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Abstract
In this paper, we study a nonlinear Dirichlet problem driven by the (p, q)-Laplacian
and with a reaction that has the combined effects of a negative concave term and of an
asymmetric perturbation which is superlinear on the positive semiaxis and resonant in
the negative one. We prove a multiplicity theorem for such problems obtaining three
nontrivial solutions, all with sign information. Furthermore, under a local symmetry
condition, we prove the existence of a whole sequence of sign-changing solutions
converging to zero in C1

0(�).
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper, we study

the following nonlinear Dirichlet problem

−�pu − �qu = ϑ(x)|u|τ−2u + f (x, u) in �,

u
∣
∣
∂�

= 0, 1 < τ < q < p,
(1.1)
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where �r denotes the r -Laplacian for r ∈ (1,∞) given by

�r u = div
(|∇u|r−2∇u

)

for u ∈ W 1,r
0 (�).

Problem (1.1) is driven by the sum of two such operators with different exponents
called the (p, q)-Laplacian which is a nonhomogeneous operator. For such problems,
we refer to the survey paper of Marano and Mosconi [13] and the references therein.
In the right-hand side of (1.1), we have the combined effects of two distinct nonlinear
terms. One term is the power function s → ϑ(x)|s|τ−2s with 1 < τ < q and
0 > −c0 ≥ ϑ(·) ∈ L∞(�) which is a concave contribution (so (q − 1)-sublinear)
to the reaction. The perturbation f : � × R → R is a Carathéodory function, that is,
x → f (x, s) is measurable for all s ∈ R and s → f (x, s) is continuous for a. a. x ∈
�, which exhibits asymmetric growth as s → ±∞. To be more precise, f (x, ·) is
(p−1)-linear in the negative semiaxis (as s → −∞) and can be resonant with respect
to the principal eigenvalue of (−�p,W

1,p
0 (�)). In the positive semiaxis (as s →

+∞), f (x, ·) is (p−1)-superlinear but without satisfying the Ambrosetti–Rabinowitz
condition (AR-condition for short). Hence, problem (1.1) is partly resonant and partly
a concave–convex problem. In addition to this lack of symmetric behavior, another
feature which distinguishes our work here from earlier ones on nonlinear elliptic
equations with concave terms, is the fact that the coefficient ϑ : � → R of the concave
term is x-dependent and negative. In the past, problems with a negative concave term
were studied by Perera [22], de Paiva and Massa [3], Papageorgiou et al. [20] for
semilinear equations and by Papageorgiou and Winkert [15] for nonlinear equations
driven by the (p, 2)-Laplacian. From these works only the paper of Papageorgiou
et al. [20] considers perturbations with asymmetric behavior as s → ±∞. In the
literature, papers dealingwith equationswith concave terms assume that the coefficient
is a positive constant. This is the case in the classical concave–convex problems, see
Ambrosetti et al. [2] for equations driven by the Laplacian and by García Azorero et
al. [5] for equations driven by the p-Laplacian. The difficulty that we encounter when
we deal with equations that have negative concave terms is that the nonlinear strong
maximum principle is not applicable, see Pucci and Serrin [23].

2 Preliminaries

In this section, we will recall the basic facts about the function spaces, the properties
of the operator and some results of Morse theory.

To this end, let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. For any

r ∈ [1,∞], we denote by Lr (�) = Lr (�;R) and Lr (�;RN ) the usual Lebesgue
spaces with the norm ‖ · ‖r . Moreover, the Sobolev space W 1,r

0 (�) is equipped with
the equivalent norm ‖ · ‖ = ‖∇ · ‖r for 1 < r < ∞.

The Banach space

C1
0(�) =

{

u ∈ C1(�) : u
∣
∣
∂�

= 0
}
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is an ordered Banach space with positive cone

C1
0(�)+ =

{

u ∈ C1
0(�) : u(x) ≥ 0 for all x ∈ �

}

.

