
Machine Learning for Genomic
Sequence Analysis

- Dissertation -
vorgelegt von

Dipl. Inform.
Sören Sonnenburg

aus Berlin

Von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
— Dr. rer. nat. —

genehmigte Dissertation

Promotionsaussschuß

• Vorsitzender: Prof. Dr. Thomas Magedanz

• Berichter: Dr. Gunnar Rätsch

• Berichter: Prof. Dr. Klaus-Robert Müller

Tag der wissenschaftlichen Aussprache: 19. Dezember 2008

Berlin 2009

D83

Acknowledgements Above all, I would like to thank Dr. Gunnar Rätsch and
Prof. Dr. Klaus-Robert Müller for their guidance and inexhaustible support, without
which writing this thesis would not have been possible. All of the work in this thesis
has been done at the Fraunhofer Institute FIRST in Berlin and the Friedrich Miescher
Laboratory in Tübingen. I very much enjoyed the inspiring atmosphere in the IDA
group headed by K.-R. Müller and in G. Rätsch’s group in the FML. Much of what we
have achieved was only possible in a joint effort. As the various fruitful within-group
collaborations expose — we are a team.

I would like to thank Fabio De Bona, Lydia Bothe, Vojtech Franc, Sebastian Henschel,
Motoaki Kawanabe, Cheng Soon Ong, Petra Philips, Konrad Rieck, Reiner Schulz,
Gabriele Schweikert, Christin Schäfer, Christian Widmer and Alexander Zien for
reading the draft, helpful discussions and moral support.

I acknowledge the support from all members of the IDA group at TU Berlin and
Fraunhofer FIRST and the members of the Machine Learning in Computational Biology
group at the Friedrich Miescher Laboratory, especially for the tolerance of letting me
run the large number of compute-jobs that were required to perform the experiments.
Finally, I would like to thank the system administrators Roger Holst, Andre Noll, An-
dreas Schulz, Rolf Schulz and Sebastian Stark — your support is very much appreciated.

This work was supported in part by the IST Programme of the European Community,
under the PASCAL Network of Excellence (IST-2002-506778), and by the Learning and
Inference Platform of the Max Planck and Fraunhofer Societies.

To my parents.

IV

Preface

When I came into first contact with Machine Learning at a seminar on Support Vector
Machines (SVMs) held by Klaus-Robert Müller and Bernhard Schölkopf in 1999, I
became utterly excited about this subject. During that seminar, I gave an introductory
talk on SVMs to an all-knowing audience, but it took a while before I seriously picked
up the SVM subject in 2002. For my student research project, Gunnar Rätsch suggested
Hidden Markov Models (HMMs) and their application to Bioinformatics. The idea was
to find genes, but as this problem is too complex to start with, I started with the sub-
problem of recognising splice sites. HMMs using a certain predefined topology performed
quite well. However, we managed to improve on this using string kernels (derived from
HMMs) and Support Vector Machines (Sonnenburg et al., 2002, Tsuda et al., 2002b).
Unfortunately, training SVMs with these string kernels was computationally very costly.
Even though we had a sample of more than 100,000 data points, we could barely afford
training on 10,000 instances on a, at that time, cutting-edge Compaq Alpha compute
cluster. In contrast to HMMs, the resulting trained SVM classifiers were not easily
accessible. After a research break of about 2 years during which I became the group’s
system administrator, I started work on exactly these — still valid — topics. All of this
research was application driven: improving the splicing signal (and later, other signals)
detection in order to construct a gene finder that is applicable on a genomic scale.
To this end, I worked on computationally efficient string kernels suitable for detecting
biological signals such as the aforementioned splicing signal and on large scale algo-
rithms for SVMs with string kernels. The results of these efforts are presented in this
doctoral thesis in Chapter 2 and 3. Trying to improve the classification performance of
a string kernel SVM using the so-called weighted degree kernel, I investigated multiple
kernel learning, which turned out to be useful to understand the learnt SVM classifier.
Having learnt lessons about the implied string kernel feature spaces (by working on
large scale learning) and since there was still room for improvements in understanding
SVMs, I continued to research this subject. I consider the resulting Positional Oligomer
Importance Matrices (POIMs) a big step forward toward a full understanding of string
kernel based classifiers. Both concepts are described in Chapter 4.
Since my research was application motivated, all algorithms were implemented in the
very versatile SHOGUN toolbox that I developed in parallel (cf. Appendix C). Equipped
with this tool-set, several signal detection problems, like splice site recognition and
transcription start site recognition, were tackled. The work on large scale learning with
string kernels enabled us to train string kernel SVMs on 10,000,000 instances, obtaining
state-of-the-art accuracy, and to apply the trained SVMs to billions of instances. At
the same time, I used POIMs to understand the complex SVM decision rule. These
improved signal detectors were finally integrated to accurately predict gene structures
(Rätsch et al., 2007), as outlined in Chapter 6 and are used in a full gene finding system
(Schweikert et al., 2008) outperforming state-of-the-art methods.

V

VI

Zusammenfassung

Die Entwicklung neuer Sequenziertechnologien ebnete den Weg für kosteneffiziente Ge-
nomsequenzierung. Allein im Jahr 2008 werden etwa 250 neue Genome sequenziert. Es
ist offensichtlich, dass diese gewaltigen Mengen an Daten effektive und genaue computer-
gestützte Methoden zur Sequenzanalyse erfordern. Diese werden benötigt, um eines der
wichtigsten Probleme der Bioinformatik zu lösen: die akkurate Lokalisation von Genen
auf der DNA. In dieser Arbeit werden auf Basis von Support Vector Machines (SVMs)
genaueste genomische Signalerkenner entwickelt, die in Gensuchmaschinen verwendet
werden können. Die Arbeit untergliedert sich in folgende Themenschwerpunkte:

String-Kerne Es wurden String-Kerne zur Detektion von Signalen auf dem Genom
entwickelt und erweitert. Die Kerne haben eine in der Länge der Eingabesequenzen nur
lineare Berechnungskomplexität und sind für eine Vielzahl von Problemen verwendbar.
Dadurch gestaltet sich die Sequenzanalyse sehr effektiv: Mit nur geringem Vorwissen ist
es möglich, geeignete String-Kernkombinationen auszuwählen, die hohe Erkennungsra-
ten ermöglichen.

Large-Scale-Lernen Das Training von SVMs war bisher zu rechenintensiv, um auf Da-
ten genomischer Größe angewendet zu werden. Mithilfe der in dieser Arbeit entwickelter
Large-Scale-Lernmethoden ist es nun in kurzer Zeit möglich, string-kern-basierte SVMs
auf bis zu zehn Millionen Sequenzen zu trainieren und auf über sechs Milliarden Sequenz-
positionen vorherzusagen. Der entwickelte linadd-Ansatz beschleunigt die Berechnung
von Linearkombinationen von String-Kernen, die bereits in linearer Zeit berechenbar
sind. Dieser Ansatz ermöglicht den Verzicht auf einen Kern-Cache beim SVM-Training
und führt somit zu einer drastischen Reduktion des Speicheraufwands.

Interpretierbarkeit Ein häufig kritisierter Nachteil von SVMs mit komplexen Kernen
ist, dass ihre Entscheidungsregeln für den Menschen schwer zu verstehen sind. In dieser
Arbeit wird die

”
Black Box“ der SVM-Klassifikatoren

”
geöffnet“, indem zwei Konzepte

entwickeln werden, die zu ihrem Verständnis beitragen: Multiple Kernel Learning (MKL)
und Positional Oligomer Importance Matrices (POIMs). MKL ermöglicht die Interpre-
tation von SVMs mit beliebigen Kernen und kann dazu verwendet werden heterogene
Datenquellen zu fusionieren. POIMs sind besonders gut für String-Kerne geeignet, um
die diskriminativsten Sequenzmotive zu bestimmen.

Genom-Sequenzanalyse In dieser Arbeit werden SVMs mit neuentwickelten, sehr
präzisen String-Kernen zur Detektion einer Vielzahl von Genom-Signalen, zum Bei-
spiel der Transkriptionsstart- oder Spleißstellen, angewendet. Dabei werden unerreichte
Genauigkeiten erzielt. Unter Verwendung von POIMs wurden die trainierten Klassifika-
toren analysiert und unter anderem viele bereits bekannte Sequenzmuster gefunden. Die
verbesserten Signaldetektoren wurden dann zur genauen Genstrukturvorhersage ver-
wendet. Die Doktorarbeit schließt mit einem Ausblick, wie in dieser Arbeit entwickelte
Methoden die Basis für eine vollständige Gensuchmaschine legen.

Keywords: Support Vector Machine, Interpretierbarkeit, String-Kerne, Large-Scale-
Lernen, Multiple Kernel Learning, Positional Oligomer Importance Matrices, Spleiß-
stellenerkennung, Transkriptionsstartstellenerkennung, Gensuche

VII

VIII

Summary

With the development of novel sequencing technologies, the way has been paved for cost
efficient, high-throughput whole genome sequencing. In the year 2008 alone, about 250
genomes will have been sequenced. It is self-evident that the handling of this wealth of
data requires efficient and accurate computational methods for sequence analysis. They
are needed to tackle one of the most important problems in computational biology: the
localisation of genes on DNA. In this thesis, I describe the development of state-of-the-
art genomic signal detectors based on Support Vector Machines (SVM) that can be
used in gene finding systems. The main contributions of this work can be summarized
as follows:

String Kernels We have developed and extended string kernels so that they are partic-
ularly well suited for the detection of genomic signals. These kernels are computationally
very efficient — they have linear effort with respect to the length of the input sequences
— and are applicable to a wide range of signal detection problems. Only little prior
knowledge is needed to select a suitable string kernel combination for use in a classifier
that delivers a high recognition accuracy.

Large Scale Learning The training of SVMs used to be too computationally demand-
ing to be applicable to datasets of genomic scale. We have developed large scale learning
methods that enable the training of string kernel based SVMs using up to ten million
instances and the application of the trained classifiers to six billions of instances within
reasonable time. The proposed linadd approach speeds up the computation of linear
combinations of already linear time string kernels. Due to its high efficiency, there is
no need for kernel caches in SVM training. This leads to drastically reduced memory
requirements.

Interpretability An often criticised downside of SVMs with complex kernels is that it
is very hard for humans to understand the learnt decision rules and to derive insight
from them. We have opened the “black box” of SVM classifiers by developing two con-
cepts helpful for their understanding: Multiple Kernel Learning (MKL) and Positional
Oligomer Importance Matrices (POIMs). While MKL algorithms work with arbitrary
kernels and are also useful in fusing heterogeneous data sources, POIMs are especially
well suited for string kernels and the identification of the most discriminative sequence
motifs.

Genomic Sequence Analysis We have applied SVMs using novel string kernels to the
detection of various genomic signals, like the transcription start and splice sites, out-
performing state-of-the-art methods. Using POIMs, we analysed the trained classifiers,
demonstrating the fidelity of POIMs by identifying, among others, many previously
known functional sequence motifs. Finally, we have used the improved signal detectors
to accurately predict gene structures. This thesis concludes with an outlook of how this
framework prepares the ground for a fully fledged gene finding system outcompeting
prior state-of-the-art methods.

Keywords: Support Vector Machine, Interpretability, String Kernel, Large Scale Learn-
ing, Multiple Kernel Learning, Positional Oligomer Importance Matrices, Splice Site
Recognition, Transcription Start Site Prediction, Gene Finding

IX

X

Contents

1 Introduction 1
1.1 Biological Background . 2

1.1.1 Sequence Analysis Problems . 7
1.2 Machine Learning . 8

1.2.1 Generative Models . 9
1.2.2 Support Vector Machines and String Kernels 12

2 String Kernels 15
2.1 Bag-of-words Kernel, n-gram Kernel and Spectrum Kernel 16
2.2 Linear and Polynomial String Kernels 18
2.3 Weighted Degree Kernel . 20
2.4 Fisher and TOP kernel . 25

2.4.1 Fisher Kernel . 25
2.4.2 TOP Kernel . 26
2.4.3 Relation to Spectrum and Weighted Degree Kernel 27

2.5 Summary . 29

3 Large Scale Learning with String Kernels 31
3.1 Sparse Feature Maps . 31

3.1.1 Efficient Storage of Sparse Weights 31
3.1.2 Speeding up Linear Combinations of Kernels 34
3.1.3 Speeding up SVM Training . 36

3.2 A Simple Parallel Chunking Algorithm 37
3.3 Benchmarking SVM Training Time . 37
3.4 Summary . 42

4 Interpretable Support Vector Machines 43
4.1 Multiple Kernel Learning . 43

4.1.1 Multiple Kernel Learning for Classification using SILP 45
4.1.2 Multiple Kernel Learning with General Cost Functions 47
4.1.3 Algorithms to solve SILPs . 49
4.1.4 Estimating the Reliability of a Weighting 53
4.1.5 MKL for Knowledge Discovery 53

4.2 Positional Oligomer Importance Matrices 59
4.2.1 Linear Positional Oligomer Scoring Systems 61
4.2.2 Definition of Positional Oligomer Importance Matrices 63
4.2.3 Ranking Features and Condensing Information for Visualisation 66
4.2.4 POIMs Reveal Discriminative Motifs 67

4.3 Summary . 69

5 Accurate Signal and Content Sensors 71
5.1 Performance Measures . 71
5.2 Generating Training and Test Data Sets 74

XI

XII

5.3 Accurate Splice Site Recognition . 76
5.3.1 Model Selection and Evaluation 79
5.3.2 Pilot Studies . 80
5.3.3 Results on Genome-Wide Data Sets 84
5.3.4 Understanding the Learned Classifier 86

5.4 Accurate Recognition of Transcription Starts 92
5.4.1 Model Selection and Evaluation 95
5.4.2 Genome-Wide Evaluation on the Human Genome 96
5.4.3 Comparison with EP3 and ProSOM 100
5.4.4 Understanding the Learned Classifier 101

5.5 Summary and Guidelines . 103
5.5.1 Signal Sensors . 106
5.5.2 Content Sensors . 107

6 Learning to Predict Gene Structures 109
6.1 Splice Form Prediction . 109

6.1.1 Learning the Signal and Content Sensors 110
6.1.2 Integration . 110
6.1.3 Experimental Evaluation . 113

6.2 Summary and Outlook: Gene Finding 114

7 Summary and Outlook 117

Appendices 119

A Derivations 119
A.1 Derivation of the MKL Dual for Generic Loss Functions 119

A.1.1 Conic Primal . 120
A.1.2 Conic Dual . 121
A.1.3 Loss functions . 122

A.2 Computation of Positional Oligomer Importances 123
A.2.1 Observations . 124
A.2.2 Efficient Recursive Computation of POIMs 126
A.2.3 Applications . 130

B Data Generation and Model Parameters 133
B.1 Toy Sequence Data . 133
B.2 Splice Site Sequences . 133

B.2.1 NN269 and DGSplicer data sets 134
B.2.2 Worm, fly, cress, fish, and human 134

B.3 Transcription Start Sites . 135
B.4 Generating Genestructure and Sequence Data for Caenorhabditis elegans 136
B.5 Splicing Model Selection Parameters . 137

C Shogun 139
C.1 Modular, Extendible Object Oriented Design 139
C.2 Interfaces to Scripting Languages and Applications 140

D Notation 143

References 145

1 Introduction

With the sequencing of entire genomes, important insight into gene functions and genetic
variation has been gained over the last decades. As novel sequencing technologies are
rapidly evolving, the way will be paved for cost efficient, high-throughput whole genome
sequencing, which is going to provide the community with massive amounts of sequences.
It is self-evident that the handling of this wealth of data will require efficient and ac-
curate computational methods for sequence analysis. Among the various tools in com-
putational genetic research, gene prediction remains one of the most prominent tasks,
as recent competitions have further emphasised (e.g., Bajic et al. (2006), Guigo et al.
(2006), Stein et al. (2007)). Accurate gene prediction is of prime importance for the
creation and improvement of annotations of recently sequenced genomes (Rätsch et al.,
2007, Bernal et al., 2007, Schweikert et al., 2008). In the light of new data related
to natural variation (e.g., Hinds et al. (2005), The International HapMap Consortium
(2005), Clark et al. (2007)), the importance of accurate computational gene finding
gains increasing importance since it helps to understand the effects of polymorphisms
on the gene products. In this work we focus on improving genomic signal detectors so as
to increase their prediction accuracy beyond the current state-of-the-art. These predic-
tions can then be used to develop more accurate gene finding systems (Schweikert et al.,
2008).

Organisation of the Thesis Following a short introduction into genomic sequence anal-
ysis (cf. Section 1.1), we introduce Support Vector Machines (cf. Section 1.2), advanced
sequence kernels (cf. Chapter 2) to learn to distinguish true signal sites from decoy
sites. SVMs were not previously applicable to problems of genomic scale. Training on
millions of examples or the application of the trained classifier to billions of instances
was computationally far too demanding even for modern compute cluster systems. To
address this problem, we have developed computationally very efficient SVM learning
methods that are applicable on very large data sets (cf. Chapter 3). Another major
drawback of SVMs was their “black box” nature, i.e., their decision function was typ-
ically hard to understand. In Chapter 4 we describe two novel methods that can help
to gain insights into the learnt decision function. The first approach based on Multiple
Kernel Learning (Section 4.1) aids understanding of SVMs even with general kernels,
while the second approach called Positional Oligomer Importance Matrices (Section
4.2) enables pin-pointing of the most discriminating sequence motifs from string kernel
based SVMs. We show that the newly developed signal detectors based on string kernel
SVMs operate with very high previously unobtainable accuracy (Chapter 5). Finally,
we show how these predictors can be integrated to predict gene structures with half
of the error rate of the best competing methods (Section 6.1). We conclude with an
outline of the remaining steps towards a fully fledged gene finding system (Section 6.2)
and an outlook (Section 7).

1

2

1.1 Biological Background

A brief history Almost 150 years ago in 1865, Gregor Johann Mendel defined the
basic nature of genes, starting a new branch in biology, Genetics (cf. Table 1.1). In
1869, Johannes Friedrich Miescher discovered a previously unknown substance in cell
nuclei, deoxyribonucleic acid (DNA) (Dahm, 2005). In 1944, Oswald Theodore Avery
showed chemically that DNA is the substance that is genetically inherited (Lewin, 2000).
In 1976, the ribonucleic acid (RNA) sequence of the bacteriophage MS2 was the first
genome to be fully sequenced (Fiers et al., 1976). Coding for only 3 genes, the MS2
genome is composed of 3,569 nucleotides (nt), a major challenge for the sequencing
technologies available at the time. With the help of ribonuclease and electrophoresis,
RNA was divided into small fragments of sizes between 50 and 250 nt that could be
sequenced (Jou et al., 1972). The fragment sequences were then manually assembled. A
year later, the first DNA-based genome, belonging to the virus Phage Φ-X174, was fully
sequenced by a group around Frederick Sanger using the plus-minus sequencing method
(Sanger and Coulson, 1975, Sanger et al., 1977). In contrast to previous approaches
that were based on degrading DNA, this method synthesises DNA sequences (Goujon,
2001). It was this work and its extension to the chain terminator method (Sanger et al.,
1977) that earned Sanger his second Noble prize. Still, Sanger had to manually assemble
the 5,386 bases of the virus genome, containing 11 genes.
With the invention of shotgun sequencing where DNA is randomly fragmented
into small pieces of about 2kb that are individually sequenced, and subsequent
whole genome shotgun sequencing techniques, many organisms have been com-
pletely sequenced. Among them are: Baker’s yeast in 1996 (Goffeau et al., 1996,
12 million base-pairs, more than 6,000 genes), the 97Mb genome with 19,000
genes of the nematode Caenorhabditis elegans completed at the end of 1998
(The C. elegans Sequencing Consortium, 1998), and the human genome first draft
(The International Human Genome Mapping Consortium, 2001) and completed se-
quences (Gregory et al., 2006). The many reads/fragments generated by these project
were mostly assembled computationally, relying on overlaps between reads to generate
larger contiguous sequences or contigs. While the press featured headlines such as “hu-
man genome deciphered”, today we merely know the DNA sequence of a few individuals
of our species. Genomic annotation data, e.g., for the location of genes, do exist, but
they are neither complete nor necessarily accurate. Even for the much simpler round-
worm C. elegans it is currently estimated that about 10%-50% of the annotated genes
contain errors (Merrihew et al., 2008, Rätsch et al., 2007).
In 2007, the genome of the first human individual (that of Craig Venter) was sequenced
at a cost of about $100 million using shotgun sequencing (Levy et al., 2007). Among
the recently developed techniques is pyro sequencing (Ronaghi et al., 1996) where the
addition of nucleotides during the synthesis of DNA results in the emission of light
at nucleotide-specific wave lengths so that at each step, the added nucleotide can be
determined. This scheme has been massively parallelised in 454 sequencing (Wikipedia,
2008a). Using this technique, the complete genome of James Watson was sequenced
for less than $1 million (Wheeler et al., 2008). The most recent development of “next-
generation sequencing techniques” (e.g., Marusina, 2006) enables the sequencing of large
human-scale genomes within weeks at a cost of less than $100,000 possible with Solexa
and ABI solid platforms (Hayden, 2008, Illumina, 2008) and will inevitably lead to the
“$1000 genome”. Since more than 850 genomes will be completely sequenced by the end
of 2008 (Liolios et al., 2007) and more than 4,000 genome projects have been registered

1.1 Biological Background 3

as of September 19, 2008,1 the demand for methods to accurately and automatically
determine the locations of genes has never been higher. This work focuses on methods
to accurately detect properties of genes, like the gene start and end, and the protein
coding regions (exons) contained in eukaryotic genes, in order to aid gene finding.

Genetic Background For those unfamiliar with genetics, a short overview will be given
in the following. We are exclusively dealing with the class of eukaryotes, i.e., organisms
that have nuclei and a cytoskeleton in their cells. All “higher” organisms are eukaryotic,
e.g., humans as well as C. elegans belong to this class while, e.g., bacteria belong to the
class of prokaryotes. The word “eukaryote” means “true nuclei”, i.e., the nuclei contain
genetic information that is organised into discrete chromosomes and contained within
a membrane-bounded compartment. In principle, 2 the whole set of chromosomes,
containing all of the organism’s genes and regulatory elements, is referred to as the
genome. For example, the human genome consists of 23 chromosome pairs, where the
pair 23 determines the sex (females have two X chromosomes; males have one X and
one Y chromosome).

5’

3’

3’

5’

...
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.... ...

..

..

........
........
........
........
........
. ...

O

.....

.....

.....

.....

..

.....

.....

.....

.....

..

.....

.....

.....

.....

..
O3PCH2

......................

......................

......................

HO

H

...........................

...........................

...........................

...........................

.....
.....
.....
.....
.....
..

.....
.....
.....
.....
.....
..

.....
.....
.....
.....
.....
..

............................

.....
.....
....

.....
.....
....

..............
..............

O

H

O

H

C

N

CN

C

C

N

H

H H

......................

......................

......
......
......
....

......
......
......
....

...........................

.....

.....

.....

.....

.....

..

...........................

..............

.....

.....

....

C

C

N

C

N

C

H

...........................

...........................

.........
.........

.........

.........
.........

.........

.........
.........
.........

.........
.........
.........

NH

H

......................

......
......
......
....

..............
............

...........................
..............

.............

...........................

...........................

N

C

N

.............. H
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.......
........
........
........
........
........
........
....

........
........
........
........
........
........
..

..

... O

.....

.....

.....

.....

..
.....
.....
.....
.....
..

.....

.....

.....

.....

..
H

PO3

......................

......................
......................

CH2O

...
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.... ...

..

..

........
........
........
........
........
. ...

O

.....

.....

.....

.....

..

.....

.....

.....

.....

..

.....

.....

.....

.....

..
O3PCH2

......................

......................

......................

HO

H

...........................

...........................

...........................

.....
.....
.....
.....
.....
..

..............
..............

.....
.....
....

..............

C

N

CN

C

H

O

H

...........................

................................
.....
.....
.....
.....
..

.....
.....
.....
.....
.....
..

C

N

H

H

......................

......................

......
......
......
....

...........................

.....

.....

.....

.....

.....

..

.........
.........
.........

...........................

...........................

.........
.........

.........

.........
.........

.........

C

C

N

C

N

C

..............

.........
.....

.....

.....

....

.....

.....

....

H2N

H

O

..............
............

...........................
..............

.............

...........................

...........................

N

C

N

.............. H

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.......
........
........
........
........
........
........
....

........
........
........
........
........
........
..

..

... O

.....

.....

.....

.....

..
.....
.....
.....
.....
..

.....

.....

.....

.....

..
H

PO3

......................

......................
......................

CH2O

Figure 1.1: Schematic illustration of the four bases adenine (A), cytosine (C), guanine (G), thymine
(T) and their pairing using hydrogen bonds. A sequence of only the two base pairs T-A (top) and C-G
(bottom) is shown. In the outermost parts, one can see the sugar molecules, which form the backbone
of DNA. The strands are antiparallel, i.e., one strand runs in 5′ → 3′ direction, while the other runs
3′ → 5′.

Each chromosome is composed of a single double-stranded DNA molecule. Single-
stranded DNA consists of alternating pentose (sugar) and phosphate residues with a
base attached to each pentose. Either one of the bases Adenine, Thymine, Guanine or
Cytosine is linked to a sugar at position 1 (cf. Figure 1.1). They are usually referred to
by their initial letters. The name DNA is derived from the sugar-component in DNA (2-
deoxyribose), the “backbone” of DNA. Metaphorically speaking, double-stranded DNA
looks like a rope ladder twisted into a double helix. The ropes to either side of the
ladder correspond to the sugar backbones of the two DNA strands, while the “steps”

1See http://www.genomesonline.org/gold.cgi
2To be correct, the DNA contained in chloroplasts, mitochondria, and plasmids does also belong to

the genome.

http://www.genomesonline.org/gold.cgi

4

1865 Genes are particulate factors (Gregor Mendel)
1869 Discovery of DNA by Friedrich Miescher (Dahm, 2005)
1903 Chromosomes are hereditary units (Walter Sutton)
1910 Genes lie on chromosomes
1913 Chromosomes contain linear arrays of genes
1927 Mutations are physical changes in genes
1931 Recombination is caused by crossing over
1944 DNA is genetic material (Avery et al., 1944)
1945 A gene codes for a protein
1953 Double helix structure of DNA found (Watson and Crick, 1953)
1956 First successful DNA synthesis (Kornberg, 1991)
1958 DNA replicates semiconservatively (Meselson and Stahl, 1958)
1961 Genetic code is composed of triplets (Crick et al., 1961, Nirenberg, 2004)
1972 Nucleotide sequence of first gene known (Jou et al., 1972)
1976 First RNA-based genome (Bacteriophage MS2) sequenced (Fiers et al.,

1976)
1977 First DNA-based genome sequenced (Bacteriophage ΦX174) (Sanger et al.,

1977)
1983 Polymerase Chain Reaction (PCR; Mullis, 2004)
1986 Applied Biosystems markets first automated DNA sequencing machine
1996 Baker’s yeast genome sequenced (Goffeau et al., 1996)
1998 Completion of the genome of Caenorhabditis Elegans

(The C. elegans Sequencing Consortium, 1998)
2000 Working Draft of the human genome announced

(The International Human Genome Mapping Consortium, 2001)
2002 Draft sequence of the mouse genome announced

(Mouse Genome Sequencing Consortium, 2002)
2003 Genome of Bacteriophage ΦX174 chemically synthesised (Smith et al.,

2003)
2004 454 high throughput pyro-sequencing (Wikipedia, 2008a)
2006 Completion of the DNA sequencing of the human genome announced

(Gregory et al., 2006)
2007 454 Sequencing allows 100 megabases to be sequenced per 7-hour run at

cost of less than $10, 000 (Wikipedia, 2008a)
2007 Individual human genome sequenced: of Craig Venter (Levy et al., 2007)

and James Watson (Wheeler et al., 2008)
2007 More than 500 genomes sequenced completely (Liolios et al., 2007)
2007 > 90% of the genome is transcribed (Kapranov et al., 2007)
2008 More than 850 genomes are completely sequenced (Liolios et al., 2007)
open Number and location of human genes determined
open Function and protein structure of protein coding genes deciphered
open Function and structure of RNA coding genes deciphered
open . . .

Table 1.1: A brief history of genetics. This table is based on (Lewin, 2000) and (Wikipedia, 2008b). A
more exhaustive list of sequenced organisms can be found at (Wikipedia, 2007).

1.1 Biological Background 5

of the ladder are formed by pairs of bases with hydrogen bonds between them. Most
importantly, only the base Adenine may pair with Thymine and only Guanine may
pair with Cytosine, leading to the sequence of bases in the one strand to be the reverse
complement of the other. The helix is constructed by linking the 5’ position of one
pentose ring to the 3’ position of the next pentose ring via a phosphate group. As a
result, one end of the chain has a free 3’ group, while the other has a free 5’ group.
As a convention, the sequence of bases in strand are written in the 5’ to 3’ direction.
Due to the complementary base pairing, the strands are anti-parallel, i.e., one strand
is in 5′ → 3′ and the other in 3′ → 5′ direction, cf. Figure 1.1. A fully sequenced
genome consists of all the chromosomes found in a cell of the respective organism. Each
sequenced chromosome is a sequence of the characters A,C,G,T, like that in Figure 1.2.

...TTGAACGTTG
AC
GA
TC
GTA

ATGAGTACGCACAAGCTCAGGAGTCCAGCGGTGA
AGA

GAG
GTTAA

GCTCGTCGCTGCT...

|||||||||||||
||
||
||
|||

||||||||||||||||||||||||||||||||||
|||

|||
|||||

||||||||||||||||

...AACTTGCAAC
TG
CT
AG
CAT

TACTCATGCGTGTTCGAGTCCTCAGGTCGCCACT
TCT

CTC
CAATT

CGAGCAGCGACGA...

Figure 1.2: The two strands of DNA in an ASCII-character chain. As a result of a sequencing project,
only one of these sequences is given, since Adenine is always paired with Thymine, and Guanine with
Cytosine.

Each chromosome consists of genetic and non-genetic regions. In many genomes, includ-
ing human, the latter make up most of the chromosome.3 But where on the chromosome
are genes located and what is a gene in the first place? A gene can be defined as:4

Definition 1.1 (Gene (Pearson, 2006)). A locatable region of genomic sequence, corre-
sponding to a unit of inheritance, which is associated with regulatory regions, transcribed
regions and/or other functional sequence regions.

Note that this definition covers not only protein but also RNA coding genes. While the
question about the location of genes has not been sufficiently answered yet, it is known
that multiple stages are involved in the expression of protein coding genes (i.e., the
process of synthesising proteins from genes, cf. Lewin (2000)). These steps are carried
out mostly sequentially, but are known to interfere with each other.

1. Activation of gene structure

2. Initiation of transcription

3. Processing of the transcript

4. Postprocessing

5. Transport of mRNA to cytoplasm

6. Translation of mRNA

Genes are “activated” in a tissue-specific fashion. A gene may be active in cells compos-
ing one kind of tissue, but “inactive” in other kinds of tissue. When the precondition
– the gene is active – is fulfilled, it can be transcribed, that is, a copy of the gene that

3The function of the non-genetic regions, i.e., the regions that do not code for proteins, is not well
understood. They are likely responsible for regulatory control.

4The definition of the term “gene” is still being discussed, cf.,
http://www.genomicglossaries.com/content/gene_def.asp

http://www.genomicglossaries.com/content/gene_def.asp

6

DNA

pre-mRNA

mRNA

protein

transcription

splicing

translation

.

cap polyA

cap polyA

N C

exon intron exon intron exon intron exon intron exon

ATG GT AG GT AG GT AG GT AG TAG,TAA
TGA

AUG GU AG GU AG GU AG GU AG

UAG,UAA
UGA

AUG UAG,UAA
UGA

Figure 1.3: The major steps in protein synthesis. See text for details. Idea is taken from
(Chuang and Roth, 2001, Lewin, 2000)

is encoded on only one of the two strands of the double-stranded DNA (the coding
strand) is synthesized. The copy is not DNA, but single-stranded precursor messenger
ribonucleic acid (pre-mRNA). The chemistry of RNA requires that the role of Thymine
is taken over by the base Uracil (U). For convenience, we will use Uracil and Thymine
synonymously. Transcription starts when an enzyme called RNA polymerase binds to
the promoter, a special region located upstream5 of the first base pair that is tran-
scribed into pre-mRNA. From this Transcription Start Site, RNA polymerase moves
downstream in 5′ → 3′ direction, continuously synthesising pre-mRNA until a termi-
nation sequence is reached. Shortly after the start of transcription, a cap is added to
the 5′ end of the pre-mRNA. At the end of transcription, the 3′ end is cut off at the
Cleavage Site and a polyA tail (a long sequence of ≈ 250 adenine nucleotides) is ap-
pended (Zhao et al., 1999). Both the cap and tail prevent degradation of the RNA by
exonucleases. The process of 3′ end formation promotes transcription termination and
transport of the mRNA from the nucleus into the cytoplasm (Zhao et al., 1999). In the
“postprocessing” phase, the pre-mRNA is transformed into mRNA. One necessary step
in this process of obtaining mature mRNA is called Splicing. The coding sequence of
many eukaryotic genes is “interrupted” by non-coding regions called introns. Such a
multi-exonic gene starts with an exon and is then interrupted by an intron, followed by
another exon, intron etc. until it ends in an exon. The 5′ end of an intron (exon-intron
boundary) is called Donor Splice Site and almost always contains a GU consensus. The
3′ end of an intron (intron-exon boundary) is called Acceptor Splice Site and almost
always contains an AG consensus. These short consensus motifs are not sufficient for
accurate splice site detection. After the pre-mRNA has been spliced to form mRNA,
the splicing product may be transported from the nucleus to the cytoplasm. There,
during translation of protein coding genes, the mRNA is read as codons, i.e., as triplets
of nucleotides. Hence, there are three different reading frames, i.e., ways of reading
triplets of RNA (one for each of the possible start positions 0, 1 or 2). 61 of the 43 = 64
possible codons code for 20 amino acids, while the remaining 3 (UAG,UAA,UGA) are ter-
mination codons, which mark the end of the protein-coding sequence. The translation

5Upstream means closer to the 5’ end, while downstream means closer to the 3’ end.

1.1 Biological Background 7

begins at a translation initiation site (TIS) that almost always is the start codon AUG.
However, only a minority of all AUG codons, representing the amino acid methionine,
actually signals a TIS. When a stop codon is reached, translation is terminated at the
Translation Termination Site and the set of amino acids, the result of the translation
process, form a long polypeptide, the protein. Figure 1.3 schematically summarises the
entire process of protein expression.

1.1.1 Sequence Analysis Problems

Detecting any of the above mentioned signals, i.e., the transcription start, translation
start, donor and acceptor splice site as well as translation end, polyA signal and cleavage
site, can be formulated as a sequence classification task. In computational gene finding,
these signals are often interspersed with variable length regions, like exons and introns.
While the latter are recognised by methods called content sensors, the former can be
recognised by methods named signal sensors (Haussler, 1998). For example, 5th-order
Markov chains are very common content sensors for modelling eukaryotic introns and
exons. Inhomogeneous Markov chains and decision trees are common methods for signal
detectors. The following paragraphs summarise the most important signal and content
sensors for gene finding.

Transcription Start Site Prediction One of the key elements to recognizing genic
regions in the genome is to identify the promoter site. Methods for finding transcription
start sites (TSS) of RNA-polymerase II transcribed genes often exploit their association
with CpG islands (i.e., regions with a higher than expected frequency of Cytosine-
Guanine dinucleotides, e.g., Gardiner-Garden and Frommer (1987)) overlapping or near
the TSS (Down and Hubbard, 2002, Davuluri et al., 2001). For further approaches, see
the discussion in Section 5.4.

Translation Initiation Site Prediction Translation converts part of the nucleotide se-
quence of mRNA into the sequence of amino acids comprising a protein. Not the whole
length of mRNA is translated, but only the coding region (CDS), defined by the trans-
lation initiation site (begins with start ATG codon) and stop ({TAA,TAG,TGA}) codons.
Among the methods for detecting translation initiation sites are markov chains, neural
networks and support vector machines (e.g., Pedersen and Nielsen, 1997, Zien et al.,
2000, Saeys et al., 2007).

Splice Site Prediction Splice sites mark the boundaries between potentially protein-
coding exons on the one hand and on the other hand, introns that are excised from pre-
mRNAs after transcription. Most splice sites are so-called canonical splice sites that are
characterised by the presence of the dimers GT and AG at the donor and acceptor sites,
respectively. However, the occurrence of the dimer is not sufficient for a splice site. The
classification task for splice site sensors therefore consists in discriminating true splice
sites from decoy sites that also exhibit the consensus dimers. Often Positional Weight
Matrices (PWMs) or Inhomogeneous Markov Chains (IMCs) are used to detect splice
sites. For further approaches, see the discussion in Section 5.3.

Recognising Segment Content Content sensors are used to recognise the typical se-
quence composition of the individual segments. For each segment type (intergenic,
inter-cistronic, untranslated region, coding exon, intron) one may design a specific con-
tent sensor. Markov Chains (Durbin et al., 1998) are among the most frequently used
content sensors.

8

Translation End Site Prediction The coding region (CDS) ends with one of the
({TAA,TAG,TGA}) stop codons. Additional sequence motifs around the translation end
aid in localising this site.

Polyadenylation Signal Prediction Polyadenylation (polyA) is a process by which
the 3′ ends of pre-mRNA molecules are transformed. PolyA comprises the addition
of around 50-250 Adenosines to the 3′ end of the cleaved pre-mRNA. Relative to the
cleavage site, there are an upstream element consisting of a highly conserved AATAAA
(or similar) hexamer called the polyadenylation signal (PAS), and a downstream ele-
ment often described as a poorly conserved GT- or T-rich sequence Liu et al. (2003),
Philips et al. (2008).

Cleavage Site Prediction The cleavage site is located approximately 10-25 base pairs
downstream of the polyadenylation signal. Around 10-30 nucleotides downstream of
the cleavage site, a U-rich motif is located (Chen et al., 1995). Since the cleavage and
polyadenylation signal sites are close, prediction of the polyadenylation signal and the
cleavage site is tightly coupled.

Summary of the Signal Detection Problems The different signal detection problems
can roughly be categorised according to the spatial arrangement of the relevant features:

1. very localised – position dependent

2. localised but variable – position semi-dependent

3. very variable – position independent

Splice sites are very localised due to high selective pressure. A mis-detection often intro-
duces frameshifts, which impose early termination of transcription (many stop codons
occur in non-coding frames). As a result, methods employing positional information
like inhomogeneous markov chains perform well on that task. Transcription start sites
and many of the other signals are more weakly localised and characterised by many
positionally variable weak motifs. For content sensors, the localisation of the motif does
not matter. Only its occurrence (frequency) does. Since signal and content sensors
alone perform poorly, integrated models, such as Generalised Hidden Markov Models
(GHMMs Kulp et al., 1996) are used to combine both methods. Integrated models may
capture “higher correlations” between different signals and can incorporate constraints
and structure. For example, prior knowledge, like “an intron is always followed by an
exon”; “the distance of the promoter to the translation start is at least a certain number
of bases”, etc. can be incorporated into such models.

In this thesis, we focus on methods to improve the signal and content sensors for the
task of gene finding.

1.2 Machine Learning

In Machine Learning, the task of classification is to find a rule, which based on exter-
nal observations, assigns an object to one of several classes (e.g., Müller et al., 2001,
Ben-Hur et al., 2008). In the simplest case of real valued vectors representing objects
and only two classes, one possible formalisation of this problem is to estimate a func-
tion (a classifier) f : IRD → {−1, +1} that assigns a label ŷ ∈ {−1, +1} to each object
x ∈ IRD. To estimate this function, N labelled training examples (x1, y1), . . . , (xN , yN)
are given, where the assumption is made that the pairs of training data are generated

1.2 Machine Learning 9

independent and identically distributed according to an unknown probability distribu-
tion Pr[x, y]. One hopes that the classifier f performs well on unseen examples, i.e.,
that the estimated label f(x) = ŷ is equal to the true label y for an unseen sample x,
which is assumed to be generated from the same distribution Pr[x, y]. Thus, the goal is
to find the “best” function f, i.e., the function that minimises the expected error (risk)

R[f] =

∫
l(f(x), y)d Pr[x, y].

Here l denotes a loss function. Its arguments are the predicted value ŷ = f(x) and the
true label y. In classification, the 0− 1 loss is usually used, which can be defined as

l(f(x), y) =

{
0, f(x) = y

1, otherwise
.

When looking at the risk functional, one recognises that the risk depends on the un-
known probability distribution Pr[x, y]. All one can do is to estimate the function f
based on the available information, i.e., from a finite number of training examples.
There are several methods of estimation to accomplish this. They are called induc-
tive principles (Cherkassky and Mulier, 1998). For example, one simple principle is to
approximate the risk functional by the empirical risk

Remp =
1

N

N∑

i=1

l(f(xi), yi).

Given a class of functions f ∈ F described by a set of parameters, one could now
choose the best f by using the one that minimises the empirical risk. Doing so we get
an estimate of the decision boundary. This type of learning the decision function f is
called discriminative learning, since we were given positive and negative examples and
used these to derive a function f that separates these two classes. However, in the case
that the set of functions F can capture arbitrary decision boundaries, one could suffer
from overfitting. On the other hand, F might contain functions that are too simple and
hence, incapable of solving the classification problem. This dilemma is explained best
by an example. Consider the task is to classify trees and non-trees.6 When a botanist
with photographic memory has memorised a number of trees, he will not realise that a
newly presented tree is a tree since the number of its leaves will differ compared to any
of the memorised trees. On the other hand, the botanist’s lazy brother declares that if
something is green it is a tree and thus, mistakes a frog for a tree. It is therefore crucial
to choose F appropriately.

1.2.1 Generative Models

Instead of learning a discriminative decision function, one could estimate the class condi-
tional probability distribution Pr[x|Y = +1, θ+] and Pr[x|Y = −1, θ−] using generative
models θ+ and θ− and the class prior α := Pr[Y = +1|α] directly. This approach is
an example of generative or descriptive learning. Using the class conditional likelihoods
and the class prior, we define θ := (θ+, θ−, α). To minimize the expected error, one
assigns to the object x the class label for which its posterior probability

Pr[ŷ|x, θ] =
Pr[ŷ|θ] Pr[x|ŷ, θ]

Pr[x]

6This example is taken from (Burges, 1998)

10

is largest, which, assuming the model is true, leads to the Bayes optimal decision rule

f(x) := argmax
ŷ∈{−1,+1}

Pr[ŷ|θ] Pr[x|ŷ,θ]

= sign (Pr[Y = +1|θ] Pr[x|Y = +1,θ]− Pr[Y = −1|θ] Pr[x|Y = −1,θ]) .

One may equivalently use the convenient posterior log-odds of a probabilistic model
that are obtained by applying the logarithm to the posterior probability, i.e.,

f(x) = sign (log (Pr[Y = +1|x, θ])− log (Pr[Y = −1|x, θ]))

= sign (log (Pr[x|Y = +1, θ])− log (Pr[x|Y = −1, θ]) + b) ,

where b = log Pr[Y = +1|θ] − log Pr[Y = −1|θ] is a bias term that corresponds to
the class priors. Then, when using the maximum likelihood (ML) inductive prin-
ciple, one has to choose an estimate for the parameters θ̂ ∈ Θ′ of the generative
models Pr[x|θ̂+, Y = +1] and Pr[x|θ̂−, Y = −1] such that the likelihood functions
(Cherkassky and Mulier, 1998)

Pr[xi1 , . . . ,xiN+
|θ+, yi1 = +1, . . . , yiN+

= +1] =

N+∏

n=1

Pr[xin |θ+, yin = +1] and

Pr[xj1 , . . . ,xjN−
|θ−, yj1 = −1, . . . , yjN− = −1] =

N−∏

n=1

Pr[xjn |θ−, yjn = −1],

are maximised independently. Here θ̂ denotes the estimate of the model parameters
and yi1 , . . . , yiN+

= +1 and yj1 , . . . , yjN−
= −1,. The class prior can be estimated to

be α = Pr[Y = +1|θ] = N+/N. Hence, ML returns an estimate θ̂ for the true model
parameters θ⋆, which maximises the above likelihood functions for the given training
dataset. Under the assumption that the true distribution can be parametrised and the
number of examples is large enough, the estimated probability distributions can lead to
the Bayes optimal decision rule. Furthermore, one can create new examples by sampling
from the class conditional distributions and use the sample density functions to define
a metric or to derive a kernel function that can be used in discriminative classifiers to
improve the decision function, given weak probabilistic models (Jaakkola and Haussler,
1999, Tsuda et al., 2002a).

Inhomogeneous Markov Chains In sequence analysis, one commonly used probabilis-
tic model is that of (inhomogeneous) Markov Chains. Reasons for their widespread use
are their flexibility in modelling a variety of signal and content sensors, their simplic-
ity, easy interpretation, fast training methods, and their overall good performance on
classification tasks.

Definition 1.2 (Durbin et al. (Markov Chain, 1998)). Given a sequence x :=
x1, . . . ,xlx of length lx and random variables X := X1, . . . , Xlx taking values of xi,
a Markov chain of order d is defined as

Pr[X = x|θ±] := Pr[X1 = x1, . . . , Xd = xd|θ
±]

lx
Y

i=d+1

Pr[Xi = xi|Xi−1 = xi−1, . . . , Xi−d = xi−d, θ±].

(1.1)

A Markov Chain (MC) is a model with limited memory that approximates the class
conditional likelihood where, given the last d states Xi−1, . . . , Xi−d, the predicted future
state Xi is independent of the past states Xi−d−1, . . . , X1 (Markov property). In case

1.2 Machine Learning 11

the model parameters remain constant over sequence position, i.e.,

Pr[Xi+1 = xd+1|Xi = x1, . . . ,Xi−d+1 = xd,θ
±] = Pr[Xi = xd+1|Xi−1 = x1, . . . ,Xi−d = xd,θ

±]

the MC is called homogeneous, and inhomogeneous otherwise.

For DNA, x are sequences of length lx, with symbols taken from the four letter alpha-
bet xi ∈ Σ = {A, C, G, T}. MC are typically defined by introducing a state for each
nucleotide, i.e., Xi ∈ Σ. To learn a Markov chain, each factor in Equation (1.1) has
to be estimated in model training, e.g., one counts how often each symbol appears at
each position in the training data conditioned on every possible xi−1, . . . , xi−d. Then,
for given model parameters θ̂ we have

Pr[X = x|θ̂±
] = θ̂±d (x1, . . . , xd)

lx∏

i=d+1

θ̂±i (xi, . . . , xi−d) ,

where θ̂±d (x1, . . . , xd) is an estimate for Pr[X1 = x1, . . . , Xd = xd] and θ̂±i (xi, . . . , xi−d)
is an estimate for Pr[Xi = xi|Xi−1 = xi−1, . . . , Xi−d = xi−d]. In contrast to a homo-
geneous model, this MC’s model parameters vary over sequence position (hence the
sub-index for θ). Figure 1.4 displays such an Inhomogeneous Markov Chain. Since the

T

G

C

A
i = 1

T

G

C

A
i = 2

T

G

C

A
i = lx − 1

T

G

C

A
i = lx

θ̂0,T

θ̂0,G

θ̂0,C

θ̂0,A

∗

∗

∗

θ̂1,A,A

∗

∗

∗

θ̂lx,A,A

Figure 1.4: A first order Markov chain on DNA. Only θ̂1(A, A) is explicitly labelled. θ̂1(C, A), θ̂1(G, A)
and θ̂1(T, A) are indicated with stars. As the transition probabilities (model parameters θ̂i) vary across
the positions i = d, . . . , lx in the sequence, this MC is inhomogeneous. Higher order MCs can be
represented as first order MCs by mapping the states A, C, G, T to the d-th cross-product Σ 7→ Σ×Σ×
· · · × Σ = Σd (cf. Durbin et al. (1998)).

alphabet Σ of DNA has four letters, each model has (lx − d + 1) · 4d+1 parameters.
Their maximum a posteriori (MAP) estimate (for pseudo-count π = 0 the maximum
likelihood estimate is obtained) is given by

θ̂d(s1, . . . , sd) =
1

N + π

(N∑

n=1

I(s1 = xn
1 ∧ · · · ∧ sd = xn

d) + π
)

θ̂i(si, . . . , si−d) =

∑N
n=1 I(si = xn

i ∧ · · · ∧ si−d = xn
i−d) + π

∑N
n=1 I(si = xn

i−1 ∧ · · · ∧ si−d = xn
i−d) + 4π

,

where I(·) is the indicator function, which evaluates to 1 if its argument is true and to 0
otherwise. The variable n enumerates over the number of observed sequences N , and π
is the commonly used pseudo-count (a model parameter used to regularize the model to-
wards lower complexity, i.e., uniform solutions, cf. Durbin et al. (1998)). Unfortunately,
in the general case it is considered to be a challenging problem to estimate the density
function of the two classes. When the true distribution is not contained in the set of
possible distributions or insufficient data is available, the estimate can be very poor.

12

Further, descriptive methods need to estimate the whole distribution, regardless of its
complexity. See for example Figure 1.5, where one can see two distributions separated
by a plane. The distribution on the left hand side is rather simple, while the other on
the right hand side is more complex. In such cases, discriminative learning techniques,

Figure 1.5: Two distributions separated by a plane.
While the distribution on the left side is rather simple,
the right class has a difficult structure.

which put special emphasis only
on the examples close to the de-
cision boundary may still provide
good performance. In addition,
the decision boundary might be
simpler, i.e., it can be parametrised
by fewer parameters. While in
that case one has to estimate fewer
parameters, the choice of the right
set of functions F remains crucial.
In this work, we will solely focus on
learning discriminative methods for
genomic signal detection. As we are
using Support Vector Machines to
tackle these signal detection prob-
lems, we devote the next subsection
to their introduction.

1.2.2 Support Vector Machines and String Kernels

A Support Vector Machine (SVM) (Boser et al., 1992, Cortes and Vapnik, 1995, Vapnik,
1995, Schölkopf, 1997, Vapnik, 1998, Schölkopf et al., 1999, Ben-Hur et al., 2008) is
a very competitive learning machine, as has been shown on several learning tasks.7

Suppose we are given N training examples. Each training sample consists of a pair: an
input vector xi ∈ IRD and the output yi ∈ {−1, +1} that tells us about the true class
of the input. Our learning task is to estimate a decision function f : x 7→ {−1, +1}
from the training examples that accurately labels all inputs x ∈ IRD, i.e., the function
correctly partitions the input space into the two classes +1 and −1. The SVM constructs
such a decision function from the training examples (xi, yi)

N
i=1 in the form of a linear

separating hyperplane:
f(x) = sign (w · x + b) (1.2)

We want to find the classifier f ∈ F, where F is the set of linear classifiers, that minimises
the risk functional. Hence, the specific learning task is to find normal weights w and
a bias b that achieve this. Among the set of separating hyperplanes the SVM chooses
the one that maximises the margin (for an explanation see Figure 1.6) between the two
classes such that each training point lies on the “correct side” (Boser et al., 1992):

yi(xi ·w + b) ≥ 1 for all i = 1, . . . , N. (1.3)

Why is a large margin desirable?
Consider a decision function that achieves only a small margin between the two
classes. Then there is little room for error when f is applied to unseen examples

7See Isabelle Guyon’s web page http://www.clopinet.com/isabelle/Projects/SVM/applist.html

on applications of SVMs.

1.2 Machine Learning 13

.
w

{x | (w x) + b = 0}.

{x | (w x) + b = −1}.
{x | (w x) + b = +1}.

x2
x1

Note:

(w x1) + b = +1
(w x2) + b = −1

=> (w (x1−x2)) = 2

=> (x1−x2) =
w

||w||()

.

.

.

. 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆

Figure 1.6: Illustration of the margin. On the left hand, you see the objects belonging to the class y = −1
which are separated by the linear function w ·x+b = 0 from the objects of the other class y = +1 on the
right hand side. Within the dashed lines, which correspond to the hyperplanes H1 : {x|w · x + b = −1}
and H2 : {x|w · x + b = +1}, one finds the margin of size 2

‖w‖
. The data points lying on either of the

dashed lines are called support vectors. This figure is taken from (Smola et al., 2000).

x. On the other hand, if a classifier f achieves a large margin, it will be more
robust with respect to patterns and parameters, i.e., slightly perturbed patterns x
that were previously far away from the separating hyperplane, will still be given
the same labels. If one changes the parameters of f, i.e., w or b slightly, one would
similarly expect (Smola et al., 2000) the same labels for examples far away from the
decision boundary. For linear classifiers without bias, i.e., b = 0, it has been proven
(Bartlett and Shawe-Taylor, 1998) that the test error is in principle8 bounded by
the sum of the fraction of training examples lying within a certain margin ρ and a
more complex term proportional to R

ρ
, where the latter decreases with the number

of training examples (here R denotes the smallest radius of a sphere that contains
all examples x). Thus, the classifier that achieves the maximum margin for a certain
number of training examples is expected to give the smallest test error. It is therefore a
good idea to choose the classifier with maximum margin among the separating functions.

From Figure 1.6 we see that to maximise the margin, we have to minimise 1
2 ‖w‖

with respect to the constraints (1.3). However, since most practically relevant prob-
lems are not separable by a hyperplane, the so-called soft-margin was introduced
(Cortes and Vapnik, 1995). To allow for some outliers, slack variables ξi, one for each
example, are introduced and the problem is reformulated as follows

minimise
1

2
||w||2 + C

N∑

i=1

ξi

w.r.t. w ∈ IRD, b ∈ IR, ξ ∈ IR

subject to yi(xi ·w + b) ≥ 1− ξi

ξi ≥ 0 ∀i = 1, . . . , N

8The exact inequality is given in (Bartlett and Shawe-Taylor, 1998) but we will leave aside the details
and focus on the “message” of this theorem. Note that similar bounds on the training error are
available for perceptrons since the 1960s (Block, 1962, Novikoff, 1962).

14

Note that at the optimum
∑N

i=1 ξi is an upper bound on the training error.

Kernel Functions Up to this point, all the SVM does is to construct a separating
hyperplane with maximum margin in the input space. Since a linear classifier may not
be sufficient for more complex problems, one can introduce a mapping Φ : IRD → F ,
which nonlinearly maps an input vector x into some higher dimensional feature space
F (Aizerman et al., 1964, Boser et al., 1992).9 During the training process of the SVM
(and in the SVM decision function) only dot-products Φ(x) · Φ(x′) are calculated, i.e.,
Φ(x) is never used explicitly. We may therefore introduce a kernel function k(x,x′) =
Φ(x) ·Φ(x′) that replaces the dot product and changes the decision function (Equation
(1.2)) to

f(x) = sign

(
N∑

i=1

αiyi k(xi,x) + b

)
.

By using a kernel function, one avoids calculating Φ(x) and instead uses the “kernel
trick,” i.e., computing the result directly in input space. Using kernels, SVMs are
capable of learning a non-linear decision function w.r.t. the input space. However, the
separation function in kernel feature space is still linear. Figure 1.7 illustrates the
effect of using a kernel. Kernels enable the application of SVMs to domains other

input
space

feature
spaceinput

space

Φ

(a) (b) (c)

Figure 1.7: (a) A linear separation of training points is not possible without errors. (b) A nonlinear
decision function is suggested. (c) The nonlinear function corresponds to a linear function in feature
space. This picture is taken from (Zien et al., 2000).

than real-values inputs, like strings. It has been shown that all symmetric squared
integrable functions that satisfy Mercer’s theorem (Mercer, 1909) are valid kernel
functions; for details cf. Aizerman et al. (1964), Saitoh (1988), Boser et al. (1992),
Cortes and Vapnik (1995), Burges (1998), Müller et al. (2001). A variety of kernel
functions are defined in Cortes and Vapnik (1995), Schölkopf (1997), Burges (1998),
Jaakkola and Haussler (1999), Watkins (2000).

