∆DNoise, (3.1.1)

where ∆DNoise is a Gaussian random variable with zero mean and a variance σ2
Noise

depending on measurement conditions and implementation. Note that this model does
not make any assumptions about the distribution or model of ∆DModel(c). Delvaux and
Verbauwhede [DV13] were the first to propose this model and proved its accuracy in
a noise-based side-channel attack (Section 3.8). The accuracy of the model was later
confirmed in follow-up studies [Taj+14; Bec15].

3.2. XOR Arbiter PUF

The successful modeling attack against the Arbiter PUF by Gassend et al. [Gas+04]
using the Perceptron algorithm motivated the introduction of a new PUF design. As the
Perceptron algorithm is restricted to modeling functions which are linearly separable but

18

⨁︁c
(1)
1 = +1

c
(1)
2 = −1

c
(1)
n−1 c

(1)
n

c
(k)
1 = +1

c
(k)
2 = +1

c
(k)
n−1 c

(k)
n

f(c)

Figure 3.2.1.: Schematic representation of an 2-XOR Arbiter PUF; the scheme can be
extended to include more arbiter chains. After the challenge is set up, a
rising edge is input on the left-hand side, with the arbiters at the end of
each chain (shown as gray rectangles) measuring if the top line or bottom
line shows a signal first. During this process, the n ·k challenge bits decide
at each stage (white rectangles) if the signal paths are crossed or not. The
arbiter result bits of each line are then XORed and output on the right-
hand side.

cannot model the parity function [MP69], Suh and Devadas [SD07] proposed the XOR
Arbiter PUF. In the XOR Arbiter PUF, a number of k Arbiter PUFs is implemented
in parallel. Any given challenge is applied to all k Arbiter PUFs, which are evaluated
separately. Then, the parity of the resulting k response bits is the final 1-bit response
of the XOR Arbiter PUF. The schematics of an XOR Arbiter PUF are depicted in
Figure 3.2.1.

While each Arbiter PUF has linearly separable responses, the XOR Arbiter PUF does
not have this property. Instead, the decision boundary cannot be modeled by an n-
dimensional hyperplane anymore. In this sense, adding XOR operations increases the
nonlinearity of the model.

Nevertheless, the additive delay model can be extended to XOR Arbiter PUFs. Note
that when using {−1, 1} as bit values, the parity function can be written as the real
product of bit values. Hence, using the noise-free variant of the model and writing f (l)

with 1 ≤ l ≤ k and f (l)(c) = sgn
⟨︁
w(l), x

⟩︁
+ b(l) for the individual Arbiter PUFs in a

k-XOR Arbiter PUF modeled by f , we obtain

f(c) =

k∏︂
l=1

f (l)(c) =

k∏︂
l=1

sgn
[︂⟨︂

w(l), x
⟩︂
+ b(l)

]︂
= sgn

[︄
k∏︂

l=1

(︂⟨︂
w(l), x

⟩︂
+ b(l)

)︂]︄
. (3.2.1)

19

3.3. Metrics

The quality of the XOR Arbiter PUF can be measured by the security metrics of bias,
reliability, and uniqueness as introduced in Section 2.1. The unforgeability of XOR
Arbiter PUFs will be discussed after this section.

3.3.1. Systematic Bias of XOR Arbiter PUFs

XOR Arbiter PUF bias can be analyzed by expanding the product of the additive delay
model (Equation (3.2.1)) to observe the resulting threshold term. In order to focus on
the systematic bias of XOR Arbiter PUF designs, we assume each Arbiter PUF to be
independently chosen and unbiased1.

The term
∏︁k

l=1

⟨︁
w(l), x

⟩︁
=
∏︁k

l=1

∑︁n
i=1w

(l)
i xi in Equation (3.2.1) is a polynomial of de-

gree k over variables xi that take values in {−1, 1}. Hence, f(c) is a polynomial threshold
function of degree at most k, including some monomials of the form xki ·

∏︁k
l=1wl,i. If (and

only if) k is even, these monomials contribute to the threshold term. When k is odd, no
product will degenerate into a constant term, i.e. perfectly unbiased Arbiter PUFs will
yield a perfectly unbiased XOR Arbiter PUF. As an example, a 2-XOR Arbiter PUF can
then be modeled as

r(c) = r1(c) · r2(c) = sgn

⎡⎢⎢⎣∑︂
i,j
i ̸=j

w1,iw2,jxixj +
∑︂
i,j
i=j

w1,iw2,j

⎤⎥⎥⎦ . (3.3.1)

It can be seen that even assuming unbiased building blocks, we obtain a non-zero thresh-
old term of

∑︁n
i=1w1,iw2,i. While the expectation of this value in the manufacturing

process is zero, a high variance causes the 2-XOR Arbiter PUF to likely have significant
bias. In other words, any 2-XOR Arbiter PUF consisting of two unbiased arbiter chains
is biased with probability 1.

Theorem 10. The responses of independently chosen unbiased Arbiter PUFs queried on
the same challenge are not statistically independent.

Proof. Let r1, r2 be models of unbiased Arbiter PUFs with parameters w
(1)
i and w

(2)
i

for 1 ≤ i ≤ n chosen independently at random and w
(1)
0 = w

(2)
0 = 0 as defined in

(Theorem 8). As demonstrated in Equation (3.3.1), the bias of r1(c) · r2(c) is non-zero
and hence2 Pr [r1(c) · r2(c) = 1] ̸= 1/2. However, assuming statistical independence we
have

Pr [r1(c) · r2(c) = 1] = Pr [r1(c) = r2(c)] = 1/2.

1The effect observed in this section can also be observed using Arbiter PUFs which are biased according
to bias distribution as shown in Corollary 9. We chose to show the effect on unbiased Arbiter PUFs
to exhibit the effect more clearly.

2An approximation of Ec [r(c)] in dependence of the bias values can be obtained using the Berry-Esseen-
Theorem to approximate

∑︁
i,j w1,iw2,jx1x2 for i ̸= j as a Gaussian random variable with variance

σ2 over uniformly chosen random challenges, resulting in Ec [r(c)] ≈ erf
(︂∑︁n

i=1 w1,iw2,i

σ
√
2

)︂
; the value∑︁n

i=1 w1,iw2,i in turn follows (in the manufacturing random process) a distribution composed of

20

(a) Histogram of bias estimates. A bias value of
zero represents perfectly unbiased responses.

(b) Proportion of instances that passed the NIST
frequency test at significance level 1%.

Figure 3.3.1.: Analysis results for simulated 64-bit k-XOR Arbiter PUFs, k-Lightweight
Secure PUFs (Chapter 4) and k-Permutation XOR Arbiter PUFs (Chap-
ter 4) build from unbiased Arbiter PUFs. For each type and size, 5000
instances were sampled and queried with one million uniformly random
challenges each.

Such bias may be problematic for novel designs based on a single XOR Arbiter PUF,
but with transformation of the challenge (Chapter 4) as well as for designs based on sev-
eral XOR Arbiter PUFs, like the Interpose PUF (Chapter 5). As an example, Theorem 10
can be extended to cover all input transformations that result in the same challenge for
each arbiter chain.

We emphasize that this analytical result holds regardless of any implementation weak-
ness and must be considered a systematic weakness of the XOR Arbiter PUF design.

We confirmed the systematic XOR Arbiter PUF bias in simulations (Chapter 9) for dif-
ferent XOR Arbiter PUF sizes and input transformations, including the Interpose PUF.
All simulations are based on the additive delay model with standard Gaussian weights
and were conducted using unbiased arbiter chains. The distribution of the systematic
bias is based on sampling 100 instances each; the bias of each instance is estimated using
1,000,000 responses to uniformly random challenges.

In Figure 3.3.1 we show the estimated bias distribution for XOR Arbiter PUFs and
Lightweight Secure PUFs, which confirm our theoretical findings. As expected, the sys-
tematic bias is only present for PUFs with an even number of arbiter chains, while PUFs
with an odd number of arbiter chains remain (systematically) unbiased. The bias vari-
ance becomes smaller as k increases. The statistical significance of these findings can be
confirmed by applying a bias test like the one specified in NIST’s SP-800-22 test suite
[Ruk+10]: while our simulation passes the tests on 99% of XOR Arbiter PUF instances
whenever k is odd; it fails for almost all instances when k = 2, and fails for the majority

the sum of product-normal distributions, which has increasing variance for increasing n. Extending
the setting, for higher (but even) k the distribution narrows as the variance of the product-normal
distribution narrows. The later effect can be observed in our simulations, cf. Figure 3.3.1.

21

(a) Histogram of bias estimates. A bias value of
zero represents perfectly unbiased responses.

(b) Proportion of instances that passed the NIST
frequency test at significance level 1%.

Figure 3.3.2.: Analysis results for simulated 64 bit (kup, kdown)-Interpose PUF instances
build from unbiased Arbiter PUFs. For each size, 5000 instances were
sampled and queried with one million uniformly random challenges each.

of instances when k = 4 (see Figure 3.3.1). This is also in line with our theoretical
findings and simulation results, as we expect the effect to become smaller as k increases.

We hence recommend using an odd number of arbiter chains to avoid potential ad-
ditional attack surface and especially discourage the use of two or four parallel chains.
These recommendations also apply whenever (XOR) Arbiter PUFs are used as building
blocks for larger PUFs, such as is the case in the Interpose PUF, as bias in intermediate
values can result in increased predictability.

The bias distribution also suggests that the input transformation as done by the
Lightweight Secure PUF [MKP08] compensates the systematic bias to some extend,
which may be a contributing factor to the increased machine learning resistance [RBK10;
Wis+19] of the Lightweight Secure PUF. On the other hand, the Lightweight Secure PUF
and Permutation XOR Arbiter PUF (4.3) seems to introduce bias for the case k = 3.
Such effects should be considered when designing novel input transformations.

Our findings also extend to the Interpose PUF [Ngu+19], which is a combination of two
XOR Arbiter PUFs and was designed to be resilient against all state-of-the-art modeling
attacks, while being CMOS-compatible. Consisting of two interposed XOR Arbiter PUFs,
our simulation shows that the “down” XOR Arbiter PUF plays an important role for the
systematic bias, while the “up” XOR Arbiter PUF only has minor influence on it (see
Figure 3.3.2). We discuss the design of the Interpose PUF and applicable attacks in
Chapter 5.

Given these findings, we provide additional evidence for the original author’s advice to
use the Interpose PUFs with an odd number of arbiter chains in the lower layer. Further-
more, as our findings are applicable any XOR Arbiter PUF, we extend the parameter
recommendation to include the upper layer as well.

22

3.3.2. Implementation

Several academic works implement the Arbiter PUF using FPGA and/or CMOS tech-
nology and studied the resulting reliability, uniqueness, bias, and bit sensitivity metrics.

Lim et al. [Lim+05] examined the uniqueness of CMOS-implemented Arbiter PUFs
with respect to PUFs implemented on the same wafer and implemented on different wafers
and found no significant difference. Uniqueness values in their study averaged at 40-50%,
significantly below the ideal value of 100% (Definition 4). In terms of reliability, they
report values between 97% and 100% for a 64-bit Arbiter PUF, depending on operating
voltage and temperature. Experiments have been done with 100,000 challenge-response
pairs per PUF instance and per environmental condition, with 11 repeated measurements
for determination of the reliability.

Maes et al. [Mae+12] report higher uniqueness values of 95% in their CMOS imple-
mentation at only slightly decreased reliability of 96% to 100% (again, depending on the
temperature). However, their study only considers a relatively small number of 8192
challenge-response pairs.

Utz, Tobisch, and Becker [UTB16] analyzed the metrics of commercially available
Arbiter PUFs and found a near-ideal average uniqueness of 99.8% (with narrow variance)
based on 51,200 challenge-response pairs collected from 998 PUF tokens, each. They also
found a high reliability 96.3%.

The reliability of XOR Arbiter PUFs decreases exponentially with the number of ar-
biter chains involved. This can be demonstrated using the additive delay model on the
XOR Arbiter PUF, and has also been confirmed empirically by Zhou, Parhi, and Kim
[ZPK17] on a very large data basis.

The bit sensitivity of Arbiter PUFs was studied by Siddhanti et al. [Sid+19] and is
far from ideal. In particular, challenge bits to stages early in the delay lines have little
influence on the response, whereas stages later in the delay lines have high influence.
Near-optimal influence values of challenge bits are only found around the middle of the
delay lines. This has led to the development of the Lightweight Secure PUF (Chapter 4).

Given the results above, the Arbiter PUF can be considered to fulfill fundamental PUF
requirements, albeit the achieved reliability can be a concern, in particular in regard with
usage in large PUF designs such as the XOR Arbiter PUF.

pypuf (Chapter 9) ships data measured from the Arbiter PUF implementation of Mursi
et al. [Mur+20] and Aghaie and Moradi [AM21]. To the best of our knowledge, no other
Arbiter PUF data is publicly available.

3.4. Logistic Regression Attack

After the successful attacks on the Arbiter PUF using the Perceptron algorithm [Gas+04],
it was found that the Logistic Regression algorithm (LR) can model Arbiter PUFs using
fewer examples during training [Söl09; Rüh+10]. In contrast to the Perceptron, LR also
does not require the data to be linearly separable and can thus be used to model the
XOR Arbiter PUF, which originally was suggested to mitigate the Perceptron modeling
attack [SD07]. It has been confirmed that LR is also able to create models on data

23

obtained from real hardware [HMV12; Rüh+13b]. It can be scaled up to very high
parameters, while the time and data complexity was observed to grow exponentially
[TB15]. An open-source version of the LR attack, implemented in a modern machine
learning framework, is available in pypuf (Chapter 9). In addition to differences caused
by the new implementation, it also features some detail improvements [Wis+21a], on
which we detail below.

For the purpose of the Logistic Regression Attack, we use the noise-free k-XOR Arbiter
PUF model as stated in Equation (3.2.1),

f(c) = sgn
k∏︂

l=1

(︂⟨︂
w(l), x

⟩︂
+ b(l)

)︂
,

where c ∈ {−1, 1}n is the challenge and x the corresponding feature vector.
We assume that the attacker is given the size of the k-XOR Arbiter PUF. The value of

n is known as the challenge-interface of the PUF is assumed to be public. Further, the
attacker is given N examples of the PUF’s challenge-response behavior as training set,
T = ((c1, r1) , . . .), where ci ∈ {−1, 1}n, ri ∈ {−1, 1}. This corresponds to the known
message attack definition of Section 2.1.

The supervised learning process starts with a randomly initialized model, i.e. with
n · k values drawn from a Gaussian distribution. We define the model function m as

ˆ︁m(︂w(1), . . . , w(k), c
)︂
=

k∏︂
l=1

(︂⟨︂
w(l), x

⟩︂
+ b(l)

)︂
;

m
(︂
w(1), . . . , w(k), c

)︂
= sgn ˆ︁m(︂w(1), . . . , w(k), c

)︂
.

Note that the model explicitly depends on the weights w(l) for 1 ≤ l ≤ k.
The attacker is now faced with the task of finding weights w(l) such that the resulting

model m models the examples in T as accurately as possible. For any given observed
challenge c and response r, we define the likelihood that the model ˆ︁m predicts the observed
behavior correct to be

1

1 + exp
(︁
−r ˆ︁m (︁w(1), . . . , w(k), c

)︁)︁ .
While r ∈ {−1, 1}, the model value ˆ︁m can take values in R. Whenever we have

r = sgn ˆ︁m (︁w(1), . . . , w(k), c
)︁
, the likelihood is above 1/2 and rapidly approaches 1 with

increasing absolute value of ˆ︁m. Likewise, whenever r ̸= sgn ˆ︁m (︁w(1), . . . , w(k), c
)︁
, the

likelihood is below 1/2 and rapidly approaches 0 with increasing absolute value of ˆ︁m.
To obtain a value that measures the overall correctness of the model across the training

set, we define the total likelihood as the product all individual likelihoods, i.e.,∏︂
(c,r)∈T

1

1 + exp
(︁
−r ˆ︁m (︁w(1), . . . , w(k), c

)︁)︁ .

24

This is motivated by the fact that each correctly predicted response will contribute for
this value to converge towards 1, whereas each incorrectly predicted value will contribute
for this value to converge towards zero.

The task of finding weights w(l) that define a well-predicting model can now be reduced
to the task of findings weights w(l) that increase the total likelihood as defined above.

In logistic regression, the weights w(l) are determined in an iterative manner by con-
ducting a gradient ascent. For the gradient ascent, the derivative of the function to be
optimized must be computed, which is difficult due to the large product term. This
problem can be circumvented by considering the log likelihood instead. By applying the
logarithm function, computing the derivative becomes easier, while the maxima of the
function remain unchanged due to the monotonicity of the logarithm.

To summarize, the likelihood that the model predicts correctly is maximized when the
log-likelihood

L
(︂
w(1), . . . , w(k)

)︂
= ln

∏︂
(c,r)∈E

1

1 + exp
(︁
−r ˆ︁m (︁w(1), . . . , w(k), c

)︁)︁
=
∑︂

(c,r)∈E

ln
1

1 + exp
(︁
−r ˆ︁m (︁w(1), . . . , w(k), c

)︁)︁
is maximized.

To find such a maximum, the gradient ascent algorithm starts at a random point and
then “walks” on the surface defined by the log likelihood function towards the direction
of steepest ascent. The stride length of such a step is determined by heuristic algorithms.
The direction of the steps is computed using the gradient defined by

gradL
(︂
w(1), . . . , w(k)

)︂
=

(︄
∂L

∂w
(1)
1

, . . . ,
∂L

∂w
(k)
n

)︄′

,

where

∂L

∂w
(µ)
ν

=
∑︂

(c,r)∈T

⎛⎝ r ·
(︂∏︁

j∈{1,...,k}\{l}
⟨︁
w(l), x

⟩︁)︂
· x(µ)ν

1 + exp
(︁
−r · ˆ︁m (︁w(1), . . . , w(k), c

)︁)︁
⎞⎠ ·

To summarize, the task of finding weights w(l) that provide high-accuracy predictions
for the given training set T can be reduced to iteratively computing the gradient of the
log likelihood function and heuristically adjusting the weights into the direction of the
steepest ascent. The process can be terminated when certain (heuristic) criteria are met,
e.g. when the stride length becomes small or when the accuracy computed on either the
training set or a separate validation set becomes high.

There exists several implementations of the LR algorithm for attacking Arbiter PUFs
and XOR Arbiter PUFs. To our knowledge the first implementation was provided by
Rührmair et al. [Rüh+10] and is implemented using Python and numpy. In this work,
we present an implementation using the Keras machine learning framework.

25

The LR attack has become an important tool for the security analysis of delay-based
PUFs and is used in a large number of different works, including in the recent proposal of
the Interpose PUF [Ngu+19] and an attack on it [Wis+20b]. The Keras implementation
of the LR attack in this work will serve as a baseline for comparing the performance of
LR with various other attacks.

A large-scale study of Tobisch and Becker [TB15] determined training set sizes for the
LR attack that yield optimal results, i.e., have the lowest training times, and minimal
training set sizes, for which the attack was observed to work at least once, which we
confirmed and will use for comparison. To provide for a fair comparison with the neural
network attacks shown in Section 3.6, we are using our Keras-based implementation of the
LR attack. Differences in run time hence may not only be caused by the usage of different
CPUs, but also by optimization differences in the implementations. Nevertheless, we
obtain the same number of required CRPs, which indicates that our implementation
behaves similar to the one of Tobisch and Becker.

To increase the training performance of the original LR algorithm, we modified some
details. First, to reduce the number of epochs required for training, we introduced the
usage of mini batches, where the network is updated with the gradient not only after
evaluating the complete training data, but several times in each epoch. This allows for
convergence using fewer epochs, and thus (except in corner cases), for shorter training
time, but one must be careful to not choose the batch size too small. Too small batch
sizes can lead to noisy gradient values, which will in turn perform unhelpful updates on
the network.

Second, we use Adam optimizer [KB17] instead of the originally used resilient back-
propagation, as the latter works poorly together with the use of mini batches.

Third, we apply the tanh activation function to each of the k delay values computed
by the respective arbiter chains, i.e. we change the model function3 from

c ↦→ tanh

(︄
k∏︂

l=1

(⟨Wl, x⟩+ bl)

)︄
to c ↦→ tanh

(︄
k∏︂

l=1

tanh (⟨Wl, x⟩+ bl)

)︄
.

This change was motivated by the observation that in the traditional LR network, a
single arbiter chain can have large influence on the absolute value of the final output.
However, in the electrical circuit, no analogon to the absolute value exists. Instead,
XOR Arbiter PUF model weights can be scaled using positive scalars without affecting
the computed function. We speculate that different influences can hamper the training
process, as weight updates during backpropagation may be applied predominantly to
influential arbiter chains. Applying the tanh function ensures a more equalized influence
of all arbiter chains on the final output.

By the introduction of the additional tanh activation function, our attack does not

3Note that tanh is implicitly used in the likelihood function above, as

1

1 + e−x
=

1

2
+

1

2
tanh

x

2
.

26

success duration mean success
n k CRPs rate (max. threads) accuracy memory [TB15]

64 4 30k 10/10 <1 min @ 4 95.5% <1 min
64 5 260k 10/10 4 min @ 4 96.9% <1 min
64 6 2M 20/20 <1 min @ 4 97.6% 1 min
64 7 20M 10/10 3 min @ 4 98.5% 55 min
64 8 150M 10/10 28 min @ 4 96.4% 391 min
64 9 500M 7/10 14 min @ 40 96.8% 132 GiB ⋆2266 min
64 10 1B 6/10 41 min @ 40 95.7% 197 GiB -

Table 3.1.: Empirical results on learning simulated XOR Arbiter PUFs obtained using our
Keras-based implementation of the LR attack. Reference values of Tobisch
and Becker [TB15] use up to 16 cores. (⋆ Result obtained using a different
number of CRPs.)

fulfill the definition of logistic regression anymore4 . In a slight abuse of terminology, we
will refer to this version as the improved LR attack. A sketch of the network structure
used in the attack is displayed in Figure 3.6.4d.

Using our Keras-based implementation together with these improvements, we could
increase the performance of the LR algorithm (with respect to wall clock time, i.e., elapsed
real-time from beginning to end of the model training procedure), which is summarized
in Table 3.1. We found that the largest proportion of the performance gain is due to
Keras, which allows for optimized and highly parallel computing, and to a smaller extent
due to our improvements. In a comparison of attack performance on 64-bit 5-XOR
Arbiter PUFs, we found that our implementation of the original LR attack achieved a
success rate of 16/20, while the improved version yielded 18/20 successful, with all other
parameters being equal. We did not study in more detail the performance of the two
versions depending on the choice of mini batch size, number of CRPs, learning rate, etc.

Similar to the attacks based on neural networks shown in Section 3.6, performance of
the improved LR attack crucially depends on the choice of hyperparameters, in particular
on a good combination of learning rate and batch size. The number of required epochs is
also heavily influenced by any early stopping logic, which may depend on the validation
accuracy or loss. We thus expect that the wall-clock performance and the number of
required epochs can be further reduced, e.g., by using a systematic approach to find
optimal hyperparameters. On the other hand, we expect that for the LR attack, the
data complexity cannot significantly be reduced by hyperparameter tuning.

Our numbers confirm once more [Rüh+10; Wis+20b] that the LR attack requires a
number of CRPs in the training set that grows exponentially with the number of employed
XORs in the target XOR Arbiter PUF. In Fig 3.6.3, we show the required training set
size. Based on a fitted function k ↦→ α · ek using the least squares method, we predict

4One can argue that already the LR attack on XOR Arbiter PUF hardly fits the textbook definition
of a logistic regression.

27

the number of required CRPs for k = 10 is 1.3 billion, for k = 11 is 3.6 billion, and for
k = 12 is 1012.

The performance of the LR algorithm in the literature [RBK10; Rüh+13b; TB15] and
our results show that Arbiter PUF and XOR Arbiter PUF cannot be considered EUF-
KMA secure, unless the number of XORs k can be scaled significantly (Section 3.7).

3.5. Physical Attacks

For the security analysis of PUFs, as discussed in Section 2.2, the capabilities of attackers
with physical access to the PUF must be considered.

To that end, Tajik et al. [Taj+14] analyzed an n-bit XOR Arbiter PUF implemented
on a Complex Programmable Logic Device (CPLD) and analyzed the photonic emission
during operation of the PUF, which is caused by the switching of n-type transistors be-
longing to the Arbiter PUF stages (realized as multiplexers) in the circuit. The observed
measurements allowed the recovery of the delay differences of the Arbiter PUF. After
observing the PUF responses for n linearly independent challenges, a system of linear
equations can be used to recover all internal delays, effectively providing a model to
predict the response to any challenge.

In a different attack, Tajik et al. [Taj+15] used a laser to inject a fault into an XOR
Arbiter PUF, which lead to the deactivation of parts of the XOR Arbiter PUF and
effectively degenerated it into a number of Arbiter PUFs that can be attacked separately
using, e.g., the LR attack (Section 3.4). In this attacker model, the advantages provided
by the XOR Arbiter PUF over the Arbiter PUF are removed.

Ganji et al. [Gan+15] use a similar approach, but do not require to inject a fault.
By using a lattice basis reduction, they can use the information of how many Arbiter
PUFs return a certain bit value in an XOR Arbiter PUF to reduce the complexity of
the modeling attack. This information can be obtained using the photonic emission
techniques also used by Tajik et al. [Taj+14].

These attacks demonstrate that the hope that the Arbiter PUF would be temper-
evident, i.e. change it’s behavior when attacked physically, cannot be fulfilled.

To mitigate the attacks to a certain extend, Sahoo et al. [Sah+16] suggested a fault-
tolerant implementation of the Arbiter PUF.

Hardware attacks on Arbiter PUFs and XOR Arbiter PUFs are, to some extend, also
applicable to PUF designs based on XOR Arbiter PUFs such as the ones discussed in
this work.

3.6. Neural Network Attacks

This section studies how machine learning modeling attacks that are not restricted to a
certain class of model functions can be used to model XOR Arbiter PUFs. This is in con-
trast to the modeling attack using logistic regression shown in Section 3.4, which is based
on the physically motivated model function of the XOR Arbiter PUF (Equation (3.2.1)).

28

We revisit three neural-network attacks from the literature, replicate and discuss their
results. Finally, in Section 3.6.3, we present the best-performing KMA modeling attack
to XOR Arbiter PUFs.

The machine learning attacks in this section are all implemented using the Keras
framework to provide a fair comparison of their properties and to compare the results
to the improved logistic regression attack of Section 3.4. As the attacks run, compared
to previous works [Rüh+10; TB15; Wis+19; Wis+20b], relatively fast, we focus our
attention on the comparison of the data complexity, i.e., how much training data is
required to obtain good modeling predictions.

In this work, we do not focus on the exact accuracy metrics of prediction quality for
several reasons. First, the attacks that we study do not yield intermediate results when
correctly parameterized, i.e., the attacks end either with accuracy 50% or close to 100%.
Additionally, we observed that high-accuracy results can be further improved by letting
the training continue for a couple more epochs. Second, to impersonate a PUF token,
no extremely high accuracy is needed, and any prediction accuracy significantly better
than 50% should be considered a security weakness of the PUF design [Del19]. Hence,
instead of prediction accuracy, we focus on the attack success rate, i.e., the proportion
of independently run attacks on independent PUF simulations that yielded prediction
accuracy greater than 90%. Given that virtually all successful attacks yielded accuracy
95% or better and virtually all unsuccessful attacks yielded accuracy 55% or below, the
success rate is very insensitive to the exact choice of this threshold. Nevertheless, for the
sake of completeness, the prediction accuracy of obtained models is given as the average
over several attacks on different PUF tokens.

To ensure that all of our results are reproducible in detail, we seed all involved pseu-
dorandom number generators used for generating PUF token simulations, initializations
of machine learning models, etc. with defined values.

3.6.1. Revisited: Santikellur et al.

To reduce the computational effort for modeling attacks on XOR Arbiter PUFs, San-
tikellur et al. [San+19] proposed to use an efficient CP-Decomposition Tensor Regression
Network (ECP-TRN), which is parameterized by an integer rank R. To model a k-XOR
n-bit Arbiter PUF, the proposed model computes the function

f(x) = sgn

[︄
R∑︂
i=1

(︄
αi ·

k∏︂
l=1

⟨w(l)
i , x⟩+ b

(l)
i

)︄]︄
,

where w
(l)
i ∈ Rn and b

(l)
i ∈ R. A drawing of the network structure is shown in Fig-

ure 3.6.4c. Due to the highly parallel structure of the network, the approach may ben-
efit from performance improvements during training. The parameters to be trained are
α1, . . . , αR and wl,i, bl,i, l ∈ {1, . . . , k}, i ∈ {1, . . . , R}. Hence, there are nkR + kR + R
trainable parameters.

Given this network structure, the network can be understood as an approach that
trains R XOR Arbiter PUF models in parallel. The final response of the model is then

29

computed as the weighed sum of the R model outputs, then the sign of the response is
returned. After the training completes, the network is filled with R sets of XOR Arbiter
PUF weights, which raises the question how the individual prediction accuracy differs
from the overall prediction accuracy reported by Santikellur et al.

For our experiments operating on simulations of 4, 5, and 6-XOR Arbiter PUFs with
64-bit challenge lengths, we found that in all successfully trained networks, exactly one of
the R trained models showed high correlation with the simulation weights, whereas the
other R − 1 had no correlation. This finding was confirmed by the prediction accuracy:
R − 1 of the models in the successfully trained network had an individual prediction
accuracy of around 50%, whereas exactly one had high prediction accuracy. Using the
single model allowed for even higher prediction accuracy than using the fully trained
network, as the noise of the R − 1 low-correlation models is removed. We can conclude
that the R-rank model of the ECP-TRN does not provide benefits over the 1-rank model.