This cone has a nonempty interior given by

int
(

C1
0(�)+

)

=
{

u ∈ C1
0(�)+ : u(x)>0 for all x ∈�,

∂u

∂n
(x) < 0 for all x ∈∂�

}

,

where n(·) stands for the outward unit normal on ∂�.
For r ∈ (1,∞), we denote by λ̂1(r), the first eigenvalue of (−�r ,W

1,r
0 (�)). We

know that λ̂1(r) > 0 and

λ̂1(r) = inf
u∈W 1,r

0 (�)\{0}
‖∇u‖rr
‖u‖rr

. (2.1)

Furthermore, λ̂1(r) is isolated, simple, and the infimum in (2.1) is achieved on
the corresponding one-dimensional eigenspace, see Lê [10]. The elements of this
eigenspace have fixed sign. By û1(r), we denote the positive, Lr -normalized (that is,
‖û1(r)‖r = 1) eigenfunction related to λ̂1(r). The nonlinear regularity theory and the
nonlinear Hopf maximum principle imply that û1(r) ∈ int

(

C1
0(�)+

)

.
We also use the weighted eigenvalue problem

−�pu = λ̃ξ(x)|u|p−2u in �,

u = 0 on ∂�,
(2.2)

with eigenvalue λ̃ > 0 and ξ ∈ L∞(�)+ \ {0}. We know that if ξ1(x) ≤ ξ2(x) a. e. in
� and ξ1 
= ξ2, then λ̃1(p, ξ2) < λ̃1(p, ξ1), see Motreanu et al. [14, Proposition
9.47(d)].

Let Ar : W 1,r
0 (�) → W−1,r ′

(�) = W 1,r
0 (�)∗ with 1

r + 1
r ′ = 1 be the nonlinear

operator defined by

〈Ar (u), h〉 =
∫

�

|∇u|r−2∇u · ∇h dx for all u, h ∈ W 1,r
0 (�),

where 〈·, ·〉 is the duality pairing betweenW 1,r
0 (�) and its dual spaceW 1,r

0 (�)∗. This
operator is bounded, continuous, strictly monotone, and of type (S+), that is,

un⇀u in W 1,r
0 (�) and lim sup

n→∞
〈Ar (un), un − u〉 ≤ 0

imply un → u in W 1,r
0 (�), see Motreanu et al. [14, p. 40].

Let X be a Banach space, ϕ ∈ C1(X) and c ∈ R. We introduce the following two
sets

Kϕ = {

u ∈ X : ϕ′(u) = 0
}

and ϕc = {u ∈ X : ϕ(u) ≤ c} .
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If (Y1,Y2) is a topological pair such that Y2 ⊆ Y1 ⊂ X and k ∈ N0, then we denote
by Hk(Y1,Y2) the k-th singular homology group for the pair (Y1,Y2) with integer
coefficients. If u ∈ Kϕ is isolated, the k-th critical group of ϕ at u is defined by

Ck(ϕ, u) = Hk
(

ϕc ∩U , ϕc ∩U \ {u}) , k ∈ N0,

with c = ϕ(u) andU being an open neighborhood of u such that ϕc ∩ Kϕ ∩U = {u}.
The excision property of singular homology implies that the definition of Ck(ϕ, u) is
independent of the choice of the isolating neighborhood U , see Motreanu et al. [14].
The usage of critical groups allows us to distinguish between critical points of the
energy functional.

We say that ϕ ∈ C1(X) satisfies the Cerami condition (C-condition for short)
if every sequence {un}n∈N ⊆ X such that {ϕ(un)}n∈N ⊆ R is bounded and
(1 + ‖un‖X )ϕ′(un) → 0 in X∗ has a strongly convergent subsequence. This is a
compactness-type condition on the functional ϕ which compensates the fact that the
ambient space X need not be locally compact.