The choice of a good kernel function is crucial, for instance, an unsuitable kernel applied
to the splice site recognition task (e.g., the RBF kernel) performs badly (Rätsch et al.,
2001, Braun et al., 2008). Consequently, Chapter 2 focuses on developing appropriate
string kernels for genomic signal detection problems.

9F may have infinite dimensions

2 String Kernels

Given two strings x and x′, there is no single answer to the question: How similar are
x and x′? In contrast to vectors in IRd where a quantity inverse to ‖x− x′‖ can be
used, similarity of strings can be expressed in a variety of ways – each accounting and
emphasizing different features and aspects.
Let us start by defining a few terms:

Definition 2.1. A String (Document or Sequence) x is defined as x ∈ Σ∗, where
Σ∗ := ∪∞n=0Σ

n denotes the Kleene closure over all symbols from finite alphabet Σ. The
length of a string is defined as lx := |x|.

Example 2.2. An extract of a spam email:

Working on your company’s image? Start with a visual identity

a key to the first good impression. We are here to help you!

We’ll take part in buildinq a positive visual image of

your company by creatinq an outstandinq loqo, presentable

stationery items and professional website. These marketinq

tools will significantIy contribute to success of your

business.

In this case, the alphabet is Σ = {A, . . . , Z, a, . . . , z, 0, . . . , 9, !, ?, “,′′ , ., }. The letters in
curly brackets form the alphabet set, where ’ ’ denotes a blank.

Example 2.3. A DNA sequence (Σ = {A, C, G, T}):

CAGGAGACGACGACAGGTATGATGATGAGCGACGACATATATGATGAATGTA

Using these definitions we are now able to define similarity measures for use with kernel
machines on strings, the so-called string kernels. In general, there are two major types of
string kernels, first the ones that are directly defined on strings, and second kernels that
are defined on generative models (like hidden Markov models, e.g. Jaakkola et al., 2000,
Tsuda et al., 2002b,c), or by using appropriately defined scores (for instance alignment
scores; e.g. Liao and Noble, 2002, Vert et al., 2004). These latter similarity measures are
directly working on strings but learnt or, respectively, defined independently beforehand.
The following subsections will cover string kernels of the first type Bag-of-words (Salton,
1979, Joachims, 1998), n-gram (Damashek, 1995, Joachims, 1999), Locality Improved
(Zien et al., 2000), Subsequence (Lodhi et al., 2002), Spectrum (Leslie et al., 2002),
Weighted Degree kernel (Rätsch and Sonnenburg, 2004), Weighted Degree kernel with
shifts (Rätsch et al., 2005) and also the Fisher (Jaakkola and Haussler, 1999) and TOP
kernel (Tsuda et al., 2002b) both of which of the latter type. We will see later (in Sec-
tion 2.4.3) how the Fisher and TOP kernel are related to the Spectrum and Weighted
Degree kernels. For related work that is not directly covered1 by this work the reader is
referred to Haussler (1999), Lodhi et al. (2002), Leslie et al. (2003a), Leslie and Kuang
(2004), Schölkopf et al. (2004), Cortes et al. (2004).

1Though the linadd optimisation trick presented later in this chapter is - in some cases - also applicable.

15

http://en.wikipedia.org/wiki/Kleene_closure

16

2.1 Bag-of-words Kernel, n-gram Kernel and Spectrum Kernel

In information retrieval, a classic way to characterise a text document is to represent
the text by the unordered set of words it contains – the bag of words (Salton, 1979). The
text document is split at word boundaries into words using a set of delimiter symbols,
such as space, comma and period. Note that in this representation the ordering of
words (e.g., in a sentence) will not be taken into account. The feature space F consists
of all possible words and a document x is mapped to a sparse vector Φ(x) ∈ F , so that
Φi(x) = 1 if the word represented by index i is contained in the document. Further
alternatives for mapping x into a feature space F correspond to associating Φi(x) with
frequencies or counts of contained words.

Definition 2.4 (Bag-of-Words-Kernel). With feature map Φi(x) the bag-of-words kernel
is computed as the inner product in F

k(x,x′) = Φ(x) · Φ(x′) =
∑

i∈words

Φi(x)Φi(x
′). (2.1)

In practice, computing the kernel boils down to counting the number of words common
to both documents and can thus be computed very efficiently. Another common but
similar approach is to characterise a document by contained n-grams – substrings of n
consecutive characters, including word boundaries – where n is fixed beforehand (Suen,
1979, Damashek, 1995). The corresponding feature space F is spanned by all possible
strings of length n. Here no dependencies other than the consecutive n characters are
taken into account, which, however, might contain more than one word. The kernel is
computed as in Equation (2.1) with the bag of words containing all n-grams appearing in
a document. Note that the n-gram kernel can – to some extent – cope with mismatches,
as for instance a single mismatch only affects n neighboring n-grams, while keeping
further surrounding ones intact.
In bioinformatics problems one often does not know any natural word boundary, which
is why n−gram (in bioinformatics terminology n−mer) based kernels are used. Note
that the n−gram kernel is position independent and can be used to compare documents
of different length.

Spectrum Kernel The spectrum kernel (Leslie et al., 2002) implements the n-gram
or bag-of-words kernel (Joachims, 1998) as originally defined for text classification in
the context of biological sequence analysis. The idea is to count how often a d-mer
(bioinformatics terminology for d-gram, a contiguous string of length d) is contained
in the sequences x and x′. Summing up the product of these counts for every possible
d-mer (note that there are exponentially many) gives rise to the kernel value, which
formally is defined as follows:

Definition 2.5 (Spectrum Kernel). Let Σ be an alphabet and u ∈ Σd a d-mer and
#u(x) the number of occurrences of u in x. Subsequently, the spectrum kernel is defined
as:

k(x,x′) =
∑

u∈Σd

#u(x)#u(x′). (2.2)

Spectrum-like kernels cannot extract any positional information from the sequence,
which goes beyond the d-mer length. It is well suited for describing the content of a
sequence but is less suitable for instance for analyzing signals where motifs may appear
in a certain order or at specific positions. However, spectrum-like kernels are capable
of dealing with sequences with varying length.

2.1 Bag-of-words Kernel, n-gram Kernel and Spectrum Kernel 17

Figure 2.1: Given two sequences x and x′ the spectrum kernel is computed by summing up products of
counts of k-mers common to both sequences.

Definition 2.6 (Weighted Spectrum Kernel). Given non-negative weights βk, the
Weighted Spectrum kernel is defined as

kwspec(x,x′) =
d∑

k=1

βk kspec
k (x,x′).

The spectrum kernel can be efficiently computed in O(d(lx + lx′)) using tries
(Leslie et al., 2002) and O(lx + lx′) using suffix trees (Vishwanathan and Smola, 2003),
where lx and lx′ denote the length of sequence x and x′. An easier and less complex
way to compute the kernel for two sequences x and x′ is to separately extract and sort
the (lx + lx′) d-mers in each sequence, which can be done in a preprocessing step. Then,
one iterates over all d-mers of sequences x and x′ simultaneously, counts which d-mers
appear in both sequences and finally sums up the product of their counts. For small al-
phabets and d-gram lengths individual d-mers can be stored in fixed-size variables, e.g.,
DNA d-mers of length d ≤ 16 can be efficiently represented as a 32-bit integer values.
The ability to store d-mers in fixed-bit variables or even CPU registers greatly improves
performance, as only a single CPU instruction is necessary to compare or index a d-mer.
The computational complexity of the kernel computation is O(lx+lx′) omitting the pre-
processing step. Finally, note that this representation allows efficient computation of
the Weighted Spectrum kernel in O(d(lx + lx′)) without requiring additional storage.

Spectrum Kernel with Mismatches When considering long d-mers, the probability
that exactly the same d-mer appears in another sequence drops to zero very fast. There-
fore, it can be advantageous (depending on the problem at hand) to consider not only
exact matches but also matches with a few mismatching positions.

Definition 2.7 (Spectrum Kernel with Mismatches). Leslie et al. (2003b) proposed the
following kernel:

k(x,x′) = Φm(x) · Φm(x′)

where Φm(x) =
∑

u∈x Φm(u), Φm(u) = (φσ(u))σ∈Σd and φσ(u) = 1 if σ mismatches
with u in at most m positions and φσ(u) = 0 otherwise.

This kernel is equivalent to

k2m(x,x′) =
∑

u∈x

∑

u′∈x′

∆2m(u, u′), (2.3)

where ∆2m(u, u′) = 1 if u mismatches u′ in at most 2m positions. Note that if
m = 1 then one already considers matches of k-mers that mismatch in two positions.2

Leslie et al. (2003b) proposed a suffix trie based algorithm that computes a single kernel
element in O(dm+1|Σ|m(|x|+ |x′|)).

2By using the formulation Equation (2.3) one may of course also consider the case with at most one
mismatch (i.e., m = 1

2
). While this kernel is empirically positive definite, it is theoretically not clear

whether it always has this property.

18

2.2 Linear and Polynomial String Kernels

As the standard linear kernel k(x,x′) = x·x′ and polynomial kernel k(x,x′) = (x·x′+c)d,
are only defined for numerical inputs x and x′ they cannot be directly used on strings.
One way to numerically represent a string and thus making it applicable to kernels
working on numerical inputs, is to embed it in a binary feature space. Then, a string is
represented as a binary feature vector

Φb(x) :=





Φb(x1)
Φb(x2)

...
Φb(xD)





where Φb(xi) is a vector of dimensionality |Σ| with all entries zero except dimension
D(xi). Here D : Σ 7→ 1 . . . |Σ| enumerates all possible elements in the alphabet assigning
an index. Thus, the resulting feature space has cardinality |Σ|lx and, as each symbol
is assigned a new dimension, this is a one-to-one mapping for c ∈ Σ. This procedure
works also for higher-order mappings, i.e., mapping each n−tuple Σn 7→ Σ′ and then
applying the same binary feature space transformation while still only lx components
of Φb(x) are non-zero. Using the embedding Φb one may finally use kernels defined on
numerical inputs, e.g., the linear kernel is now computed as k(x,x′) = Φb(x) · Φ(x′).
Note that the inner product Equation (2.1) using this feature space creates a position
dependent kernel and that this kernel can be computed as a sum of lx n-gram kernels
each of which working only on a single position of the string x. Finally, note that using
a homogeneous polynomial kernel of degree n creates a position dependent string kernel
that considers any not necessarily consecutive substring of length n. This leads to the
idea of the Locality Improved kernel (Zien et al., 2000) and is also closely related to the
Subsequence kernel (Lodhi et al., 2002). However, the polynomial kernel is computa-
tionally much more efficient, as the kernel is of effort O(lx), but is limited to comparing
strings of the same length.

Subsequence Kernel In contrast to the n−gram kernel, the subsequence kernel
(Lodhi et al., 2002) not only takes into account matches of n consecutive characters,
but matches of any “subsequence” of n characters of a string that has the same order-
ing. As now matches may spread over a large region and may include a large number
of gaps, the match is penalised by the length of the matching region. Formally, a
string u ∈ Σn is called subsequence of x if there exists a sequence s = s1, . . . , sn with
si ∈ {1, . . . , lx} and si < si+1, where the subsequence is of length ls := sn − s1 + 1 and
xs1 . . . xsn = u. Furthermore, let Sx

u denote the set of all possible subsequences of u in
x.

Definition 2.8 (Subsequence Kernel). The subsequence kernel is defined as the inner
product of feature maps (Φu)u∈Σn with Φu(x) :=

∑
s∈Sx

u
λls , which is

k(x,x′) =
∑

u∈Σn

∑

s∈Sx

u

∑

s′∈Sx
′

u

λls+l
s
′ ,

where 0 ≤ λ ≤ 1 is a decay term penalizing long subsequences and thus long gaps.

In Lodhi et al. (2002), a dynamic programming formulation with effort O(nlxlx′) was
proposed to compute this kernel. Note that this kernel uses a subset of the features of

2.2 Linear and Polynomial String Kernels 19

a homogeneous polynomial string kernel, as it considers matches of the same ordering.
However, in contrast to the polynomial kernel the subsequence kernel can handle strings
of different lengths and does not impose an artificial binomial weighting over inputs.

Locality Improved Kernel The Locality Improved kernel was inspired by the polyno-
mial kernel, putting emphasise on local features. It has successfully been applied to
tasks as “Recognition of Translation Initiation Sites” and “Splice Site Recognition”,
where local information between the observation symbols seems to be highly important
(Zien et al., 2000, Sonnenburg et al., 2002).

Definition 2.9. The Locality Improved kernel (Zien et al., 2000) (LIK) for two se-
quences x and x′ is defined as

k(x,x′) =




lx∑

i=1




+l∑

j=−l

wjIi+j(x,x′)




d1




d2

,

where

Ii(x,x′) =

{
1, xi = x′

i

0, otherwise

Comparing this to the polynomial kernel where x and x′ are binary vectors

k(x,x′) = (x · x′)d =

(
lx∑

i=1

xi · x′
i

)d

=

(
lx∑

i=1

Ii(x,x′)

)d

one clearly sees that the LIK is an extension to the polynomial kernel. For two sequences
x and x′, it computes the weighted sum of match functions for subsets of size 2l + 1

(.

(.

(.

(.

(.

.

.

.

.

.

.)

.)

.)

.)

.)

d

d

d

d

d

Σ

A

G

T

A
G

C
A

G
T

T
A

C

A

Sequence Sequence

A

G
A

C
T

T
T

x x’
Figure 2.2: The principle of how the Locality Im-
proved kernel works. The sequences x and x′

consist of only two symbols for simplicity. See
text for explanation. This picture is based on
(Schölkopf and Smola, 2002).

pairs of bases in each sequence (shown
grey in Figure 2.2), which is illustrated as
computing the binary dot product (., .).
Then, these sums are taken to the power
of d1. As mixed term products may oc-
cur in the result, even more correlations
can be taken into account. Finally, cor-
relations between these windows can be
utilised by adding the results from all
patches and taken their sum to the power
of d2, which leads to the LIK. While the
parameter d2 is in one to one correspon-
dence to d and can be used to adjust the
amount of information gained from rela-
tions between the inner windows (global
information), the parameters l and d1

can be used to adjust the amount and
kind of local information that is to be
used, i.e., the relations in each of the
windows of size 2l + 1. Here l controls
the size of the window and d1 how many
terms are taken into account.

20

2.3 Weighted Degree Kernel

The so-called weighted degree (WD) kernel (Rätsch and Sonnenburg, 2004) efficiently
computes similarities between sequences while taking positional information of k-mers
into account. The main idea of the WD kernel is to count the (exact) co-occurrences of
k-mers at corresponding positions in the two sequences to be compared.

Definition 2.10 (Weighted Degree kernel). The WD kernel of order d compares two
sequences xi and xj of length lx by summing all contributions of k-mer matches of
lengths k ∈ {1, . . . , d}, weighted by coefficients βk:

k(xi,xj) =
d∑

k=1

βk

lx−k+1∑

l=1

I(uk,l(xi) = uk,l(xj)). (2.4)

Here, uk,l(x) is the string of length k starting at position l of the sequence x and I(·) is
the indicator function that evaluates to 1 when its argument is true and to 0 otherwise.
For the weighting coefficients, Rätsch and Sonnenburg (2004) proposed to use

βk = 2
d− k + 1

d(d + 1)
. (2.5)

Matching substrings are thus rewarded with a score depending on the length of the
substring. The computational complexity of the WD kernel is O(dlx) as can be directly
seen from Equation (2.4).
Note that although in our case βk+1 < βk, longer matches nevertheless contribute more
strongly than shorter ones: this is due to the fact that each long match also implies
several short matches, adding to the value of Equation (2.4). Exploiting this knowledge
allows for a O(lx) reformulation of the kernel using “block-weights” as has been done
in Sonnenburg et al. (2005b) and will be discussed below.

x AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG

#1-mers .|.|.|||.|..||.|.|..|||.||...|....|...|||......|..
#2-mers||.....|.......||..|.............||..........
#3-mers|..............|.................|...........

y TACCTAATTATGAAATTAAATTTCAGTGTGCTGATGGAAACGGAGAAGTC

Figure 2.3: Example degree d = 3 : k(x,x′) = β1 · 21 + β2 · 8 + β3 · 3

In the weighting scheme (Equation (2.5)) higher-order matches seem to get lower
weights, which appears counter-intuitive. Note, however, that a k-mer contains two
(k−1)-mers, three (k−2)-mers etc. Hence, a block of length k contains k− b+1 blocks
of length b. We can make use of this finding and reformulate the kernel. Instead of
counting all matches of length 1, 2, . . . , d one moves along the sequence only weighting
the longest matching block (and not the smaller ones contained within, c.f. Figure 2.4)
using different weights w, which can be computed from the original weights as follows:
For matches of length B ≤ d the “block weights“ wB for the weighting (cf. Equation
(2.5)) are given by

wB =
B∑

b=1

m(b)
2(d− b + 1)

d(d + 1)
=

B∑

b=1

(B + 1− b)
2(d− b + 1)

d(d + 1)
=

B(−B2 + 3d ·B + 3d + 1)

3d(d + 1),

2.3 Weighted Degree Kernel 21

where m(b) is the number of times blocks of length b fit within blocks of length B.
When the length of the matching block is larger than the maximal degree, i.e., B > d,
the block weights are given by:

wB =
B∑

b=1

m(b)
2(d− b + 1)

d(d + 1)
=

d∑

i=1

(k + 1− i)
2(d− i + 1)

d(d + 1)
=

3B − d + 1

3

To compute the kernel, one determines the longest matches between the sequences x
and x′ and adds up their corresponding weights. This requires only lx steps reducing

Figure 2.4: Given two sequences x1 and x2 of equal length, the kernel consists of a weighted sum to
which each match in the sequences makes a contribution wB depending on its length B, where longer
maximal matches contribute more significantly. Figure taken from Sonnenburg et al. (2007a).

the computational complexity to O(lx). For illustration, Figure 2.5 displays the weight-
ing wB for different block lengths B at fixed d: longer maximal matching blocks get
increased weights; while the first few weights up to b = d increase quadratically, higher-
order weights increase only linearly. Note that the WD kernel can be understood as
a Spectrum kernel where the k-mers starting at different positions are treated inde-
pendently of each other. It therefore is very position dependent and does not tolerate
any mismatches or positional “shift”. Moreover, the WD kernel does not only consider
substrings of length exactly d, but also substrings of all shorter matches. Hence, the fea-

ture space for each position has
∑d

k=1 |Σ|k = |Σ|d+1−1
|Σ|−1 −1 dimensions and is additionally

duplicated lx times (leading to O(lx|Σ|d) dimensions).

Weighted Degree Kernel with Mismatches In this paragraph we briefly discuss an
extension of the WD kernel that considers mismatching k-mers.

Definition 2.11 (Weighted Degree Kernel with Mismatches). The WD mismatch kernel
is defined as

k(xi,xj) =
d∑

k=1

M∑

m=0

βk,m

lx−k+1∑

l=1

I(uk,l(xi) 6=m uk,l(xj)),

where u 6=m u′ evaluates to true if and only if there are exactly m mismatches between
u and u′. When considering k(u, u′) as a function of u′, then one would wish that full
matches are fully counted while mismatching u′ sequences should be less influential, in
particular for a large number of mismatches. If we choose βk,m = βk/ ((k

m) (|Σ| − 1)m)
for k > m and zero otherwise, then an m-mismatch gets the full weight divided by the
number of possible m-mismatching k-mers.

Note that this kernel can be implemented such that its computation only needs O(lxd)
operations (instead of O(MLd)).
As the WD mismatch kernel computation remains costly (computationally and memory-

22

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Block Length B

W
ei

gh
t w

B

Degree 5
Degree 10
Degree 15
Degree 20
Degree 40

Figure 2.5: How the block weights in the Weighting Degree kernel are chosen. The figure shows the
weighting for a sequence length lx = 50 for various degree d ∈ {5, 10, 15, 20, 40}. The circle marks the
transition from polynomial to linear growth in terms of block weights.

wise), one may ask the question how much the classical WD kernel is affected by mis-
matches. Let x be a sequence of length lx. Then considering the block formulation
using the standard WD-kernel weighting, a sequence x′ with a mismatch to sequence x
at position p splits a match of size lx into matches of length lx1 := p−1 and lx2 := lx−p.

Investigating the relative loss in kernel value ∆ kp := k(x,x)−k(x,x′)
k(x,x) it becomes clear that

there are two cases. A mismatch either splits the full match into long matches lx1,2 ≥ d
or creates at least one shorter lxi ≤ d match. If both blocks lxi are large, the mismatch-
induced change is a constant ∆ kp = d−1

3 / k(x,x). If one of the blocks is short, ∆ kp is
a polynomial function w.r.t. p, whereas a mismatch in the middle of the sequence x, at
lx−1

2 , causes the maximum loss in kernel value.
Figure 2.6 displays several facets of the influence of mismatches: For a fixed sequence
length lx = 20, one may note that if the order d of the WD kernel is low, mismatches
have almost no effect (constant loss that scales linear with the number of mismatches).
When increasing d, the standard WD kernel weighting imposes a prior over the impact
of the mismatch position. The prior arguably does what one would naturally expect:
The impact is largest around the center of the sequence and decays towards the sequence
boundaries. The higher the order the more mismatches will be punished and the less
uniform but peaked the prior. Another aspect is the maximum loss occurring for varying
sequence lengths lx. One would naturally expect the relative loss to increase inversely
proportional to the length of the match. For example, if lx = 1 then the loss is 100%
and in long sequences a few mismatches should not cause a strong change in kernel
value. This is exactly the case: If d = 1 then the loss is proportional to ∆ kp = c1

p+c2
+c3

(for ci =const). For larger d, the mismatch cost is overall higher and at the same time
the mismatch costs for matches of similar length become more similar. Finally, one
may note that using the block formulation of the kernel, arbitrary positive weights wB

may be selected to adjust mismatch costs to the application in mind. It is however not
obvious whether there exists a corresponding weighting βk in the original WD kernel
formulation.3

3Nevertheless, the block formulation of the WD kernel using any positive weighting is still a valid

2.3 Weighted Degree Kernel 23

0
5

10
15

20

0

20

40

60
0

10

20

30

40

50

Position of MismatchDegree of WD kernel

0102030405060708090100

0
50

100

0

10

20

30

40

50

60

70

Position of Mismatch

Length of Matching Block

L
o

s
s
 (

in
 p

e
rc

e
n

t)

2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45

50

Position of Mismatch

Lo
ss

 (
in

 p
er

ce
nt

)

Degree 1
Degree 10
Degree 20
Degree 50

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Length of Matching Block

M
ax

im
um

 L
os

s
(in

 p
er

ce
nt

)

Degree 1
Degree 10
Degree 20
Degree 50

Figure 2.6: Influence of mismatches for the Weighted Degree kernel. Given two strings x and x′ of
same length the relative loss in kernel value is shown for various sequence lengths, different order d and
different mismatch locations p. (top left) In this figure, the relative loss in kernel value is investigated
w.r.t. the order and position of the mismatch for lx = 20. In case the order of the kernel is low, the
mismatch has little impact. For larger order, the impact is peaked if the mismatch is located at the
central position of x′. (bottom left) 2D-representation of the top left figure, highlighting only order 1,
10, 20 and 50. (top right) The effect of a mismatch w.r.t. the length x of the maximal matching block
and the position p of the mismatch is investigated for fixed order d = 20. The relative loss increases
when the length of the matching block is low. Maximum loss occurs if the mismatch happens in the
middle of the sequence. (bottom right) Depicted is the maximal loss for several orders 1,10,20 and
50 for varying sequence lengths lx. The maximal loss is induced by introduction of a mismatch in the
middle of the matching block. Depending on the order of the kernel the relative loss decays with 1

p
for

low order and decays almost linearly for large order.

Weighted Degree Shift Kernel The WD kernel works well for problems where the
position of motifs are approximately constant in the sequence or when sufficiently many
training examples are available, as it is the case for splice site detection, where the
splice factor binding sites appear almost at the same positions relative to the splice
site. However, if for instance the sequence is shifted by only 1 nt (cf. Figure 2.4), then
potentially existing matches will not be found anymore. We therefore extend the WD
kernel to find sequence motifs, which are less precisely localised. Our proposed kernel lies
in-between the completely position dependent WD kernel and kernels like the spectrum
kernel (Leslie et al., 2002) that does not use positional information. Using βj as before,
let γl be a weighting over the position in the sequence, δs = 1/(2(s + 1)) the weight
assigned to shifts (in either direction) of extent s, and let S(l) determine the shift range
at position l.4

kernel in a potentially much higher dimensional feature space of all k-mers of length k = 1 . . . lx.
4Note that we could have already used γl in the position dependent WD kernel described before.

24

Definition 2.12 (Weighted Degree Shift Kernel). The kernel with shifts is defined as

k(xi,xj) =
d∑

k=1

βk

lx−k+1∑

l=1

γl

S(l)∑

s=0
s+l≤lx

δs µk,l,s,xi,xj
, (2.6)

µk,l,s,xi,xj
=I(uk,l+s(xi)=uk,l(xj))+I(uk,l(xi)=uk,l+s(xj)).

In our applications, S(l) is at most 40, hence the computational complexity of the
kernel with shifts is only higher by a factor of at most 40.

From a mathematical points of view, it is important to ask the question whether this
kernel is positive definite. If not, then the underlying SVM theory may not be applicable
and optimisation algorithms may fail. Suppose T is a shift operator, and Φ is the map
associated with the zero-shift kernel k. The kernel

k̃(x,x′) := (Φ(x) + Φ(Tx)) · (Φ(x′) + Φ(Tx′))

is trivially positive definite. On the other hand, we have

k̃(x,x′) = Φ(x) · Φ(x′) + Φ(Tx) · Φ(Tx′) + Φ(Tx) · Φ(x′) + Φ(x) · Φ(Tx′)

= k(x,x′) + k(Tx, Tx′) + k(Tx,x′) + k(x, Tx′).

Assuming that we may discard edge effects, k(Tx, Tx′) is identical to k(x,x′); we then
know that 2 k(x,x′) + k(Tx,x′) + k(x, Tx′) is positive definite. Our kernel (Equation
(2.6)), however, is a linear combination with positive coefficients of kernels of this type,
albeit multiplied with different constants δs. The above arguments show that if δ0

is at least twice as large as the sum of the remaining δs, the kernel function will be
positive definite. In our experiments detailed below, δ0 does not in all cases satisfy this
condition. Nevertheless, we have always found the kernel matrix to be positive definite
on the given training data, i.e., leading to positive definite matrices, and thus posing no
difficulties for the SVM optimiser.

k(x1,x2) = 6,3 + 6,-3 + 3,4
x1

x2

γγγ

Figure 2.7: Given two sequences x1 and x2 of equal length, the WD kernel with shift consists of a
weighted sum to which each maximal match in the sequences makes a contribution γk,p depending on
its length k and relative position s, where long matches at the same position contribute most significantly.
The γ’s can be computed from the β’s and δ’s in Equation (2.6). The spectrum kernel is based on a
similar idea, but it only considers substrings of a fixed length and the contributions are independent of
the relative positions of the matches to each other. Figure taken from Sonnenburg et al. (2007a).

Oligo Kernel Meinicke et al. (2004) proposed a so-called “oligo kernel” that is closely
related to our extended WD kernel: for each possible k-mer (k fixed in advance), one
scans the sequence and generates a numeric sequence whose entries characterise the
degree of match between the given k-mer and the sequence (at the corresponding lo-
cation). To achieve a certain amount of positional invariance, the numeric sequence

2.4 Fisher and TOP kernel 25

is convolved with a Gaussian. The convolved sequences are concatenated to give the
feature space representation of the original sequence. Meinicke et al. (2004) write down
the dot product between two such feature space vectors, and observe that its evalua-
tion does not require summing over all possible k-mers occurring in the two sequences,
but only over those that actually appear in both sequences. By construction as a dot
product in some feature space, their kernel is positive definite.

Definition 2.13 (Oligo Kernel). The Oligo kernel is defined as

k(x,x′) =
√

πσ
∑

u∈Σk

∑

p∈Sx

u

∑

q∈Sx
′

u

e−
1

4σ2 (p−q)2 ,

where 0 ≤ σ is a smoothing parameter, u is a k−mer and Sx
u is the set of positions

within sequence x at which u occurs as a substring.

This kernel has the disadvantage that it can be very slow (effort O(lxlx′)) when k-mers
appear often in the sequences (e.g., for short k-mers). Additionally, it only considers
k-mers of a fixed length instead of a mixture of k-mers, typically leading to inferior
results for large k (which seem necessary in many bioinformatics applications).

2.4 Fisher and TOP kernel

Bioinformatics is currently dominated by graphical models, such as hidden markov mod-
els (e.g., Rabiner, 1989) for obvious reasons: Most importantly prior knowledge can be
directly integrated into the model, e.g., different states describe different contexts, like
the nucleotide distribution in an exon or intron and transitions between the states de-
scribe potential context switches (e.g., exons and introns are alternating). Graphical
models describe the underlying class distribution. When one is only interested in dis-
criminating classes it may be of advantage to only learn the (simpler) discriminating
surface, instead of modelling each class distribution. While one would want to use SVMs
to learn such discriminating surface, one also wants to make use of the prior knowledge
contained in the fine tuned graphical models. The Fisher (Jaakkola and Haussler, 1999,
Jaakkola et al., 2000) and TOP (Tsuda et al., 2002a,b) kernel were invented to achieve
this goal. Both of which are very universal as they can be defined on arbitrary graphi-
cal models, which is why Fisher or TOP kernels derived from specific graphical model
closely resemble some of the kernels mentioned above: The Spectrum, Locality Improved
and Subsequence kernel. It even motivated the Weighted Degree kernels.

2.4.1 Fisher Kernel

In contrast to other kernels, the Fisher kernel (FK) and TOP kernel, are derived from
a probabilistic model. Used in conjunction with SVMs, they are known to increase
classification performance w.r.t. the probabilistic model if the true distribution can be
parametrised by the probabilistic model.
The Fisher kernel (Jaakkola and Haussler, 1999, Jaakkola et al., 2000) is defined on
some generative model Pr[x|θ] (like HMMs). It is derived from the marginal distribution

Pr[x|θ] = Pr[x|θ, y = +1] Pr[y = +1] + Pr[x|θ, y = −1] Pr[y = −1] :

Definition 2.14. The Fisher kernel is defined as

k(x,x′) = sFK(x, θ)⊤Z−1(θ)sFK(x′, θ),

26

where sFK is the Fisher score

sFK(x, θ) =
(
∂θ1 log p(x|θ), . . . , ∂θp

log p(x|θ)
)⊤

= ∇θ log p(x, θ),

and Z is the Fisher information matrix Z(θ) = Ex

[
sFK(x, θ)sFK(x, θ)⊤

∣∣θ
]
, which is

sometimes omitted in practice, i.e., Z = 1N , or approximated as Zij = δijσ
2
i , where σi

is the variance in dimension i Schölkopf and Smola (2002).

The Fisher kernel uses a local metric, defined on the generative model, to compare two
sequences x and x′. As an advantage over the LIK where the sequences have to have
the same length (since it counts positional matches), the FK can – depending on the
underlying probabilistic model – deal with sequences of arbitrary length, making it the
kernel of choice in many applications like speech recognition and DNA analysis.
The Fisher kernel was originally only defined based on the generative model describing
the positive class Pr[x|θ+] (Jaakkola et al., 2000). To explicitly make use of discrimina-
tive information, the TOP kernel (Tsuda et al., 2002a,b) was derived from the tangent
vectors of posterior log-odds and it was shown to outperform the FK on certain tasks.

2.4.2 TOP Kernel

Let us consider that we have trained two generative models, one for positive samples
Pr[x|θ+] and one for the negative class Pr[x|θ−].5

Recall the Bayes decision for the optimal model Pr[x, y|θ⋆] :

f(x) = sign (Pr[y = +1|x, θ⋆]− Pr[y = −1|x, θ⋆])

= sign

(
1

Pr[x|θ⋆]
· (α Pr[x|y = +1, θ⋆]− (1− α) Pr[x|y = −1, θ⋆])

)

= sign
(
α Pr[x|θ⋆

+]− (1− α) Pr[x|θ⋆
−]
)

Here α is the prior for the positive class conditional distribution, i.e.,
α = Pr[y = +1|θ⋆

+]. When not taking the difference but the quotient of the posterior
probabilities this decision function remains equivalent (except for the pathological case
where the negative distribution is zero):

f(x) =





−1,

α Pr[x|θ⋆
+]

(1−α) Pr[x|θ⋆
−] < 1

+1,
α Pr[x|θ⋆

+]

(1−α) Pr[x|θ⋆
−] > 1

.

Taking the logarithm of this quotient (we need to assume that both distributions are
nonzero) leads to the still equivalent formulation of the posterior log odds

f(x) = sign

(
log

(
α Pr[x|θ⋆

+]

(1− α) Pr[x|θ⋆
−]

))

= sign

(
log(Pr[x|θ⋆

+])− log(Pr[x|θ⋆
−]) + log

(
α

1− α

))

= sign
(
log(Pr[x|θ⋆

+])− log(Pr[x|θ⋆
−]) + b

)
,

where b is the bias term.

5This is a slightly different notation, which is introduced to underline two separately trained generative
models. We usually use θ = (θ+, θ−, α) and Pr[x|y = c, θ] = Pr[x|θc], where c ∈ {+1,−1}.

2.4 Fisher and TOP kernel 27

We are interested in the decision boundary v(x, θ⋆) = 0, where

v(x, θ) := log(Pr[x|θ+])− log(Pr[x|θ−]) + b.

However, θ⋆ is not known. We use Taylor approximation to estimate the decision
boundary

v(x, θ⋆) ≈ v(x, θ̂) +

p∑

i=1

∂θi
v(x, θ̂)(θ⋆

i − θ̂i)

= sTOP (θ̂,x) ·w

where

sTOP (θ̂,x) := (v(x, θ̂), ∂θ1v(x, θ̂), . . . , ∂θp
v(x, θ̂)))

w := (1, θ⋆
1 − θ̂1, · · · , θ⋆

p − θ̂p)
⊤,

and θ̂ is an estimate for θ⋆ obtained, e.g., by maximum likelihood learning. While we
can compute sTOP (θ̂,x), we still find the unknown model parameters θ⋆ in w. We can
use, e.g., SVMs (or any other linear estimator) to estimate w.

Definition 2.15. Since the Tangent vector Of the Posterior log-odds (TOP) constitutes
the main part of the feature vector sTOP (θ̂,x) the inner product

k(x,x′) = sTOP (θ̂,x)⊤sTOP (θ̂,x′)

is called TOP-Kernel (Tsuda et al., 2002a).

The TOP kernel, while applicable to the same type of problems, empirically outperforms
the FK as observed in (Smith and Gales, 2002, Tsuda et al., 2002a). Furthermore, it
was shown that the convergence rate when combined with an optimal linear classifier
(which is not available in practice) is O(N−1). This shows the existence of a very efficient
linear boundary in the TOP feature space.

2.4.3 Relation to Spectrum and Weighted Degree Kernel

The Fisher kernel framework is very generic, as it can be defined on any graphical
model. It may therefore not be too surprising that many (if not all) of the above string
kernels can be derived using the FK framework and a specific probabilistic model. In the
following paragraphs, we derive probabilistic models for the Spectrum and WD kernel
for which the corresponding FK for a certain setting of model parameters can be shown
to be equivalent.

Probabilistic Model for the Spectrum Kernel In this section we define a rather simple
single state model closely resembling a higher-order Markov Chain and show that the
Fisher kernel derived from this graphical model leads to the Spectrum kernel when a
uniform distribution over parameters is assumed. Let us consider a single state proba-
bilistic model, with m := |Σ|d emission parameters (one for each possible d−mer u ∈ Σd)
and likelihood

28

Pr[x|θ] :=

lx−d+1∏

i=1

Pr[xi,...,i+d−1|θ]

:=

lx−d+1∏

i=1

θxi,...,i+d−1
. (2.7)

Note that a different approximation to the full joint probability Pr[x|θ] is used: Instead
of the normally in Markov Chains of order d − 1 usually used conditional likelihood
Pr[xi+d−1|xi+d−2,...,i, θ] the joint probability Pr[xi,...,i+d−1|θ] was chosen to represent
Pr[x|θ].6 Figure 2.8 sketches the resulting model.

θu1

θu2

. . .

θum

Figure 2.8: Single state Hidden Markov like model with m := |Σ|d emissions (one for each possible
d−mer u ∈ Σd.

Using the definition Equation (2.7) we may now derive the Fisher kernel scores sFK =
∇θ log p(x, θ).

∂θu
log(Pr[x|θ]) = ∂θu

log

(
lx−d+1∏

i=1

θxi,...,i+d−1

)

= ∂θu

lx−d+1∑

i=1

log
(
θxi,...,i+d−1

)

= ∂θu
#(u ∈ x) · log θu

= #(u ∈ x) · 1

θu
(2.8)

Here #(u ∈ x) denotes the number of occurrences of the d-mer u in x. If all model
parameters were uniform, i.e., ∀u : θu = 1 the inner product of fisher scores as computed
in Equation (2.8) fully recovers the spectrum kernel Equation (2.2). Note that instead
of the Fisher information matrix, the identity matrix Z = 1m was used. Also to be
exact ∀u : θu = c with c = 1 violates

∑
u∈Σd θu = 1. A c 6= 1 introduced factor though

vanishes when using standard kernel normalisation k(x,x′) = k′(x,x′)
k′(x,x) k′(x′,x′)

.

Probabilistic Model for the WD Kernel Similarly, one may define a probabilistic
model for the WD kernel. Again a parameter for each possible emission is introduced.
In contrast to the spectrum kernel, the emission parameter is position-dependent and
order 1 . . . d are simultaneously used. Let θk,iu be the model parameter for a k−mer u

6Mathematically, this model might not be a valid probability distribution.

2.5 Summary 29

starting at position i. We then define

Pr[x|θ] :=
d∏

k=1

lx−k+1∏

i=1

Pr[xi,...,i+k−1|θ]

:=
d∏

k=1

lx−k+1∏

i=1

θi, xi,...,i+d−1
. (2.9)

as the WD kernel associated probabilistic model.7

Figure 2.9 shows a Hidden Markov like probabilistic model for a fixed order k only.
Again computing derivatives of the log likelihood we obtain the following Fisher scores

θu1,1

θu1,2

. . .

θu1,m

θu2,1

θu2,2

. . .

θu2,m

θu3,1

θu3,2

. . .

θu3,m

θulx,1

θulx,2

. . .

θulx,m

Figure 2.9: Hidden Markov like model Mk with m := lx|Σ|k emission parameters (one for each possible
k−mer u ∈ Σk and position p. Deriving the Fisher kernel of model Mk, recovers a single order k of the
WD kernel. Finally, deriving the Fisher kernel from the product model M :=

Qd

k=1 Mk leads to the
WD kernel (using a certain parameter setting θp,u).

∂up log Pr[x|θ] = ∂up log
d∏

k=1

lx−k+1∏

i=1

= ∂up

d∑

k=1

lx−k+1∑

i=1

log(θk, xi,...,i+d−1
)

=
1

θ|up|,up

. (2.10)

Here up is a substring starting a position p of length |up|. The quantity in Equation
(2.10) is zero if up 6= xp,...,p+|up|−1. Finally, using a constant weighting for each k−mer
length |up| = k, i.e., for all k = 1 . . . d:

θk,up
:=

√
1

βk
, ∀up ∈ Σk

one recovers the weighted degree kernel Equation (2.4).

2.5 Summary

The string kernels revisited in this section all differ in computational cost and the com-
plexity of their inherent feature space. Some of their properties are summarised in
Table 2.1. While some kernels like the polynomial, locality improved and subsequence
string kernel impose an extremely complex feature space that may consider all possible
(gappy) subsequences of a maximum length others like the n-gram (spectrum) kernel
and weighted degree kernel are tuned to only count matching n-grams. In practice,
a too rich feature space may contain orders of magnitude more nuisance dimensions
and thus may make the problem unnecessarily hard even for relatively robust SVM

7For this analysis, we ignore that this model might not be a valid probability distribution.

30

Kernel lx 6= lx′ Requires
Gener-
ative
Model

Uses po-
sitional
informa-
tion

Local or
Global?

Computational
Complexity

linear no no yes local O(lx)

polynomial no no yes global O(lx)

locality improved no no yes local/global O(l · lx)

sub-sequence yes no yes global O(nlxlx′)

n-gram/Spectrum yes no no global O(lx)

WD no no yes local O(lx)

WD with shifts no no yes local/global O(s · lx)

Oligo yes no yes local/global O(lxlx′)

TOP yes/no yes yes/no local/global depends

Fisher yes/no yes yes/no local/global depends

Table 2.1: This table summarises different properties of the discussed string kernels, like whether the
kernel is capable of dealing with sequences of different length (lx 6= l

x
′), whether the kernel requires a

probabilistic model from which it will be derived, whether it uses positional information (i.e., order of
n-gram matters), whether it uses local or global information (i.e., information only from neighboring
characters or globally using the whole string) and finally the kernels computational complexity..

classifiers. An additional downside of highly complex kernels is the often also very
high computational complexity, which may drastically limit the number of applications.
Overall, there is a trade-off between expressive complexity (e.g., a string kernel explic-
itly modelling mismatches), the number of data points it can handle (computational
complexity) and the number of data points available and needed in a specific applica-
tion: For example, if enough data points are available, mismatches could in principle be
learnt by a simpler kernel when all variants of the mismatch are found in training. It
is therefore crucial to fine tune the string kernel to the particular application in mind.
In genomic sequence analysis, the relatively simple spectrum and WD kernels perform
favourably. Furthermore, their computational complexity is linear in the length of the
input sequences, although there are some significant differences: the spectrum kernel
requires O(lx + lx′), the WD kernel O(l) and the WDS kernel is most demanding with
O(lS). However, even linear time string kernels are computationally intractable when
working with genomic size datasets (size ≫ 106). As there is no obvious way to further
speed up single kernel computations, one can try to exploit the inherent structure of
learning algorithms using string kernels. One can particularly benefit from the fact that
these algorithms often need to compute linear combinations of kernel elements during
training and testing, which can be significantly sped up by exploiting the sparsity of
the representation in feature space. In Chapter 3, we will discuss methods to represent
sparse feature maps and give algorithmic details on how one can make use of the sparse
feature space to accelerate evaluations of linear combinations of string kernels, which
will tremendously speed up SVM training and testing.

3 Large Scale Learning with String Kernels

In applications of bioinformatics and text processing, such as splice site recognition and
spam detection, large amounts of training sequences are available and needed to achieve
sufficiently high prediction performance on classification or regression tasks. Although
kernel-based methods such as SVMs often achieve state-of-the-art results, training and
evaluation times may be prohibitively large. When single kernel computation time is
already linear (w.r.t. the input sequences), it seems difficult to achieve further speed ups.

In this section, we describe an efficient technique for computing linear combinations of
string kernels using sparse data structures such as explicit maps, sorted arrays and suffix
tries, trees or arrays (Sonnenburg et al., 2007a). As computing linear combinations of
kernels make up the dominant part of SVM training and evaluation, speeding up their
computation is essential. We show that the recently proposed and successfully used
linear time string kernels, like the Spectrum kernel (Leslie et al., 2002) and the Weighted
Degree kernel (Rätsch and Sonnenburg, 2004) can be accelerated in SVM training by
factors of 7 and 60 times, respectively, while requiring considerably less memory. Our
method allows us to train string kernel SVMs on sets as large as 10 million sequences
(Sonnenburg et al., 2007b). Moreover, using these techniques the evaluation on new
sequences is often several thousand times faster, allowing us to apply the classifiers
on genome-sized data sets with seven billion test examples (Sonnenburg et al., 2006b).
This chapter is largely based on Sonnenburg et al. (2007a).

3.1 Sparse Feature Maps

The string kernels introduced in the previous section share two important properties:
(a) the mapping Φ is explicit, so that elements in the feature space F can be accessed
directly, and (b) mapped examples Φ(x) are very sparse in comparison to the huge
dimensionality of F . In the following sections, we illustrate how these properties can
be exploited to efficiently store and compute sparse feature vectors.

3.1.1 Efficient Storage of Sparse Weights

The considered string kernels correspond to very large feature spaces, for instance DNA
d-mers of order ten span a feature space of over 1 million dimensions. However, most
dimensions in the feature space are always zero since only a few of the many different
d-mers actually appear in the training sequences, and furthermore a sequence x can
only comprise at most lx unique d-mers.

In this section, we briefly discuss four efficient data structures for sparse representation
of sequences supporting the basic operations: clear, add and lookup. We assume that
the elements of a sparse vector v are indexed by some index set U (for sequences, e.g.,
U = Σd). The first operation clear sets v to zero. The add operation increases either
the weight of a dimension of v for an element u ∈ U by some amount or increases a set
of weights in v corresponding to all d-mers present in a given sequence x. Similar to

31

32

add, the lookup operation either requests the value of a particular component vu of v

or returns a set of values matching all d-mers in a provided sequence x. The latter two
operations need to be performed as quickly as possible.

Explicit Map If the dimensionality of the feature space is small enough, then one might
consider keeping the whole vector v in memory and to perform direct operations on its
elements. In this case, each add or lookup operation on single elements takes O(1)
time.1 The approach, however, has expensive memory requirements (O(|Σ|d)), but is
highly efficient and best suited for instance for the spectrum kernel on DNA sequences
with d ≤ 14 and on protein sequences with d ≤ 6.

Sorted Arrays and Hash Tables More memory efficient but computationally more
expensive are sorted arrays of index-value pairs (u, vu). Assuming lx indices of a
sequence x are given and sorted in advance, one can efficiently add or lookup a single
vu for a corresponding u by employing a binary search procedure with O(log lx)
run-time. Given a sequence x′ to look up all contained d-mers at once, one may sort
the d-mers of x′ in advance and then simultaneously traverse the arrays of x and
x′ to determine which elements appear in x′. This procedure results in O(lx + lx′)
operations – omitting the sorting of the second array – instead of O(lx′ log lx). The
approach is well suited for cases where lx and lx′ are of comparable size, as for instance
for computations of single spectrum kernel elements (Leslie et al., 2003b). If lx ≫ lx′ ,
then the binary search procedure should be preferred.

A trade-off between the efficiency of explicit maps and the low memory requirements of
sorted arrays can be achieved by storing the index-value pairs (u, vu) in a hash table,
where u is hashed to a bin in the hash table containing vu (Rieck et al., 2006). Both
operations add and lookup for u ∈ Σd can be carried out in O(1) time in best-case –
however the worst-case run-time is O(log lx), if all u of a sequence x are mapped to
the same bin. The two opposed runtime bounds suggest that the hash table size has
to be chosen very carefully in advance and also strongly depends on the lengths of the
considered sequences, which makes the sorted array approach more practicable in terms
of run-time requirements.

Tries Another way of organizing the non-zero elements are tries (Fredkin, 1960,
Knuth, 1973): The idea is to use a tree with at most |Σ| siblings of depth d. The
leaves store a single value: the element vu, where u ∈ Σd is a d-mer and the path
to the leaf corresponds to u. To add an element to a trie, one needs O(d) in order
to create the necessary nodes on the way from the root to a leave. Similar to the
add operation, a lookup takes O(d) time in the worst-case, however, with growing d
the probability for an arbitrary u to be present in a trie decreases exponentially, so
that a logarithmic run-time of O(log|Σ| d) can be expected for large d. Note that the
worst-case computational complexity of both operations is independent of the number
of d-mers/elements stored in the tree.

Tries need considerably more storage than sorted arrays (for instance storing edges in
nodes usually requires using hash tables or balanced tree maps), however, tries are useful
for the previously discussed WD kernel. Here we not only have to lookup one substring

1More precisely, it is log d, but for small enough d (which we have to assume anyway) the computational
effort is exactly one memory access.

3.1 Sparse Feature Maps 33

A G

A G A

A A A

α1 + α2

α1

α1

α2

α2

α3

α3

α3

Figure 3.1: Trie containing the 3-mers AAA, AGA, GAA with weights α1, α2, α3. Additionally, the
figure displays resulting weights at inner nodes. Figure taken from Sonnenburg et al. (2007a).

u ∈ Σd, but also all prefixes of u. For sorted arrays this amounts to d separate lookup

operations, while for tries all prefixes of u are already known when the bottom of the
trie is reached. In this case, the trie has to store aggregated weights in internal nodes
(Sonnenburg et al., 2006a, Rieck et al., 2006). This is illustrated for the WD kernel in
Figure 3.1.

Suffix Trees and Matching Statistics A fourth alternative for efficient storage of
sparse weights and string kernel computation builds on two data structures: suffix trees
and matching statistics (Vishwanathan and Smola, 2003). A suffix tree Sx is a compact
representation of a trie, which stores all suffixes of a sequence x in O(lx) space and
allows efficient retrieval of arbitrary sub-sequences of x (Gusfield, 1997). A matching
statistic Mx′ for a suffix tree Sx is defined by two vectors v and c of length lx′ , where
vi reflects the length of the longest substring of x matching x′ at position i and ci is a
corresponding node in Sx (Chang and Lawler, 1994). As an example, Figure 3.2 shows
a suffix tree Sx and a matching statistic Mx′ for the sequences x = GAGAAG and
x′ = GAACG.

a

b

c

d e f

g h i

A

GA

AG$ GAAG$ $

AG$ GAAG$ $

(a) Suffix tree Sx

x′ G A A C G
vi 3 2 1 0 1
ci g d b a c

(b) Matching statistic M
x
′

Figure 3.2: Suffix tree Sx for the sequence x = GAGAAG and matching statistic M
x
′ for x′ = GAACG

matched against Sx. A sentinel symbol $ has been added to x, s.t. that all leaves correspond to suffixes.
Figure taken from Sonnenburg et al. (2007a).

By traversing Sx and looping over Mx′ in parallel, a variety of string kernels k(x,x′) –
including the spectrum and WD kernel – can be computed using O(lx+ lx′) run-time. A
detailed discussion of the corresponding algorithms, weighting schemes and extensions
is given in Vishwanathan and Smola (2004), Rieck et al. (2007). The approach can be
further extended to support the operations clear, add and lookup. In contrast to sorted
arrays and tries, these operations are favorably performed on the domain of sequences
instead of single d-mers to ensure linear run-time. Starting with an empty suffix tree

34

S obtained using clear, the add operation is realised by appending sequences and
implicitly contained d-mers to S using an online construction algorithm, (e.g. Ukkonen,
1995). To avoid matches over multiple sequences, each sequence xi is delimited by a
sentinel symbol $i /∈ Σ. Given S, the lookup operation for a sequence x′ is performed
by calculating Mx′ , so that a kernel computation can be carried out in O(lx′) run-time
using S and Mx′ .
In practice however, suffix trees introduce a crucial overhead in storage space due to
the high complexity of the data structure, which makes memory preserving data struc-
tures such as sorted arrays more attractive, especially on small alphabets. Recently, an
alternative, suffix arrays, have been proposed to reduce the memory requirements, still
n input symbols results in at least 19n bytes of allocated memory independent of the
considered alphabet (Teo and Vishwanathan, 2006)

Explicit map Sorted arrays Tries Suffix trees

clear of v O(|Σ|d) O(1) O(1) O(1)
add of all u from x to v O(lx) O(lx log lx) O(lxd) O(lx)
lookup of all u from x′ in v O(lx′) O(lx + lx′) O(lx′d) O(lx′)

Table 3.1: Comparison of worst-case run-times for multiple calls of clear, add and lookup on a sparse
vector v using explicit maps, sorted arrays, tries and suffix trees. Table taken from Sonnenburg et al.
(2007a).

Summary Table 3.1 coarsely summarises the worst-case run-times for multiple calls
of clear, add and lookup using the previously introduced data structures. From the
provided run-time bounds, it is obvious that the explicit map representation is favorable
if the considered alphabet Σ and order d is sufficiently small – for instance as in several
application of DNA analysis where |Σ| = 4 and d ≤ 6. For larger alphabets and
higher d, the sorted array approach is more attractive in practice. Other than tries
and suffix trees, the sorted array approach is much easier to implement and its memory
requirements are easier to estimate. If either Σ or d can get arbitrarily large, suffix trees
are the data structure of choice as they operate linear in sequence lengths independent
of Σ and d, however, as mentioned earlier there is a large overhead in storage space
due to the complexity of the suffix tree structure. The trie-based approach may not
seem suitable for large scale learning in comparison to the other methods, but the per-
node augmentation of tries with additional values such as aggregated weights shown in
Figure 3.1 can drastically speed up computation of complex string kernels such as the
WD kernel, which can not efficiently be mapped to other approaches.

3.1.2 Speeding up Linear Combinations of Kernels

One of the most time consuming operation appearing in kernel machine training and
evaluation is computing output, which manifests as computing linear combinations of
kernels

gi =
∑

j∈J

αjyj k(xj ,xi) i = 1 . . . N. (3.1)

In this section we develop the linadd technique, which speeds up computing linear com-
binations of already linear time string kernels. We apply this technique to speeding up
chunking based support vector machines training (cf. Section 3.1.3) and kernel machine
evaluation. They key idea of linadd is to split the computations of Equation (3.1) into
two steps. In a first step the normal w is computed and stored in one of the sparse data

3.1 Sparse Feature Maps 35

structures mentioned above, which can be efficiently done using the using the clear

and add operations. In a second step the output for all N examples is computed using
lookup operations, more formally exploiting k(xi,xj) = Φ(xi) · Φ(xj) one may rewrite
Equation (3.1) as

gi =
∑

j∈J

αjyj k(xj ,xi)

=




∑

j∈I

αjyjΦ(xj)



 · Φ(xi)

= w · Φ(xi)∀i = 1 . . . N. (3.2)

The explicit representation of w =
∑

j∈I αjyjΦ(xj) may depending on the clear, add
and lookup costs (cf. Table 3.1) lead to speedups of up to factor |J |. As for large scale
learning task, i.e., huge N most time is spend on in lookup operations one may gain
additional speedups by parallelizing gi = w ·Φ(xi), ∀i = 1 . . . N as done in Section 3.2.
Note that computing Φ(xi) is not a costly operation as for many string kernels it boils
down to extracting k−mers of xi. However, with an increased size of the index set J
w may – depending on the string kernel even when using the sparse data structures –
quickly become prohibitively large. This, especially holds for the WD kernel with shifts
(cf. Equation (2.6)) when a large degree and shift is used. However, in practice J is
small for SVM training (Section 3.1.3) and only becomes large on computing outputs.
To reduce the memory requirements, one may construct a sparse data structure wd on
only a subset of the features appearing in w

gi = w · Φ(xi)

=
D∑

d=1

wdΦd(xi) ∀i = 1 . . . N. (3.3)

To be efficient it is necessary that the output can be computed in batches, i.e., all
examples xi, . . .xN are available and thus wd needs to be constructed only once. For
example, the WD kernels feature space can be represented in lx tries, each trie cor-
responding to one position in the sequence. To compute output in memory efficient
batches, it is therefore natural to start with g = 0 and to construct only a single trie
via which g is updated. Furthermore, especially more complex and thus computation-
ally more demanding kernels, such as the Mismatch Spectrum, Mismatch WD, Weighted
Spectrum and WD kernel with shifts, especially profit from linadd. For the mismatch
kernels the idea is to add for each u ∈ x all

(
d

2m

)
(|Σ| − 1)2m oligomers of length d

to the sparse data structure, which mismatch with u in at most 2m positions, while
the lookup costs remain the same. Note, however, that the resulting data structure
may become huge for larger m, i.e., only at the expense of increased memory usage we
achieve a considerable speedup. However, if the alphabet and d are small as is the case
in genomic sequence analysis where a 4 character DNA alphabet and usually d < 8 are
sufficient, one may use the explicit map representation. In this case, the lookup opera-
tion for N sequences only takes O(NL) even for the Weighted Spectrum and Mismatch
Spectrum kernel. Similarly, for the WD kernel with shifts one may add all sequences to
the tries shifted by s = 0 . . . S. In this context it becomes clear that a positional scor-
ing s(x) :=

∑K
k=1

∑l−k+1
i=1 w(xi, . . . , xi+k−1) of k−mers starting at position i of order

k = 1 . . .K is of high expressive power and able to model most of the currently existing

36

string kernel imposed feature spaces. Based on this observation, we will in Section 4.2
develop means to visualise such a weighting system and extract discriminating motifs
motifs.