As the final response of the ECP-TRN network is computed as the weighed sum of the
R individual model responses, the individual models influence each others training pro-
cess through the backpropagation algorithm. To examine if this interdependency during
training provides an advantage to the modeling attack, we run many attack attempts on a
single PUF under attack, i.e., we restart the training process with different initializations
of the model, while keeping the PUF simulation and CRP set constant. In the case of
many attack attempts, the training of each attempt is independent of the training pro-
cess of the other attempts, above-mentioned interdependency is removed. This allows us
to compare the performance metrics of rank R ECP-TRN attacks using a single attack
attempt versus rank 1 ECP-TRN using R attack attempts. The results are displayed in
Tab. 3.2.

In none of the cases that we studied, the training success rate of a rank R ECP-TRN
could surpass the success rate of running R independent learning attempts using a rank
1 ECP-TRN.

Unfortunately, we were not able to replicate the ECP-TRN results of Santikellur et al.
[San+19] exactly as published in the original paper. While the 64-bit 4-XOR case could be
replicated, our experiments for 5-XOR and 6-XOR required significantly more CRPs for
reliable convergence than originally claimed. For 7-XOR and larger, we failed to achieve
any success using the proposed high-rank model. A discussion with the original authors
also could not improve our results. We suspect that the reason for the larger requirement
of CRPs is either caused by the different behavior of Keras internals compared to the
original Tensorflow v1 implementation, or, considered more likely, by some differences
in CRP generation. It may also play a role that by training R models in parallel, the
original authors effectively report the maximum accuracy among (a large number of)
R learning attempts, while our work reports data complexities for success rates mostly
close to 100%. We further discuss this in Section 3.6.4.

3.6.2. Revisited: Aseeri et al.

After an attack on 3-XOR 64-bit Arbiter PUFs by Yashiro et al. [Yas+16] using a neural
network with autoencoders and an attack by Alkatheiri and Zhuang [AZ17] on Feed-

30

[San+19] our attempts total run mean attempt
n k CRPs CRPs R per run runs success rate success accuracy

64 4 40k 40k 1 5 10 100% 95.2%
64 4 40k 40k 5 1 10 100% 94.6%

64 5 80k 320k 1 10 10 90% 94.9%
64 5 80k 320k 10 1 10 90% 94.9%

64 6 400k 800k 1 10 10 80% 95.1%
64 6 400k 800k 10 1 10 80% 95.0%

64 7 800k 800k 1 100 5 20% 95.4%
64 7 800k 800k 1000 1 4 0% —

Table 3.2.: Comparing single-attempt attacks using rank R ECP-TRN versus R-attempt
attacks using rank 1 ECP-TRN. Our results indicate that the training of
the ECP-TRN does not benefit from interaction of the models; but gives
some indication to the contrary. Compared to the figures of Santikellur et
al. [San+19], in some cases we increased the number of CRPs to obtain any
successful results.

Forward Arbiter PUFs using a multilayer Perceptron, Aseeri, Zhuang, and Alkatheiri
[AZA18] were the first ones to attack XOR Arbiter PUFs with more than four arbiter
chains using neural networks.

While much of their work focused on the fact that their version of the modeling attack
can be run on a regular laptop computer, i.e., on a machine without GPU, but with
limited memory and just using a single core of a consumer CPU, their attack also achieves
a significant reduction in both time and data complexity, compared to the then state-of-
the-art LR attack by Tobisch and Becker [TB15].

Some attempts to replicate the work of Aseeri, Zhuang, and Alkatheiri failed [SBC19],
likely because at the time, the source code of the attack was not publicly available yet.
Consequently, the attack was not sufficiently considered in the security analysis of the
Interpose PUF (cf. Chapter 5) [Ngu+19]. We take this as evidence that the publication
of code that is the basis for claimed attack results should be strongly encouraged by the
community.

The original implementation of this attack was done using scikit learn. As part of our
comparison of neural network attacks, in this work, we reimplemented the network used
by Aseeri et al. using the Keras machine learning framework and were able to replicate
all of their results. An overview of our replicated results can be found in Table 3.3,
including an extension to the 64-bit 9-XOR and 128-bit 8-XOR cases. While the original
figures strictly use single-core performance on a consumer CPU, we used up to 40 cores in
parallel. To allow for comparison, we include an estimation of the single-core performance
of our implementation by multiplying the measured wall clock time with the maximal
number of threads our experiment allowed. This overestimates the time required by our

31

success avg. success single core duration
n k CRPs rate duration accuracy memory this work⋆ [AZA18]

64 4 400k 10/10 <1 min 96.8% <1 GiB 11 min <1 min
64 5 400k 10/10 <1 min 96.7% <1 GiB 17 min <1 min
64 6 2M 9/10 <1 min 97.3% 1 GiB 8 min 7 min
64 7 5M 9/10 <1 min 97.3% 2 GiB 20 min 12 min
64 8 30M 10/10 3 min 98.1% 8 GiB 102 min 23 min
64 9 80M 9/10 86 min 98.2% 29 GiB 3438 min -

128 4 400k 10/10 <1 min 96.8% <1 GiB 17 min 1 min
128 5 3M 10/10 <1 min 97.1% 2 GiB 33 min 5 min
128 6 20M 10/10 <1 min 98.0% 10 GiB 28 min 19 min
128 7 40M 10/10 5 min 97.9% 20 GiB 181 min 90 min
128 8 100M 1/10 45 min 98.6% 50 GiB 1813 min -

Table 3.3.: Extended results on learning simulated XOR Arbiter PUFs obtained us-
ing our Keras-based implementation of the multilayer Perceptron attack by
Aseeri, Zhuang, and Alkatheiri [AZA18]. ⋆To allow for comparison with the
original figures, we computed an approximation of the duration using a single
core. The performance loss is caused by the lower single-core performance
of our CPUs (Intel Xeon E5-2630 v4) compared to the Intel Core i7 used by
Aseeri, Zhuang, and Alkatheiri. All of our experiments use up to 40 threads
instead of just one as done by Aseeri, Zhuang, and Alkatheiri.

attack, especially for cases where multi-threading allows only for little speedup, i.e., for
small training sets.

Aseeri, Zhuang, and Alkatheiri did not include arguments for the specific hyperpa-
rameter settings they used in their attack. We include a discussion of the multilayer
Perceptron hyperparameters in Section 3.6.3. A comparing overview can be found in
Table 3.5; a drawing of the network can be found in Figure 3.6.4a.

3.6.3. Revisited: Mursi et al.

3.6.3.1. Neural Network

In follow-up work to Aseeri, Zhuang, and Alkatheiri [AZA18] and Santikellur, Bhat-
tacharyay, and Chakraborty [SBC19] (not to be confused with the ECP-TRN model),
Mursi et al. [Mur+20] presented an enhancement of the multilayer Perceptron XOR Ar-
biter PUF modeling attack, claiming to reduce the data and time complexity of XOR
Arbiter PUF modeling attack by several orders of magnitude. We falsify their empirical
results, but show that their attack still requires fewer CRPs than other response-based
XOR Arbiter PUF modeling attacks. Consequently, we are able to demonstrate that
XOR Arbiter PUFs are insecure under EUF-KMA up to higher security parameters than
previously known, posing a challenge to implementors who need to keep the noise low

32

enough to allow for the fabrication of XOR Arbiter PUFs with such large security pa-
rameters.

To attack an n-bit k-XOR Arbiter PUF, Mursi et al. propose to use a neural network
that consists of three fully connected hidden layers of sizes 2k−1, 2k, 2k−1. We depict such
a network in Figure 3.6.4b. By its design, this model uses fewer trainable parameters
than the MLP-approach by Aseeri, Zhuang, and Alkatheiri and the high-rank approach
by Santikellur et al., which can benefit training. Nevertheless, it uses orders of magnitude
more parameters than the logistic regression attack (Section 3.4). For example, in the
attack of a 64-bit 9-XOR Arbiter PUF, LR uses 585 trainable parameters, while the MLP
attack in this section uses 66,560 trainable parameters.

Mursi et al. also use the tanh activation function for the hidden layers, compared to
the usage of ReLU by Aseeri, Zhuang, and Alkatheiri. We surmise that this benefits
training of the network as it enables weight update for neurons that compute a negative
value. While Santikellur, Bhattacharyay, and Chakraborty [SBC19] argue that tanh
suffers from the vanishing gradient problem, the successful use of tanh in the MLP attack
can be explained by the relatively shallow three-layer structure of the neural network,
which makes the vanishing gradient problem unlikely to appear [Mur+20]. A detailed
comparison of hyperparameters as used in the different attacks showed in this section
can be found in Table 3.5.

3.6.3.2. Replication and Results

To make the various neural-network-based attacks comparable, we reimplemented the
attack by Mursi et al. using the Keras machine learning framework and found that their
results could not be replicated. The difference in attack performance of our implementa-
tion and the original could be traced back to a bug in the CRP generator used by Mursi
et al., which was based on a simulation of the delays. For each PUF instance, 4n delays
were supposed to be drawn independently from a Gaussian distribution with mean 300
and variance 40; given a challenge, the delay difference can then be computed and con-
verted into the PUF response. Due to the bug, about 20% of the randomly drawn delays
were inadvertently set to zero. This was difficult to notice from the CRP data, as the
bias was hardly influenced and the MLP-based attack does not recover the simulation
delays or weights, but a neural network that is hard to be interpreted.

To study the attack by Mursi et al., we use our reimplementation of the neural network
attack and the pypuf CRP generator [Wis+21b] used throughout this work. The CRP
generation is, for performance reasons, based on the equivalent approach of using weights
instead of delays as shown in Theorem 8 and Corollary 9. We found that while the
attack performance reported by Mursi et al. significantly benefited from the faulty CRP
generation, the results obtained on valid CRPs still improve on the LR attack in terms of
data complexity by an order of magnitude, with increasing advantage for an increasing
number of XORs, as can be seen in Figure 3.6.3. We also observed an improvement in
run time. Detailed results are reported in Table 3.4.

For challenge lengths 128 and 256, we found that the data complexity grows fast with
the number of XORs. Nevertheless, for 128 bit challenges, it remains below the figures

33

that Tobisch and Becker [TB15] reported for the LR attack; for 256 bit challenges we
could not find numbers in the literature to compare to. However, the LR attack is known
to have polynomially increasing data complexity in the challenge length [Wis+20b]. The
steeply increasing required number of CRPs of the MLP attack could be caused by an
inherent effect of the XOR Arbiter PUF structure, or by a mismatch of hyperparameters
or neural network structure on the model. Considering everything, we conclude that there
is no evidence that increasing the challenge length will be an effective defense against
modeling attacks and let this question open to be studied in case sufficiently large XOR
Arbiter PUFs can be built.

In light of the reduced data complexity, we come to the conclusion that a model with far
more trainable parameters is able to outperform a model with fewer model parameters,
which falsifies the claim by Nguyen et al. that the LR attack is the best performing
among the XOR Arbiter PUF attacks [Ngu+19].

As a byproduct of our replication of the attack, we find that a relatively small pro-
portion of zero-valued delays in the XOR Arbiter PUF can lead to a large loss of data
complexity for the modeling attack. With this in mind, implementors of PUFs should
treat any significant deviation from simulation-based attack results on real-world data
with additional scrutiny on the validity of their implementation. In future security anal-
yses of PUFs, the detailed validity of the simulation in use needs to be established,
otherwise the analysis could over- or underestimate the PUF’s security. Such validation
is especially challenging when using generic models such as the MLP for modeling at-
tacks. However, in case of the Arbiter PUF, several independent results confirming the
validity of the additive delay model exist [Gas+04; DV13; Taj+14].

3.6.3.3. Hyperparameter Optimization

As a technical note, we found it difficult to configure the hyperparameters of the attack
by Mursi et al. While the processing of the training data in mini batches provides benefits
regarding the run time, and thus the development of the attack, it also requires to adjust
the learning rate appropriately. In Figure 3.6.1 we report the success rate of MLP-based
attacks on 4-XOR 64-bit and 8-XOR 64-bit for a large variety of different configurations
of learning rate and batch size, showing that only an appropriate combination of those
two hyperparameters will yield a successful attack. We speculate that on the one hand,
for high learning rates on small batches, the gradient direction is too noisy to yield a
meaningful update to the model, and on the other hand, that for low learning rates on
large batches the learning process runs into the maximum number of epochs before a
convergence could be achieved.

3.6.3.4. Noise Resilience

We found the attack to work in the presence of noise without significant changes in
data complexity when compared to the noise-free case. This is somewhat surprising,
as the MLP attack, in contrast to the LR attack, is not restricted to functions of a
certain class. Nevertheless, the training converges to the desired XOR Arbiter PUF

34

(a) 4-XOR Arbiter PUF, 50k CRPs, 100+ runs each (b) 8-XOR Arbiter PUF, 6M CRPs, 10 runs each

Figure 3.6.1.: Success rate for training an 64-bit XOR Arbiter PUFs with the attack by
Mursi et al. [Mur+20], with varying learning rates and block sizes.

model and approaches the maximum predictive power. Note that the noise resilience is
not a prerequisite for a successful attack for an attacker in the chosen message attack
model, as they could also query a challenge multiple times and remove noise efficiently
by majority voting the responses. We report detailed results on the noise resilience in
Table 3.4.

3.6.3.5. Application to Real-World Data

To confirm the lower data complexity of the MLP attack for realistic challenge-response
and noise data, we compare the improved LR attack and MLP attack on the (XOR)
Arbiter PUF data sets provided by Mursi et al. [Mur+20] and Aghaie and Moradi [AM21].

The data of Mursi et al. contains one instance of each a 64-bit k-XOR Arbiter PUF
for k ∈ {4, . . . , 9}, queried on the same set of 1 million (for k ∈ {4, 5, 6}) and 5 million
challenges (for k ∈ {7, 8, 9}). This data set does not provide repeated measurements,
hence no statement about the reliability can be made. Our statistical analysis of the
responses confirmed the expectation of decreasing bias with an increase in the number
of XORs; the 4-XOR Arbiter PUF has an average response of 0.03, the 9-XOR Arbiter
PUF an average response of 10−5 (with its Boolean responses given as -1 and 1).

The data of Aghaie and Moradi [AM21] contains a 64-bit (1,5)-Interpose PUF queried
on 1 million uniformly random challenges, each including the responses of all 6 individual
Arbiter PUFs. The data also contains 11 repeated measurements of all challenges, which
we only used to compute the reliability of the PUFs (all Arbiter PUFs had 99.7% or
better). For the attacks, we just used the first of the 11 measurements, discarding the
other 10. We confirmed the quality of the data by testing that all six involved Arbiter
PUFs individually can be modeled using the delay model with high accuracy (all 98%).
To use the Interpose PUF data in the context of XOR Arbiter PUF attacks, we discard
the (64-bit) top layer and compose the five given 65-bit Arbiter PUFs of the Interpose

35

rel. n k CRPs success duration success memory [Mur+20]
rate (max. threads) accuracy CRPs duration

1.00 64 4 150k 10/10 <1 min (40) 97.0% 1 GiB
1.00 64 5 200k 10/10 <1 min (20) 97.3% 3 GiB 42k <1 min
1.00 64 6 2M 10/10 <1 min (40) 97.5% 2 GiB 255k 2 min
1.00 64 7 4M 10/10 <1 min (40) 97.5% 2 GiB 680k 1 min
1.00 64 8 6M 7/10 13 min (4) 95.5% 1.7M 5 min
1.00 64 9 45M 10/10 16 min (40) 98.1% 14 GiB 4.2M 9 min
1.00 64 10 119M 7/10 291 min (40) 97.9% 41 GiB
1.00 64 11 325M 10/10 1898 min (40) 98.1% 104 GiB

1.00 128 4 1M 10/10 <1 min (40) 97.3% 1 GiB
1.00 128 5 1M 10/10 <1 min (20) 97.4% 3 GiB
1.00 128 6 10M 9/10 <1 min (20) 98.1% 5 GiB
1.00 128 7 30M 10/10 2 min (20) 98.2% 20 GiB

1.00 256 4 6M 10/10 1 min (40) 97.7% 6 GiB
1.00 256 5 10M 10/10 2 min (20) 97.8% 10 GiB
1.00 256 6 30M 0/7 — (20) — 30 GiB
1.00 256 7 100M 1/10 98.9% 99 GiB

0.85 64 4 180k 9/10 <1 min (4) 90.9% <1 GiB
0.85 64 5 150k 10/10 <1 min (4) 91.2% <1 GiB
0.85 64 6 2M 10/10 <1 min (4) 91.8% 1 GiB
0.85 64 7 4M 9/9 3 min (4) 91.6% 2 GiB

Table 3.4.: Averaged empirical results on learning simulated XOR Arbiter PUFs obtained
using our improved implementation of the neural network attack by Mursi et
al. [Mur+20]. The learning was configured to stop at validation accuracy 95%,
the variance of added noise was configured such that the simulation achieves
the given reliability value (“rel.”).

36

Figure 3.6.2.: Comparison of improved LR attack (Section 3.4) and our MLP attack
(Section 3.6.3) on FPGA data from Mursi et al. [Mur+20] (top row) and
Aghaie and Moradi [AM21] (bottom row). The results are in line with our
results on simulated data: the MLP attack shows lower data complexity
for XOR Arbiter PUFs with a large number of XORs k. (*Training set size
was actually 4,990,000; 10,000 CRPs were used for testing.)

37

[Rüh+10] [AZA18] [San+19] [Mur+20]

Method LR MLP TRN MLP
Architecture delay model (2k, 2k, 2k) many delay mod. (2k−1, 2k, 2k−1)
Hid. lay. activ. — ReLU — tanh
Optimizer RProp Adam Adam Adam
Loss function BCE BCE BCE BCE
Learning rate RProp default 10−3 (multiple) adaptive
Initializer Gaussian Glorot Unif. Glorot Normal Gaussian

Table 3.5.: Parameter comparison of modeling attack methods on k-XOR Arbiter PUFs.

Figure 3.6.3.: Data complexity of our attacks on n-bit Arbiter PUF with k individual
arbiter chains. Our implementation of the attack by Mursi et al. outper-
forms the improved LR attack by an order magnitude with regard to data
complexity.

bottom layer to 65-bit k-XOR Arbiter PUFs for k ∈ {1, . . . , 5}. The data shows that the
involved Arbiter PUFs are heavily biased, with 3 out of 5 have an average response of
0.3 or higher, computed from Boolean responses given as -1 and 1.

We ran the LR and MLP attack with varying number of CRPs on the XOR Arbiter
PUFs obtained from the data to compare the data complexity of the attacks. The detailed
results are displayed in Figure 3.6.2. All attacks ran within a few seconds to few minutes
each.

The results on the data of Mursi et al. show that for k-XOR Arbiter PUFs with k = 6
and k = 7, the data complexity of the MLP is much lower than that of the improved
LR attack. On the other hand, the results on the data of Aghaie and Moradi show that
the MLP attack is either unsuited or ill-parameterized for k-XOR Arbiter PUF with
smaller numbers for k and provides no advantage or improved LR in data complexity.
We conclude that our experiments on real-world data confirm our findings obtained with
simulated data.

38

(a) The feed-forward neural network architecture
for 3-XOR 64-bit using the model by Aseeri,
Zhuang, and Alkatheiri [AZA18]. Since k is equal
3, the hidden layers consists of 8 neurons each.
The architecture changes based on the number of
streams in an k-XOR Arbiter PUF; the hidden
layers use the ReLU activation function.

(b) The feed-forward neural network architecture for
3-XOR 64-bit using the model by Mursi et al.
[Mur+20]. Since k is equal 3, the first and third
hidden layers consists of 4 neurons each, the sec-
ond layer however possesses 8 neurons. The archi-
tecture changes based on the number of streams
in an k-XOR Arbiter PUF; the hidden layers use
the tanh activation function.

(c) The neural network architecture used by Santikel-
lur et al. [San+19], which is a parallel structure
containing R models as used in the LR attack
(Figure 3.6.4d) and computing the weighed sum
of all outputs. Here shown for R = 2.

(d) The network architecture used by our improved
version of the LR attack [Rüh+10]. The net-
work very closely follows inspiration derived from
a physical model of the XOR Arbiter PUF.

Figure 3.6.4.: Neural network comparison for XOR Arbiter PUF modeling attacks.

39

3.6.4. Comparison

Of the three studied neural-network-based modeling attacks and the improved LR attack
used as a baseline for comparison, we found that the claims by Mursi et al. [Mur+20]
could be traced back to an error in CRP generation, which leaves the work by Santikellur
et al. [San+19] to claim, to the best of our knowledge, the lowest data complexity of XOR
Arbiter PUFs in the literature on known message attacks. However, we were unable to
replicate these attacks for the cases of 7-XOR and larger.

Among the attacks successfully replicated in this work, we found the attack by Mursi et
al. [Mur+20] to have, despite a relatively high number of trainable parameters, the lowest
data complexity. Being an enhancement of neural network attacks presented by Aseeri,
Zhuang, and Alkatheiri [AZA18] and Santikellur, Bhattacharyay, and Chakraborty [SBC19]
(not to be confused with the ECP-TRN), we attribute the advantage in data complexity
to the choice of network size and hyperparameters, concluding that a further reduction
of complexity may well be possible for more carefully optimized settings.

Comparing the data complexity of the MLP-attack by Mursi et al. to the results ob-
tained with our improved version of the LR attack, we find that MLP only has advantages
in data complexity for XOR Arbiter PUFs with more than four arbiter chains, but not
for smaller designs. Next to the above-mentioned steep increase of data complexity for
larger challenge lengths of the MLP-attack, we read this as evidence that the chosen neu-
ral network structure is not optimal with respect to arbitrary values of challenge length
and number of XORs.

Comparing the complexity of the MLP-attack by Mursi et al. with the MLP-attack by
Aseeri, Zhuang, and Alkatheiri, we find that the main differences of the attacks are the
network shape and the choice of activation function in the hidden layers. As discussed
above, we speculate that the ReLU activation function hampers weight updates during
the backpropagation process and thus constitutes a disadvantage in the learning process.

For a detailed comparison of the four modeling attacks, we provide graphs of the
network structure in Figure 3.6.4, display the chosen hyperparameters in Table 3.5, and
provide an overview over the data complexities in Figure 3.6.3.

We do not include a detailed comparison of run times, as most of the attacks presented
in this work run in minutes, which makes a valid comparison difficult. Furthermore, using
the Keras-based implementation, our attacks can be run in a variety of different settings,
i.e., on CPUs and GPUs, with and without multithreading, which will lead to different
run times. In any event, none of the attack times reported in this work are prohibitively
long for an attacker.

We conclude that the XOR Arbiter PUF is insecure under EUF-KMA for security
parameters up to k = 11 when using 64-bit challenges and up to k = 7 when using
128-bit challenges, and an extension of the presented attacks beyond these parameter
settings appears to be within reach.

We discuss applications of the neural-network attacks on the Interpose PUF in Sec-
tion 5.3.

40

Figure 3.7.1.: A detailed logic block diagram of the proposed XOR Majority Vote Arbiter
PUF design. For each arbiter chain, r responses to the given challenge are
evaluated and passed to a majority vote. The result is then XORed and
returned.

3.7. Arbitrarily Large XOR Arbiter PUFs

As a possible mitigation for the known message attacks of Section 3.4 and Section 3.6,
an increase in the number k of used Arbiter PUFs in an XOR Arbiter PUF can be
considered. As the run time of both attacks is expected to increase exponentially in this
parameter, this has the potential to mitigate the attacks.

However, due to the design of the XOR Arbiter PUF, it is also known that the reliability
of the Arbiter PUF decreases exponentially with the increase in k, effectively putting a
limit on this parameter. While the exact limit depends on the noise of the particular
implementation, the largest reported XOR Arbiter PUF in the literature uses 12 Arbiter
PUFs [Yu+16].

In this section, we consider the XOR Majority Vote Arbiter PUF, which uses majority
voting on Arbiter PUFs to reduce the noise. We demonstrate that the XOR Majority
Vote Arbiter PUF is capable of producing low-noise responses for an arbitrarily high
number k of Arbiter PUF by using only a limited number of votes in the majority vote
process.

The XOR Majority Vote Arbiter PUF proposed in this section is a modification of the
XOR Arbiter PUF design (Section 3.2) by Suh and Devadas [SD07]. In order to reduce
the noise of Arbiter PUFs, responses can be determined by a majority vote process
[MEK10] before XORing the individual response bits as shown in Figure 3.7.1. We show

41

that with a feasible, i.e. polynomial in the security parameters n and k, number of votes
in the majority vote process, we can achieve a response stability as high as desired.

While the majority vote process requires some sort of volatile memory in the hard-
ware implementation for vote counting, which increases the hardware attack surface (cf.
Section 2.4 and Section 3.5), and assumes that subsequent evaluations of the Arbiter
PUF are statistically independent, it demonstrates that this mitigation of the Logistic
Regression and Neural Network Attacks is feasible.

3.7.1. Stability

To quantify the stability of Arbiter PUF behavior with respect to a given challenge for
PUFs with a single output bit, we define the notion of stability. We assume that the
response behavior of the PUF is stateless, i.e. does not depend on challenges and/or
responses which have been previously been processed.

Definition 11. For a PUF f : D → {−1, 1}, we define the stability of f on a challenge
c to be the probability to observe the more likely response when querying c once, i.e.
Stab(c) = Pr [r = sgnE [r′ | r′ ← f(c)] | r ← f(c)].

Using the definition of the expectation for r ← f(c), i.e. E [r] = Pr [r = 1]−Pr [r = −1],
we obtain that Pr [r = 1] = 1/2E [r]−1/2 and Pr [r = −1] = 1/2−1/2E [r]. As −1 ≤ E [r] ≤
1, the stability of f on c can be written as

Stab(c) =
1

2
+

1

2
· |E [r | r ← f(c)]| . (3.7.1)

Note that stability as defined here is closely related to the reliability defined in Sec-
tion 2.1 (Definition 2), but not identical: stability is the probability to see a response not
altered by noise, while reliability is the probability to see the same response when query-
ing the same challenge twice, i.e. it also includes the case of seeing two noise-affected
responses in a row.

The exact relation of reliability and stability as defined in this work can be formalized
as

Lemma 12. In the setting of Definition 11, for any challenge c, we have

Pr [r1 = r2 | ri ← f(c), i ∈ {1, 2}] = 1+2Stab(c)2−2 Stab(c) =
1

2
+
1

2
|E [r | r ← f(c)]|2 .

Proof. Let r⋆ denote the more likely response of f to the challenge c, i.e. r⋆ = sgnE [f(c)].
By case distinction, we have

Pr [r1 = r2 | ri ← f(c), i ∈ {1, 2}]
=Pr [r1 = r⋆] Pr [r2 = r⋆] + (1− Pr [r1 = r⋆]) (1− Pr [r2 = r⋆])

=1 + 2Stab(c)2 − 2 Stab(c).

42

By using Equation (3.7.1), we obtain

Pr [r1 = r2 | ri ← f(c), i ∈ {1, 2}] = 1

2
+

1

2
|E [r | r ← f(c)]|2 .

There is no wide consensus in the literature on the exact definitions and names of this
formalization, and equivalent or similar notions can be found in the literature under the
names reliability [Bec15], repeatability [DV13] and robustness [Arm+09].

3.7.2. Arbiter PUF

For Arbiter PUFs modeled using the noisy PUF delay model of Equation (3.1.1), we have
sgnE [r′ | r′ ← f(c)] = sgnE [∆DModel(c) + ∆DNoise] = sgn∆DModel(c) and the stability
can thus be written as

Stab(c) = Pr
∆DNoise

[sgn (∆DModel(c) + ∆DNoise) = sgn (∆DModel(c))] .

Corollary 13. For an Arbiter PUF instance, a challenge with model delay difference
∆DModel(c), and normally distributed noise ∆DNoise with zero mean and variance σ2

Noise,
the probability that the PUF response is not influenced by noise is

Stab(c) =
1

2
+

1

2
erf

(︃ |∆DModel(c)|√
2σNoise

)︃
. (3.7.2)

While Corollary 13 gives information about the stability of a single challenge, in the
context of PUF applications, often the average stability, or more detailed, the distribution
of challenge stability is of interest. We can see that for Arbiter PUFs, the challenge
stability depends on the distribution of ∆DModel(c) = ⟨w, x⟩+ b, with wn ∈ R and b ∈ R
chosen as determined in Corollary 9 and x defined as the feature vector determined by
the given challenge c (cf. Theorem 8).

Under these assumptions, ∆DModel(c) is the sum of n random variables wixi and can
thus be approximated by a Gaussian distribution using the Berry-Esseen Central Limit
Theorem (CLT) [Ber41; Tyu10]. The error bound of this approximation is a random
variable depending on the choice of w and b, with a narrowing variance and lowering
mean as n becomes larger. That is, the approximation of ∆DModel becomes better for
increasing n.

Assuming a Gaussian distribution of ∆DModel(c) for uniformly and randomly chosen
c, we can approximate the probability that a chosen challenge has stability below a
given threshold. In the following, we assume ∆DModel ∼ N (0, σ2

Model) as a simplification
although we actually have E [∆DModel] = b, as b was in turn drawn from a distribution
with mean zero. The simplification that ∆DModel follows a normal distribution simplifies
the analysis drastically.

43

Lemma 14. For any given Arbiter PUF with n stages, any probability z ∈
[︁
1
2 , 1
]︁
, and

measurement and hardware conditions described by ∆DNoise ∼ N (0, σ2
Noise), the probabil-

ity that a uniformly, randomly chosen challenge c has stability lower than z is approxi-
mated by

StabCDF(z) = Pr
c∼{−1,1}n

[Stab(c) < z]

= erf

(︃
σNoise

σModel
erf−1 (2z − 1)

)︃
. (3.7.3)

The proof uses the CLT approximation of ∆DModel together with the essential Gaus-
sian distribution fact that Pr [|∆DModel(c)| < x] = erf (x/

√
2σModel). The CLT also yields

explicit error bounds, if needed.
In the simplest case, we can choose the threshold independently of n to be a constant,

z = 99% to obtain the probability that a randomly chosen challenge has stability below
99%, i.e.