For s ∈ R, we set s± = max{±s, 0}. If u : � → R is a measurable function, we
define u±(x) = u(x)± for all x ∈ �. If u ∈ W 1,p

0 (�), then u± ∈ W 1,p
0 (�) and

u = u+ −u− as well as |u| = u+ +u−. If u, v : � → R are two measurable functions
such that u(x) ≤ v(x) for all x ∈ �, then we define

[u, v] =
{

h ∈ W 1,p
0 (�) : u(x) ≤ h(x) ≤ v(x)for a. a. x ∈ �

}

.

Moreover, we denote by intC1
0 (�)[u, v] the interior of [u, v] ∩ C1

0(�) in C1
0(�).

Finally, the critical Sobolev exponent of p ∈ (1,∞), denoted by p∗, is given by

p∗ =
{

Np
N−p if p < N ,

+∞ if N ≤ p.

3 Multiple Solutions

In this section, we produce three nontrivial solutions of problem (1.1) where two of
them have constant sign and one has changing sign.

Now we introduce the hypotheses on the data of problem (1.1).

H0: ϑ ∈ L∞(�) and ϑ(x) ≤ −c0 < 0 for a. a. x ∈ �.

Remark 3.1 It is an interesting open question if the results in this paper remain valid
under the weaker condition ϑ(x) < 0 for a. a. x ∈ �.

H1: f : � × R → R is a Carathéodory function such that f (x, 0) = 0 for a. a. x ∈ �

and it satisfies the following assumptions:

123



(p, q)-Equations with Negative Concave Terms Page 5 of 26 5

(i) there exist r ∈ (p, p∗) and 0 ≤ a(·) ∈ L∞(�) such that

| f (x, s)| ≤ a(x)
(

1 + |s|r−1
)

for a. a. x ∈ � and for all s ∈ R;
(ii) if F(x, s) = ∫ s

0 f (x, t) dt , then

lim
s→+∞

F(x, s)

s p
= +∞

uniformly for a. a. x ∈ � and there exists

μ ∈
(

(r − p)max

{
N

p
, 1

}

, p∗
)

such that

0 < β0 ≤ lim inf
s→+∞

f (x, s)s − pF(x, s)

sμ

uniformly for a. a. x ∈ �;
(iii) there exist β1 ∈ L∞(�) and β2 > 0 such that

λ̂1(p) ≤ β1(x) for a. a. x ∈ �

with β1 
≡ λ̂1(p) and

β1(x) ≤ lim inf
s→−∞

f (x, s)

|s|p−2s
≤ lim sup

s→−∞
f (x, s)

|s|p−2s
≤ β2

uniformly for a. a. x ∈ �.
(iv) there exists β ∈ (1, τ ) such that

lim
s→0

f (x, s)

|s|β−2s
= 0

uniformly for a. a. x ∈ �,

lim inf
s→0

f (x, s)

|s|τ−2s
≥ η > ‖ϑ‖∞

uniformly for a. a. x ∈ � and for every λ > 0 there exists μ̂(λ) ∈ (1, β) such
that μ̂(λ) → μ̂ ∈ (1, β) as λ → 0+ and

f (x, s)s ≤ ĉ
(

λ|s|μ̂(λ) + |s|r
)

− c̃|s|β

for a. a. x ∈ �, for all s ∈ R with ĉ, c̃ > 0.
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Remark 3.2 Hypotheses H1 (ii) and H1(iii) imply the asymmetric behavior of the
perturbation f (x, ·). Indeed, hypothesis H1(ii) says that f (x, ·) is (p−1)-superlinear
as s → +∞ but need not satisfy the AR-condition, see, for example, Ghoussoub [6,
p. 59]. Our condition is less restrictive and allows also nonlinearities with “slower”
growth as s → +∞ which fail to satisfy the AR-condition. Here, we refer to a
unilateral version of the condition since it concerns only the positive semiaxis [0,∞).
Hypothesis H1 (iii) says that f (x, ·) is (p−1)-linear as s → −∞ and can be resonant
with respect to the principal eigenvalue of (−�p,W

1,p
0 (�)). Note that in hypothesis

H1 (i), we want a ∈ L∞(�) in order to be able to apply the regularity theory of
Lieberman [12].