3.1.3 Speeding up SVM Training

As it is not feasible to use standard optimisation toolboxes for solving large scale SVM
training problem, decomposition techniques are used in practice. Most chunking algo-
rithms work by first selecting Q variables (working set W ⊆ {1, . . . , N}, Q := |W |)
based on the current solution and then solve the reduced problem with respect to
the working set variables. These two steps are repeated until some optimality con-
ditions are satisfied (see Algorithm 3.1 and e.g., Joachims (1998)). For selecting the

Algorithm 3.1 SVM Chunking Algorithm

while optimality conditions are violated do
select Q variables for the working set.
solve reduced problem on the working set.

end while

working set and checking the termination criteria in each iteration, the vector g with
gi =

∑N
j=1 αjyj k(xi, xj), i = 1, . . . , N is usually needed. Computing g from scratch

in every iteration requires O(N2) kernel computations. To avoid recomputation of g
one typically starts with g = 0 and only computes updates of g on the working set W

gi ← gold
i +

∑

j∈W

(αj − αold
j)yj k(xi, xj), ∀i = 1, . . . , N.

As a result the effort decreases to O(QN) kernel computations, which can be further
speed up by using kernel caching (e.g. Joachims, 1998). However, kernel caching is not
efficient enough for large scale problems2 and thus most time is spend computing kernel
rows for the updates of g on the working set W . Note however that this update as well
as computing the Q kernel rows can be easily parallelised; cf. Section 3.3.
Exploiting k(xi,xj) = Φ(xi) ·Φ(xj) and w =

∑N
i=1 αiyiΦ(xi) we can rewrite the update

rule as
gi ← gold

i +
∑

j∈W

(αj − αold
j)yjΦ(xi) · Φ(xj)〉 = gold

i + wW · Φ(xi), (3.4)

where wW =
∑

j∈W (αj − αold
j)yjΦ(xj) is the normal (update) vector on the working

set.
If the kernel feature map can be computed explicitly and is sparse (as discussed before),
then computing the update in (3.4) can be accelerated. One only needs to compute and
store wW (using the clear and

∑
q∈W |{Φj(xq) 6= 0}| add operations) and performing

the scalar product wW · Φ(xi) (using |{Φj(xi) 6= 0}| lookup operations).
Depending on the kernel, the way the sparse vectors are stored Section 3.1.1 and on the
sparseness of the feature vectors, the speedup can be quite drastic. For instance, for the
WD kernel one kernel computation requires O(Ld) operations (L is the length of the
sequence). Hence, computing (3.4) N times requires O(NQLd) operations. When using
tries, then one needs QL add operations (each O(d)) and NL lookup operations (each
O(d)). Therefore, only O(QLd + NLd) basic operations are needed in total. When N

2For instance, when using a million examples one can only fit 268 rows into 1 GB. Moreover, caching
268 rows is insufficient when for instance having many thousands of active variables.

3.2 A Simple Parallel Chunking Algorithm 37

is large enough, it leads to a speedup by a factor of Q. Finally, note that kernel caching
is no longer required and as Q is small in practice (e.g., Q = 42) the resulting trie has
rather few leaves and thus only needs little storage.
The pseudo-code of our linadd SVM chunking algorithm is given in Algorithm 3.2.

Algorithm 3.2 Outline of the chunking algorithm that exploits the fast computations
of linear combinations of kernels (e.g., by tries).

{INITIALIZATION}
gi = 0, αi = 0 for i = 1, . . . , N
{LOOP UNTIL CONVERGENCE}
for t = 1, 2, . . . do

Check optimality conditions and stop if optimal
select working set W based on g and α, store αold = α

solve reduced problem W and update α

clear w
w← w + (αj − αold

j)yjΦ(xj) for all j ∈W (using add)
update gi = gi + w · Φ(xi) for all i = 1, . . . , N (using lookup)

end for

3.2 A Simple Parallel Chunking Algorithm

As still most time is spent in evaluating g(x) for all training examples, further speedups
are gained when parallelizing the evaluation of g(x). When using the linadd algorithm,
one first constructs the trie (or any of the other possible more appropriate data struc-
tures) and then performs parallel lookup operations using several CPUs (e.g., using
shared memory or several copies of the data structure on separate computing nodes).
We have implemented this algorithm based on multiple threads (using shared memory)
and have gained reasonable speedups (see next section).
Note that this part of the computations is almost ideal to distribute to many CPUs, as
only the updated α (or w depending on the communication costs and size) have to be
transfered before each CPU computes a large chunk Ik ⊂ {1, . . . , N} of

h
(k)
i = w · Φ(xi), ∀i ∈ Ik, ∀k = 1, . . . , N, where (I1 ∪ · · · ∪ In) = (1, . . . , N)

that is transfered to a master node that finally computes g ← g + h, as illustrated in
Algorithm 3.3.

3.3 Benchmarking SVM Training Time

Experimental Setup To demonstrate the effect of the proposed linadd optimisation
(Algorithm 3.2) for single, four and eight CPUs, we applied each of the algorithms to
a human splice site data set3, comparing it to the original WD formulation. The splice
data set contains 159,771 true acceptor splice site sequences and 14,868,555 decoys, lead-
ing to a total of 15,028,326 sequences each 141 base pairs in length. It was generated
following a procedure similar to the one in Sonnenburg et al. (2005a) for C. elegans,
which however contained “only” 1,026,036 examples. Note that the dataset is very un-
balanced as 98.94% of the examples are negatively labelled. We are using this data set in

3The splice dataset can be downloaded from http://www.fml.tuebingen.mpg.de/raetsch/projects/lsmkl

http://www.fml.tuebingen.mpg.de/raetsch/projects/lsmkl

38

Algorithm 3.3 Outline of the parallel chunking algorithm that exploits the fast com-
putations of linear combinations of kernels.

{ Master node }
{INITIALIZATION}
gi = 0, αi = 0 for i = 1, . . . , N
{LOOP UNTIL CONVERGENCE}
for t = 1, 2, . . . do

Check optimality conditions and stop if optimal
select working set W based on g and α, store αold = α

solve reduced problem W and update α

transfer to Slave nodes: αj − αold
j for all j ∈W

fetch from n Slave nodes: h = (h(1), . . . ,h(n))
update gi = gi + hi for all i = 1, . . . , N

end for
signal convergence to slave nodes

{ Slave nodes }
{LOOP UNTIL CONVERGENCE}
while not converged do

fetch from Master node αj − αold
j for all j ∈W

clear w
w← w + (αj − αold

j)yjΦ(xj) for all j ∈W (using add)

node k computes h
(k)
i = w · Φ(xi)

for all i = (k − 1)N
n

, . . . , kN
n
− 1 (using lookup)

transfer to master: h(k)

end while

all benchmark experiments and trained SVMs using the SHOGUN machine learning tool-
box (cf. Appendix C), which contains a modified version of SVMlight (Joachims, 1999)
on 500, 1, 000, 5, 000, 10, 000, 30, 000, 50, 000, 100, 000, 200, 000, 500, 000, 1, 000, 000,
2, 000, 000, 5, 000, 000 and 10, 000, 000 randomly sub-sampled examples and measured
the time needed in SVM training. For classification performance evaluation, we always
use the same remaining 5,028,326 examples as a test data set. We set the degree param-
eter to d = 20 for the WD kernel and to d = 8 for the spectrum kernel fixing the SVMs
regularisation parameter to C = 5. SVMlight’s subproblem size (parameter qpsize) and
convergence criterion (parameter epsilon) were set to Q = 112 and ǫ = 10−5, respec-
tively, while a kernel cache of 1GB was used for all kernels except the precomputed
kernel and algorithms using the linadd-SMO extension for which the kernel-cache was
disabled. Later on, we measure whether changing the quadratic subproblem size Q
influences SVM training time. Experiments were performed on a PC powered by eight
2.4GHz AMD Opteron(tm) processors running Linux. We measured the training time
for each of the algorithms (single, quad or eight CPU version) and data set sizes.
The obtained training times for the different SVM algorithms are displayed in Table
3.2 and in Figure 3.3. First, SVMs were trained using standard SVMlight with the
Weighted Degree Kernel precomputed (WDPre), the standard WD kernel (WD1) and
the precomputed (SpecPre) and standard spectrum kernel (Spec). Then, SVMs utilizing
the linadd extension4 were trained using the WD (LinWD) and spectrum (LinSpec)

4More precisely the linadd and O(L) block formulation of the WD kernel as proposed in
Sonnenburg et al. (2005b) was used.

3.3 Benchmarking SVM Training Time 39

kernel. Finally, SVMs were trained on four and eight CPUs using the parallel version
of the linadd algorithm (LinWD4, LinWD8). WD4 and WD8 demonstrate the effect
of a simple parallelisation strategy where the computation of kernel rows and updates
on the working set are parallelised, which works with any kernel.
The training times obtained when precomputing the kernel matrix (which includes the
time needed to precompute the full kernel matrix) is lower when no more than 1, 000
examples are used. Note that this is a direct cause of the relatively large subproblem
size Q = 112. The picture is different for, say, Q = 42 (data not shown) where the
WDPre training time is in all cases larger than the times obtained using the original
WD kernel demonstrating the effectiveness of SVMlight’s kernel cache. The overhead
of constructing a trie on Q = 112 examples becomes even more visible: only starting
from 50,000 examples linadd optimisation becomes more efficient than the original WD
kernel algorithm as the kernel cache cannot hold all kernel elements anymore.5 Thus,
it would be appropriate to lower the chunking size Q as seen in Table 3.4.

1000 10000 100000 1000000 10000000

100

1000

10000

100000

Number of training examples (logarithmic)

S
V

M
 t

ra
in

in
g

 t
im

e
 i

n
 s

e
c

o
n

d
s

(l
o

g
a

ri
th

m
ic

)

WD−Precompute

WD 1CPU

WD 4CPU

WD 8CPU

WD−Linadd 1CPU

WD−Linadd 4CPU

WD−Linadd 8CPU

1000 10000 100000 1000000

1

10

100

1000

10000

Number of training examples (logarithmic)

S
V

M
 t
ra

in
in

g
 t
im

e
 i
n
 s

e
c
o
n
d
s
 (

lo
g
a
ri
th

m
ic

)

Spec−Precompute

Spec−orig

Spec−linadd 1CPU

Spec−linadd 4CPU

Spec−linadd 8CPU

Figure 3.3: Comparison of the running time of the different SVM training algorithms using the weighted
degree kernel. Note that as this is a log-log plot small appearing distances are large for larger N and
that each slope corresponds to a different exponent. In the upper figure the Weighted Degree kernel
training times are measured, the lower figure displays Spectrum kernel training times. Figure taken
from Sonnenburg et al. (2007a).

The linadd formulation outperforms the original WD kernel by a factor of 3.9 on a
million examples. The picture is similar for the spectrum kernel, here speedups of
factor 64 on 500, 000 examples are reached, which stems from the fact that explicit
maps (and not tries as in the WD kernel case as discussed in Section 3.1.1) could be
used. This lead to a lookup cost of O(1) and a dramatically reduced map construction
time. For that reason, the parallelisation effort benefits the WD kernel more than the
Spectrum kernel: on one million examples the parallelisation using 4 CPUs (8 CPUs)
leads to a speedup of factor 3.25 (5.42) for the WD kernel, but only 1.67 (1.97) for
the Spectrum kernel. Thus, parallelisation will help more if the kernel computation
is slow. Training with the original WD kernel with a sample size of 1, 000, 000 takes
about 28 hours, the linadd version still requires 7 hours while with the 8 CPU parallel
implementation only about 6 hours and in conjunction with the linadd optimisation a
single hour and 20 minutes are needed. Finally, training on 10 million examples takes
about 4 days. Note that this data set is already 2.1GB in size.

5When single precision 4-byte floating point numbers are used, caching all kernel elements is possible
when training with up to 16384 examples.

40

N WDPre WD1 WD4 WD8 LinWD1 LinWD4 LinWD8

500 12 17 17 17 83 83 80
1,000 13 17 17 17 83 78 75
5,000 40 28 23 22 105 82 80

10,000 102 47 31 30 134 90 87
30,000 636 195 92 90 266 139 116
50,000 - 441 197 196 389 179 139

100,000 - 1,794 708 557 740 294 212
200,000 - 5,153 1,915 1,380 1,631 569 379
500,000 - 31,320 10,749 7,588 7,757 2,498 1,544

1,000,000 - 102,384 33,432 23,127 26,190 8,053 4,835
2,000,000 - - - - - - 14,493
5,000,000 - - - - - - 95,518

10,000,000 - - - - - - 353,227

N SpecPre Spec LinSpec1 LinSpec4 LinSpec8

500 1 1 1 1 1
1,000 2 2 1 1 1
5,000 52 30 19 21 21

10,000 136 68 24 23 24
30,000 957 315 36 32 32
50,000 - 733 54 47 46

100,000 - 3,127 107 75 74
200,000 - 11,564 312 192 185
500,000 - 91,075 1,420 809 728

1,000,000 - - 7,676 4,607 3,894

Table 3.2: (top) Speed Comparison of the original single CPU Weighted Degree Kernel algorithm
(WD1) in SVMlight training, compared to the four (WD4)and eight (WD8) CPUs parallelised version,
the precomputed version (Pre) and the linadd extension used in conjunction with the original WD kernel
for 1,4 and 8 CPUs (LinWD1, LinWD4, LinWD8). (bottom) Speed Comparison of the spectrum kernel
without (Spec) and with linadd (LinSpec1, LinSpec4, LinSpec8 using 1,4 and 8 processors). SpecPre

denotes the precomputed version. The first column shows the sample size N of the data set used in
SVM training while the following columns display the time (measured in seconds) needed in the training
phase. Table taken from Sonnenburg et al. (2007a).

Classification Performance Figure 3.4 and Table 3.3 show the classification perfor-
mance in terms of classification accuracy, area under the Receiver Operator Character-
istic (ROC) Curve (Metz, 1978, Fawcett, 2003) and the area under the Precision Recall
Curve (PRC) (see e.g., Davis and Goadrich (2006)) of SVMs on the human splice data
set for different data set sizes using the WD kernel. Recall the definition of the ROC and
PRC curves: The sensitivity (or recall) is defined as the fraction of correctly classified
positive examples among the total number of positive examples, i.e., it equals the true
positive rate TPR = TP/(TP+FN). Analogously, the fraction FPR = FP/(TN+FP)
of negative examples wrongly classified positive is called the false positive rate. Plotting
FPR against TPR results in the Receiver Operator Characteristic Curve (ROC) Metz
(1978), Fawcett (2003). Plotting the true positive rate against the positive predictive
value (also precision) PPV = TP/(FP + TP), i.e., the fraction of correct positive pre-
dictions among all positively predicted examples, one obtains the Precision Recall Curve
(PRC) (see e.g., Davis and Goadrich (2006)). Note that as this is a very unbalanced

3.3 Benchmarking SVM Training Time 41

1000 10000 100000 1000000 10000000

10

20

30

40

50

60

70

80

90

Number of training examples

C
la

ss
if

ic
a

ti
o

n
 P

e
rf

o
rm

a
n

ce
 (

in
 p

e
rc

e
n

t)
Accuracy

Area under the ROC

Area under the PRC

Figure 3.4: Comparison of the classification performance of the Weighted Degree kernel based SVM
classifier for different training set sizes. The area under the Receiver Operator Characteristic (ROC)
Curve, the area under the Precision Recall Curve (PRC) and the classification accuracy are displayed
(in percent). Note that as this is a very unbalanced dataset, the accuracy and the area under the ROC
curve are less meaningful than the area under the PRC. Figure taken from Sonnenburg et al. (2007a).

dataset the accuracy and the area under the ROC curve are almost meaningless, since
both measures are independent of class ratios. The more sensible auPRC, however,
steadily increases as more training examples are used for learning. Thus, one should
train using all available data to obtain state-of-the-art results.

N Accuracy auROC auPRC

500 98.93 75.61 3.97
1,000 98.93 79.70 6.12
5,000 98.93 90.38 14.66

10,000 98.93 92.79 24.95
30,000 98.93 94.73 34.17
50,000 98.94 95.48 40.35

100,000 98.98 96.13 47.11
200,000 99.05 96.58 52.70
500,000 99.14 96.93 58.62

1,000,000 99.21 97.20 62.80
2,000,000 99.26 97.36 65.83
5,000,000 99.31 97.52 68.76

10,000,000 99.35 97.64 70.57

10,000,000 - 96.03∗ 44.64∗

Table 3.3: Comparison of the classification performance of the Weighted Degree kernel based SVM
classifier for different training set sizes. The area under the ROC curve (auROC), the area under the
Precision Recall Curve (auPRC) and the classification accuracy (Accuracy) are displayed (in percent).
Larger values are better. A optimal classifier would achieve 100% Note that as this is a very unbalanced
dataset the accuracy and the area under the ROC curve are almost meaningless. For comparison, the
classification performance achieved using a 4th order Markov chain on 10 million examples (order 4 was
chosen based on model selection, where order 1 to 8 using several pseudo-counts were tried) is displayed
in the last row (marked ∗). Table taken from Sonnenburg et al. (2007a).

42

Q
N 112 12 32 42 52 72

500 83 4 1 22 68 67
1,000 83 7 7 11 34 60
5,000 105 15 21 33 31 68

10,000 134 32 38 54 67 97
30,000 266 128 128 127 160 187
50,000 389 258 217 242 252 309

100,000 740 696 494 585 573 643
200,000 1,631 1,875 1,361 1,320 1,417 1,610
500,000 7,757 9,411 6,558 6,203 6,583 7,883

1,000,000 26,190 31,145 20,831 20,136 21,591 24,043

Table 3.4: Influence on training time when varying the size of the quadratic program Q in SVMlight,
when using the linadd formulation of the WD kernel. While training times do not vary dramatically,
one still observes the tendency that with larger sample size a larger Q becomes optimal. The Q = 112
column displays the same result as column LinWD1 in Table 3.2. Table taken from Sonnenburg et al.
(2007a).

Varying SVMlight’s qpsize parameter As discussed in Section 3.1.3 and Algorithm
3.2, using the linadd algorithm for computing the output for all training examples w.r.t.
to some working set can be speed up by a factor of Q (i.e., the size of the quadratic
subproblems, termed qpsize in SVMlight). However, there is a trade-off in choosing Q as
solving larger quadratic subproblems is expensive (quadratic to cubic effort). Table 3.4
shows the dependence of the computing time from Q and N . For example, the gain in
speed between choosing Q = 12 and Q = 42 for 1 million of examples is 54%. Sticking
with a mid-range Q (here Q = 42) seems to be a good idea for this task. However, a
large variance can be observed, as the SVM training time depends to a large extend on
which Q variables are selected in each optimisation step. For example, on the related
C. elegans splice data set Q = 141 was optimal for large sample sizes while a midrange
Q = 71 lead to the overall best performance. Nevertheless, one observes the trend that
for larger training set sizes slightly larger subproblems sizes decrease the SVM training
time.

3.4 Summary

This section proposes performance enhancements to make large-scale learning with
string kernels and any kernel that can be written as an inner product of sparse fea-
ture vectors practical. The linadd algorithm (Algorithm 3.2) greatly accelerates SVM
training. For the standalone SVM using the spectrum kernel, it achieves speedups of
factor 60 (for the weighted degree kernel, about 7). Finally, we proposed a parallel ver-
sion of the linadd algorithm running on a 8 CPU multiprocessor system, which lead to
additional speedups of factor up to 4.9 for vanilla SVM training. It is future research to
investigate whether training times can still be reduced by using the recent advances in
training linear SVMs, like OCAS (Franc and Sonnenburg, 2008) on a re-weighted lower
order WD kernel.

4 Interpretable Support Vector Machines

At the heart of many important bioinformatics problems, such as gene finding and
function prediction, is the classification of biological sequences, above all of DNA and
proteins. In many cases, the most accurate classifiers are obtained by training SVMs
with complex sequence kernels (as presented in Chapter 2). Using the data struc-
tures from Chapter 3 they are applicable to huge datasets and achieve state-of-the-art
results on, for instance, transcription start (Sonnenburg et al., 2006b) or splice site
(Sonnenburg et al., 2007b) detection problems. However, an often criticised downside
of SVMs with complex kernels is that it is very hard for humans to understand the learnt
decision rules and to derive biological insights from them. To close this gap, we intro-
duce two concepts: The concept of Multiple Kernel Learning (MKL) and the concept of
Positional Oligomer Importance Matrices (POIMs). MKL, which will be introduced in
Section 4.1, allows learning of SVMs with multiple kernels and their associated kernel
weights. This provides flexibility and reflects the fact that typical learning problems
often involve multiple, heterogeneous data sources. Furthermore, as we shall see in
Section 4.1, it offers an elegant way to interpret the results. This concept is general
in the sense that it works with arbitrary kernels. The concept of POIMs (cf. Section
4.2.2) on the other hand was specifically developed to understand string kernel based
SVMs (even though it is applicable to general k−mer based scoring systems) and offers
a leap of quality on that domain. POIMs display the contribution of a motif computed
as the expected gain of its presence. For both concepts, we develop efficient algorithms
for their computation and demonstrate how they can be used to find relevant motifs for
different biological phenomena in a straight-forward way. This chapter is largely based
on Sonnenburg et al. (2005a, 2006a, 2008).

4.1 Multiple Kernel Learning

Recent developments in the literature on SVMs and other kernel methods have shown
the need to consider multiple kernels. This provides flexibility and reflects the fact that
typical learning problems often involve multiple, heterogeneous data sources. Further-
more, as we shall see below, it leads to an elegant method to interpret the results, which
can lead to a deeper understanding of the application.
While this so-called “multiple kernel learning” (MKL) problem can in principle
be solved via cross-validation, several recent papers have focused on more effi-
cient methods for multiple kernel learning (Chapelle et al., 2002, Bennett et al., 2002,
Grandvalet and Canu, 2003, Ong et al., 2003, Bach et al., 2004, Lanckriet et al., 2004,
Bi et al., 2004).
One of the problems with kernel methods compared to other techniques is that the
resulting decision function

g(x) =
N∑

i=1

αiyi k(x,xi) + b (4.1)

is hard to interpret and, hence, is difficult to use to extract relevant knowledge about the

43

44

problem at hand. One can approach this problem by considering convex combinations
of K kernels, i.e.

k(xi,xj) =
K∑

k=1

βk kk(xi,xj) (4.2)

with βk ≥ 0 and
∑K

k=1 βk = 1, where each kernel kk uses only a distinct set of features.
For appropriately designed sub-kernels kk, the optimised combination coefficients can
then be used to understand which features of the examples are of importance for dis-
crimination: if one is able to obtain an accurate classification by a sparse weighting βk,
then one can quite easily interpret the resulting decision function. This is an important
property missing in current kernel based algorithms. Note that this is in contrast to
the kernel mixture framework of Bennett et al. (2002) and Bi et al. (2004) where each
kernel and each example are assigned an independent weight and therefore do not offer
an easy way to interpret the decision function. We will illustrate that the considered
MKL formulation provides useful insights and at the same time is very efficient.
We consider the framework proposed by Lanckriet et al. (2004), which results in a con-
vex optimisation problem - a quadratically-constrained quadratic program (QCQP).
This problem is more challenging than the standard SVM QP, but it can in principle
be solved by general-purpose optimisation toolboxes. Since the use of such algorithms
will only be feasible for small problems with few data points and kernels, Bach et al.
(2004) suggested an algorithm based on sequential minimial optimisation (SMO; Platt,
1999). While the kernel learning problem is convex, it is also non-smooth, making the
direct application of simple local descent algorithms such as SMO infeasible. Bach et al.
(2004) therefore considered a smoothed version of the problem to which SMO can be
applied.
In the first part of this section we follow a different direction: We reformulate the binary
classification MKL problem (Lanckriet et al., 2004) as a Semi-Infinite Linear Program,
which can be efficiently solved using an off-the-shelf LP solver and a standard SVM
implementation (cf. Section 4.1.1 for details). In a second step, we show how the MKL
formulation and the algorithm are easily generalised to a much larger class of convex loss
functions (cf. Section 4.1.2). Our proposed wrapper method works for any kernel and
many loss functions: To obtain an efficient MKL algorithm for a new loss function, it
now suffices to have an LP solver and the corresponding single kernel algorithm (which
is assumed to be efficient). Using this general algorithm we were able to solve MKL
problems with up to 50,000 examples and 20 kernels within reasonable time.
We also consider a Chunking algorithm that can be considerably more efficient, since it
optimises the SVM α multipliers and the kernel coefficients β at the same time. How-
ever, for large scale problems it needs to compute and cache the K kernels separately,
instead of only one kernel as in the single kernel algorithm. This becomes particularly
important when the sample size N is large. If, on the other hand, the number of kernels
K is large, then the amount of memory available for caching is drastically reduced and,
hence, kernel caching is not effective anymore. (The same statements also apply to the
SMO-like MKL algorithm proposed in Bach et al. (2004).)
The linadd method presented in Chapter 3 avoids kernel caching for the class of kernels
where the feature map Φ(x) can be explicitly computed and computations with Φ(x)
can be implemented efficiently (which is the case for the considered string kernels). In
the experimental part we show that the resulting algorithm is more than 70 times faster
than the plain Chunking algorithm (for 50,000 examples), even though large kernel
caches were used. Similarly, linadd allows to solve MKL problems with up to one

4.1 Multiple Kernel Learning 45

million examples and 20 kernels on a real-world splice site classification problem from
computational biology. We conclude this section by illustrating the usefulness of our
algorithms in several examples relating to the interpretation of results and to automatic
model selection. Moreover, we provide an extensive benchmark study comparing the
effect of different improvements on the running time of the algorithms.
We now first derive our MKL formulation for the binary classification case and then
show how it can be extended to general cost functions. In the last subsection, we will
propose algorithms for solving the resulting Semi-Infinite Linear Programs (SILPs).

4.1.1 Multiple Kernel Learning for Classification using SILP

In the Multiple Kernel Learning problem for binary classification one is given N data
points (xi, yi) (yi ∈ {±1}), where xi is translated via K mappings Φk(x) 7→ IRDk , k =
1, . . . , K, from the input into K feature spaces (Φ1(xi), . . . ,ΦK(xi)) where Dk denotes
the dimensionality of the k-th feature space. Then, one solves the following optimisation
problem (Bach et al., 2004), which is equivalent to the linear SVM for K = 1:1

MKL Primal for Classification

min
1

2

(
K∑

k=1

‖wk‖2
)2

+ C

N∑

i=1

ξi (4.3)

w.r.t. wk ∈ IRDk , ξ ∈ IRN , b ∈ IR,

s.t. ξi ≥ 0 and yi

(
K∑

k=1

wk · Φk(xi) + b

)
≥ 1− ξi, ∀i = 1, . . . , N

Note that the problem’s solution can be written as wk = βkw
′
k with

βk ≥ 0, ∀k = 1, . . . , K and
∑K

k=1 βk = 1 (Bach et al., 2004). Note that there-
fore the ℓ1-norm of β is constrained to one, while one is penalizing the ℓ2-norm of wk

in each block k separately. The idea is that ℓ1-norm constrained or penalised variables
tend to have sparse optimal solutions, while ℓ2-norm penalised variables do not (e.g.
Rätsch, 2001, Chapter 5.2). Thus, the above optimisation problem offers the possibil-
ity to find sparse solutions on the block level with non-sparse solutions within the blocks.

Bach et al. (2004) derived the dual for problem (4.3). A more general derivation of
the dual can be found in Appendix A.1. Taking their problem (DK), squaring the
constraints on gamma, multiplying the constraints by 1

2 and finally substituting 1
2γ2 7→ γ

leads to the following equivalent multiple kernel learning dual:

1We assume tr(Kk) = 1, k = 1, . . . , K and set dj in Bach et al. (2004) to one.

46

MKL Dual for Classification

min γ −
N∑

i=1

αi

w.r.t. γ ∈ R, α ∈ R
N

s.t. 0 ≤ α ≤ 1C,
N∑

i=1

αiyi = 0

1

2

N∑

i,j=1

αiαjyiyj kk(xi,xj) ≤ γ, ∀k = 1, . . . , K

where kk(xi,xj) = Φk(xi) · Φk(xj). Note that we have one quadratic constraint per
kernel (Sk(α) ≤ γ). For K = 1, the above problem reduces to the original SVM
dual. We will now move the term −∑N

i=1 αi, into the constraints on γ. This can be

equivalently done by adding −∑N
i=1 αi to both sides of the constraints and substituting

γ −∑N
i=1 αi 7→ γ:

MKL Dual∗ for Classification

min γ (4.4)

w.r.t. γ ∈ R, α ∈ R
N

s.t. 0 ≤ α ≤ 1C,
N∑

i=1

αiyi = 0

1

2

N∑

i,j=1

αiαjyiyj kk(xi,xj)−
N∑

i=1

αi

︸ ︷︷ ︸
=:Sk(α)

≤ γ, ∀k = 1, . . . , K

To solve (4.4), one may solve the following saddle point problem: minimise

L := γ +
K∑

k=1

βk(Sk(α)− γ) (4.5)

w.r.t. α ∈ R
N , γ ∈ R (with 0 ≤ α ≤ C1 and

∑
i αiyi = 0), and maximise it w.r.t.

β ∈ R
K , where 0 ≤ β. Setting the derivative w.r.t. to γ to zero, one obtains the

constraint
∑K

k=1 βk = 1 and (4.5) simplifies to: L = S(α, β) :=
∑K

k=1 βkSk(α). While
one minimises the objective w.r.t. α, at the same time one maximises w.r.t. the kernel
weighting β. This leads to a

Min-Max Problem

max
β

min
α

K∑

k=1

βkSk(α) (4.6)

w.r.t. α ∈ IRN , β ∈ IRK

s.t. 0 ≤ α ≤ C , 0 ≤ β,
N∑

i=1

αiyi = 0 and
K∑

k=1

βk = 1.

4.1 Multiple Kernel Learning 47

This problem is very similar to Equation (9) in Bi et al. (2004) when “composite ker-
nels,“ i.e., linear combinations of kernels are considered. There the first term of Sk(α)
has been moved into the constraint, still β, including the

∑K
k=1 βk = 1 is missing.2

Assume α∗ were the optimal solution, then θ∗ := S(α∗, β) would be minimal and, hence,
S(α, β) ≥ θ∗ for all α (subject to the above constraints). Hence, finding a saddle-point
of (4.5) is equivalent to solving the following semi-infinite linear program:

Semi-Infinite Linear Program (SILP)

max θ (4.7)

w.r.t. θ ∈ R, β ∈ R
K

s.t. 0 ≤ β,
∑

k

βk = 1 and
K∑

k=1

βkSk(α) ≥ θ (4.8)

for all α ∈ IRN with 0 ≤ α ≤ C1 and
∑

i

yiαi = 0

Note that this is a linear program, as θ and β are only linearly constrained. However,
there are infinitely many constraints: one for each α ∈ IRN satisfying 0 ≤ α ≤ C and∑N

i=1 αiyi = 0. Both problems (4.6) and (4.7) have the same solution. To illustrate that,
consider β is fixed and we minimise α in (4.6). Let α∗ be the solution that minimises
(4.6). Then, we can increase the value of θ in (4.7) as long as none of the infinitely many
α-constraints (4.8) is violated, i.e., up to θ =

∑K
k=1 βkSk(α

∗). On the other hand, as
we increase θ for a fixed α the maximizing β is found. We will discuss in Section 4.1.3
how to solve such semi-infinite linear programs.

4.1.2 Multiple Kernel Learning with General Cost Functions

In this section, we consider a more general class of MKL problems, where one is given an
arbitrary strictly convex and differentiable loss function, for which we derive its MKL
SILP formulation. We will then investigate in this general MKL SILP using different
loss functions, in particular the soft-margin loss, the ǫ-insensitive loss and the quadratic
loss.
We define the MKL primal formulation for a strictly convex and differentiable loss
function L(g(x), y) as:

MKL Primal for Generic Loss Functions

min
1

2

(
K∑

k=1

‖wk‖
)2

+
N∑

i=1

L(g(xi), yi) (4.9)

w.r.t. w = (w1, . . . ,wK) ∈ IRD1 × · · · × IRDK

s.t. g(xi) =
K∑

k=1

Φk(xi) ·wk + b, ∀i = 1, . . . , N

2In Bi et al. (2004) it is argued that the approximation quality of composite kernels is inferior to
mixtures of kernels where a weight is assigned per example and kernel as in Bennett et al. (2002).
For that reason, and as no efficient methods were available to solve the composite kernel problem,
they only considered mixtures of kernels and in the experimental validation used a uniform weighting
in the composite kernel experiment. Also they did not consider to use composite kernels as a method
to interpret the resulting classifier but looked at classification accuracy instead.

48

In analogy to Bach et al. (2004) we treat problem (4.9) as a second order cone program
(SOCP) leading to the following dual (see Appendix A.1 for the derivation):

MKL Dual∗ for Generic Loss Functions

min γ (4.10)

w.r.t. γ ∈ IR, α ∈ RN

s.t.
N∑

i=1

αi = 0 and

1

2

∥∥∥∥∥

N∑

i=1

αiΦk(xi)

∥∥∥∥∥

2

2

−
N∑

i=1

L(L′−1(αi, yi), yi) +

N∑

i=1

αiL
′−1(αi, yi) ≤ γ, ∀k = 1, . . . ,K

Here L′−1 denotes the inverse of the derivative of L(g(x), y) w.r.t. the prediction g(x).
To derive the SILP formulation we follow the same recipe as in Section 4.1.1: deriving
the Lagrangian leads to a max-min problem formulation to be eventually reformulated
as a SILP:

SILP for Generic Loss Functions

max θ (4.11)

w.r.t. θ ∈ IR, β ∈ IRK

s.t. 0 ≤ β,
K∑

k=1

βk = 1 and
K∑

k=1

βkSk(α) ≥ θ, ∀α ∈ IRN ,
N∑

i=1

αi = 0,

where

Sk(α) = −
N∑

i=1

L(L′−1(αi, yi), yi) +
N∑

i=1

αiL
′−1(αi, yi) +

1

2

∥∥∥∥∥

N∑

i=1

αiΦk(xi)

∥∥∥∥∥

2

2

.

We assumed that L(x, y) is strictly convex and differentiable in x. Unfortunately, the
soft margin and ǫ-insensitive loss do not have these properties. We therefore consider
them separately in the sequel.

Soft Margin Loss We use the following loss to approximate the soft margin loss:

Lσ(x, y) =
C

σ
log(1 + exp(σ(1− xy))).

It is easy to verify that
lim

σ→∞
Lσ(x, y) = C(1− xy)+.

Moreover, Lσ is strictly convex and differentiable for σ < ∞. Using this loss and
assuming yi ∈ {±1}, we obtain (cf. Appendix A.1.3):

Sk(α) = −
N∑

i=1

C

σ

(
log

(
Cyi

αi + Cyi

)
+ log

(
− αi

αi + Cyi

))
+

N∑

i=1

αiyi +
1

2

∥∥∥∥∥

N∑

i=1

αiΦk(xi)

∥∥∥∥∥

2

2

.

4.1 Multiple Kernel Learning 49

If σ → ∞, then the first two terms vanish provided that −C ≤ αi ≤ 0 if yi = 1 and
0 ≤ αi ≤ C if yi = −1. Substituting αi = −α̃iyi, we obtain

Sk(α̃) = −
N∑

i=1

α̃i +
1

2

∥∥∥∥∥

N∑

i=1

α̃iyiΦk(xi)

∥∥∥∥∥

2

2

and
N∑

i=1

α̃iyi = 0,

with 0 ≤ α̃i ≤ C (i = 1, . . . , N), which is the same as (4.7).

One-Class Soft Margin Loss The one-class SVM soft margin (e.g.
Schölkopf and Smola, 2002) is very similar to the two-class case and leads to

Sk(α) =
1

2

∥∥∥∥∥

N∑

i=1

αiΦk(xi)

∥∥∥∥∥

2

2

subject to 0 ≤ α ≤ 1
νN

1 and
∑N

i=1 αi = 1.

ǫ-insensitive Loss Using the same technique for the epsilon insensitive loss L(x, y) =
C(1− |x− y|)+, we obtain

Sk(α, α∗) =
1

2

∥∥∥∥∥

N∑

i=1

(αi − α∗
i)Φk(xi)

∥∥∥∥∥

2

2

−
N∑

i=1

(αi + α∗
i)ǫ−

N∑

i=1

(αi − α∗
i)yi

and
N∑

i=1

(αi − α∗
i)yi = 0, with 0 ≤ α, α∗ ≤ C1.

It is easy to derive the dual problem for other loss functions such as the quadratic loss
or logistic loss (see Appendix A.1.3 & A.1.3). Note that the dual SILP’s only differ in
the definition of Sk and the domains of the α’s.

4.1.3 Algorithms to solve SILPs

All Semi-Infinite Linear Programs considered in this work have the following structure:

max θ (4.12)

w.r.t. θ ∈ R, β ∈ R
K

s.t. 0 ≤ β,
K∑

k=1

βk = 1 and
K∑

k=1

βkSk(α) ≥ θ for all α ∈ C.

They have to be optimised with respect to β and θ. The constraints depend on definition
of Sk and therefore on the choice of the cost function. Using Theorem 5 in Rätsch et al.
(2002) one can show that the above SILP has a solution if the corresponding primal
is feasible and bounded (see also Hettich and Kortanek, 1993). Moreover, there is no
duality gap, if M = co{[S1(α), . . . , SK(α)]⊤ | α ∈ C} is a closed set. For all loss
functions considered in this section, this condition is satisfied.
We propose to use a technique called Column Generation to solve (4.12). The basic
idea is to compute the optimal (β, θ) in (4.12) for a restricted subset of constraints. It
is called the restricted master problem. Then, a second algorithm generates a new, yet
unsatisfied constraint determined by α. In the best case the other algorithm finds the

50

constraint that maximises the constraint violation for the given intermediate solution
(β, θ), i.e.

αβ := argmin
α∈C

∑

k

βkSk(α). (4.13)

If αβ satisfies the constraint
∑K

k=1 βkSk(αβ) ≥ θ, then the solution (θ, β) is optimal.
Otherwise, the constraint is added to the set of constraints and the iterations continue.
Algorithm 4.1 is a special case of a set of SILP algorithms known as exchange methods.
These methods are known to converge (cf. Theorem 7.2 in Hettich and Kortanek, 1993).
However, no convergence rates for such algorithm are known.3

Since it is often sufficient to obtain an approximate solution, we have to define a suitable
convergence criterion. Note that the problem is solved when all constraints are satisfied.
Hence, it is a natural choice to use the normalised maximal constraint violation as a

convergence criterion, i.e., the algorithm stops if ǫ ≥ ǫt :=

∣∣∣∣1−
PK

k=1 βt
k
Sk(αt)

θt

∣∣∣∣, where

ǫ is an accuracy parameter, (βt, θt) is the optimal solution at iteration t − 1 and αt

corresponds to the newly found maximally violating constraint of the next iteration.
In the following paragraphs, we will formulate algorithms that alternately optimise the
parameters α and β.

A Wrapper Algorithm The wrapper algorithm (see Algorithm 4.1) divides the problem
into an inner and an outer subproblem. The solution is obtained by alternatively solving
the outer problem using the results of the inner problem as input and vice versa until
convergence. The outer loop constitutes the restricted master problem, which determines
the optimal β for a fixed α using an of-the-shelf linear optimiser. In the inner loop one
has to identify unsatisfied constraints, which, fortunately, turns out to be particularly
simple. Note that (4.13) is for all considered cases exactly the dual optimisation problem
of the single kernel case for fixed β. For instance, for binary classification with soft-
margin loss, (4.13) reduces to the standard SVM dual using the kernel k(xi,xj) =∑

k βk kk(xi,xj):

v = min
α∈RN

1

2

N∑

i,j=1

αiαjyiyj k(xi,xj)−
N∑

i=1

αi

s.t. 0 ≤ α ≤ C1 and

N∑

i=1

αiyi = 0.

Hence, we can use a standard SVM implementation with a single kernel to identify the
most violated constraint v ≤ θ. Since there exists a large number of efficient algorithms
to solve the single kernel problems for all sorts of cost functions, we have therefore found
an easy way to extend their applicability to the problem of Multiple Kernel Learning.
In addition, if the kernels are computed on-the-fly within the SVM still only a single
kernel cache is required. The wrapper algorithm is very easy to implement, very generic
and already reasonably fast for small to medium size problems. However, determining
α up to a fixed high precision even for intermediate solutions, while β is still far away

3It has been shown that solving semi-infinite problems like (4.7), using a method related to boosting
(e.g. Meir and Rätsch, 2003) one requires at most T = O(log(M)/ǫ̂2) iterations, where ǫ̂ is the
remaining constraint violation and the constants may depend on the kernels and the number of
examples N (Rätsch, 2001, Rätsch and Warmuth, 2005, Warmuth et al., 2006). At least for not too
small values of ǫ̂ this technique produces reasonably fast good approximate solutions.

4.1 Multiple Kernel Learning 51

Algorithm 4.1 The MKL-wrapper algorithm optimises a convex combination of K
kernels and employs a linear programming solver to iteratively solve the semi-infinite
linear optimisation problem (4.12). The accuracy parameter ǫ is a parameter of the
algorithm. Sk(α) and C are determined by the cost function.

S0 = 1, θ1 = −∞, β1
k = 1

K
for k = 1, . . . ,K

for t = 1, 2, . . . do

Compute αt = argmin
α∈C

K∑

k=1

βt
kSk(α) by single kernel algorithm with k =

K∑

k=1

βt
k kk

St =

K∑

k=1

βt
kSt

k, where St
k = Sk(αt)

if

∣∣∣∣1−
St

θt

∣∣∣∣ ≤ ǫ then break

(βt+1, θt+1) = argmax θ
w.r.t. β ∈ R

K , θ ∈ R

s.t. 0 ≤ β,

K∑

k=1

βk = 1 and

K∑

k=1

βkSr
k ≥ θ for r = 1, . . . , t

end for

from the global optimal is unnecessarily costly. Thus, there is room for improvement
motivating the next section.

A Chunking Algorithm for Simultaneous Optimisation of α and β The goal is to si-
multaneously optimise α and β in SVM training. Usually it is infeasible to use standard
optimisation tools (e.g., MINOS, CPLEX, LOQO) for solving even the SVM training
problems on data sets containing more than a few thousand examples. So-called decom-
position techniques as chunking (e.g., used in Joachims, 1998) overcome this limitation
by exploiting the special structure of the SVM problem. The key idea of decomposition
is to freeze all but a few optimisation variables (working set) and to solve a sequence of
constant-size problems (subproblems of the SVM dual).
Here we would like to propose an extension of the chunking algorithm to optimise
the kernel weights β and the example weights α at the same time. The algorithm
is motivated from an insufficiency of the wrapper algorithm described in the previous
section: If the β’s are not optimal yet, then the optimisation of the α’s until optimality
is not necessary and therefore inefficient. It would be considerably faster if for any
newly obtained α in the chunking iterations, we could efficiently recompute the optimal
β and then continue optimizing the α’s using the new kernel weighting.

Intermediate Recomputation of β Recomputing β involves solving a linear program
and the problem grows with each additional α-induced constraint. Hence, after many
iterations solving the LP may become infeasible. Fortunately, there are two facts making
it still possible: (a) only a few of the added constraints remain active and one may as
well remove inactive ones — this prevents the LP from growing arbitrarily and (b) for
Simplex-based LP optimisers such as CPLEX there exists the so-called hot-start feature,
which allows one to efficiently recompute the new solution, if for instance only a few
additional constraints are added.
The SVMlight optimiser, which we are going to modify, internally needs the output ĝi =∑N

j=1 αjyj k(xi,xj) for all training examples i = 1, . . . , N to select the next variables
for optimisation (Joachims, 1999). However, if one changes the kernel weights, then

52

Algorithm 4.2 Outline of the MKL-Chunking algorithm for the classification case
(extension to SVMlight) that optimises α and the kernel weighting β simultaneously.
The accuracy parameter ǫ and the subproblem size Q are assumed to be given to the
algorithm. For simplicity, we omit the removal of inactive constraints. Furthermore,
from one iteration to the next the LP only differs by one additional constraint. This
can usually be exploited to save computing time for solving the LP.

gk,i = 0, ĝi = 0, αi = 0, β1
k = 1

K
for k = 1, . . . ,K and i = 1, . . . , N

for t = 1, 2, . . . do
Check optimality conditions and stop if optimal
select Q suboptimal variables i1, . . . , iQ based on ĝ and α

αold = α

solve SVM dual with respect to the selected variables and update α

gk,i = gk,i +
∑Q

q=1(αiq
− αold

iq
)yiq

kk(xiq
,xi) for all k = 1, . . . ,M and i = 1, . . . , N

for k = 1, . . . ,K do
St

k = 1
2

∑
r gk,rα

t
ryr −

∑
r αt

r

end for
St =

∑K

k=1 βt
kSt

k

if
∣∣∣1− St

θt

∣∣∣ ≥ ǫ

(βt+1, θt+1) = argmax θ
w.r.t. β ∈ R

K , θ ∈ R

s.t. 0 ≤ β,
∑

k βk = 1 and
∑M

k=1 βkSr
k ≥ θ for r = 1, . . . , t

else
θt+1 = θt

end if
ĝi =

∑
k βt+1

k gk,i for all i = 1, . . . , N
end for

the stored ĝi values become invalid and need to be recomputed. To avoid the full re-
computation one has to additionally store a K ×N matrix gk,i =

∑N
j=1 αjyj kk(xi,xj),

i.e., the outputs for each kernel separately. If the β’s change, then ĝi can be quite
efficiently recomputed by ĝi =

∑
k βkgk,i. We implemented the final chunking algorithm

for the MKL regression and classification case and display the latter in Algorithm 4.2.

Discussion The Wrapper and the Chunking algorithm have both their merits: The
Wrapper algorithm only relies on the repeated efficient computation of the single kernel
solution, for which typically large scale algorithms exist. The Chunking algorithm is
faster, since it exploits the intermediate α’s – however, it needs to compute and cache
the K kernels separately (particularly important when N is large). If, on the other hand,
K is large, then the amount of memory available for caching is drastically reduced and,
hence, kernel caching is not effective anymore. The same statements also apply to the
SMO-like MKL algorithm proposed in Bach et al. (2004). In this case, one is left with
the Wrapper algorithm, unless one is able to exploit properties of the particular problem
or the sub-kernels (see next section).

Speeding up in the MKL Case As elaborated in Section 4.1.3 and Algorithm 4.2,
for MKL one stores K vectors gk, k = 1, . . . , K: one for each kernel to avoid full
recomputation of ĝ if a kernel weight βk is updated. Thus, to use the idea above in
Algorithm 4.2 all one has to do is to store K normal vectors (e.g., tries)

wW
k =

∑

j∈W

(αj − αold
j)yjΦk(xj), k = 1, . . . , K

4.1 Multiple Kernel Learning 53

that are then used to update the K × N matrix gk,i = gold
k,i + wW

k · Φk(xi) (for all
k = 1 . . .K and i = 1 . . . N) by which ĝi =

∑
k βkgk,i, (for all i = 1 . . . N) is computed.

4.1.4 Estimating the Reliability of a Weighting

Finally, we want to assess the reliability of the learnt weights β. For this purpose, we
generate T bootstrap samples and rerun the whole procedure resulting in T weightings
βt. To test the importance of a weight βk,i (and therefore the corresponding kernels
for position and oligomer length) we apply the following method: We define a Bernoulli
variable Xt

k,i ∈ {0, 1}, k = 1, . . . , d, i = 1, . . . , L, t = 1, . . . , T by

Xt
k,i =

{
1, βt

k,i > τ := Ek,i,tX
t
k,i

0, else
.

The sum Zk,i =
∑T

t=1 Xt
k,i has a binomial distribution Bin(T ,p0), p0 unknown. We

estimate p0 with p̂0 = #(βt
k,i > τ)/T · M , i.e., the empirical probability to observe

P (Xt
k,i = 1), ∀k, i, t. We test whether Zk,i is as large as could be expected under

Bin(T ,p̂0) or larger, i.e., the null=hypothesis is H0 : p ≤ c∗ (vs H1 : p > c∗). Here
c∗ is defined as p̂0 + 2Stdk,i,tX

t
k,i and can be interpreted as an upper bound of the

confidence interval for p0. This choice is taken to be adaptive to the noise level of the
data and hence the (non)-sparsity of the weightings βt. The hypotheses are tested with
a Maximum-Likelihood test on an α-level of α = 0.05; that is c∗∗ is the minimal value
for that the following inequality hold:

0.05 = α ≥ PH0(reject H0) = PH0(Zk,i > c∗∗) =
T∑

j=c∗∗

(
T

j

)
p̂0(1− p̂0).

For further details on the test, see Mood et al. (1974) or Lehmann (1997). This test is
carried out for every βt

k,i. (We assume independence between the weights in one single
β, and hence assume that the test problem is the same for every βk,i). If H0 can be
rejected, the kernel learnt at position i on the k-mer is important for the detection and
thus (should) contain biologically interesting knowledge about the problem at hand.

4.1.5 MKL for Knowledge Discovery

In this section, we will discuss toy examples for binary classification and regression,
demonstrating that MKL can recover information about the problem at hand, followed
by a brief review on problems for which MKL has been successfully used.

Classification The first example we deal with is a binary classification problem. The
task is to separate two concentric classes shaped like the outline of stars. By varying
the distance between the boundary of the stars, we can control the separability of the
problem. Starting with a non-separable scenario with zero distance, the data quickly
becomes separable as the distance between the stars increases, and the boundary needed
for separation will gradually tend towards a circle. In Figure 4.1, three scatter plots of
data sets with varied separation distances are displayed.
We generate several training and test sets for a wide range of distances (the radius of the
inner star is fixed at 4.0, the outer stars radius is varied from 4.1 . . . 9.9). Each dataset
contains 2,000 observations (1,000 positive and 1,000 negative) using a moderate noise
level (Gaussian noise with zero mean and standard deviation 0.3). The MKL-SVM was

54

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1
width 0.01
width 0.1
width 1

width 10
width 100
testerror

separation distance

k
e

rn
e

l w
e

ig
h

t

Figure 4.1: A 2-class toy problem where the dark gray star-like shape is to be distinguished from the
light gray star inside the dark gray star. The distance between the dark star-like shape and the light
star increases from the left to the right. Figure taken from Sonnenburg et al. (2006a).

trained for different values of the regularisation parameter C. For every value of C we
averaged the test errors of all setups and choose the value of C that led to the smallest
overall error (C = 0.5).4

The choice of the kernel width of the Gaussian RBF (below, denoted by RBF) kernel
used for classification is expected to depend on the separation distance of the learning
problem: An increased distance between the stars will correspond to a larger optimal
kernel width. This effect should be visible in the results of the MKL, where we used
MKL-SVMs with five RBF kernels with different widths (2σ2 ∈ {0.01, 0.1, 1, 10, 100}).
In Figure 4.1 we show the obtained kernel weightings for the five kernels and the test
error (circled line) that quickly drops to zero as the problem becomes separable. Every
column shows one MKL-SVM weighting. The courses of the kernel weightings reflect
the development of the learning problem: as long as the problem is difficult the best
separation can be obtained when using the kernel with smallest width. The low width
kernel looses importance when the distance between the stars increases and larger ker-
nel widths obtain a larger weight in MKL. Increasing the distance between the stars,
kernels with greater widths are used. Note that the RBF kernel with largest width was
not appropriate and thus never chosen. This illustrates that MKL can indeed recover
information about the structure of the learning problem.

Regression We applied the newly derived MKL support vector regression formulation
to the task of learning a sine function using three RBF-kernels with different widths
(2σ2 ∈ {0.005, 0.05, 0.5, 1, 10}). To this end, we generated several data sets with in-
creasing frequency of the sine wave. The sample size was chosen to be 1,000. Analogous
to the procedure described above we choose the value of C = 10, minimizing the overall
test error. In Figure 4.2 exemplarily three sine waves are depicted, where the frequency
increases from left to right. For every frequency, the computed weights for each kernel
width are shown. One can see that MKL-SV regression switches to the width of the
RBF-kernel fitting the regression problem best. In another regression experiment, we
combined a linear function with two sine waves, one of lower frequency and one of high-
frequency, i.e., f(x) = sin(ax)+ sin(bx)+ cx. Furthermore, we increase the frequency of
the higher frequency sine wave, i.e., we varied a leaving b and c unchanged. The MKL

4Note that we are aware of the fact that the test error might be slightly underestimated.

4.1 Multiple Kernel Learning 55

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
width 0.005
width 0.05
width 0.5
width 1
width 10

frequency

ke
rn

el
 w

ei
g

h
t

Figure 4.2: MKL Support Vector Regression for the task of learning a sine wave (please see text for
details). Figure taken from Sonnenburg et al. (2006a).

weighting should show a combination of different kernels. Using ten RBF-kernels of
different width (see Figure 4.3) we trained a MKL-SVR and display the learnt weights
(a column in the figure). Again the sample size is 1,000 and one value for C = 5 is
chosen via a previous experiment. The largest selected width (100) models the linear
component (since RBF kernels with large widths are effectively linear) and the medium
width (1) corresponds to the lower frequency sine. We varied the frequency of the
high-frequency sine wave from low to high (left to right in the figure). One observes
that MKL determines an appropriate combination of kernels of low and high widths,
while decreasing the RBF kernel width with increased frequency. Additionally one can
observe that MKL leads to sparse solutions since most of the kernel weights in Figure
4.3 are depicted in blue, that is they are zero.5

frequency

R
B

F
ke

rn
el

 w
id

th

2 4 6 8 10 12 14 16 18 20

0.001

0.005

0.01

0.05

0.1

1

10

50

100

1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.3: MKL support vector regression on a linear combination of three functions: f(x) = sin(ax)+
sin(bx) + cx. MKL recovers that the original function is a combination of functions of low and high
complexity. For more details, see text. Figure taken from Sonnenburg et al. (2006a).