Pr
c∼{−1,1}n

[Stab(c) < 99%] ≈ erf

(︃
1.64

σNoise

σModel

)︃
.

For any given constant threshold z, the probability that a uniformly and randomly chosen
challenge has stability below z depends only on σNoise/σModel. A numeric evaluation can be
found in Figure 3.7.2. We can interpret Prc [Stab(c) < z] as cumulative density function.
The derivative then gives the probability density function, as shown in the same figure.
We can see from the probability density that, while the majority of challenges will have
high stability, there is a significant (i.e., polynomial) number of challenges that have
stability close to 1

2 , as the probability density does not approach zero. This idea will be
formalized in Theorem 16.

3.7.3. Majority Vote Arbiter PUF

The stability of an arbiter chain can be boosted by majority voting.

Definition 15. For a Majority Vote Arbiter PUF and any challenge c ∈ {−1, 1}n, we
define majority vote stability using r votes, Stab(r)MV(c), as the probability that the result
of majority vote results into a PUF response that is not altered by noise,

Stab
(r)
MV(c) = Pr

∆DNoise∈Rr
[majority vote result = sgn (∆DModel(c))] .

In the following, we show that for any monotone increasing polynomial t(n), we can
boost the stability for any challenge c that satisfies Stab(c) ≥ 1

2 +
1

t(n) with a polynomial
number of votes “exponentially close to 1” (formal notation follows). In Lemma 17,
we will show that this prerequisite is fulfilled by “most” challenges. For any remaining
challenges that do not fulfill the boosting requirement, we know that their stability will
be increased through our process, although not necessarily up to the desired value. Hence
the choice t(n) can be thought of as the parameter that determines which challenges are

44

σModel/σNoise=2

σModel/σNoise=5

σModel/σNoise=20

0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

z

Stab CDF

(a) Cumulative Distribution Function (CDF)

σModel/σNoise=2

σModel/σNoise=5

σModel/σNoise=20

0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z

Stab PDF

(b) Probability Density Function (PDF)

Figure 3.7.2.: CDF and PDF of the distribution of Arbiter PUF challenge stability under
the assumption of normally distributed model delay values, both shown
for σModel/σNoise ∈ {2, 5, 20} based on Equation (3.7.3). The larger σModel is
compared to σNoise, the higher the probability for high stability becomes.
The CDF as proven in Lemma 14 is a central tool in our analysis; the PDF
helps us to interpret measured stability frequency in simulations (see Fig.
3.7.3b).

45

boosted to exponential stability. To formalize the notion of “exponentially close to 1”,
we introduce the polynomial t′(n) that determines the minimum stability for challenges
selected by the choice of t(n).

Theorem 16. Consider an Arbiter PUF with n stages. Let t(n) be any monotone in-
creasing polynomial with t(n) > 2. Then for any polynomial t′(n) and all challenges c
satisfying Stab(c) ≥ 1

2 + 1
t(n) there exists a polynomial r(n) such that when using r(n)

votes (r(n) odd for all n), we have Stab
(r)
MV(c) > 1− 1

2t
′(n) .

Proof. We consider the probability q(n) = 1 − Stab
(r)
MV(c) that the result of majority

voting does not match the model value, that is, the minority of votes show the model
value. (For succinct presentation of the proof, we suppress the dependency on n in some
places.)

By the majority vote, we get q =
∑︁(r−1)/2

j=0

(︁
r
j

)︁
Stab(c)j (1− Stab(c)) r−j . Considering

the addends of the sum separately, for any 0 ≤ j ≤ r−1
2 , we set m = r

2 − j and rewrite

Stab(c)j (1− Stab(c)) r−j

=(Stab(c)(1− Stab(c)))
r/2 ·

(︃
1− Stab(c)

Stab(c)

)︃m

.

Note that the first factor is independent of j. As
(︂
1−Stab(c)
Stab(c)

)︂m
< 1, we obtain the upper

bound q < (Stab(c) (1− Stab(c)))
r
2 . By definition of Stab and the prerequisite we have

q <
(︂
1− erf2

(︂
|∆DModel|√

2σNoise

)︂)︂ r
2 and choosing r(n) = 2 ·

⌈︁
ln 2 · t(n)2 · t′(n)

⌉︁
+ 1, we obtain

q < 2−t′(n). Finally, we have Stab
(r)
MV(c) = 1− q > 1− 1

2t
′(n) .

Theorem 16 shows that certain challenges can be boosted to stability exponentially
close to 1 with a polynomial number of votes in the majority vote process. For applica-
tions of this work, it is essential that the portion of challenges that cannot be boosted
is negligible. The next lemma shows that we can expect the number of challenges not
satisfying the prerequisites of Theorem 16 to be small relative to t(n).

Lemma 17. Pr[Stab(c) < 1
2 + 1

t(n)] <
4√
π
· σNoise
σModel

· 1
t(n) .

The proof follows from Lemma 14 along with the standard bounds 2√
π
· x · e−x2

<

erf(x) < 2√
π
· x (for x > 0) and erf−1 x < x (for x ∈ (0, 1/2)).

3.7.4. XOR Arbiter PUF

The Arbiter PUF stability boosted using majority voting as shown in Section 3.7.3 allows
us to combine a polynomial number k(n) of Majority Vote Arbiter PUFs into a XOR
Majority Vote Arbiter PUF while maintaining high stability, as we show in this section.

46

Definition 18. Consider k arbiter chains using majority vote with r votes each. Let
ρi(c) ∈ {−1, 1} with 1 ≤ i ≤ k be the majority vote result of the i-th chain on input
c ∈ {−1, 1}n. Let ∆D

(i)
Model(c) be the noise-free delay difference of the i-th chain on input

c. We define the stability of the XOR Majority Vote Arbiter PUF Stab
(r)
XOR to be

Stab
(r)
XOR(c) = Pr

∆DNoise

[︄
k∏︂

i=1

ρi(c) =
k∏︂

i=1

sgn∆D
(i)
Model(c)

]︄
.

The probability Stab
(r)
XOR(c) is bounded from below by the probability that all individ-

ual arbiter chain response bits match their respective model value. Although this bound
is not tight, as it disregards the cases where any even number of response bits are flipped,
it still yields the desired exponential bound.

Theorem 19. Let t(n) be any monotone increasing polynomial with t(n) > 2. Then
for any polynomial t′(n) and for any challenge c with Stabi(c) ≥ 1

2 +
1

t(n) simultaneously
in all arbiter chains 1 ≤ i ≤ k, we have for an XOR Majority Vote Arbiter PUFs with
r(n) = 2 ·

⌈︁
ln 2 · t(n)2 · t′(n)

⌉︁
+ 1 votes and k arbiter chains that

Stab
(r)
XOR(c) ≥ 1− 1

1
k2

t′(n)
.

Proof. For any 1 ≤ i ≤ k, we have

Stab
(r)
XOR(c) ≥ Stab

(r)
MVi(c)

k ≥
(︃
1− 1

2t′(n)

)︃k

≥ 1− k

2t′(n)
,

ignoring correct answers caused by two (actually, an even number of) noisy responses in
the first step and using Bernoulli’s inequality in the last step.

As before with Theorem 16, we cannot expect all challenges to be boosted to this sta-
bility. Instead, we discuss how many challenges we can expect to fulfill the prerequisites
of Theorem 19.

Lemma 20. For k given arbiter chains with challenge stability Stabi, the probability for a
uniformly and randomly chosen c to have Stabi(c) ≥ 1

2+
1

t(n) simultaneously for all chains
1 ≤ i ≤ k is greater than 1− 4√

π
· σNoise
σModel

· k
t(n) , under the condition that 4√

π
· σNoise
σModel

< t(n).

This lemma follows directly from the probability bound of Lemma 17 and Bernoulli’s
inequality.

Although we cannot show all challenges to have stability exponentially close to 1,
Lemma 20 shows that the number of challenges we do not boost is (polynomially) con-
verging to zero with growing n. While not an improvement, this is also not a significant
degradation of stability, comparing to a single arbiter chain (see Lemma 17).

Putting all previous results together, we come to the following conclusion.

47

Corollary 21. Choosing challenges randomly and uniformly, we have for the stability
of the XOR Majority Vote Arbiter PUF with k Arbiter PUFs and n stages each using
majority vote with r votes each, that for any constants α ∈ [0, 12] and α′ > 1, there exists
a number of votes r ∈ O(α2 · α′ · k2 · log k), such that

Pr

[︃
Stab

(r)
XOR(c) ≥ 1− 1

2α′

]︃
≥ 1− α,

i.e. the proportion of challenges defined by α has stability exponentially close in α′ to 1.

Proof. This result follows from Theorem 16, Lemma 17, and Theorem 19 by setting
t(n) = 4√

π
· σNoise
σModel

· k · α and t′(n) = log2 k + α′, where k is a monotone increasing
polynomial in n.

The choice of α affects the portion of challenges that will be boosted to exponential
stability. Equivalently, α determines how many challenges we do not prove to be boosted
to desired stability. The choice of α′ sets up the boosting goal, i.e. how close to 1 we
want the stability to be boosted to.

3.7.5. Number of Votes Required

For a real-world implementation, we need to know a lower bound on how many votes are
required for the XOR Majority Vote Arbiter PUF to achieve the desired stability. In the
simplest case, we require that all challenges c with Stab(c) ≥ 1

2 + 1
10 = 60% must have

Stab
(r)
XOR(c) > 99%. By Lemma 14, this captures most challenges, as

Pr

[︃
Stab(c) <

1

2
+

1

10

]︃
= erf

(︃
σNoise

σModel
erf−1(0.2)

)︃
< erf

(︃
0.2

σNoise

σModel

)︃
.

As an example, we obtain Pr[Stab(c) < 1
2 +

1
10] < 3% for σNoise

σModel
= 1

10 . From Theorem 19,
we hence have t(n) = 10 and

Stab
(r)
XOR(c) > 1− 1

1
k2

t′(n)
= 99%

and t′(n) = log2(100k). Along with the number of votes r(n) as defined in Theorem 16,
we obtain r(n) = 2 ·

⌈︁
ln 2 · t(n)2 · t′(n)

⌉︁
+ 1 ≈ 1 + 200 log(100k); or r(n) ≈ 1400 for

k = 24. Notice that the upper bound grows with O(log k). Our simulations show that
in fact much lower numbers for r(n) suffice, see Section 3.7.6. The large values of r(n)
are hence due to the many non-tight bounds we use in the proof of Theorem 16 and
Theorem 19.

Any implementation of this scheme will hence need to have k log-size memory units for
storing the vote-count and will have approximately polynomial slowdown in evaluation,
caused by the repeated evaluation of the Arbiter PUFs. The circuit size of the PUF
overall will increase linearly with O(k).

48

10 15 20 25 30

5

10

20

50

number of arbiter chains in the MV XOR Arbiter PUF

n
u
m
b
e
r
o
f
v
o
te
s

Number of Votes Required for Pr[Stab(c)>95%] > 80%

(a) The graph shows the minimum number of votes needed such that for a uni-
formly random challenge c we have Pr[Stab(c) ≥ 95%] ≥ 80% for different k,
as determined by binary search on a simulation (Section 3.7.6). The simula-
tion uses arbiter chain length of n = 32, however our results indicate that the
number of required votes is independent of n. This log-log graph confirms
the result that the number of votes required grows polynomially.

σNoise/σModel=0.033

0.5 0.6 0.7 0.8 0.9 1.0

0.05
0.10

0.50
1

stability

Stability Frequencies / Stability Probability Density

51 votes
501 votes

(b) The histogram shows the probability density of an XOR Majority Vote Ar-
biter PUF of size k = 32 and chain length of n = 32. We used 51 and 501
votes to boost stability to Pr[Stab(c) ≥ 95%] ≥ 80% and to the stability of
the building block arbiter chains, respectively. The dashed line shows the
theoretical stability probability density for a single arbiter chain (i.e. before
majority vote and XOR) as used in this simulation (σNoise/σModel = 0.033).
The graph confirms that a XOR Majority Vote Arbiter PUF built from these
arbiter chains and the given number of votes can not only achieve a decent
stability (at 51 votes), but also reach the same stability as a single arbiter
chain (at 501 votes).

Figure 3.7.3.

49

3.7.6. Simulation

In this section we present software5 simulation results on Arbiter PUF simulations that
empirically confirm our theoretical results on the XOR Majority Vote Arbiter PUF.

To show that a high total stability can be reached using majority vote we determined
the minimum number of votes required for acceptable stability for various numbers of
parallel arbiter chains. Figure 3.7.3a shows detailed results of how many votes are needed
for stable responses (Pr [Stab(c) ≥ 95%] ≥ 80%), as determined by a binary search on the
voting count for each k. The polynomially increasing number of votes required to fulfill
the stability requirements for a useful PUF implementation shows that XOR Majority
Vote Arbiter PUFs with high stability can be built arbitrarily large.

For a more precise exposition of the stability distribution of XOR Majority Vote Arbiter
PUFs of size k we estimated stability values by a simulation. Our example uses k = 32
Majority Vote Arbiter PUFs with n = 32 stages each. The stability distribution shown in
Figure 3.7.3b was achieved using r ∈ {51, 501} votes. As estimated by the computation
of the previous section, the number of votes needed to reach a stability of 95% with
probability 80% is 51. Approximately 501 votes are needed to achieve a total stability
comparable to the stability of a single Arbiter PUF that was used to build the XOR
Majority Vote Arbiter PUF. This shows that even large XOR Majority Vote Arbiter
PUFs can become stable using a feasible number of votes.

This allows us to conclude that the XOR Majority Vote Arbiter PUF, while exhibiting
a larger hardware attack surface, can be considered secure against the known message
attacks of Section 3.4 and Section 3.6. To the best of our knowledge, no other applicable
known message attacks have been published, so that the XOR Majority Vote Arbiter
PUF can be considered secure under EUF-KMA.

3.8. Reliability-Based Attacks

As we have seen in the previous sections, n-bit k-XOR Arbiter PUFs are insecure with
respect to EUF-KMA for at least a certain set of security parameters. On the other hand,
empirical study shows that the complexity of the Logistic Regression Attack (Section 3.4)
and neural network attacks (Section 3.6) increases exponentially with the choice of the
security parameter k. This raises the question if XOR Arbiter PUFs can be secure if the
number of XORs k is chosen sufficiently high.

Becker [Bec15] answered this question with respect to EUF-CMA to the negative. In
his work, he demonstrated a reliability-based attack against XOR Arbiter PUFs which
takes advantage of the correlation of reliability of the response to a fixed challenge and
the delay difference value for this challenge, which was first observed by Delvaux and
Verbauwhede [DV13].

Both Delvaux and Verbauwhede and Becker use the following observation of the Arbiter
PUF to recover information about the noise PUF delay value (Equation (3.1.1)).

5Code at https://github.com/nils-wisiol/pypuf/tree/2017-why-attackers-lose

50

https://github.com/nils-wisiol/pypuf/tree/2017-why-attackers-lose

Theorem 22. For an Arbiter PUF f with noisy PUF delay value, the probability (taken
over several evaluations of the same challenge) that f outputs −1 when queried with c is

Pr [−1← f(c)] =
1

2
+

1

2
· erf

(︃−∆DModel(c)√
2σNoise

)︃
,

where ∆DModel(c) = ⟨w, x⟩+b for intrinsic parameters w ∈ Rn and b ∈ R and feature vec-
tor x derived from c, and σ2

Noise is the variance of the noise as defined in Equation (3.1.1).

Proof. Assuming the noisy PUF delay value defined in Equation (3.1.1), f(c) outputs
−1 if and only if

∆DModel(c) + ∆DNoise ≤ 0.

As ∆DNoise ∼ N
(︁
0, σ2

Noise

)︁
, the probability for this event is

Pr [∆DNoise ≤ −∆DModel(c)] =
1

2
+

1

2
erf

(︃−∆DModel(c)

σNoise

√
2

)︃
.

By the definition of the expected value, we have that

Pr [−1← f(c)] =
1

2
− 1

2
E [r | r ← f(c)] .

As an attacker can approximate the value of E [r | r ← f(c)] by sampling r ← f(c) many
times, they can also approximate the value of ∆DModel(c) by the means of Theorem 22
via

∆DModel(c) =
√
2σNoise erf

−1 (E [f(c)]) . (3.8.1)

This method of estimation is very precise, even for relatively small sample size, cf. Fig.
3.8.1.

As a result, Delvaux and Verbauwhede [DV13] were able to recover the intrinsic
parameters w ∈ Rn and b ∈ R of an n-bit Arbiter PUF by estimating ∆DModel(c)

with ˆ︂∆DModel(c) for n challenges c1, . . . , cn with linearly independent feature vectors
x1, . . . , xn and then finding a solution to the resulting system of linear equations⎛⎜⎜⎜⎜⎝

x1,1 x1,2 · · · x1,n

x2,1
. . .

...
xn,1 xn,n

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

w1

. . .

wn

⎞⎟⎟⎠+ b =

⎛⎜⎜⎜⎜⎝
ˆ︂∆DModel(c1)

...

ˆ︂∆DModel(cn)

⎞⎟⎟⎟⎟⎠ .

As the approximations are not perfect, the solution to this system may not provide a
good model for the Arbiter PUF under attack. To improve accuracy, the attacker can
use (much) more than n challenges and find a least squares solution to the resulting
over-determined system of linear equations.

51

Figure 3.8.1.: Error made by estimation of ∆DModel(c) when estimating via Equa-
tion (3.8.1) by sampling E[f(c)].

The general idea of this chosen message attack can be extended to also cover XOR
Arbiter PUFs. Becker [Bec15] observed that for an XOR Arbiter PUF f that consists of
Arbiter PUFs f1, . . . , fk, and for a list of N challenges c1, . . . , cN , the vector R defined
by expected responses of f

R = (E [r | r ← f(ci)]) ∈ RN

correlates with the vector defined by the individual expected responses of the Arbiter
PUFs,

Rj = (E [r | r ← fj(ci)]) ∈ RN , 1 ≤ j ≤ k.

Becker notes that this correlation is caused by the fact that the XOR Arbiter PUF will
shown unstable responses for a given challenge c whenever at least one of the Arbiter
PUFs shows an unstable response for c. We formalize this observation below. Based
on this correlation, he randomly chooses k Arbiter PUF models and optimizes them
individually such that Rj has high correlation with an sample-mean-based approximation
of R. While the original work uses an evolution strategy for optimization, Tobisch,
Aghaie, and Becker [TAB21] later showed that this can also be done by using a gradient-
descent method.

This method was empirically shown to have runtime which polynomially increases with
the number of used Arbiter PUFs k and thus demonstrates that the XOR Arbiter PUF
is insecure under EUF-CMA in all studied parameter settings.

The XOR Majority Vote Arbiter PUF (Section 3.7) can also be considered vulnerable
to this attack, as the attacker can query challenges many times to identify unstable
responses. This fact along with the runtime being linear in the security parameters n
and k deprives the design of its exponential advantage over the (chosen message) attacker.

52

4. XOR Arbiter PUFs with Input
Transformation

In Chapter 3, we have shown that XOR Arbiter PUFs are vulnerable to known message
attacks for any security parameter n and feasible security parameter k. While the XOR
Majority Vote Arbiter PUF can mitigate the relevant known message attacks, we have
shown that it cannot mitigate the reliability attack (Section 3.8) and thus XOR Arbiter
PUF and XOR Majority Vote Arbiter PUF are insecure under chosen message attacks.

This section explores an extension of the XOR Arbiter PUF design space. It is based
on the observation that in the original XOR Arbiter PUF design [SD07] as introduced
in Chapter 3, all involved Arbiter PUFs receive the same challenge. In this chapter, we
consider designs where the Arbiter PUFs receive individual challenges which have been
derived from the given challenge.

4.1. Input Transformations: Classic vs. Random

When XOR Arbiter PUFs were proposed by Suh and Devadas [SD07], the first step
was to provide all arbiter chains with the same challenge (here called classic design).
Subsequently, Majzoobi, Koushanfar, and Potkonjak [MKP08] proposed to modify the
challenge before feeding it into the individual arbiter chains, to let the PUF fulfill the
strict avalanche criterion. Although initially designed to harden XOR Arbiter PUFs
against chosen message attacks, it became clear that the design twist also has an im-
pact on the known message logistic regression attack introduced by Sölter [Söl09] and
Rührmair et al. [Rüh+10]. In this chapter, we generalize the idea of transforming chal-
lenges for each arbiter chain and call it input transformation. To shed some light on how
machine learning hardness can be increased using an input transformation, we study the
impact of input transformations on the success rate of the Logistic Regression Attack
(Section 3.4).

We use the additive delay model introduced in Theorem 8 and Equation (3.2.1) and
extend it to model responses as

f(c) = sgn

[︄
k∏︂

l=1

(︂⟨︂
w(l), x(l)

⟩︂
+ b(l)

)︂]︄
,

i.e., we extend Equation (3.2.1) to use k potentially different feature vectors x(l) derived
by setting x

(l)
i =

∏︁n
j=i c

(l)
j , where c(l) is the individual challenge for the l-th arbiter

chain, computed from a single master-challenge c ∈ {−1, 1}n. We call a list of functions

53

Figure 4.1.1.: Success rate of logistic regression attacks on simulated XOR Arbiter PUFs
with 64-bit arbiter chains and four arbiter chains each, based on at least
250 samples per data point shown. Accuracy better than 70% is considered
success, but we only observe accuracy around 50% and 99%. Four different
designs are shown: of the four arbiter chains in each instance, an input
transform is used that transforms zero, one, two, and three challenges
pseudorandomly, keeping the remaining challenges unmodified.

(τ (1), ..., τ (k)) with τ (l) : {−1, 1}n → {−1, 1}n that transform the master-challenge c into
sub-challenges τ (l)(c) = c(l) the sub-challenge generators.

In this extended notation, we can write the classic design as τ (l) = id and hence have
c(l) = τ (l)(c) = c and x(l) = x for all l.

For our analysis, the feature vector structure for a given input transformation is crucial.
We hence denote the feature vector x(l) belonging to a given master-challenge c as σ(l)(c)
and formally define input transformation to be the list of functions (σ(1), ..., σ(k)) that
transforms the master-challenge into the feature vectors.

For a given input transformation (σ(1), ..., σ(k)), we can thus write the responses of f
to challenge c as

f(c) = sgn

[︄
k∏︂

l=1

⟨︂
w(l), σ(l)(c)

⟩︂
+ b(l)

]︄
. (4.1.1)

4.1.1. Pseudorandom Input Transformation

We demonstrate the influence of input transformations on the learning hardness of lo-
gistic regression attacks in Figure 4.1.1. To contrast the classic design, where all arbiter
chains receive the same challenge, we implemented a simulation of XOR Arbiter PUFs
with pseudorandom sub-challenge generators, where all arbiter chains receive an individ-
ual pseudorandom challenge chosen by seeding the generator with the master-challenge
and the index of the sub-challenge. For our implementation, we used a pseudorandom
generator based on the Mersenne Twister. Assuming security of the pseudorandom gen-
erator, we can guarantee that the sub-challenges are chosen indistinguishable from truly
random sub-challenges and feature vectors (for all polynomially time-bounded observers,
i.e. including the machine learning attacker).

54

By the absence of any observable correlation, the pseudorandom input transformation
is, while not being a reasonable real-world design choice, an extremal example among all
input transformations. As elaborated in Section 4.2, the absence of correlation results in
an increase of hardness for the Logistic Regression Attack.

The empirical results match this rationale: Figure 4.1.1 shows that, compared to
the classic design, the required size of the training set to achieve a high success rate
increases substantially. Figure 4.1.1 also shows designs in which only a subset of arbiter
chains receive pseudorandom challenges, whereas the others receive the same unmodified
challenge. For those designs, the required size of the training set is, as could be expected,
in between the pure classic and the pure pseudorandom case.

4.1.2. Local Minima

Logistic regression uses gradient descent over the log-likelihood function L defined by the
provided training set to conduct the modeling attack (Section 3.4). The algorithm’s abil-
ity to find a “good” minimum depends, among many other parameters, on the algorithm’s
random initialization. Empirical results obtained by repeatedly attacking the same XOR
Arbiter PUF show that the probability to guess successful initializations significantly
changes with the input transformation in use (Figure 4.3.1).

Whenever an input transformation of an XOR Arbiter PUF sends the same challenge
to several arbiter chains, this will be reflected in function L as symmetry. Using the
classic input transformation, the attacker has at least k! equally good minima1 to choose
from. This idea of L’s symmetry can be generalized to the case where properties of the
input transformation allow permutations of the original weights to approximate the XOR
Arbiter PUF with mediocre accuracy, as we will show in Section 4.2.2. The approximating
permutations can be observed as local minima in the logistic regression attack. On
the contrary, using pseudorandom transformations, we can reduce the symmetries of L
down to the minimum, hence increasing machine learning hardness and avoiding any
intermediate solutions.

4.2. Input Transformations: Lightweight Secure

The Lightweight Secure PUF design was introduced by Majzoobi, Koushanfar, and
Potkonjak [MKP08]. The design proposes an input transformation presented in two
steps.

First, for the generation of the l-th sub-challenge c(l), the master-challenge is rotated
by l bits, here denoted by d(l). Second, the sub-challenge c(l) will mostly be computed by
XORing bits pairwise, such that it consists of three parts with length n/2, 1, and n/2− 1,
respectively.

1Strictly speaking, all models will have an infinite amount of local minima, as all weights in the model
can be modified by a small value or scaled by a positive scalar without affecting the model’s behavior.
To fix above argument we can argue that additional symmetry causes the gradient descent to remain
at a local minima with higher probability.

55

Figure 4.2.1.: Accuracy distribution for learning attempts on randomly chosen simulated
64-bit 4-XOR Lightweight Secure PUFs. Using the Logistic Regression
Attack, many learning attempts end with an intermediate result, while all
other input transformations studied in this work do not show such behavior.
It can be seen that using our new correlation attack, the resulting model
accuracy is increased significantly over the plain LR attack.

More specifically, we have
(︂
c
(l)
1 , ..., c

(l)
n/2

)︂
=

(︂
d
(l)
1 d

(l)
2 , d

(l)
3 d

(l)
4 , ... , d

(l)
n−1d

(l)
n

)︂
,

(︂
c
(l)
n/2+1

)︂
=

(︂
d
(l)
1

)︂
,

(︂
c
(l)
n/2+2, ..., c

(l)
n

)︂
=

(︂
d
(l)
2 d

(l)
3 , d

(l)
4 d

(l)
5 , ... , d

(l)
n−2d

(l)
n−1

)︂
.

(4.2.1)

We will refer to the sub-challenges with τ (1)(c), ..., τ (k)(c) and to the feature vectors they
induce with σ(1)(c), ..., σ(k)(c).

The transformation is chosen such that the Strict Avalanche Criterion is (almost)
satisfied [MKP08], i.e., a single bit flip in the master challenge will result in bit flips in
about 50% of the elements of each feature vector for each arbiter chain. If 50% of the
feature vector bits flip, then the PUF output also flips with probability 50%.

In this work, we will not consider weaker versions of the Lightweight Secure PUF with
multiple output bits.

4.2.1. Feature Vector Correlation

Using the Logistic Regression Attack against the XOR Arbiter PUF, we observe that
each attack attempt either yields a near optimal model that has a predictive accuracy
of around 99%, or yields a model that performs poorly in prediction, barely exceeding
an accuracy of 50%, i.e., random guessing. Interestingly, this is not the case for the
Lightweight Secure PUF, as can be observed in Figure 4.2.1. We found that the machine
learning algorithm yielded models that performed clearly better than random guessing
but did not achieve the desired accuracy of around 99%.

In empirical experiments done on simulations of the Lightweight Secure PUF (based
on the additive delay model), we found that weight vectors of the intermediate solutions

56

consisted mostly of a permutation of the weight values of the PUF simulation. In fact,
by permuting the individual weight vectors of the arbiter chains and rotating them for
certain but distinct amounts, a close approximation of the original weight vectors could
be constructed.

To give a theoretical basis to our attack, we formalize this observation by examining
the impact of swapping and rotating two different weight vectors. Let w(1), ..., w(k) be the
weight vectors of a Lightweight Secure XOR Arbiter PUF. Our observations suggest that
this PUF can be approximated when the i-th and j-th weight vectors are swapped and
shifted in a characteristic way. We call the weight vectors to be swapped w = w(i) and
v = w(j) and the corresponding input transformation functions λ = σ(i) and µ = σ(j).
Note that this argument uses feature vectors, not sub-challenges. Consider the relevant
part of the product in the XOR Arbiter PUF model (cf. (4.1.1) and (4.2.1)), omitting
the bias terms corresponding to w and v:

⟨w, λ(c)⟩ · ⟨v, µ(c)⟩ =
∑︂
i,j

wi · vj · λ(c)i · µ(c)j

In the following, we compare this to the model where the weight vectors v and w are
swapped and rotated by π and π−1, respectively. That is, we substitute w by π−1(v) and
substitute v by π(w):⟨︁

π−1(v), λ(c)
⟩︁
· ⟨π(w), µ(c)⟩ =

∑︂
i,j

π(w)i · π−1(v)j · µ(c)i · λ(c)j

=
∑︂
i,j

wi · vj · π−1(µ(c))i · π(λ(c))j (re-numbering i, j)

To prove that the latter is an approximation of the original model, we studied the re-
lationship of π−1(µ(c))i · π(λ(c))j and λ(c)i · µ(c)j and found that for most pairs i, j,
we have equality with significant probability for a uniformly random master-challenge c.
The higher this probability, the better the approximation of the original model by the
swapped and rotated version is.