Example 3.3 The following function satisfies hypotheses H1 but fails to satisfy the
AR-condition:

f (x, s) =

⎧

⎪⎪⎨

⎪⎪⎩

γ (x)
(|s|p−2s − |s|q−2s

)

if s < −1,

η(x)
(|s|τ−2s − |s|μ−2s

)

if − 1 ≤ s ≤ 1,

cs p−1 ln(s) if 1 < s,

with γ ∈ L∞(�), γ (x) ≥ λ̂1(q), γ 
≡ λ̂1(q) and η ∈ L∞(�), ess inf� η > ‖ϑ‖∞,
c > 0 and p > μ > τ .

Let ϕ : W 1,p
0 (�) → R be the energy functional corresponding to problem (1.1)

defined by

ϕ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq − 1

τ

∫

�

ϑ(x)|u|τ dx −
∫

�

F(x, u) dx

for all u ∈ W 1,p
0 (�). It is clear that ϕ ∈ C1(W 1,p

0 (�)). Moreover, we introduce the

positive and negative truncations of ϕ, namely, theC1-functionals ϕ± : W 1,p
0 (�) → R

given by

ϕ±(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq − 1

τ

∫

�

ϑ(x)
(

u±)τ
dx −

∫

�

F
(

x,±u±)

dx

for all u ∈ W 1,p
0 (�).

Our idea is to work with the truncated functionals ϕ± : W 1,p
0 (�) → R.

Proposition 3.4 Let hypotheses H0 and H1 be satisfied. Then there exists �̂ > 0 such
that

ϕ±(u) ≥ m > 0 for all u ∈ W 1,p
0 (�) with ‖u‖ = �̂.
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Proof From hypotheses H1 (iv), we see that for given ε > 0, we can find c1 = c1(ε) >

0 such that

F(x, s) ≤ ε − c̃

β
|s|β + c1

(

λ|s|μ̂(λ) + |s|r
)

for a. a. x ∈ � and for all s ∈ R.

(3.1)

Using (3.1) and hypotheses H0, we get for u ∈ W 1,p
0 (�)

ϕ±(u) ≥
(
1

p
− λc2‖u‖μ̂(λ)−p − c3‖u‖r−p

)

‖u‖p

for some c2, c3 > 0.
Let

ξλ(t) = λc2t
μ̂(λ)−p + c3t

r−p for t > 0.

Since μ̂(λ) < β < p < r , we see that

ξλ(t) → +∞ as t → 0+ and as t → +∞.

Therefore, we find a number t0 ∈ (0,∞) such that

ξλ (t0) = inf
t>0

ξλ(t).

Thus, ξ ′
λ(t0) = 0, and this implies

t0 =
[
λc2(p − μ̂(λ))

c3(r − p)

] 1
r−μ̂(λ)

.

Since ξλ(t0) → 0 as λ → 0+, there exists λ0 > 0 such that

ξλ(t0) <
1

p
for all λ ∈ (0, λ0).

Fix λ ∈ (0, λ0), then, for ‖u‖ = t0, we have

ϕ±(u) > 0.

Next, we show that ϕ+ : W 1,p
0 (�) → R satisfies the C-condition.

Proposition 3.5 Let hypotheses H0 and H1 be satisfied. Then the functional
ϕ+ : W 1,p

0 (�) → R satisfies the C-condition.

123
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Proof Let {un}n∈N ⊆ W 1,p
0 (�) be a sequence such that

|ϕ+(un)| ≤ c3 for some c3 > 0 and for all n ∈ N, (3.2)

(1 + ‖un‖) ϕ′+(un) → 0 in W−1,p′
(�). (3.3)

From (3.3), we get

∣
∣
∣
∣

〈

Ap(un), h
〉 + 〈

Aq(un), h
〉 −

∫

�

ϑ(x)
(

u+
n

)τ−1
h dx −

∫

�

f
(

x, u+
n

)

h dx

∣
∣
∣
∣

≤ εn‖h‖
1 + ‖un‖ for all h ∈ W 1,p

0 (�) with εn → 0+.