MKL Learning Detects Motifs in Toy Data set As a proof of concept, we test our
method on a toy data set with two hidden 7-mers (at positions 10 & 30) at four different
noise levels (we used different numbers of random positions in the 7-mers that were
replaced with random nucleotides; for a detailed description of the data see Appendix).
We use the kernel as defined in Section 2.3 with one sub-kernel per position and oligomer
length. We consider sequences of length L = 50 and oligomers up to length d = 7,

5The training time for MKL-SVR in this setup but with 10,000 examples was about 40 minutes, when
kernel caches of size 100MB are used

56

leading to M = 350 sub-kernels. For every noise level, we train on 100 bootstrap
replicates and learn the 350 WD kernel parameters in each run. On the resulting 100
weightings, we performed the reliability test (cf. Section 4.1.4). The results are shown in
Figure 4.4 (columns correspond to different noise levels — increasing from left to right).
Each figure shows a kernel weighting β, where columns correspond to weights used at a
certain sequence position and rows to the k-mer length used at that position. The plots
in the first row show the weights that are detected to be important at a significance
level of α = 0.05 in bright (yellow) color. The likelihood for every weight to be detected
by the test and thus to reject the null hypothesis H0 is illustrated in the plots in the
second row (cf. Section 4.1.4 for details). Bright colors mean that it is more likely to
reject H0.

k
−

m
e

r

10 20 30 40 50

2

4

6

k
−

m
e

r

position in sequence
10 20 30 40 50

2

4

6

10 20 30 40 50

2

4

6

position in sequence
10 20 30 40 50

2

4

6

0 of 7 positions disguised 2 of 7 positions disguised

10 20 30 40 50

2

4

6

position in sequence
10 20 30 40 50

2

4

6

10 20 30 40 50

2

4

6

position in sequence
10 20 30 40 50

2

4

6

4 of 7 positions disguised 5 of 7 positions disguised

Figure 4.4: In this “figure matrix”, columns correspond to the noise level, i.e., different numbers of
nucleotides randomly substituted in the motif of the toy data set (cf. Appendix). Each sub-figure shows
a matrix with each element corresponding to one kernel weight: columns correspond to weights used at
a certain sequence position (1-50) and rows to the oligomer length used at that position (1-7). The first
row of the figure matrix shows the kernel weights that are significant, while the second row depicts the
likelihood of every weight to be rejected under H0. Figure taken from Sonnenburg et al. (2005a).

As long as the noise level does not exceed 2/7, longer matches of length 3 and 4 seem
sufficient to distinguish sequences containing motifs from the rest. However, only the
3-mer is detected with the test procedure. When more nucleotides in the motifs are
replaced with noise, more weights are determined to be of importance. This becomes
obvious in column 3 were 4 out of 7 nucleotides within each motif were randomly
replaced, but still an average ROC score of 99.6% is achieved. In the last column
the ROC score drops down to 83%, but only weights in the correct range 10 . . . 16 and
30 . . . 36 are found to be significant.

Real World Applications in Bioinformatics MKL has been successfully used on
real-world datasets in computational biology (Lanckriet et al., 2004, Sonnenburg et al.,
2005a). It was shown to improve classification performance on the task of ribosomal and
membrane protein prediction (Lanckriet et al., 2004), where a weighting over different
kernels each corresponding to a different feature set was learnt. In their result, the
included random channels obtained low kernel weights. However, as the data sets was
small (≈ 1, 000 examples) the kernel matrices could be precomputed and simultaneously
kept in memory, which was not possible in Sonnenburg et al. (2005a), where a splice
site recognition task for the worm C. elegans was considered. Here data is available
in abundance (up to one million examples) and larger amounts are indeed needed to

4.1 Multiple Kernel Learning 57

obtain state of the art results (Sonnenburg et al., 2005b). On that dataset we were able
to solve the classification MKL SILP for N = 1, 000, 000 examples using K = 20 kernels,
and for N = 10, 000 examples and K = 550 kernels, using the linadd optimisations
with the weighted degree kernel. As a result we a) were able to learn the weighting β

instead of choosing a heuristic and b) were able to use MKL as a tool for interpreting
the SVM classifier as in Sonnenburg et al. (2005a), Rätsch et al. (2005).
As an example we learnt the weighting of a WD kernel of degree 20, which consist of a
weighted sum of 20 sub-kernels each counting matching d-mers, for d = 1, . . . , 20. The

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

kernel index d (length of substring)

k
e

rn
e

l w
e

ig
h

t

Figure 4.5: The learnt WD kernel weighting on a million of examples. Figure taken from
Sonnenburg et al. (2005a).

learnt weighting is displayed in Figure 4.5 and shows a peak for 6-mers and 9&10-mers.
The obtained weighting in this experiment is only partially useful for interpretation.
For splice site detection, it is unlikely that k-mers of length 9 or 10 are playing the
most important role. More likely to be important are substrings of length up to six.
We believe that the large weights for the longest k-mers are an artifact, which comes
from the fact that we are combining kernels with quite different properties, i.e., the 9th
and 10th kernel leads to a combined kernel matrix that is most diagonally dominant
(since the sequences are only similar to themselves but not to other sequences), which
we believe is the reason for having a large weight.6

In Chapter 5 MKL is applied to understand splice site detection. There one kernel weight
per position in the sequence is considered (or even one kernel weight per position in the
sequence and k-mer length as in the example “MKL Learning Detects Motifs in Toy
Data set” above.

Benchmarking MKL

Experimental Setup To demonstrate the effect of the MKL SILP formulation with
and without the linadd extension for single, four and eight CPUs, we applied each of
the algorithms to the human splice site data set as presented in Section 3.3. In this
setup, the WD kernel weighting coefficients were learnt using Multiple Kernel Learning.
The WD kernel of degree 20 consist of a weighted sum of 20 sub-kernels each counting
matching d-mers, for d = 1, . . . , 20. Using MKL we learnt the weighting on the splice
site recognition task for one million examples as displayed in Figure 4.5 and discussed
in Section 4.1.5. Focusing on a speed comparison we now show the obtained training

6This problem might be partially alleviated by including the identity matrix in the convex combination.
However, as 2-norm soft margin SVMs can be implemented by adding a constant to the diagonal of
the kernel (Cortes and Vapnik, 1995), this leads to an additional 2-norm penalisation.

58

1000 10000 100000 1000000
10

100

1000

10000

100000

Number of training examples (logarithmic)

M
K

L
 t

ra
in

in
g

 t
im

e
 in

 s
e

co
n

d
s

(l
o

g
a

ri
th

m
ic

)

MKL WD precompute

MKL WD cache

MKL WD linadd 1CPU

MKL WD linadd 4CPU

MKL WD linadd 8CPU

Figure 4.6: Comparison of the running time of the different MKL algorithms when used with the
weighted degree kernel. Note that as this is a log-log plot, small appearing distances are large for
larger N and that each slope corresponds to a different exponent. Figure taken from Sonnenburg et al.
(2006a).

times for the different MKL algorithms applied to learning weightings of the WD kernel
on the splice site classification task. To do so, several MKL-SVMs were trained using
precomputed kernel matrices (PreMKL), kernel matrices, which are computed on the
fly employing kernel caching (MKL7), MKL using the linadd extension (LinMKL1)
and linadd with its parallel implementation8 (LinMKL4 and LinMKL8 - on 4 and 8
CPUs). The results are displayed in Table 4.1 and in Figure 4.6. While precomputing
kernel matrices seems beneficial, it cannot be applied to large scale cases (e.g., > 10, 000
examples) due to the O(KN2) memory constraints of storing the kernel matrices.9 On-
the-fly-computation of the kernel matrices is computationally extremely demanding,
but since kernel caching10 is used, it is still possible on 50,000 examples in about 57
hours. Note that no WD-kernel specific optimisations are involved here, so one expects
a similar result for arbitrary kernels.
The linadd variants outperform the other algorithms by far (speedup factor 53 on
50,000 examples) and are still applicable to datasets of size up to one million. Note
that without parallelisation MKL on one million examples would take more than a
week, compared with 2.5 (2) days in the quad-CPU (eight-CPU) version. The parallel
versions outperform the single processor version from the start achieving a speedup
for 10,000 examples of 2.27 (2.75), quickly reaching a plateau at a speedup factor of
2.98 (4.49) at a level of 50, 000 examples and approaching a speedup factor of 3.28
(5.53) on 500,000 examples (efficiency: 82% (69%)). Note that the performance gain
using 8 CPUs is relatively small, e.g., solving the QP and constructing the tree is not
parallelised.

7Algorithm 4.2
8Algorithm 4.2 with the linadd extensions including parallelisation of Algorithm 3.3
9Using 20 kernels on 10,000 examples requires already 7.5GB, on 30,000 examples 67GB would be

required (both using single precision floats)
10Each kernel has a cache of 1GB

4.2 Positional Oligomer Importance Matrices 59

N PreMKL MKL LinMKL1 LinMKL4 LinMKL8

500 22 22 11 10 80
1,000 56 64 139 116 116
5,000 518 393 223 124 108

10,000 2,786 1,181 474 209 172
30,000 - 25,227 1,853 648 462
50,000 - 204,492 3,849 1292 857

100,000 - - 10,745 3,456 2,145
200,000 - - 34,933 10,677 6,540
500,000 - - 185,886 56,614 33,625

1,000,000 - - - 214,021 124,691

Table 4.1: Speed Comparison when determining the WD kernel weight by Multiple Kernel Learning
using the chunking algorithm (MKL) and MKL in conjunction with the (parallelised) linadd algorithm
using 1, 4, and 8 processors (LinMKL1, LinMKL4, LinMKL8). The first column shows the sample size
N of the data set used in SVM training while the following columns display the time (measured in
seconds) needed in the training phase. Table taken from Sonnenburg et al. (2006a).

4.2 Positional Oligomer Importance Matrices

For many sequence classification problems, SVMs with the right choice of sequence ker-
nels perform better than other state-of-the-art methods, as exemplified in Table 4.2. To
achieve the best prediction results, it typically pays off to rather include many, poten-
tially weak features than to manually preselect a small set of discriminative features. For
instance, the SVM-based translation initiation start (TIS) signal detector Startscan

(Saeys et al., 2007), which relies on a relatively small set of carefully designed features,
shows a considerably higher error rate than an SVM with a standard kernel that implies
a very high dimensional feature space (cf. Table 4.2).
The best methods in Table 4.2 are all based on SVMs that work in feature spaces that
exhaustively represent the incidences of all k-mers up to a certain maximum length
K using the Spectrum kernel with and without mismatches and the Weighted Degree
kernel without and with shifts (cf. Chapter 2 for the definition of these kernels). As
a result of our work on large scale learning (see Chapter 3) SVMs with string ker-
nels can be trained efficiently on millions of DNA sequences even for large orders K,
thereby inducing enormous feature spaces (for instance, K = 30 gives rise to more than
430 > 1018 k-mers). Such feature spaces supply a solid basis for accurate predictions as
they allow to capture complex relationships (e.g., binding site requirements). From an
application point of view, however, they are yet unsatisfactory as they offer little scien-
tific insight about the nature of these relationships. The reason is that SVM classifiers
ŷ = sign(g(x)) employ the kernel expansion,

g(x) =
N∑

i=1

αiyi k(xi,x) + b, (4.14)

where (xi, yi)i=1,...,N , with yi ∈ {+1,−1}, are the N training examples (cf. Section 1.2).
Thus, SVMs use a weighting α over training examples that only indirectly relates to
features. One idea to remedy this problem is to characterise input variables by their
correlation with the weight vector α (Üstün et al., 2007); however, the importance of
features in the induced feature space remains unclear.
Partial relief is offered by multiple kernel learning (cf. Section 4.1). For appropriately

60

Signal Detection
Problem to be
solved

SVM
Perfor-
mance

SVM Based Approach and
String Kernel Names

Performance
of Competi-
tor

Competing Approach

Transcription
Start

26.2%
auPRC

WDS & Spectrum
(ARTS, cf. Section 5.4 and
Sonnenburg et al., 2006b)

11.8%
auPRC

RVM
(Eponine,
Down and Hubbard, 2002)

Acceptor Splice
Site

54.4%
auPRC

WDS
(cf. Section 5.3 and
Sonnenburg et al., 2007b)

16.2%
auPRC

IMC
(cf. Section 5.3 and
Sonnenburg et al., 2007b)

Donor Splice
Site

56.5%
auPRC

WDS
(cf. Section 5.3 and
Sonnenburg et al., 2007b)

25.0%
auPRC

IMC
(cf. Section 5.3 and
Sonnenburg et al., 2007b)

Alternative
Splicing

89.7%
auROC

WDS
(RASE, Rätsch et al., 2005)

- -

Trans-Splicing 95.2%
auROC

WD
(mGene,
Schweikert et al., 2008)

- -

Translation Ini-
tiation

10.7%
Se80

WD
(mGene,
Schweikert et al., 2008)

12.5%
Se80

PWM, ICM
(Startscan,
Saeys et al., 2007)

Table 4.2: Comparison of SVM performance (second column) vs. competing state-of-the-art classifiers
(third column) on six different DNA signal detection problems. The chosen best SVMs employ spectrum,
weighted degree (WD) or weighted degree with shift (WDS) kernels. Note that performance measures
differ. AuROC denotes the area under the receiver operator characteristic curve and auPRC the area
under the precision recall curve; for both, larger values correspond to better performance. Se80 is the
false positive rate at a true positive rate of 80% (lower values are better). Transcription start site (TSS):
Among the best TSS recognisers is the relevance vector machine (RVM) based Eponine, which is clearly
outperformed by our ARTS TSS detector (cf. Section 5.4). Acceptor and donor splice sites: The best
existing splice site detectors are SVM based (cf. Section 5.3 and Sonnenburg et al., 2007b); we therefore
deliberately compare our methods to the popular inhomogeneous Markov chains (IMC), which achieve
less than half of the auPRC on human splice sites. Alternative and trans-splice sites in C. elegans: To
the best of our knowledge no other ab-initio approaches are available. Translation initiation sites: For
TIS recognition we compare with Startscan (Saeys et al., 2007), which is based on positional weight
matrices (PWM) and interpolated context models (ICM). Our WD-kernel SVM, trained using default
settings C = 1, d = 20 (no model selection) on the dataset from Saeys et al. (2007), already performs
favourably. Table taken from Sonnenburg et al. (2008).

designed sub-kernels km(., .), the optimised kernel combination coefficients β can then
be used to highlight the parts of an input sequence that are important for discrimination
(Rätsch et al., 2006). The use of the l1−norm constraint (

∑M
m=1 βm = 1) causes the

resulting β to be sparse, however at the price of discarding relevant features, which may
lead to inferior performance.
An alternative approach is to keep the SVM decision function unaltered, and to find ad-
equate ways to “mine” the decision boundary for good explanations of its high accuracy.
A natural way is to compute and analyze the normal vector of the separation in feature
space, w =

∑N
i=1 αiyiΦ(xi), where Φ is the feature mapping associated to the kernel

k. This has been done, for instance, in cognitive sciences to understand the differences
in human perception of pictures showing male and female faces. The resulting normal
vector w was relatively easy to understand for humans since it can be represented as an
image (Graf et al., 2006). Such approach is only feasible if there exists an explicit and
manageable representation of Φ for the kernel at hand. Fortunately, as we have seen
in Chapter 3, we can compute such weight vector for most string kernels, which leads
to weightings over all possible k-mers. However, it seems considerably more difficult
to represent such weightings in a way humans can easily understand. There have been

4.2 Positional Oligomer Importance Matrices 61

first attempts in this direction (Meinicke et al., 2004), but the large number of k-mers
and their dependence due to overlaps at neighbouring positions still remain an obstacle
in representing complex SVM decision boundaries.
In this section, we address this problem by considering new measures for k-mer based
scoring schemes (such as SVMs with string kernels) useful for the understanding of
complex local relationships that go beyond the well-known sequence logos. For this, we
first compute the importance of each k-mer (up to a certain length K) at each position
as its expected contribution to the total score g(x). The resulting Positional Oligomer
Importance Matrices (POIMs) can be used to rank and visualise k-mer based scoring
schemes. Note that a ranking based on w is not necessarily meaningful: due to the
dependencies of the features there exist w′ 6= w that implement the same classification,
but yield different rankings. In contrast, our importance values are well-defined and
have the desired semantics. The lowest order POIM (p = 1) essentially conveys the
same information as is represented in a sequence logo. However, unlike sequence logos,
POIMs naturally generalise to higher-order nucleotide patterns.

Organization of the Section This section is split into four parts. First, we intro-
duce the necessary background (Section 4.2.1), then define POIMs in Section 4.2.2 and
provide recursions for their efficient computation. In Section 4.2.3 we describe repre-
sentations and methods to visualise POIMs. Finally, in Section 4.2.4, we use artificial
data to show that POIMs easily out-compete MKL and the SVM weight w. Note that
Chapter 5 will utilize POIMs of state-of-the-art SVM-based signal detectors to exactly
pin-point length, location, and typical sequences of the most discriminating motifs.

4.2.1 Linear Positional Oligomer Scoring Systems

Given an alphabet Σ, let x ∈ Σlx be a sequence of length lx. A sequence y ∈ Σk is
called a k-mer or oligomer of length k. A positional oligomer (PO) is defined by a pair
(y, i) ∈ I :=

⋃K
k=1

(
Σk × {1, . . . , lx − k + 1}

)
, where y is the subsequence of length k

and i is the position at which it begins within the sequence of length lx. We consider
scoring systems of order K (that are based on positional oligomers of lengths k ≤ K)
defined by a weighting function w : I → IR. Let the score s(x) be defined as a sum of
PO weights:

s(x) :=
K∑

k=1

lx−k+1∑

i=1

w
(
x[i]k, i

)
+ b , (4.15)

where b is a constant offset (bias), and we write x[i]k := xixi+1 . . . xi+k−1 to denote the
substring of x that starts at position i and has length k. Figure 4.3 gives an example
of the scoring system. Thus, if one can explicitly store the learnt normal vector w
parametrizing the hyperplane, one can use it to rank and extract discriminating features.
Many classifiers implement such a scoring system as will be shown below.

The Weighted Degree Kernel. The weighted degree kernel of order K (cf. Equation
(2.4) and also Figure 2.3 in Section 2.3) for illustration. A feature mapping Φ(x) is
defined by a vector representing each positional oligomer of length ≤ K: if it is present
in x then the vector entry is

√
βk and 0 otherwise. It can be easily seen that Φ(x) is an

explicit representation of the WD kernel, i.e., k(x,x′) = Φ(x)·Φ(x′). When training any
kernel method the function g(x) can be equivalently computed as g(x) = w · Φ(x) + b,
where w =

∑N
i=1 αiyiΦ(xi). Given the feature map of the WD kernel, it becomes

62

k-mer pos. 1 pos. 2 pos. 3 pos. 4 · · ·
A +0.1 -0.3 -0.2 +0.2 · · ·
C 0.0 -0.1 +2.4 -0.2 · · ·
G +0.1 -0.7 0.0 -0.5 · · ·
T -0.2 -0.2 0.1 +0.5 · · ·

AA +0.1 -0.3 +0.1 0.0 · · ·
AC +0.2 0.0 -0.2 +0.2 · · ·
...

...
...

...
...

. . .

TT 0.0 -0.1 +1.7 -0.2 · · ·
AAA +0.1 0.0 0.0 +0.1 · · ·
AAC 0.0 -0.1 +1.2 -0.2 · · ·

...
...

...
...

...
. . .

TTT +0.2 -0.7 0.0 0.0 · · ·

Table 4.3: Example of a linear scoring system

apparent that the resulting w is a weighting over all possible positional oligomers and,
hence, g(x) can be written in the form of Equation (4.15).

Other kernels. The above findings extend to many other string kernels from Chapter
2, the Oligomer kernel and the related WD kernel with shift, which additionally include
displaced matches. The (weighted) spectrum kernel can be modeled with Equation (4.15)
by using equal weights at each position i ∈ {1, . . . , lx} (analogously for the spectrum
kernel with mismatches).

Markov Model of Order d. Recall from Section 1.2 that in a Markov model of order
d it is assumed that each symbol in a sequence x is independent of all other symbols in
x that have distance greater than d. Thus, the likelihood of x can be computed as a
product of conditional probabilities:

Pr [x] =
d∏

i=1

Pr
[
xi

∣∣x[1]i−1
]
·

lx∏

i=d+1

Pr
[
xi

∣∣∣x[i− d]d
]

.

Note that a positional weight matrix (PWM) is essentially a Markov model of order
d = 0. The log-likelihood for d = K − 1 is easily expressed as a linear positional
oligomer scoring system for K−mers as follows:

log Pr [x] =
K−1∑

i=1

w
(
x[1]i, 1

)
+

lx∑

i=K

w
(
x[i−K + 1]K , i−K + 1

)
,

with w
(
x[1]i, 1

)
= log Pr

[
xi

∣∣x[1]i−1
]

and w
(
x[i−K + 1]K , i−K + 1

)
=

log Pr
[
xi

∣∣x[i−K + 1]K−1
]
. A log-likelihood ratio is modeled by the difference of

two such scoring systems (the posterior log-odds, cf. Section 1.2). This derivation
applies to both homogeneous (position-independent) and in-homogeneous (position-
dependent) Markov models. It further extends to the decision rules of mixed order
models.

4.2 Positional Oligomer Importance Matrices 63

4.2.2 Definition of Positional Oligomer Importance Matrices

The goal of POIMs is to characterise the importance of each PO (z, j) for the
classification. On first sight, looking at the scoring function (Equation (4.15)), it
might seem that the weighting w does exactly this: w(z, j) seems to quantify the
contribution of (z, j) to the score of a sequence x. In fact, this is true whenever the
POs are statistically independent. However, already for K ≥ 2 many POs overlap with
each other and thus necessarily are dependent. To assess the influence of a PO on
the classification, the impact of all dependent POs has to be taken into account. For
example, whenever z occurs at position j, the weights of all its positional substrings
are also added to the score (Equation (4.15)).

To take dependencies into account, we define the importance of (z, j) as the expected
increase (or decrease) of its induced score. We quantify this through the conditional
expectation of s(X) conditioned on the occurrence of the PO in x (i.e., on X [j] = z):11

Q(z, j) := E [s(X) | X [j] = z]− E [s(X)] . (4.16)

This is the central equation of this work. When evaluated for all positions j and all
p-mers z, it results in a positional oligomer importance matrix (POIM).

The relevance of Equation (4.16) derives from the meaning of the score s(·). Higher
absolute values |s(x)| of scores s(x) indicate higher confidence about the classifiers
decision. Consequently, high |Q(z, j)| show that the presence of a p-mer z at position j
in an input sequence is highly relevant for class separation. For example, with an SVM
trained for splice sites a high positive score s(x) suggests that x contains a splice site
at its central location while a very negative score suggests that there were none. Thus,
a PO (z, j) of high absolute importance |Q(z, j)| might be part of a splice consensus
sequence, or a regulatory element (an enhancer for positive importance Q(z, j) > 0, or
a silencer for Q(z, j) < 0).

The computation of the expectations in Equation (4.16) requires a probability distri-
bution for the union of both classes. In this section, we use a zeroth-order Markov
model , i.e., an independent single-symbol distribution at each position. Although this
is quite simplistic, the approximation that it provides is sufficient for our applications.
A generalisation to Markov models of order d ≥ 0 can be found in Appendix A.2.

There are two strong reasons for the subtractive normalisation w.r.t. the (uncondition-
ally) expected score. The first is conceptual: the magnitude of an expected score is
hard to interpret by itself without knowing the cutoff value for the classification; it is
more revealing to see how a feature would change the score. The second reason is about
computational efficiency; this is shown next.

Efficient computation of Q(z, j). Naive implementation of Equation (4.16) would
require a summation over all 4lx sequences x of length lx, which is clearly intractable.
The following equalities show how the computational cost can be reduced in three steps;

11We omit the length of the subsequence in comparisons where it is clear from the context, e.g. X [j] = z
means X[j]|z| = z.

64

for proofs and details see Appendix A.2.

Q(z, j)

=
∑

(y,i)∈I

w(y, i)
[
Pr [X [i] = y |X [j] = z]− Pr [X [i] = y]

]
(4.17)

=






∑

(y,i)∈I(z,j)

w(y, i) Pr [X [i] = y |X [j] = z]

−
∑

(y,i) 6⊥(z,j)

w(y, i) Pr [X [i] = y]
(4.18)

= u(z, j)−
∑

z′∈Σ|z|

Pr
[
x [j] = z′

]
u(z′, j) . (4.19)

Here u is defined by

u(z, j) :=
∑

(y,i)∈I(z,j)

Pr [X [i] = y |X [j] = z] w(y, i) , (4.20)

I(z, j) is the set of features that are dependent and compatible with (z, j), and 6⊥
indicates that two POs are dependent. Two POs are compatible if they agree on all
positions they share. For example, (TATA, 30), and (AAA, 32) are incompatible, since
they share positions {31, 33} but disagree on position 32, whereas (TATA, 30) and
(TACCA, 32) are compatible. Note also that for Markov chains of order zero statistical
dependence of two POs is equivalent with them being overlapping.

The complexity reduction works as follows. In Equation (4.17), we use the linear
structure of both the scoring function and the expectation to reduce summation from
all lx-mers to the set I of all k-mers. This is still prohibitive: for example, the number
of POs for K=20 and lx=100 is roughly O(1014). In Equation (4.18), we exploit the
facts that the terms for POs independent of (z, j) cancel in the difference, and that
conditional probabilities of incompatible POs vanish. Finally, probability calculations
lead to Equation (4.19), in which the difference is cast as a mere weighted sum of
auxiliary terms u.

To compute u, we still have to access the SVM weights w. Note that, for high orders K,
the optimal w found by any kernel method (e.g., an SVM) is sparse as a consequence of
the representer theorem (Schölkopf and Smola, 2002): the number of nonzero entries in
w is bounded by the number of POs present in the training data, which for the spectrum
and WD kernels grows linearly with the training data size. Due to this sparsity, w can
efficiently be computed and stored in positional suffix tries (cf. Chapter 3).

Recursive algorithm for Q(z, j). Even with the summation over the reduced set I(z, j)
as in Equation (4.19) and (4.20), naive sequential computation of the importance of all
POs of moderate order may easily be too expensive. We therefore develop a strategy
to compute the entire matrix of values Q(z, j), for all p-mers z up to length P at all
positions 1, . . . L− p + 1, which takes advantage of shared intermediate terms. This
results in a recursive algorithm operating on string prefix data structures and therefore
is efficient enough to be applied to real biological analysis tasks.
The crucial idea is to treat the POs in I(z, j) separately according to their relative
position to (z, j). To do so, we subdivide the set I(z, j) into substrings, superstrings,

4.2 Positional Oligomer Importance Matrices 65

AATACGTAC

TACGT ...AATACGTAC...

AATACGTAC

...AATACGT

AATACGTAC AATACGTAC

TACGTAC...

Figure 4.7: Substrings, superstrings, left partial overlaps, and right partial overlaps: definition and
examples for the string AATACGTAC. Figure taken from Sonnenburg et al. (2008).

left partial overlaps, and right partial overlaps of (z, j):

Definition 4.1 (Substrings, Superstrings, Left and Right PO).

(substrings) I∨(z, j) := { (y, i) ∈ I(z, j) | i ≥ j and |y|+ i ≤ |z|+ j }
(superstrings) I∧(z, j) := { (y, i) ∈ I(z, j) | i ≤ j and |y|+ i ≥ |z|+ j }

(left p. o.) I<(z, j) := { (y, i) ∈ I(z, j) | i < j and |y|+ i < |z|+ j and |y|+ i− 1 ≥ j }
(right p. o.) I>(z, j) := { (y, i) ∈ I(z, j) | i > j and |y|+ i > |z|+ j and |z|+ j − 1 ≥ i }

Figure 4.7 illustrates the four cases.

The function u can be decomposed correspondingly; see Equation (4.21) in Theorem
4.2. This theorem also summarises all the previous observations in the central POIM
computation Theorem 4.2. The complete derivation can be found in Appendix A.2.
Once w is available as a suffix trie (cf. Chapter 3), the required amounts of memory and
computation time for computing POIMs are dominated by the size of the output, i.e.,
O(|Σ|p · lx). The recursions are implemented in the SHOGUN toolbox (cf. Appendix
C) (which also offers a non-positional version for the spectrum kernel). A web interface
via Galaxy is available at http://galaxy.fml.tuebingen.mpg.de/.

Theorem 4.2 (Efficient POIM computation for zeroth order Markov chains). Let z ∈
Σp and Q(z, j) be defined as in Equation (4.16). Then

Q(z, j) = u(z, j)−
∑

z′∈Σp

Pr
[
X [j] = z′

]
u(z′, j) , (4.21)

where u decomposes as

u(z, j) = u∨(z, j) + u∧(z, j) + u<(z, j) + u>(z, j)− w(z, j)

and u∨, u∧, u<, u> are computed recursively by

u∨(σzτ, j) = w(σzτ,j) + u∨(σz, j) + u∨(zτ, j + 1)− u∨(z, j + 1) for σ, τ ∈ Σ

u∧(z, j) = w(z,j) −
∑

(σ,τ)∈Σ2

Pr [X[j − 1] = σ] Pr [X[j + p] = τ]u∧(σzτ, j − 1)

+
∑

σ∈Σ

Pr [X[j − 1] = σ] u∧(σz, j − 1) +
∑

τ∈Σ

Pr [X[j + p] = τ]u∧(zτ, j)

u<(z, j) =
∑

σ∈Σ

Pr [X[j − 1] = σ]

min{p,K}−1∑

l=1

L
(
σ(z[1]l), j − 1

)

u>(z, j) =
∑

τ∈Σ

Pr [X[j + p] = τ]

min{p,K}−1∑

l=1

R
(
z[p− l + 1]lτ, j + p− l

)
,

http://galaxy.fml.tuebingen.mpg.de/

66

L(z, j) = w(z,j) +
∑

σ∈Σ

Pr [X [j − 1] = σ] L(σz, j − 1)

R(z, j) = w(z,j) +
∑

τ∈Σ

Pr [X [j + p] = τ] R(zτ, j) .

This theorem enables efficient POIM computation for zeroth order Markov chains. For
its derivation cf. Appendix A.2.

4.2.3 Ranking Features and Condensing Information for Visualisation

Given the POIMs, we can analyze positional oligomers according to their contributions
to the scoring function. We discuss several methods to visualise the information in
POIMs and to find relevant POs. In the remainder of this section, we will use the term
motif either synonymously for PO, or for a set of POs that are similar (e.g., that share
the same oligomer at a small range of neighbouring positions).

Ranking Tables. A simple analysis of a POIM is to sort all POs by their importance
Q(·) or absolute importance |Q(·)|. As argued above, the highest ranking POs are likely
to be related to relevant motifs. An example of a ranking tables can be found in Table
5.7 and Figure 5.15.

POIM Plots. We can visualise an entire POIM of a fixed order p ≤ 3 in form of a heat
map: each PO (z, j) is represented by a cell, indexed by its position j on the x-axis and
the p-mer z on the y-axis (e.g., in lexical ordering), and the cell is colored according
to the importance value Q(z, j). This allows to quickly overview the importance of all
possible POs at all positions. An example for p = 1 can be found in Figure 4.10. There
also the corresponding sequence logo is shown.
However, for p > 3 such visualisation ceases to be useful due to the exploding number
of p-mers. Similarly, ranking lists may become too long to be accessible to human
processing. Therefore, we need views that aggregate over all p-mers, i.e., that show PO
importance just as a function of position j and order p. Once a few interesting areas
(j, p) are identified, the corresponding POs can be further scrutinised (e.g., by looking
at rank lists) in a second step. In the following paragraphs we propose a two approaches
for the first, summarizing step.

POIM Weight Mass. At each position j, the total importance can be computed by
summing the absolute importance of all p-mers at this position, weight massp(j) =∑

z∈Σp |Q(z, j)|. Several such curves for different p can be shown simultaneously in a
single graph. An example can be found in Figure 4.11, first row, second column.

Differential POIMs. Here we start by taking the maximum absolute importance over
all p-mers for a given length p and at a given position j. We do so for each p ∈ {1, . . . , P}
and each j ∈ {1, . . . , lx}. Then, we subtract the maximal importance of the two sets of
(p−1)-mers covered by the highest scoring p-mer at the given position (see Figure 4.8).
This results in the importance gain by considering longer POs. As we demonstrate in
the next section, this allows to determine the length of relevant motifs. The first row of
Figure 4.9 shows such images.

POIM Diversity. A different way to obtain an overview over a large number of p-mers
for a given length p is to visualise the distribution of their importances. To do so, we

4.2 Positional Oligomer Importance Matrices 67

ATACGTAC

AATACGTAC

AATACGTA

Figure 4.8: Two (p − 1)-mers are cov-
ered by a p-mer. Figure taken from
Sonnenburg et al. (2008).

qp,j
max := max

z∈|Σ|p
|Q(z, j)|

D(p, j) := qp,j
max−

max{qp,j
max, q

p,j+1
max } (4.22)

approximate the distribution at each position by a mixture of two normal distributions,
thereby dividing them into two clusters. We set the values in the lower cluster to zero,
and sort all importances in descending order. The result is depicted in a heat map just
like a POIM plot. Here we do not care that individual importance values cannot be
visually mapped to specific p-mers, as the focus is on understanding the distribution.
An example is given in Figure 4.11, first row, third column.

p-mer Scoring Overview. Previously, the scoring and visualisation of features learnt
by SVMs was performed according to the values of the weight vector w (Meinicke et al.,
2004, Sonnenburg et al., 2007a). To show the benefit of our POIM techniques in compar-
ison to such techniques, we also display matrices visualizing the position-wise maximum
of the absolute value of the raw weight vector w over all possible p-mers at this position,
KS(p, j) = maxz∈Σp |w(z, j)|. We will also display the Weight Plots and the Weight
Mass for the weight matrices SVM-w in the same way as for the importance matrices.
Differential plots for SVM-w do not make sense, as the weights for different orders are
not of the same order of magnitude. The second row of Figure 4.9 shows such overview
images.

4.2.4 POIMs Reveal Discriminative Motifs

As a first step, we demonstrate our method on two simulations with artificial data and
show that POIMs reveal motifs that remain hidden in sequence logos and SVM weights.

Two motifs at fixed positions. In our first example we re-use a toy data set of Ap-
pendix B.1: two motifs of length seven, with consensus sequences GATTACA and AGTAGTG,
are planted at two fixed positions into random sequences (Sonnenburg et al., 2005a). To
simulate motifs with different degrees of conservations we also mutate these consensus
sequences, and then compare how well different techniques can recover them. More
precisely, we generate a data set with 11, 000 sequences of length lx = 50 with the
following distribution: at each position the probability of the symbols {A, T} is 1/6 and
for {C, G} it is 2/6. We choose 1, 000 sequences to be positive examples: we plant our
two POs, (GATTACA, 10) and (AGTAGTG, 30), and randomly replace s symbols in each PO
with a random letter. We create four different versions by varying the mutation level
s ∈ {0, 2, 4, 5}. Each data sets is randomly split into 1, 000 training examples and 10, 000
validation examples. For each s, we train an SVM with WD kernel of degree 20 exactly
as in Sonnenburg et al. (2005a). We also reproduce the results of Sonnenburg et al.
(2005a) obtained with a WD kernel of degree 7, in which MKL is used to obtain a
sparse set of relevant pairs of position and degree.
The results can be seen in Figure 4.9. We start with the first column, which corresponds
to the unmutated case s = 0. Due to its sparse solution, MKL (third row) characterises
the positive class by a single 3-mer in the GATTACA. Thus, MKL fails to identify the

68

Differential POIM Overview − GATTACA (Subst. 0)

M
ot

if
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

Differential POIM Overview − GATTACA (Subst. 2)

M
ot

if
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

Differential POIM Overview − GATTACA (Subst. 4)

M
ot

if
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

Differential POIM Overview − GATTACA (Subst. 5)

M
ot

if
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

K−mer Scoring Overview − GATTACA (Subst. 0)

M
ot

if
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

K−mer Scoring Overview − GATTACA (Subst. 2)

M
ot

if
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

K−mer Scoring Overview − GATTACA (Subst. 4)

M
ot

if
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

K−mer Scoring Overview − GATTACA (Subst. 5)

M
ot

if
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

k−
m

er

position in sequence
10 20 30 40 50

1

2

3

4

5

6

7

k−
m

er

position in sequence
10 20 30 40 50

1

2

3

4

5

6

7

k−
m

er

position in sequence
10 20 30 40 50

1

2

3

4

5

6

7

k−
m

er

position in sequence
10 20 30 40 50

1

2

3

4

5

6

7

Figure 4.9: Comparison of different visualisation techniques for the fixed-position-motifs exper-
iment. Motifs GATTACA and AGTAGTG were inserted at positions 10 and 30, respectively, with
growing level of mutation (i.e., number of nucleotides randomly substituted in the motifs) from
left to right. SVMs classifiers were trained to distinguish random sequences from sequences with
the (mutated) motifs GATTACA and AGTAGT inserted. (First Row) We computed Differential
POIMs (see Equation (4.22)) for up to 8-mers, from a WD-kernel SVM of order 20. Here each
figure displays the importance of k−mer lengths (y-axis) for k = 1 . . . 8 at each position (x-axis)
(i = 1 . . . 50 as a heat map. Red and yellow color denotes relevant motifs, dark blue corresponds
to motifs not conveying information about the problem. 1−mers are at the bottom of the plot,
8-mers at the top. (Second Row) K-mer Scoring Overview (SVM-w) was computed using the
same setup as for differential POIMs. The SVM-w is again displayed as a heat map. (Third
Row) was obtained using multiple kernel learning (averaged weighting obtained using 100 boot-
strap runs (Rätsch et al., 2006)). Again the result is displayed as a heat map, but for one to
seven-mers only. For a more detailed discussion, see text. Figure taken from Sonnenburg et al.
(2008).

complete consensus sequences. The K-mer scoring matrices (second row) are able to
identify two clusters of important oligomers at and after positions 10 and 30; however
they assign highest impact to shorter oligomers. Only the differential POIMs (first row)
manage to identify the exact length of the embedded POs: they do not only display
that 7-mers up to k = 7 are important, but also that exactly 7-mers at position 10 and
30 are most important.
Moving through the columns to the left, the mutation level increases. Simultaneously
the performance deteriorates, as expected. In the second column (2/7 mutations),
differential POIMs still manage to identify the exact length of the embedded motifs,
unlike the other approaches. For higher mutation rates even the POIMs assign more
importance to shorter POs, but they continue to be closer to the truth than the two
other approaches. In Figure 4.10 we show the POIM plot for 1-mers versus sequence
logos for this level of mutation. As one can see, 1-mer POIMs can capture the whole
information contained in sequence logos.

4.3 Summary 69

POIM − GATTACA (Subst. 4) Order 1

Position
5 10 15 20 25 30 35 40 45 50

A

C

G

T

weblogo.berkeley.edu

0

1

2

b
it
s

5′

1

T
A
G
C

2

A
T
G
C

3

A
T
C
G

4

T
A
C
G

5

A
T
C
G

6

A
T
C
G

7

T
A
C
G

8

T
A
C
G

9

A
T
C
G

1
0

A

T
C
G

1
1

T
C
G
A

1
2

G
A
C
T

1
3

A

G
C
T

1
4

T
C
G
A

1
5

T
A

G
C

1
6

T
G
C
A

1
7

T
A
C
G

1
8

A
T
G
C

1
9

A
T
G
C

2
0

T
A
C
G

2
1

A
T
G
C

2
2

T
A
C
G

2
3

T
A
C
G

2
4

A
T
C
G

2
5

A
T
C
G

2
6

A
T
G
C

2
7

A
T
C
G

2
8

T
A
G
C

2
9

A
T
G
C

3
0

T
C
G
A

3
1

T

A
C
G

3
2

A
C

G
T

3
3

T
G
C
A

3
4

T
A
C
G

3
5

A
C
G
T

3
6

T
A
C
G

3
7

T
A
G
C

3
8

A
T
G
C

3
9

T
A
G
C

4
0

A
T
G
C

4
1

T
A
C
G

4
2

T
A
C
G

4
3

A
T
C
G

4
4

A
T
G
C

4
5

A
T
G
C

4
6

A
T
G
C

4
7

T
A
G
C

4
8

A
T
G
C

4
9

T
A
G
C

5
0

T
C
A
G

3′

Figure 4.10: 1-mer POIM plot (top) vs. sequence logo (bottom) for motifs GATTACA and AGTAGTG

at positions 10 and 30, respectively, with 4-out-of-7 mutations in the motifs. Figure taken from
Sonnenburg et al. (2008).

Mutated motif at varying positions. To make our experiment more realistic, we con-
sider motifs with positional shift. The first 5000 training and test sequences are created
by drawing uniformly from {A, C, G, T}100. For half of the sequences, the positive class,
we randomly insert the 7-mer GATTACA, with one mutation at a random position. The
position j of insertion follows a normal distribution with mean 0 and standard devia-
tion 7 (thus for 50% of the cases, j ∈ [−5, +5]). We train an SVM with WDS kernel
of degree 10 with constant shift 30 to discriminate between the inseminated sequences
and the uniform ones; it achieves an accuracy of 80% on the test set. As displayed in
Figure 4.11, both the sequence logo and the SVM w fail to make the consensus and
its length apparent, whereas the POIM-based techniques identify length and positional
distribution. Please note that Gibbs sampling methods have been used to partially solve
this problem for PWMs. Such methods can also be used in conjunction with SVMs.

4.3 Summary

Modern kernel methods with complex, oligomer-based sequence kernels are very pow-
erful for biological sequence classification. However, until now no satisfactory tool for
visualisation was available that helps to understands their complex decision surfaces. In
the first part of the chapter we have proposed a simple, yet efficient algorithm to solve
the multiple kernel learning problem for a large class of loss functions. The proposed
method is able to exploit the existing single kernel algorithms, thereby extending their
applicability. In experiments, we have illustrated that MKL for classification and re-
gression can be useful for automatic model selection and for obtaining comprehensible
information about the learning problem at hand. It would be of interest to develop
and evaluate MKL algorithms for unsupervised learning such as Kernel PCA and one-
class classification and to try different losses on the kernel weighting β (such as L2).
We proposed performance enhancements to make large scale MKL practical: the SILP
wrapper, SILP chunking and (for the special case of kernels that can be written as an
inner product of sparse feature vectors, e.g., string kernels) the linadd algorithm.For
MKL, we gained a speedup of factor 53. Finally, we proposed a parallel version of the
linadd algorithm running on a 8 CPU multiprocessor system, which lead to additional

70

Differential POIM Overview − GATTACA shift

M
ot

if
Le

ng
th

 (
k)

Position
−30 −20 −10 0 10 20 30

8

7

6

5

4

3

2

1

−30 −20 −10 0 10 20 30

10

20

30

40

50

60

70

80

90

100
POIM Weight Mass − GATTACA shift

W
ei

gh
t M

as
s

Position

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

POIM k−mer Diversity − GATTACA shift Order 3

N
um

be
r

of
 M

ot
ifs

Position
−30 −20 −10 0 10 20 30

14

12

10

8

6

4

2

K−mer Scoring Overview − GATTACA shift

M
ot

if
Le

ng
th

 (
k)

Position
−30 −20 −10 0 10 20 30

8

7

6

5

4

3

2

1

−30 −20 −10 0 10 20 30

10

20

30

40

50

60

70

80

90

100
W Weight Mass − GATTACA shift

W
ei

gh
t M

as
s

Position

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

W k−mer Diversity − GATTACA shift Order 3

N
um

be
r

of
 M

ot
ifs

Position
−30 −20 −10 0 10 20 30

14

12

10

8

6

4

2

weblogo.berkeley.edu

0

1

2

b
it
s

5′

-3
0

T
A
C
G

-2
9

T
G
C
A

-2
8

G
C
T
A

-2
7

C
T
G
A

-2
6

T
A
G
C

-2
5

T
A
C
G

-2
4

T
A
C
G

-2
3

T
A
C
G

-2
2

A
T
C
G

-2
1

T
C
A
G

-2
0

A
T
G
C

-1
9

C
T
A
G

-1
8

C
G
T
A

-1
7

T
A
C
G

-1
6

C
T
G
A

-1
5

C
T
G
A

-1
4

C
G
A
T

-1
3

C
T
G
A

-1
2

G
T
C
A

-1
1

C
G
T
A

-1
0

C
A
G
T

-9

C
G
T
A

-8

C
G
T
A

-7

C
G
T
A

-6

G
C
T
A

-5

C
G
T
A

-4

C
G
T
A

-3

C
G
T
A

-2
C
G
T
A

-1
C
G
T
A

0

C
G
T
A

1

G
C
T
A

2

G
C
T
A

3

G
C
T
A

4

G
C
T
A

5

G
C
T
A

6

C
G
T
A

7

G
C
T
A

8

G
C
T
A

9

G
C
T
A

1
0

T
G
C
A

1
1

T
G
C
A

1
2

G
T
C
A

1
3

G
C
T
A

1
4

G
C
T
A

1
5

G
T
A
C

1
6

C
T
G
A

1
7

G
C
T
A

1
8

G
A
C
T

1
9

T
A
C
G

2
0

T
G
C
A

2
1

G
T
A
C

2
2

T
G
C
A

2
3

T
G
A
C

2
4

G
C
A
T

2
5

C
G
T
A

2
6

T
G
C
A

2
7

C
G
A
T

2
8

A
C
G
T

2
9

A
C
G
T

3
0

G
T
A
C

3′

Figure 4.11: Comparison of different visualisation techniques for the varying-positions-motif ex-
periment. The mutated motif GATTACA was inserted at positions 0+−13 in uniformly distributed
sequences. (First row) The first column shows the Differential POIM matrices (cf. Equation
(4.22)) as a heat map, the POIM weight mass for different k = 1 . . . 8 and the POIM k-mer
diversity for k = 3 as a heat map ; (Second row) Shows the SVM-w overview plot as a heat
map, the SVM-w weight mass also for k = 1 . . . 8 and the k−mer diversity for k = 3 as a heat
map; (Third row) sequence logo. Figure taken from Sonnenburg et al. (2008).

speedups of factor up to 5.5 for MKL. In the second part of this Chapter, we pro-
pose a solution to visualising the complex decision function of the SVM by introducing
a method, which efficiently computes the importance of positional oligomers defined
as their expected contribution to the score. In contrast to the discrimination normal
vector w, the importance takes into account the correlation structure of all features.
We illustrated on simulated data how the visualisation of positional oligomer impor-
tance matrices (POIMs) can help to identify even vaguely localised motifs where pure
sequence logos will fail. In contrast to our previous MKL approach, we propose here
to leave the SVM untouched for classification to retain its high accuracy, and to defer
motif extraction to subsequent steps. This way, motif finding can take advantage of the
SVMs power: it ensures that the truly most important POs are identified. However,
MKL still proves useful when the kernel feature space is not as easily accessible as is
the case with string kernels. MKL even in such cases aids interpretation of the learnt
SVM classifier.
We believe that our new MKL and POIM-based ranking and visualisation algorithms
are an easy to use yet very helpful analysis tool. They are freely available as part of the
SHOGUN toolbox (c.f. Section C). Finally, note that it seems possible to transfer the
underlying concept of POIMs to other kernels and feature spaces to aid understanding
of SVMs that are used for other biological tasks, which currently is the domain of MKL.

5 Accurate Signal and Content Sensors

With the generation of whole genome sequences, important insight into gene func-
tions and genetic variation has been gained over the last decades. As novel sequenc-
ing technologies are rapidly evolving, the way will be paved for cost efficient, high-
throughput whole genome sequencing, which is going to provide the community with
massive amounts of sequences. It is self-evident that the handling of this wealth of
data will require efficient and accurate computational methods for sequence analysis.
Among the various tools in computational genetic research, gene prediction remains
one of the most prominent tasks, as recent competitions have further emphasised (e.g.,
Bajic et al. (2006), Stein et al. (2007)). Accurate gene prediction is of prime impor-
tance for the creation and improvement of annotations of recently sequenced genomes
(Rätsch et al., 2007, Bernal et al., 2007). In the light of new data related to natu-
ral variation (e.g., Hinds et al. (2005), The International HapMap Consortium (2005),
Clark et al. (2007)), the importance of accurate computational gene finding gains in-
creasing importance since it helps to understand the effects of polymorphisms on the
gene products.
Ab initio gene prediction is a highly sophisticated procedure as it mimics – in its result
– the labour of several complex cellular machineries at a time: identification of the be-
ginning and the end of a gene, as is accomplished by RNA polymerases; splicing of the
nascent RNA, in the cell performed by the spliceosome; and eventually the detection of
an open reading frame, as does the ribosome. The success of a gene prediction method
therefore relies on the accuracy of each of these components. After a review of perfor-
mance measures in Section 5.1 and a brief description of the data generation process
(Section 5.2) we will discuss applications of support vector machines using the proposed
string kernels to improve the detections of the signal and content sensor components,
such as the detection of splice sites (Section 5.3) transcription starts (Section 5.4) and
to distinguish exons from introns. Finally, Section 5.5 summarises how string kernel
based SVMs can be used for a variety of signal and content sensors and gives some
general guidelines on how to approach such problems using string kernel SVMs. This
chapter is largely based on Sonnenburg et al. (2006b, 2007b), Schweikert et al. (2008).

5.1 Performance Measures

An important question in machine learning is the question of how to select the
“best” classifier. Given a sample x1, . . . ,xN ⊂ X , and a two-class classifier f(x) 7→
{−1, +1} with outputs outputs f(x1), . . . , f(xn) for x1, . . . ,xN and the true labeling
(y1, . . . , yN) ∈ {−1, +1}N , the N−sample is partitioned into four partitions,

1. the positively labelled and correctly positive predicted examples (true positives),

2. the positively labelled and wrongly negative predicted examples (false negatives),

3. the negatively labelled and correctly negative predicted examples (true negatives)
and

71

72

4. the negatively labelled and wrongly positive predicted examples (false positives).

The Contingency Table (see Table 5.1; sometimes also called confusion matrix) is a
way to summarise these four types of errors (Fawcett, 2003). Here TP, FN, FP, TN
denote the cardinality of the true positives et cetera on the N− sample. Using these

outputs\ labeling y = +1 y = −1 Σ

f(x) = +1 TP FP O+

f(x) = −1 FN TN O−

Σ N+ N− N

Table 5.1: The Contingency Table / Confusion Matrix. N denotes the sample size, N+ = FN + TP
and N− = FP + TN the number of positively and negatively labelled examples, O+ = TP + FP and
O− = FN + TN the number of positive and negative predictions and TP, FP, FN, TN are absolute
counts of true positives, false positives, false negatives and true negatives.

four scores, several performance measures can be defined, each of which is emphasising
a certain aspect of the data.

Name Computation

accuracy ACC = TP+TN
N

error rate (1-accuracy) ERR = FP+FN
N

balanced error rate BER = 1
2

(
FN

FN+TP
+ FP

FP+TN

)

weighted relative accuracy WRACC = TP
TP+FN

− FP
FP+TN

F1 score (harmonic mean between preci-
sion/recall)

F1 = 2∗TP
2∗TP+FP+FN

cross correlation coefficient CC = TP ·TN−FP ·FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

sensitivity/recall TPR = TP/N+ = TP
TP+FN

specificity TNR = TN/N− = TN
TN+FP

1-sensitivity FNR = FN/N+ = FN
FN+TP

1-specificity FPR = FP/N− = FP
FP+TN

positive predictive value / precision PPV = TP/O+ = TP
TP+FP

false discovery rate FDR = FP/O+ = FP
FP+TP

negative predictive value NPV = TN/O− = TN
TN+FN

negative false discovery rate FDR− = FN/O− = FN
FN+TN

Table 5.2: Several commonly used performance measures. N+ denotes the number of positive examples
and N− the number of negative examples in the N−sample. O+ and O− are the number of positively
and negatively predicted examples on the N−sample (cf. Table 5.1).

In machine learning, classically the accuracy (fraction of correctly classified examples
on a test set) or the test error (fraction of wrongly classified examples on a test set) is
used to compare the performance of classifiers. A variety of performance measures is
displayed in Table 5.2.

Comparison of Performance Measures While the accuracy and test error measures
work well on balanced datasets, i.e., datasets with a similar number of positively and
negatively labelled examples, they are not very meaningful for unbalanced datasets. For
example, on a 100 sample, with 95 negatively and 5 positively labelled examples the

5.1 Performance Measures 73

classifier f(x) = −1 will only have 5% test error. Furthermore, the cost of a false positive
and false negative may not be the same and thus one may want to adjust the bias of
the classifier to reflect that uneven cost model. To address these issues the concept of
the Receiver Operator Characteristic (ROC) Curve (e.g., Metz (1978), Fawcett (2003))
can be used. It is obtained by plotting the FPR against the TPR for different bias
values as displayed in Figure 5.1. The more to the top left a ROC curve is the better
performs its corresponding classifier. This way several classifiers can be compared in a
single figure for each (FPR,TPR) pair and the classifier outperforms its opponents that

0 0.2 0.4 0.6 0.8 1
0.01

0.1

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

ROC

proposed method
firstef
eponine
mcpromotor

proposed method

firstef

mcpromotor

eponine

0.0001 0.001 0.01 0.1 1
0.01

0.1

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

ROC

proposed method
firstef
eponine
mcpromotor

proposed method

firstef

mcpromotor

eponine

Figure 5.1: The Receiver Operator Characteristic (ROC) Curve. It is obtained using by varying the bias
and recording TPR and FPR values. Note that a ROC curve is independent of class skew (class ratio)
and is monotonely ascending. To put more emphasise on the region with low FPR, one may display a
log-log plot as is done in the right figure to zoom into that region. Figure taken from Sonnenburg et al.
(2006b).

achieves the highest TPR for a given FPR, where the FPR is chosen based on the cost
model. Plotting the true positive rate against the positive predictive value (also called
precision) PPV = TP/(FP +TP), i.e., the fraction of correct positive predictions among
all positively predicted examples, one obtains the Precision Recall Curve (PRC) (see
e.g., Davis and Goadrich (2006)). As evaluating a classifier based on one of the scalar

0 0.2 0.4 0.6 0.8 1

0.1

1

true positive rate

po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e

PPV

proposed method
firstef
eponine
mcpromotor

proposed method

firstef
eponine

mcpromotor

0.1 1
0.1

1

true positive rate

po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e

PPV

proposed method
firstef
eponine
mcpromotor

proposed method

firstef

eponine

mcpromotor

Figure 5.2: The Precision Recall Curve, is obtained by varying the bias and recording PPV and TPR.
It is dependent on class skew and may not be monotone. It therefore can be more meaningful for very
unbalanced datasets than the ROC curve. Figure taken from Sonnenburg et al. (2006b).

measures in Table 5.2 constitutes only a single point on the ROC or precision recall
curve, one should in practice (if possible) perform a comparison based on the full curves.
This way, the practitioner may choose the method, which outperforms its competitors for
threshold of interest. Nevertheless, although scalar performance measures (often) hide
the complexity of model selection, they are required to perform machine driven model

74

selection. Both curves allow for the definition of such practically relevant measures. To
define a scalar performance measure that asks a classifier to perform well (i.e., achieve
high true positive rate for ROC or high precision for PRC) over the whole range of
biases, one may use the area under the curve. We refer to these scalar measures as
auROC (for area under ROC) and auPRC, respectively. By definition, both measures
are independent of class bias and are thus more robust in contrast to the scalars in
Table 5.2. Note that the auROC has a statistical meaning and is in fact equivalent
to the Wilcoxon test of ranks (Fawcett, 2003): If one considers the output on the
N−sample as ranking, the area under the ROC curve is the number of swappings such
that output of positive examples is greater or equal the output of negative examples
divided by N+·N−. In contrast to the auROC the auPRC is dependent on class skew and
thus may be considered more appropriate for extremely unbalanced datasets as appear
in genomic sequence analysis tasks, e.g., splice or transcription start site prediction.
When performing human transcription start site (TSS) prediction, we have about 6
billion loci of which, even for optimistic guesses, less than 3 million base pairs, i.e., only
0.05%, belong to true TSS. Let us consider a transcription start site finder (TSF) that
correctly classifies 100% of the true TSS sites (TPR) while wrongly classifying 1% of
the non-TSS loci (FPR). The area under the ROC would score at least 99% suggesting
a particularly good classifier. However, if only 0.05% of the negative examples (which
in absolute values is 300 million) achieve a higher score than all of the positive examples
(3 million), the area under the Precision Recall Curve will be less than 1%.
For a reliably useful measure of prediction accuracy, one should thus resort to the
auPRC for very unbalanced data sets. A way to make the auROC more meaningful on
unbalanced datasets is to consider the auROCN - the area under the ROC curve up to
the first N false-positives (or N% FPR) (McClish, 1989, Gribskov and Robinson, 1996).
To summarise, for balanced datasets it may be sufficient to use standard test error,
accuracy or the auROC to compare competing classifiers in a (semi-)automatic model
selection. For unbalanced data sets the balanced error, F1, auPRC and the cross-
correlation coefficient may be more appropriate. Finally, for human judgement, the
ROC or precision recall curve obtained on a separate held out test set (putting emphasis
on the relevant region) should be used to display the final result.