The correlation of the Lightweight Secure input transformation σ(1), δ(2), ... can be
measured by

1

(n+ 1)2

n+1∑︂
i=1

n+1∑︂
j=1

Pr
c

[︁
λ(c)i · µ(c)j = π−1(µ(c))i · π(λ(c))j

]︁
, (4.2.2)

where c is chosen uniformly at random. For each pair, there is exactly one rotation π
which produces a significant correlation, cf. Table 4.1.

For example, consider the 64-bit 4-XOR Lightweight Secure PUF, where we write
(σ(1), σ(2), σ(3), σ(4)) for the input transformation and denote σ(1) as λ and σ(2) as µ.
If we rotate the first feature vector λ(c) by 32, say π(λ(c)), and the second feature
vector µ(c) by the inverse of 33 positions to the right, say π−1(µ(c)), then we have high
correlation as defined by Equation (4.2.2).

57

1 2 3 4 5 6

1 — 32/98% 64/97% 31/95% 63/94% 30/92%
2 33/98% — 32/98% 64/97% 31/95% 63/94%
3 1/97% 33/98% — 32/99% 64/97% 31/95%
4 34/95% 1/97% 33/99% — 32/98% 64/97%
5 2/94% 34/95% 1/97% 33/98% — 32/98%
6 35/92% 2/94% 34/95% 1/97% 33/98% —

Table 4.1.: Overview of correlations for a 64-bit 6-XOR Lightweight Secure Arbiter PUF.
As an example, the feature vectors of the first and second arbiter chain show a
correlation of 98% as defined in (4.2.2) with a rotation by 32 and 33 positions,
respectively. Hence, the corresponding weight vectors can be swapped if they
are rotated accordingly without significant change in the model accuracy.

As we can see, the correlation of the feature vectors leads to the fact that an approx-
imation of the original model can be constructed by swapping two weight vectors and
rotating them accordingly. Using this concept iteratively, any permutation of the weight
vectors can be achieved.

Our empirical results in Figure 4.2.1 suggest that those partial solutions also generate
local minima to which the regression algorithm converges. The combination of the infor-
mation on the local minimum along with the correlation as outlined above can be used
to stage a known message attack on the input transformation by Majzoobi, Koushan-
far, and Potkonjak. This must be considered a key weakness of the Lightweight Secure
transformation, as our empirical attack results show.

The cause for this symmetry lies in the definition of the input transformation and
in the fact that results are XORed. There is a clear pattern and essentially every pair
of PUFs can be exchanged by a rotated version, although the correlation decreases the
further the PUF positions are apart from each other.

4.2.2. Improved Attack

As seen in the previous section, the Logistic Regression Attack on the k-XOR Lightweight
Secure PUF often leads to local minima that model the PUF behavior only with a limited
accuracy. In this section, we show how such a local minimum can be used to find a high-
accuracy model.

If the attack has found a model with an intermediate accuracy in the range of 65%-98%,
we assume that the initialization values for the attack lead to a swapped and rotated
version of the high-accuracy version of the weights. Instead of restarting the attack from
scratch with new initialization of the model weights until we find a high-accuracy solution
and hence the correct ordering, our correlation attack guesses the correct ordering of the
weights. To that end, we first generate the rotated weights for each possible permutation
of the weight vectors in a brute-force manner and check their accuracy on a validation
set. As a second step, the 2k most accurate rotated weights are used to restart the

58

LR on LR on Correlation Attack on LR on
n k CRPs Classic LW Secure LW Secure Permutation PUF

64 4 12k 0m 33s 10m 11s 0m 58s 24m 50s
64 4 30k 0m 31s 3m 57s 0m 44s 4m 45s
64 5 300k 7m 03s 3h 03m 11m 07s 13h 59m
64 6 1M 42m 30s 8 days 1h 42m (96h 00m)∗

64 7 2M 75h 07m (20 days)∗ 8 days (16 days)∗

128 4 1M 20m 31s 2h 53m 51m 23s 58m 38s
128 5 2M 1h 35m 35h 20m 3h 17m (16 days)∗

Table 4.2.: Expected time until the first success for attacks on classic XOR Arbiter PUF,
Lightweight Secure XOR Arbiter PUF, and Permutation-Based XOR Arbiter
PUF. An accuracy of at least 98% is considered success, all entries are based
on 1000 samples. Runs with no success are marked with an asterisk (*).

logistic regression attack and refine the weights.
Although the first step has run time O(k!), this procedure can outperform the sim-

ple restarting of the LR attack (Table 4.2) for practical values of k. Furthermore, the
restarted logistic regression algorithm can use a much lower bound on the maximum
number of epochs, discarding low-accuracy solutions rapidly. To achieve fast run times,
we used a small validation set for the k! accuracy computations. We empirically found
that rotations with high initial accuracy have a higher chance to yield a high-accuracy
solution, hence the ordering by initial accuracy helps to speed up the attack.

More specifically, we examined the ranking of the permutation that resulted in the
highest accuracy solution for 1000 instances of 64-bit 6 XOR Lightweight Secure PUFs.
In most cases, the best permutation was found among the first 10 candidates.

In Table 4.2 we give an overview over our correlation attack. To reflect the time
unsuccessfully spent training a model, we define for chosen security parameters, training
set size, and employed computing resources the time until first success as the expectation
of time spend until a model with prediction accuracy higher than 98% is obtained. To
empirically approximate the time until first success of our attacks, for each group of
experiments we computed the mean time of unsuccessful runs tfail, and the mean time
of successful runs tsuccess, as well as the relative frequency of successful runs hsuccess.
Assuming a Geometric distribution, we compute the expected number of required trials
until success as n1 = 1/hsuccess and the expected time until first success t1 as,

t1 = (n1 − 1) · tfail + tsuccess;

for hsuccess = 0 we set t1 = ∞. We point out that different instances of XOR Arbiter
PUFs may differ in their resistance to modeling attacks [TB15], and t1 only refers to the
average time until success, not ruling out the possibility that some instances of the given
size may be harder or easier to model. All results shown in this work are with respect to
the time until first success.

59

Figure 4.3.1.: Success rate of logistic regression attacks on simulated 64-bit 4-XOR Ar-
biter PUFs; accuracy above 70% is considered a success. Four different in-
put transformations are shown: classic, Lightweight Secure [MKP08], the
permutation-based input transformation proposed in this work, and a pseu-
dorandom input transformation used as comparison. All data points are
based off at least 80 samples. For a success threshold of 70%, Lightweight
Secure and classic are equally hard to attack, whereas permutation-based
and pseudorandom require significantly more CRPs.

Our results indicate that the Lightweight Secure PUF can be learned with much higher
accuracy in less time than previously believed, with the security in some instances reduced
to what the classic XOR Arbiter PUF provides. In contrast, the XOR Arbiter PUF with
the permutation-based input transformation defined in Section 4.3 is considerably harder
to attack using logistic regression and does not posses the attack surface we used in the
correlation-based attack, i.e. does not show intermediate results.

4.3. Permutation PUF

The previous sections show that input transformations have an impact on the machine
learning resistance. When using the same challenges for all arbiter chains as done in
the classic XOR Arbiter PUF, there are multiple equivalent solutions as the order of
the weight vectors (w(1), ..., w(k)) does not matter. Using pseudorandom sub-challenges
ensures that only one order is valid and hence reduces the number of global minima in
the gradient descent of the LR attack. However, including a pseudorandom generator in
a PUF increases hardware attack surface as well as chip area and power requirements
and is thus usually not considered an option.

To compromise, Yu et al. [Yu+16] suggested to use challenges generated by a 256 bit
Linear Feedback Shift Register (LFSR) to feed the four arbiter chains in the used 64-
Stages 4-XOR Arbiter PUF. The area overhead of their 4-XOR Arbiter PUF is stated
as 1024 Gate Equivalents (GE). The size of the LFSR was not provided, but assuming
4.5 GE for a flip-flop, the size of a 256 stage LFSR is comparable to that of the PUF cir-
cuitry2. Implementing a cryptographically secure pseudorandom generator will consume

2Although the Gate Equivalents for a PUF circuit can be a bit misleading as PUFs need special isolated

60

even more resources.
In the Lockdown Protocol [Yu+16] the LSFR is an essential part of the authentication

protocol and hence needed anyways. But for other designs, especially if larger PUF
instances are used with 128 stages, a more efficient input transformation is advised as
the overhead is not negligible. However, our analysis of the Lightweight Secure PUF
shows that this input transformation suffers a significant weakness and cannot provide
security better than the original XOR Arbiter PUF design. The fact that feature vectors
correlate in a certain way simplifies the machine learning attack to the point where no
relevant advantage over the classic design is achieved.

To mitigate above correlation-based attack on the Lightweight Secure XOR Arbiter
PUF, we propose an input transformation that is easier to implement than the Lightweight
Secure PUF solution but does not show any indication of local minima. The idea is to use
k different, fix-point-free permutations π1, . . . , πk as sub-challenge generators. We hence
obtain the sub-challenges c(l) = πl(c). As this input transformation can be implemented
in wiring, no additional gate is used in the PUF design. Note that a permutation of
the challenges does not result in a permutation of the feature vectors. More detailed,
the permutation of c(l) ensures that for different x

(l)
i =

∏︁n
j=i c

(l)
j , different parities of

the master challenge c are used. As different parity functions are uncorrelated, pairs of
feature vectors do not show significant correlation according to Equation (4.2.2) even if
they are permuted. We call this family of input transformations the permutation-based
input transformations.

We empirically confirmed that this approach does not show any of the local minima we
observed for the Lightweight Secure PUF. The machine learning resistance was instead
comparable to the results of pseudorandom inputs (Figure 4.3.1), which represent and
upper bound on input transformation quality as argued in Section 4.1. Without observing
local minima or correlations, the attack described in Section 4.2.2 cannot be applied.

Additionally, this input transformation comes at nearly zero resource overhead. Com-
pared to using a pseudorandom input transformation, the permutation-based transfor-
mation is more efficient in terms of area and power and is also more efficient than the
input transformation proposed for the Lightweight Secure PUF.

For a concrete instantiation of the Permutation PUF, we suggest to choose random
permutation as sub-challenge generators such that no generator has a fix point, that is,

∀1≤l≤10∀i∈[64] : Pr
c

[︂
σ(l)(ci) ̸= ci

]︂
= 1/2,

and such that no two permutations share the same value on any coordinate, i.e.

∀l∈[10]∀l′∈[10]−l∀i∈[64] : Pr
c

[︂
σ(l)(ci) ̸= σ(l′)(ci)

]︂
= 1/2.

A concrete instantiation is shown in Appendix B.

routing compared to conventional digital circuits such as LFSRs.

61

5. Interpose PUF

The reliability-based attack by Becker [Bec15] outlined in Section 3.8 demonstrated that
XOR Arbiter PUFs and XOR Majority Vote PUFs are insecure under EUF-CMA for any
security parameters and created the need for a replacement.

Nguyen et al. [Ngu+19] picked up an idea to hide the challenge information from the
attacker that first appeared in the context of the Feed-Forward Arbiter PUF [Gas+04].
The hope was to defeat the attacks on XOR Arbiter PUFs shown in Section 3.2 by not
disclosing the complete challenges to the attacker.

The proposed Interpose PUF consists of a combination of two XOR Arbiter PUFs. It
is defined by a challenge length n, the number kup of arbiter chains in the first XOR
Arbiter PUF, and the number kdown of arbiter chains in the second XOR Arbiter PUF.
The first XOR Arbiter PUF, called upper layer, has challenge length n. When given
an input, its 1-bit response is interposed in the middle bit position of the second XOR
Arbiter PUF (the lower layer), while the other n bits a filled with the same challenge
as given to the upper layer. This results in a challenge length of n+ 1 bit for the lower
layer. A schematic representation of the Interpose PUF is depicted in Figure 5.0.1.

By virtue of the interposed bit on the lower layer, the Logistic Regression Attack
cannot directly be applied on the Interpose PUF, as information is missing from the
training set. Applying the attack naively with omission of the interpose bit, constant or
a random interpose bit (linearization attack [Ngu+19]) will result in a maximum accuracy
of 75%. Furthermore, as the response bit of the upper layer will influence the bottom
layer response for approximately half of all challenges, the reliability-based attack on
XOR Arbiter PUFs [Bec15] is also mitigated by the design [Ngu+19].

In this chapter, we present the Splitting Attack which extends the Logistic Regression
Attack of Section 3.4 to be applicable to Interpose PUF. For known message attackers,
we demonstrate that this reduces the security level of the Interpose PUF to that of an
XOR Arbiter PUF of similar size.

c = (c1, . . . , ci, ci+1, . . . , cn)

c′ = (c1, . . . , ci, fu(c), ci+1, . . . , cn)

fu(c)

kdown-XOR APUF

kup-XOR APUF

f(c)

Figure 5.0.1.: Schematic view of an n-bit (kup, kdown)-Interpose PUF f on challenge c.

62

For chosen message attackers, Tobisch, Aghaie, and Becker [TAB21] demonstrated
that reliability-based attack (Section 3.8) can also be extended to be applicable to the
Interpose PUF.

5.1. Splitting Attack

The Splitting Attack is a modeling attack against the Interpose PUF that uses several
runs of Logistic Regression Attack on training sets derived from the Interpose PUF. It
returns a model for the full Interpose PUF comprised of two XOR Arbiter PUF models.

To describe the Splitting Attack, we first provide an intuition of the employed divide-
and-conquer algorithm that separately models upper and lower layer of the Interpose
PUF under attack. Section 5.1.1 describes how we obtain an initial high-accuracy model
for the lower layer. Afterwards, Section 5.1.2 and Section 5.1.3 show how this paves the
way to obtain a complete model.

Our proposed attack technique on the Interpose PUF uses a divide-and-conquer ap-
proach and is based on two crucial observations. First, when conducting the linearization
attack, the resulting model will not only predict PUF responses with an accuracy up to
75%, but will contain all secret information about the lower layer of the Interpose PUF.
That is, the reason for the relatively low accuracy of the linearization attack is not the
missing information about the lower layer, but almost exclusively the missing challenge
bit information. Second, the response bits of the upper layer can be heuristically guessed
by the attacker for about half the known challenge-response pairs with high accuracy
using Algorithm 5.1.

5.1.1. Initial Modeling of the Lower Layer via Random Interpose Bits

Using a given challenge-response set (C,R) collected from the Interpose PUF in the
known message attack model, we argue why an attacker is capable of obtaining a high-
accuracy model of the lower layer of the Interpose PUF. Possession of such a model
subsequently enables the attacker to conduct the divide-and-conquer attack as described
in the following sections.

Any challenge-response set (C,R) of the full Interpose PUF contains already n out of
the n+1 challenge bits to the lower layer as well as the lower layer responses. Hence, the
only information hidden from the attacker aside from the manufacturing imperfections
are the challenge bits in the interpose position. However, our results show that this
information is not required to obtain a high-accuracy model of the lower layer. Instead,
the attacker can randomly guess the interpose bits, i.e., create the lower layer challenge-
response set (Cd, R) by themselves where Cd is simply interposed with uniformly chosen
random bits, i.e.

Cd =
{︁(︁

c1, . . . , cn/2, cr, cn/2+1, . . . , cn
)︁
| (c1, . . . , cn) ∈ C, cr ∼u {0, 1}

}︁
.

As previous research has shown [MKP08; Ngu+19], the influence of the middle chal-
lenge bit of any XOR Arbiter PUF on the response bit is about 50%, i.e., in about half of

63

the challenges, the response bit will flip if the middle challenge bit is flipped. Applied to
our situation, the response of the upper layer of the Interpose PUF will be irrelevant for
the PUF’s response in about 50% of cases. It follows that the information in (Cd, R) for
that half of challenges – where the middle bit does not have an influence on the response
– is correct. Furthermore, for the other half of challenges that do have an influence on
the response bit, the attacker’s guess will be correct with probability 50%, resulting in a
total accuracy of 75% for the self-created CRPs (Cd, R) for the lower layer XOR Arbiter
PUF.

Although the training set (Cd, R) has only an anticipated 75% accuracy on the lower
layer XOR Arbiter PUF of the target Interpose PUF, the trained model obtained from
learning with Logistic Regression will model the lower layer with very high accuracy.
That is, the accuracy of the trained model surpasses the accuracy of the training set.

Recall that the Logistic Regression learning algorithm for XOR Arbiter PUFs uses a
gradient descent algorithm to train an XOR Arbiter PUF model that agrees with the
training set on as many as possible challenges (Section 3.4). This includes models that are
“related” to physical parameters of the PUF under attack, such as ones with a permuted
order of arbiter chains (as the XOR operation is commutative, cf. Chapter 4) and models
where one half of the weights are negated (using negated interpose bits). We will refer
to models using the original interpose bit as non-negated, and to models using negated
interpose bits as half-negated. For both classes, small variations of the model weights
and permutations of the arbiter chain order will agree with the training set on close to
75% of challenges.

On the other hand, with overwhelming probability, no unrelated XOR Arbiter PUF
model will agree with this training set on a portion larger than 75% of its CRPs. This
is due to the fact that the above constructed training set will very likely contain values
that cannot be described with an XOR Arbiter PUF model1. Hence, the non-negated
and half-negated models of the lower layer both constitute global minima in the Logistic
Regression’s loss function.

Figure 5.1.1 gives an overview of the lower layer’s model accuracy when trained on the
randomly interposed challenge-response set, which confirms that a high-accuracy model
can be obtained from a partially guessed training set (Cd, R). The accuracy shown is
with respect to both half-negated weights and non-negated weights, whichever is better.
As we will see below, the random choice of a model class will not affect the final accuracy
or run time of the attack in any way.

For variations of the Interpose PUF design it is important to note that this observation
can (to some extend) be generalized to the case of multiple interposed bits and several
layers of interposing2. In some extreme cases, we observed that the Logistic Regression
algorithm is capable of recovering a significant proportion of the secret information of an

1To see this, recall that an Arbiter PUF f can be modeled as linear threshold functions f(c) =
sgn ⟨w, x⟩+b (Theorem 8). LTFs are monotone in all input bits, but the above randomized challenge-
response set (Cd, R) is likely not. Although the monotonicity argument gets weaker for products of
k LTFs, randomized values are still likely to violate it.

2For a more rigorous treatment of feature and label noise in PUF modeling, we refer to Ganji et al.
[GTS18].

64

Figure 5.1.1.: Accuracy of the lower layer model f̂d after training using the CRP set
(Cd, R) with randomly guessed interpose bits for (1, k) and (k, k)-Interpose
PUFs, as captured after execution of line 3 of Algorithm 5.2. Results shown
are using the estimated best number of challenge-response pairs (see also
Table 5.1); accuracy is relative to the PUF simulation’s reliability. As with
learning of XOR Arbiter PUFs, the probability to obtain a high-accuracy
model of the lower layer depends on the size of the Interpose PUF and the
training set size. (Our results are artificially capped at 95% to increase
performance of the training algorithm.)

XOR Arbiter PUF even if half of all challenge bits in the training set were replaced with
random bits. We hence recommend future PUF designs to be tested against this partic-
ular vulnerability by analyzing the correlation of the learned model with the simulation
under test.

An important generalization of these findings is that a low accuracy of some training
result (set) is not sufficient to even prove resilience against the LR machine learning
algorithm. We extend and use these findings in Chapter 8.

5.1.2. Modeling of the Upper Layer

Algorithm 5.1 constructs a training set for the upper layer when given a model with
decent accuracy for the lower layer. Intuitively, the algorithm first filters all challenges
for the complete Interpose PUF where the response of the upper layer does not matter
for the final response, as those challenge-response-pairs do not contain information about
the upper layer. Second, for all remaining challenges, the model for the lower layer is
evaluated on both possibilities, and the interpose bit producing the correct response
is added to the training set of the upper layer. For all challenges where the model’s
prediction for the lower layer is correct, the heuristic will correctly determine the upper
layer’s response bit. We formally show the correctness, effectiveness and accuracy of this
heuristic in the following.

Theorem 23. Given an n-bit (ku, kd)-Interpose PUF f , a list of challenges C with
corresponding responses R, and an ε-accuracy model f̂d of the lower layer with ε ≥ 1/2,
Algorithm 5.1 will return a training set (CH , RH) for the upper layer with accuracy at
least 2ε− 1 and size expected to be at least (ε− 1/2) · |C|.

65

Algorithmus 5.1 Heuristic for creating upper-layer training sets

1: procedure Heuristic(C,R, f̂d)
2: initialize empty training set (CH , RH)
3: for c, r in C,R do
4: c(+) ← (c1, . . . , cn/2,+1, cn/2+1, . . . , cn)

5: c(−) ← (c1, . . . , cn/2,−1, cn/2+1, . . . , cn)

6: if f̂d(c
(+)) = f̂d(c

(−)) then
7: continue
8: end if
9: if f̂d(c

(+)) = r then
10: add (c, 1) to (CH , RH)
11: else
12: add (c,−1) to (CH , RH)
13: end if
14: end for
15: return (CH , RH)
16: end procedure

If f̂d instead has accuracy ε on the half-negated lower layer, the training set is expected
to have accuracy at most 2ε − 2, i.e., it models the negation of the upper layer with
accuracy at least 2ε− 1; the expectation of the size remains the same.

Proof. For any given challenge c ∈ {−1, 1}n, let c(+), c(−) ∈ {−1, 1}n+1 be defined as in
Algorithm 5.1. We first give a lower bound for the probability that the learned model
f̂d for the lower layer will predict both c(+) and c(−) correctly, based on a pigeon-hole-
principle argument. Subsequently, we deduce the accuracy and expected size of the
returned challenge-response set that is returned from Heuristic(C,R, f̂d).

For any challenge c ∈ {−1, 1}n, we associate c(+) and c(−) with a pair (c(+), c(−)).
By construction, there are 2n possible pairs containing all 2n+1 challenges of n + 1 bits
each. By prerequisite, we have that Prc∈{−1,1}n+1 [f̂d(c) = fd(c)] = ε = 1/2 + α with
0 ≤ α ≤ 1/2. That is, f̂d models at least 2n + 2α · 2n challenges correctly. Hence, by
the pigeon hole principle, all correctly predicted challenges require at least 2α · 2n pairs
(c(+), c(−)). That is,

Pr
c∈{−1,1}n

[︂
f̂d(c

(+)) = fd(c
(+)) and f̂d(c

(−)) = fd(c
(−))

]︂
≥ 2α = 2ε− 1.

I.e., if the model predicts f̂d(c
(+)) ̸= f̂d(c

(−)), then with probability at least 2ε− 1 we
have fd(c

(+)) ̸= fd(c
(−)) and let r′ denote the unique bit that will produce the correct

response, which is then indeed the correct response bit of the upper layer of the Interpose
PUF. Hence, for each (c, r′) added to the training set, the probability that the added
example is correct is at least 2ε − 1. If f̂d is instead an ε-accuracy model for the half-
negated lower layer, then r′ is the uniquely negated interpose bit that will give the correct
response and the same argument applies.

66

Algorithmus 5.2 Divide-and-Conquer Interpose PUF Attack
1: procedure Attack(n, ku, kd, C,R)
2: Cd ← Interpose(C, random bits) ▷ Guess training set for lower layer
3: f̂d ← LRkd

n+1(Cd, R) ▷ Train model for lower layer
4: while test accuracy below target do
5: Cu, Ru ← Heuristic(C,R, f̂d) ▷ Create training set for upper layer
6: f̂u ← LRku

n (Cu, Ru) ▷ (Re-)train upper layer
7: Cd ← Interpose(C, f̂u(C)) ▷ Create training set for lower layer
8: f̂d ← LRkd

n (Cd, R) ▷ Re-train lower layer
9: end while

10: return f̂ : c ↦→ f̂d(c1, . . . , cn/2, f̂u(c), cn/2+1, . . . , cn) ▷ Final Interpose PUF
model

11: end procedure

As fd is an XOR Arbiter PUF, we expect Pr[fd(c
(+)) ̸= fd(c

(−))] to be 1/2 on average
(with little variance). Our model will thus predict this situation correctly on at least a
2ε−1 fraction of the cases, hence we expect the total number of challenge-response pairs
returned by Algorithm 5.1 to be at least (ε− 1/2) · |C|.

5.1.3. Divide-and-Conquer Attack

The initial modeling of the lower layer and the heuristic to create a training set for the
upper layer enable us to train a model for the upper layer and thereby launch a divide-
and-conquer attack on the complete Interpose PUF. In this attack, we are able to model
the upper and lower layer separately from each other. As can be seen from Figure 5.1.1
and Theorem 23, an initial accuracy of around ε = 90% and an application of the above
heuristic will result in a training set for the upper layer of around 2ε − 1 = 80%. Note
that the centering of the initial accuracy of the lower layer model at around 90% (as seen
in Figure 5.1.1) is an artifact of our termination criterion of the used implementation of
the Logistic Regression Attack. It is also possible to increase the initial accuracy close
to 100% and conduct the attack with just training a single model for the lower layer,
heuristically creating then a training set for the upper layer, and hereafter training a
model for the upper layer. However, to heuristically increase performance, we use an
iterative approach. We simply terminate each run of the Logistic Regression Attack
earlier and repeat the process of training and re-training the upper and lower layer, until
a high accuracy is achieved. In this process, while the initial training set for the lower
layer was created using randomly guessed interpose bits, all following training phases of
the lower layer use the upper layer model to predict interpose bits (cf. lines 2 and 7 in
Algorithm 5.2).

For a (kup, kdown)-Interpose PUF with challenges of n-bit length, we conclude that
launching the divide-and-conquer attack roughly requires the same computational effort
as training a model for a max{kup, kdown}-XOR Arbiter PUF, although several iterations

67

of the attack3 are required. This provides an informal reduction of the security of the
Interpose PUF to the security of the XOR Arbiter PUF in the known message attacker
model. This reduction is supported by both theoretical considerations and empirical
results as presented in Section 5.2.

One caveat of our reduction lies in the nature of the heuristic in Algorithm 5.1: the
training set for the upper layer is at most half the size of all challenges available to
the attacker. While for kdown > kup, this does not pose any challenge to the attacker,
but for designs with kup ≥ kdown, this effectively forces the attacker to collect twice as
many challenge-response pairs, compared to attack an XOR Arbiter PUF. On the other
hand, relying on strict lower bounds for the number of challenge-response pairs is anyhow
problematic, as Tobisch and Becker [TB15] have shown.

As noted in Section 5.1.1, the lower layer can randomly be trained in a half-negated
fashion, which will result in a training set with very low accuracy for the upper layer of
around 10%. This in turn will result in the training of a model for the upper layer that
will predict the negated response of the actual PUF, and both effects will cancel out.
Therefore, the total accuracy of the trained model will not be affected by the random
choice of half-negated or non-negated model for the lower layer, and indeed the attacker
has no way of knowing which option correctly reflects the physics of the Interpose PUF
and which one only mathematically matches the challenge-response behavior.

5.2. Results and Performance Analysis

An overview of the attacks can be found in Table 5.1.
We studied n-bit challenge (kup, kdown)-Interpose PUFs for sizes (1, k) and (k, k) for

k ≤ 8 and analyzed how the time to first success changes for different choices of se-
curity parameters n and k as well as training set size N . For performance reasons,
choices different from n = 64 were only studied for the relatively small parameters of
kup, kdown ≤ 4. Training set sizes were guessed using the figures of Tobisch and Becker
[TB15] and optimized empirically. For results presented here, the choice of training set
size which empirically resulted in lowest time to first success (cf. Chapter 4) was chosen.
As all training times refer to wall-clock time, attack times across different CPUs are
not comparable. We conducted all modeling attacks for Interpose PUFs with varying
reliability between 70% and 100%.

In Figure 5.2.1, we summarize the required time until first success for smaller Interpose
PUF sizes and different choices for the used challenge length. It can be seen that the
required time increases approximately polynomial with the number of used challenge
bits, which is in line with results reported both in the practical and theoretical realm of
XOR Arbiter PUF attacks [Rüh+13b; GTS15].

For different choices of the number of employed arbiter chains kup and kdown, we
observed an exponential increase in the number of required challenge-response pairs and
required attack time until first success, as shown in Figure 5.2.2. Note that shown training

3Note that for both PUFs, the re-training performance is much higher than the initial training perfor-
mance.

68

set sizes produced the best result among several guessed choices, but do not constitute
strict lower bounds. Careful optimization may lead to fewer required challenge-response
pairs or shorter time to first success.

In all of our experiments we observed that lower reliability of the Interpose PUF does
not have a big impact on the required training time.

For the choice of training set size and smaller choices of kup, kdown we observed a
saturation threshold, beyond which adding more challenge-response pairs to the training
set would increase training time instead of decreasing it. This may very well be related
to implementation details of the Logistic Regression learner, including the fact that we
did not use mini batches. For Interpose PUF sizes larger than (6, 6), we were not able
to confirm or refute this observation due to limitations in computational power.

While the attack as given in Algorithm 5.2 is using an infinite loop, practical experi-
ments were limited to at most five iterations, after which the learning attempt was given
up. For Interpose PUF sizes larger than (7, 7), we empirically observed that this is barely
of any use, and limited the number of iterations to two.

Finally, the memory footprint of the attacks is manageable and proportionate to the
training set size. The storage of 100 million CRPs requires about 6GB of memory; our
attack needs a peak memory of about two times the training set size. This implies that
all attacks requiring 100 million CRPs or less can be carried out on an up-to-date laptop.
Attacks on larger instances require up to 300 million CRPs and 750 million CRPs and
thus allocate a total of about 36GB and 90GB of memory, respectively.

Details on memory consumption of our attack implementation can be found in Ta-
ble 5.1. Also note that memory consumption depends on many implementation details.
Our implementation currently does not swap out memory and, as a time-memory trade-
off, uses 1 byte to store 1 challenge bit. We naively store both the upper and lower layer
training set separately, which results in storage of heavily redundant data.