(3.4)

Choosing h = −u−
n ∈ W 1,p

0 (�) in (3.4) gives ‖u−
n ‖p ≤ εn for all n ∈ N and so

u−
n → 0 in W 1,p

0 (�). (3.5)

Combining (3.2) and (3.5) yields

∥
∥∇u+

n

∥
∥
p
p + p

q
‖∇u+

n ‖qq − p

τ

∫

�

ϑ(x)
(

u+
n

)τ
dx −

∫

�

pF
(

x, u+
n

)

dx ≤ c4 (3.6)

for some c4 > 0 and for all n ∈ N. Next, we take h = u+
n ∈ W 1,p

0 (�) in (3.4). We
obtain

− ∥
∥∇u+

n

∥
∥
p
p − ∥

∥∇u+
n

∥
∥
q
q +

∫

�

ϑ(x)
(

u+
n

)τ
dx +

∫

�

f
(

x, u+
n

)

u+
n dx ≤ εn (3.7)

for all n ∈ N. Adding (3.6) and (3.7) and using hypotheses H0 as well as τ < q < p,
we get

∫

�

(

f
(

x, u+
n

)

u+
n − pF

(

x, u+
n

))

dx ≤ c5 (3.8)

for some c5 > 0 and for all n ∈ N.
Hypotheses H1 (i) and H1 (ii) imply that we can find β̂0 ∈ (0, β0) and c6 > 0 such

that

β̂0s
μ − c6 ≤ f (x, s)s − pF(x, s) (3.9)

for a. a. x ∈ � and for all s ≥ 0. Using (3.9) in (3.8) leads to

∥
∥u+

n

∥
∥

μ

μ
≤ c7 for some c7 > 0 and for all n ∈ N.

Hence

{

u+
n

}

n∈N ⊆ Lμ(�) is bounded. (3.10)
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First, assume that p 
= N . From hypothesis H1 (ii) it is clear that we may assume
that μ < r < p∗. Then we can find t ∈ (0, 1) such that

1

r
= 1 − t

μ
+ t

p∗ . (3.11)

Using the interpolation inequality (see Papageorgiou and Winkert [18, p. 116]), we
have

∥
∥u+

n

∥
∥
r ≤ ∥

∥u+
n

∥
∥
1−t
μ

∥
∥u+

n

∥
∥
t
p∗ for all n ∈ N.

This combined with (3.10) results in

∥
∥u+

n

∥
∥
r
r ≤ c8

∥
∥u+

n

∥
∥
tr

for all n ∈ N (3.12)

with some c8 > 0. Testing (3.4) with h = u+
n ∈ W 1,p

0 (�) we obtain

∥
∥∇u+

n

∥
∥
p
p ≤ εn +

∫

�

f
(

x, u+
n

)

u+
n dx for all n ∈ N

due to hypotheses H0. Using H1 (i), this implies

∥
∥u+

n

∥
∥
p ≤ c9

(

1 + ∥
∥u+

n

∥
∥
r
r

)

for all n ∈ N

with some c9 > 0. Combining this with (3.12) yields

∥
∥u+

n

∥
∥
p ≤ c10

(

1 + ∥
∥u+

n

∥
∥
tr

)

for all n ∈ N (3.13)

for some c10 > 0.
Recall that p 
= N . If p > N , then by definition we have p∗ = ∞ and so

1

r
= 1 − t

μ
,

see (3.11), which implies, because of H1 (ii), that tr = r −μ < p. Then we conclude
from (3.13) that

{

u+
n

}

n∈N ⊆ W 1,p
0 (�) is bounded. (3.14)

If p < N , then we have by definition p∗ = Np
N−p . So from (3.11) and H1 (ii), it

follows

tr = p∗(r − μ)

p∗ − μ
= Np(r − μ)

Np − Nμ + μp
<

Np(r − μ)

Np − Nμ + (r − p) Np p
= p.