5.2 Generating Training and Test Data Sets

While we postpone most of the details of the quite complex data generation procedures
to the appendix (cf. Appendix B), tuning the data generation process is as crucial as
the machine learning algorithms dealing with the data.1

Data Generation Procedure for Signal Detectors

One usually starts with a (partial) genome, available as FASTA2 file. In addition,
another database hinting at the locations of the signal is required.
For transcription start sites, this could be a database of transcription starts (dbTSS,
Suzuki et al. (2002)) or Cap-analysis gene expression (CAGE) tags (Kawaji et al., 2006)
that already contain the coordinates of all the signal-sites.

1In practice it is often very time demanding and little details turn out to be big issues later on.
Therefore, running sanity checks, trying to visualise and understand every single problem about
might turn out to be highly beneficial.

2http://www.ncbi.nlm.nih.gov/blast/fasta.shtml

http://www.ncbi.nlm.nih.gov/blast/fasta.shtml

5.2 Generating Training and Test Data Sets 75

For splice sites the picture is slightly more difficult: One first obtains full length com-
plementary DNA (cDNA) or expressed sequence tags (EST). cDNA is the complement
of fully spliced mRNA. ESTs are small pieces of mRNA normally of < 700 nucleotides
in length and obtained after only one round3 of sequencing (Burset et al., 2000). In
principle, the sequences are obtained outside the nucleus from cytoplasmic extracts.
Recall that the splicing process does happen in the nucleus. It is therefore almost cer-
tain that ESTs, being found outside the nucleus, were already processed, i.e., spliced.
As a result one can detect splice sites, by aligning ESTs or cDNAs to DNA. Since the
latter still contains introns, one can figure out the start of the intron (i.e., 5’ site) and
the end of the intron (3’ site). Note that given enough full length cDNAs (or even ESTs
employing an additional clustering step) the same procedure could be applied to obtain
transcription start and other sites.
For two-class classification problems, one is required to generate positively and nega-
tively labelled training examples. From the genomic DNA and the signal coordinates,
one can now extract windows around the signal, as is displayed for acceptor splice sites
in Figure 5.3.

0
CT...GTAGAG

25
C TGTACGTACGACGTACGTCAAGCT

49−50

AG GAGCGCAACGTACGTACGTCCAGT
75
AGAAGGT...G

100
A

Figure 5.3: A window around an acceptor splice site. A potentially extracted positive example is shown
framed. Figure taken from Sonnenburg (2002).

In this case, windows of length 50 (c.f. Figure 5.3) were extracted. To generate final
positively labelled examples, one has to specify the window size (how many nucleotides
up-and downstream of the signal) and decide what one has to do with duplicates (du-
plicates are more likely for smaller window sizes) and incomplete data (e.g., N’s).

0
CT...GTAGAGCTG

27
T ACGTACGACGTACGTCAAGCTAGG

52−53

AG CGCAACGTACGTACGTCCAGTAGA
78
AAGGT...G

100
A

Figure 5.4: Extraction of a 50 base-pair decoy window, by shifting the window 3 positions downstream
to the next occurrence of AG. All decoys are constructed such that AG is at positions 25− 26 too. Figure
taken from Sonnenburg (2002).

The construction of useful negatively labelled examples is more difficult: In the end
one wants windows of the same size that do not contain the signal of interest at the
exact same or a nearby position. The question is how one can be certain that a window
is “negative”? Unfortunately, this question cannot be answered in general and (often)
also not without further assumptions. For example, for acceptor splice sites one may
assume to have full EST or cDNA coverage and thus constructs negative examples by
extracting all windows of length 50 that seem to be canonical splice sites, i.e., contain
AG at positions 24− 25 from a fully EST or cDNA covered region (c.f. Figure 5.4).
When dealing with splice sites, the samples are aligned such that AG appears at the same
position in all samples, while each sample consists of a fixed number of bases around
the site.
For transcription starts, one may assume a complete coverage of CAGE tags and sam-
ple examples from the whole genome as negatives that are not in the vicinity of true

3Usually the pieces of DNA are sequenced more than once to get 99.99% accuracy. Furthermore, only
parts of a chromosomes can be sequenced. Thus, overlapping sequences must be aligned properly to
form a fully sequenced chromosome.

76

-1 AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG

+1 AAGATTAAAAAAAAACAAATTTTTAGCATTACAGATATAATAATCTAATT

-1 CACTCCCCAAATCAACGATATTTTAGTTCACTAACACATCCGTCTGTGCC

+1 TTAATTTCACTTCCACATACTTCCAGATCATCAATCTCCAAAACCAACAC

+1 TTGTTTTAATATTCAATTTTTTACAGTAAGTTGCCAATTCAATGTTCCAC

-1 CTGTATTCAATCAATATAATTTTCAGAAACCACACATCACAATCATTGAA

-1 TACCTAATTATGAAATTAAAATTCAGTGTGCTGATGGAAACGGAGAAGTC

Figure 5.5: An example that illustrates how splice site samples (yi,xi) are constructed. The left column
shows the labelling with +1 denoting a true splice site and -1 a decoy. The right colum denotes the
corresponding sequence, generated by taking windows of fixed width around the splice site (or decoy
site), while AG is aligned to be at the same position in all samples. In case of true splice sites, the
upstream part including the AG is intronic, while the rest is exonic.

transcription start sites. Alternatively, one could sample negative sites from the interior
of a gene (assuming to have full coverage within a gene).
But even if all of these issues have been solved, one needs to deal with duplicates
and overlapping sequences (between positive and negative examples and within the
same class). Furthermore, to generate a fair test data set one might want to remove
sequences that are too similar to the training sequences (e.g., sequences where a
blat alignment has > 30% overlap). Then, what should be done about alternative
sites (alternative splicing, transcription starts)? And the list of potential problems
goes on like this. While constructing the data set, one has to consciously think
about the assumptions used in each design decision. Finally, note that data gener-
ation is a moving target with new sequencing techniques becoming available all the time.

To perform the experiments in this thesis, we generated data sets of donor and acceptor
splice sites and transcription start sites from public genomic databases. The splicing
datasets were generated by extracting windows around true and decoy splice sites. This
was done by aligning EST and cDNA sequences to the genome. Assuming full EST
or cDNA coverage, negative examples were extracted from the interior of a gene (see
Appendix B.2 for further details). For transcription start sites we again extracted
windows around true and decoy sites. The true sites were obtained from dbTSS and
decoy sites again from the interior of the gene (Appendix B.3 contains further details).

5.3 Accurate Splice Site Recognition

In this section, we will focus on the improvement of signal sensors for the detection of
splice sites, as this sub-problem is a core element of any gene finder. A comprehensive
understanding of splice sites is not only a prerequisite for splice form prediction but can
also be of great value in localizing genes (Burge and Karlin, 1997, Reese et al., 1997,
Salzberg et al., 1998, Delcher et al., 1999, Pertea et al., 2001).

In eukaryotic genes, splice sites mark the boundaries between exons and introns
(cf. Section 1.1 for an introduction on that topic). The latter are excised from
premature mRNAs in a post-processing step after transcription. Both the donor sites
at the exon-intron junctions, and the acceptor sites at the intron-exon boundaries,
have quite strong consensus sequences, which can, however, vary significantly from one
organism to another. The vast majority of all splice sites are so-called canonical splice
sites, which are characterised by the presence of the dimers GT and AG for donor and

5.3 Accurate Splice Site Recognition 77

acceptor sites, respectively. The occurrence of the dimer is not sufficient for the splice
site. Indeed, it occurs very frequently at non-splice site positions. For example, in
human DNA, which is ≈ 6 · 109 nucleotides in size, GT can be found about 400 million
times (summed over both strands). For some crude estimate of say 2 · 104 genes with
20 exons each, only 0.1% of the consensus sites are true splice sites. We therefore
face two extremely unbalanced classification tasks, namely the discrimination between
true donor sites and decoy positions with the consensus dimer GT or GC (the only
non-canonical splice site dimer that we will consider) and the discrimination between
true acceptor sites and decoy positions with the consensus dimer AG.

Relation to Previous Work Although present-day splice site detectors (e.g., based
on Support Vector Machines, neural networks, hidden Markov models) are reported
to perform at a fairly good level (Reese et al., 1997, Rampone, 1998, Cai et al., 2000,
Rajapakse and Ho, 2005), several of the reported performance numbers should be in-
terpreted with caution, for several reasons. First of all, these results are based on small
and potentially biased data sets. Since many genomes have been fully sequenced, these
results will need to be re-evaluated. Second, issues in generating negative examples (de-
coys) were, if recognised, often not sufficiently documented. The choice of data sets, in
particular the decoys, can make a tremendous difference in the measured performance.
Third, often only the single site prediction of acceptor and donor sites is considered,
whereas the higher goal is to use the splice site predictor within a gene finder. It is
uncertain how good the predictors perform in this setting. Keeping these in mind, we
provide unbiased genome-wide splice site prediction, which enables further evaluation
in gene finders.
We will apply Support Vector Machines (SVMs) using the string kernels described in
Chapter 2 to the recognition of splice sites. In Sonnenburg et al. (2002), Sonnenburg
(2002) we demonstrated that SVMs using kernels from probabilistic hidden Markov
models (cf. Jaakkola and Haussler (1999), Tsuda et al. (2002a)) outperform hidden
Markov models alone. As this approach did not scale to many training examples,
we performed a comparison of different faster methods for splice site recognition
(Rätsch and Sonnenburg, 2004), where we considered Markov models and SVMs with
different kernels: the locality improved kernel, originally proposed for recognition of
translation initiation sites (Zien et al., 2000); the SVM-pairwise kernel, using align-
ment scores (Liao and Noble, 2002); the TOP kernel, making use of a probabilistic
model (cf. Jaakkola and Haussler (1999), Tsuda et al. (2002a)); the standard polyno-
mial kernel (Vapnik, 1995); and the weighted degree kernel (Rätsch and Sonnenburg,
2004, Rätsch et al., 2005) – all reviewed in Chapter 2.
Other groups also reported successful SVM based splice site detectors. In
Yamamura and Gotoh (2003) it was proposed to use linear SVMs on binary features
computed from di-nucleotides, an approach that also outperformed previous Markov
models. An even more accurate model called SpliceMachine (Degroeve et al., 2005a),
not only used positional information (one- to trimers) around the splice site, but also ex-
plicitly the compositional context using tri- to hexamers. To the best of our knowledge,
this approach is the current state-of-the art, outperforming previous SVM based ap-
proaches as well as GeneSplicer (Pertea et al., 2001) and GeneSplicerESE (Pertea et al.,
2007). In Zhang et al. (2006) linear SVMs were used on positional features that were
extracted from empirical estimates of unconditional positional probabilities. Note that
this approach is similar to our TOP kernel method on zeroth-order Markov chains

78

(Rätsch and Sonnenburg, 2004). Recently, Baten et al. (2006a) reported improved ac-
curacies for splice site prediction also by using SVMs. The method employed in
Baten et al. (2006a) is very similar to a kernel initially proposed in Zien et al. (2000)
(Salzberg kernel). The idea of this kernel is to use empirical estimates of conditional po-
sitional probabilities of the nucleotides around splice sites (estimated by Markov models
of first order), which are then used as input for classification by an SVM.
Many other methods have been proposed for splice site recognition. For instance, multi-
layer neural networks with Markovian probabilities as inputs (Rajapakse and Ho, 2005).
They train three Markov models on three segments of the input sequence, the upstream,
signal and downstream segments. Although they outperform Baten et al. (2006a) on
small datasets, the authors themselves write that the training of the neural networks is
especially slow when the number of true and decoy examples are imbalanced and that
they have to downsample the number of negatives for training even on small and short
sequence sets. Therefore, their method does not seem suitable for large-scale genome-
wide computations. Finally, Chen et al. (2005) proposed a method based on Bayesian
Networks, which models statistical dependencies between nucleotide positions.
In this work we will compare a few of our previously considered methods against these
approaches and show that the engineering of the kernel, the careful choice of features
and a sound model selection procedure are important for obtaining accurate predictions
of splice sites.

Our previous comparison in Rätsch and Sonnenburg (2004) was performed on a
relatively small data set derived from the C. elegans genome. In addition, the data
sets considered in Baten et al. (2006a) are relatively small (around 300,000 examples,
whereas more than 50,000,000 examples are nowadays readily available). In this study,
we therefore reevaluate the previous results on much larger data sets derived from the
genomes of five model organisms, namely Caenorhabditis elegans (“worm”), Arabidopsis
thaliana (“cress”), Drosophila melanogaster (“fly”), Danio rerio (“fish”), and Homo
sapiens (“human”). Building on our recent work on large scale learning (cf.Chapter
3), we now are able to train and evaluate Support Vector Machines on such large data
sets as is necessary for analyzing the whole human genome. In particular, we are able
to show that increasing the number of training examples indeed helps to obtain a
significantly improved performance, and thus will help to improve existing annotation
(see, e.g., Rätsch et al. (2007)). We train and evaluate SVMs on newly generated data
sets using nested cross-validation and provide genome-wide splice site predictions for
any occurring GT, GC and AG dimers. We will show that the methods in some cases
exhibit dramatic performance differences for the different data sets.

Organisation of the Section In the next sub-section we briefly describe the methods
to approach the splice site detection problem and the details of cross-validation and
model selection. All data sets in the pilot study have been obtained from the supple-
mentary material of the corresponding papers (cf. Appendix B.2.1). The data sets
for the genome-wide studies were generated according to the procedures described in
Section 5.2 and in very detail Appendix B.2.2. Finally, we present the outcomes of
(a) the comparison with the methods proposed in Baten et al. (2006a), Pertea et al.
(2001), Degroeve et al. (2005a), Chen et al. (2005) (Section 5.3.2), (b) an assessment
determining the window length that should be used for classification (Section 5.3.2) and,
finally, (c) a comparison of the large scale methods on the genome-wide data sets for

5.3 Accurate Splice Site Recognition 79

the five considered genomes (Section 5.3.3). After discussing our results, we also revisit
the question about the interpretability of SVMs.

5.3.1 Model Selection and Evaluation

We use posterior log-odds of inhomogeneous Markov chains (cf. Section 1.2) and Support
Vector Machines with the Locality Improved kernel (cf. Section 2.2), the Weighted
Degree and Weighted Degree kernel with shifts (cf. Section 2.3) to detect the splicing
signal. To be able to apply SVMs, we have to find the optimal soft margin parameter C
(Schölkopf and Smola, 2002) and the kernel parameters. These are: For the LI-kernel,
the degree d and window size l; for the WD kernel, the degree d; and for the WDS
kernel, the degree d and the shift parameter σ (see Chapter 2 for details). For MCs,
we have to determine the order d of the Markov chain and the pseudocounts for the
models of positive and the negative examples (see the posterior log-odds section). To
tune these parameters, we perform the cross-validation procedures described below.

NN269 and DGSplicer For the pilot study, we are learning acceptor and donor splice
site detectors on the NN269 and the DGSplicer data sets originating from Reese et al.
(1997) and Baten et al. (2006a) and described in detail in Appendix B.2.1. The training
and model selection of our methods for each of the four tasks was done separately by
partial 10-fold cross-validation on the training data. For this, the training sets for each
task are divided into 10 equally-sized data splits, each containing the same number
of splice sequences and the same proportion of true versus decoy sequences. For each
parameter combination, we use only 3 out of the 10 folds, that is we train 3 times
by using 9 out of the 10 training data splits and evaluate on the remaining training
data split. Since the data is highly unbalanced, we choose the model with the highest
average auPRC score on the three evaluation sets. This best model is then trained
on the complete training data set. The final evaluation is done on the corresponding
independent test sets (the same as in Baten et al. (2006a)). Appendix B.5 includes
tables with all parameter combinations used in model selection for each task and the
selected model parameters.

Worm, Fly, Cress, Fish, and Human The training and model selection of our methods
for the five organisms on the acceptor and donor recognition tasks was done separately
by 5-fold cross-validation. The optimal parameter was chosen by selecting the parameter
combination that maximised the auPRC score. This model selection method was nested
within 5-fold cross-validation for final evaluation of the performance. The reported
auROC and auPRC are averaged scores over the five cross-validation splits. In Appendix
B.5 the optimal parameter settings for each task are listed. All splits were based on the
clusters derived from EST and cDNA alignments, such that different splits come from
random draws of the genome.
In the following subsection, we discuss experimental results obtained with our methods
for acceptor and donor splice site predictions for the five considered organisms.
As discussed in Section 5.1, we measure our prediction accuracy in terms of area under
the Receiver Operator Characteristic Curve (auROC) (Metz, 1978, Fawcett, 2003) and
area under the Precision Recall Curve (auPRC) (e.g., (Davis and Goadrich, 2006)). The
auPRC is a better measure for performance, if the class distribution is very unbalanced.
However, it does depend on the class priors on the test set and hence is affected by sub-
sampling the decoys, as happened with the data sets used in previous studies (NN269
in Baten et al. (2006a) contains about 4 times more decoy than true sites, DGSplicer

80

in Baten et al. (2006a), Chen et al. (2005) about 140 times more; in contrast, in the
genome scenario the ratio is one to 300 − 1000). To compare the results among the
different data sets with different class sizes, we therefore also provide the auROC score
that is not affected by sub-sampling.

5.3.2 Pilot Studies

Performance on the NN269 and DGSplicer Data Sets For the comparison of our
SVM classifiers to the approaches proposed in Baten et al. (2006a), Chen et al. (2005),
we first measure the performance of our methods on the four tasks used in Baten et al.
(2006a) (cf. Appendix B.2.2). The approach in Baten et al. (2006a) is outperformed
by a neural network approach proposed in Rajapakse and Ho (2005). However, we
do not compare our methods to the latter method, since it already reaches its com-
putational limits for the small datasets with only a few thousand short sequences
(cf. Rajapakse and Ho (2005), page 138) and hence is not suitable for large-scale
genome-wide computations. On each task we trained SVMs with the weighted degree
kernel (WD) (Rätsch and Sonnenburg, 2004), and the weighted degree kernel with shifts
(WDS) (Rätsch et al., 2005). On the NN269 Acceptor and Donor sets we additionally
trained an SVM using the locality improved kernel (LIK) (Zien et al., 2000); as it gives
the weakest prediction performance and is computationally most expensive we exclude
this model from the following investigations. As a benchmark method, we also train
higher-order Markov Chains (MCs) (e.g., Durbin et al. (1998)) of “linear” structure and
predict with the posterior log-odds ratio (cf. Section 1.2). Note that Position Specific
Scoring Matrices (PSSM) are recovered as the special case of zeroth-order MCs. A sum-
mary of our results showing the auROC and auPRC scores is displayed in Table 5.3. We

MC EBN MC-SVM LIK WD WDS

NN269
Acceptor
auROC 96.78 - 96.74† 98.19 98.16 98.65
auPRC 88.41 - 88.33† 92.48 92.53 94.36
Donor
auROC 98.18 - 97.64† 98.04 98.50 98.13
auPRC 92.42 - 89.57† 92.65 92.86 92.47

DGSplicer
Acceptor
auROC 97.23 95.91∗ 95.35∗ - 97.50 97.28
auPRC 30.59 - - - 32.08 28.58
Donor
auROC 98.34 96.88∗ 95.08∗ - 97.84 97.47
auPRC 41.72 - - - 39.72 35.59

Table 5.3: Performance evaluation (auROC and auPRC scores) of six different methods on the NN269
and DGSplicer Acceptor and Donor test sets (for further details on the data sets see Appendix B.2.2).
MC denotes prediction with a Markov Chain, EBN the method proposed in Chen et al. (2005), and
MC-SVM the SVM based method described in Baten et al. (2006a) (similar to Zien et al. (2000)). The
remaining methods are based on SVMs using the locality improved kernel (LIK) (Zien et al., 2000),
weighted degree kernel (WD) (Rätsch and Sonnenburg, 2004) and weighted degree kernel with shifts
(WDS) (Rätsch et al., 2005). The values marked with an asterisk were estimated from the figures
provided in Baten et al. (2006a). The values marked with † are from personal communication with the
authors of Baten et al. (2006a). Table taken from Sonnenburg et al. (2007b).

5.3 Accurate Splice Site Recognition 81

first note that the simple MCs perform already fairly well in comparison to the SVM
methods. Surprisingly, we find that the MC-SVM proposed in Baten et al. (2006a) per-
forms worse than the MCs. (We have reevaluated the results in Baten et al. (2006a)
with the code provided by the authors and found that the stated false positive rate of
their method is wrong by a factor of 10. We have contacted the authors for clarification
and they published an erratum (Baten et al., 2006b). The results for MC-SVMs given
in Table 5.3 are based on the corrected performance measurement.) As anticipated,
for the two acceptor recognition tasks, EBN and MCs are outperformed by all kernel
models that are performing all at a similar level. However, we were intrigued to observe
that for the DGSplicer Donor recognition task, the MC based predictions outperform
the kernel methods. For NN269 Donor recognition, their performance is similar to the
performance of the kernel methods.
There are at least two possible explanations for the strong performance of the MCs.
First, the DGSplicer data set has been derived from the genome annotation, which
in turn might have been obtained using a MC based gene finder. Hence, the test set
may contain false predictions easier reproduced by a MC. Second, the window size for
the DGSplicer Donor recognition task is very short and has been tuned in Chen et al.
(2005) to maximise the performance of their method (EBN) and might be suboptimal
for SVMs. We investigated these hypotheses with two experiments:

• In the first experiment, we shortened the length of the sequences in DGSplicer
Acceptor from 36 to 18 (with consensus AG at 8,9). We retrained the MC and WD
models doing a full model selection on the shortened training data. We observe
that on the shortened data set the prediction performance drops drastically for
both MC and WD (by 60% relative) and that, indeed, the MC outperforms the
WD method (to 12.9% and 9% auPRC, respectively).

• In a second experiment, we started with a subset of our new data sets generated
from the genomes of worm and human that only uses EST or cDNA confirmed
splice sites (see Appendix B.2.2). In the training data, we used the same number of
true and decoy donor sites as in the DGSplicer data set. For the test data, we used
the original class ratios (to allow a direct comparison to following experiments;
cf. Table 5.4). Training and testing sequences were shortened from 218nt in steps
of 10nt down to 18nt (the same as in the DGSplicer donor data set). We then
trained and tested MCs and WD-SVMs for the sets of sequences of different length.
Figure 5.6 shows the resulting values for the auPRC on the test data for different
sequence lengths. For short sequences, the prediction accuracies of MCs and
SVMs are close for both organisms. For human donor sequences of length 18,
MCs indeed outperform SVMs. With increasing sequence length, however, the
auPRC of SVMs rapidly improves while it degrades for MCs. Recall that the
short sequence length in the DGSplicer data was tuned through model selection
for EBN, and thus the performance of the EBN method will degrade for longer
sequences (Chen et al., 2005), so that we can safely infer that our methods would
also outperform EBN for longer training sequences.

The results do not support our first hypothesis that the test data sets are enriched
with MC predictions. However, the results confirm our second hypothesis that the poor
performance of the kernel methods on the NN269 and DGSplicer donor tasks is due to
the shortness of sequences. We also conclude that discriminative information between
true and decoy donor sequences lies not only in the close vicinity of the splice site but
also further away (see also the illustrations using POIMs in Section 5.3.4. Therefore,

82

Worm Fly Cress Fish Human
Acceptor Donor Acceptor Donor Acceptor Donor Acceptor Donor Acceptor Donor

Training total 1,105,886 1,744,733 1,289,427 2,484,854 1,340,260 2,033,863 3,541,087 6,017,854 6,635,123 9,262,241
Fraction positives 3.6% 2.3% 1.4% 0.7% 3.6% 2.3% 2.4% 1.5% 1.5% 1.1%

Evaluation total 371,897 588,088 425,287 820,172 448,924 680,998 3,892,454 6,638,038 10,820,985 15,201,348
Fraction positives 3.6% 2.3% 1.4% 0.7% 3.6% 2.3% 0.7% 0.4% 0.3% 0.2%

Testing total 364,967 578621 441,686 851,539 445,585 673,732 3,998,521 6,822,472 11,011,875 15,369,748
Fraction positives 3.6% 2.3% 1.4% 0.7% 3.5% 2.3% 0.7% 0.4% 0.3% 0.2%

Table 5.4: Characteristics of the genome-wide data sets containing true and decoy acceptor and donor
splice sites for our five model organisms. The sequence length in all sets is 141nt, for acceptor splice
sequences the consensus dimer AG is at position 61, for donor GT/GC at position 81. The negative
examples in training sets of fish and human were sub-sampled by a factor of three and five, respectively.
Table taken from Sonnenburg et al. (2007b).

0 50 100 150 200 250
50

60

70

80

90

100

Splice Sequence Length

au
P

R
C

 (
%

)

Worm Donor Recognition

PSSM
WD

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

Splice Sequence Length

au
P

R
C

 (
%

)

Human Donor Recognition

PSSM
WD

Figure 5.6: Comparison of classification performance of the weighted degree kernel based SVM classifier
(WD) with the Markov chain based classifier (MC) on a subset of our C. elegans Donor and Human

Donor data sets for sequences of varying length. For each length, we performed a full model selection
on the training data in order to choose the best model. The performance on the test sets, measured
through area under the Precision Recall Curve (auPRC), is displayed in percent. Figure taken from
Sonnenburg et al. (2007b).

the careful choice of features is crucial for building accurate splice site detectors and
if an appropriate window size is chosen, the WD kernel based SVM classifiers easily
outperform previously proposed methods.

Comparison with SpliceMachine for Cress and Human In this section we compare
SpliceMachine (Degroeve et al., 2005a) with the WD kernel based SVMs. SpliceMa-
chine (Degroeve et al., 2005b) is the current state-of-the art splice site detector. It is
based on a linear SVM and outperforms the freely available GeneSplicer (GeneSplicer,
Pertea et al., 2001) by a large margin (Degroeve et al., 2005a). We therefore perform
an extended comparison of our methods to SpliceMachine on subsets of the genome-
wide datasets (cf. Appendix B.2.2). One fifth and one twenty-fifth of the data set was
used each for training and for independent testing for cress and human, respectively.
We downloaded the SpliceMachine feature extractor (Degroeve et al., 2004) to generate
train and test data sets. Similar to the WD kernel, SpliceMachine makes use of posi-
tional information around the splice site. As it explicitly extracts these features, it is
however limited to a low order context (small d). In addition, SpliceMachine explic-
itly models coding-frame specific compositional context using tri- to hexamers. Note
that this compositional information is also available to a gene finding system for which

5.3 Accurate Splice Site Recognition 83

we are targeting our splicing detector. Therefore, to avoid redundancy, compositional
information should ideally not be used to detect the splicing signal. Nevertheless, for
comparative evaluation of the potential of our method, we augment our WD kernel
based methods with 6 spectrum kernels (cf. Section 2.1) (order 3, 4, 5, each up- and
downstream of splice site) and use the same large window sizes as were found out to be
optimal in Degroeve et al. (2005a). For cress acceptor [−85, +86], donor [−87, +124],
and for human acceptor [−105, +146], donor [−107, +104]. For the WD kernel based
SVMs, we fixed the model parameters C = 1 and d = 22, and for WDS we additionally
fixed the shift parameter σ = 0.5. For the SpliceMachine we performed an exten-
sive model selection and found C = 10−3 to be consistently optimal .We trained with
C ∈ {100, 10−1, 10−2, 10−3, 5 · 10−4, 10−4, 10−5, 10−6, 10−7, 10−8}. Using these parame-
ter settings we trained SVMs a) on the SpliceMachine features (SM), b) using the WD
kernel (WD) c) using the WD kernel augmented by the 6 spectrum kernels (WDSP) d)
using the WDS kernel (WDS) and e) using the WDS and spectrum kernels (WDSSP).
Table 5.5 shows the area under the ROC and precision recall curve obtained in this com-

SM WD WDSP WDS WDSSP

Cress

Acceptor
99.41 98.97 99.36 99.43 99.43 auROC

91.76 84.24 90.64 92.01 92.09 auPRC

Donor
99.59 99.38 99.58 99.61 99.61 auROC

93.34 88.62 93.42 93.68 93.87 auPRC

Human

Acceptor
97.72 97.34 97.71 97.73 97.82 auROC

50.39 42.77 50.48 51.78 54.12 auPRC

Donor
98.44 98.36 98.36 98.51 98.37 auROC

53.29 46.53 54.06 53.08 54.69 auPRC

Table 5.5: Performance evaluation (auROC and auPRC scores) of four different methods on a subset
of the genome-wide cress and human datasets. The methods compared are SpliceMachine (SM), the
weighted degree kernel (WD), the weighted degree kernel complemented with six spectrum kernels
(WDSP), the weighted degree kernel with shifts (WDS), and the weighted degree kernel with shifts
complemented by six spectrum kernels (WDSSP). Table taken from Sonnenburg et al. (2007b).

parison. Note that SpliceMachine always outperforms the WD kernel, but is in most
cases inferior to the WDS kernel. Furthermore, complementing the WD kernels with
spectrum kernels (methods WDSP and WDSSP) always improves precision beyond that
of SpliceMachine. As this work is targeted at producing a splicing signal detector to be
used in a gene finder, we will omit compositional information in the following genome-
wide evaluations. To be fair, one can note that a WDS kernel using a very large shift is
able to capture compositional information, and the same holds to some extent for the
WD kernel when it has seen many training examples. It is therefore impossible to draw
strong conclusions on whether window size and (ab)use of compositional features will
prove beneficial when the splice site predictor is used as a module in a gene finder.

Performance for Varying Data Size Figure 5.7 shows the prediction performance in
terms of the auROC and auPRC of SVMs using the MC and the WD kernel on the
human acceptor and donor splice data that we generated for this work (see Appendix
B.2.2) for varying training set sizes. For training, we use up to 80% of all examples and
the remaining examples for testing. MCs and SVMs were trained on sets of size varying
between 1000 and 8.5 million examples. Here we sub-sampled the negative examples by
a factor of five. We observe that the performance steadily increases when using more

84

data for training. For SVMs, over a wide range, the auPRC increases by about 5%
(absolute) when the amount of data is multiplied by a factor of 2.7. In the last step,
when increasing from 3.3 million to 8.5 million examples, the gain is slightly smaller
(3.2 − 3.5%), indicating the start of a plateau. Similarly, MCs improve with growing
training set sizes. As MCs are computationally a lot less demanding, we performed
a full model selection over the model order and pseudo counts for each training set
size. For the WD-SVM, the parameters were fixed to the ones found optimal in the
Section 5.3.3. Nevertheless, MCs did constantly perform inferior to WD-SVMs. We
may conclude that one should train using all available data to obtain the best results.
If this is infeasible, then we suggest to only sub-sample the negatives examples in the
training set, until training becomes computationally tractable. The class distribution
in the test set, however, should never be changed unless explicitly taken into account in
evaluation.

10
3

10
4

10
5

10
6

10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of training examples

A
re

a
un

de
r

th
e

pr
ec

is
io

n
re

ca
ll

cu
rv

e

SVM acceptor
SVM donor
MC acceptor
MC donor

10
3

10
4

10
5

10
6

10
7

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of training examples

A
re

a
un

de
r

th
e

re
ce

iv
er

 o
pe

ra
to

r
cu

rv
e

SVM acceptor
SVM donor
MC acceptor
MC donor

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of training examples

C
P

U
 ti

m
e

in
 s

ec
on

ds
 r

eq
ui

re
d

fo
r

tr
ai

ni
ng

SVM acceptor
SVM donor
MC acceptor
MC donor

Figure 5.7: Comparison of the classification performance of the weighted degree kernel based SVM
classifier (SVM) with the Markov chain based classifier (MC) for different training set sizes. The
area under the Precision Recall Curve (auPRC; left) and the area under the Receiver Operator Curve
(auROC; middle) are displayed in percent. On the right, the CPU time in seconds needed to train the
models is shown. Figure taken from Sonnenburg et al. (2007b).

5.3.3 Results on Genome-Wide Data Sets

Based on our preliminary studies, we now proceeded to design and train the genome-
wide predictors. We first generated new genome-wide data sets for our five model
organisms: worm, fly, cress, fish, and human. As our large-scale learning methods
allow us to use millions of training examples, we included all available EST information
from the commonly used databases. Since the reliability of the true and decoy splice
sequences is crucial for a successful training and tuning, these data sets were produced
with particular care; the details can be found in Appendix B.2.2). We arrived at training
data sets of considerable size containing sequences of sufficient length (see Table 5.4).
For fish and human the training datasets were sub-sampled to include only 1/3 and 1/5
of the negative examples, leading to a maximal training set size of 9 million sequences
for human donor sites. For a subsequent use in a gene finder system we aimed at
producing unbiased predictions for all candidate splice sites, i.e., for all occurrences of
the GT/GC and AG consensus dimer. For a proper model selection, and to obtain unbiased
predictions on the whole genome we employed nested five-fold cross-validation. The
results summarised in Table 5.6 are averaged values with standard deviation over the five
different test partitions. Confirming our evaluations in the pilot studies, kernel methods

5.3 Accurate Splice Site Recognition 85

Figure 5.8: Precision Recall Curve for the three methods MC, WD, WDS estimated on the genome-wide
data sets for worm, fly, cress, fish, and human in a nested cross-validation scheme. In contrast to the
ROC the random guess in this plot corresponds to a horizontal line, that depends on the fraction of
positive examples in the test set (e.g., 2% and 3% for worm acceptor and donor data sets, respectively).
Figure taken from Sonnenburg et al. (2007b).

86

outperform the MC methods in all eight classification tasks. Figure 5.8 displays the
precision recall curves for all five organisms comparatively, Table 5.6 the corresponding
auPRC scores. For worm, fly and cress the improvement in the performance accuracy for
the SVM in comparison to MC lies in a similar range of 4-10% (absolute), both for donor
and for acceptor tasks. However, for fish, and especially for human the performance
gain is considerable higher. For human, MCs only achieve 16% and 25% auPRC scores,
whereas WDS reaches 54% and 57% for acceptor and donor recognition, respectively.
The severe decrease in performance from worm to human for all classification methods
in the auPRC score can partially be explained by the different fractions of positive
examples observed in the test set. However, a weaker decline can also be observed in
the auROC scores (also Table 5.6), which are independent of the class skew (e.g., for
acceptor sites from 99.6% on worm to 96.0% on human for MC, and from 99.8% to 97.9%
for WDS). The classification task on the human genome seems to be a considerably more
difficult problem than the same one on the worm genome. We may speculate that this
can be partially explained by a higher incidence of alternative splicing in the human
genome. These sites usually exhibit weaker consensus sequences and are therefore more
difficult to detect. Additionally, they often lead to mislabelled examples in the training
and testing sets. Finally, it might also be due to the used protocol for aligning the
sequences, which may generate more false splice sites in human than in other organisms.

5.3.4 Understanding the Learned Classifier

One of the problems with kernel methods compared to probabilistic methods, such as
Position Specific Scoring Matrices (Gribskov et al., 1987) or Interpolated Markov Mod-
els (Delcher et al., 1999), is that the resulting decision function is hard to interpret
and, hence, difficult to use to extract relevant biological knowledge from it (see also
Kuang et al. (2004), Zhang et al. (2003, 2005)). Here, we propose to use positional
oligomer importance matrices (cf. Section 4.2 and Sonnenburg et al. (2008)) based on
zeroth order Markov chains as background models. We obtain POIM tables (cf. Table
5.7) and a graphical representation from which it is possible to judge where in the se-
quence substrings of a certain length are of importance. We plotted differential POIMs
(cf. Section 4.2) corresponding to our trained models for the organisms and donor and
acceptor site comparatively in Figure 5.9 and 5.10 and POIM weight mass (cf. Section
4.2) in Figure 5.11 and 5.12. Differential POIMs show the importance of substrings of a
certain length for each position in the classified sequences. We can make a few interest-
ing observations. For all organisms, the donor splicing signal is strongly concentrated
around the first eight nucleotides of the intron and well conserved over the particular

Worm Fly Cress Fish Human
Acc Don Acc Don Acc Don Acc Don Acc Don

MC
auROC(%) 99.62±0.03 99.55±0.02 98.78±0.10 99.12±0.05 99.12±0.03 99.44±0.02 98.98±0.03 99.19±0.05 96.03±0.09 97.78±0.05
auPRC(%) 92.09±0.28 89.98±0.20 80.27±0.76 78.47±0.63 87.43±0.28 88.23±0.34 63.59±0.72 62.91±0.57 16.20±0.22 24.98±0.30

WD
auROC(%) 99.77±0.02 99.82±0.01 99.02±0.09 99.49±0.05 99.37±0.02 99.66±0.02 99.36±0.04 99.60±0.04 97.76±0.06 98.59±0.05
auPRC(%) 95.20±0.29 95.34±0.10 84.80±0.35 86.42±0.60 91.06±0.15 92.21±0.17 85.33±0.38 85.80±0.46 52.07±0.33 54.62±0.54

WDS
auROC(%) 99.80±0.02 99.82±0.01 99.12±0.09 99.51±0.05 99.43±0.02 99.68±0.02 99.38±0.04 99.61±0.04 97.86±0.05 98.63±0.05
auPRC(%) 95.89±0.26 95.34±0.10 86.67±0.35 87.47±0.54 92.16±0.17 92.88±0.15 86.58±0.33 86.94±0.44 54.42±0.38 56.54±0.57

Table 5.6: Performance evaluation on the genome-wide data sets for worm, fly, cress, fish, and human.
Displayed are auROC and auPRC scores for acceptor and donor recognition tasks as archived by the
MC method and two support vector machine approaches, one with the weighted degree kernel (WD) and
one with the weighted degree kernel with shifts (WDS). Table taken from Sonnenburg et al. (2007b).

5.3 Accurate Splice Site Recognition 87

Donor Acceptor Branch Point

Worm

AGGTAAGT +01 + TTTTTCAG -06 + TAATAAT -18 +
GGTAAGTT +02 + ATTTTCAG -06 + GGGGGGG -19 -
CAGGTAAG +00 + TATTTCAG -06 + ATAATAA -19 +
AGGTGAGT +01 + AATTTCAG -06 + TTAATAA -18 +
AAGGTAAG +00 + CTTTTCAG -06 + GCGGGGG -19 -

Fly

AGGTAAGT +01 + CTTTGCAG -06 + TAACTAAT -23 +
GGTAAGTA +02 + TTTTACAG -06 + GGGGGGGG -22 -
GGTAAGTT +02 + TTTTGCAG -06 + CTAATAAT -23 +
CAGGTAAG +00 + TTTTTCAG -06 + TAATTAAT -23 +
AAGGTAAG +00 + TCTTGCAG -06 + GGGAGGGG -22 -

Cress

AGGTAAGT +01 + TTTTGCAG -06 + TAACTAAT -26 +
CAGGTAAG +00 + TTGTGCAG -06 + TAACTAAC -26 +
AAGGTAAG +00 + TATTGCAG -06 + CTAACTAA -27 +
GGTAAGTA +02 + TCTTGCAG -06 + TTAACTAA -27 +
GGTAAGTT +02 + TGTTGCAG -06 + TAATTTTT -22 +

Fish

AGGTAAGT +01 + AGAAGGAG -06 - GGGGGGGG -25 -
GGTAAGTA +02 + AGGCAGAG -06 - GGGGGGAG -24 -
CAGGTAAG +00 + AGAGAGAG -06 - GGGGGAGG -23 -
AAGGTAAG +00 + AGCAGGAG -06 - GGGGGCAG -22 -
AGGTGAGT +01 + AGGAGGAG -06 - GGGGAGGG -22 -

Human

AGGTAAGT +01 + TTTTGCAG -06 + TAACTTTT -22 +
GGTAAGTA +02 + TTTTGCAG -06 + TAACTAAC -27 +
CAGGTAAG +00 + TTTTACAG -06 + TAACTAAT -27 +
AAGGTAAG +00 + TTTTTCAG -06 + TAATTTTT -22 +
GTAAGTAT +03 + TCTTGCAG -06 + CTAACTTT -23 +

Table 5.7: POIM ranking tables for the donor and acceptor splice site and the branch point. Only the
in absolute value top ranking 5 k−mers are shown as (motif, location, ±). A “+” denotes a typical, a
“-” denotes an atypical motif.

organisms. For all organisms the highest ranking motif in the POIM tables (cf. Table
5.7) is GTAGGTAAGT matching prior findings (Burset et al., 2000). In addition, the SVM
seems to distribute its weights almost entirely around the splice site. Around the splice
site, the POIM weight mass figures have a very similar shape (cf. Figure 5.11). One only
finds small differences in the intron: For cress, there seems to be another signal around
10-20nt downstream of the donor: The POIM tables uncover that G rich motifs have a
silencing effect and T rich motifs an enhancing effect in this region (table not shown).
For worm there is another rather strong signal about 40-50nt downstream of the donor
and 40-50 nt upstream of the acceptor splice sites. These two signals are related to each
other, since introns in C. elegans are often only 50nt long one might suspect to find
the corresponding acceptor and donor splice site in the POIM tables. And indeed, one
recovers TTTTCAGA as the highest scoring 8-mer in the donor POIM table, which per-
fectly matches the known acceptor splicing consensus (Zhang and Blumenthal, 1996).
The picture is different for the acceptor splice site (see Figure 5.10 and 5.12). While the
strongest acceptor splicing signal is again located in the last bases of the intron, it is only
peaked strongly for C. elegans but smeared over about 17bp for human. However, the
highest ranking motifs in the POIM tables (cf. Table 5.7) at the acceptor splice site are
very similar: Worm TTTTTCAG, Fly CTTTGCAG, Cress TTTTGCAG, Fish TTTTGCAG,
Human TTTTGCAG.

88

Differential POIM Overview − Worm Donor Splice Site

Position

k−
m

er
 L

en
gt

h

−70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50

8

7

6

5

4

3

2

1

Differential POIM Overview − Fly Donor Splice Site

Position

k−
m

er
 L

en
gt

h

−70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50

8

7

6

5

4

3

2

1

Differential POIM Overview − Cress Donor Splice Site

Position

k−
m

er
 L

en
gt

h

−70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50

8

7

6

5

4

3

2

1

Differential POIM Overview − Fish Donor Splice Site

Position

k−
m

er
 L

en
gt

h

−70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50

8

7

6

5

4

3

2

1

Differential POIM Overview − Human Donor Splice Site

Position

k−
m

er
 L

en
gt

h

−70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50

8

7

6

5

4

3

2

1

Figure 5.9: Differential POIMs comparatively for worm, fly, cress, fish, and human for the Donor Splice
Site. They depict the importance of k-mers lengths of order up to length 8 to the decision of the
trained kernel classifiers. Red values are highest contributions, blue lowest. Position 1 denotes the
splice site and the start of the consensus dimer. To enhance contrast the log-transformation D̃(p, j) =
log(D(p, j) + maxp,j D(p, j) − minp,j D(p, j)) was applied.

5.3 Accurate Splice Site Recognition 89

Differential POIM Overview − Worm Acceptor Splice Site

Position

k−
m

er
 L

en
gt

h

−50 −40 −30 −20 −10 0 10 20 30 40 50 60 70

8

7

6

5

4

3

2

1

Differential POIM Overview − Fly Acceptor Splice Site

Position

k−
m

er
 L

en
gt

h

−50 −40 −30 −20 −10 0 10 20 30 40 50 60 70

8

7

6

5

4

3

2

1

Differential POIM Overview − Cress Acceptor Splice Site

Position

k−
m

er
 L

en
gt

h

−50 −40 −30 −20 −10 0 10 20 30 40 50 60 70

8

7

6

5

4

3

2

1

Differential POIM Overview − Fish Acceptor Splice Site

Position

k−
m

er
 L

en
gt

h

−50 −40 −30 −20 −10 0 10 20 30 40 50 60 70

8

7

6

5

4

3

2

1

Differential POIM Overview − Human Acceptor Splice Site

Position

k−
m

er
 L

en
gt

h

−50 −40 −30 −20 −10 0 10 20 30 40 50 60 70

8

7

6

5

4

3

2

1

Figure 5.10: Differential POIMs comparatively for worm, fly, cress, fish, and human for the Acceptor
Splice Site. They depict the importance of k-mers lengths of up to length 8 to the decision of the
trained kernel classifiers. Red values are highest contributions, blue lowest. Position 1 denotes the
splice site and the start of the consensus dimer. To enhance contrast the log-transformation D̃(p, j) =
log(D(p, j) + maxp,j D(p, j) − minp,j D(p, j)) was applied.

90

−70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50

20

40

60

80

100
POIM Weight Mass − Worm Donor Splice Site

W
ei

gh
t M

as
s

Position

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

−70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50

20

40

60

80

100
POIM Weight Mass − Fly Donor Splice Site

W
ei

gh
t M

as
s

Position

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

−70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50

20

40

60

80

100
POIM Weight Mass − Cress Donor Splice Site

W
ei

gh
t M

as
s

Position

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

−70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50

20

40

60

80

100
POIM Weight Mass − Fish Donor Splice Site

W
ei

gh
t M

as
s

Position

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

−70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50

20

40

60

80

100
POIM Weight Mass − Human Donor Splice Site

W
ei

gh
t M

as
s

Position

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

Figure 5.11: Weight Mass comparatively for worm, fly, cress, fish, and human for the Donor Splice Site.
They depict the importance all k-mers up to order 8 to the decision of the trained kernel classifiers.
Red values are highest contributions, blue lowest. Position 1 denotes the splice site and the start of the
consensus dimer.

5.3 Accurate Splice Site Recognition 91

−50 −40 −30 −20 −10 0 10 20 30 40 50 60 70

20

40

60

80

100
POIM Weight Mass − Worm Acceptor Splice Site

W
ei

gh
t M

as
s

Position

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

−50 −40 −30 −20 −10 0 10 20 30 40 50 60 70

20

40

60

80

100
POIM Weight Mass − Fly Acceptor Splice Site

W
ei

gh
t M

as
s

Position

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

−50 −40 −30 −20 −10 0 10 20 30 40 50 60 70

20

40

60

80

100
POIM Weight Mass − Cress Acceptor Splice Site

W
ei

gh
t M

as
s

Position

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

−50 −40 −30 −20 −10 0 10 20 30 40 50 60 70

20

40

60

80

100
POIM Weight Mass − Fish Acceptor Splice Site

W
ei

gh
t M

as
s

Position

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

−50 −40 −30 −20 −10 0 10 20 30 40 50 60 70

20

40

60

80

100
POIM Weight Mass − Human Acceptor Splice Site

W
ei

gh
t M

as
s

Position

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

Figure 5.12: Weight Mass comparatively for worm, fly, cress, fish, and human for the Acceptor Splice
Site. They depict the importance all k-mers up to order 8 to the decision of the trained kernel classifiers.
Red values are highest contributions, blue lowest. Position 1 denotes the splice site and the start of the
consensus dimer.

92

Additionally, we find the region 22-40nt upstream of the acceptor splice site of impor-
tance, which is very likely related to the branch point. In human it is typically located
21-34nt upstream and exhibits the consensus {C,T}T{A,C,G,T}A{C,T} (Gao et al.,
2008), which matches the highest ranking motifs extracted from the POIM tables for
human, cress and fly, which all contain TAAT or TAAC. In worms, the branch point
consensus seems shorter (3-4nt) (we again find TAAT in the POIM tables) – confirming
previous reports that the branch point is much weaker in worms. In addition, it is
located less than 20nt upstream of the splice site. In fish we did not observe the branch
point, but G rich motifs with a strong silencing effect. Finally, note that the exon se-
quence also carries discriminative information. The periodicity observed for instance in
cress is due to the reading frame.

5.4 Accurate Recognition of Transcription Starts

Arguably the most important information about genomic DNA is the location of genes
that encode proteins. For further analysis of the genes it is necessary to find their
promoters and the contained binding sites of transcription factors, which are responsible
for regulating the transcription of the gene. In this section, we develop new methods for
finding transcription start sites (TSS) of RNA Polymerase II binding genes in genomic
DNA sequences. Employing Support Vector Machines with the advanced sequence
kernels presented in Chapter 2, we achieve drastically higher prediction accuracies than
state-of-the-art methods.
Transcription start sites are located in the core promoter region and are usually de-
termined by aligning complete mRNA or 5’-end EST sequences (for instance obtained
by 5’ RACE) against the genome. Note that protein sequences and non-5’-end ESTs
are not sufficient for this task, since they typically start downstream of the TSS. For
some species, including human, large scale sequencing projects of complete mRNAs
have been undertaken, but many low copy number genes still evade being sequenced.
To identify these genes and their promoter regions, computational TSS finding or better
experimental techniques are required.
Moreover, in the vast majority of species the identification of promoters must be ac-
complished without the support of massive sequencing. One possibility is to exploit
homology to well-characterised genes in other species. While this approach can work
for common genes, for those genes specific to some species or some family of species
it is likely to fail. This leaves a huge demand for accurate ab initio TSS prediction
algorithms.

Relation to Previous Work Consequently, a fairly large number of TSS finders (TSF)
has been developed. Generally TSFs exploit that the features of promoter regions and
the TSS are different from features of other genomic DNA. Many different features have
been used for the identification: the presence of CpG islands, specific transcription factor
binding sites (TFBS), higher density of predicted TFBSs, statistical features of proximal
and core promoter regions and homology with orthologous promoters (see Bajic et al.
(2004), Werner (2003) for two recent reviews on mammalian promoter recognition).
Methods for recognizing TSSs employed neural networks, discriminant analysis, the
Relevance Vector Machine (RVM), interpolated Markov models, and other statistical
methods.
In a recent large scale comparison (Bajic et al., 2004), eight TSFs have been compared.
Among the most successful ones were Eponine (Down and Hubbard, 2002) (which trains

5.4 Accurate Recognition of Transcription Starts 93

RVMs to recognise a TATA-box motif in a G+C rich domain), McPromoter (Ohler et al.,
2002) (based on Neural Networks, interpolated Markov models and physical properties
of promoter regions) and FirstEF (Davuluri et al., 2001) (based on quadratic discrim-
inant analysis of promoters, first exons and the first donor site, using CpG islands).
DragonGSF (Bajic and Seah, 2003) performs similarly well as the aforementioned TSFs
(Bajic et al., 2004). However, it uses additional binding site information based on the
TRANSFAC data base (Matys et al., 2006); thus it exploits specific information that is
typically not available for unknown promoters. For this reason, and also because the
program is currently not publicly available, we exclude it from our comparison.4

One characteristic of TSFs is that they normally rely on the combination of relatively
weak features such as physical properties of the DNA or the G+C-content. In none of
the above-mentioned approaches, the recognition of the actual transcription start site
has been seriously considered.

Organisation of the Section This section is structured as follows: We first describe the
features of the sequences and kernels that we use for learning to recognise transcription
start sites. Then, we explain the learning setup and the involved model selection proce-
dure. We discuss the experimental evaluation and the data generation for a large scale
comparison of our method ARTS with other TFSs, and provide experimental results
in Section 5.4.2. Finally we apply positional oligomer importance matrices (cf. Section
4.2) to understand the learnt classifier.

Features for TSS recognition As most other TSFs our method combines several fea-
tures, thereby utilizing prior knowledge about the structure of transcription start sites.
We put, however, particular care in analyzing the actual transcription start site. We
have considered the following:

• The TSS is only determined up to a small number of base pairs. Further, nearby
binding sites may also not be positionally fixed. To model the actual TSS site, we
thus need a set of features that are approximately localised and allow for limited
flexibility, which is the domain of the Weighted Degree kernel with shifts (WDS).

• Upstream of the TSS lies the promoter, which contains transcription factor bind-
ing sites. Comparing different promoters, it was noted that the order of TFBS
can differ quite drastically. Thus, we use the spectrum kernel on a few hundred
bps upstream of the TSS. Since it does not preserve the information where the
subsequences are located, it may not be appropriate for modeling localised signal
sequences such as the actual transcription start site.

• Downstream of the TSS follows the 5’ UTR, and further downstream introns and
coding regions. Since these sequences may significantly differ in oligo-nucleotide
composition from intergenic or other regions, we use a second spectrum kernel for
the downstream region.

• The 3D structure of the DNA near the TSS must allow the transcription factors
to bind to the promoter region and the transcription to be started. To implement
this insight, we apply two linear kernels to the sequence of twisting angles and
stacking energies. Both properties are assigned based on dinucleotides as done by
the emboss program btwisted.5 The fourth and fifth kernel are linear kernels on

4Further, unlike DragonGSF all of the above TSFs could – after retraining – be applied to genomes
other than human, where only a few or no TF binding sites are known.

5http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/btwisted.html

http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/btwisted.html

94

features derived from a sequence of DNA twisting angles and stacking energies,
respectively, by smoothing with a sliding window and using only every 20th of the
resulting values.

The combined kernel is simply the sum of all sub-kernels, which is equivalent to ap-
pending the feature vectors in feature space. The sub-kernels can be expected to be of
different importance for the overall performance; thus, it may seem appropriate to use a
weighted sum. Experiments to verify this indicated that a uniform weighting performs
just as well as reducing the weights for the less important sub-kernels.6 An explanation
for this may be that the SVM is able to learn relative weights itself. The only require-
ment is that the (weighted) function values of the sub-kernels are on a comparable scale;
otherwise, those on a low scale are effectively removed.
As before, we normalised all kernels with the exception of the linear kernels such

that the vectors Φ(x) in feature space have unit length, by k̃(x,x′) = k(x,x′)√
k(x,x) k(x′,x′)

.

This normalisation solves convergence problems of SVM optimisers and balances the
importance of the kernels among each other. In total, we combine five kernels, two
linear kernels, two spectrum kernels and the WDS kernel, which each have several
parameters as listed in Table 5.8.