5.3. Neural Network Splitting Attack

Instead of basing the Splitting Attack on the Logistic Regression Attack, Neural Network
Attacks (Section 3.6) can be used as a drop-in replacement for the modeling of upper
and lower layer of the Interpose PUF under attack.

We found that, similar to the results we obtained on XOR Arbiter PUFs, the data
complexity of the Splitting Attack can be significantly reduced. We were able to attack
a 64-bit (1, 7)-Interpose PUF with 6 million CRPs in minutes, compared to 20 million
CPRs and 20 hours required by the original implementation (Table 5.1).

We extrapolating our attack results (Table 3.4) and conclude that the Neural Network
Attack is able to attack 64-bit (1,11) Interpose PUFs using 325M CRPs instead of the
750M required to attack a (1,9) Interpose PUF when using the Logistic Regression Attack,
and 650M CRPs to attack a 64-bit (11,11)-Interpose PUF. While this has two orders of
magnitude larger data complexity than the chosen message attacks by Tobisch, Aghaie,
and Becker [TAB21], the Neural Network Attack provides better convergence rate, faster
computation time, and uses the weaker known message attacker model.

69

(kup, kdown) CRPs rel. Mem. Time Success Samples
(GB) (# Threads) Rate

(1, 5) 500k 0.8 <1 10.36min (1/⋆) 1.00 100
(1, 5) 500k 0.9 <1 8.70min (1/⋆) 1.00 100
(1, 5) 500k 1.0 <1 9.14min (1/⋆) 1.00 100

(1, 6) 2M 0.8 <1 1.62h (1/⋆) 1.00 57
(1, 6) 2M 1.0 <1 1.48h (1/⋆) 1.00 70
(1, 6) 5M 0.9 <1 1.42h (1/⋆) 1.00 55

(1, 7) 20M 0.8 2.5 17.54h (1/•) 0.97 39
(1, 7) 20M 0.9 2.5 16.17h (1/•) 1.00 33
(1, 7) 20M 1.0 2.5 20.07h (1/•) 1.00 31

(1, 9) 750M 1.0 91 approx. 8w (8/⋆) 0.26 23

(5, 5) 600k 0.8 <1 16.95min (1/⋆) 0.85 195
(5, 5) 600k 0.9 <1 16.13min (1/⋆) 0.88 191
(5, 5) 1M 1.0 <1 14.59min (1/⋆) 0.98 93

(6, 6) 5M 0.7 <1 3.79h (1/⋆) 0.63 54
(6, 6) 5M 0.8 <1 2.86h (1/⋆) 0.78 58
(6, 6) 5M 0.9 <1 2.62h (1/⋆) 0.83 58
(6, 6) 5M 1.0 <1 2.50h (1/⋆) 0.75 53

(7, 7) 40M 0.7 4.9 1.73d (10/•) 0.40 100
(7, 7) 40M 0.8 4.9 1.11d (10/•) 0.62 100
(7, 7) 40M 0.9 4.9 23.38h (10/•) 0.68 100
(7, 7) 40M 1.0 4.9 17.21h (10/•) 0.74 100

(8, 8) 150M 0.7 17.9 ∞ (10/•) 0.00 43
(8, 8) 150M 0.8 17.9 2.07w (10/•) 0.25 48
(8, 8) 150M 0.9 17.9 1.59w (10/•) 0.33 55
(8, 8) 150M 1.0 17.9 1.54w (10/•) 0.35 49

(8, 8) 300M 0.7 35.8 18.96w (8/⋆) 0.04 26
(8, 8) 300M 0.8 35.8 2.73w (8/⋆) 0.30 10
(8, 8) 300M 0.9 35.8 1.64w (8/⋆) 0.42 26
(8, 8) 300M 1.0 35.8 2.53w (8/⋆) 0.28 99

Table 5.1.: Overview of the performance of the Splitting Attack on 64-bit (kup, kdown)-
Interpose PUFs. For each size and reliability, the best-performing training
set size is shown, defined as the setting that gave the shortest time to first
success with our software; success is defined as final prediction accuracy above
95%. We used two different Intel® Xeon® CPU types, namely Gold 6130
at 2.1GHz (⋆) and E5-2630 v4 at 2.2GHz (•). Additionally to the number of
CRPs shown in the table, the attacker was provided with a test set containing
an additional 104 challenge-response pairs.

70

Figure 5.2.1.: Attack run time for different challenge lengths; times shown refer to time
until first success in single-threaded runs. Every data point shows the best
obtained time until first success for various choices of guessed amounts of
challenge-response pairs. Interpolations given were computed using regres-
sion for a, b on a · nb.

5.4. Variants of the Interpose PUF

Given the successful attacks on the original Interpose PUF design, we ask if the design
can be augmented to achieve better security. To facilitate a swift design process, and in
contrast to the tailor-made attack presented in Section 5.1 and Section 5.2, this section
uses a neural network modeling approach similar to the ones shown in Section 3.6.

Excluded from discussion in this section are intermediate calculations on interpose bits
(we consider these in Chapter 8), as they may increase hardware attack surface, as well
as interpose positions different from n/2. For different choice of interpose positions, we
refer to the discussion of Nguyen et al. [Ngu+19], who conclude that interposing in the
middle position has strongest security properties.

5.4.1. Design Details and Motivation

We study extensions of the Interpose PUF design in somewhat natural way by iterating
the idea of interposition. Subsequently, weaknesses of this iteration are discussed and mit-
igated using novel ideas. Along this path, the five variants Domino Interpose PUF, XOR
Interpose PUF, XOR Domino Interpose PUF, Tree Interpose PUF, and XOR Cascaded
Interpose PUF are derived. While the first two variants are relatively straightforward
extensions of the Interpose PUF, the latter three are more complex and are therefore
explicitly depicted in Figure 5.4.1.

The Domino Interpose PUF reiterates the Interpose PUF’s design such that the number
of layers, i.e. the number of sequential interpositions, is increased. Thus, instead of two

71

5min
20min

2h
8h
2d
1w

Ti
m

e
un

til
 fi

rs
t s

uc
ce

ss

00..00119933 · 88..222266666666kk6k66k6 00..00225544 · 88..779922kk

Reliability 0.8

(1,k)
(k,k)

00..00110066 · 99..002277kk7k7 00..00229933 · 88..228877kk7k7

Reliability 1.0

3 4 5 6 7 8
k

20k
50k

200k
500k
2M
5M

20M
50M

200M

Tr
ai

ni
ng

 se
t s

ize

3311..4477 · 66..6.66.6661133kk3k3
116666..8844848848 · 55..557733kk3k3

Reliability 0.8

3 4 5 6 7 8
k

7722..3311 · 55..775577kk7k7
330066..3355 · 55..117755kk5k5

Reliability 1.0

Figure 5.2.2.: Attack run time and best-performing number of CRPs for Interpose PUFs
of different reliability and varying number of employed arbiter chains. In-
terpolations given were computed using regression for a, b on a · bk.

72

layers it consists of three layers, where the first one’s output is interposed into the second
one, whose output is in turn interposed into the third layer. Note that the Divide-and-
Conquer attack could be extended to be applied to this variant. We refer to the number
of arbiter chains employed in the upper, middle, and lower layer by kup, kmiddle, and
kdown, respectively.

An important observation is that in this iterated design, the influence of every ad-
ditional layer on the final response halves. Consequently, an attacker having the exact
knowledge of the lower m layers achieves an expected prediction accuracy of at least
1 − 1

2(1+m) by guessing the interpose bit on the highest known layer. This accuracy will
be achieved independently of the total number of layers. Hence, when maintaining an
interpose position at n/2, layer numbers greater than three increase the design’s security
only marginally and can thus be disregarded.

The other straightforward extension, the XOR Interpose PUF, modifies original Inter-
pose PUF with kup = kdown such that the Arbiter PUF chains’ outputs in the upper layer
are interposed separately, each into one corresponding chain in the lower layer, instead
of being XORed and then interposed into every lower layer’s chain. This modification is
an effective mitigation against our Splitting Attack. (An alternative perspective on this
is to consider this Interpose PUF variant as the XOR of k separate (1, 1)-Interpose PUF;
hence the name XOR Interpose PUF.)

To increase the depth of the XOR Interpose PUF we contrived the XOR Domino
Interpose PUF (see Figure 5.4.1a). It combines both of the previously described designs.
Thus, it is the XOR of k separate (1, 1, 1)-Domino Interpose PUFs, where k = kup =
kmiddle = kdown.

Nevertheless, the number of layers is still subject to the limitation due to sharply
dropping influence on the response bit. This motivated the design of the Tree Interpose
PUF shown in Figure 5.4.1c. As upper layers influence exponentially more leaves, the
drop in influence is compensated. Compared to XOR Interpose PUF of same number
of layers, it reduces the number of employed arbiter chains while being immune to the
Splitting Attack. Being a binary tree, this design consists of 2d+1 − 1 (XOR) Arbiter
PUFs, where d is the depth of the tree, i.e. the distance between the first and the last
layer. Except for the PUFs in the last layer, the output of every PUF is interposed to
two corresponding PUFs in the subsequent layer. The output bits of the last layer are
combined via XOR into the final response. All nodes in the tree are k-XOR Arbiter
PUFs.

A yet different design that combines both the concept of interposition and the idea of
more layers, while maintaining high influence of all building blocks, is the XOR Cascaded
Interpose PUF (see Figure 5.4.1b). It is an iterated Interpose PUF design that addresses
the above-mentioned problem of the influence loss by reusing each interpose bit: Each
layer’s output is used for interposition into the subsequent layer as well as for the final
response which constitutes the parity of every layer’s output bit (including the lowest
layer’s) and so is influenced by all layers equally. We refer to the number of layers by
length l; each layer is comprised of a k-XOR Arbiter PUF.

73

c1,...,32 c33,...,64

c1,...,32 c33,...,64

c1,...,32 c33,...,64

c1,...,32 c33,...,64

c1,...,32 c33,...,64

c1,...,32 c33,...,64

Output

(a) XOR Domino Interpose PUF: An iteration of the Interpose PUF design, but instead of having the
same interpose bits everywhere, we evaluate interpose chains separately and return the parity of all
responses. Each layer shown consists of an k-XOR Arbiter PUF.

c1,...,32 c33,...,64

c1,...,32 c33,...,64

c1,...,32 c33,...,64

c1,...,32 c33,...,64

Output

(b) XOR Cascaded Interpose PUF: A variant of the Interpose PUF design, where intermediate results
have full influence on the response. We refer to the number of layer by length l; each layer consists
of a k-XOR Arbiter PUF.

c1,...,32 c33,...,64

c1,...,32 c33,...,64 c1,...,32 c33,...,64

c1,...,32 c33,...,64 c1,...,32 c33,...,64 c1,...,32 c33,...,64 c1,...,32 c33,...,64

Output

(c) Tree Interpose PUF: A binary-tree of depth d, where each node is a k-XOR Arbiter PUF. Intermediate
nodes receive one interpose bit from the layer above and insert their result into two “child” nodes in
the layer below. The responses of the leafs are XORed into the final output bit.

Figure 5.4.1.: Variants of the Interpose PUF design.

74

5.4.2. Empirical Results of Deep Learning Modeling Attacks

We empirically tested the above introduced five Interpose PUF design derivatives to gain
insight in their machine-learning resistance. The designs were parameterized using 64-bit
challenge-length and a number of arbiter chains in between 9 and 16, corresponding to
an (1,8)-Interpose PUF, and an (8,8)-Interpose PUF, respectively. As attack strategy,
following Santikellur, Bhattacharyay, and Chakraborty [SBC19], a neural network mod-
eling algorithm was chosen, as it requires little customization and no precise model of
the concept class to be learned (Section 3.6).

The results in Table 5.2 show that none of the discussed designs showed increased
machine-learning resistance, even when using a generic attack not specialized for the
PUF under attack. While some designs may possess practical parameter choices for
which modeling is hard, all designs studied in this section were easier to model than the
original Interpose PUF of comparable size.

Our results show that the machine-learning hardness of the Interpose PUF at least
cannot easily be increased by all too naive augmentation to the original design. Fur-
thermore, the modeling based on neural networks has proven to be an easy-to-use and
powerful tool for preliminary analysis of Strong PUF designs. We hence recommend the
Neural Network Attack (Section 3.6) to be part of every Strong PUF security analysis.

75

PUF Variant Size Arb. CRPs Rel. Mem. Time Succ.
Chains (GB) Rate

Domino k = (3, 3, 3) 9 2M 0.8 2.5 55.6min 1.00
Domino k = (4, 4, 4) 12 20M 0.8 12.7 1.0d 0.88

XOR Interpose k = 4 8 10M 0.8 9.7 4.3h 1.00
XOR Interpose k = 5 10 40M 0.8 37.8 2.8d 1.00

XOR Dom. Interp. k = 3 9 2M 0.8 2.2 15.6min 1.00
XOR Dom.Interp. k = 4 12 40M 0.8 37.8 2.0d 1.00

Tree Interpose d = 2, k = 2 14 5M 0.8 10.4 10.7h 1.00
Tree Interpose d = 3, k = 1 15 5M 0.8 10.0 8.8h 1.00

XOR Casc. Interp. l = 2, k = 4 8 5M 0.8 7.3 16.2h 1.00
XOR Casc. Interp. l = 3, k = 3 9 10M 0.8 10.4 8.4h 1.00
XOR Casc. Interp. l = 2, k = 5 10 20M 0.8 46.0 2.1d† 0.99
XOR Casc. Interp. l = 5, k = 2 10 10M 0.9 9.7 2.7h 1.00

Table 5.2.: Overview over Deep-Learning-Attacks on derivatives of the Interpose PUF
design. Each derivative has been tested for a selection of different parameters
with the challenge-length fixed to 64 bit. For each type and parameter, 100
simulations and attacks were conducted (experiments marked with † have at
least 75 samples). Success was defined as prediction accuracy above 90%,
relative to the PUF’s reliability. Note that attack times are all below com-
parable times for modeling the original Interpose PUF of similar sizes, even
though a generic, non-specialized attack methodology was used.

76

6. Feed-Forward Arbiter PUF

6.1. Design

Feed-Forward Arbiter PUFs were first introduced by Gassend et al. [Gas+04] and Lee
et al. [Lee+04] and are based on the idea of introducing non-linearity to the response
behavior (as discussed in Section 3.1) by adding more arbiter elements that pick up the
signal on the delay lines before they reach the last stage. These arbiter elements produce
additional challenge bits which will be used in later stages. As such, the Feed-Forward
Arbiter PUF can be thought of as a predecessor of the Interpose PUF of Chapter 5,
using the same Arbiter PUF instead of an additional layer of PUFs to produce additional,
attacker-unknown, challenge bits. We will refer to the additional arbiter elements and
challenge bits as feed-forward loops. An extension of the Feed-Forward Arbiter PUF is
the (homogeneous) XOR Feed-Forward Arbiter PUF [AZP20], where the result bit is –
similar to the XOR Arbiter PUF – determined by a number of k individual Feed-Forward
Arbiter PUFs with identical loop placements.

6.2. Evolution Strategies Attacks

The Feed-Forward Arbiter PUF shows much stronger modeling attack resistance than
Arbiter PUFs of comparable size. Attacks in the literature are known message attacks.
Rührmair et al. [Rüh+10] attack Feed-Forward Arbiter PUF whose loops are arranged
in regular patterns. Kumar and Burleson [KB15] demonstrated attacks on silicon data
of Feed-Forward Arbiter PUFs with up to 8 loops, using an attack based on evolution
strategies. They report data complexity much lower than our attack allows, but did not
report results on XOR Feed-Forward Arbiter PUFs.

6.3. Neural Network Attack

Prior to our work, Alkatheiri and Zhuang [AZ17] use a neural network approach for
learning, however their attack shows declining accuracy for an increase in the number
of loops. Furthermore, the attack also requires the loop pattern to be known to the
attacker, a condition that will not easily hold since different Feed-Forward Arbiter PUFs
can have different loop patterns [AZ17, personal communication]. While this deficiency
could be alleviated by either an (computationally expensive) brute-force search or via a
physical attack on the circuit, they do not report attack results on XOR Feed-Forward
Arbiter PUFs.

77

Figure 6.3.1.: The feed-forward neural network architecture for attacking n-bit Feed-
Forward Arbiter PUFs and Feed-Forward XOR Arbiter PUFs. There are
n, n/2, n/2, n neurons used per layer for based; the hidden layer uses the
tanh activation function.

We attack n-bit Feed-Forward Arbiter PUFs and XOR Feed-Forward Arbiter PUFs
with a up to 10 loops. To run the attack, we use a Multilayer Perceptron (MLP) of
fitted size. In contrast to the neural network network used to attack the XOR Arbiter
PUF in Section 3.6, this network is composed of four hidden layers with n, n/2, n/2, n
neurons, respectively. The network shape and hyperparameters are chosen independently
of the number of loops and their positioning, hence no knowledge of this information is
required to run the attack. As argued for the XOR Arbiter PUF (see Section 3.6),
we chose the tanh activation function over the common choice of ReLU. The attack
network is displayed in Figure 6.3.1. We target both simulated PUFs, with the simulation
based of an appropriate adaptation of the additive delay model (Theorem 8), and PUFs
implemented on FPGAs.

We implemented 64-stage Feed-Forward Arbiter PUFs on three Artix-7 FPGAs using
the Xilinx Vivado design suite that consists of an editable MicroBlaze CPU. VHSIC
Hardware Description Language (VHDL) was used to build the Feed-Forward Arbiter
PUFs designs. The placement of each Feed-Forward Arbiter PUF on the chip was carried
out horizontally on the chips using the Tool Command Language (TCL). AXI Universal
Asynchronous Receiver Transmitter (UART), with baud rate of 230K bits/second, was
used to speed up the CRPs transformation between the Tera Term terminal and the
FPGAs. The Xilinx SDK was utilized to program the input/output workflow of the
CRPs generation from the chips. The implementation was done on three FPGA chips.
We generated five million CRPs out of each implemented silicon PUF. The CRPs were

78

n no. of
loops

CRPs success
rate

duration accuracy memory Alkatheiri et. al.[AZ17]
CRPs duration acc.

64 4 135k 10/10 6 min 95% <1 GiB 200K 1.5 min 89%
64 5 180k 10/10 8 min 93% <1 GiB 200K 1.9 min 87%
64 6 315k 10/10 10 min 93% <1 GiB 200K 6.2 min 87%
64 7 405k 9/10 16 min 92% <1 GiB - - -
64 8 540k 10/10 21 min 92% 1 GiB - - -
64 9 585k 9/10 22 min 92% 1 GiB - - -
64 10 630k 10/10 26 min 93% 1 GiB - - -

128 1 36k 10/10 2 min 96% <1 GiB 20K <1 min 95%
128 2 72k 10/10 3 min 93% <1 GiB 80K <1 min 96%
128 3 180k 10/10 8 min 93% <1 GiB 100K <1 min 92%
128 4 225k 10/10 12 min 92% <1 GiB 200K <1 min 95%
128 5 405k 10/10 17 min 93% 1.6 GiB 200K 1.4 min 87%
128 6 540k 10/10 22 min 92% 1.9 GiB 200K 5.4 min 84%
128 7 900k 10/10 35 min 92% 3 GiB - - -
128 8 900k 10/10 34 min 92% 3.1 GiB - - -
128 9 1.2M 10/10 45 min 91% 4 GiB - - -

Table 6.1.: Results of attacking 64-stage and 128-stage Simulated FF PUFs using our
Keras based implementation of the multilayer perception compared with the
multilayer perception attack by Alkatheiri et. al. [AZ17]. Alkatheiri et. al.’s
method assumes the loop pattern is known to the attacker, the proposed
method has no such assumption.

79

no. of loops k CRPs success rate duration avg. success accuracy memory

1

2 120K 10/10 0.5 min 98% <1 GiB
4 540K 10/10 2.8 min 98% 2.6 GiB
6 900K 10/10 7 min 98% 4.3 GiB
8 6M 7/10 6 hrs 96% 10 GiB

2

2 180K 10/10 5 min 97% 1 GiB
4 720K 10/10 32 min 98% 3.5 GiB
6 2.7M 9/10 1.4 hrs 97% 9.8 GiB
8 9.5M 9/10 22 hrs 96% 18.8 GiB

3

2 360K 10/10 8 min 97% 1.8 GiB
4 900K 10/10 2.3 hrs 96% 3.3 GiB
6 3.15M 10/10 9.2 hrs 94% 8.1 GiB
8 13.5M 6/10 40 hrs 91% 21 GiB

4

2 900K 10/10 1.4 hrs 97% 3.7 GiB
4 2.7M 9/10 8.3 hrs 96% 6.9 GiB
6 9M 6/10 26 hrs 94% 13 GiB
8 18M 4/10 46 hrs 92% 27 GiB

5

2 1.8M 10/10 4.9 hrs 95% 6.4 GiB
4 7.2M 7/10 19 hrs 93% 14 GiB
6 11.7M 5/10 32 hrs 91% 22 GiB
8 18M 4/10 24 hrs 90% 30 GiB

Table 6.2.: Results of attacking 64-stage simulated k-XOR Feed-Forward Arbiter PUFs.

80

generated at an ambient temperature of around 22°C, and core voltage set to 1.0V using
the built-in chips resistor.

Our results show that our MLP-based method is able to model 64-stage Feed-Forward
Arbiter PUFs with 10 loops and 64-stage 8-XOR Feed-Forward Arbiter PUFs when using
5 homogeneous loops per Arbiter PUF. Note that the challenge length of the PUF is
reduced by the number of loops inserted, however our results also indicate no fundamental
change in attack performance even when the challenge length is doubled to approx. 128
bit. The detailed results on simulated data is shown in Table 6.1 for Feed-Forward Arbiter
PUFs and in Table 6.2 for XOR Feed-Forward Arbiter PUFs.

Our experiments with real-world data largely confirm the attacks on 64-bit Feed-
Forward Arbiter PUFs, independently of the choice of loop pattern, with the attack
on 10 loops requiring a lightly larger amount of 770,000 CPRs. As the XOR operation of
the XOR Feed-Forward Arbiter PUF is done in Boolean logic and noise-free, we expect
that our results in simulation also transfer to real-world data on XOR Feed-Forward
Arbiter PUFs. A table showing the results is omitted for brevity.

A further extension of the k-XOR Feed-Forward Arbiter PUF can be made by intro-
ducing heterogeneous loops, i.e. by using individual loop placements on the k involved
Feed-Forward Arbiter PUFs. We report that the network of our MLP attack as shown in
Figure 6.3.1 is unable to attack heterogeneous XOR Feed-Forward Arbiter PUFs even for
moderate parameter settings involving just one loop per Arbiter PUF and k = 3. Mod-
eling accuracy was saturated at around 60%. We hence believe that the neural network
structure will need major modifications to allow successful training for this extension and
encourage further research in this direction.

Our results demonstrate that the Neural Network Attack can model variants of the
homogeneous Feed-Forward Arbiter PUFs in the known message attack model that pre-
viously were out of reach for modeling attacks. This underlines our argument that neural
network attacks should be part of the security analysis of future PUF designs and shows
that the family of homogeneous Feed-Forward Arbiter PUFs needs to be considered in-
secure under EUF-KMA.

81

7. Beli PUF

The previous chapters demonstrated that none of the Arbiter-PUF-based designs can be
considered EUF-CMA secure. A further exploration of the Arbiter PUF design space
is necessary to see if secure PUFs based on Arbiter PUFs can be build. The Beli PUF
explores variations of the Arbiter PUF itself, as opposed to merely combining multiple
Arbiter PUFs into larger designs.

7.1. Design

We consider Multiple Permuted Delay Line PUFs (MPDL PUFs), a generalization of the
Arbiter PUF to a circuit that uses more than two delay lines. An MPDL PUF that has
m delay lines can have ⌈log2m⌉ output bits o0, . . . o⌈log2 m⌉−1, indicating the index of the
fastest delay line. The fastest signal is detected using a circuit similar to the arbiter
element of the Arbiter PUF. Alternatively, an MPDL PUF can have exactly one output
bit os which is defined as the XOR of above output bits, i.e. os =

∏︁⌈log2 m⌉−1
l=0 ol. In an

MPDL PUF, the delay lines can be switched by 2-to-2 multiplexer elements controlled by
challenge bits as well as by a fixed permutation that is given by the design specification.

We first restrict out attention to a specific instance of the MPDL PUF, the Beli PUF :
Beli PUF uses four delay lines, i.e. two output bits o0, o1 and one output bit os = o1o2,
respectively. To achieve a symmetric structure on n input bits, we arrange Beli PUF into
n/2 blocks of four delay lines, using two challenge bits each. For filling in the permutations
P1, . . . ,Pn/2, we opt to use P = (i0, i1, i2, i3) ↦→ (i0, i2, i1, i3). By exchanging the top two
lines with the bottom two lines, this permutation guarantees that our design does not
degenerate into a design reminiscent of two Arbiter PUFs. Using the same permutation
in all places simplifies the analysis in the remainder of this chapter. The detailed response
behavior of the Beli PUF is shown in Table 7.1, where we denote the delays on the four
delay lines with d0, . . . , d3. The schematics of Beli PUF are shown in Figure 7.1.1.

As we will see, none of the specifics of Beli PUF are essential to out security analysis
and results can be applied to MPDL PUFs in general with little restriction.

For Beli PUF, and for MPDL PUFs in general, XOR-versions similar to XOR Arbiter
PUF are conceivable, where the same design is used in parallel in multiple instances
and the outputs are defined as the XOR of output bits across the individual instances.
We denote such Beli PUFs with k individual instances 1-bit k-XOR Beli PUF and 2-bit
k-XOR Beli PUF, respectively.

82

c4

c1

d
(0)
0

d
(1)
0

d
(0)
1 d

(1)
1

d
(0)
2

d
(1)
2

d
(0)
3 d

(1)
3

c2

c3

...

cn

cn−1

B

P

B

P

B

P

Figure 7.1.1.: Beli PUF structure

lowest signal delay 2-bit output 1-bit output individual signals

o0 o1 os = o0 · o1 θ0,1 θ0,2 θ0,3 θ1,2 θ1,3 θ2,3

d0 1 1 1 -1 -1 -1 * * *
d1 1 -1 -1 1 * * -1 -1 *
d2 -1 1 -1 * 1 * 1 * -1
d3 -1 -1 1 * * 1 * 1 1

Table 7.1.: Output of Beli PUF where θi,j = sgn (di − dj) and * denotes “any value”,
meaning that the output values in that row are independent of the value in
the starred column.

7.2. Model Based on Additive Delay Model

For MPDL PUFs, models based on the additive delay model similar to the Arbiter PUF
can be derived. We derive a model for the Beli PUF.

Let d
(j)
l denote the delay after the j-th stage (1 ≤ j ≤ n/2) on line l. Let c ∈ {−1, 1}n

be the challenge given to Beli PUF. In the j-th stage, we use c2j−1 for the top switch and
c2j for the bottom switch. We denote the internal delays of the switch box that receives
challenge bit ci with dTT

i ,dBT
i , dBB

i , dTB
i for the delay introduced by a signal traveling

from top input to top output, bottom input to top output, bottom input to bottom
output, and top input to bottom output, respectively.

As the top switch receives the input delays d
(j−1)
0 and d

(j−1)
1 , the challenge bit c2j−1

and has the internal delays dTT
2j−1, d

BT
2j−1, d

BB
2j−1, d

TB
2j−1, we obtain for the output delays of

the top switch that

d
(j)
0 =

{︄
d
(j−1)
0 + dTT

2j−1 (c2j−1 = −1) ,
d
(j−1)
1 + dBT

2j−1 (c2j−1 = 1) ,
d
(j)
1 =

{︄
d
(j−1)
1 + dBB

2j−1 (c2j−1 = −1) ,
d
(j−1)
0 + dTB

2j−1 (c2j−1 = 1) .

83

Similarly, for the bottom switch in the j-th stage we have

d
(j)
2 =

{︄
d
(j−1)
2 + dTT

2j (c2j = −1) ,
d
(j−1)
3 + dBT

2j (c2j = 1) ,
d
(j)
3 =

{︄
d
(j−1)
3 + dBB

2j (c2j = −1) ,
d
(j−1)
2 + dTB

2j (c2j = 1) .

By using the fact that for ci ∈ {−1, 1}, we have ci = −1 ⇐⇒ 1/2 + 1/2ci = 0 and ci =

1 ⇐⇒ 1/2−1/2ci = 0, we can write the output delays of the j-th stage, d(j)0 , d
(j)
1 , d

(j)
2 , d

(j)
3

without case distinction as

d
(j)
0 = (1/2− 1/2ci)

(︂
d
(j−1)
0 + dTT

2j−1

)︂
+ (1/2 + 1/2ci)

(︂
d
(j−1)
1 + dBT

2j−1

)︂
,

d
(j)
1 = (1/2− 1/2ci)

(︂
d
(j−1)
1 + dBB

2j−1

)︂
+ (1/2 + 1/2ci)

(︂
d
(j−1)
0 + dTB

2j−1

)︂
,

d
(j)
2 = (1/2− 1/2ci)

(︂
d
(j−1)
2 + dTT

2j

)︂
+ (1/2 + 1/2ci)

(︂
d
(j−1)
3 + dBT

2j

)︂
,

d
(j)
3 = (1/2− 1/2ci)

(︂
d
(j−1)
3 + dBB

2j

)︂
+ (1/2 + 1/2ci)

(︂
d
(j−1)
2 + dTB

2j

)︂
.

To obtain expressions for the delay in each line, we iteratively replace d
(j−1)
i in d

(n)
i .