Hence, (3.14) holds again in this case.
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Finally, let p = N . Then by the Sobolev embedding theorem, we know that
W 1,p

0 (�) ↪→ Ls(�) is continuous for all 1 ≤ s < ∞. Then, in the argument above,
we need to replace p∗ by s > r > μ. We choose t ∈ (0, 1) such that

1

r
= 1 − t

μ
+ t

s
,which gives

tr = s(r − μ)

s − μ
. (3.15)

Note that s(r−μ)
s−μ

→ r − μ as s → +∞ and r − μ < p, see H1 (ii). We choose s > r
large enough such that

s(r − μ)

s − μ
< p.

Then, using (3.15), we have tr < p and so {u+
n }n∈N ⊆ W 1,p

0 (�) is bounded. Com-

bining this with (3.5), we obtain that {un}n∈N ⊆ W 1,p
0 (�) is bounded.

Then there exists a subsequence, not relabeled, such that

un⇀u in W 1,p
0 (�) and un → u in Lr (�). (3.16)

If we use h = un − u ∈ W 1,p
0 (�) in (3.4), pass to the limit as n → ∞ and use

(3.16), we obtain

lim
n→∞

(〈

Ap(un), un − u
〉 + 〈

Aq(un), un − u
〉) = 0.

By the monotonicity of Aq , we have

〈

Aq(u), un − u
〉 ≤ 〈

Aq(un), un − u
〉

.

Using this in the limit above, we obtain

lim sup
n→∞

(〈

Ap(un), un − u
〉 + 〈

Aq(u), un − u
〉) ≤ 0.

Hence, from the convergence properties in (3.16), we conclude that

lim sup
n→∞

〈

Ap(un), un − u
〉 ≤ 0.

The (S+)-property of Ap implies that un → u inW 1,p
0 (�). This shows thatϕ+ satisfies

the C-condition.

Proposition 3.5 leads to the following existence result for problem (1.1).

123
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Proposition 3.6 Let hypothesesH0 andH1. Thenproblem (1.1)has at least one positive
solution u0 ∈ C1

0(�)+ \ {0}.
Proof From Proposition 3.4, we know that

ϕ+(0) = 0 < m ≤ ϕ+(u) for all u ∈ W 1,p
0 (�) with ‖u‖ = �̂. (3.17)

Also, from Proposition 3.5, we know that

ϕ+ : W 1,p
0 (�) → R satisfies the C-condition. (3.18)

Moreover, hypothesis H1 (ii) implies that if u ∈ int
(

C1
0(�)+

)

, then

ϕ+(tu) → −∞ as t → +∞. (3.19)

Then, (3.17), (3.18), and (3.19) permit the usage of the mountain pass theorem.
Therefore, we can find u0 ∈ W 1,p

0 (�) such that

u0 ∈ Kϕ+ and ϕ+(0) = 0 < m ≤ ϕ+ (u0) .

Hence, u0 
= 0. From Ho et al. [7, Theorem 3.1], we know that u0 ∈ L∞(�). Then
the nonlinear regularity theory of Lieberman [12] implies that u0 ∈ C1

0(�)+ \ {0}.
Remark 3.7 Eventually, we will show that u0 ∈ int

(

C1
0(�)+

)

, see Corollary 3.12.
However, at this point, due to the negative concave term, we cannot use the non-
linear Hopf maximum principle, see Pucci and Serrin [23, p. 120], and infer that
u0 ∈ int

(

C1
0(�)+

)

.

Next, we are looking for a negative solution of problem (1.1). So, we work with
the functional ϕ− : W 1,p

0 (�) → R. For the functional ϕ− : W 1,p
0 (�) → R, we have

the following proposition.