Parameter Set of values Init.
guess

Opt.
value

Explanation

TSS signal (weighted degree with shift):
• r-start {−100,−90, . . . ,−10} -50 -70 start of considered sequence region
• r-end {+10,+20, . . . ,+100} +50 +70 end of considered sequence region
• order {0∗, 2, . . . , 24} 10 24 length of substrings compared
• shift {4, 8, . . . , 48} 20 32 positional shift (base pairs)
promoter (spectrum):
• r-start {−1000,−900, . . . ,−100} ∪ {−150} -600 -600 start of considered sequence region
• r-end {−200,−150, . . . ,+200} 0 0 end of considered sequence region
• order {0∗, 1, . . . , 6} 3 4 length of substrings considered
1st exon (spectrum):
• r-start {−100,−50, . . . ,+300} +100 0 start of considered sequence region
• r-end {+100,+200, . . . ,+1000} +600 +900 end of considered sequence region
• order {0∗, 1, . . . , 6} 3 4 length of substrings considered
angles (linear):
• r-start {−1000,−900, . . . ,−200} -600 -600 start of considered sequence region
• r-end {−600,−500, . . . ,+200} -100 -100 end of considered sequence region
• smooth-
ing

{0∗, 10, . . . , 100} 50 70 width of smoothing window

energies (linear):
• r-start {−1000,−900, . . . ,−200} -600 - start of considered sequence region
• r-end {−600,−500, . . . ,+200} -100 - end of considered sequence region
• smooth-
ing

{0∗, 10, . . . , 100} 50 0∗ width of smoothing window

SVM:
• C {2−2.5, 2−2, . . . , 2+2.5} 20 21 regularisation constant

Table 5.8: Parameters of the combined kernels and the SVM for TSS recognition. The ranges are
specified according to our prior knowledge or intuition. A parameter value of 0 marked with ∗ means
that the sub-kernel is excluded from the combined kernel. Table taken from Sonnenburg et al. (2006b).

6Using multiple kernel learning to learn the kernel weights resulted in a sparse solution with the TSS
kernel getting almost weight 1.

5.4 Accurate Recognition of Transcription Starts 95

5.4.1 Model Selection and Evaluation

As seen before (Table 5.8), there are many (in fact, 17) parameters that need to be set
to reasonable values for our approach to work well. We treat this as a model selection
problem: each parameter setting corresponds to a set of assumptions, i.e., a model, on
what distinguishes the surroundings of TSS from other genomic loci. We want to select
the closest approximation (within the framework defined by the kernel function) to
reality, which can be identified by having the best predictive power. Thus, we train the
SVM with different parameter settings and assess the resulting prediction performance
on a separate validation set.
While model selection is often done by trying all points on a regular grid in the space of
parameters, this is computationally infeasible for more than a few parameters. There-
fore, we resort to iterated independent axis-parallel searches. First, we specify a start
point in parameter space based on prior knowledge and intuition. Then, in each round
candidate points are generated by changing any single parameter to any value from a
pre-defined small set; this is done for every parameter independently. Finally, the new
parameter setting is assembled by choosing for each parameter the value that performed
best while leaving the other parameter values unchanged.
We choose the model that yields the highest auROC on the validation set. It achieves
93.99% auROC and 78.20% auPRC (99.93% and 99.91% on the training data, respec-
tively). The selected parameter settings are shown in the second but last column of
Table 5.8.

Efficiency Considerations Our model is complex in that it consists of several
sophisticated kernels applied to rather long stretches of DNA. Furthermore, we
have to train it on as many examples as possible to attain a high prediction ac-
curacy.7 Even with highly optimised general purpose SVM packages like LibSVM

or SVMlight, training and tuning our model with tens of thousands of points is
intractable. However, implementing the linadd optimisations for the here considered
linear and string kernels (cf. Chapter 3) training on such large datasets becomes feasible.

In addition, we need to compute predictions for every position in the human genome
(≈ 7 · 109). For kernel methods that generate several thousands of support vectors,
each of which is of length one thousand, this would mean more than 1016 floating point
operations. This is too much even for modern computer cluster systems. Luckily we can
again use the linadd trick (cf. Chapter 3) to efficiently compute the SVM prediction
f(x) =

∑N
i=1 αiyi k(xi,x) for new sequences. While this leads to dramatic speedups, it

still requires ≈ 350h of computing time to do predictions on the entire human genome.

Importance of the Kernels In addition to optimizing the parameter settings of all
sub-kernels, we investigate whether and how much each sub-kernel contributes to the
overall classification. To do so, we remove each sub-kernel and retrain the remaining
model (with all other parameters kept fixed at the selected values). The accuracies
obtained on the validation set are shown in Table 5.9. Removing the WDS kernel,
which models the signal at [−70, +70] around the TSS, decreases the performance of
the classifier most, although it still performs rather well (auROC > 90%). The 1st exon
kernel, which models the 4-mer nucleotide frequency in the range [0, +900] downstream

7For instance, on a splice site recognition task we were able to perpetually improve the prediction
accuracy when increasing the amount of training data – over a wide range of training set sizes
Figure 5.7.

96

is of second most importance in our kernel ensemble. Removing the linear kernels, which
take into account the binding energies and the twisting of the DNA, has almost no effect
on the result.

Subkernel area under ROC area under PRC
w/o TSS signal 90.75% 70.72%
w/o promoter 93.33% 74.94%
w/o 1st exon 92.76% 74.94%
w/o angles 93.99% 78.26%
complete 93.99% 78.20%

Table 5.9: Results obtained by removing sub-kernels. The energies kernel is already turned off by the
model selection. Table taken from Sonnenburg et al. (2006b).

A different view on the contribution of the individual kernels can be obtained by re-
training single-kernel SVMs. The respective results are displayed in Table 5.10. Again
the WDS kernel contributes most, followed by the two spectrum kernels modeling the
first exon and the promoter. The DNA twistedness angle-measure performs even worse
than at random, probably because SVM’s regularisation parameter C was not properly
tuned for the single kernel case.

Subkernel area under ROC area under PRC
TSS signal 91.42% 69.38%
promoter 86.55% 55.33%
1st exon 88.54% 64.29%
angles 45.31% 7.86%

Table 5.10: Results obtained when only a single specific sub-kernel is used. The actual TSS signal
discriminates strongest, but also the 1st exon carries much discriminative information. Table taken
from Sonnenburg et al. (2006b).

For illustration we analyze in Figure 5.13 how the TSS signal predictions are localised
relative to the true transcription start sites. We consider a window of ±1000 around
a true TSS and record the location of the maximal TSS signal prediction (TSS signal
kernel only). Figure 5.13 displays a histogram of the recorded positions on our validation
set. We observe an expected strong concentration near the true TSS. We also observe
that the distribution is skewed – a possible explanation for this is offered by Figure 5.13:
the predictor might be mislead by the distribution of CpG islands, which is skewed in
a similar manner. In conclusion, it seems to be the WDS kernel that models the region
around the TSS best. The relatively large shift of 32 found by the model selection
suggests the existence of motifs located around the TSS at highly variable positions.
Neither Eponine nor FirstEF model this regions explicitly. Thus, the WDS kernel seems
to be one of the reasons for ARTS’ superior accuracy.

5.4.2 Genome-Wide Evaluation on the Human Genome

We compare the performance of ARTS, our proposed TSS finding method, to
that of McPromoter (Ohler et al., 2002), Eponine (Down and Hubbard, 2002) and
FirstEF (Davuluri et al., 2001), which are among the best previously reported methods
(Bajic et al., 2004). The evaluation protocol highly affects a TSF comparison; we thus
give a detailed explanation (Section 5.4.2) of the criteria we use.

5.4 Accurate Recognition of Transcription Starts 97

−1000 −500 0 500 1000
0

50

100

150

200

250

position relative to true TSS

n
u

m
b

e
r

o
f

d
e

te
ct

e
d

 T
S

S
s

60%

30%

(a) Localisation of ARTS’ TSS signal pre-
dictions.

−1000 −500 0 500 1000
1

2

3

4

5

6

7

8

9

position

C
pG

 c
on

te
nt

 [%
]

true TSSs
decoy sites
[uniform]

(b) Average positional frequency of CpG dinu-
cleotides around true TSS and in decoys.

Figure 5.13: (a) Localisation of ARTS’ TSS signal predictions: Shown is a histogram over the location
with maximal score in a window ±1000 around true TSSs. In 60% of the cases the predicted TSSs
is within [−150, +270]bp of the true TSS (30% within [−70, +40]) (b) Average positional frequency of
CpG dinucleotides around true TSS and in decoy sequences (smoothed by convolution with a triangle
of 39 bps length). Figure taken from Sonnenburg et al. (2006b).

Setup As POL II binds to a rather vague region, there seems to be no single true TSS
location, but rather regions of roughly [−20, +20] bp constituting potential TSSs. For
that reason, one has to use evaluation criteria different from the ones used in standard
two-class-classification. Bajic et al. (Bajic et al., 2004) suggest to cluster predicted
TSS locations that have at most 1000bp distance to the neighboring locations. As
evaluation criterion for each gene, they score a true positive if a prediction is located
within ±2000bp of the true TSS (otherwise, a false negative is counted); false positives
and true negatives are counted from the TSS position +2001 to the end of the gene.
However, each TSF is tuned to obtain a maximum true positive rate at a different false
positive rate. Hence, this criterion suffers from the fact that it remains unclear how to
compare results when the sensitivity and positive predictive value are both different
(cf. Table 2 in Bajic et al. (2004)).

To alleviate this problem and allow for direct comparison via Receiver Operator
Characteristic and Precision Recall Curves (ROC and PRC), we propose a different
evaluation criterion. We compute whole genome point-wise predictions, which are then
converted into non-overlapping fixed length chunks (e.g., of size 50 or 500). Within each
chunk the maximum TSF output is taken. One can think of this chunking8 process as a
“lens”, allowing us to look at the genome at a lower resolution. Obviously, for a chunk
size of 1 this is the same as a point-wise TSS prediction. As “lenses”, we use chunk sizes
of 50 and 500. A chunk is labelled as +1 if it falls within the range ±20bp of an an-
notated TSS; chunks downstream of this range until the end of the gene are labelled −1.

Note that according to the above scheme some TSS will label two chunks as positive.
This, however, does not constitute a problem, as it is a rare event if the chunk size is
large. Furthermore, it is not unlikely that a TSF predicts both two chunks as positive,

8Not to be confused with the “chunking” (decomposition) algorithms used for SVM training.

98

as the maximum of the scores within each chunk is taken. We also considered an
alternative criterion, in which only the chunk in which the maximum TSFs output is
larger is labelled as positive, whereas the other chunk is removed from the evaluation.
As a downside, this introduces a labeling that is dependent on the TSF output (i.e.,
there is no ground truth labeling over all TSFs), and leads to only small variations
(auROC/auPPV increased/decreased by ≤ 3.5% for chunk size 50 and ≤ 1% for all
TSFs for chunk size 500). Chunks obtain negative labels if they were not positively
labelled and fall within the range gene start+20bp to gene end and are excluded from
evaluation otherwise.

This way, the labeling of the genome stays the same for all TSFs. Taking into account
all TSSs in dbTSSv5 we obtain labelings for chunk size 50 (500) with 28,366 (16,892)
positives and 16,593,892 (1,658,483) negatives where TSS fall into two chunks in 15,223
(1,499) cases, covering in total 829, 694, 600bp (≈ 12%) of the human genome.9 In
summary, the chunking allows for a controlled amount of positional deviations in the
predictions. Unlike the clustering of predictions, it does not complicate the evaluation
or hamper the comparability of TSF.

TSF Performance evaluation As the performance evaluation via ROC/PRC curve
needs (genome-wide) real valued outputs for each TSF, we set the TSF’s thresholds to
the lowest acceptable values. Eponine is run with the options -threshold 0.5. As
McPromoter provides the outputs for every tenth base pair we can use the unfiltered
raw values directly. FirstEF does not provide a single score as output, but probability
scores for the promoter, exon, and donor. By default, a prediction is made if each
probability equals or is larger than a pre-defined threshold (promoter: 0.4, exon: 0.5,
donor 0.4), which yields just a single point in the ROC and PRC space. We therefore
set all thresholds to 0.001 and later use the product of the scores as a single output.10

Next we chunk the output, as described above in Section 5.4.2, and perform evaluation
on all genes whose TSS was newly annotated in dbTSSv5 (cf. Section B.3). Tables 5.11
and 5.12 display the results for the performance measures area under the ROC and
PRC curve for ARTS, FirstEF, McPromoter, and Eponine. Table 5.11 shows results
for chunk size 50 and Table 5.12 for chunk size 500, corresponding to different levels of
positional accuracy or resolution. In both cases our proposed TSS finder, ARTS, clearly
outperforms the other methods in terms of both auROC and auPRC. This is also seen
in Figure 5.14, which supplies detailed information on the true positive rates (top) and
the positive predictive values (bottom) for a range of relevant true positive rates.
An interesting observation is that, judging by the auROC, McPromoter constitutes the
(second) best performing TSF, while, on the other hand, it performs worst in the auPRC
evaluation. An explanation can be found when looking at the ROC and PRC in Figure
5.14 where the left column displays ROC/PRC for chunk size 50 and the right for chunk
size 500. Analyzing the ROC figures, we observe that McPromoter outperforms FirstEF

and Eponine for false positive rates starting around 10% – a region contributing most
to the auROC (note that both axes are on log scale). All of the three aforementioned
promoter detectors perform similarly well. At a reasonable false positive level of 0.1%
the TSFs perform as follows (chunk size 50): ARTS 34.7%, Eponine 17.9%, FirstEF

9Here we used the dbTSS field Position(s) of 5’end(s) of NM (or known transcript) as the field Selected
representative TSS is often empty.

10As a validation we run FirstEF with the default settings and a variety of other thresholds. The
obtained TPR/FPR and TPR/PPV values fit the curves produced using the single score extremely
well (cf. Figure 5.14 below).

5.4 Accurate Recognition of Transcription Starts 99

0.0001 0.001 0.01 0.1 1
0.01

0.1

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

ROC dbtssv5 − dbtssv4 (chunksize 50)

ARTS
FirstEF (*)
Eponine
MCPromoter

ARTS

Eponine

FirstEF

MCPromoter

0.0001 0.001 0.01 0.1 1
0.01

0.1

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

ROC dbtssv5 − dbtssv4 (chunksize 500)

ARTS
FirstEF (*)
Eponine
MCPromoter

ARTS

FirstEF Eponine

MCPromoter

0.01 0.1 1
0.01

0.1

1

true positive rate

po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e

PRC dbtssv5 − dbtssv4 (chunksize 50)

ARTS
FirstEF (*)
Eponine
MCPromoter

MCPromoter

ARTS

FirstEF

Eponine

0.1 1
0.1

1

true positive rate

po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e

PRC dbtssv5 − dbtssv4 (chunksize 500)

ARTS
FirstEF (*)
Eponine
MCPromotor

MCPromoter

ARTSFirstEF

Eponine

Figure 5.14: Performance evaluation of the ARTS, FirstEF, Eponine and McPromoter TSS predictors.
Evaluation was done on all genes whose TSS was newly annotated in dbTSSv5 (i.e., genes whose TSS was
not already in dbTSSv4). Receiver Operator Characteristic and Precision Recall Curves on decreased
output resolution were computed (taking the maximum output within non-overlapping chunks of size
50 (left column) and 500 (right column for more details see text). Windows were marked positive if a
known TSS lies in a range of ±20bp and negative otherwise. Please note that the ’bumps’ in the upper
right corner in the FirstEF/Eponine plots for low window sizes are artifacts, caused by the method not
giving predictions for every position. However, the interesting area is in the left (lower false positive
rate). Figure taken from Sonnenburg et al. (2006b).

dbTSSv5-dbTSSv4 evaluation on chunk size 50

TSF area under ROC area under PRC

Eponine 88.48% 11.79%
McPromoter 92.55% 6.32%
FirstEF 71.29% 6.54%
ARTS 92.77% 26.18

Table 5.11: Evaluation of the Transcriptions Start Finder at a chunk size resolution of 50 on dbTSSv5
excluding dbTSSv4 using the area under the Receiver Operator Characteristic Curve and the area
under the Recall Precision Curve (larger values are better). For details see text. Table taken from
Sonnenburg et al. (2006b).

14.5% and McPromoter 9.8%. The ROC curves for both chunk sizes are very similar,
as the ROC curves are independent of class ratios between the negative and the positive

100

dbTSSv5-dbTSSv4 evaluation on chunk size 500

TSF area under ROC area under PRC

Eponine 91.51% 40.80%
McPromoter 93.59% 24.23%
FirstEF 90.25% 40.89%
ARTS 93.44% 57.19%

Table 5.12: Evaluation of the Transcriptions Start Finder at a chunk size resolution of 500 on dbTSSv5
excluding dbTSSv4 using the area under the Receiver Operator Characteristic Curve and the area
under the Recall Precision Curve (larger values are better). For details see text. Table taken from
Sonnenburg et al. (2006b).

class.11 On the other hand, class ratios affect the PRC quite significantly: For instance,
at a true positive rate of 50%, ARTS achieves a PPV of 23.5% for chunk size 50 and
68.3% for chunk size 500. ARTS’ ROC and PRC, however, constantly remains well
above its competitors.

5.4.3 Comparison with EP3 and ProSOM

Recently, two new promoter prediction programs called Easy Promoter Prediction
Program (EP3, Abeel et al. (2008a)) and ProSOM (Abeel et al., 2008b) where de-
veloped. Both approaches are based on rather simple structural profiles that score
all dinucleotides in a window according to prior knowledge (e.g., dinucleotide scores
obtained from the inverted base-stacking structural profile values). In EP3, a promoter
is predicted if the window score is above a certain threshold and no promoter is
predicted otherwise. In their evaluation, the authors showed a surprisingly good
performance of EP3 compared to ARTS, even though the spectrum kernel components
in ARTS that are used for the promoter and first exon are closely related to the profile
model in EP3: Using a spectrum kernel of order 2 the SVM learns a di-nucleotide
weighting, which is applied to a window and thresholded. We therefore re-evaluated
EP3 on our validation data set, which lead to very different results (cf. Table 5.13).
We notified the authors of EP3 about a flaw in their evaluation scheme in February
2008.12 However, it should be noted that the evaluation scheme differs from the one
used in this section, as whole genome coverage of CAGE tags (Kawaji et al., 2006) was
assumed and thus negative examples were obtained genome-wide (not only from the
interior of the gene). As this sounds desirable, a re-evaluation of ARTS trained on
CAGE data is called for. Nevertheless, it is surprising that a simple dinucleotide based
model (with pre-specified dinucleotide scores) obtains a high accuracy, especially since
EP3 works well on a wide range of organisms.

A to EP3 related approach is ProSOM (Abeel et al., 2008b). It is based on learning
self organizing maps from base stacking energy structural profiles. In contrast to EP3

11They vary very slightly as for smaller chunk sizes TSS more often fall into two chunks.
12It turns out that the F1-measure used in the comparison requires a careful tuning of the bias of

the competing methods, which was at least for ARTS not tuned. Personal communication with the
authors: Using the evaluation criteria from Abeel et al. (2008a), ARTS obtains a F1 measure of 50%
(not as reported 12%) when tuning the threshold, window size and removing N rich regions from
the evaluation. EP3 achieves 46%. Furthermore the evaluation was done also on genomic regions
that contain a large number of N’s. In addition, even though ARTS provides point predictions only
predictions using a 500 bp resolution were used.

5.4 Accurate Recognition of Transcription Starts 101

Method auROC auPRC

ARTS promoter kernel 86.55% 55.33%
ARTS first exon kernel 88.51% 64.29%
ARTS full model 93.99% 78.20%

EP3 window size 50 84.51% 48.06%
EP3 window size 100 86.15% 52.00%
EP3 window size 200 87.39% 54.18%
EP3 window size 400 87.25% 53.19%
EP3 window size 600 86.57% 50.69%
EP3 window size 800 85.60% 47.35%
EP3 window size 1000 84.57% 43.92%

Table 5.13: Comparison of EP3 with ARTS on the human validation set. The performance of the full
ARTS model, as well as only the performance of the single kernel SVMs based on the promoter and
first exon spectrum kernels are shown. For EP3 we depict the performance for different window sizes
around the TSS.

the structural profiles contain positional information and thus are capable of measuring
trends (e.g., low CpG frequency before and high CpG frequency after the TSS). This is a
promising new feature and worth integrating into future versions of ARTS. Abeel et al.
(2008b) report a performance of ProSOM on human CAGE data of F1=48% and ARTS

F1=50% at a 500 bp resolution. On Ensembl ProSOM achieves F1=45% and ARTS

F1=56% at 500 bp resolution (Abeel et al., 2008b). The authors also report that ARTS

performance drops below that of ProSOM, Eponine and EP3 when evaluated at 50 bp
resolution (Abeel et al., 2008b). However, in Table 5.11 we observe that ARTS by far
outperforms Eponine on chunk size resolution 50. This contradiction may be explained
by a more clean evaluation dataset and different evaluation criteria used in Abeel et al.
(2008b). In addition, ARTS prediction are readily available for download only at a 50
bp resolution in the form of custom tracks. Thus no point predictions of ARTS were
used in the evaluation.

5.4.4 Understanding the Learned Classifier

Understanding the Model: Motif Weighting As the spectrum kernels (which do not
use position information at all) strengthen the classifier, they seem to indeed pick up
TF binding site motifs in the upstream (promoter) region, and 4-mer compositional bias
(potentially of coding regions) in the downstream region. To verify this, we investigate
the weights that the trained single-kernel SVMs (from Table 5.10) assign to the 256
possible 4-mers. Table 5.14 shows the 4-mers with the largest impact in these two
spectrum kernel SVMs. Here positively weighted 4-mers favor a TSS prediction, whereas
negatively weighted 4-mers disfavor it.
It seems that both kernels have some nucleotide preferences: The promoter kernel prefers
4-mers rich of As and disfavors Gs. The 1st-exon kernel prefers Gs and Cs and dislikes
As (as only a single A appears in the top ten motifs). Furthermore, it seems to be
mostly looking for CpG-islands, as 6 of the top ten ranked 4-mers contain a CG. Thus,
the SVM has learnt something that is often explicitly built into TSFs (e.g., Eponine

and FirstEF both look for elevated downstream CpG content). By training our more
general model, we retain its freedom to pick up other (weaker) yet unknown patterns,
that might help to distinguish true TSS from decoys.

102

Table 5.14: Weights of the ten 4-mers with highest absolute weights, for the promoter and the 1st-exon
kernel. The numbers in parentheses show the relation to the sum of all weights.

rank promoter kernel 1st-exon kernel
1 CGGG -3.65 (1.37%) GCGT 3.92 (2.29%)
2 AAAC 3.58 (1.34%) GTCT 3.75 (2.19%)
3 AACT 3.23 (1.21%) CGCT 3.46 (2.02%)
4 CGAC 3.19 (1.20%) GCGC 3.18 (1.86%)
5 AAAA 3.03 (1.14%) GCCT 3.00 (1.75%)
6 CGGT -3.01 (1.13%) CGGG 2.66 (1.55%)
7 CCTA -3.00 (1.13%) CGTA 2.61 (1.52%)
8 AAAG 2.95 (1.11%) CCGT 2.52 (1.47%)
9 CGAG -2.77 (1.04%) TCCT 2.24 (1.31%)

10 TTCG 2.73 (1.02%) GGTC 2.23 (1.30%)

Understanding the Model: Promoter Regulatory Elements from POIMs We finally
apply our new ranking and visualisation techniques to the search for promoter regulatory
elements. To this end we use the obtained support vectors in conjunction with the
WDS kernel with the optimal parameters (cf. Table 5.8) to obtain POIMs (see Section
4.2). The POIM analysis is displayed in Figure 5.15 and 5.16. In Figure 5.15 we
have highlighted five regions of interest. A region far upstream (region 1; -45nt to -
35nt), another upstream region (region 2; -32 to -19nt), a central region around the
TSS (region 3; -15 to +4nt), a downstream region (region 4; +7 to +16) and a far
downstream region (region 5; +18 to +48). Inspection of POIM tables in these regions
we retrieve the following known motifs:

Upstream (region 1; -45nt to -35nt): we observe many high scoring GC rich motifs
(cf. also the di-nucleotide POIMs in Figure 5.16), which might correspond to
a CpG island. However, more likely is that they are part of the BRE element
(Jin et al., 2006), which is usually located -37nt to -32nt upstream (Jin et al.,
2006). While the 8-mer GCGCGCC (rank 9) matches the BRE consensus C

G
C
G

A
G
CGCC

well, it is observed slightly further upstream at position -42.

Upstream (region 2; -32 to -19nt): the TATA box’s core motif TATAAA (see e.g.,
Jin et al. (2006)) is found -32 to -26 upstream, with peak score at -30; its variants
such as TATAA, TATATA, TATAAG, ATAAAA, TATAAT, TATA (and motifs overlap-
ping with parts of TATA). This perfectly matches prior findings in which the TATA

motif was found between -31 to -26 and with consensus TATAT
A
AAA

G

Central location (region 3; -15 to +4nt) one would expect to find the Initiatior (Inr)
motif which has the weak consensus C

T
C
T
A{A, C, G, T}T

A
C
T

C
T

(Jin et al., 2006).
While some of the highest scoring 4-mers match that consensus (e.g. TCAT; rank 2
or CCAT; rank 5) we cannot draw any strong conclusions. In addition, we observe
motifs that contain the start codon ATG (rank 1,2,9), which might indicate non-
clean training data. That artefact could be caused by training sequences having a
zero length UTR. It should be noted that the SVM puts most of its weight around
this location (see Figure 5.16.

Downstream (region 4; +7 to +16 and (region 5; +18 to +48): many CG rich motifs
indicative of the CpG islands downstream of the TSS all score high and peak
at +7nt and +20nt. The di-nucleotide POIMs (cf. Figure 5.16) underline the CG

5.5 Summary and Guidelines 103

DiffPOIM − Human Transcription Start Sites (−60 to +50) Full Range

Position

k−
m

er
 L

en
gt

h
1 2 3 4 5

−60 −50 −40 −30 −20 −10 0 10 20 30 40 50

8

7

6

5

4

3

2

1
2

4

6

8

10

12

DiffPOIM − (−45 to −35) Extract 1

Position

k−
m

er
 L

en
gt

h

−45 −40 −35

8

7

6

5

4

3

2

1 2

4

6

8

10

DiffPOIM − (−32 to −19) Extract 2

Position

k−
m

er
 L

en
gt

h

−30 −25 −20

8

7

6

5

4

3

2

1
2

4

6

8

10

DiffPOIM − (−15 to +4) Extract 3

Position

k−
m

er
 L

en
gt

h

−15 −10 −5 0

8

7

6

5

4

3

2

1 2

4

6

8

10

12
DiffPOIM − (+7 to +16) Extract 4

Position

k−
m

er
 L

en
gt

h

10 15

8

7

6

5

4

3

2

1

4

6

8

10

DiffPOIM − (+18 to +48) Extract 5

Position

k−
m

er
 L

en
gt

h

20 30 40

8

7

6

5

4

3

2

1

2

4

6

8

GCGCGCG -42 +
CGCGCGG -41 +
CGCGCGC -43 +
CCGCGCG -42 +
CGGCGCG -42 +
GCGCGGC -40 +
GGCGCGG -41 +
CGCGCGT -41 +
GCGCGCC -42 +
GGGCGCG -42 +

TATAAA -30 +
CTATAA -31 +
TATATA -30 +
ATATAA -31 +
TATAAG -30 +
TTATAA -31 +
ATAAAA -29 +
CTATAT -31 +
ATAAAG -29 +
CGGCGG -24 +

CATG -01 +
TCAT -02 +
ATGA +00 +
TCCC +00 -
CCAT -02 +
CCCC +00 -
GCAT -02 +
CATT -01 +
ATGC +00 +
GTCA -03 +

CGGCGGC +07 +
GCGGCCG +09 +
CGACGGC +07 +
CAGCGGC +07 +
GGCGGCG +08 +
GGCGGCC +08 +
GCGGCTG +09 +
GCGGCGC +10 +
TGGCGGC +07 +
GCGGCGG +09 +

CGGCGGC +20 +
GCGGCGG +19 +
GCTGCTC +44 +
GCGGCAG +22 +
CTGCTGC +45 +
TGCTGCT +46 +
CTGCTCG +45 +
GGCGGCG +21 +
CTGCTCC +45 +
TGCTGCG +46 +

Figure 5.15: (top) POIM visualisation for human promoter sites, as obtained by ARTS. (center)
POIM visualisation zoomed in to the five marked regions. Note that the color scaling varies among
figures. (bottom) Top ten motifs extracted from the POIM tables for five marked regions. The three-
tuples show (motif, location, score). A positive score denotes an enhancer or characteristic motif. A
negative score denotes a silencer or atypical motif.

enrichment in this region. At the same time CCCCCCC at position +15, TATATAT
(and variants of the TATA motif) at +18 and AAAAAAA at +38 are very atypical
motifs downstream of the TSS. Further known but vague motifs downstream of
the TSS could not be recovered: The MTE element located +18 to +27; consen-
sus C C

G
AA

G
C C

G
C
G

AACGC
G

and the Downstream Promoter Element (DPE) located
+28 to +32 with consensus A

G
GA

T
C
T
{A, C, G} (Jin et al., 2006) could not be re-

covered, as they are hidden under the very dominant CpG islands. Only further
cluster-based analysis might identify their importance.

5.5 Summary and Guidelines

In the first part we have evaluated several approaches for the recognition of splice sites in
worm, fly, cress, fish, and human. In a first step we compared MCs, a Bayesian method
(EBN) and SVM based methods using several kernels on existing data sets generated
from the human genome. We considered the kernel used in Baten et al. (2006a) based

104

POIM − Human Transcription Start Sites Order 2

Position
−60 −50 −40 −30 −20 −10 0 10 20 30 40 50

AA
AC
AG
AT
CA
CC
CG
CT
GA
GC
GG
GT
TA
TC
TG
TT

−60 −50 −40 −30 −20 −10 0 10 20 30 40 50

20

40

60

80

POIM Weight Mass − Human Transcription Start Sites

W
ei

gh
t M

as
s

Position

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

POIM k−mer Diversity − Human Transcription Start Sites Order 8

N
um

be
r

of
 M

ot
ifs

Position
−60 −50 −40 −30 −20 −10 0 10 20 30 40 50

4000

3000

2000

1000

Figure 5.16: POIM visualisation (cf. Section 4.2) for human promoter sites, as obtained by ARTS.
(top) POIMs of order two, showing the importance of di-nucleotides. (center) POIM weight mass,
illustrates to which regions the SVM assigns its weights. (bottom) POIM diversity for order eight
shows the amount of motifs (and their score) the SVM is using in detecting transcription start sites.

on MCs, the locality improved kernel (Zien et al., 2000) and two variants of the weighted
degree kernel (Rätsch and Sonnenburg, 2004, Rätsch et al., 2005). We found that these
existing data sets have limitations in that the sequences used for training and evaluation
turn out to be too short for optimal discrimination performance. For SVMs, we showed
that they are able to exploit – albeit presumably weak – features as far as 80nt away
from the splice sites. In a comparison to SpliceMachine, we were able to show that
our approach performs favorably when complemented with compositional information.
Using the protocol proposed in Rätsch et al. (2007), we generated new data sets for the
five organisms. These data sets contain sufficiently long sequences and for human as
many as 9 million training examples. Based on our previous work on large scale kernel

5.5 Summary and Guidelines 105

learning (cf. Chapter 3), we were able to train SVM classifiers also on these rather
big data sets. Moreover, we illustrated that the large amount of training data is indeed
beneficial for significantly improving the SVM prediction performance, while MCs do not
significantly improve when using much more training examples. We therefore encourage
using as many examples for training as feasible to obtain the best generalisation results.
For worm, fly and cress we were able to improve the performance by 4%-10% (absolute)
compared to MCs. The biggest difference between the methods is observed for the most
difficult task: acceptor and donor recognition on human DNA. The MCs reach only
16% and 25% auPRC, while SVMs achieve 54% and 57%, respectively. The drastic
differences between organisms in the prediction performance scores can be understood
as a consequence of the smaller fraction of positive examples and a higher incidence of
alternative splicing in the human genome compared to the other genomes. For further
comparative studies, we provide and discuss k−mer scoring matrices elucidating the
features that are important for discrimination.
To facilitate the use of our classifiers for other studies, we provide whole genome predic-
tions for the five organisms. Additionally, we offer an open-source stand-alone prediction
tool allowing, for instance, the integration in other gene finder systems. The predic-
tions, data sets and the stand-alone prediction tool are available for download on the
supplementary website http://www.fml.mpg.de/raetsch/projects/splice.
In the second part we have developed a novel and accurate transcription start finder,
called ARTS, for the human genome. It is based on Support Vector Machines that
previously were computationally too expensive to solve this task. It has therefore been
an important part of our work to develop more efficient SVM training and evaluation
algorithms using sophisticated string kernels. In a carefully designed experimental study,
we compared ARTS to other state-of-the-art transcription start finders that are used
to annotate TSSs in the human genome. We show that ARTS by far outperforms
all other methods: it achieves true positive rates that are twice as large as those of
established methods. In the future, we plan to train and evaluate the ARTS system on
other genomes and make the system and its predictions publicly available. It would be
interesting to see how much of ARTS’ higher accuracy can be translated into improved
ab initio gene predictions.
In contrast to several previous approaches that use prior knowlege to obtain good gen-
eralisation performance (e.g., Saeys et al. (2007)), we follow an orthogonal approach:
Using SVMs with sophisticated sequence kernels and large amounts of training data (as
is often available for many sequence detection problems), we require only relatively little
prior knowlege about the sequence detection problem. When motifs (most of the time)
occur at specific positions away from the actual signal, we use the Weighted Degree ker-
nel (cf. Section 2.3). If the motif is not that strongly localised but positionally slightly
more variant we use the Weighted Degree kernel with shifts (cf. Section 2.3). When mo-
tifs appear without any particular localisation, i.e., there is no positional information
that could be used, we resort to the spectrum kernel (cf. Section 2.1). Depending on
the signal detection problem, it might be worth to use a combination of these kernels to
model (weaker) sub-signals, which in the end may lead to higher prediction accuracies.
Another advantage of this approach is that based on our work on positional oligomer
importance matrices (cf. Section 4.2.2), we are able to derive biological insights that may
later be used as additional prior information to improve the accuracy of the detectors.
In the following we summarise how many well known signal and content detection prob-
lems could be addressed using the string kernel framework, leading to highly accurate
detectors (in many cases current state-of-the-art).

http://www.fml.mpg.de/raetsch/projects/splice

106

5.5.1 Signal Sensors

Signal sensors distinguish between true signal sites and any other possible candidate
site. As potentially any location in the genome could be a true signal site, this problem
may be extremely unbalanced. The usual setup is to extract windows around the true
signal sites and windows around decoy sites (cf. Section 5.2) on which we train a string
kernel SVM.

Transcription Start Site Recognition

One of the key elements to recognizing genic regions in the genome is to identify the pro-
moter site. The method for finding transcription start sites (TSS) of RNA-polymerase
II binding genes described in Section 5.4 and Sonnenburg et al. (2006b) mainly use a
Weighted Degree kernel with shifts around the site and a spectrum kernel modelling the
upstream and a spectrum kernel modelling the downstream regions.

Splice Site Recognition The classification tasks for the splice site sensors consist in
discriminating true splice sites from decoy sites, which also exhibit the consensus dimers
AG or GT. Using an SVM with a plain weighted degree or weighted degree kernel with
shifts as in Section 5.3 and Sonnenburg et al. (2007b) leads to state-of-the-art accuracies
for Donor and Acceptor splice sites.

Alternative Splicing In contrast to prior belief, the application of the splicing machin-
ery does not always result in a unique transcript. Instead, alternative splice sites are
taken leading to multiple forms of alternative splicing, like exon skipping, alternative
donor splice site, alternative acceptor splice site and intron retention. Rätsch et al.
(2005), Ong and Rätsch (2008) use SVMs to perform ab-initio detection of these major
alternative splice forms at high accuracies. To this end, the Weighted Degree kernel
with shifts is applied around the flanking splice sites and complemented with further
information such as the exon and intron length distribution, reading frame and stop
codon information.

Trans-acceptor Splice Sites Trans-acceptor splicing is an event that adds a splice
leader sequence to an independently transcribed pre-mRNA. While unknown or fairly
insignificant in most organisms, this process occurs frequently in nematodes. According
to Graber et al. (2007) 70% of pre-mRNAs in C. elegans are affected by trans-splicing.
To obtain good predictions of gene starts in nematodes, it is crucial to accurately recog-
nise trans-splicing events. As the trained acceptor sensor also discriminates true ac-
ceptor sites from decoy sites, one needs to train a sensor that distinguishes cis-splicing
from trans-splicing. Schweikert et al. (2008) use a vanilla Weighted Degree kernel and
obtains high accuracies.

Translation Initiation and Termination Sites Translation converts the nucleotide se-
quence of mRNA into the sequence of amino acids comprising a protein. Not the whole
length of mRNA is translated, but only the coding region (CDS), defined by the start
(ATG) and stop ({TAA,TAG,TGA}) codons that exhibit additional sequence motifs that
are identified by their associated sensors. Schweikert et al. (2008) use the Weighted
Degree kernel with shifts and obtain high accuracies.

5.5 Summary and Guidelines 107

Polyadenylation Signal Recognition Polyadenylation of pre-mRNA is the process by
which the 3’ ends of eukaryotic organisms are formed. It consists of the addition of a
stretch of around 50-250 Adonises at the cleavage site. Relative to the cleavage site,
there is an upstream element consisting of a highly conserved AATAAA hexamer, called
the polyadenylation signal (PAS), and a downstream element often described as a poorly
conserved GT- or T-rich sequence. For the polyA sensor, Philips et al. (2008) combine
a weighted degree kernel with shifts growing linearly to both ends of the sequence (shift
0 on the consensus signal in the center of the sequence) with four spectrum kernels,
each using a quarter of the sequence.

Cleavage Site Recognition The cleavage site is located approximately 10-25 base pairs
downstream of the polyadenylation signal. Around 10-30 nucleotides downstream of
the cleavage site a U-rich motif is located (Chen et al., 1995). As the cleavage and
polyadenylation signal site are close, prediction of the polyadenylation signal and the
cleavage site is tightly coupled. Here a Weighted Degree kernel with shifts around the
cleavage site is used (Schweikert et al., 2008).

5.5.2 Content Sensors

In contrast to signal sensors, content sensors are applied to variable length segments and
are designed to recognise the typical sequence composition of the individual segments.
They are used to distinguish segment types. In gene finding multiple such segment
types occur, like intergenic, inter-cistronic, UTR, coding exon and coding intron. In
Schweikert et al. (2008), a content sensor for each of the aforementioned segment types
is learnt, by casting the problems as binary, one-against-the-rest, classification problems
(as similarly done in Rätsch et al. (2007)). To avoid the influence of different length
distributions of the segments on the discrimination, the negative examples are chosen
such that their length distribution equals that of the positive sequences. Weighted
Spectrum kernels counting the k-mers only once are used in all of these classifiers.

General Guidelines

In summary this recipe worked for us to obtain high precision sequence classifiers for
many problems (see also Ben-Hur et al. (2008) for a tutorial):

1. Data preparation — the most time consuming part: Collect as much high-quality
labelled data as possible and be aware of how you generate decoys (cf. Section 5.2).
Note that SVMs are relatively robust to a few outliers (even mislabelled examples):
They may compensate for outliers with an increased amount of training data.

2. Learn about the properties of the signal detection problem (very localised position
dependent features, semi-position dependent, position independent) and choose a
Weighted Degree kernel, a Weighted Degree kernel with shifts or spectrum kernel
or even a combination of these kernels.13

3. Decide about performance measure (auROC, auPRC,. . .): As signal detection
problems are usually very unbalanced it is suggested to use the auPRC.

13In case a number of positionally variable motifs are known a-priori, one may use sequence information
around the “best” match of the motif on the sequence and the distance of the match to a reference
site to increase performance (Schultheiss et al., 2008).

108

4. Perform model selection (C, Kernels, Kernel parameters, window sizes around
the signal and regions kernels are applied to): When you have few (positive)
data points use cross-validation. In case you have several thousand of examples a
fixed-split split into training, validation and test set is sufficient.

5. Evaluate method on unseen test data using your performance measure.

6 Learning to Predict Gene Structures

In the first part of this chapter (Section 6.1), we use the improved splicing signal and
exon/intron content sensors together with the Hidden Semi-Markov Support Vector
Machine framework from Rätsch and Sonnenburg (2007), Rätsch et al. (2007) to accu-
rately detect splice forms. The second part (Section 6.2) gives an outlook on the steps
involved to extend this system into a full-fledged gene finding system.
This chapter is largely based on Rätsch and Sonnenburg (2007), Rätsch et al. (2007),
Schweikert et al. (2008).

6.1 Splice Form Prediction

The problem of gene structure prediction is to segment nucleotide sequences (so-called
pre-mRNA sequences generated by transcription; Figure 6.1 revisits the protein synthe-
sis process as already explained in more detail in Section 1.1) into exons and introns.
The exon-intron and intron-exon boundaries (cf. Figure 6.1) are defined by sequence
motifs almost always containing the letters GT and AG, respectively. However, these
dimers appear very frequently and one needs sophisticated methods to recognise true
splice sites as the ones presented in Section 5.3. While such accurate splice site detec-
tors seem sufficient to segment a gene, they are limited to “point predictions” ignoring
any context, like average length of a segment or the ordering of segments. To incorpo-
rate further knowledge and to learn additional features of the segmentation problem at
hand, one requires structured output learning methods. Currently, mostly HMM-based

DNA

pre-mRNA

mRNA

protein

transcription

splicing

translation

.

cap polyA

cap polyA

N C

exon intron exon intron exon intron exon intron exon

ATG GT AG GT AG GT AG GT AG
TAG,TAA,TGA

AUG GU AG GU AG GU AG GU AG UAG,UAA,UGA

AUG
UAG,UAA,UGA

Figure 6.1: The major steps
in protein synthesis (Figure is
based on Lewin (2000)). A
transcript of a gene starts with
an exon and may then be inter-
rupted by an intron, followed
by another exon, intron and so
on until it ends in an exon.
In this section, we learn the
unknown formal mapping from
the pre-mRNA to the mRNA.

methods such as Genscan (Burge and Karlin, 1997), Snap (Korf, 2004) or ExonHunter

(Brejova et al., 2005) have been applied to this problem and also to the more difficult
problem of gene finding. In this section, we show that our newly developed method
mSplicer (Rätsch and Sonnenburg, 2007, Rätsch et al., 2007) is applicable to this task
and achieves very competitive results.
The grammar for basic splice form prediction is very simple. A gene starts with an exon
which is interrupted by an intron followed by another exon, and so on, finally ending
with an exon. Figure 6.2 illustrates the “grammar” that we use for gene structure
prediction. We only require four different labels: start, exon-end, exon-start and end.

109

110

Biologically it makes sense to distinguish between first, internal, last and single exons,
as their typical lengths are quite different. Each of these exon types correspond to one
transition in the model. States two and three recognise the two types of splice sites
and the transition between these states defines an intron. In this model (cf. Figure

exon 42 3intron

exon

donor acceptor

1

start end

exon
GT AG

Figure 6.2: An elementary state model for unspliced mRNA: The start is either directly followed
by the end or by an arbitrary number of donor-acceptor splice site pairs. Figure taken from
Rätsch and Sonnenburg (2007).

6.2), states correspond to segment boundaries to be detected by the splicing signal
sensors and transitions a → b denote segments to be detected by the content sensors.
State 1 and 4 (translation start and end) are assumed to be given a-priori. Note that
the mSplicer model employing reading frame information is significantly more complex.
The reader is referred to Rätsch et al. (2007) for further details.

6.1.1 Learning the Signal and Content Sensors

Learning the Splice Site Signal Detectors From the training sequences (Set 1, cf. Ap-
pendix B.4), we extracted sequences of confirmed splice sites (intron start and end). For
intron start sites we used a window of [−80, +60] around the site. For intron end sites
we used [−60, +80]. From the training sequences we also extracted non-splice sites,
which are within an exon or intron of the sequence and have AG or GT consensus. We
train Weighted Degree kernel based signal detectors like in Section 5.3 for acceptor and
donor splice sites. The result are the two discriminative functions F̄2 and F̄3. All model
parameters (including the window size) have been tuned on the validation set (Set 2).
SVM training for C. elegans resulted in 79,000 and 61,233 support vectors for detecting
intron start and end sites, respectively. The area under the Receiver Operator Charac-
teristic Curve for the resulting classifiers on the test set are 99.74% (intron start) and
99.62% (intron end).

Learning the Exon and Intron Content Sensors To obtain the exon content sensor, we
derived a set of exons from the training set. As negative examples we used subsequences
of intronic sequences sampled such that both sets of strings have roughly the same length
distribution. We trained SVMs using a variant of the Spectrum kernel (Zhang et al.,
2003) of degree d = 3, 4, 5, 6. We proceeded analogously for the intron content sensor.
The model parameters have been obtained by tuning them on the validation set.

6.1.2 Integration

The idea is to learn a function that assigns a score to a splice form such that the
true splice form is ranked highest while all other splice forms have a significantly lower
score. The function depends on parameters that are determined during training of
the algorithm. In our case it is defined in terms of several functions determining the
contributions of the content sensors (fE,d and fI,d), the splice site predictors (SAG and
SGT) and the lengths of introns and exons (SLI

, SLE
, SLE,s

, SLE,f
and SLE,l

).

6.1 Splice Form Prediction 111

AATCAACGTTGGCTCCACGAATACGGATCGCGCTGCGACGAGGATATCGGTCCTACTTAAACAAACAATTCTGATTTCAGGAACAATAASequence

SVMGT

detector
output

SVMAG

detector

true splicing

wrong splicing
candidate

cumulative
splice score

s
te
p
 2

s
te
p
 1

large

margin

Figure 6.3: Given the start of the first and the end of the last exon, our system (mSplicer) first scans the
sequence using SVM detectors trained to recognise donor (SVMGT) and acceptor splice sites (SVMAG).
The detectors assign a score to each candidate site, shown below the sequence. In combination with
additional information, including outputs of SVMs recognizing exon/intron content, and scores for
exon/intron lengths (not shown), these splice site scores contribute to the cumulative score for a putative
splicing isoform. The bottom graph (step 2) illustrates the computation of the cumulative scores for
two splicing isoforms, where the score at end of the sequence is the final score of the isoform. The
contributions of the individual detector outputs, lengths of segments as well as properties of the segments
to the score are adjusted during training. They are optimised such that the margin between the
true splicing isoform (shown in blue) and all other (wrong) isoforms (one of them is shown in red) is
maximised. Prediction on new sequences works by selecting the splicing isoform with the maximum
cumulative score. This can be implemented using dynamic programming related to decoding generalised
HMMs (Kulp et al., 1996), which also allows one to enforce certain constrains on the isoform (e.g., an
open reading frame). Figure taken from Rätsch et al. (2007).

We assume that the start of the first exon ps and the end of last exon pe are given.
Then, a splice form for a sequence s is given by a sequence of donor-acceptor pairs
(pGT

i , pAG
i). The cumulative splice score S(s, ps, pe, {pGT

i , pAG
i }ni=1) for a sequence s was

computed as follows:

• If there is only a single exon, i.e., n = 0, then

S(s, ps, pe, {}) = SE(s[ps,pe]) + SLE,s
(pe − ps),

where s[a,b] is the subsequence of s between positions a and b, SE(s) :=∑6
d=3 fE,d(SVME,d(s)) is the score for the exon content and SLE ,s(l) is the score

for the length l of a single exon, whereby SVME,d(s) is the output of the exon
content sensor using a kernel of degree d as described above.

• Otherwise, we used the following function:

S(s, ps, pe, {pGT
i , pAG

i }ni=1) := SLE,f
(pGT

1 − ps) + SE(s[ps,pGT
1])

+SLE,l
(pe − pAG

n) + SE(s[pAG
n ,pe])

+
n∑

i=1

[
SLI

(pAG
i − pGT

i) + SI(s[pGT
i ,pAG

i]) + SAG(pAG
i) + SGT(pGT

i)
]

+
n−1∑

i=1

[
SE(s[pAG

i ,pGT
i+1]) + SLE

(pAG
i − pGT

i+1)
]
,

where SI(s) :=
∑6

d=3 fI,d(SVMI,d(s)) is the intron content score using the
SVM intron content output SVMI,d(s) using a kernel of degree d, SAG(p) :=

112

fAG(SVMAG(p)) and SGT(p) := fGT(SVMGT(p)) are the scores for acceptor and
donor splice sites, respectively, using the SVMAG and SVMGT output for the pu-
tative splice sites at position p. Moreover, SLE,f

(l), SLE,l
(l), SLE

(l) and SLI
(l)

are the length scores for first exons, last exons, internal exons and introns, respec-
tively, of length l.

The above model has 15 functions as parameters. We model them as piecewise-linear
functions with P = 30 support points at 1

P−1 quantiles as observed in the training set.
For SAG, SGT, SE,d and SI,d (d = 3, . . . , 6) we require that they are monotonically
increasing, since a larger SVM output should lead to a larger score.
To determine the parameters of the model, we propose to solve the following optimi-
sation problem (Rätsch and Sonnenburg, 2007) that uses a set of N training sequences
s1, . . . , sN with start points ps,1, . . . , ps,N , end points pe,1, . . . , pe,N and true splicing
isoforms σ1, . . . , σN :

minimise
N∑

i=1

ξi + CP(θ) (6.1)

subject to S(si, ps,i, pe,i, σi)− S(si, ps,i, pe,i, σ̃i) ≥ 1− ξi,

for all i = 1, . . . , N and all possible splicing isoforms σ̃i for sequence si, where

θ = [θAG, θGT, θE,3, . . . , θE,6, θI,3, . . . , θI,6, θLE
, θLE,f

, θLE,l
, θLE,s

, θLI
]

is the parameter vector parameterizing all 15 functions (the 30 function values at the
support points) and P is a regulariser. The parameter C is the regularisation parameter.
The regulariser is defined as follows:

P(θ) :=
P−1∑

i=1

|θLE,s,i − θLE,s,i+1|+
P−1∑

i=1

|θLE,f ,i − θLE,f ,i+1|

+
P−1∑

i=1

|θLE,l,i − θLE,l,i+1|+
P−1∑

i=1

|θLE ,i − θLE ,i+1|

+
P−1∑

i=1

|θLI ,i − θLI ,i+1|+ (θAG,P − θAG,1)

+(θGT,P − θGT,1) +

6∑

d=3

(θE,d,P − θE,d,1) +

6∑

d=3

(θI,d,P − θI,d,1)

with the intuition that the piecewise linear functions should have small absolute differ-
ences (reducing to the difference from start to end for monotonic functions).
Based on the ideas presented in Altun et al. (2003), we solve the optimisation problem
(6.1) using sequences from the cDNA sequences in the training set (these sequence
were not used for training the signal and content sensors). For the model selection for
parameters C and P , we use an independent validation set of cDNA sequences.

Outline of an Optimization Algorithm The number of constraints in (6.1) can be very
large, which may constitute challenges for efficiently solving problem (6.1). Fortunately,
only a few of the constraints usually are active and working set methods can be applied
in order to solve the problem for a larger number of examples. The idea is to start with
small sets of negative (i.e. false) labellings σ̃i for every example. One solves (6.1) for the

6.1 Splice Form Prediction 113

smaller problem and then identifies labellings σ ∈ Σ̃ (with Σ̃ being the set of all false
labellings) that maximally violate constraints, i.e.

σ = argmax
σ∈Σ̃

S(si, ps,i, pe,i, σi)− S(si, ps,i, pe,i, σ) (6.2)

where θ is the intermediate solution of the restricted problem. The new constraint gen-
erated by the negative labelling is then added to the optimization problem. The method
described above is also known as column generation method or cutting-plane algorithm
and can be shown to converge to the optimal solution θ∗ (Tsochantaridis et al., 2005). In
our case, training of step 2 takes about 2h on a standard PC employing an off-the-shelf
optimizer (ILOG CPLEX, 1994) for solving the resulting linear programs.

Decoding of Splice Forms

To produce the “best” splice form prediction σ̂ based on the splice form scoring function
S(s, ps, pe, σ), one has to maximise S with respect to the splice form σ, i.e.,

σ̂(s, ps, pe) = argmax
σ∈Σ(s,ps,pe)

S(s, ps, pe, σ).

To efficiently determine the splicing isoform σ̂ with maximal score, Viterbi decoding
(Viterbi, 1967) is used. We assume that the sequence s, the starting position ps and end
positions pe are given. The prediction σ̂ has to satisfy certain rules, in particular that
introns are terminated with the GT/GC and AG splice sites dimers and that they are not
overlapping. Additionally, we require that introns are at least 30nt and exons at least
2nt long and restrict the maximal intron and exon length to 22,000 (the longest known
intron in C. elegans). If one uses open reading frame information, one additionally has
to make sure that the spliced sequence does not contain stop codons.

6.1.3 Experimental Evaluation

To estimate the out-of-sample accuracy, we apply our method to the independent test
dataset (cf. Appendix B.4). We compare our proposed method mSplicer to ExonHunter1

on 1177 test sequences. We greatly outperform the ExonHunter method: our method
obtains almost 1/3 of the test error of ExonHunter (cf. Table 6.1) on the (CI) dataset.

1The method was trained by their authors on the same training data.

Data CI set
Method error rate exon Sn exon Sp exon nt Sn exon nt Sp

mSplicer OM 4.8% 98.9% 99.2% 99.2% 99.9%
ExonHunter 9.8% 97.9% 96.6% 99.4% 98.1%
SNAP 17.4% 95.0% 93.3% 99.0 % 98.9%

UCI set

mSplicer SM 13.1% 96.7% 96.8% 98.9% 97.2%
ExonHunter 36.8% 89.1% 88.4% 98.2% 97.4%

Table 6.1: Shown are the splice form error rates (1-accuracy), exon sensitivities, exon specificities, exon
nucleotide sensitivities, exon nucleotide specificities of mSplicer (with (OM) and without (SM) using
ORF information) as well as ExonHunter and SNAP on two different problems: mRNA including (UCI)
and excluding (CI) untranslated region.

114

Simplifying the problem by only considering sequences between the start and stop
codons allows us to also include SNAP in the comparison. In this setup additional
biological information about the so-called “open reading frame” is used: As there was
only a version of SNAP available that uses this information, we incorporated this extra
knowledge also in our model (marked mSplicer OM) and also used another version of
Exonhunter that also exploits that information, in order to allow a fair comparison. The
results are shown in Table 6.1. On dataset (UCI), the best competing method achieves
an error rate of 9.8%, which is more than twice the error rate of our method.

Retrospective Evaluation of the Wormbase Annotation Comparing the splice form
predictions of our method with the annotation on completely unconfirmed genes,2 we
find disagreements in 62.5% (SM) or 50.0% (OM) of such genes, respectively. Assuming
that on this set, our method performs as well as reported above, one could conclude
that the annotation is rather inaccurate on yet unconfirmed genes.
To validate this assumption Rätsch et al. (2007) performed a retrospective analysis,
where the performance of mSplicer was investigated on newly annotated (confirmed)
genes: The predictions of mSplicer largely agreed with the annotation on the (new)
confirmed genes. However, a significant disagreement between the new annotation and
our predictions on unconfirmed genes was observed, which strongly suggests inaccuracies
in the current annotation. A further wet lab confirmation on 20 unconfirmed genes
randomly chosen from those where the mSplicer predictions differed significantly from
the annotation was performed. The predictions of mSplicer without ORF information
were completely correct in 15 out of the 20 cases (error rate 25%), while the annotation
was never exactly matching all new splice sites. A custom track of mSplicer is now
available at Wormbase.