However, in contrast to the similar procedure on the Arbiter PUF circuit, in the Beli
PUF model this leads to expressions of exponential length in n for d

(n)
i − d

(n)
j . This

behavior is caused by the introduction of the permutation P. (If choosing P as the
identity permutation, we obtain two Arbiter PUFs, and the Arbiter PUF additive delay
model with a linear number of terms applies.)

To obtain a complete model of the Beli PUF from the expressions for d0, d1, d2, d3,
we define the delay differences θi,j = sgn (di − dj) and observe that θi,j = 1 if and
only if di > dj . The output bits o0 and o1 can be computed as a Boolean function of
θ0,2, θ0,3, θ1,2, θ1,3, θ2,3 and θ0,1, θ0,3, θ1,2, θ1,3, θ2,3, respectively, based on the observations
on θi,j given in Table 7.1. For output bit o0, we find that d2 has the lowest delay if and
only if max {−θ0,2,−θ1,2, θ2,3} = −1 (“2 faster than 0 and 2 faster than 1 and 2 faster
than 3”). d3 has the lowest delay if and only if max {−θ0,3,−θ1,3,−θ2,3} = −1 (“3 faster
than 0 and 3 faster than 1 and 3 faster than 2”). As o0 is −1 if and only if either d2 or
d3 has the lowest delay, we obtain

o0 = min {max {−θ0,2,−θ1,2, θ2,3} ,max {−θ0,3,−θ1,3,−θ2,3}} .
In a similar way, we can derive

o1 = min {max {−θ0,1, θ1,2, θ1,3} ,max {−θ0,3,−θ1,3,−θ2,3}}
as o1 is −1 if and only if either d1 or d2 have the lowest delay. Finally, in the case of
1-bit Beli PUF, the output can be modeled as os = o0 · o1.

We empirically evaluated the length of the model expressions using Sage for n ≤ 18,
generating expressions for Beli PUF’s d0, d1, and d0 − d1. (By symmetry, these findings
extend other delay lines in Beli PUF as well.) In Figure 7.2.1, a comparison of length of
expressions with the Arbiter PUF model and the algebraic maximum length is given.

By the exponential size, it is infeasible for an attacker to recover all coefficients of this
model and thus bars them from using the Beli PUF additive delay model for modeling
attacks, which give rise to hope that Beli PUF could resist modeling attacks.

84

Figure 7.2.1.: Number of monomials for the Beli PUF’s d0, d1 and their difference d0−d1,
as well as for the Arbiter PUF delay model, when written as multivariate
polynomial of the challenge.

7.3. Implementation and Metrics

Beli PUF can be implemented on FPGA in a way similar to the Arbiter PUF. However,
to obtain the final response bit(s) of Beli PUF, a variant of the arbiter element is needed.
One option is to implement six arbiter elements, as motivated by the model equations
for o0 and o1 given above, where each arbiter element determines the value of one of the
involved θi,j . Due to noise, it is possible that the determined θi,j values are contradicting,
in which case the final response of Beli PUF also may be noisy.

We compare the bias and bit sensitivity of Beli PUF simulations with metrics obtained
for the Arbiter PUF simulation.

As shown in Figure 7.3.1, the distribution of the bias of Beli PUF and Arbiter PUF is
close to unbiased with only some variance. However, observe that the Arbiter PUF has
a little smaller bias variance. For both designs, the bias can be further reduced by using
an XOR-variant.

The bit sensitivity of Beli PUF is generally reduced and below the desirable value
of 1/2, which can be explained by the “minimum” operation on the four delay lines, as
changed delay values in lines that do not involve the shortest delay do not change the
PUF’s output. However, the bit sensitivity shows less variance across the bit position on
the challenge than it is the case for the Arbiter PUF. The distributions of bit sensitivities
for different challenge bit positions is displayed in Figure 7.3.2.

To measure the reliability of Beli PUF, the Beli PUF FPGA-implementation with
the lowest bias across our 100 test FPGA chips among several candidates has been
chosen. The reliability has then been examined by generating 1 million uniform random
challenges and querying each FPGA on this challenge set 11 times. The selected Beli
PUF implementation enjoys a high reliability of 98% on average, with little variance.

85

Figure 7.3.1.: Distribution of bias of delay-based PUF variants simulated for 1000 in-
stances. Each experiment has been conducted on 1000 uniform random
noise-free challenges.

Figure 7.3.2.: Probability of flipping the response with respect to changing one challenge
bit in delay-based PUF variants simulated for 100 instances. Each challenge
index has been tested on 1000 uniform random noise-free challenges.

86

Figure 7.4.1.: Prediction accuracy of a general-purpose MLP modeling attack on 1-bit
Beli PUF, simulated with various challenge sizes for 10 instances using
noise-free CRP data sets of size N . The shaded area indicates a 95%
confidence interval across attacked PUF instances.

7.4. Generic MLP Attack

One way to avoid the exponential number of parameters in the additive delay model of
the Beli PUF is to use general-purpose neural networks for modeling. Such networks
have been successfully used in the modeling attacks on XOR Arbiter PUFs and on the
Interpose PUF [Wis+21a].

For attacking Beli PUF, we employed a Multilayer-Perceptron (MLP) Model which
uses the ReLU activation function on its four hidden layers. Each hidden layer uses 256
neurons.

The resulting model accuracy indicates that, while Beli PUFs of smaller challenge
lengths such as 16 bit can be modeled with high accuracy, the prediction accuracy of
the modeling attack for 24 bit Beli PUFs stays below 80%, as shown in Figure 7.4.1.
Increasing the training set size does not improve the result, which indicates that the
used generic model is not suitable to model the Beli PUF accurately.

For comparison, similar neural network attacks on 4-XOR 64-bit Arbiter PUFs require
merely 150,000 CRPs to achieve near-perfect prediction accuracy.

7.5. Specialized Neural Network Attack

In contrast to the generic attack, here we motivate a neural network attack based on a
variant of the physically inspired Beli PUF model (Section 7.2). While we demonstrate
the attack specifically for the Beli PUF design, the idea is applicable to all MPDL PUFs.

In any MPDL PUF, the paths the signals take through the circuit are fully defined by
a given challenge. For a given path Pi, the total signal delay can be computed from the

87

physical parameters dTT
j , dTB

j , dBT
j , dBB

j as

di =
∑︂

(X,j)∈P

dXj .

This computation can be formalized as a dot product of a delay-indicator vector xi ∈
{0, 1}4n, derived from the challenge c using the design specification of the circuit, as

di = ⟨d, xi⟩ ,

where d is a list of all 4n physical parameters, d =
(︁
dTT
1 , dTB

1 , dBT
1 , dBB

1 , dTT
2 , . . . , dBB

n

)︁
.

This enables us to write all signal delays of the MPDL PUF as a function linear in the
4n-dimensional space of the physical parameters. Using this observation, we can avoid
the exponentially long model equations of Section 7.2 for the delay values.

We also observed that in the case of Beli PUF, the delay-indicator vectors xi do not
span across all 4n dimensions, but only use 2n+4 dimensions. Hence, the dimensionality
of the model could be reduce to 2n+4 by using principal component analysis. However,
to simplify notation, we stick to the analysis in 4n dimensions.

To model the Beli PUF response, instead of resorting to the relatively complex model
equations of Section 7.2, we observe that o0, o1, and os can also be written as

o0 = sgn (min {d2, d3} −min {d0, d1}) ,
o1 = sgn (min {d1, d3} −min {d0, d2}) , and
os = sgn (min {d1, d2} −min {d0, d3}) .

For the modeling attack presented in this section, the usage of the full model equation
is also possible. However, due to the nested nature of min, max, and sgn operations, it
converges slower than the equations presented here.

These equations allow us to define a neural network that is able to model Beli PUF.
Given the delay-indicator vectors derived from the challenges, this network can be trained
to closely model Beli PUF responses.

Like done in attacks on the XOR Arbiter PUF, attacks on XOR Beli PUFs can be
applied by adjusting the model to compute the product of the individual model output
bits.

To confirm the validity of the derived Beli PUF model, we collected 100,000 CRPs
from a 2-bit Beli PUF with 64 challenge bits and trained models as outlined above both
for 2-bit Beli PUF and a 1-bit Beli PUF, using 99,000 CRPs. The resulting model showed
correct prediction in roughly 88% of cases on a test set of 1,000 CRPs. This provides
practical evidence that our model and implementation behave similarly.

Using Beli PUF simulations, we ran attacks on 1-bit and 2-bit Beli PUFs as well as
their XORed variants. As a baseline for comparison, we run the state-of-the-art attacks
on XOR Arbiter PUFs, implemented using the same software stack. All attacks were
conducted for 32, 64, 128, and 256-bit challenge lengths. Our attack is implemented
using a neural network and the Keras framework, but can – by the nature of the network

88

Figure 7.5.1.: Accuracy obtained when attacking the 1-bit Beli PUF, 2-bit Beli PUF, and
XOR Arbiter PUF. For each combination of challenge length n, number
of CRPs N , number of arbiter chains k, and PUF type, we ran at least
10 attacks with individual PUF simulation and attack initialization each.
The accuracy shown is evaluated on an independent 1,000 CRPs test set.
The shaded area indicates a 95% confidence interval across attacked PUF
instances.

89

in use – also be thought of as an adaptation of the LR algorithm that is used to attack
the XOR Arbiter PUF (Section 3.4).

The detailed results of our attacks are shown in Figure 7.5.1. Compared to the XOR
Arbiter PUF baseline, our attacks on 1-bit and 2-bit Beli PUF generally show an increased
data complexity. As expected, the results also indicate that slightly more data is required
to train a model for the 1-bit Beli PUF, compared to its 2-bit version. Nevertheless, while
differences in the data complexity exist, we summarize our results in saying that the Beli
PUF cannot be expected to achieve a significant advantage over the attacker in terms of
modeling attacks.

With the minimal feature set based on 2n + 4 features instead of 4n, we expect a
slight decrease in data and time complexity of the attacks on Beli PUF. It thus remains
unclear if the increase in data complexity shown in Figure 7.5.1 can be accounted to the
structure of Beli PUF, or to the over-parameterized model, or to a combination of both.
We also expect that the mediocre-performing attacks on Beli PUFs with accuracy around
80% will show better performance when operating on a minimal feature set. However,
any modeling attack with prediction accuracy better than guessing should be taken as a
precursor for a full break [Del19].

The difference in data complexity of 1-bit and 2-bit Beli PUF appears small when
compared to the increase of data complexity by going from k = 1 to k = 2. This can be
explained by the property of the Beli PUF model which requires an identical number of
features to model 1-bit and 2-bit Beli PUFs. In contrast, adding another Beli PUF to
the output via xoring, requires a substantial change to the modeling network.

Reviewing our modeling and attack methodology, there is no indication that this kind
of modeling attack strategy cannot be applied to other MPDL PUFs. Our results thus
show that PUFs based on multiple delay lines cannot be expected to provide significantly
better EUF-CMA or EUF-KMA security than XOR Arbiter PUFs.

90

8. LP-PUF

Previous chapters show evidence that the XOR Arbiter PUF, Permutation PUF, Inter-
pose PUF, XOR Feed-Forward PUF, and Beli PUF are not CMA-EUF secure.

Based on the Arbiter PUF and ideas discusses in previous chapters, this chapter in-
troduces the LP-PUF and demonstrates its security against all attack strategies used
above.

8.1. Design

The strong PUF circuit proposed for the LP-PUF is an advancement of the Interpose PUF
design [Ngu+19] and an instance of the Composite PUF design [Sah+14]. The Composite
PUF and Interpose PUF followed a design strategy similar to the Feed-Forward Arbiter
PUF [Gas+04] by including challenge bits that have been generated internally, i.e. not
been given as part of the challenge. This is in contrast to the MPDL PUFs introduced
in Chapter 7. While this does not change the fact that the Arbiter PUF response can be
effectively modeled by a linear threshold function, it is supposed to mitigate modeling
attacks by depriving the attacker of the knowledge of all input bits.

We present the LP-PUF in the form of three layers, parameterized by a challenge
length n ∈ N and an additional security parameter m ∈ N which must be a divisor of n.

1. In Layer 1, the LP-PUF generates m private challenge bits. To that end, the
(public) challenge c = (c1, . . . , cn) to the PUF is split into m partitions of equal
length by cutting it into m blocks (c1, . . . , cm),(cm+1, . . . , c2m),. . . ,(cn−m, . . . , cn).
Each block is fed into an individual Arbiter PUF of challenge length n/m, generating
m response bits which are not part of the input, but an instance-specific function
of the challenge. Note that the Arbiter PUFs in this layer are chosen deliberately
short.

2. In Layer 2, the LP-PUF mixes the private challenge with the public challenge by
computing a function T : {−1, 1}n+m → {−1, 1}n, where each output bit of T
is the parity (XOR) of exactly one of the public inputs and an individual subset
of size m/2 of the m private inputs. We chose the involved subsets uniformly at
random at design-time. This operation thus does not depend on the given PUF
instance, but is a design-constant.

3. In Layer 3, the n-bit challenge computed in Layer 2 is fed into an ordinary n-bit
m-XOR Arbiter PUF, which produces the final output bit of the LP-PUF.

Inspired by other Composite PUF designs such as the Feed-Forward Arbiter PUF and
Interpose PUF, we designed the LP-PUF to use easy-to-model building blocks combined

91

In

n
m -bit APUF

n
m -bit APUF

n
m -bit APUF

n
m -bit APUF

n
m

bit

n
m

bit

n
m

bit

n
m

bit

mixing
operation of n
public input
bits and m
private bits

T :
{−1, 1}n+m →
{−1, 1}n

full n bit public input

n-bit APUF

n-bit APUF

n-bit APUF

n-bit APUF

⊕ Out

Figure 8.1.1.: The LP-PUF design, parameterized by the challenge length n and the
additional security parameter m. Layers 1 through 3 are shown from left to
right. Solid lines show attacker-known information, dashed lines attacker-
unknown information. The result of the mixing operation is shown as
dashed-dotted, as the attacker only has partial information. All Arbiter
PUFs (“APUF”) shown have the given number of input bits and a single
output bit. Inputs to the mixing operation T are concatenated; ⊕ denotes
the XOR operation.

with attacker-unknown outputs (in Layer 1) and attacker-unknown inputs (in Layer 3)
to build a composite PUF which is resistant to known modeling attacks.

There are various motivations for the different aspects of our design. To mitigate the
Splitting Attack (Section 5.1) and a generic attack on Composite PUFs [Sah+15], we
introduced the use of more than one “interpose bit” as well as the mixing operation in
Layer 2. This drastically reduces the chance of the attacker to guess the feature vector
required to learn the XOR Arbiter PUF of Layer 3. We detail on the mitigation of the
splitting attack in Section 8.3.

By reducing the attacker-knowledge about the input to Layer 3, the mixing operation
of Layer 2 also mitigates reliability-based attacks [Bec15; TAB21] on Layer 3. This is
detailed in Section 8.4.

The use of Arbiter PUFs in our design is to facilitate a CMOS-compatible design, which
allows for fabrication of the LP-PUF using standard design processes [Gas+02]. It also
benefits from literature available on implementation [such as DV13] and a well-studied
model of its behavior (see Theorem 8).

The use of short Arbiter PUFs in Layer 1 is motivated by the hope that short Arbiter
PUFs can be implemented such that they generate very reliable responses. In Section 8.4,
we detail on this. In Section 8.6, we discuss potential problems with this choice with
respect to chosen-challenge attacks.

This yields an overall structure that vaguely resembles a substitution-permutation-
network, which are used in block cipher design. Specifically, and in contrast to proposals

92

Figure 8.2.1.: Uniqueness and bias of the proposed LP-PUF, measured in noise-free sim-
ulations and for n = 64 challenge bits across different values of the m
parameter. For comparison, the corresponding metrics are also shown for
Layer 3 of the LP-PUF, which consists of a traditional n-bit m-XOR Ar-
biter PUF.

such as the Lightweight Secure PUF (Section 4.2) and Permutation PUF (Section 4.3),
the LP-PUF employs a scheme where the attacker cannot compute the first or last
operation in the network. Furthermore, in an advancement of the Interpose PUF design,
by introducing the mixing operation in Layer 2, the LP-PUF combines operations of
each low complexity, but from different “realms”, albeit limited to only one and a half
“rounds”.

Alternatives and extensions of these design choices include to use several rounds, i.e.
to introduce a second mixing layer, and/or to not use the original challenge input in
deeper layers. However, we found that such variations exhibit poor reliability and are
thus unpractical unless Arbiter PUFs with much better reliability can be build. Never-
theless, we believe that the security of the construction would greatly benefit from such
modifications.

8.2. Metrics

The metrics of the LP-PUF shown here are computed based on the Arbiter PUF simula-
tion and measurement implementations of pypuf [Wis+21b]. Values are based on 10,000
simulated PUF instances each. Reliability is measured by evaluating 1,000 challenges 5
times each on 10 instances per reliability setting of Layer 1 and Layer 3.

The results shown in this section justify the hope that the LP-PUF can fulfill require-
ments on uniqueness, bias, bit sensitivity, and reliability (see Section 2.1). The LP-PUF
shows high uniqueness, low bias, bit sensitivity similar to that of an XOR Arbiter PUF,
and fair reliability in our simulations.

In Figure 8.2.1, we show the uniqueness and bias values, compared to a baseline given
by the XOR Arbiter PUF in Layer 3 of the LP PUF. In all studied cases, the LP-PUF
shows the same or better uniqueness and bias distribution as the XOR Arbiter PUF.

In Figure 8.2.2, we show the bit sensitivity for LP-PUF and XOR Arbiter PUFs, which
are very similar, and could be improved by adjusting the mixing operation in Layer 2.

The reliability of the LP-PUF must be studied in more detail, as it is crucial for the
feasibility of LP-PUF implementations. (It is easy to come up with a PUF design that

93

Figure 8.2.2.: Bit sensitivity values for the LP-PUF and XOR Arbiter PUF for both
64-bit challenges. Values of 1/2 are ideal.

is resilient to modeling attacks when reliability is not an issue.)
As a design composed of several building blocks, the reliability of the LP-PUF is a

function of the reliability of the involved building blocks. Solely composed of Boolean
logic, Layer 2 is assumed to be fully reliable. For the XOR Arbiter PUF in Layer
3, commonly believed reliability values can be found in the literature [DV13; Bec15;
Wis+20b] if 64-bit challenges are employed. For the (short) Arbiter PUFs in Layer
1, however, to the extend of our knowledge, no reliability estimate is available in the
literature. (There are some arguments to justify an increase in stability for very long
Arbiter PUFs [Wis+20b].) The established noise model used for Arbiter PUFs [DV13]
does not allow reliability predictions for longer or shorter challenges, as it remains unclear
how much noise is introduced by the n stages used in the Arbiter PUF and how much
noise is due to the one arbiter element. Other engineering factors which might change
with increasing challenge length are also not taken into account by the commonly used
Arbiter PUF noise model. We conclude that the reliability of Arbiter PUFs with challenge
lengths other than the usual 64 and 128 bit remains an open research question. In lack of
better options, we assume that the reliability of the LP-PUF Layer 1 will be in between
99.8% and 87.7%.

In Figure 8.2.3, we study the reliability of the LP-PUF based on simulations and as a
function of the reliability of Layers 1 and 3. For Layer 1, we give the average reliability
of the m Arbiter PUFs in use, but remark that there is little variance. For Layer 3, we
give the reliability of the single output bit of Layer 3, as measured individually, i.e., with
challenges directly applied to Layer 3, disregarding layers 1 and 2.

We conclude that assuming a 96.3% reliability for Layer 1 and a 79% reliability of
Layer 3, the LP-PUF is conceivable for at least m = 8, as the total reliability in this
case is estimated at 73%. While this reliability is within the acceptable range for a
basic authentication protocol based on pre-recorded challenges, we remark that an even
lower reliability could make the protocol inefficient or shrink the security margin against
attackers using models with weak prediction accuracy. Hence, to obtain a definite answer
on the feasibility of the LP-PUF design, a study of the reliability of real-world data will
be necessary.

94

Figure 8.2.3.: Simulated reliability of the 64-bit LP-PUFs depending on reliability of the
building blocks.

8.3. Splitting Attack

As the LP-PUF is an extension of the Interpose PUF [Ngu+19], we first consider an
extension of the Splitting Attack as described in Section 5.1. It crucially relies on guessing
the challenge vector applied to the lower layer of the Interpose PUF by guessing c(−) and
c(+) in Algorithm 5.1. If the challenge vector has been guessed correctly, also the feature
vector for the lower layer is uniquely identified. For the analysis of the Splitting Attack
with regard to the LP-PUF, we hence analyze the probability that the attacker guesses
the feature vectors x required for training correctly. In the Interpose PUF, the guessed
challenge bit is cn/2+1, and due to the nature of the feature vector required for training
models of XOR Arbiter PUFs (see Theorem 8), this challenge bit appears in the first
n/2 + 1 features xi for training. So, while the attacker has to guess many features, they
are perfectly correlated. The probability to guess an entire n-feature vector correctly is
thus 50%. The probability to guess individual feature bits correctly is approx. 75% on
average (50% for the feature bits including the interpose bit, 100% for the feature bits
not including it).

We note that it is not sufficient to extend the Interpose PUF with a number of l
interpose bits to mitigate this attack. One could expect that the guessing probability
of the attacker in that scenario is degraded to 2−l, but we show that this is not the
case. If there were two interpose bits ci and c′i in the middle of the lower layer, then
the first n/2 features of the lower layer all include the XOR of ci and c′i — a value that
the attacker can still guess with probability 50%; so not much is gained in this setting.
Similar arguments apply for any number of interpose bits. Distributing these interpose
bits across the challenge of the lower layer, i.e. not only interposing in the middle, opens
up other attack surfaces, as outlined by the original authors [Ngu+19].

In the LP-PUF design, the mixing operation in Layer 2 is aimed at removing corre-
lations from the feature bits to minimize the guessing advantage. The goal is that the
attacker can guess feature bits correctly only with probability 50%, and feature vectors
only with probability approximately 2−m. We confirmed this in our simulations. The
measured guessing probabilities for feature bits were at 53% and 50% for m = 4 and

95

m ≥ 8, respectively. The measured probabilities for guessing feature vectors correctly
were 13% for m = 4 and 0.7% for m = 8 and < 1/10,000 for m = 16. In this way, the
LP-PUF provides a way to introduce almost m bit of entropy in the challenges to Layer
3.

We did not study the guessing probability for each feature bit separately, but remark
that if the attacker is able to guess single feature bits with higher probability, or finds
correlations between the feature bits, then using this knowledge may enable the attacker
to increase their guessing probability.

The reduced guessing probability for the features to the model of Layer 3 constitutes
itself in a significant increase of required CRPs for successfully training a model. In the
case of m = 4, the (adapted) splitting attack requires approx. 500,000 CPRs to train
a high-accuracy model, compared to 60,000 CRPs for the (m,m)-Interpose PUF and
30,000 CRPs for the m-XOR Arbiter PUF. We believe that the reason that the training
succeeds at all is that the probability to guess feature vectors correctly is still at 13%,
which means that guessing errors can be averaged out over large sets of CRPs. However,
as the guessing advantage of the attacker declines exponentially with m, we also expect
an exponential increase of the required CRPs in m. Unfortunately, we also have seen in
Section 8.4 that the reliability of the LP-PUF suffers greatly from an increase of m.

Nevertheless, there is hope that the LP-PUF could find a sweet spot that mitigates
the Splitting Attack, while at the same time provides sufficiently reliable responses, e.g.
for m = 8 or m = 16. Note that while the XOR Arbiter PUF also suffers from decreasing
reliability in it’s security parameter, known chosen message attacks based on response
reliability [Bec15; TAB21], in contrast to LP-PUF, cannot be mitigated by increasing
the XOR Arbiter PUF size.

8.4. Reliability Attack

In the past, chosen message attacks based on the individual challenge reliability have
targeted Arbiter PUFs [DV13], XOR Arbiter PUFs (Section 3.8), and Interpose PUFs
([TAB21]). The observation fundamental to all of these attacks is that the reliability of
an Arbiter PUFs response to a given challenge is a function of the delay difference cor-
responding to this challenge. The smaller the absolute value of the delay difference, the
higher the unreliability (Theorem 22). This means that Arbiter PUFs can be identified
not only by their response behavior, but also by their reliability. In the case of single
Arbiter PUFs, it is sufficient to obtain an approximate solution to a system of linear
equations. In the case of XOR Arbiter PUFs, evolution strategies or gradient-decent
machine learning algorithms can be employed to find high accuracy models. These ap-
proaches are based on the Pearson correlation of the measured reliability of target PUF
and model; the higher the correlation, the more accurate the model will be.

All Arbiter PUFs in a composite design can be target of a reliability-based attack if the
attacker can correlate any measurable reliability to the reliability of the target Arbiter
PUF. In case of the XOR Arbiter PUF, it was found that the XOR Arbiter PUF’s output
reliability is correlated with the reliability of the individual Arbiter PUFs as shown in

96

Figure 8.4.1.: The correlation of the attacker-observable overall reliability of a given n =
64 challenge bit LP-PUF with the reliability of Layer 1. To account for
all response bits of Layer 1, the maximum correlation in each instance is
taken. If a large correlation of Layer 1 reliability and LP-PUF reliability
can be established, an attacker could attempt a reliability-based modeling
attack on Layer 1.

Section 3.8. Similarly, the output of the Interpose PUF has reliability correlation with
the lower layer [TAB21].

To analyze the vulnerability of the LP-PUF towards reliability-based attacks, we thus
study the reliability correlation of Layer 1 and Layer 3 with the attacker-measurable reli-
ability of responses at the LP-PUF output. Based on our simulations, we could not find
significant correlations of output reliability and Layer 1, as shown in Fig. 8.4.1. Instead,
the correlation shows values that are also measured when compared to an entirely unre-
lated PUF. (The increase with m can be explained as we show the maximum correlation
to any of the m individual reliability vectors of Layer 1; it thus does not constitute a
significant correlation.) This result is expected and applies similarly to the Interpose
PUF.

The reliability correlation of Layer 3 with the output of the LP-PUF is high for small
values of m and indicates that an attack for these values of m will be possible. However, as
we increase m, the correlation vanishes, with m = 8 and m = 16 hardly showing any dif-
ference when compared to the correlation with an unrelated PUF instance (Figure 8.4.2)
and hence constitute an improvement over the reliability behavior of the Interpose PUF.
We conclude that increasing m will mitigate current versions of the reliability attack.

We note that the attack is not mitigated by removing unreliable challenges from Layer
3, or by improving the reliability of the implementation. (Using the reliability behavior
as studied in Section 3.7 as evidence, we believe that this approach is not promising.)
Instead, by decreasing attacker knowledge of the challenge applied to Layer 3, we remove
the attackers ability to meaningfully correlate the measured reliability, which prevents
an application of evolution-strategies or gradient descent machine learning algorithms.
Still, the theoretical analysis of the reliability-based attacks is quite thin, and we are
afraid that there could be a way to adapt the attack to account for the mixing operation

97

Figure 8.4.2.: The correlation of the attacker-observable overall reliability of a given
n = 64 challenge bit m-LP-PUF with the reliability of it’s Layer 3 under
attacker-guessed challenges. High correlations pave the way to conduct a
reliability-based attack on Layer 3 (as done on the Interpose PUF Tobisch,
Aghaie, and Becker [TAB21]). The absence of high correlation for the LP-
PUF is not caused by increasing the reliability of Layer 3, but by reducing
the ability of the attacker to guess Layer 3 input bits.

in Layer 2, especially since the attacker can choose the individual inputs to the PUFs in
Layer 1.

8.5. MLP Attack

In Section 3.6, we have shown that Neural Network Attacks on XOR Arbiter PUFs can
work well; in Section 5.4 we demonstrated that they can also work against composite
designs. Such attacks have the advantage over the LR attack that no exact model is
required, while at the same time, the required CRPs for modeling XOR Arbiter PUF
and Interpose PUF is decreased. On the downside, even a successful modeling attack
will not allow much insight in the inner workings of the attack, as it cannot be expected
that the trained weights of the model can be interpreted. As such, it is well-suited for
quick and preliminary analysis of novel PUF designs such as the LP-PUF.

We first consider the MLP attack on the full 64-bit LP-PUF as done similarly in
Section 5.4 on variants of the Interpose PUF, i.e. without applying any technique similar
to the splitting attack discussed in Section 8.3.

While for m = 2, we were able to obtain models with an accuracy around 80% (rem-
iniscent of the first step of the splitting attack), already for m = 4 we did not achieve
any significant success, even when using 50 million CPRs. (In Section 3.6 we have shown
that the 64-bit 4-XOR Arbiter PUF requires merely 150,000 CRPs.) We can conclude
that either we chose inappropriate network parameters (we tried networks which have
been shown to be able to attack 4-XOR Arbiter PUFs and 5-XOR Arbiter PUFs), or
that the MLP attack might not be able to infer the features required to model Layer 3.
As evidence for the latter case, it was reported that MLP is also unable to train a model

98

given the challenges, instead of the Arbiter PUF features [SBC19].
An MLP-based Splitting Attack on the LP-PUF is also conceivable, as it has been

demonstrated against the Interpose PUF in Section 5.1. However, it faces the same
difficulties in guessing the feature bits for the model of Layer 3, and is hence largely
covered by our arguments in Section 8.3. Given that the MLP attack has been shown to
reduce the number of required CRPs (Section 3.6), this may also apply to the splitting
attack discussed in this paper.

8.6. Limitations

The design of the LP-PUF and the results presented on its metrics and security properties
aim at making the case that the LP-PUF and related designs are secure against known
modeling attacks; however the analysis presented here is by no means exhaustive and
should be extended to go beyond the attacks that are known in the literature:

To conduct a more rigorous security analysis, a formal model of the LP-PUF, based on
the additive delay model, should be derived. Due to the verbose definition of the mixing
operation in Layer 2, the use of a computer algebra system such as Sage may be necessary.
To the extend of our knowledge, no such analysis has ever been done on a PUF. Such
a formal model will serve as a basis for a formalization of some of the arguments made
above, e.g. for the decreasing chances of the attacker to guess the feature bits when m is
increased. It could also allow for a more rigorous choice of the mixing operation, rather
than just using (at design time) randomly chosen subsets and allow for an improvement
in the bit sensitivity of the LP-PUF.