Proposition 3.8 Let hypotheses H0 and H1 be satisfied. Then the functional
ϕ− : W 1,p

0 (�) → R satisfies the C-condition.

Proof Let {un}n∈N ⊆ W 1,p
0 (�) be a sequence such that {ϕ−(un)}n∈N ⊆ R is bounded

and

(1 + ‖un‖) ϕ′−(un) → 0 in W−1,p′
(�). (3.20)

From (3.20), we have

∣
∣
∣
∣

〈

Ap(un), h
〉 + 〈

Aq(un), h
〉 +

∫

�

ϑ(x)
(

u−
n

)τ−1
h dx −

∫

�

f
(

x,−u−
n

)

h dx

∣
∣
∣
∣

≤ εn‖h‖
1 + ‖un‖ for all h ∈ W 1,p

0 (�) with εn → 0+.

(3.21)
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5 Page 12 of 26 A. Crespo-Blanco et al.

If we choose h = u+
n ∈ W 1,p

0 (�) in (3.21), we obtain ‖u+
n ‖p ≤ εn for all n ∈ N

which implies

u+
n → 0 in W 1,p

0 (�). (3.22)

Suppose that ‖u−
n ‖ → ∞ and let yn = u−

n

‖u−
n ‖ . Then ‖yn‖ = 1 for all n ∈ N.

Therefore, we may suppose, for a subsequence if necessary, that

yn⇀y in W 1,p
0 (�) and yn → y in L p(�) (3.23)

for some y ∈ W 1,p
0 (�) with y ≥ 0. From (3.21) and (3.22), we obtain

∣
∣
∣
∣

〈

Ap(−yn), h
〉 + 1

‖u−
n ‖p−q

〈

Aq(−yn), h
〉 −

∫

�

ϑ(x)

‖u−
n ‖p−τ

yτ−1
n h dx

−
∫

�

f
(

x,−u−
n

)

‖u−
n ‖p−1

h dx

∣
∣
∣
∣
∣
≤ ε′

n‖h‖ for all h ∈ W 1,p
0 (�) with ε′

n → 0+.

(3.24)

Choosing h = yn − y ∈ W 1,p
0 (�) in (3.24), passing to the limit as n → ∞ and using

the convergence properties in (3.23) gives

lim
n→∞

〈

Ap(yn), yn − y
〉 = 0.

From the (S+)-property of Ap : W 1,p
0 (�) → W−1,p′

(�) = W 1,p
0 (�)∗, we conclude

that

yn → y in W 1,p
0 (�) with ‖y‖ = 1 and y ≥ 0. (3.25)

Note that from hypothesis H1 (iii), we have

f (·,−un(·)−)

‖u−
n ‖p−1

→ −β̂(x)y p−1 in L p′
(�) (3.26)

with β̂ ∈ L∞(�) and β1(x) ≤ β̂(x) ≤ β2 for a. a. x ∈ �, see Aizicovici et al. [1,
proof of Proposition 16] and Motreanu et al. [14, Proof of Theorem 11.15, p. 317].

So, if we pass to the limit in (3.24) as n → ∞ and use (3.25) as well as (3.26), we
obtain

〈

Ap(−y), h
〉 = −

∫

�

β̂(x)y p−1h dx for all h ∈ W 1,p
0 (�).

This means that

−�p y = β̂(x)y p−1 in �, y
∣
∣
∂�

= 0.
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From (3.25), we know that y 
= 0 and

λ̃1(p, β̂) < λ̃1(p, λ̂1(p)) = 1, (3.27)

see (2.2). From (3.26) and (3.27), it follows that y must be sign-changing which is
a contradiction to (3.25), see also Motreanu et al. [14, Proposition 9.47(b)]. Thus,
{u−

n } ⊆ W 1,p
0 (�) is bounded; hence, {un} ⊆ W 1,p

0 (�) is bounded, see (3.22). From

this as in the proof of Proposition 3.5, we conclude that ϕ− : W 1,p
0 (�) → R satisfies

the C-condition.