6.2 Summary and Outlook: Gene Finding

We have successfully applied our method on large scale gene structure prediction appear-
ing in computational biology, where our method obtains less than a half of the error rate
of the best competing HMM-based method. We are currently working on incorporating
our prediction in the public genome annotations. To extend the mSplicer (cf. Section
6.1 and Rätsch et al. (2007)) gene structure predictor to become a full-fledged gene-
finding system, the already complex mSplicer model has to undergo complex changes to
integrate further signals. Recall that mSplicer currently assumes a given transcription
start and end site and only predicts the spliceform, i.e., the segmentation of the gene
into exons and introns. To this end it is using a two layer architecture: In the first layer
signal sensors, that predict the acceptor and donor splice site and content sensors that
distinguish exons from introns are learnt using the string kernels discussed in Chapter
2 and the linadd based learning algorithm for string kernel based SVMs from Chapter
3. Even though these “simple” two-class detectors achieve state-of-the-art results solv-
ing their respective sequence detection problem, they taken alone perform poorly when
predicting spliceforms. The second layer combines the first layer predictions, normaliz-
ing and properly weighting their scores against each other. Here semi-hidden Markov
support vector machines (Rätsch and Sonnenburg, 2007) are used and a state model
describing the valid transitions, like in Figure 6.2, is defined. In this model, states de-
note signal and transitions content sensors, which are normalised via piecewise linear
functions whose parameters are learnt in semi HM-SVM training. This system can be

2A gene is called confirmed if it is covered by cDNA and EST sequences and unconfirmed otherwise.

6.2 Summary and Outlook: Gene Finding 115

Figure 6.4: The design of the mGene (Schweikert et al., 2008) gene finding system. Figure taken from
Schweikert et al. (2008).

upscaled into a full gene finder by introducing further signal and content sensors, that
not only recognise the donor and acceptor splicing signal but also others like the tran-
scription start and stop site, the translation initiation site, the polyadenylation signal
and the cleavage site, as well as further content sensors that distinguish exon content in
the untranslated regions from the ones in the coding regions etc. Figure 6.4 displays the
extended model of the mGene gene finder (Schweikert et al., 2008). This gene finding
system is indeed an extension of the previously described mSplicer and is currently be-
ing developed at the Friedrich Miescher Laboratory in Tübingen by members of Gunnar
Rätsch’s group (mainly by Gabriele Schweikert). The first version of this gene finder
took part in the nGASP genome annotation challenge, and even this early version was
one of the top performing (if not the best) on the worm C. elegans (Schweikert et al.,
2008). The state model of mGene is a lot more complex and the increased amount of
signal detectors requires that model selection and training are done in an automated
way. In this model, mistakes may occur not only at the splice junctions but also at the
other signal sites, like the transcription start site. Since the cost of errors may vary (e.g.,
a wrongly predicted transcription start is more costly than a wrongly predicted splice
site) one needs ways to treat errors differently. This can be resolved by introducing a
new loss function in Equation (6.1). Other extensions include additional states to model
operons (i.e., a transcriptional unit coding for multiple proteins) and a single state to
model the large intergenic regions.

http://www.wormbase.org/wiki/index.php/Gene_Prediction

116

7 Summary and Outlook

With the development of novel sequencing technologies the way has been paved for cost
efficient high-throughput whole genome sequencing. Handling the increasing wealth of
data requires efficient and accurate computational methods for sequence analysis. These
methods are required to solve one of the most important problems in computational
biology — the localisation of genes on DNA.
In this work, we developed novel machine learning methods for genomic sequence
analysis. First, we introduced the reader to a branch of bioinformatics, the field of
sequence analysis and signal detection (cf. Section 1.1), and to the learning of classifiers
from DNA with a focus on Support Vector Machines (SVMs, Section 1.2).

The aim was to improve detection of various genomic signals using SVMs. Based on
prior knowledge and previous work (Sonnenburg, 2002), we developed sophisticated
and computationally efficient string kernels that are applicable to a wide range of signal
detection problems. These kernels are the TOP kernel (in Section 2.4.2), the Weighted
Degree kernel and the Weighted Degree kernel with shifts (cf. Section 2.3). In Section
2.4.3, we related the TOP and Fisher kernels (Jaakkola and Haussler, 1999) with the
WD and Spectrum kernels. As it turns out, the latter are special cases of the TOP/FK
for particular probabilistic models.

Until now, string kernel based SVMs were not applicable to genomic scale signal detec-
tion problems. We developed fast string kernels that require only linear computational
effort in the length of the input sequence and are suitable for a wide range of sequence
classification tasks. However, SVM training and testing was too computationally
demanding for large sample sizes. We significantly improved on this situation by
deriving large scale learning methods that enable training of string kernel based SVMs
on up to 10 million sequences and their application to 6 billion examples within a
reasonable time (cf. Chapter 3).

Even though modern kernel methods with complex, oligomer-based sequence kernels
are very powerful for biological sequence classification, until now no satisfactory means
were available to aid the understanding of their complex decision surfaces. We have
developed Positional Oligomer Importance Matrices and Multiple Kernel Learning
algorithms that allow us to determine the most discriminating motifs and thus, provide
some insight about the learnt representation and the application at hand (cf. Chapter
4). Multiple Kernel Learning is general in the sense that it works with arbitrary kernels
and is well suited to fuse data from different sources. POIMs were specifically devel-
oped to understand string kernel based SVMs and offer a leap of quality on that domain.

Equipped with this tool set, we can now accurately detect various genomic signals, like
the transcription start of a gene (Section 5.4), splice sites (Section 5.3) and many other
signals (Section 5.5). Specifically, we obtained state-of-the-art detectors that perform
at less than half the error rate of established methods.

117

118

From the beginning, the ultimate goal of learning these isolated signal detectors, was to
combine them to predict genes. As a first step, we addressed the problem of splice form
prediction. Using a computationally efficient two-layer approach, the predictions from
the signal sensors in Chapter 5 are integrated in a structure learning layer, solving a
label sequence learning problem (cf. Section 6.1). Our method mSplicer, obtains error
rates that are again less than half of the error rate of the best competing HMM-based
method for the problem of splice form prediction in C. elegans.
All of the core algorithms presented in this doctoral thesis are implemented in the
SHOGUN machine learning toolbox (cf. Section C) and are freely available from
http://www.shogun-toolbox.org.

We concluded with an overview of how the mSplicer (cf. Section 6.1 and Rätsch et al.
(2007)) splice form predictor has been developed into the complete gene finding sys-
tem mGene (Schweikert et al., 2008). To be computationally efficient, mGene currently
uses a two-layer approach. Therefore, mGene may not be capable of capturing certain
important inter-dependencies (e.g., exclusive OR relations). However, mGene outper-
formed most of its competitors in a recent gene prediction challenge on nematodes. As
a result, it is now included in Wormbase (Wormbase) and aids annotation of the C. el-
egans genome and that of other nematodes. While our work on large scale learning
has paved the way towards a complete gene finding system based on highly accurate
string kernel SVMs, the framework is currently only tractable for organisms with rel-
atively small genomes. Recently, training linear SVMs has been sped up significantly
(Chang et al., 2008, Franc and Sonnenburg, 2008). We expect that string kernel based
SVMs and label sequence learning techniques will benefit from these advances. Being
able to efficiently learn the label sequence with mGene using a single layer approach
could significantly increase its expressive power. Thus, future research directed at large
scale label sequence learning methods is called for to ultimately scale the system to
large genomes, like the one of our species.

http://www.shogun-toolbox.org

A Derivations

A.1 Derivation of the MKL Dual for Generic Loss Functions

In this section we derive the dual of Equation (4.9). In analogy to Bach et al. (2004)
we treat the problem as a second order cone program. This derivation also appeared
in (Sonnenburg et al., 2006a).

We start from the MKL primal problem Equation (4.9):

min
1

2

(
K∑

k=1

‖wk‖
)2

+
N∑

i=1

L(f(xi), yi)

w.r.t. w = (w1, . . . ,wK) ∈ IRD1 × · · · × IRDK

s.t. f(xi) =
K∑

k=1

〈Φk(xi),wk〉+ b, ∀i = 1, . . . , N

Introducing u ∈ IR allows us to move
∑K

k=1 ‖wk‖ into the constraints and leads to the
following equivalent problem

min
1

2
u2 +

N∑

i=1

L(f(xi), yi)

w.r.t. u ∈ IR, (w1, . . . ,wK) ∈ IRD1 × · · · × IRDK

s.t. f(xi) =
K∑

k=1

〈Φk(xi),wk〉+ b, ∀i = 1, . . . , N

K∑

k=1

‖wk‖ ≤ u

Using tk ∈ IR, k = 1, . . . , K, it can be equivalently transformed into

min
1

2
u2 +

N∑

i=1

L(f(xi), yi)

w.r.t. u ∈ IR, tk ∈ IR,wk ∈ IRDk , ∀k = 1, . . . , K

s.t. f(xi) =
K∑

k=1

〈Φk(xi),wk〉+ b, ∀i = 1, . . . , N

‖wk‖ ≤ tk,
K∑

k=1

tk ≤ u.

Recall that the second-order cone of dimensionality D is defined as

KD = {(x, c) ∈ IRD × IR, ‖x‖2 ≤ c}.

119

120

We can thus reformulate the original MKL primal problem (Equation (4.9)) using the
following equivalent second-order cone program, as the norm constraint on wk is im-
plicitly taken care of:

A.1.1 Conic Primal

min
1

2
u2 +

N∑

i=1

L(f(xi), yi)

w.r.t. u ∈ IR, tk ∈ IR, (wk, tk) ∈ KDk
, ∀k = 1, . . . , K

s.t. f(xi) =
K∑

k=1

〈Φk(xi),wk〉+ b, ∀i = 1, . . . , N

K∑

k=1

tk ≤ u

We are now going to derive the conic dual following the recipe of
Boyd and Vandenberghe (2004) (see p. 266). First, we derive the conic Lagrangian
and then using the infimum w.r.t. the primal variables to obtain the conic dual. We
therefore introduce Lagrange multipliers α ∈ IRK , γ ∈ IR, γ ≥ 0 and (λk, µk) ∈ K∗

D

living on the self dual cone K∗
D = KD. Then, the conic Lagrangian is given as

L(w, b, t, u, α, γ,λ, µ) =
1

2
u2 +

N∑

i=1

L(f(xi), yi)−
N∑

i=1

αif(xi) +

+
N∑

i=1

αi

K∑

k=1

(〈Φk(xi),wk〉+ b) + γ

(
K∑

k=1

tk − u

)
−

K∑

k=1

(〈λk,wk〉+ µktk) .

To obtain the dual, the derivatives of the Lagrangian w.r.t. the primal variables, w, b, t, u
have to vanish, which leads to the following constraints

∂wk
L =

N∑

i=1

αiΦk(xi)− λk ⇒ λk =
N∑

i=1

αiΦk(xi)

∂bL =
N∑

i=1

αi ⇒
N∑

i=1

αi = 0

∂tkL = γ − µk ⇒ γ = µk

∂uL = u− γ ⇒ γ = u

∂f(xi)L = L′(f(xi), yi)− αi ⇒ f(xi) = L′−1(αi, yi).

In the equation, L′ is the derivative of the loss function w.r.t. f(x) and L′−1 is the
inverse of L′ (w.r.t. f(x)) for which to exist L is required to be strictly convex and
differentiable. We now plug in what we have obtained above, which makes λk, µk and

A.1 Derivation of the MKL Dual for Generic Loss Functions 121

all of the primal variables vanish. Thus, the dual function is

D(α, γ) = −1

2
γ2 +

N∑

i=1

L(L′−1(αi, yi), yi)−
N∑

i=1

αiL
′−1(αi, yi) +

+
N∑

i=1

αi

K∑

k=1

〈Φk(xi),wk〉 −
K∑

k=1

N∑

i=1

αi〈Φk(xi),wk〉

= −1

2
γ2 +

N∑

i=1

L(L′−1(αi, yi), yi)−
N∑

i=1

αiL
′−1(αi, yi).

As constraints remain γ ≥ 0, due to the bias
∑N

i=1 αi = 0 and the second-order cone
constraints

‖λk‖ =

∥∥∥∥∥

N∑

i=1

αiΦk(xi)

∥∥∥∥∥
2

≤ γ, ∀k = 1, . . . , K.

This leads to:

max −1

2
γ2 +

N∑

i=1

L(L′−1(αi, yi), yi)−
N∑

i=1

αiL
′−1(αi, yi)

w.r.t. γ ∈ IR, α ∈ RN

s.t. γ ≥ 0,
N∑

i=1

αi = 0

∥∥∥∥∥

N∑

i=1

αiΦk(xi)

∥∥∥∥∥
2

≤ γ, ∀k = 1, . . . , K

Squaring the latter constraint, multiplying by 1
2 , relabeling 1

2γ2 7→ γ and dropping the
γ ≥ 0 constraint as it is fulfilled implicitly, we obtain the MKL dual for arbitrary strictly
convex loss functions.

A.1.2 Conic Dual

min γ−
N∑

i=1

L(L′−1(αi, yi), yi) +
N∑

i=1

αiL
′−1(αi, yi)

︸ ︷︷ ︸
:=T

w.r.t. γ ∈ IR, α ∈ RN

s.t.
N∑

i=1

αi = 0

1

2

∥∥∥∥∥

N∑

i=1

αiΦk(xi)

∥∥∥∥∥

2

2

≤ γ, ∀k = 1, . . . , K.

Finally, adding the second term in the objective (T) to the constraint on γ and relabeling
γ+T 7→ γ leads to the reformulated dual Equation (4.10), the starting point from which
one can derive the SILP formulation in analogy to the classification case.

122

A.1.3 Loss functions

Quadratic Loss For the quadratic loss case L(x, y) = C(x − y)2 we obtain as the
derivative L′(x, y) = 2C(x − y) =: z and L′−1(z, y) = 1

2C
z + y for the inverse of the

derivative. Recall the definition of

Sk(α) = −
N∑

i=1

L(L′−1(αi, yi), yi) +

N∑

i=1

αiL
′−1(αi, yi) +

1

2

∥∥∥∥∥

N∑

i=1

αiΦk(xi)

∥∥∥∥∥

2

2

.

Plugging in L, L′−1 leads to

Sk(α) = −
N∑

i=1

(
1

2C
αi + yi − yi)

2 +
N∑

i=1

αi(
1

2C
αi + yi) +

1

2

∥∥∥∥∥

N∑

i=1

αiΦk(xi)

∥∥∥∥∥

2

2

=
1

4C

N∑

i=1

α2
i +

N∑

i=1

αiyi +
1

2

∥∥∥∥∥

N∑

i=1

αiΦk(xi)

∥∥∥∥∥

2

2

.

Logistic Loss Very similar to the Hinge loss the derivation for the logistic loss L(x, y) =
log(1 + e−xy) will be given for completeness.

L′(x, y) =
−ye−xy

1 + e−xy
= − ye(1−xy)

1 + e(1−xy)
=: z.

The inverse function for y 6= 0 and y + z 6= 0 is given by

L′−1(z, y) = −1

y
log

(
− z

y + z

)

and finally we obtain

Sk(α) =
N∑

i=1

log

(
1− αi

yi + αi

)
−

N∑

i=1

αi

yi
log

(
− αi

yi + αi

)
+

1

2

∥∥∥∥∥

N∑

i=1

αiΦk(xi)

∥∥∥∥∥

2

2

.

Smooth Hinge Loss Using the Hinge Loss L(x, y) = C
σ

log(1 + eσ(1−xy)) with σ > 0,
y ∈ IR fixed, x ∈ IR one obtains as derivative

L′(x, y) =
−σCyeσ(1−xy)

σ(1 + eσ(1−xy))
= − Cyeσ(1−xy)

1 + eσ(1−xy)
=: z.

A.2 Computation of Positional Oligomer Importances 123

Note that with y fixed, z is bounded: 0 ≤ abs(z) ≤ abs(Cy) and sign(y) = −sign(z)
and therefore − z

Cy+z
> 0 for Cy + z 6= 0. The inverse function is derived as

z + zeσ(1−xy) = −Cyeσ(1−xy)

(Cy + z)eσ(1−xy) = −z

eσ(1−xy) = − z

Cy + z

σ(1− xy) = log(− z

Cy + z
)

1− xy =
1

σ
log(− z

Cy + z
)

x =
1

y
(1− 1

σ
log(− z

Cy + z
)), y 6= 0

L′−1(z, y) =
1

y
(1− 1

σ
log(− z

Cy + z
))

Define C1 = 1
2

∥∥∥
∑N

i=1 αiΦk(xi)
∥∥∥

2

2
and C2 =

∑N
i=1 αi

1
yi

(
1− 1

σ
log(− αi

Cyi+αi
)
)

Using these ingredients it follows for Sk(α)

Sk(α) = −
N∑

i=1

L

(
1

yi

(
1− 1

σ
log(− αi

Cyi + αi
)

)
, yi

)
+ C2 + C1

= −
N∑

i=1

1

σ
log

(
1 + e

σ
“

1−
“

yi
yi

“

1− 1
σ

log(−
αi

Cyi+αi
)
”””

)
+ C2 + C1

= −
N∑

i=1

1

σ
log

(
1− αi

Cyi + αi

)
+

N∑

i=1

αi

yi

(
1− 1

σ
log(− αi

Cyi + αi
)

)
+ C1.

A.2 Computation of Positional Oligomer Importances

In this section we derive an efficient recursive algorithm to compute Positional Oligomer
Importance Matrices (POIMs, cf. Section 4.2). Recall the definition of a POIM from
Equation (4.16)

Q(z, j) := E [s(X) | X [j] = z]− E [s(X)] . (A.1)

Despite its conceptual simplicity, the computation of POIMs is demanding, as it
involves computing an expectation over |Σ|lx values (for each of the |Σ|k k-mers z, and
each of the lx − k + 1 positions j).

This section is structured as follows: First, we make three observations that ultimately
will help to reduce the computational burden (Appendix A.2.1). We continue with
the derivation of an efficient recursive algorithm to compute POIMs (Appendix A.2.2)
for the general case of using Markov chains of order d as the background probability
distribution. The major result is Theorem A.5 (and its proof). The section concludes
with the application of this theorem to special cases of the background distribution,
namely the zeroth-order Markov distribution and the uniform distribution (Appendix
A.2.3). This derivation is largely based on our technical report (Zien et al., 2007).

124

A.2.1 Observations

Observation A.1 (Independent PO Terms Vanish). One of the reasons why we
use the subtractive normalization w.r.t. the unconditionally expected score in (Equa-
tion (A.1)) is about computational efficiency: this normalization makes the prob-
lem tractable, especially when features are mostly independent. To see why inde-
pendent features are of computational advantage, recall that computation of a single
(possibly conditional) expectation would require summing over all features, i.e., over
I =

⋃K
k=1

(
Σk × {1, . . . , lx − k + 1}

)
(cf. Section 4.2.1)

E [s(X)] = E




∑

(y,i)∈I

w(y,i)I {X [i] = y}+ b





=
∑

(y,i)∈I

w(y,i)E
[
I {X [i] = y}

]
+ b

=
∑

(y,i)∈I

w(y,i) Pr [X [i] = y] + b ,

and respectively

E
[
s(X)

∣∣X [j] = z
]

= E




∑

(y,i)∈I

w(y,i)I {X [i] = y}+ b

∣∣∣∣∣∣
X [j] = z





=
∑

(y,i)∈I

w(y,i)E
[
I {X [i] = y}

∣∣X [j] = z
]
+ b

=
∑

(y,i)∈I

w(y,i) Pr
[
X [i] = y

∣∣X [j] = z
]
+ b .

By subtraction however, all features which are independent of (z, j) vanish from the
difference because in this case the conditional probabilities are equal to the unconditional
probabilities. That is,

Pr
[
X [i] = y

∣∣X [j] = z
]

= Pr
[
X [i] = y

]

whenever X [i] = y and X [j] = z are statistically independent events, which we denote
by (y, i) ⊥ (z, j). Otherwise, i.e., if they are (possibly) dependent, we write (y, i) 6⊥
(z, j). Thus,

Q(z, j) = E
[
s(X)

∣∣X [j] = z
]
− E [s(X)]

=
∑

(y,i)∈I

w(y,i)

[
Pr [X [i] = y |X [j] = z]− Pr [X [i] = y]

]

=
∑

(y,i)∈I, (y,i) 6⊥(z,j)

w(y,i)

[
Pr [X [i] = y |X [j] = z]− Pr [X [i] = y]

]
(A.2)

Note that, under the Markov model of order d, two POs (y, i) and (z, j) are always
independent if they are separated by at least d positions. This means that either i+ |y|−
1 < j − d or j + |z| − 1 < i − d. Otherwise they are dependent in all but degenerate
cases.

Observation A.2 (Incompatible Conditional PO Terms Vanish). Another property of
PO pairs is that of compatibility. We say that (y, i) and (z, j) are compatible, denoted

A.2 Computation of Positional Oligomer Importances 125

by (y, i) ∼ (z, j), if they agree on any shared positions they might have. For example,
(TATA, 30), and (AAA, 32) are incompatible, since they share positions {32, 33} but
disagree on position 32, whereas (TATA, 30) and (TACCA, 32) are compatible. If (y, i)
and (z, j) are incompatible, then it holds that Pr [X [i] = y |X [j] = z] = 0. Thus, the
sum (Equation (A.2)) can be simplified to range over less summands,

Q(z, j) =
∑

(y,i)∈I(z,j)

w(y,i) Pr
[
X [i] = y

∣∣X [j] = z
]

(A.3)

−
∑

(y,i)∈I, (y,i) 6⊥(z,j)

w(y,i) Pr [X [i] = y] , (A.4)

where we denote by I(z, j) := { (y, i) ∈ I | (y, i) 6⊥ (z, j) and (y, i) ∼ (z, j) } the set of
POs that are dependent on and compatible with (z, j).

Observation A.3 (PO Importances are Weighted Sums of Conditional Terms). As a
last observation we show that once we precomputed conditional sums (Equation (A.3)),
we can use them to easily compute the positional oligomers importances.
Denote the two sum terms from (Equation (A.3)) and (Equation (A.4)) as

u(z, j) :=
∑

(y,i)∈I(z,j)

w(y,i) Pr [X [i] = y |X [j] = z] (A.5)

v(z, j) :=
∑

(y,i) 6⊥(z,j)

w(y,i) Pr [X [i] = y] . (A.6)

Thus, Q(z, j) = u(z, j) − v(z, j). To compute v(z, j), we show that we only have
to use terms of the type u(z′, j), with |z′| = |z|. First note, for Markov chains
of any order d, for any z′ ∈ Σ|z|, the set equality { (y, i) ∈ I | (y, i) 6⊥ (z, j) } =
{ (y, i) ∈ I | (y, i) 6⊥ (z′, j) }. With this,

v(z, j) =
∑

(y,i) 6⊥(z,j)

w(y,i) Pr [X [i] = y]

=
∑

(y,i) 6⊥(z,j)

w(y,i)

∑

z′∈Σ|z|

Pr
[
X [i] = y ∧X [j] = z′

]

=
∑

(y,i) 6⊥(z,j)

w(y,i)

∑

z′∈Σ|z|

Pr
[
X [i] = y

∣∣X [j] = z′
]
Pr
[
X [j] = z′

]

=
∑

(y,i) 6⊥(z,j)

∑

z′∈Σ|z|

Pr
[
X [j] = z′

]
w(y,i) Pr

[
X [i] = y

∣∣X [j] = z′
]

=
∑

z′∈Σ|z|

Pr
[
X [j] = z′

] ∑

(y,i) 6⊥(z,j)

w(y,i) Pr
[
X [i] = y

∣∣X [j] = z′
]

=
∑

z′∈Σ|z|

Pr
[
X [j] = z′

] ∑

(y,i) 6⊥(z′,j)

w(y,i) Pr
[
X [i] = y

∣∣X [j] = z′
]

=
∑

z′∈Σ|z|

Pr
[
X [j] = z′

] ∑

(y,i)∈I(z′,j)

w(y,i) Pr
[
X [i] = y

∣∣X [j] = z′
]

=
∑

z′∈Σ|z|

Pr
[
X [j] = z′

]
u(z′, j) .

Finally, we arrive at the following formula for the POIM computation, which shows that
positional oligomers importances can be easily computed from the table of all conditional

126

terms,

Q(z, j) = u(z, j)−
∑

z′∈Σ|z|

Pr
[
X [j] = z′

]
u(z′, j) . (A.7)

A.2.2 Efficient Recursive Computation of POIMs

In the following we derive efficient recursions to compute Q(z, j) for the general case of
Markov chains of order d. From (Equation (A.7)) we see that we can compute Q(z, j)
by summing over the index set I(z, j) only (instead of I). However, even the reduced
set I(z, j) of relevant POs is too large to allow for efficient naive summation over it for
each PO (z, j). We thus develop an efficient recursive algorithm which will allow for
use of efficient tree structures. The crucial idea is to treat the POs in I(z, j) separately
according to their relative position to (z, j). To do so for the general Markov chain
of order d, we subdivide the set I(z, j) into substrings, superstrings, left neighbours of
(z, j) with gaps of at most d−1, and right neighbours of (z, j) with gaps of at most d−1.
We reproduce the formal definition from Section 4.2.2 of these terms here (cf. Figure
4.7 for an illustration).

Definition A.4.

(substrings) I∨(z, j) := { (y, i) ∈ I(z, j) | i ≥ j and |y|+ i ≤ |z|+ j }
(superstrings) I∧(z, j) := { (y, i) ∈ I(z, j) | i ≤ j and |y|+ i ≥ |z|+ j }

(left p. o.) I<(z, j) := { (y, i) ∈ I(z, j) | i < j and |y|+ i < |z|+ j and |y|+ i− 1 ≥ j }
(right p. o.) I>(z, j) := { (y, i) ∈ I(z, j) | i > j and |y|+ i > |z|+ j and |z|+ j − 1 ≥ i }

With these sets we can decompose u(z, j) defined in (Equation (A.5)) as follows (note
that (z, j) is element of both I∨(z, j) and I∧(z, j), and that w(z,j) is thus counted twice):

u(z, j) = u∨(z, j) + u∧(z, j) + u<(z, j) + u>(z, j)− w(z,j) ,

where, for each ⋆ ∈ {∨,∧, >, <}:

u⋆(z, j) :=
∑

(y,i)∈I⋆(z,j)

Pr [X [i] = y |X [j] = z] w(y,i) .

We further define the auxilliary conditional sums of left and right extensions of z ∈ Σp:

L(z, j) :=

K−p∑

k=0

∑

t∈Σk

Pr
[
X [j − k] = tz

∣∣X [j] = z
]

︸ ︷︷ ︸
=Pr
[
X[j−k]=t

∣∣X[j]=z
]

w(tz,j−k)

R(z, j) :=

K−p∑

k=0

∑

t∈Σk

Pr
[
X [j] = zt

∣∣X [j] = z
]

︸ ︷︷ ︸
=Pr
[
X[j+p]=t

∣∣X[j]=z

]
w(zt,j) .

As the following theorem shows, u∨(z, j), u∧(z, j), L(z, j) and R(z, j) can be computed
recursively, in a way which will enable us to use efficient tree data structures for their
computation. Additionally, u>(z, j) and u>(z, j) can be computed from the tables of
values of L(z, j) and R(z, j). This theorem, together with Equation (A.5) and (A.7),
enables us to compute PO importance matrices efficiently.

Theorem A.5 (Computing POIMs for Markov chains of order d). Let the sequences
X be Markov chains of order d. For 0 ≤ |z| ≤ K − 2 and σ, τ ∈ Σ, we then have the

A.2 Computation of Positional Oligomer Importances 127

following upward recursion for substrings:

u∨(σ, j) = w(σ,j)

u∨(σzτ, j) = w(σzτ,j) + u∨(σz, j) + u∨(zτ, j + 1)− u∨(z, j + 1) .

Further, for 2 ≤ p ≤ K, p := |z|, we have the following downward recursions for
superstrings and neighbour sequences:

u∧(z, j) = w(z,j) −
1

Pr [X [j] = z]

X

(σ,τ)∈Σ2

Pr [X [j + 1] = σzτ] u∧(σzτ, j − 1)

+
1

Pr [X [j] = z]

"

X

σ∈Σ

Pr [X [j] = σz] u∧(σz, j − 1) +
X

τ∈Σ

Pr [X [j + 1] = zτ] u∧(zτ, j)

#

u<(z, j) =
X

t∈Σd

X

σ∈Σ

Pr [X [j − d − 1] = σt]

Pr [X [j − d] = t]

min{p+d,K}−1
X

l=1

L
“

σ((tz)[1]l), j − d − 1
”

(A.8)

u>(z, j) =
X

t∈Σd

X

τ∈Σ

Pr [X [j + p] = tτ]

Pr [X [j + p] = t]

min{p+d,K}−1
X

l=1

R
“

(zt)[p + d − l + 1]lτ, j + p + d − l
”

, (A.9)

with the recursion anchored at too long sequences by u∧(z, j) = 0, u<(z, j) = 0, and
u>(z, j) = 0 for p = |z| ≤ K. Here L and R are computed recursively for p ≤ K by

L(z, j) = w(z,j) +
∑

σ∈Σ

Pr [X [j − 1] = σz]

Pr [X [j] = z]
L(σz, j − 1) (A.10)

R(z, j) = w(z,j) +
∑

τ∈Σ

Pr [X [j] = zτ]

Pr [X [j] = z]
R(zτ, j) , (A.11)

with L(z, j) = R(z, j) = 0 otherwise (i.e., for p > K).

Proof. We show how to compute the values of the functions u∨, u∧, u<, and u> recur-
sively. Recall first that for general Markov chains of order d

Pr [X [i] = y] =
d∏

l=1

Pr
[
X [i + l − 1] = y [l]

∣∣∣X[i]l−1 = y[1]l−1
]

×
|y|∏

l=d+1

Pr
[
X [i + l − 1] = y [l]

∣∣∣X[i + l − d− 1]d = y[l − d]d
]

.

Substrings Note that for any substring (y, i) ∈ I∨(z, j), it holds that
Pr [X [i] = y |X [j] = z] = 1. Therefore, u∨(z, j) =

∑
(y,i)∈I∨(z,j) w(y,i).

For |z| ≥ 2, let σ, τ ∈ Σ such that z = σtτ . Then the following set relations are easy to
see:

I∨(z, j) = {(z, j)} ∪ I∨(σt, j) ∪ I∨(tτ, j + 1)

I∨(σt, j) ∩ I∨(tτ, j + 1) = I∨(t, j + 1)

I∨(σt, j) ∩ {(z, j)} = ∅
I∨(tτ, j + 1) ∩ {(z, j)} = ∅ .

128

Thus, for |z| ≥ 2, we can set up the following recursion:

u∨(z, j) =
∑

(y,i)∈I∨(z,j)

w(y,i)

= w(z,j) +
∑

(y,i)∈I∨(σt,j)

w(y,i) +
∑

(y,i)∈I∨(tτ,j+1)

w(y,i) −
∑

(y,i)∈I∨(t,j+1)

w(y,i)

= w(z,j) + u∨(σt, j) + u∨(tτ, j + 1)− u∨(t, j + 1) .

Superstrings For superstrings (y, i) ∈ I∧(z, j), it is easy to see that

Pr [X [i] = y |X [j] = z] =
Pr [X [i] = y ∧ X [j] = z]

Pr [X [j] = z]
=

Pr [X [i] = y]

Pr [X [j] = z]
.

Note that

I∧(z, j) = {(z, j)} ∪
[
⋃

σ∈Σ

I∧(σz, j − 1)

]
∪
[
⋃

σ∈Σ

I∧(zσ, j)

]

I∧(σz, j − 1) ∩ I∧(zτ, j) = I∧(σzτ, j − 1), ∀σ, τ ∈ Σ
I∧(σz, j − 1) ∩ {(z, j)} = ∅, ∀σ ∈ Σ
I∧(zτ, j) ∩ {(z, j)} = ∅, ∀τ ∈ Σ

I∧(σzτ, j − 1) ∩ I∧(σ′zτ ′, j − 1) = ∅, ∀(σ, τ) 6= (σ′, τ ′)
I∧(σz, j − 1) ∩ I∧(σ′z, j − 1) = ∅, ∀σ 6= σ′

I∧(zτ, j) ∩ I∧(zτ ′, j) = ∅, ∀τ 6= τ ′ .

Thus
[
⋃

σ∈Σ

I∧(σz, j − 1)

]
∩
[
⋃

σ∈Σ

I∧(zσ, j)

]
=

⋃

(σ,τ)∈Σ2

(
I∧(σz, j − 1) ∩ I∧(zτ, j)

)

=
⋃

(σ,τ)∈Σ2

(
I∧(σzτ, j − 1)

)

and therefore

∑

(y,i)∈I∧(z,j)

· · · =
∑

(y,i)=(z,j)

· · ·+
∑

(y,i)∈[
S

σ∈Σ I∧(σz,j−1)]

· · ·

+
∑

(y,i)∈[
S

σ∈Σ I∧(zσ,j)]

· · · −
∑

(y,i)∈
S

(σ,τ)∈Σ2 (I∧(σzτ,j−1))

· · ·

=
∑

(y,i)=(z,j)

· · ·+
∑

σ∈Σ

∑

(y,i)∈I∧(σz,j−1)

· · ·+
∑

τ∈Σ

∑

(y,i)∈I∧(zτ,j)

· · ·−
∑

(σ,τ)∈Σ2

∑

(y,i)∈I∧(σzτ,j−1)

· · ·

A.2 Computation of Positional Oligomer Importances 129

It follows that

u∧(z, j) =
1

Pr [X [j] = z]

∑

(y,i)∈I∧(z,j)

Pr [X [i] = y]w(y,i)

=
1

Pr [X [j] = z]

[
Pr [X [j] = z]w(z,j) +

∑

σ∈Σ

∑

(y,i)∈I∧(σz,j−1)

Pr [X [i] = y] w(y,i)

+
∑

τ∈Σ

∑

(y,i)∈I∧(zτ,j−1)

Pr [X [i] = y] w(y,i)

−
∑

(σ,τ)∈Σ2

∑

(y,i)∈I∧(σzτ,j+1)

Pr [X [i] = y] w(y,i)

]

By considering the definition of u∧ and correcting for the conditional probabilities, we
can set up the following recursion:

u∧(z, j) = w(z,j) −
1

Pr [X [j] = z]

∑

(σ,τ)∈Σ2

Pr [X [j − 1] = σzτ]u∧(σzτ, j − 1)

+
1

Pr [X [j] = z]

∑

σ∈Σ

[
Pr [X [j − 1] = σz]u∧(σz, j − 1) + Pr [X [j] = zσ]u∧(zσ, j)

]
.

Left and right neighbours Recall the definition of L(z, j) and R(z, j) as unions of sets
containing all strings with the same suffix respectively prefix z of length p := |z|:

L(z, j) :=

K−p⋃

l=0

{
(tz, j − l)

∣∣∣ t ∈ Σl
}

, R(z, j) :=

K−p⋃

l=0

{
(zt, j)

∣∣∣ t ∈ Σl
}

,

Generalizing the zeroth-order case in (Equation (A.12)) and (Equation (A.13)) to d ≥ 0,
they allow us to further decompose the sets of left and right neighbours as unions of
disjoint sets with fixed prefixes and suffixes:

I<(z, j) =
⋃

t∈Σd

⋃

σ∈Σ

p+d−1⋃

l=1

L
(
σ((tz)[1]l), j − d− 1

)

I>(z, j) =
⋃

t∈Σd

⋃

τ∈Σ

p+d−1⋃

l=1

R
(
(zt)[p + d− l + 1]lτ, j

)
.

Thus we can write

u<(z, j) =
∑

t∈Σd

∑

σ∈Σ

p+d−1∑

l=1

∑

(y,i)∈L(σ((tz)[1]l),j−d−1)

Pr [X [i] = y |X [j] = z] w(y,i)

u>(z, j) =
∑

t∈Σd

∑

τ∈Σ

p+d−1∑

l=1

∑

(y,i)∈R((zt)[p+d−l+1]lτ,j)

Pr [X [i] = y |X [j] = z] w(y,i) .

By considering the definition of L and R and correcting for the conditional probabilities
we obtain Equation (A.8) and (A.9).

130

A.2.3 Applications

Using Theorem A.5 we can now derive efficient recursions for zeroth-order Markov and
uniform background distributions.

Recursive computation of Q(z, j) for the zeroth-order Markov distribution For the
special case of the zeroth-order Markov distribution, i.e., d = 0, the equations in Theo-
rem A.5 simplify considerably. First, note that dependence of two POs (y, i) and (z, j)
is easy to check: in all but degenerate cases, dependence is equivalent with being over-
lapping in X. Thus, instead of considering neighbours with distances up to d − 1, we
can now focus on overlaps.
The second simplification is that the zeroth-order Markov model decouples the positions
completely, i.e., we have an independent single-symbol distribution at each position.
Thus the probabilities in the theorem can be computed simply by

Pr [X [i] = y] =

|y|∏

l=1

Pr [X [i + l − 1] = y [l]] .

To aid in understanding the recursions, we additionally define the following unions
of sets containing all strings with the same suffix respectively prefix z, i.e., complete
overlaps of the positional p-mer z:

L(z, j) :=

K−p⋃

l=0

{
(tz, j − l)

∣∣∣ t ∈ Σl
}

, R(z, j) :=

K−p⋃

l=0

{
(zt, j)

∣∣∣ t ∈ Σl
}

,

Now we can decompose left and right partial overlaps as unions of sets with fixed prefixes
and suffixes:

I<(z, j) =
⋃

σ∈Σ

p−1⋃

l=1

L
(
σ(z[1]l), j − 1

)
(A.12)

I>(z, j) =
⋃

τ∈Σ

p−1⋃

l=1

R
(
z[p− l + 1]lτ, j

)
. (A.13)

The structure of these equations is mimiked by the recursions in the following theorem.

Corollary A.6 (Markov Chains of order 0)). Let the sequences X be Markov chains of
order 0. For 2 ≤ p ≤ K, p := |z|, we then have the following downward recursions for
superstrings and partial overlaps:

u∧(z, j) = w(z,j) −
∑

(σ,τ)∈Σ2

Pr [X[j − 1] = σ] Pr [X[j + p] = τ]u∧(σzτ, j − 1)

+
∑

σ∈Σ

Pr [X[j − 1] = σ]u∧(σz, j − 1) +
∑

τ∈Σ

Pr [X[j + p] = τ]u∧(zτ, j)

u<(z, j) =
∑

σ∈Σ

Pr [X[j − 1] = σ]

min{p,K}−1∑

l=1

L
(
σ(z[1]l), j − 1

)

u>(z, j) =
∑

τ∈Σ

Pr [X[j + p] = τ]

min{p,K}−1∑

l=1

R
(
z[p− l + 1]lτ, j + p− l

)
,

A.2 Computation of Positional Oligomer Importances 131

where L and R are computed recursively by

L(z, j) = w(z,j) +
∑

σ∈Σ

Pr [X [j − 1] = σ] L(σz, j − 1)

R(z, j) = w(z,j) +
∑

τ∈Σ

Pr [X [j + p] = τ] R(zτ, j) .

Recursive computation of Q(z, j) for the uniform distribution We will also state the
following corollary for the simplest possible case, for the uniform distribution over X
(with length length |X| = lx), for which

Pr [X = x] = |Σ|−lx .

It is easy to see that this is equivalent to the assumption that at each position in the
sequence, each element of the alphabet Σ is equally likely with probability 1/|Σ|. It also
implies that single characters at each position are independent of characters at all other
positions, and Pr [X [j] = z] = |Σ|−p, where p = |z|. This makes the computation of
PO importances much easier.

Corollary A.7 (Uniform distribution). For the uniform distribution, with the notations
from above, the PO importances Q(z, j) = u(z, j)− v(z, j) can be computed from

Q(z, j) = u(z, j)− 1

|Σ|p
∑

z′∈Σp

u(z′, j)

by the partial terms

u∧(z, j) = w(z,j) −
1

|Σ|2
∑

(σ,τ)∈Σ2

u∧(σzτ, j − 1) +
1

|Σ|
∑

σ∈Σ

u∧(σz, j − 1) +
1

|Σ|
∑

τ∈Σ

u∧(zτ, j)

u<(z, j) =
1

|Σ|
∑

σ∈Σ

p−1∑

l=1

L(σz[1]l, j − 1)

u>(z, j) =
1

|Σ|
∑

τ∈Σ

p−1∑

l=1

R(z[p− l + 1]lτ, j + p− l) ,

and L and R are computed recursively by

L(z, j) = w(γ,j) +
1

|Σ|
∑

σ∈Σ

L(σz, j − 1)

R(z, j) = w(γ,j) +
1

|Σ|
∑

τ∈Σ

R(zτ, j) .

132

B Data Generation and Model Parameters

B.1 Toy Sequence Data

We generated 11, 000 sequences of length 50, where the symbols of the alphabet
{A, C, G, T} follow a uniform distribution. We chose 1, 000 of these sequences to be
positive examples and hid two motifs of length seven: at position 10 and 30 the mo-
tifs GATTACA and AGTAGTG, respectively. The remaining 10, 000 examples were used as
negatives. Thus, the ratio between examples of class +1 and class −1 is ≈ 9%. In the
positive examples, we then randomly replaced s ∈ {0, 2, 4, 5} symbols in each motif.
Leading to four different data sets, which where randomly permuted and split such that
the first 1, 000 examples became training and the remaining 10, 000 validation examples.

B.2 Splice Site Sequences

C. elegans

We collected all known C. elegans ESTs from Wormbase (Harris et al., 2004) (release
WS118; 236,868 sequences), dbEST (Boguski and Tolstoshev, 1993) (as of February 22,
2004; 231,096 sequences) and UniGene (Wheeler et al, 2003) (as of October 15, 2003;
91,480 sequences). Using blat (Kent, 2002) we aligned them against the genomic DNA
(release WS118). We refined the alignment by correcting typical sequencing errors, for
instance by removing minor insertions and deletions. If an intron did not exhibit the
GT/AG or GC/AG dimers at the 5’ and 3’ ends, respectively, then we tried to achieve this
by shifting the boundaries up to 2 nucleotides. For each sequence, we determined the
longest open reading frame (ORF) and only used the part of each sequence within the
ORF. In a next step we merged agreeing alignments, leading to 135,239 unique EST-
based sequences. We repeated the above with all known cDNAs from Wormbase (release
WS118; 4,848 sequences) and UniGene (as of October 15, 2003; 1,231 sequences), which
lead to 4,979 unique sequences. We removed all EST matches fully contained in the
cDNA matches, leaving 109,693 EST-based sequences.
We clustered the sequences to obtain independent training, validation and test sets. In
the beginning, each of the above EST and cDNA sequences were in a separate cluster.
We iteratively joined clusters, if any two sequences from distinct clusters a) match to
the genome at most 100nt apart (this includes many forms of alternative splicing) or
b) have more than 20% sequence overlap (at 90% identity, determined by using blat).
We obtained 17,763 clusters with a total of 114,672 sequences. There are 3,857 clusters
that contain at least one cDNA. Finally, we removed all clusters that showed alternative
splicing.
Since the resulting data set is still too large, we only used sequences from randomly
chosen 20% of clusters with cDNA and 30% of clusters without cDNA to generate true
acceptor splice site sequences (15,507 of them). Each sequence is 398nt long and has
the AG dimer at position 200. Negative examples were generated from any occurring
AG within the ORF of the sequence (246,914 of them were found). We used a random
subset of 60, 000 examples for testing, 100, 000 examples for parameter tuning and up

133

134

NN269 DGSplicer
Acceptor Donor Acceptor Donor

Sequence length 90 15 36 18

Consensus positions AG at 69 GT at 8 AG at 26 GT at 10

Train total 5788 5256 322156 228268
Fraction positives 19.3% 21.2% 0.6% 0.8%

Test total 1087 990 80539 57067
Fraction positives 19.4% 21.0% 0.6% 0.8%

Table B.1: Characteristics of the NN269 and DGSplicer data sets containing true and decoy acceptor
and donor splice sites derived from the human genome.

to 100, 000 examples for training (unless stated otherwise).

B.2.1 NN269 and DGSplicer data sets

For the pilot study, we use the NN269 and the DGSplicer data sets originating from
Reese et al. (1997) and Baten et al. (2006a), respectively. The data originates from
FruitFly (a) and the training and test splits can be downloaded from Degroeve et al.
(2005b). The data sets only include sequences with the canonical splice site dimers AG

and GT. We use the same split for training and test sets as used in Baten et al. (2006a).
A description of the properties of the data set is given in Table B.1.

B.2.2 Worm, fly, cress, fish, and human

We collected all known ESTs from dbEST (Boguski and Tolstoshev, 1993) (as
of February 28, 2007; 346,064 sequences for worm, 514,613 sequences for fly,
1,276,130 sequences for cress, 1,168,572 sequences for fish, and 7,915,689 se-
quences for human). We additionally used EST and cDNA sequences available
from wormbase (Wormbase) for worm, (file confirmed genes.WS170) FruitFly (b)
for fly, (files na EST.dros and na dbEST.same.dmel) A.thaliana for cress, (files
cDNA flanking 050524.txt and cDNA full reading 050524.txt) Ensemble for fish,
(file Danio rerio.ZFISH6.43.cdna.known.fa) and Mammalian Gene Collection for
fish and human (file dr mgc mrna.fasta for fish and hs mgc mrna.fasta for human).
Using blat (Kent, 2002) we aligned ESTs and cDNA sequences against the genomic
DNA (releases WS170, dm5, ath1, zv6, and hg18, respectively). If the sequence could
not be unambiguously matched, we only considered the best hit. The alignment was
used to confirm exons and introns. We refined the alignment by correcting typical se-
quencing errors, for instance by removing minor insertions and deletions. If an intron
did not exhibit the consensus GT/AG or GC/AG at the 5’ and 3’ ends, we tried to achieve
this by shifting the boundaries up to two base pairs (bp). If this still did not lead to the
consensus, then we split the sequence into two parts and considered each subsequence
separately. Then, we merged alignments if they did not disagree and if they shared at
least one complete exon or intron.
In a next step, we clustered the alignments: In the beginning, each of the above EST
and cDNA alignments were in a separate cluster. We iteratively joined clusters, if any
two sequences from distinct clusters match to the same genomic location (this includes
many forms of alternative splicing).
From the clustered alignments we obtained a compact splicing graph representation
(Ong and Rätsch, 2008), which can be easily used to generate a list of positions of true

B.3 Transcription Start Sites 135

acceptor and donor splice sites. Within the boundaries of the alignments (we cut out
10nt at both ends of the alignments to exclude potentially undetected splice sites), we
identified all positions exhibiting the AG, GT or GC dimer and which were not in the list
of confirmed splice sites. The lists of true and decoy splice site positions were used to
extract the disjoint training, validation and test sets consisting of sequences in a window
around these positions. Additionally, we divided the whole genome into regions, which
are disjoint contiguous sequences containing at least two complete genes; if an adjacent
gene is less than 250 base pairs away, we merge the adjacent genes into the region. Genes
in the same region are also assigned to the same cross-validation split. The splitting was
implemented by defining a linkage graph over the regions and by using single linkage
clustering. The splits were defined by randomly assigning clusters of regions to the split.

B.3 Transcription Start Sites

Both for training our transcription start site finder and for assessing its accuracy we
need known transcription start sites (TSS) as well as known non-TSS.

Datasets for Training and Model-Evaluation

To generate TSS data for training, we use dbTSS (Suzuki et al., 2002) version 4
(“dbTSSv4”), which is based on the human genome sequence and annotation version
16 (“hg16”). It contains transcription start sites of 12763 RefSeq genes (Pruitt et al.,
2005). First, we extract RefSeq identifiers from dbTSSv4 and then obtain the cor-
responding mRNA sequences using NCBI nucleotide batch retrieval.1 Next, we align
these mRNAs to the hg16 genome using BLAT (Kent, 2002).2 From dbTSS we ex-
tracted putative TSS positions (Field: Position of TSS), which we compared with the
best alignment of the mRNA. We discard all positions that do not pass all of the fol-
lowing checks: 1. Chromosome and strand of the TSS position and of the best BLAT
hit match. 2. The TSS position is within 100 base pairs from the gene start as found
by the BLAT alignment. 3. No already processed putative TSS is within 100bp of the
current one. This procedure leaves us with 8508 genes, each annotated with gene start
and end. To generate positive training data, we extract windows of size [−1000, +1000]
around the putative TSS.
To discriminatively train a classifier, one also needs to generate “negative” data. How-
ever there is no single natural way of doing this: since there are further yet unknown TSS
hidden in the rest of the genome, it is dangerous to sample negative points randomly
from it. We choose to proceed in a similar way to Bajic et al. (2004) by extracting
“negative” points (again, windows of size [−1000, +1000]) from the interior of the gene.
More precisely, we draw 10 negatives at random from locations between 100bp down-
stream of the TSS and the end of the gene.3 We finally obtain 8508 positive and 85042
negative examples, of which we will use 50% for training a TSS classifier and 50% for
validating it. The final evaluation will be done on a differently generated test dataset
(see below).

1http://ncbi.nih.gov/entrez/batchentrez.cgi?db=Nucleotide
2We used the options -tileSize=16 -minScore=100 -minMatch=4 -minIdentity=98 -t=dna -q=rna.
3If a gene is too short, fewer or even no negative examples are extracted from that particular gene.

http://ncbi.nih.gov/entrez/batchentrez.cgi?db=Nucleotide

136

Genome-Wide Human Test Dataset

To allow for a fair comparison of promoter detectors, one needs to create a proper test set
such that no promoter detector has seen the examples in training. We decide to take all
“new” genes from dbTSSv5 (Yamashita et al., 2006) (which is based on hg17) for which
a representative TSS was identified (i.e., the field “The selected representative TSS”
is not empty). From dbTSSv5, we remove all genes that already appear in dbTSSv4
according to the RefSeq NM identifier. To take care of cases in which IDs changed
over time or are not unique, we also remove all genes from dbTSSv5 for which mRNAs
overlap by more than 30%. This leads to a total of 1,024 TSS to be used in a comparative
evaluation. The comparison is done on this test set using chunk sizes 50 and 500
as resolutions (cf. Section 5.4.2), which results in 1,588 (943) positives and 1,087,664
(108,783) negatives. In 816 (67) cases, the TSS fall into two chunks.

B.4 Generating Genestructure and Sequence Data for

Caenorhabditis elegans

EST Sequences and cDNA Sequences

EST Sequences

We collected all known C. elegans ESTs from Wormbase (Harris et al., 2004) (release
WS120; 236,893 sequences) and dbEST (Boguski and Tolstoshev, 1993) (as of February
22, 2004; 231,096 sequences). Using blat (Kent, 2002) we aligned them against the
genomic DNA (release WS120). The alignment was used to confirm exons and introns.
We refined the alignment by correcting typical sequencing errors, for instance by re-
moving minor insertions and deletions. If an intron did not exhibit the consensus GT/AG
or GC/AG at the 5’ and 3’ ends, then we tried to achieve this by shifting the boundaries
up to 2 base pairs (bp). If this still did not lead to the consensus, then we split the
sequence into two parts and considered each subsequence separately. In a next step we
merged alignments, if they did not disagree and shared at least one complete exon or
intron. This lead to a set of 124,442 unique EST-based sequences.

cDNA Sequences

We repeated the above procedure with all known cDNAs from Wormbase (release
WS120; 4,855 sequences). These sequences only contain the coding part of the mRNA.
We use their ends as annotation for start and stop codons.

Clustering and Splitting

Clustering

We clustered the sequences to obtain independent training, validation and test sets. In
the beginning, each of the above EST and cDNA sequences were in a separate cluster.
We iteratively joined clusters, if any two sequences from distinct clusters match to the
same genomic location (this includes many forms of alternative splicing). We obtained
21,086 clusters, while 4072 clusters contained at least one cDNA.

B.5 Splicing Model Selection Parameters 137

Splitting into Training, Validation and Test Sets

For the training set we chose 40% of the clusters containing at least one cDNA (1536)
and all clusters not containing a cDNA (17215). For the validation set, we used 20%
of clusters with cDNA (775). The remaining 40% of clusters with at least one cDNA
(1,560) was filtered to remove confirmed alternative splice forms. This left 1,177 cDNA
sequences for testing with an average of 4.8 exons per gene and 2,313bp from the 5’ to
the 3’ end.

B.5 Splicing Model Selection Parameters

In this section the parameter values explored in model selection for the NN269,
DGSplicer and genome-wide splice site detectors are listed. Table B.2 shows the parame-
ter values for NN269 and DGSplicer acceptor and donor tasks and Table B.3 the optimal
parameter setting. Table B.4 displays the optimal parameter settings obtained in model
selection of the genome-wide donor and acceptor splice site predictors from Section 5.3.
Further information like genome-wide predictions, custom tracks and a stand-a-lone tool
are available from http://www.fml.tuebingen.mpg.de/raetsch/projects/splice/.