Likewise, a model for the reliability of the LP-PUF needs to be developed, to make
sure that attacks based on the correlation of reliability behavior cannot be adjusted to
somehow take the mixing operation in Layer 2 into account and recover an Arbiter PUF
model (see Section 8.4). To the best of our knowledge, no such model has been published
for comparable designs like the Interpose PUF.

To increase the trustworthiness of our failed modeling attempts using machine learning
algorithms, it will also be necessary to revisit the chosen hyperparameters and argue in
detail that also hyperparameter optimization will not enable the attacker to obtain a
model of the LP-PUF or parts thereof.

Furthermore, it is uncertain if Arbiter PUFs of short length and high reliability can be
build; the commonly used noise model of the Arbiter PUF (Equation (3.1.1)) is ill-suited
to make a prediction. This can be clarified by studying the behavior of short Arbiter
PUFs in real hardware or by replacing them with an alternative solution.

Adjusting the design of Layer 1 may also be indicated in the face of general chosen
message attacks to defend against attackers that choose challenges to attack individual
Arbiter PUFs of Layer 1. Alternatives to Layer 1 could try to limit the freedom of the
attacker in choosing which challenges are applied to which Arbiter PUF; at the very least,
they should remove known weaknesses in the bit sensitivity of the Arbiter PUFs in Layer
1. Hence, if technically feasible, the use of n-bit Arbiter PUFs in Layer 1 is preferred as
it provides better protection against the Composite PUF crypt-analytic attack [Sah+15].

99

Also not included in this work is an analysis of the LP-PUF with respect to its PAC
learnability. While here, we cannot expect to obtain a negative result, the known proofs
of learnability should be applied to the new setting to verify that no known attack applies.
As a first step, the PUF-G framework [CMH20] and the PUFMeter [GFS19] should be
applied to the LP-PUF.

Finally, even though we argue that a PUF design needs to withstand all scrutiny in
an idealized form, i.e. theoretically and in simulation, eventually also an implementation
needs to be analyzed with the same precision. To that end, FPGA or ASIC data has
to be collected. Due to the highly specific nature of the mixing operation in Layer 2
which generates the challenge to Layer 3, none of the publicly available Arbiter PUF
measurement data is suited for this task. Nevertheless, by the composite design of the
LP-PUF, we can already state that the consumed area will be on the order of the area
utilized by two m-XOR n-bit Arbiter PUFs.

100

9. pypuf: Python Software Library for
PUF Research

The research presented in this work crucially depends on implementations of modeling
attacks. Unfortunately, it has not yet become standard to publish data along with
working source code as artifacts along with articles on the topic. Consequently, results
cited in this work are often difficult to replicate. This is especially true for adjusting the
hyperparameters of machine learning algorithms, which can be decisive for the achieved
learning result (as shown in Figure 3.6.1).

To address these issues, we started the pypuf project, which provides a Python software
library [Wis+21b] containing PUF simulations, access to real-world PUF data sets, PUF
metrics, as well as implementations of PUF attacks from the literature, including proof-
of-concept examples. It is published as open-source software under a free license.

In detail, pypuf supports the simulation of Arbiter PUFs and XOR Arbiter PUFs based
on the additive delay model (Chapter 3) as well as simulations of XOR Arbiter PUFs with
Input Transformations (Chapter 4), both noise-free and with adjustable noise. Beyond
that it supports the simulation of Feed-Forward Arbiter PUFs using a naive extension of
the additive delay model. Simulations of the Bistable Ring PUF [Che+11] and integrated
optical PUFs [Rüh+13a] are based on findings on modeling attacks in the literature and
have not undergone the same scrutiny as the additive delay model in the case of Arbiter
PUFs.

To complement PUF simulations, real-world data is also shipped for the Arbiter PUF
and the Interpose PUF.

To assess PUF metrics as described in Section 2.1, pypuf implements functions to
measure the bias, reliability, uniqueness, similarity, correlation, bit sensitivity, and to-
tal influence (the last one being important for analysis using PUFMeter [GFS19]) of
challenge-response pairs.

Crucially, pypuf includes working examples of attacks on XOR Arbiter PUFs and
variants both based on the LR attack (Section 3.4) as well as based on MLPs (Section 3.6).
It also contains variants of these attacks on the Interpose PUF, Beli PUF, and LP-PUF.

pypuf can be used to replicate all results of this work and can thus help to spot software
errors in past and future publications.

101

10. Conclusion

In this work, we explored various directions in the design space for Physical Unclonable
Functions based on Arbiter PUF variants. Our efforts can roughly be divided into two
categories. One studied composite designs, i.e. PUFs built from Arbiter PUF building
blocks, such as the XOR Arbiter PUF (Chapter 3) or the Interpose PUF (Chapter 5).
The second category involves modifying the Arbiter PUF design itself, such as it is the
case in the Feed Forward Arbiter PUF (Chapter 6) and the Beli PUF (Chapter 7).

All variants and variations have been studied with respect to security with respect to
existential unforgability (EUF) against modeling attacks based on the known message
model (KMA) and chosen message model (CMA) as introduced in Section 2.1. We
summarize our findings in Table 10.1.

In more detail, we find that the Arbiter PUF (Chapter 3) does not provide security
against modeling attacks under either KMA or CMA. While data complexities under both
premises is very low, the CMA in Section 3.8 on the Arbiter PUF require exceptionally
few measurements of the PUF under attack.

The k-XOR Arbiter PUF (Chapter 3) provides an additional security parameter that
allows defense against KMAs by increasing k. However, in real-world implementations
this also results in loss of reliability and has thus only limited applicability. In the known
message attack model, we demonstrate fast attacks based on the Logistic Regression
attack (Section 3.4) and attacks with reduced data complexity based on neural networks
(Section 3.6) that cover most realistic security parameter settings and leave little hope
that KMA security can be achieved. There are also CMAs that cannot be mitigated by
increasing k (Section 3.8). We must conclude that (real-world) XOR Arbiter PUFs are
insecure against both known and chosen message attacks.

The XOR Majority Vote Arbiter PUF (Section 3.7) is an attempt to provide KMA
security on the basis of XOR Arbiter PUFs, but can only do so with an decrease in
hardware security as additional circuitry is needed (see also Section 2.4).

Adding an input transformation to the XOR Arbiter PUF, which modifies the given
challenge before application to the PUF, as done in Chapter 4, can only slightly in-
crease the data complexity of KMA and thus does not provide sufficient security against
modeling attacks.

In Chapter 5, we demonstrated that also the Interpose PUF cannot provide security
significantly better than XOR Arbiter PUFs under known message attacks. In concurrent
work, the Interpose PUF has also been shown to be vulnerable to chosen message attacks
[TAB21].

Also for the Feed Forward Arbiter PUF (Chapter 6), we demonstrated successful known
message attacks based on neural networks. Similar to the XOR Arbiter PUF, increasing
the security parameter on Feed Forward PUFs also will lead to instability, so that this

102

PUF Successful EUF attacks
Design Parameters KMA CMA

Chapter 3 Arbiter PUF n LR, NN algebraic
Chapter 3 XOR Arbiter PUF (bounded k) n, k LR, NN reliability

Chapter 3 XOR Majority Vote Arbiter
n, k — reliabilityPUF (unbounded k)

Chapter 4 Lightweight Secure PUF n, k LR, NN
Chapter 4 Permutation PUF n, k LR, NN
Chapter 5 Interpose PUF n, kup, kdown Splitting reliability

Chapter 6 XOR Feed-Forward
n, l, k NNArbiter PUF

Chapter 7 Beli PUF n, k NN
Chapter 8 LP-PUF n,m — —

Table 10.1.: Overview of PUF designs and modeling attacks in the known message and
chosen message attacker model, as discussed in this work. All KMA attacks
are also applicable in the CMA setting. “—” indicates that no attacks are
known, however, existence of attacks can, by matter of principle, not ruled
out. Attacks refer to Logistic Regression (LR, Section 3.4), Neural Networks
(NN, Section 3.6, Section 7.5), Splitting Attack (Section 5.1), and algebraic
and reliability attacks (Section 3.8).

class of PUFs also needs to be considered vulnerable to modeling attacks under the KMA
model.

In Chapter 7, we propose a modification of the Arbiter PUF with more than two delay
lines. While the resulting Beli PUF shows some promising metrics and interesting model
properties, also for Beli PUF we demonstrate vulnerability under the known message
attack model, with data complexity only slightly increased over the XOR Arbiter PUF.

Finally, we propose LP-PUF (Chapter 8), and study its security using all above-
mentioned modeling attack strategies. We find that LP-PUF is not vulnerable to any of
the known message attacks studied in this work. Furthermore, it remains unclear how
existing chosen message attacks could be applicable to LP-PUF. We conclude that given
the current state-of-the-art, LP-PUF can be considered EUF-CMA secure. While the
hardware attack surface of LP-PUF is slightly increased compared to the Interpose PUF,
intermediate values only need to be stored while the evaluation of the involved Arbiter
PUF lasts. This indicates that the hardware attack surface of the LP-PUF remains below
the attack surface of the XOR Majority Vote Arbiter PUF (Section 3.7).

The fact that we find LP-PUF to be secure against the state-of-the-art does not re-
place the investigation of novel attack strategies, as suggested in Section 8.6. To enable
further study of the LP-PUF’s modeling attack security, this work is accompanied by
a large software library that facilitates the simulation, testing, and attacking of PUFs
(Chapter 9).

103

Acknowledgments

I would like to thank the many people that supported me in many ways during the
journey of my Ph.D. study.

First, I thank my advisors Marian Margraf and Jean-Pierre Seifert for their patient
guidance for my thesis as well as for the expertise they shared with me.

For helpful comments and discussions on the matter of the XOR Majority Vote Arbiter
PUF, I would like to thank Christoph Graebnitz, Manuel Oswald, Tudor A. A. Soroceanu,
and Benjamin Zengin.

Also, I would like to thank Christopher Mühl and Niklas Pirnay for joining my research
efforts and his contributions to the Splitting Attack on the Interpose PUF and the findings
on the systematic bias of XOR Arbiter PUFs. For work on the Interpose PUF Splitting
Attack, I’m also thankful for the support of Phuong Ha Nguyen, Marten van Dijk, and
Ulrich Rührmair.

I also thank Pranesh Santikellur for helpful comments on the TRN-based attack and
Ahmad O. Aseeri for providing the source code of their attack. With respect to the
resulting work on neural network attacks on PUFs, I thank my co-authors Khalid T.
Mursi, Bipana Thapaliya, and Yu Zhuang.

For fruitful collaborations, I would like to thank Anita Aghaie, Georg Becker, Amir
Moradi, and Johannes Tobisch.

For inspiring further experiments on the noise resilience of the LR attack, which ulti-
mately resulting in the LP-PUF, I thank Roel Maes.

I’m indebted to Peter Thomassen for the many conversations that we had, both on
general concepts in the field of Physical Unclonable Functions and on very specific details
of my research.

For contributions to pypuf, I thank Wolfgang Studier, Yannan Tuo, and Adomas Bal-
iuka. I also thank Franziskus Kiefer, Matthias Krause, Maximilian Hünemörder, and
Nanni Schüler for helpful discussions and suggestions.

I extend my thanks to the anonymous referees of my paper submissions, who provided
many helpful comments and guided me to improve the quality of this work greatly.

For a substantial amount of computing time, I thank the high performance computing
centers of Texas Tech University, Technische Universität Berlin, and Freie Universität
Berlin.

Last, but not least, I thank my family for their endless support. Jenny, without you,
this thesis would not have seen the light of day.

104

Bibliography

[Agh+22] Anita Aghaie et al. “Security Analysis of Delay-Based Strong PUFs with
Multiple Delay Lines”. Jan. 2022.

[AK96] Ross Anderson and Markus Kuhn. “Tamper Resistance - a Cautionary
Note”. In: Proceedings of the 2nd Workshop On Electronic Commerce. Nov.
1996. url: https://www.usenix.org/legacy/publications/library/
proceedings/ec96/full_papers/kuhn/index.html (visited on 01/24/2022).

[AM20] Anita Aghaie and Amir Moradi. “TI-PUF: Toward Side-Channel Resis-
tant Physical Unclonable Functions”. In: IEEE Transactions on Information
Forensics and Security 15 (2020), pp. 3470–3481. issn: 1556-6013, 1556-
6021. url: https://ieeexplore.ieee.org/document/9063465/ (visited
on 03/22/2021).

[AM21] Anita Aghaie and Amir Moradi. “Inconsistency of Simulation and Prac-
tice in Delay-based Strong PUFs”. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems (July 2021), pp. 520–551. issn: 2569-2925.
url: https://tches.iacr.org/index.php/TCHES/article/view/8985
(visited on 08/20/2021).

[Arm+09] Frederik Armknecht et al. “Physically Unclonable Pseudorandom Func-
tions”. In: Poster at EUROCRYPT - 28th Annual International Conference
on the Theory and Applications of Cryptographic Techniques (2009), p. 18.

[Arm+11] Frederik Armknecht et al. “A Formalization of the Security Features of
Physical Functions”. In: 2011 IEEE Symposium on Security and Privacy.
Oakland, CA, USA: IEEE, May 2011, pp. 397–412. isbn: 978-1-4577-0147-
4. url: http://ieeexplore.ieee.org/document/5958042/ (visited on
09/12/2018).

[Arm+16] Frederik Armknecht et al. “Towards a Unified Security Model for Physically
Unclonable Functions”. In: Cryptographers’ Track at the RSA Conference.
2016. url: http://eprint.iacr.org/2016/033 (visited on 09/12/2018).

[AZ17] Mohammed Saeed Alkatheiri and Yu Zhuang. “Towards Fast and Accurate
Machine Learning Attacks of Feed-Forward Arbiter PUFs”. In: 2017 IEEE
Conference on Dependable and Secure Computing. Aug. 2017, pp. 181–187.

[AZA18] A. O. Aseeri, Y. Zhuang, and M. S. Alkatheiri. “A Machine Learning-Based
Security Vulnerability Study on XOR PUFs for Resource-Constraint Inter-
net of Things”. In: 2018 IEEE International Congress on Internet of Things
(ICIOT). July 2018, pp. 49–56.

105

https://www.usenix.org/legacy/publications/library/proceedings/ec96/full_papers/kuhn/index.html
https://www.usenix.org/legacy/publications/library/proceedings/ec96/full_papers/kuhn/index.html
https://ieeexplore.ieee.org/document/9063465/
https://tches.iacr.org/index.php/TCHES/article/view/8985
http://ieeexplore.ieee.org/document/5958042/
http://eprint.iacr.org/2016/033

[AZP20] S. V. Sandeep Avvaru, Ziqing Zeng, and Keshab K. Parhi. “Homogeneous
and Heterogeneous Feed-Forward XOR Physical Unclonable Functions”.
In: IEEE Transactions on Information Forensics and Security 15 (2020),
pp. 2485–2498. issn: 1556-6021.

[Bec15] Georg T. Becker. “The Gap Between Promise and Reality: On the Insecurity
of XOR Arbiter PUFs”. In: Cryptographic Hardware and Embedded Systems
– CHES 2015. Ed. by Tim Güneysu and Helena Handschuh. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2015, pp. 535–555. isbn:
978-3-662-48324-4.

[Ber41] Andrew C. Berry. “The Accuracy of the Gaussian Approximation to the
Sum of Independent Variates”. In: Transactions of the American Mathe-
matical Society 49.1 (1941), pp. 122–136. issn: 0002-9947, 1088-6850. url:
https://www.ams.org/tran/1941-049-01/S0002-9947-1941-0003498-
3/ (visited on 11/01/2021).

[Brz+11] Christina Brzuska et al. “Physically Uncloneable Functions in the Universal
Composition Framework”. In: Advances in Cryptology – CRYPTO 2011. Ed.
by David Hutchison et al. Vol. 6841. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2011, pp. 51–70. isbn: 978-3-642-22791-2 978-3-642-22792-9. url:
http://link.springer.com/10.1007/978-3-642-22792-9_4 (visited on
09/12/2018).

[Che+11] Qingqing Chen et al. “The Bistable Ring PUF: A New Architecture for
Strong Physical Unclonable Functions”. In: 2011 IEEE International Sym-
posium on Hardware-Oriented Security and Trust. San Diego, CA, USA:
IEEE, June 2011, pp. 134–141. isbn: 978-1-4577-1059-9. url: http : / /
ieeexplore.ieee.org/document/5955011/ (visited on 09/11/2018).

[CMH20] D. Chatterjee, D. Mukhopadhyay, and A. Hazra. “PUF-G: A CAD Frame-
work for Automated Assessment of Provable Learnability from Formal PUF
Representations”. In: 2020 IEEE/ACM International Conference On Com-
puter Aided Design (ICCAD). Nov. 2020, pp. 1–9.

[Del19] J. Delvaux. “Machine-Learning Attacks on PolyPUFs, OB-PUFs, RPUFs,
LHS-PUFs, and PUF–FSMs”. In: IEEE Transactions on Information Foren-
sics and Security 14.8 (Aug. 2019), pp. 2043–2058.

[DV13] Jeroen Delvaux and Ingrid Verbauwhede. “Side Channel Modeling Attacks
on 65nm Arbiter PUFs Exploiting CMOS Device Noise”. In: Hardware-
Oriented Security and Trust (HOST), 2013 IEEE International Symposium
On. IEEE, 2013, pp. 137–142.

[Gan+15] Fatemeh Ganji et al. “Lattice Basis Reduction Attack against Physically
Unclonable Functions”. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security - CCS ’15. Denver, Col-
orado, USA: ACM Press, 2015, pp. 1070–1080. isbn: 978-1-4503-3832-5.

106

https://www.ams.org/tran/1941-049-01/S0002-9947-1941-0003498-3/
https://www.ams.org/tran/1941-049-01/S0002-9947-1941-0003498-3/
http://link.springer.com/10.1007/978-3-642-22792-9_4
http://ieeexplore.ieee.org/document/5955011/
http://ieeexplore.ieee.org/document/5955011/

url: http://dl.acm.org/citation.cfm?doid=2810103.2813723 (visited
on 09/20/2019).

[Gan+16] Fatemeh Ganji et al. “Strong Machine Learning Attack Against PUFs with
No Mathematical Model”. In: Cryptographic Hardware and Embedded Sys-
tems – CHES 2016. Ed. by Benedikt Gierlichs and Axel Y. Poschmann. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2016, pp. 391–
411. isbn: 978-3-662-53140-2.

[Gas+02] Blaise Gassend et al. “Silicon Physical Random Functions”. In: Proceedings
of the 9th ACM Conference on Computer and Communications Security.
CCS ’02. New York, NY, USA: ACM, 2002, pp. 148–160. isbn: 978-1-58113-
612-8. url: http://doi.acm.org/10.1145/586110.586132 (visited on
10/14/2019).

[Gas+04] Blaise Gassend et al. “Identification and Authentication of Integrated Cir-
cuits”. In: Concurrency and Computation: Practice and Experience 16.11
(Sept. 2004), pp. 1077–1098. issn: 1532-0634. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/cpe.805 (visited on 09/19/2018).

[GFS19] Fatemeh Ganji, Domenic Forte, and Jean-Pierre Seifert. “PUFmeter a Prop-
erty Testing Tool for Assessing the Robustness of Physically Unclonable
Functions to Machine Learning Attacks”. In: IEEE Access 7 (2019), pp. 122513–
122521. issn: 2169-3536. url: https://ieeexplore.ieee.org/document/
8819883/ (visited on 09/20/2019).

[GTS15] Fatemeh Ganji, Shahin Tajik, and Jean-Pierre Seifert. “Why Attackers Win:
On the Learnability of XOR Arbiter PUFs”. In: Trust and Trustworthy
Computing. Ed. by Mauro Conti, Matthias Schunter, and Ioannis Askoxy-
lakis. Lecture Notes in Computer Science. Springer International Publish-
ing, 2015, pp. 22–39. isbn: 978-3-319-22846-4.

[GTS16] Fatemeh Ganji, Shahin Tajik, and Jean-Pierre Seifert. “PAC Learning of
Arbiter PUFs”. In: Journal of Cryptographic Engineering 6.3 (Sept. 2016),
pp. 249–258. issn: 2190-8516. url: https://doi.org/10.1007/s13389-
016-0119-4 (visited on 09/24/2018).

[GTS18] Fatemeh Ganji, Shahin Tajik, and Jean-Pierre Seifert. “A Fourier Analy-
sis Based Attack Against Physically Unclonable Functions”. In: Financial
Cryptography and Data Security. Ed. by Sarah Meiklejohn and Kazue Sako.
Vol. 10957. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018, pp. 310–
328. isbn: 978-3-662-58386-9 978-3-662-58387-6. url: http://link.springer.
com/10.1007/978-3-662-58387-6_17 (visited on 09/20/2019).

[Gua+07] Jorge Guajardo et al. “FPGA Intrinsic PUFs and Their Use for IP Protec-
tion”. In: Cryptographic Hardware and Embedded Systems - CHES 2007. Ed.
by Pascal Paillier and Ingrid Verbauwhede. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2007, pp. 63–80. isbn: 978-3-540-74735-2.

107

http://dl.acm.org/citation.cfm?doid=2810103.2813723
http://doi.acm.org/10.1145/586110.586132
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.805
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.805
https://ieeexplore.ieee.org/document/8819883/
https://ieeexplore.ieee.org/document/8819883/
https://doi.org/10.1007/s13389-016-0119-4
https://doi.org/10.1007/s13389-016-0119-4
http://link.springer.com/10.1007/978-3-662-58387-6_17
http://link.springer.com/10.1007/978-3-662-58387-6_17

[HBF07] Daniel E. Holcomb, Wayne P. Burleson, and Kevin Fu. “Initial SRAM State
as a Fingerprint and Source of True Random Numbers for RFID Tags”. In:
In Proceedings of the Conference on RFID Security. 2007.

[Hel+13] C. Helfmeier et al. “Cloning Physically Unclonable Functions”. In: 2013
IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST). June 2013, pp. 1–6.

[HMV12] Gabriel Hospodar, Roel Maes, and Ingrid Verbauwhede. “Machine Learning
Attacks on 65nm Arbiter PUFs: Accurate Modeling Poses Strict Bounds on
Usability.” In: WIFS. 2012, pp. 37–42.

[KB15] Raghavan Kumar and Wayne Burleson. “Side-Channel Assisted Modeling
Attacks on Feed-Forward Arbiter PUFs Using Silicon Data”. In: Radio Fre-
quency Identification. Ed. by Stefan Mangard and Patrick Schaumont. Lec-
ture Notes in Computer Science. Cham: Springer International Publishing,
2015, pp. 53–67. isbn: 978-3-319-24837-0.

[KB17] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Op-
timization”. In: arXiv:1412.6980 [cs] (Jan. 2017). arXiv: 1412.6980 [cs].
url: http://arxiv.org/abs/1412.6980 (visited on 04/12/2021).

[KK99] Oliver Koemmerling and Markus G Kuhn. “Design Principles for Tamper-
Resistant Smartcard Processors”. In: (1999), p. 13.

[Lee+04] J. W. Lee et al. “A Technique to Build a Secret Key in Integrated Circuits
for Identification and Authentication Applications”. In: 2004 Symposium
on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).
June 2004, pp. 176–179.

[Lim+05] Daihyun Lim et al. “Extracting Secret Keys from Integrated Circuits”. In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 13.10
(Oct. 2005), pp. 1200–1205. issn: 1557-9999.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. “Constant Depth Cir-
cuits, Fourier Transform, and Learnability”. In: J. ACM 40.3 (July 1993),
pp. 607–620. issn: 0004-5411. url: http : / / doi . acm . org / 10 . 1145 /
174130.174138 (visited on 09/23/2019).

[Loh+16] Heiko Lohrke et al. “No Place to Hide: Contactless Probing of Secret Data
on FPGAs”. In: Cryptographic Hardware and Embedded Systems – CHES
2016. Ed. by Benedikt Gierlichs and Axel Y. Poschmann. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2016, pp. 147–167. isbn:
978-3-662-53140-2.

[Mae+12] Roel Maes et al. “Experimental Evaluation of Physically Unclonable Func-
tions in 65 Nm CMOS”. In: 2012 Proceedings of the ESSCIRC (ESSCIRC).
Bordeaux, France: IEEE, Sept. 2012, pp. 486–489. isbn: 978-1-4673-2213-
3 978-1-4673-2212-6 978-1-4673-2211-9. url: http://ieeexplore.ieee.
org/document/6341361/ (visited on 09/11/2019).

108

https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://doi.acm.org/10.1145/174130.174138
http://doi.acm.org/10.1145/174130.174138
http://ieeexplore.ieee.org/document/6341361/
http://ieeexplore.ieee.org/document/6341361/

[Mae13] Roel Maes. Physically Unclonable Functions: Constructions, Properties and
Applications. Berlin Heidelberg: Springer-Verlag, 2013. isbn: 978-3-642-41394-
0. url: https://www.springer.com/gp/book/9783642413940 (visited on
10/21/2021).

[Mah97] David P. Maher. “Fault Induction Attacks, Tamper Resistance, and Hostile
Reverse Engineering in Perspective”. In: Financial Cryptography. Ed. by
Rafael Hirschfeld. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 1997, pp. 109–121. isbn: 978-3-540-69607-0.

[Maj+12] M. Majzoobi et al. “Slender PUF Protocol: A Lightweight, Robust, and
Secure Authentication by Substring Matching”. In: 2012 IEEE Symposium
on Security and Privacy Workshops. May 2012, pp. 33–44.

[MEK10] Mehrdad Majzoobi, Ahmed Elnably, and Farinaz Koushanfar. “FPGA Time-
Bounded Unclonable Authentication”. In: Information Hiding. Ed. by Rainer
Böhme, Philip W. L. Fong, and Reihaneh Safavi-Naini. Vol. 6387. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–16. isbn: 978-3-642-
16434-7 978-3-642-16435-4. url: http://link.springer.com/10.1007/
978-3-642-16435-4_1 (visited on 09/11/2018).

[MKP08] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. “Lightweight
Secure PUFs”. In: Proceedings of the 2008 IEEE/ACM International Confer-
ence on Computer-Aided Design. ICCAD ’08. Piscataway, NJ, USA: IEEE
Press, 2008, pp. 670–673. isbn: 978-1-4244-2820-5. url: http://dl.acm.
org/citation.cfm?id=1509456.1509603 (visited on 09/19/2018).

[MP69] Marvin Minsky and Seymour A. Papert. Perceptrons: An Introduction to
Computational Geometry. Cambridge, MA, USA: MIT Press, Jan. 1969.
isbn: 978-0-262-13043-1.

[Mur+20] Khalid T. Mursi et al. “A Fast Deep Learning Method for Security Vulnera-
bility Study of XOR PUFs”. In: Electronics 9.10 (Oct. 2020), p. 1715. url:
https://www.mdpi.com/2079-9292/9/10/1715 (visited on 02/05/2021).

[Ned+13] D. Nedospasov et al. “Invasive PUF Analysis”. In: 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography. Aug. 2013, pp. 30–38.

[Ngu+16] Phuong Ha Nguyen et al. “Security Analysis of Arbiter PUF and Its Lightweight
Compositions Under Predictability Test”. In: ACM Trans. Des. Autom.
Electron. Syst. 22.2 (Dec. 2016), 20:1–20:28. issn: 1084-4309. url: http:
//doi.acm.org/10.1145/2940326 (visited on 04/03/2019).

[Ngu+19] Phuong Ha Nguyen et al. “The Interpose PUF: Secure PUF Design against
State-of-the-art Machine Learning Attacks”. In: IACR Transactions on Cryp-
tographic Hardware and Embedded Systems (Aug. 2019), pp. 243–290. issn:
2569-2925. url: https://tches.iacr.org/index.php/TCHES/article/
view/8351 (visited on 10/11/2019).

[ODo14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,
2014.

109

https://www.springer.com/gp/book/9783642413940
http://link.springer.com/10.1007/978-3-642-16435-4_1
http://link.springer.com/10.1007/978-3-642-16435-4_1
http://dl.acm.org/citation.cfm?id=1509456.1509603
http://dl.acm.org/citation.cfm?id=1509456.1509603
https://www.mdpi.com/2079-9292/9/10/1715
http://doi.acm.org/10.1145/2940326
http://doi.acm.org/10.1145/2940326
https://tches.iacr.org/index.php/TCHES/article/view/8351
https://tches.iacr.org/index.php/TCHES/article/view/8351

[Pap+02] Ravikanth Pappu et al. “Physical One-Way Functions”. In: Science 297.5589
(Sept. 2002), pp. 2026–2030. issn: 0036-8075, 1095-9203. url: http://
science.sciencemag.org/content/297/5589/2026 (visited on 09/24/2018).

[RBK10] Ulrich Rührmair, Heike Busch, and Stefan Katzenbeisser. “Strong PUFs:
Models, Constructions, and Security Proofs”. In: Towards Hardware-Intrinsic
Security: Foundations and Practice. Ed. by Ahmad-Reza Sadeghi and David
Naccache. Information Security and Cryptography. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 79–96. isbn: 978-3-642-14452-3. url: https:
//doi.org/10.1007/978-3-642-14452-3_4 (visited on 09/24/2018).

[Rüh+10] Ulrich Rührmair et al. “Modeling Attacks on Physical Unclonable Func-
tions”. In: Proceedings of the 17th ACM Conference on Computer and Com-
munications Security. CCS ’10. New York, NY, USA: ACM, 2010, pp. 237–
249. isbn: 978-1-4503-0245-6. url: http : / / doi . acm . org / 10 . 1145 /
1866307.1866335 (visited on 09/19/2018).

[Rüh+13a] Ulrich Rührmair et al. Optical PUFs Reloaded. Tech. rep. 215. 2013. url:
https://eprint.iacr.org/2013/215 (visited on 08/20/2021).

[Rüh+13b] Ulrich Rührmair et al. “PUF Modeling Attacks on Simulated and Silicon
Data”. In: IEEE Transactions on Information Forensics and Security 8.11
(2013), pp. 1876–1891.

[Ruh20] Ulrich Ruhrmair. “SoK: Towards Secret-Free Security”. In: Proceedings of
the 4th ACM Workshop on Attacks and Solutions in Hardware Security.
ASHES’20. New York, NY, USA: Association for Computing Machinery,
Nov. 2020, pp. 5–19. isbn: 978-1-4503-8090-4. url: https://doi.org/10.
1145/3411504.3421220 (visited on 05/30/2021).

[Ruk+10] Andrew Rukhin et al. “A Statistical Test Suite for Random and Pseudoran-
dom Number Generators for Cryptographic Applications”. In: NIST Special
Publication 800-22 (2010), p. 131.

[Sah+14] Durga Prasad Sahoo et al. “Composite PUF: A New Design Paradigm for
Physically Unclonable Functions on FPGA”. In: 2014 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST). Arlington,
VA, USA: IEEE, May 2014, pp. 50–55. isbn: 978-1-4799-4112-4 978-1-4799-
4114-8. url: http://ieeexplore.ieee.org/document/6855567/ (visited
on 04/03/2019).

[Sah+15] Durga Prasad Sahoo et al. “A Case of Lightweight PUF Constructions:
Cryptanalysis and Machine Learning Attacks”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 34.8 (Aug. 2015),
pp. 1334–1343. issn: 0278-0070, 1937-4151. url: http : / / ieeexplore .
ieee.org/document/7131531/ (visited on 04/03/2019).

110

http://science.sciencemag.org/content/297/5589/2026
http://science.sciencemag.org/content/297/5589/2026
https://doi.org/10.1007/978-3-642-14452-3_4
https://doi.org/10.1007/978-3-642-14452-3_4
http://doi.acm.org/10.1145/1866307.1866335
http://doi.acm.org/10.1145/1866307.1866335
https://eprint.iacr.org/2013/215
https://doi.org/10.1145/3411504.3421220
https://doi.org/10.1145/3411504.3421220
http://ieeexplore.ieee.org/document/6855567/
http://ieeexplore.ieee.org/document/7131531/
http://ieeexplore.ieee.org/document/7131531/

[Sah+16] Durga Prasad Sahoo et al. “Fault Tolerant Implementations of Delay-Based
Physically Unclonable Functions on FPGA”. In: 2016 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC). Santa Barbara, CA,
USA: IEEE, Aug. 2016, pp. 87–101. isbn: 978-1-5090-1108-7. url: http:
//ieeexplore.ieee.org/document/7774485/ (visited on 04/03/2019).

[San+19] Pranesh Santikellur et al. “A Computationally Efficient Tensor Regression
Network Based Modeling Attack on XOR APUF”. In: 2019 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST). Dec. 2019, pp. 1–6.

[SBC19] Pranesh Santikellur, Aritra Bhattacharyay, and Rajat Subhra Chakraborty.
“Deep Learning Based Model Building Attacks on Arbiter PUF Composi-
tions”. In: (2019), p. 10.

[SD07] G. Edward Suh and Srinivas Devadas. “Physical Unclonable Functions for
Device Authentication and Secret Key Generation”. In: Proceedings of the
44th Annual Design Automation Conference. DAC ’07. New York, NY, USA:
ACM, 2007, pp. 9–14. isbn: 978-1-59593-627-1. url: http://doi.acm.org/
10.1145/1278480.1278484 (visited on 09/19/2018).

[Sid+19] Akhilesh Anilkumar Siddhanti et al. “Analysis of the Strict Avalanche Cri-
terion in Variants of Arbiter-Based Physically Unclonable Functions”. In:
Progress in Cryptology – INDOCRYPT 2019. Ed. by Feng Hao, Sushmita
Ruj, and Sourav Sen Gupta. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2019, pp. 556–577. isbn: 978-3-030-35423-
7.

[Söl09] Jan Sölter. “Cryptanalysis of Electrical PUFs via Machine Learning Al-
gorithms”. M.Sc. Thesis. München: Technische Universität München, 2009.
url: https://www.researchgate.net/profile/Jan_Soelter/publication/
259580784_Cryptanalysis_of_electrical_PUFs_via_machine_learning_
algorithms/links/00b4952cc03621836c000000.pdf.

[SS06] Eric Simpson and Patrick Schaumont. “Offline Hardware/Software Authen-
tication for Reconfigurable Platforms”. In: Cryptographic Hardware and Em-
bedded Systems - CHES 2006. Ed. by David Hutchison et al. Vol. 4249.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 311–323. isbn:
978-3-540-46559-1 978-3-540-46561-4. url: http://link.springer.com/
10.1007/11894063_25 (visited on 10/22/2021).

[TAB21] Johannes Tobisch, Anita Aghaie, and Georg T. Becker. “Combining Op-
timization Objectives: New Modeling Attacks on Strong PUFs”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems (Feb. 2021),
pp. 357–389. issn: 2569-2925. url: https://tches.iacr.org/index.php/
TCHES/article/view/8798 (visited on 03/01/2021).

111

http://ieeexplore.ieee.org/document/7774485/
http://ieeexplore.ieee.org/document/7774485/
http://doi.acm.org/10.1145/1278480.1278484
http://doi.acm.org/10.1145/1278480.1278484
https://www.researchgate.net/profile/Jan_Soelter/publication/259580784_Cryptanalysis_of_electrical_PUFs_via_machine_learning_algorithms/links/00b4952cc03621836c000000.pdf
https://www.researchgate.net/profile/Jan_Soelter/publication/259580784_Cryptanalysis_of_electrical_PUFs_via_machine_learning_algorithms/links/00b4952cc03621836c000000.pdf
https://www.researchgate.net/profile/Jan_Soelter/publication/259580784_Cryptanalysis_of_electrical_PUFs_via_machine_learning_algorithms/links/00b4952cc03621836c000000.pdf
http://link.springer.com/10.1007/11894063_25
http://link.springer.com/10.1007/11894063_25
https://tches.iacr.org/index.php/TCHES/article/view/8798
https://tches.iacr.org/index.php/TCHES/article/view/8798

[Taj+14] Shahin Tajik et al. “Physical Characterization of Arbiter PUFs”. In: Ad-
vanced Information Systems Engineering. Ed. by David Hutchison et al.
Vol. 7908. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 493–509.
isbn: 978-3-642-38708-1 978-3-642-38709-8. url: http://link.springer.
com/10.1007/978-3-662-44709-3_27 (visited on 04/11/2019).

[Taj+15] Shahin Tajik et al. “Laser Fault Attack on Physically Unclonable Func-
tions”. In: 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC). Sept. 2015, pp. 85–96.

[TB15] Johannes Tobisch and Georg T. Becker. “On the Scaling of Machine Learn-
ing Attacks on PUFs with Application to Noise Bifurcation”. In: Interna-
tional Workshop on Radio Frequency Identification: Security and Privacy
Issues. Springer, 2015, pp. 17–31.

[Tyu10] Il’ya S Tyurin. “Refinement of the Upper Bounds of the Constants in Lya-
punov’s Theorem”. In: Russian Mathematical Surveys 65.3 (Sept. 2010),
pp. 586–588. issn: 0036-0279, 1468-4829. url: http://stacks.iop.org/
0036-0279/65/i=3/a=L09?key=crossref.ec669802876a5dabacaa7709cadd97a8
(visited on 11/01/2021).

[UTB16] Christine Utz, Johannes Tobisch, and Georg T Becker. “Extended Abstract:
Analysis of 1000 Arbiter PUF Based RFID Tags”. In: (2016), p. 5.

[Val84] L. G. Valiant. “A Theory of the Learnable”. In: Communications of the
ACM 27.11 (Nov. 1984), pp. 1134–1142. issn: 0001-0782. url: https://
doi.org/10.1145/1968.1972 (visited on 07/02/2021).

[Wis+19] Nils Wisiol et al. Breaking the Lightweight Secure PUF: Understanding the
Relation of Input Transformations and Machine Learning Resistance. Tech.
rep. 799. 2019. url: https://eprint.iacr.org/2019/799 (visited on
10/11/2019).

[Wis+20a] Nils Wisiol et al. “Breaking the Lightweight Secure PUF: Understanding
the Relation of Input Transformations and Machine Learning Resistance”.
In: Smart Card Research and Advanced Applications. Ed. by Sonia Belaïd
and Tim Güneysu. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2020, pp. 40–54. isbn: 978-3-030-42068-0.

[Wis+20b] Nils Wisiol et al. “Splitting the Interpose PUF: A Novel Modeling Attack
Strategy”. In: IACR Transactions on Cryptographic Hardware and Embedded
Systems (June 2020), pp. 97–120. issn: 2569-2925. url: https://tches.
iacr.org/index.php/TCHES/article/view/8584 (visited on 09/01/2020).

[Wis+21a] Nils Wisiol et al. Neural-Network-Based Modeling Attacks on XOR Arbiter
PUFs Revisited. Tech. rep. 555. 2021. url: https://eprint.iacr.org/
2021/555 (visited on 04/28/2021).

[Wis+21b] Nils Wisiol et al. Pypuf. Zenodo. June 2021. url: https://zenodo.org/
record/3901410 (visited on 07/07/2021).

112

http://link.springer.com/10.1007/978-3-662-44709-3_27
http://link.springer.com/10.1007/978-3-662-44709-3_27
http://stacks.iop.org/0036-0279/65/i=3/a=L09?key=crossref.ec669802876a5dabacaa7709cadd97a8
http://stacks.iop.org/0036-0279/65/i=3/a=L09?key=crossref.ec669802876a5dabacaa7709cadd97a8
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://eprint.iacr.org/2019/799
https://tches.iacr.org/index.php/TCHES/article/view/8584
https://tches.iacr.org/index.php/TCHES/article/view/8584
https://eprint.iacr.org/2021/555
https://eprint.iacr.org/2021/555
https://zenodo.org/record/3901410
https://zenodo.org/record/3901410

[Wis21] Nils Wisiol. Towards Attack Resilient Arbiter PUF-Based Strong PUFs.
Tech. rep. 1004. 2021. url: https://eprint.iacr.org/2021/1004 (visited
on 08/19/2021).

[WM18] Nils Wisiol and Marian Margraf. Attacking RO-PUFs with Enhanced Challenge-
Response Pairs. Tech. rep. 862. 2018. url: https://eprint.iacr.org/
2018/862 (visited on 10/11/2019).

[WM19] Nils Wisiol and Marian Margraf. “Why Attackers Lose: Design and Security
Analysis of Arbitrarily Large XOR Arbiter PUFs”. In: Journal of Crypto-
graphic Engineering 9.3 (Sept. 2019), pp. 221–230. issn: 2190-8516. url:
https://doi.org/10.1007/s13389-019-00204-8 (visited on 10/11/2019).

[WP20] Nils Wisiol and Niklas Pirnay. “Short Paper: XOR Arbiter PUFs Have Sys-
tematic Response Bias”. In: Financial Cryptography and Data Security. Ed.
by Joseph Bonneau and Nadia Heninger. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2020, pp. 50–57. isbn: 978-
3-030-51280-4.

[Yam+14] Dai Yamamoto et al. “Security Evaluation of Bistable Ring PUFs on FPGAs
Using Differential and Linear Analysis”. In: 2014 Federated Conference on
Computer Science and Information Systems. Sept. 2014, pp. 911–918. url:
https://fedcsis.org/proceedings/2014/drp/122.html (visited on
09/20/2019).

[Yas+16] Risa Yashiro et al. “Deep-Learning-Based Security Evaluation on Authenti-
cation Systems Using Arbiter PUF and Its Variants”. In: Advances in Infor-
mation and Computer Security. Ed. by Kazuto Ogawa and Katsunari Yosh-
ioka. Vol. 9836. Cham: Springer International Publishing, 2016, pp. 267–285.
isbn: 978-3-319-44523-6 978-3-319-44524-3. url: http://link.springer.
com/10.1007/978-3-319-44524-3_16 (visited on 10/01/2018).

[Yu+14] Meng-Day Yu et al. “A Noise Bifurcation Architecture for Linear Additive
Physical Functions”. In: 2014 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST). May 2014, pp. 124–129.

[Yu+16] Meng-Day Yu et al. “A Lockdown Technique to Prevent Machine Learning
on PUFs for Lightweight Authentication”. In: IEEE Transactions on Multi-
Scale Computing Systems 2.3 (July 2016), pp. 146–159. issn: 2332-7766.
url: http : / / ieeexplore . ieee . org / document / 7450665/ (visited on
04/09/2019).

[ZPK17] Chen Zhou, Keshab K. Parhi, and Chris H. Kim. “Secure and Reliable
XOR Arbiter PUF Design: An Experimental Study Based on 1 Trillion
Challenge Response Pair Measurements”. In: Proceedings of the 54th Annual
Design Automation Conference 2017 on - DAC ’17. Austin, TX, USA: ACM
Press, 2017, pp. 1–6. isbn: 978-1-4503-4927-7. url: http://dl.acm.org/
citation.cfm?doid=3061639.3062315 (visited on 01/31/2019).

113

https://eprint.iacr.org/2021/1004
https://eprint.iacr.org/2018/862
https://eprint.iacr.org/2018/862
https://doi.org/10.1007/s13389-019-00204-8
https://fedcsis.org/proceedings/2014/drp/122.html
http://link.springer.com/10.1007/978-3-319-44524-3_16
http://link.springer.com/10.1007/978-3-319-44524-3_16
http://ieeexplore.ieee.org/document/7450665/
http://dl.acm.org/citation.cfm?doid=3061639.3062315
http://dl.acm.org/citation.cfm?doid=3061639.3062315

A. Arbiter PUF Additive Delay Model

Theorem. For n ∈ N and given stage delay values dTT
i , dTB

i , dBT
i , dBB

i ∈ R+, with 1 ≤
i ≤ n, there exists w ∈ Rn and b ∈ R such that for all c ∈ {−1, 1}n ,it holds that

∆DModel(c) = ⟨w, x⟩+ b,

where x = (xi)i =
(︂∏︁n

j=i cj

)︂
i
. For even n we have

w =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dTT
1 − dBB

1 − dBT
1 + dTB

1

−dTT
2 + dBB

2 + dBT
2 − dTB

2 + dTT
1 − dBB

1 + dBT
1 − dTB

1

dTT
3 − dBB

3 − dBT
3 + dTB

3 − dTT
2 + dBB

2 − dBT
2 + dTB

2
...

−dTT
n−2 + dBB

n−2 + dBT
n−2 − dTB

n−2 + dTT
n−3 − dBB

n−3 + dBT
n−3 − dTB

n−3

dTT
n−1 − dBB

n−1 − dBT
n−1 + dTB

n−1 − dTT
n−2 + dBB

n−2 − dBT
n−2 + dTB

n−2

−dTT
n + dBB

n + dBT
n − dTB

n + dTT
n−1 − dBB

n−1 + dBT
n−1 − dTB

n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

b = 1/2
(︁
dTT
n − dBB

n + dBT
n − dTB

n

)︁
;

Similar formulae exist for odd n.

Proof. The proof is by induction over i. For i = 1 we have

∆D1 = dT1 − dB1 =

{︄
dTT
1 − dBB

1 (c1 = −1 ⇐⇒ 1/2− 1/2c1 = 1) ,

dBT
1 − dTB

1 (c1 = 1 ⇐⇒ 1/2− 1/2c1 = 0) .

Using the fact that 1/2− 1/2c1 ∈ {0, 1}, we can write

∆D1 = (1/2− 1/2c1)
(︁
dTT
1 − dBB

1

)︁
+ (1− (1/2− 1/2c1))

(︁
dBT
1 − dTB

1

)︁
= c1 · 1/2

(︁
dBB
1 − dTT

1 + dBT
1 − dTB

1

)︁⏞ ⏟⏟ ⏞
w

(1)
1

+1/2
(︁
dTT
1 − dBB

1 + dBT
1 − dTB

1

)︁⏞ ⏟⏟ ⏞
b(1)

=
⟨︂
x(1), w(1)

⟩︂
+ b(1)

where c(1) =
(︂
c
(1)
1

)︂
∈ {−1, 1}1, x(1) =

(︂∏︁1
j=i c

(1)
i

)︂
i
=
(︂
x
(1)
1

)︂
= (c1) and w(1) =

(︂
w

(1)
1

)︂
∈

R1.
Assuming ∆Di−1 =

⟨︁
x(i−1), w(i−1)

⟩︁
+ b(i−1), we have

∆Di = dTi − dBi =

{︄
dTi−1 + dTT

i − dBi−1 − dBB
i (ci = −1 ⇐⇒ 1/2− 1/2ci = 1) ,

dBi−1 + dBT
i − dTi−1 − dTB

i (ci = 1 ⇐⇒ 1/2− 1/2ci = 0) ,

=

{︄
∆Di−1 + dTT

i − dBB
i (ci = −1 ⇐⇒ 1/2− 1/2ci = 1) ,

−∆Di−1 + dBT
i − dTB

i (ci = 1 ⇐⇒ 1/2− 1/2ci = 0) ,

114

Using the fact that 1/2− 1/2ci ∈ {0, 1}, we can write

∆Di = (1/2− 1/2ci)
(︁
∆Di−1 + dTT

i − dBB
i

)︁
+ (1/2 + 1/2ci)

(︁
−∆Di−1 + dBT

i − dTB
i

)︁
= ci · 1/2

⎛⎜⎝−dTT
i + dBB

i + dBT
i − dTB

i⏞ ⏟⏟ ⏞
2ŵ(i)

−2∆Dn−1

⎞⎟⎠− 1/2
(︁
dTT
i − dBB

i + dBT
i − dTB

i

)︁⏞ ⏟⏟ ⏞
b̂
(i)

= ci ·
(︂
ŵ(i) −∆Di−1

)︂
+ b̂

(i)

= ci ·
(︂
ŵ(i) −

⟨︂
x(i−1), w(i−1)

⟩︂
− b(i−1)

)︂
+ b̂

(i)

= ci ·

⎛⎝ŵ(i) −

⎛⎝ i−1∑︂
l=1

w
(i−1)
l

i−1∏︂
j=l

cj

⎞⎠− b(i−1)

⎞⎠+ b̂
(i)

=

⎛⎝ i−1∑︂
l=1

−w(i−1)
l

i∏︂
j=l

cj

⎞⎠+
(︂
ŵ(i) − b(i−1)

)︂
ci + b̂

(i)
.

Setting Ri ∋ w(i) =
(︂
−w(i−1)

1 , . . . ,−w(i−1)
i−1 , ŵ(i) − b(i−1)

)︂
and b(i) = b̂

(i)
we continue

∆Di =
i∑︂

l=1

w
(i)
l

i∏︂
j=l

cj + b̂
(i)

=
⟨︂
w(i), x(i)

⟩︂
+ b(i).

Finally, for i = n, we set w = w(n), x = x(n), and b = b(n) and conclude that

∆DModel = ∆Dn = ⟨w, x⟩+ b.

Hence, an Arbiter PUF with positive delays dTT
i , dTB

i , dBT
i , dBB

i for each stage i can be
modeled as claimed. Formulae for w and b can be obtained by recursively plugging w(i−1)

into the definition of w(i).

115

B. Permutation PUF

The permutations shown here are the first 10 permutations on vectors of length 64 among
the ones generated by the numpy RandomState object using seeds starting from 0xbad,
i.e.

• RandomState(0xbad).permutation(64),

• RandomState(0xbae).permutation(64),

• RandomState(0xbaf).permutation(64),

• ...

that meet the criteria stated in Section 4.3, where RandomState is from numpy 1.3.13.
The tables were generated with the code below.

from numpy.random import RandomState

seeds = [2989, 2992, 3038, 3084, 3457, 6200, 7089,
18369, 21540, 44106]

parts = [(0, 16), (16,32), (32,48), (48, 64)]
print(r’\begin{tabular}{c|’ + ’c’*64 + ’}’)
for a, b in parts:

if a != 0:
print(r’\hline\hline’)

print(
r’ ’ + r’\(i\)&’ +
’&’.join(

[
r’\(x^{(i)}_{%i}\)’ % (i+1)
for i in range(a, b)

]
) + r’\\ \hline’)

for l, seed in enumerate(seeds):
print(’ ’ + ’%i&’ % (l+1) + ’&’.join(

[
r’\(c_{%i}\)’ % (i+1) for i in
RandomState(seed).permutation(64)[a:b]

]) + r’\\’)
print(r’\end{tabular}’)

116

i c
(i)
1 c

(i)
2 c

(i)
3 c

(i)
4 c

(i)
5 c

(i)
6 c

(i)
7 c

(i)
8 c

(i)
9 c

(i)
10 c

(i)
11 c

(i)
12 c

(i)
13 c

(i)
14 c

(i)
15 c

(i)
16

1 c45 c12 c54 c31 c11 c40 c47 c58 c22 c24 c6 c8 c5 c3 c41 c53

2 c29 c56 c28 c32 c53 c34 c25 c27 c61 c26 c33 c57 c50 c30 c35 c44

3 c26 c55 c44 c28 c6 c39 c20 c30 c23 c7 c63 c56 c27 c31 c11 c37

4 c59 c5 c63 c61 c29 c12 c37 c32 c6 c44 c34 c42 c45 c38 c14 c31

5 c52 c29 c16 c9 c10 c18 c64 c33 c38 c43 c22 c19 c25 c62 c53 c50

6 c7 c28 c35 c53 c43 c45 c34 c4 c19 c50 c54 c11 c15 c29 c20 c12

7 c61 c31 c1 c22 c63 c14 c49 c47 c55 c51 c58 c48 c62 c39 c25 c21

8 c16 c19 c22 c41 c27 c28 c21 c23 c11 c25 c17 c4 c44 c26 c6 c35

9 c9 c49 c51 c52 c42 c46 c19 c1 c29 c18 c2 c10 c20 c55 c47 c7

10 c43 c4 c45 c38 c51 c19 c6 c35 c46 c54 c8 c47 c34 c52 c61 c63

i c
(i)
17 c

(i)
18 c

(i)
19 c

(i)
20 c

(i)
21 c

(i)
22 c

(i)
23 c

(i)
24 c

(i)
25 c

(i)
26 c

(i)
27 c

(i)
28 c

(i)
29 c

(i)
30 c

(i)
31 c

(i)
32

1 c16 c62 c57 c27 c9 c52 c18 c51 c50 c14 c32 c15 c56 c46 c44 c23

2 c9 c54 c39 c12 c4 c10 c15 c60 c42 c6 c7 c21 c31 c19 c18 c38

3 c4 c13 c34 c9 c40 c48 c54 c62 c60 c18 c24 c10 c1 c25 c35 c36

4 c49 c16 c43 c19 c22 c8 c40 c4 c41 c10 c2 c51 c11 c33 c58 c20

5 c35 c57 c41 c42 c17 c3 c56 c27 c1 c47 c49 c14 c30 c58 c5 c4

6 c3 c10 c60 c62 c47 c31 c64 c33 c37 c23 c39 c30 c25 c41 c49 c51

7 c23 c26 c9 c44 c12 c27 c50 c10 c19 c40 c59 c18 c8 c42 c43 c54

8 c56 c40 c3 c49 c7 c60 c36 c57 c62 c42 c52 c45 c32 c55 c20 c47

9 c28 c59 c62 c13 c48 c23 c14 c38 c53 c60 c5 c4 c34 c40 c50 c3

10 c31 c17 c30 c18 c39 c9 c42 c40 c13 c15 c14 c48 c12 c23 c10 c59

i c
(i)
33 c

(i)
34 c

(i)
35 c

(i)
36 c

(i)
37 c

(i)
38 c

(i)
39 c

(i)
40 c

(i)
41 c

(i)
42 c

(i)
43 c

(i)
44 c

(i)
45 c

(i)
46 c

(i)
47 c

(i)
48

1 c39 c49 c34 c63 c61 c60 c64 c55 c29 c30 c19 c25 c43 c33 c37 c26

2 c1 c51 c23 c64 c63 c5 c37 c14 c62 c2 c48 c17 c55 c41 c11 c22

3 c61 c8 c41 c49 c16 c15 c53 c33 c57 c45 c2 c12 c50 c3 c59 c5

4 c47 c30 c52 c13 c3 c54 c48 c18 c26 c25 c62 c35 c60 c21 c55 c46

5 c60 c45 c11 c26 c44 c40 c36 c7 c2 c28 c32 c21 c24 c48 c6 c13

6 c9 c52 c48 c6 c59 c63 c55 c61 c5 c32 c14 c58 c46 c2 c56 c36

7 c57 c13 c60 c37 c34 c64 c4 c46 c52 c15 c17 c20 c38 c45 c2 c3

8 c48 c14 c39 c24 c31 c50 c12 c29 c37 c53 c9 c43 c10 c58 c63 c2

9 c24 c6 c56 c54 c33 c21 c17 c43 c35 c58 c15 c27 c31 c12 c16 c63

10 c58 c21 c57 c25 c27 c53 c26 c36 c32 c33 c60 c1 c11 c62 c50 c20

i c
(i)
49 c

(i)
50 c

(i)
51 c

(i)
52 c

(i)
53 c

(i)
54 c

(i)
55 c

(i)
56 c

(i)
57 c

(i)
58 c

(i)
59 c

(i)
60 c

(i)
61 c

(i)
62 c

(i)
63 c

(i)
64

1 c28 c38 c59 c17 c2 c20 c1 c42 c4 c48 c13 c10 c21 c35 c36 c7

2 c46 c47 c24 c40 c13 c43 c58 c8 c49 c20 c3 c52 c36 c16 c59 c45

3 c42 c14 c21 c19 c29 c17 c47 c64 c51 c52 c43 c46 c22 c58 c32 c38

4 c7 c28 c50 c57 c64 c36 c9 c23 c24 c27 c15 c53 c56 c17 c1 c39

5 c59 c37 c12 c55 c39 c23 c34 c63 c20 c54 c61 c31 c8 c51 c46 c15

6 c38 c17 c27 c16 c1 c42 c24 c18 c8 c57 c44 c13 c26 c40 c22 c21

7 c24 c35 c33 c11 c36 c56 c7 c28 c41 c32 c29 c30 c16 c53 c6 c5

8 c33 c8 c18 c13 c51 c59 c64 c46 c30 c1 c34 c5 c54 c38 c15 c61

9 c61 c30 c57 c8 c26 c11 c39 c22 c44 c36 c45 c37 c32 c41 c64 c25

10 c3 c64 c41 c22 c37 c28 c29 c44 c7 c56 c49 c16 c24 c5 c2 c55

Table B.1.: Permutation as used in the 64-bit Permutation PUF.

117

	Title Page
	Contents
	1 Introduction
	2 Physical Unclonable Functions
	2.1 Security Properties and Metrics
	2.2 Attacker Model
	2.3 Modeling Attacks
	2.3.1 Machine Learning Attacks
	2.3.2 Specialized Attacks
	2.3.3 Provable Attacks

	2.4 Hardware Security

	3 XOR Arbiter PUF
	3.1 Arbiter PUF
	3.2 XOR Arbiter PUF
	3.3 Metrics
	3.3.1 Systematic Bias of XOR Arbiter PUFs
	3.3.2 Implementation

	3.4 Logistic Regression Attack
	3.5 Physical Attacks
	3.6 Neural Network Attacks
	3.6.1 Revisited: Santikellur et al.
	3.6.2 Revisited: Aseeri et al.
	3.6.3 Revisited: Mursi et al.
	3.6.4 Comparison

	3.7 Arbitrarily Large XOR Arbiter PUFs
	3.7.1 Stability
	3.7.2 Arbiter PUF
	3.7.3 Majority Vote Arbiter PUF
	3.7.4 XOR Arbiter PUF
	3.7.5 Number of Votes Required
	3.7.6 Simulation

	3.8 Reliability-Based Attacks

	4 XOR Arbiter PUFs with Input Transformation
	4.1 Input Transformations: Classic vs. Random
	4.1.1 Pseudorandom Input Transformation
	4.1.2 Local Minima

	4.2 Input Transformations: Lightweight Secure
	4.2.1 Feature Vector Correlation
	4.2.2 Improved Attack

	4.3 Permutation PUF

	5 Interpose PUF
	5.1 Splitting Attack
	5.1.1 Initial Modeling of the Lower Layer via Random Interpose Bits
	5.1.2 Modeling of the Upper Layer
	5.1.3 Divide-and-Conquer Attack

	5.2 Results and Performance Analysis
	5.3 Neural Network Splitting Attack
	5.4 Variants of the Interpose PUF
	5.4.1 Design Details and Motivation
	5.4.2 Empirical Results of Deep Learning Modeling Attacks

	6 Feed-Forward Arbiter PUF
	6.1 Design
	6.2 Evolution Strategies Attacks
	6.3 Neural Network Attack

	7 Beli PUF
	7.1 Design
	7.2 Model Based on Additive Delay Model
	7.3 Implementation and Metrics
	7.4 Generic MLP Attack
	7.5 Specialized Neural Network Attack

	8 LP-PUF
	8.1 Design
	8.2 Metrics
	8.3 Splitting Attack
	8.4 Reliability Attack
	8.5 MLP Attack
	8.6 Limitations

	9 pypuf: Python Software Library for PUF Research
	10 Conclusion
	Bibliography
	A Arbiter PUF Additive Delay Model
	B Permutation PUF