Name MC LIK
N269 d ∈ {3, 4, 5, 6, 7, 8} C ∈ {0.25, 0.5, 0.75, 1, 2, 5, 10, 20}
Acceptor π+ ∈ {0.001, 0.1, 1, 8, 10, 100, 1000, 104, 105} l ∈ {1, 2, 3, 4, 5, 6}

π− ∈ {0.001, 0.1, 1, 8, 10, 100, 150, 1000, 105, 106, 107} d ∈ {1, 2, 3, 4, 5}
NN269 d ∈ {3, 4, 5, 6, 7, 8} C ∈ {0.25, 0.5, 0.75, 1, 2, 5, 10, 20}
Donor π+ ∈ {0.001, 0.1, 1, 8, 10, 100, 1000, 104, 105} l ∈ {1, 2, 3, 4, 5, 6}

π− ∈ {0.001, 0.1, 1, 8, 10, 100, 150, 1000, 105, 106, 107} d ∈ {1, 2, 3, 4, 5}
DGSplicer d ∈ {3, 4, 5, 6, 7, 8} -
Acceptor π+ ∈ {0.001, 0.1, 1, 8, 10, 100, 1000, 104, 105}

π− ∈ {0.001, 0.1, 1, 8, 10, 100, 150, 1000, 105, 106, 107} -
DGSplicer d ∈ {3, 4, 5, 6, 7, 8} -
Donor π+ ∈ {0.001, 0.1, 1, 8, 10, 100, 1000, 104, 105}

π− ∈ {0.001, 0.1, 1, 8, 10, 100, 150, 1000, 105, 106, 107}

Name WD WDS1 WDS2
NN269 C ∈ {0.1, 1, 2, 5, 10} C ∈ {0.1, 1, 2, 5, 10} C ∈ {2, 5, 10}
Acceptor d ∈ {5, 10, 15, 18, 20, 25, 28, 30} d ∈ {5, 10, 15, 18, 20, 25, 28, 30} d ∈ {20, 25, 28}

S ∈ {5, 10} Sv ∈ {4, 8, 16}
NN269 C ∈ {0.1, 1, 2, 5, 10} C ∈ {0.1, 1, 2, 5, 10} C ∈ {0.1, 1, 2}
Donor d ∈ {5, 10, 15, 18, 20, 25, 28, 30} d ∈ {5, 10, 15, 18, 20, 25, 28, 30} d ∈ {18, 20, 22}

S ∈ {5, 10} Sv ∈ {0.5, 0.7, 1.4, 2.8, 7, 14}
DGSplicer C ∈ {0.1, 1, 2, 5, 10} C ∈ {0.1, 1, 2, 5, 10} C ∈ {0.1, 0.5, 1, 2, 5, 10}
Acceptor d ∈ {5, 10, 15, 18, 20, 25, 28, 30} d ∈ {5, 10, 15, 18, 20, 25, 28, 30} d ∈ {18, 20, 2230}

S ∈ {5, 10} Sv ∈ {0.9, 1.5, 3, 6, 9}
DGSplicer C ∈ {0.1, 1, 2, 5, 10} C ∈ {0.1, 1, 2, 5, 10} C ∈ {0.5, 1, 2}
Donor d ∈ {5, 10, 15, 18, 20, 25, 28, 30} d ∈ {5, 10, 15, 18, 20, 25, 28, 30} d ∈ {18, 20, 22}

S ∈ {5, 10} Sv ∈ {0.9, 1.8, 3.6, 9, 18}

Table B.2: Parameter values explored in model selection for NN269 and DGSplicer acceptor and donor
tasks, for the Markov Chain (MC), Locality Improved Kernel (LIK) and Weighted Degree (WD) kernels
(cf. Section 1.2 and 2.3). π± denotes the pseudo count of the Markov chain (cf. Section 1.2), S and Sv

denote the shift parameter of the Weighted Degree kernel with shifts (WDS1 and WDS2), with S(l) = S
in one experiment and S(l) = Sv|p− l| in the other experiment. Here p is the position of the splice site:
the further away a motif is from the splice site, the less precisely it needs to be localised in order to
contribute to the kernel value.

http://www.fml.tuebingen.mpg.de/raetsch/projects/splice/

138

Name PSSM LIK WD WDS1 WDS2

NN269 Acceptor d = 3 C = 0.5 C = 2.0 C = 5.0 C = 2.0
π+ = 0.1 l = 2 d = 25 d = 25 d = 20
π− = 8 d = 3 S = 10 Sv = 4.0

NN269 Donor d = 3 C = 10.0 C = 0.1 C = 1.0 C = 0.5
π+ = 10 l = 6 d = 5 d = 20 d = 22
π− = 10 d = 3 S = 5 Sv = 2.8

DGSplicer Acceptor d = 3 - C = 2.0 C = 2.0 C = 2.0
π+ = 8 d = 30 d = 20 d = 22
π− = 1000 S = 10 Sv = 1.5

DGSplicer Donor d = 3 - C = 2.0 C = 2.0 C = 0.5
π+ = 10 d = 30 d = 20 d = 22
π− = 1000 S = 5 Sv = 3.6

Table B.3: Final model parameters for NN269 and DGSplicer acceptor and donor tasks. These param-
eters were determined through partial 10-fold crossvalidation on the training sets. See Table B.2 for an
explanation of the parameters.

window C d Sv π+ π− type method

H. sapiens

199 + [−60, +80] 3 22 0 - - acceptor WD-SVM
199 + [−60, +80] 3 22 0.3 - - acceptor WDS-SVM
199 + [−25, +25] - 3 - 10 1000 acceptor MCs
199 + [−80, +60] 3 22 0 - - donor WD-SVM
199 + [−80, +60] 3 22 0.3 - - donor WDS-SVM
199 + [−17, +18] - 3 - 0.01 1000 donor MCs

A. thaliana

199 + [−60, +80] 3 22 0 - - acceptor WD-SVM
199 + [−60, +80] 3 22 0.5 - - acceptor WDS-SVM
199 + [−80, +80] - 4 - 10 1 acceptor MCs
199 + [−80, +60] 3 26 0 - - donor WD-SVM
199 + [−80, +60] 3 22 0.5 - - donor WDS-SVM
199 + [−80, +80] - 4 - 10 10 donor MCs

C. elegans

199 + [−60, +80] 3 22 0 - - acceptor WD-SVM
199 + [−60, +80] 3 22 0.3 - - acceptor WDS-SVM
199 + [−25, +25] - 3 - 10 1000 acceptor MCs
199 + [−80, +60] 3 22 0 - - donor WD-SVM
199 + [−80, +60] 3 22 0.3 - - donor WDS-SVM
199 + [−17, +18] - 3 - 0.01 1000 donor MCs

D. rerio

199 + [−60, +80] 3 22 0 - - acceptor WD-SVM
199 + [−60, +80] 3 22 0.3 - - acceptor WDS-SVM
199 + [−60, +60] - 3 - 0 1000 acceptor MCs
199 + [−80, +60] 3 22 0 - - donor WD-SVM
199 + [−80, +60] 3 22 0.3 - - donor WDS-SVM
199 + [−60, +60] - 3 - 0 1000 donor MCs

Table B.4: Optimal parameter settings for the in Section 5.3 considered genome-wide splice site detec-
tors. Weighted Degree kernel based SVM (WD-SVM), Weighted Degree kernel with shifts (WDS-SVM),
Markov Chain (MC) for the donor and acceptor splice site.

C Shogun

SHOGUN is a machine learning toolbox with focus on kernel methods, and especially
on Support Vector Machines (SVMs) and contains implementations of all the algo-
rithms presented in this doctoral thesis. It provides a generic SVM object interfac-
ing to several different SVM implementations, among them the state of the art SVM-
light (Joachims, 1999), LibSVM (Chang and Lin, 2001), GPDT (Zanni et al., 2006),
SVMLin (V. Sindhwani, 2007) and OCAS (Franc and Sonnenburg, 2008). Each of the
SVMs can be combined with a variety of kernels. The toolbox not only provides
efficient implementations of the most common kernels, like the Linear, Polynomial,
Gaussian and Sigmoid Kernel but also comes with several recent string kernels such as
the Locality Improved (Zien et al., 2000), Fisher (Jaakkola and Haussler, 1999), TOP
(Tsuda et al., 2002a), Spectrum (Leslie et al., 2002), Weighted Degree Kernel (with
shifts) (Rätsch and Sonnenburg, 2004, Rätsch et al., 2005). For the latter, the efficient
linadd (Sonnenburg et al., 2007a) optimisations are implemented. A detailed descrip-
tion of the string kernels and the linadd algorithm are also given Chapter 2 and 3.
SHOGUN also offers the freedom of working with custom pre-computed kernels. One
of its key features is the ”combined kernel” that can be constructed by a weighted
linear combination of a multiple sub-kernels, each of which not necessarily working on
the same domain. An optimal sub-kernel weighting can be learnt using Multiple Ker-
nel Learning (Sonnenburg et al., 2006a) and also Section 4.1. Currently SVM two-and
multiclass classification and regression problems can be handled. However, SHOGUN
also implements many linear methods like Linear Discriminant Analysis (LDA), Linear
Programming Machine (LPM), (Kernel) Perceptrons and features algorithms to train
hidden markov models. The input feature-objects can be dense, sparse or strings and of
Integer (8,16,32 or 64bit wide signed or unsigned) or Floatingpoint (32 or 64bit) and can
be converted into different feature types. Chains of ”preprocessors” (e.g., subtracting
the mean) can be attached to each feature object allowing for on-the-fly pre-processing.
In addition, the performance measures mentioned in Section 5.1 are implemented in
SHOGUN.
It provides user interfaces of two types: Static and modular interfaces to various script-
ing languages (stand-a-lone command-line, python, octave, R, matlab).
SHOGUN is available from http://www.shogun-toolbox.org and licensed under the
GNU General Public License version 3 or later.
All classes and functions are documented and come with numerous examples. Code
quality is ensured by a test suite running the algorithms for each interface on different
inputs detecting breakage.

C.1 Modular, Extendible Object Oriented Design

SHOGUN is implemented in an object oriented way using C++ as programming lan-
guage. All objects inherit from CSGObject, which provides means for garbage collection
via reference counting and also I/O and versioning information of the object. Many
classes make heavy use of templates, which is one of the reasons why shogun sup-
ports many different data types without code duplication. As the source code and user

139

http://www.shogun-toolbox.org

140

Figure C.1: SHOGUNs internal object oriented class design, explained using the classifier class hierarchy
(autogenerated using doxygen)

documentation is automatically generated using doxygen and written in-place in the
header files, it also drastically reduces the amount of work needed (following the DRY
(don’t repeat yourself) principle) to maintain the documentation. As and example to
SHOGUNs object oriented design, consider the class CClassifier: From this class, e.g.,
CKernelMachine is derived and provides basic functions to apply a trained kernel clas-
sifier (computing f(x) =

∑N
i=1 αi k(x,xi) + b). The same holds for CDistanceMachine

and CLinearClassifier (which provides f(x) = w · x + b).

C.2 Interfaces to Scripting Languages and Applications

The core of SHOGUN consists of several interfaces like, e.g., CClassifier, CFeatures
etc. For each of the interfaces, a class hierarchy similar to the one in Figure C.1, provid-
ing means to re-use code whenever possible, is found. Built around SHOGUN’s core are

�

� � �

Figure C.2: Object Oriented Class Design

C.2 Interfaces to Scripting Languages and Applications 141

two types of interfaces: A modular interface that makes use of the SWIG (Simplified
Wrapper and Interface Generator, c.f. http://www.swig.org) and a static interface.
Thanks to the use of SWIG, the modular interface provides the exact same objects in a
modular object oriented way that are available from C++ to other languages, such as R,
python and octave. Using so-called typemaps it is conveniently possible to provide type
mappings from the datatype used in the interface to shogun. For example, a function
void set features(double* features, int n, int m) can be directly called from
within octave using a matrix as an argument set features(randn(3,4)), the size of
the matrix is then mapped to the variables n and m and the pointer to the block of
the matrix, stored in fortran order, is then handed over to the shogun core. This also
makes it easy to provide interfaces to not just a single language, as only the typemaps

have to be rewritten for the particular target language.
The static interface was historically first and can only deal with a single object of a kind.
It is therefore limited to, e.g., training single classifiers, as only one classifier object is
kept in memory (this limitation does not exist in the modular interfaces). Similar to
SWIG, the interface is implemented abstractly and independent of the target language
through a class CSGInterface. This class provides abstract functions to deliver data to
or obtain data from a particular interface (like e.g., python). This interface still has its
benefits as it does not have a build dependency on swig, the syntax is the same for all
interfaces and offers a command-line interface for interactive use.
For example, to train a support vector machine classifier using an RBF-kernel of width
width one would issue (the same for Matlab, Octave, Python and R):

sg(’set_labels’, train_label);

sg(’set_features’, ’TRAIN’, train_input);

sg(’set_kernel’, ’GAUSSIAN’, ’REAL’, cache_size, width);

sg(’init_kernel’, ’TRAIN’);

sg(’new_classifier’, ’LIBSVM’);

sg(’train_classifier’);

sg(’set_features’, ’TEST’, test_input);

sg(’init_kernel’, ’TEST’);

prediction = sg(’classify’);

For the modular interfaces (currently available for Python, Octave and R this code
would look like this:

y=Labels(train_label);

x=RealFeatures(train_input);

kernel=GaussianKernel(x, x, width);

svm=LibSVM(C, kernel, y);

svm.train();

x_test=RealFeatures(test_input);

kernel.init(x, x_test);

prediction = svm.classify().get_labels();

Platforms SHOGUN runs on POSIX platforms, Figure C.3 shows an SVM-
classification and SV-regression for the python interface (using the plotting functions
from matplotlib (c.f. http://matplotlib.sf.net).

Applications Due to its flexible design, SHOGUN has been used in a variety of publi-
cations and applications, that are large scale genomic signal detection, interpretability

http://www.swig.org
http://matplotlib.sf.net

142

Figure C.3: Python Interface running on Debian GNU Linux

of kernel machines and label sequence learning. The following enumeration summarises
the key applications:

1. Large Scale Genomic Signal Detection

• Splice sites (training on 10 million examples, testing on 500 million examples
(whole genome)) (Sonnenburg et al., 2007b)

• Promoter and PolyA detection (linear combination of 5 string-kernels), eval-
uation on 6 billion examples (Sonnenburg et al., 2006b)

• Alternative splicing (combination of kernels) (Rätsch et al., 2005)

2. Interpretability

• Multiple kernel learning (MKL) (Sonnenburg et al., 2006a)

• Positional Oligomer Importance Matrices (POIM) (Sonnenburg et al., 2008)

3. Label Sequence Learning

• mSplicer (Rätsch et al., 2007) (predicting the exon, intron segmentation of
genes)

• PALMA (Schulze et al., 2007) (mRNA to Genome Alignments using Large
Margin Algorithms

• QPALMA (De Bona et al., 2008) (Optimal Spliced Alignments of Short Se-
quence Reads)

• mGene (Schweikert et al., 2008) (accurate gene finder based on signal sensors
and extension of mSplicer)

A community around SHOGUN is continuously developing with a number of projects
relying on it, see e.g., http://mloss.org/software/tags/shogun and a mailing-list
with about 50 subscribed users (October 2008). We express our hope that it will be of
high impact in the future, especially in the field of bioinformatics.

http://mloss.org/software/tags/shogun

D Notation

The set of symbols and functions used throughout this Phd thesis:

N number of examples

D dimensionality of the space, e.g., IRD

x,x′ input vectors of dimensionality D or strings
lx, lx′ length of string x and x′

y class label
d, K degree of, e.g., a polynomial; order
α the set of lagrange multipliers
β the set of sub-kernel weights
θ the set of model parameters
L(. . .) the lagrangian
L(., .) a loss function
C the regularisation parameter
ξ a slack variable
w the normal
b the bias
Pr[X] probability of X
E[X] expected value of X
Pr[X|Y] conditional probability of X given Y
E[X|Y] conditional expectation of X given Y
sign the signum function
I(.) Kronecker’s delta
Φ(.) kernel feature mapping
k(., .) the kernel function
‖.‖p ℓp norm

f(x), g(x) classifier or function

∂x the partial derivative with respect to x, i.e., ∂
∂x

θ, γ auxilary scalar
1 vector of ones or matrix with ones on diagonal (rest zero)
x · x′ dot product between vectors x and x′

Σ an alphabet, e.g., the DNA alphabet Σ = {A, C, G, T}
I(·) indicator function; evaluates to 1 when its argument is true, 0 otherwise.
O(.) big O notation, used to analyse (computational) effort
#. shortcut for number of
Q size of working set
Q(., .) Positional Oligomer Importance Matrix (POIM)
k−mer, k−gram a string of length k
u a string of length d
(x, i),x[i]k Positional Oligomer (PO)

- a substring of x that starts at position i and has length k

143

144

References

T. Abeel, Y. Saeys, E. Bonnet, P. Rouzé, and Y. V. de Peer. Generic eukaryotic core
promoter prediction using structural features of DNA. Genome Research, 18:310—
323, 2008a.

T. Abeel, Y. Saeys, P. Rouzé, and Y. V. de Peer. ProSOM: core promoter prediction
based on unsupervised clustering of DNA physical profiles. Bioinformatics, 24(13):
i24–31, July 2008b.

M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the potential
function method in pattern recognition learning. Automation and Remote Control,
25:821–837, 1964.

Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden markov support vector machines.
In T. Fawcett and N. Mishra, editors, Proc. 20th International Conference on Machine
Learning, pages 3–10. AAAI Press, 2003.

A.thaliana. Riken cress sequence, 2007.
http://rarge.psc.riken.jp/archives/rafl/sequence/.

O. T. Avery, C. M. MacLeod, and M. McCarty. Studies on the Chemical Nature of the
Substance Inducing Transformation of Pneumococcal Types: Induction of Transfor-
mation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III.
J. Exp. Med., 79(2):137–158, 1944.

F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic
duality, and the SMO algorithm. In C. E. Brodley, editor, Twenty-first international
conference on Machine learning, pages 41–48. ACM, 2004.

V. Bajic and S. Seah. Dragon gene start finder: an advanced system for finding approx-
imate locations of the start of gene transcriptional units. Nucleic Acids Research, 31:
3560–3563, 2003.

V. Bajic, M. Brent, R. Brown, A. Frankish, J. Harrow, U. Ohler, V. Solovyev, and
S. Tan. Performance assessment of promoter predictions on encode regions in the
egasp experiment. Genome Biology, 7(Suppl. 1):1–13, Aug. 2006.

V. B. Bajic, S. L. Tan, Y. Suzuki, and S. Sugano. Promoter prediction analysis on the
whole human genome. Nat Biotechnol, 22(11):1467–73, Nov. 2004.

P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines
and other pattern classifiers. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods - Support Vector Learning, pages 43 – 54. MIT Press,
Cambridge, MA, 1998.

A. Baten, B. Chang, S. Halgamuge, and J. Li. Splice site identification using prob-
abilistic parameters and svm classification. BMC Bioinformatics 7(Suppl. 5):S15,
2006a.

145

http://rarge.psc.riken.jp/archives/rafl/sequence/

146

A. Baten, B. Chang, S. Halgamuge, and J. Li. Correc-
tion notes to bmc bioinformatics 2006, 7(suppl 5):s15, 2006b.
http://www.mame.mu.oz.au/bioinformatics/splicesite.

A. Ben-Hur, C. S. Ong, S. Sonnenburg, B. Schölkopf, and G. Rätsch. Support vec-
tor machines and kernels for computational biology. PLoS Comput Biology, 4(10):
e1000173, Oct 2008.

K. P. Bennett, M. Momma, and M. J. Embrechts. MARK: a boosting algorithm for het-
erogeneous kernel models. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 24–31. ACM, 2002.

A. Bernal, K. Crammer, A. Hatzigeorgiou, and F. Pereira. Global discriminative learn-
ing for higher-accuracy computational gene prediction. PLoS Computational Biology,
3(3):e54, 2007.

J. Bi, T. Zhang, and K. P. Bennett. Column-generation boosting methods for mixture
of kernels. In W. Kim, R. Kohavi, J. Gehrke, and W. DuMouchel, editors, Proceedings
of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 521–526. ACM, 2004.

H. D. Block. The perceptron: A model for brain functioning. Reviews of Modern Physics,
34:123–135, 1962. Reprinted in “Neurocomputing” by Anderson and Rosenfeld.

M. Boguski and T. L. C. Tolstoshev. dbEST–database for ”expressed sequence tags”.
Nature Genetics, 4(4):332–3, 1993.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers.
In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on Computa-
tional Learning Theory, pages 144–152, Pittsburgh, 1992. ACM Press.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, UK, 2004.

M. Braun, J. Buhmann, and K.-R. Müller. On relevant dimensions in kernel feature
spaces. JMLR, 9:1875–1908, Aug 2008.

B. Brejova, D. Brown, M. Li, and T. Vinar. ExonHunter: a comprehensive approach to
gene finding. Bioinformatics, 21(Suppl 1):i57–i65, 2005.

C. Burge and S. Karlin. Prediction of complete gene structures in human genomic DNA.
Journal of Molecular Biology, 268:78–94, 1997.

C. Burges. A tutorial on support vector machines for pattern recognition. Knowledge
Discovery and Data Mining, 2(2):121–167, 1998.

M. Burset, I. Seledtsov, and V. Solovyev. Analysis of canonical and non-canonical splice
sites in mammalian genomes. Nucleic Acid Research, 28(21):4364–4375, 2000.

D. Cai, A. Delcher, B. Kao, and S. Kasif. Modeling splice sites with Bayes networks.
Bioinformatics, 16(2):152–158, 2000.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

http://www.mame.mu.oz.au/bioinformatics/splicesite
http://www.csie.ntu.edu.tw/~cjlin/libsvm

REFERENCES 147

K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-scale
l2-loss linear support vector machines. Journal of Machine Learning Research, 9:
1369–1398, Jul 2008.

W. I. Chang and E. L. Lawler. Sublinear approximate string matching and biological
applications. Algorithmica, 12(4/5):327–344, 1994.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters
for support vector machines. Machine Learning, 46(1–3):131–159, 2002.

F. Chen, C. C. MacDonald, and J. Wilusz. Cleavage site determinants in the mammalian
polyadenylation signal. Nucleic Acids Res, 23:2614–2620, July 1995.

T.-M. Chen, C.-C. Lu, and W.-H. Li. Prediction of splice sites with dependency graphs
and their expanded bayesian networks. Bioinformatics, 21(4):471–482, 2005.

V. Cherkassky and F. Mulier. Learning from Data — Concepts, Theory and Methods.
John Wiley & Sons, New York, 1998.

J. Chuang and D. Roth. Splice site prediction using a sparse network of winnows.
Technical Report UIUCDCS-R-2001-2199, Feb 2001.

R. Clark, G. Schweikert, C. Toomajian, S. Ossowski, G. Zeller, P. Shinn, N. Warthmann,
T. Hu, G. Fu, D. Hinds, H. Chen, K. Frazer, D. Huson, B. Schölkopf, M. Nordborg,
G. Rätsch, J. Ecker, and D. Weigel. Common sequence polymorphisms shaping ge-
netic diversity in Arabidopsis thaliana. Science, 317(5836), July 2007.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
1995.

C. Cortes, P. Haffner, and M. Mohri. Rational kernels: Theory and algorithms. Journal
of Machine Learning Research, 5:1035–1062, 2004.

F. Crick, L. Barnett, S. Brenner, and R. Watts-Tobin. General nature of the genetic
code for proteins. Nature, 192:1227–1232, Dec 1961.

R. Dahm. Friedrich miescher and the discovery of DNA. Human Genetics, 278:274–88,
Feb 2005.

M. Damashek. Gauging similarity with n-grams: Language-independent categorization
of text. Science, 267(5199):843–848, 1995.

J. Davis and M. Goadrich. The relationship between precision-recall and roc curves.
Technical report #1551, University of Wisconsin Madison, January 2006.

R. V. Davuluri, I. Grosse, and M. Q. Zhang. Computational identification of promoters
and first exons in the human genome. Nat Genet, 29(4):412–417, Dec. 2001.

F. De Bona, S. Ossowski, K. Schneeberger, and G. Rätsch. Optimal spliced alignments
of short sequence reads. Bioinformatics/Proc. ECCB’08, 2008.

S. Degroeve, Y. Saeys, B. D. Baets, P. Rouzé, and Y. V. de Peer. SpliceMachine feature
extractor, 2004. http://bioinformatics.psb.ugent.be/supplementary data/

148

svgro/splicemachine/downloads/splice machine sept 2004.zip.

S. Degroeve, Y. Saeys, B. D. Baets, P. Rouzé, and Y. V. de Peer. Splicemachine: predict-
ing splice sites from high-dimensional local context representations. Bioinformatics,
21(8):1332–8, 2005a.

S. Degroeve, Y. Saeys, B. D. Baets, P. Rouzé, and Y. V. de Peer. SpliceMachine, 2005b.
http://bioinformatics.psb.ugent.be/webtools/splicemachine/.

A. Delcher, D. Harmon, S. Kasif, O. White, and S. Salzberg. Improved microbial gene
identification with GLIMMER. Nucleic Acids Research, 27(23):4636–4641, 1999.

T. Down and T. Hubbard. Computational detection and location of transcription start
sites in mammalian genomic DNA. Genome Res, 12:458–461, 2002.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis proba-
bilistic models of proteins and nucleic acids. Cambridge University Press, 1998.

Ensemble. Ensemble, 2007. http://www.ensemble.org.

T. Fawcett. Roc graphs: Notes and practical considerations for data mining researchers.
Technical report hpl-2003-4, HP Laboratories, Palo Alto, CA, USA, January 2003.

W. Fiers, R. Contreras, F. Duerinck, G. H. G, D. Iserentant, J. Merregaert, W. M.
Jou, F. Molemans, A. Raeymaekers, A. V. den Berghe, G. Volckaert, and M. Yse-
baert. Complete nucleotide sequence of bacteriophage ms2 rna: primary and sec-
ondary structure of the replicase gene. Nature, 260:500–5007, Apr 1976.

V. Franc and S. Sonnenburg. OCAS optimized cutting plane algorithm for support vec-
tor machines. In Proceedings of the 25nd International Machine Learning Conference,
pages 320–327. ACM Press, 2008.

E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.

FruitFly. Fruit fly genome sequence, 2007a.
http://www.fruitfly.org/sequence/human-datasets.html.

FruitFly. Fruit fly expression sequence tags, 2007b. http://www.fruitfly.org/EST.

K. Gao, A. Masuda, T. Matsuura, and K. Ohno. Human branch point consensus se-
quence is yUnAy. Nucl. Acids Res., page gkn073, 2008.

M. Gardiner-Garden and M. Frommer. Cpg islands in vertebrate genomes. Journal of
Molecular Biology, 196:261–282, July 1987.

GeneSplicer. Genesplicer, 2001. http://www.cbcb.umd.edu/software/GeneSplicer/.

A. Goffeau, B. Barrell, H. Bussey, R. Davis, B. Dujon, H. Feldmann, F. Galibert,
J. Hoheisel, C. Jacq, M. Johnston, E. Louis, H. Mewes, Y. Murakami, P. Philippsen,
H. Tettelin, and S. Oliver. Life with 6000 Genes. Science, 274(5287):546–567, 1996.

P. Goujon. From Biotechnology to Genomes: The Meaning of the Double Helix. World
Scientific, 2001.

J. Graber, J. Salisbury, L. Hutchins, and T. Blumenthal. C. elegans sequences that
control trans-splicing and operon pre-mRNA processing. RNA, 13, Sept. 2007.

http://bioinformatics.psb.ugent.be/webtools/splicemachine/
http://www.ensemble.org
http://www.fruitfly.org/sequence/human-datasets.html
http://www.fruitfly.org/EST
http://www.cbcb.umd.edu/software/GeneSplicer/

REFERENCES 149

A. Graf, F. Wichmann, H. H. Bülthoff, and B. Schölkopf. Classification of faces in man
and machine. Neural Computation, 18:143–165, 2006.

Y. Grandvalet and S. Canu. Adaptive scaling for feature selection in SVMs. In S. T.
S. Becker and K. Obermayer, editors, Advances in Neural Information Processing
Systems 15, pages 553–560, Cambridge, MA, 2003. MIT Press.

S. G. Gregory et al. The DNA sequence and biological annotation of human chromosome
i. Nature, 441:315–321, May 2006.

M. Gribskov and N. L. Robinson. Use of receiver operating characteristic (roc) analysis
to evaluate sequence matching. Comput.Chem., 20:25–33, 1996.

M. Gribskov, A. McLachlan, and D. Eisenberg. Profile analysis: Detection of distantly
related proteins. Proceedings of the National Academy of Sciences, 84:4355–4358,
1987.

R. Guigo, P. Flicek, J. Abril, A. Reymond, J. Lagarde, F. Denoeud, S. Antonarakis,
M. Ashburner, V. Bajic, E. Birney, R. Castelo, E. Eyras, C. Ucla, T. Gingeras,
J. Harrow, T. Hubbard, S. Lewis, and M. Reese. Egasp: the human encode genome
annotation assessment project. Genome Biology, 7(Suppl 1):S2, 2006.

D. Gusfield. Algorithms on strings, trees, and sequences. Cambridge University Press,
1997.

T. Harris et al. Wormbase: a multi-species resource for nematode biology and genomics.
Nucl. Acids Res., 32, 2004. Database issue:D411-7.

D. Haussler. Computational genefinding. Computational genefinding. Trends Biochem.
Sci., 1998.

D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-
CRL-99 - 10, Computer Science Department, UC Santa Cruz, 1999.

E. C. Hayden. Company claims to have sequenced man’s genome cheaply. Nature, Feb
2008. URL http://www.nature.com/news/2008/080213/full/451759c.html.

R. Hettich and K. O. Kortanek. Semi-infinite programming: Theory, methods and
applications. SIAM Review, 3:380–429, 1993.

D. Hinds, L. Stuve, G. Nilsen, E. Halperin, E. Eskin, D. Ballinger, K. Frazer, and
D. Cox. Whole-genome patterns of common DNA variation in three human popula-
tions. Science, 307(5712):1072–1079, 2005.

Illumina. Illumina Completes Sequencing of African Trio, May 2008.
http://investor.illumina.com/phoenix.zhtml?c=121127&p=irol-newsArticle&ID=1140169.

ILOG CPLEX. Using the CPLEX Callable Library. CPLEX Optimization Incorporated,
Incline Village, Nevada, 1994.

T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classi-
fiers. In M. Kearns, S. Solla, and D. Cohn, editors, Advances in Neural Information
Processing Systems, volume 11, pages 487–493, 1999.

T. S. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting
remote protein homologies. J. Comp. Biol., 7:95–114, 2000.

http://www.nature.com/news/2008/080213/full/451759c.html
http://investor.illumina.com/phoenix.zhtml?c=121127&p=irol-newsArticle&ID=1140169

150

V. X. Jin, G. A. Singer, F. J. Agosto-Perez, S. Liyanarachchi, and R. V. Davuluri.
Genome-wide analysis of core promoter elements from conserved human and mouse
orthologous pairs. BMC Bioinformatics, 7(1):114, March 2006.

T. Joachims. Text categorization with support vector machines: Learning with many
relevant features. In C. Nédellec and C. Rouveirol, editors, ECML ’98: Proceedings
of the 10th European Conference on Machine Learning, Lecture Notes in Computer
Science, pages 137–142, Berlin / Heidelberg, 1998. Springer-Verlag.

T. Joachims. Making large–scale SVM learning practical. In B. Schölkopf, C. Burges,
and A. Smola, editors, Advances in Kernel Methods — Support Vector Learning, pages
169–184, Cambridge, MA, USA, 1999. MIT Press.

W. Jou, G. Haegeman, M. Ysebaert, and W. Fiers. Nucleotide sequence of the gene
coding for the bacteriophage ms2 coat protein. Nature, 237:82–88, May 1972.

P. P. Kapranov, A. Willingham, and T. Gingeras. Genome-wide transcription and the
implications for genomic organization. Nature Reviews Genetics, 8:413–423, 2007.

H. Kawaji, T. Kasukawa, S. Fukuda, S. Katayama, C. Kai, J. Kawai, P. Carninci, and
Y. Hayashizaki. CAGE Basic/Analysis Databases: the CAGE resource for compre-
hensive promoter analysis. Nucl. Acids Res., 34(Suppl. 1):D632–636, 2006.

W. J. Kent. BLAT–the BLAST-like alignment tool. Genome Res, 12(4):656–664, Apr.
2002.

D. E. Knuth. The art of computer programming, volume 3. Addison-Wesley, 1973.

I. Korf. Gene finding in novel genomes. BMC Bioinformatics, 5:59, 2004.

A. Kornberg. For the Love of Enzymes: The Odyssey of a Biochemist. by Harvard
University Press, 1991.

R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi, Y. Freund, and C. Leslie. Profile-based
string kernels for remote homology detection and motif extraction. In Computational
Systems Bioinformatics Conference 2004, pages 146–154, 2004.

D. Kulp, D. Haussler, M. Reese, and F. Eeckman. A generalized hidden markov model
for the recognition of human genes in DNA. ISMB 1996, pages 134–141, 1996.

G. Lanckriet, T. D. Bie, N. Cristianini, M. Jordan, and W. Noble. A statistical frame-
work for genomic data fusion. Bioinformatics, 20:2626–2635, 2004.

E. Lehmann. Testing Statistical Hypotheses. Springer, New York, second edition edition,
1997.

C. Leslie and R. Kuang. Fast string kernels using inexact matching for protein sequences.
Journal of Machine Learning Research, 5:1435–1455, 2004.

C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM
protein classification. In R. B. Altman, A. K. Dunker, L. Hunter, K. Lauderdale, and
T. E. Klein, editors, Proceedings of the Pacific Symposium on Biocomputing, pages
564–575, Kaua’i, Hawaii, 2002.

C. Leslie, E. Eskin, J. Weston, and W. Noble. Mismatch string kernels for discriminative
protein classification. Bioinformatics, 20(4), 2003a.

REFERENCES 151

C. Leslie, R. Kuang, and E. Eskin. Inexact matching string kernels for protein classifi-
cation. In Kernel Methods in Computational Biology, MIT Press series on Computa-
tional Molecular Biology, pages 95–112. MIT Press, 2003b.

S. Levy, G. Sutton, P. Ng, L. Feuk, and A. Halpern. The diploid genome sequence of
an individual human. PLoS Biology, 5:e254, 2007.

B. Lewin. Genes VII. Oxford University Press, New York, 2000.

L. Liao and W. Noble. Combining pairwise sequence similarity and support vector ma-
chines for remote protein homology detection. In Proceedings of the Sixth Annual
International Conference on Research in Computational Molecular Biology, pages
225–232, April 2002.

K. Liolios, K. Mavromatis, N. Tavernarakis, and N. C. Kyrpides. The Genomes On
Line Database (GOLD) in 2007: status of genomic and metagenomic projects and
their associated metadata. Nucl. Acids Res., page gkm884, 2007.

H. Liu, H. Han, J. Li, and L. Wong. An in-silico method for prediction of polyadenylation
signals in human sequences. In S. M. M. Gribskov, M. Kanehisa and T. Takagi, editors,
Genome Informatics 14, pages 84–93. Universal Academic Press, Tokyo, 2003.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text clas-
sification using string kernels. Journal of Machine Learning Research, 2:419–444,
2002.

Mammalian Gene Collection. Mammalian gene collection, 2007.
http://mgc.nci.nih.gov.

K. Marusina. The next generation of DNA sequencing genetic engineering, 2006. URL
http://www.genengnews.com/articles/chitem.aspx?aid=1946.

V. Matys, O. Kel-Margoulis, E. Fricke, I. Liebich, S. Land, A. Barre-Dirrie, I. Reuter,
D. Chekmenev, M. Krull, K. Hornischer, N. Voss, P. Stegmaier, B. Lewicki-Potapov,
H. Saxel, A. Kel, and E. Wingender. TRANSFAC and its module TRANSCompel:
Transcriptional gene regulation in eukaryotes. Nucleic Acids Res., 34:D108–110, 2006.

D. K. McClish. Analyzing a portion of the roc curve. Med. Decision Making, 9:190–195,
1989.

P. Meinicke, M. Tech, B. Morgenstern, and R. Merkl. Oligo kernels for datamining on
biological sequences: A case study on prokaryotic translation initiation sites. BMC
Bioinformatics, 5(1):169, 2004.

R. Meir and G. Rätsch. An introduction to boosting and leveraging. In S. Mendelson and
A. Smola, editors, Proc. of the first Machine Learning Summer School in Canberra,
LNCS, pages 119–184. Springer, 2003.

J. Mercer. Functions of positive and negative type and their connection with the theory
of integral equations. Philos. Trans. Roy. Soc. London, A 209:415–446, 1909.

G. E. Merrihew, C. Davis, B. Ewing, G. Williams, L. Kall, B. E. Frewen, W. S. Noble,
P. Green, J. H. Thomas, and M. J. MacCoss. Use of shotgun proteomics for the
identification, confirmation, and correction of C. elegans gene annotations. Genome
Res., page gr.077644.108, 2008.

http://mgc.nci.nih.gov
http://www.genengnews.com/articles/chitem.aspx?aid=1946

152

M. Meselson and F. Stahl. The replication of DNA in escherichia coli. Proc Natl Acad
Sci, 44:671–682, Jul 1958.

C. Metz. Basic principles of ROC analysis. Seminars in Nuclear Medicine, VIII(4),
October 1978.

A. Mood, F. Graybill, and D. Boes. Introduction to the Theory of Statistics. McGraw-
Hill, third edition edition, 1974.

Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of
the mouse genome. Nature, 420:520–62, Dec 2002.

K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to
kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2):
181–201, 2001.

K. Mullis. Polymerase chain reaction (pcr), 2004. URL
http://www.karymullis.com/pcr.html.

M. Nirenberg. Historical review: Deciphering the genetic code — a personal account.
Trends in Biochemical Sciences, 29, Jan 2004.

A. B. J. Novikoff. On convergence proofs on perceptrons. In In Proceedings of the
Symposium on the Mathematical Theory of Automata, volume XII, pages 615–622,
1962.

U. Ohler, G. C. Liao, H. Niemann, and G. M. Rubin. Computational analysis of core
promoters in the drosophila genome. Genome Biology, 3(12):research0087.1–0087.12,
2002.

C. S. Ong and G. Rätsch. Genome wide analysis of novel alternative splicing events. In
preparation, 2008.

C. S. Ong, A. J. Smola, and R. C. Williamson. Hyperkernels. In S. T. S. Becker
and K. Obermayer, editors, Advances in Neural Information Processing Systems 15,
volume 15, pages 478–485, Cambridge, MA, 2003. MIT Press.

H. Pearson. Genetics: what is a gene? Nature, 441:398–401, 2006.

A. Pedersen and H. Nielsen. Neural Network Prediction of Translation Initiation Sites
in Eukaryotes: Perspectives for EST and Genome analysis. In ISMB’97, volume 5,
pages 226–233, 1997.

M. Pertea, X. Lin, and S. Salzberg. Genesplicer: a new computational method for splice
site prediction. Nucleic Acids Research, 29(5):1185–1190, 2001.

M. Pertea, S. Mount, and S. Salzberg. A computational survey of candidate exonic splic-
ing enhancer motifs in the model plant arabidopsis thaliana. BMC Bioinformatics, 8
(1):159, 2007.

P. Philips, K. Tsuda, J. Behr, and G. Rätsch. Accurate recognition of polyadenylation
sites. In preparation, 2008.

J. Platt. Fast training of support vector machines using sequential minimal optimization.
In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods —
Support Vector Learning, pages 185–208, Cambridge, MA, USA, 1999. MIT Press.

http://www.karymullis.com/pcr.html

REFERENCES 153

K. D. Pruitt, T. Tatusova, and D. R. Maglott. NCBI Reference Sequence (Ref-
Seq): a curated non-redundant sequence database of genomes, transcripts and pro-
teins. Nucl. Acids Res., 33(S1):D501–504, 2005. doi: 10.1093/nar/gki025. URL
http://nar.oxfordjournals.org/cgi/content/abstract/33/suppl_1/D501.

L. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–285, Feb. 1989.

J. Rajapakse and L. Ho. Markov encoding for detecting signals in genomic sequences.
IEEE ACM Transactions on Computational Biology and Bioinformatics, 2(2):131–
142, 2005.

S. Rampone. Recognition of splice junctions on DNA sequences by BRAIN learning
algorithm. Bioinformatics, 14(8):676–684, 1998.

G. Rätsch. Robust Boosting via Convex Optimization. PhD thesis, University of Pots-
dam, Potsdam, Germany, 2001.

G. Rätsch and S. Sonnenburg. Accurate Splice Site Prediction for Caenorhabditis El-
egans, pages 277–298. MIT Press series on Computational Molecular Biology. MIT
Press, 2004.

G. Rätsch and S. Sonnenburg. Large scale hidden semi-markov svms. In B. Schölkopf,
J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems
19, pages 1161–1168. MIT Press, Cambridge, MA, 2007.

G. Rätsch and M. Warmuth. Efficient margin maximization with boosting. Journal of
Machine Learning Research, 6:2131–2152, 2005.

G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learning,
42(3):287–320, Mar. 2001. also NeuroCOLT Technical Report NC-TR-1998-021.

G. Rätsch, A. Demiriz, and K. Bennett. Sparse regression ensembles in infinite and finite
hypothesis spaces. Machine Learning, 48(1–3):193–221, 2002. Special Issue on New
Methods for Model Selection and Model Combination. Also NeuroCOLT2 Technical
Report NC-TR-2000-085.

G. Rätsch, S. Sonnenburg, and B. Schölkopf. RASE: Recognition of alternatively spliced
exons in C. elegans. Bioinformatics, 21:i369–i377, 2005.

G. Rätsch, S. Sonnenburg, and C. Schäfer. Learning interpretable svms for biological
sequence classification. BMC Bioinformatics, 7((Suppl 1)):S9, Mar. 2006.

G. Rätsch, S. Sonnenburg, J. Srinivasan, H. Witte, K.-R. Müller, R. Sommer, and
B. Schölkopf. Improving the c. elegans genome annotation using machine learning.
PLoS Computational Biology, 3(2):e20, 2007.

M. Reese, F. H. Eeckman, D. Kulp, and D. Haussler. Improved splice site detection in
Genie. Journal of Computational Biology, 4:311–323, 1997.

K. Rieck, P. Laskov, and K.-R. Müller. Efficient algorithms for similarity measures
over sequential data: A look beyond kernels. In Pattern Recognition, 28th DAGM
Symposium, LNCS, pages 374–383. Springer-Verlag, Sept. 2006.

http://nar.oxfordjournals.org/cgi/content/abstract/33/suppl_1/D501

154

K. Rieck, P. Laskov, and S. Sonnenburg. Computation of similarity measures for sequen-
tial data using generalized suffix trees. In Advances in Neural Information Processing
Systems 19, pages 1177–1184, Cambridge, MA, 2007. MIT Press.

M. Ronaghi, S. Karamohamed, B. Pettersson, M. Uhlén, and P. Nyrén. Real-time DNA
sequencing using detection of pyrophosphate release. Analytical Biochemistry, 242
(1):84–89, November 1996.

Y. Saeys, T. Abeel, S. Degroeve, and Y. Van de Peer. Translation initiation site pre-
diction on a genomic scale: beauty in simplicity. Bioinformatics, 23(13):i418–423,
2007.

S. Saitoh. Theory of Reproducing Kernels and its Applications. Longman Scientific &
Technical, Harlow, England, 1988.

G. Salton. Mathematics and information retrieval. Journal of Documentation, 35(1):
1–29, 1979.

S. Salzberg, A. Delcher, K. Fasman, and J. Henderson. A decision tree system for
finding genes in DNA. Journal of Computational Biology, 5(4):667–680, 1998.

F. Sanger and A. Coulson. A rapid method for determining sequences in DNA by primed
synthesis with DNA polymerase. J Mol Biol, 94(3):441–448, May 1975.

F. Sanger, S. Nicklen, and A. Coulson. DNA sequencing with chain-terminating in-
hibitors. Proc Natl Acad Sci, 74:5463–5470, Dec 1977.

B. Schölkopf. Support vector learning. Oldenbourg Verlag, Munich, 1997.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

B. Schölkopf, C. Burges, and A. Smola, editors. Advances in Kernel Methods – Support
Vector Learning. MIT Press, 1999.

B. Schölkopf, K. Tsuda, and J.-P. Vert. Kernel Methods in Computational Biology. MIT
Press, Cambridge, MA, 2004.

S. J. Schultheiss, W. Busch, J. U. Lohmann, O. Kohlbacher, and G. Rätsch. KIRMES:
Kernel-based identification of regulatory modules in euchromatic sequences. In Pro-
ceedings of the German Conference on Bioinformatics. GI, Springer Verlag, 2008.
URL http://www.fml.tuebingen.mpg.de/raetsch/projects/kirmes.

U. Schulze, B. Hepp, C. S. Ong, and G. Ratsch. PALMA: mRNA to genome alignments
using large margin algorithms. Bioinformatics, 23(15):1892–1900, 2007.

G. Schweikert, G. Zeller, A. Zien, J. Behr, C.-S. Ong, P. Philips, A. Bohlen, S. Son-
nenburg, and G. Rätsch. mGene: A novel discriminative gene finding system. In
preparation, 2008.

H. O. Smith, C. A. H. , C. Pfannkoch, and J. C. Venter. Generating a synthetic genome
by whole genome assembly: ΦX174 bacteriophage from synthetic oligonucleotides.
Proceedings of the National Academy of Sciences of the United States of America,
100(26):15440–15445, 2003.

http://www.fml.tuebingen.mpg.de/raetsch/projects/kirmes

REFERENCES 155

N. Smith and M. Gales. Speech recognition using SVMs. In T. G. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14,
Cambridge, MA, 2002. MIT Press.

A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans. Advances in Large Margin
Classifiers. MIT Press, Cambridge, MA, 2000.

S. Sonnenburg. New methods for splice site recognition. Master’s thesis, Humboldt
University, 2002. supervised by K.-R. Müller H.-D. Burkhard and G. Rätsch.

S. Sonnenburg, G. Rätsch, A. Jagota, and K.-R. Müller. New methods for splice-
site recognition. In Proceedings of the International Conference on Artifical Neural
Networks., pages 329–336, 2002. Copyright by Springer.

S. Sonnenburg, G. Rätsch, and C. Schäfer. Learning interpretable SVMs for biological
sequence classification. In S. Miyano, J. P. Mesirov, S. Kasif, S. Istrail, P. A. Pevzner,
and M. Waterman, editors, Research in Computational Molecular Biology, 9th Annual
International Conference, RECOMB 2005, volume 3500, pages 389–407. Springer-
Verlag Berlin Heidelberg, 2005a.

S. Sonnenburg, G. Rätsch, and B. Schölkopf. Large scale genomic sequence SVM clas-
sifiers. In L. D. Raedt and S. Wrobel, editors, ICML ’05: Proceedings of the 22nd
international conference on Machine learning, pages 849–856, New York, NY, USA,
2005b. ACM Press.

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large Scale Multiple Kernel
Learning. Journal of Machine Learning Research, 7:1531–1565, July 2006a.

S. Sonnenburg, A. Zien, and G. Rätsch. ARTS: Accurate Recognition of Transcription
Starts in Human. Bioinformatics, 22(14):e472–480, 2006b.

S. Sonnenburg, G. Rätsch, and K. Rieck. Large scale learning with string kernels. In
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel
Machines, pages 73–103. MIT Press, 2007a.

S. Sonnenburg, G. Schweikert, P. Philips, J. Behr, and G. Rätsch. Accurate Splice
Site Prediction. BMC Bioinformatics, Special Issue from NIPS workshop on New
Problems and Methods in Computational Biology Whistler, Canada, 18 December
2006, 8:(Suppl. 10):S7, December 2007b.

S. Sonnenburg, A. Zien, P. Philips, and G. Rätsch. POIMs: positional oligomer im-
portance matrices — understanding support vector machine based signal detectors.
Bioinformatics, 2008. (received the Best Student Paper Award at ISMB0́8).

L. Stein, D. Blasiar, A. Coghlan, T. Fiedler, S. McKay, and
P. Flicek. ngasp gene prediction challenge, Mar. 2007.
http://www.wormbase.org/wiki/index.php/Gene_Prediction.

C. Y. Suen. N-gram statistics for natural language understanding and text processing.
IEEE Trans. Pattern Analysis and Machine Intelligence, 1(2):164–172, Apr. 1979.

Y. Suzuki, R. Yamashita, K. Nakai, and S. Sugano. Dbtss: Database of human tran-
scriptional start sites and full-length cDNAs. Nucleic Acids Res, 30(1):328–331, Jan.
2002.

http://www.wormbase.org/wiki/index.php/Gene_Prediction

156

C.-H. Teo and S. V. N. Vishwanathan. Fast and space efficient string kernels using suffix
arrays. In Proc. 23rd ICMP, pages 939–936. ACM Press, 2006.

The C. elegans Sequencing Consortium. Genome sequence of the Nematode Caenorhab-
ditis elegans. a platform for investigating biology. Science, 282:2012–2018, 1998.

The International HapMap Consortium. A haplotype map of the human genome. Na-
ture, 437:1290–1320, 2005.

The International Human Genome Mapping Consortium. A physical map of the human
genome. Nature, 409:934–941, Feb 2001.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research, 6:1453–1484, sep 2005.

K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K. Müller. A new discrimina-
tive kernel from probabilistic models. In T. Dietterich, S. Becker, and Z. Ghahramani,
editors, Advances in Neural information processings systems, volume 14, pages 977–
984, Cambridge, MA, 2002a. MIT Press.

K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K. Müller. A new discrimina-
tive kernel from probabilistic models. Neural Computation, 14:2397–2414, 2002b.

K. Tsuda, T. Kin, and K. Asai. Marginalized kernels for biological sequences. Bioin-
formatics, 18:268S–275S, 2002c.

E. Ukkonen. Online construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

B. Üstün, W. J. Melssen, and L. M. Buydens. Visualisation and interpretation of
support vector regression models. Anal Chim Acta, 595(1-2):299–309, July 2007.

S. K. V. Sindhwani. Newton methods for fast solution of semi-supervised linear svms.
In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel
Machines, pages 155–174. MIT Press, 2007.

V. Vapnik. The nature of statistical learning theory. Springer Verlag, New York, 1995.

V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

J.-P. Vert, H. Saigo, and T. Akutsu. Local alignment kernels for biological sequences.
In K. T. B. Schoelkopf and J.-P. Vert, editors, Kernel Methods in Computational
Biology. MIT Press, 2004.

S. Vishwanathan and A. J. Smola. Fast kernels for string and tree matching. In Proc.
NIPS ’2002, pages 569–576, 2003.

S. Vishwanathan and A. J. Smola. Kernels and Bioinformatics, chapter Fast Kernels
for String and Tree Matching, pages 113–130. MIT Press, 2004.

A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimal
decoding algorithm. IEEE Trans. Informat. Theory, IT-13:260–269, Apr 1967.

M. Warmuth, J. Liao, and G. Rätsch. Totally corrective boosting algorithms that
maximize the margin. In ICML ’06: Proceedings of the 23nd international conference
on Machine learning, pages 1001–1008. ACM Press, 2006.

REFERENCES 157

C. Watkins. Dynamic alignment kernels. In A. Smola, P. Bartlett, B. Schölkopf, and
D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 39–50, Cam-
bridge, MA, 2000. MIT Press.

J. Watson and F. Crick. Molecular structure of nucleic acids: A structure for deoxyribose
nucleic acid. Nature, 171:737–738, Apr 1953.

T. Werner. The state of the art of mammalian promoter recognition. Brief Bioinform,
4(1):22–30, Mar. 2003.

D. Wheeler, M. Srinivasan, M. Egholm, Y. Shen, L. Chen, A. McGuire, W. He, Y. Chen,
V. Makhijani, G. Roth, X. Gomes, K. Tartaro, F. Niazi, C. Turcotte, G. Irzyk,
J. Lupski, C. Chinault, X. Song, Y. Liu, Y. Yuan, L. Nazareth, X. Qin, D. Muzny,
M. Margulies, G. Weinstock, R. Gibbs, and J. Rothberg. The complete genome of an
individual by massively parallel DNA sequencing. Nature, 452:872–876, Apr 2008.

D. Wheeler et al. Database resources of the national center for biotechnology. Nucl.
Acids Res, 31:38–33, 2003.

Wikipedia. 454 life sciences — wikipedia, the free encyclopedia, 2008a. URL
http://en.wikipedia.org/wiki/454_Life_Sciences. [Online; accessed 24-
September-2008].

Wikipedia. DNA sequencing — wikipedia, the free encyclopedia, 2008b.
URL http://en.wikipedia.org/wiki/DNA_sequencing. [Online; accessed 24-
September-2008].

Wikipedia. List of sequenced eukaryotic genomes
— Wikipedia, the free encyclopedia, 2007. URL
http://en.wikipedia.org/wiki/List_of_sequenced_eukaryotic_genomes.
[Online; accessed 02-Feb-2007].

Wormbase. Wormbase, 2008. http://www.wormbase.org.

M. Yamamura and O. Gotoh. Detection of the splicing sites with kernel method ap-
proaches dealing with nucleotide doublets. Genome Informatics, 14:426–427, 2003.

R. Yamashita, Y. Suzuki, H. Wakaguri, K. Tsuritani, K. Nakai, and S. Sugano. Dbtss:
Database of human transcription start sites, progress report 2006. Nucleic Acids Res,
34:D86–89, Jan. 2006. Database issue.

L. Zanni, T. Serafini, and G. Zanghirati. Parallel software for training. Journal of
Machine Learning Research, 7:1467–1492, July 2006.

H. Zhang and T. Blumenthal. Functional analysis of an intron 3’ splice site in
Caenorhabditis elegans. RNA, 2(4):380–388, 1996.

X. Zhang, C. Leslie, and L. Chasin. Dichotomous splicing signals in exon flanks. Genome
Research, 15(6):768–79, Jun 2005.

X. H.-F. Zhang, K. A. Heller, I. Hefter, C. S. Leslie, and L. A. Chasin. Sequence
information for the splicing of human pre-mRNA identified by support vector machine
classification. Genome Research, 13(12):637–50, 2003.

http://en.wikipedia.org/wiki/454_Life_Sciences
http://en.wikipedia.org/wiki/DNA_sequencing
http://en.wikipedia.org/wiki/List_of_sequenced_eukaryotic_genomes
http://www.wormbase.org

158

Y. Zhang, C.-H. Chu, Y. Chen, H. Zha, and X. Ji. Splice site prediction using support
vector machines with a bayes kernel. Expert Systems with Applications, 30:73–81, Jan
2006.

J. Zhao, L. Hyman, and C. Moore. Formation of mRNA 3’ ends in eukaryotes: Mecha-
nism, regulation, and interrelationships with other steps in mRNA synthesis. Micro-
biology and Molecular Biology Reviews, 63:405–445, June 1999.

A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R. Müller. Engineering
Support Vector Machine Kernels That Recognize Translation Initiation Sites. BioIn-
formatics, 16(9):799–807, Sept. 2000.

A. Zien, P. Philips, and S. Sonnenburg. Computing Positional Oligomer Importance
Matrices (POIMs). Research Report; Electronic Publication 2, Fraunhofer FIRST,
Dec. 2007.

	Introduction
	Biological Background
	Sequence Analysis Problems

	Machine Learning
	Generative Models
	Support Vector Machines and String Kernels

	String Kernels
	Bag-of-words Kernel, n-gram Kernel and Spectrum Kernel
	Linear and Polynomial String Kernels
	Weighted Degree Kernel
	Fisher and TOP kernel
	Fisher Kernel
	TOP Kernel
	Relation to Spectrum and Weighted Degree Kernel

	Summary

	Large Scale Learning with String Kernels
	Sparse Feature Maps
	Efficient Storage of Sparse Weights
	Speeding up Linear Combinations of Kernels
	Speeding up SVM Training

	A Simple Parallel Chunking Algorithm
	Benchmarking SVM Training Time
	Summary

	Interpretable Support Vector Machines
	Multiple Kernel Learning
	Multiple Kernel Learning for Classification using SILP
	Multiple Kernel Learning with General Cost Functions
	Algorithms to solve SILPs
	Estimating the Reliability of a Weighting
	MKL for Knowledge Discovery

	Positional Oligomer Importance Matrices
	Linear Positional Oligomer Scoring Systems
	Definition of Positional Oligomer Importance Matrices
	Ranking Features and Condensing Information for Visualisation
	POIMs Reveal Discriminative Motifs

	Summary

	Accurate Signal and Content Sensors
	Performance Measures
	Generating Training and Test Data Sets
	Accurate Splice Site Recognition
	Model Selection and Evaluation
	Pilot Studies
	Results on Genome-Wide Data Sets
	Understanding the Learned Classifier

	Accurate Recognition of Transcription Starts
	Model Selection and Evaluation
	Genome-Wide Evaluation on the Human Genome
	Comparison with EP3 and ProSOM
	Understanding the Learned Classifier

	Summary and Guidelines
	Signal Sensors
	Content Sensors

	Learning to Predict Gene Structures
	Splice Form Prediction
	Learning the Signal and Content Sensors
	Integration
	Experimental Evaluation

	Summary and Outlook: Gene Finding

	Summary and Outlook
	Appendices
	Derivations
	Derivation of the MKL Dual for Generic Loss Functions
	Conic Primal
	Conic Dual
	Loss functions

	Computation of Positional Oligomer Importances
	Observations
	Efficient Recursive Computation of POIMs
	Applications

	Data Generation and Model Parameters
	Toy Sequence Data
	Splice Site Sequences
	NN269 and DGSplicer data sets
	Worm, fly, cress, fish, and human

	Transcription Start Sites
	Generating Genestructure and Sequence Data for Caenorhabditis elegans
	Splicing Model Selection Parameters

	Shogun
	Modular, Extendible Object Oriented Design
	Interfaces to Scripting Languages and Applications

	Notation
	References