On account of hypothesis H1 (iii), we see that

ϕ−(t û1(p)) → −∞ as t → −∞. (3.28)

Then (3.28), Proposition 3.8, and the mountain pass theorem lead to the following
result.

Proposition 3.9 Let hypotheses H0 and H1 be satisfied. Then problem (1.1) has a
negative solution v0 ∈ −C1

0(�) \ {0}.

In what follows S+ (resp.S−) denote the set of positive (resp. negative) solutions
to (1.1). From Propositions 3.6 and 3.9, we have

∅ 
= S+ ⊆ C1
0(�)+ \ {0} and ∅ 
= S− ⊆

(

−C1
0(�)+

)

\ {0}.

Next, we are going to prove that S+ has a minimal element and S− a maximal
one. So we have extremal constant sign solutions, that is, there is a smallest positive
solution u∗ and a largest negative solution v∗. These solutions will be useful in proving
the existence of a sign-changing solution. Indeed, any nontrivial solution of problem
(1.1) in the order interval [v∗, u∗] distinct from v∗ and u∗ is necessarily sign-changing.

On account of hypotheses H1 (i) and H1 (iv), for a given ε > 0, we can find
ĉ1 = ĉ1(ε) > 0 such that

f (x, s)s ≥ [η − ε] |s|τ − ĉ1|s|r

for a. a. x ∈ � and for all s ∈ R. This implies

ϑ(x)|s|τ + f (x, s)s ≥ [η − ε − ‖ϑ‖∞] |s|τ − ĉ1|s|r

for a. a. x ∈ � and for all s ∈ R. By hypothesis H1 (iv), we have η > ‖ϑ‖∞. So,
choosing ε ∈ (0, η − ‖ϑ‖∞), we have

ϑ(x)|s|τ + f (x, s)s ≥ ĉ2|s|τ − ĉ1|s|r (3.29)
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for some ĉ2 > 0, for a. a. x ∈ � and for all s ∈ R. Then, (3.29) suggests that we
consider the following Dirichlet (p, q)-equation

−�pu − �qu = ĉ2|u|τ−2u − ĉ1|u|r−2u in �,

u
∣
∣
∂�

= 0, 1 < τ < q < p < r < p∗,
(3.30)

Similarly to Proposition 4.1 of Papageorgiou andWinkert [17], we have the following
existence and uniqueness result.

Proposition 3.10 Problem (3.30) has a unique positive solution u ∈ int
(

C1
0(�)+

)

and since problem (3.30) is odd, v = −u ∈ − int
(

C1
0(�)+

)

is the unique negative
solution of (3.30).

Proof First, we show the existence of a positive solution of problem (3.30). To this
end, let ψ+ : W 1,p

0 (�) → R be the C1-functional defined by

ψ+(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq + ĉ1

r

∥
∥u+∥

∥
r
r − ĉ2

τ

∥
∥u+∥

∥
τ

τ

for all u ∈ W 1,p
0 (�). Since τ < q < p < r , it is clear that ψ+ : W 1,p

0 (�) → R is
coercive. Also, it is sequentially weakly lower semicontinuous. Therefore, there exists
u ∈ W 1,p

0 (�) such that

ψ+ (u) = inf
[

ψ+(u) : u ∈ W 1,p
0 (�)

]

. (3.31)

Note that if u ∈ int
(

C1
0(�)+

)

and t ∈ (0, 1) small enough, then ψ+(tu) < 0 since
τ < q < p < r and so we have ψ+(u) < 0 = ψ+(0). Thus, u 
= 0.

From (3.31), we have ψ ′+(u) = 0, that is,

〈

Ap (u) , h
〉 + 〈

Aq (u) , h
〉 = ĉ2

∫

�

(

u+)τ−1
h dx − ĉ1

∫

�

(

u+)r−1
h dx

for all h ∈ W 1,p
0 (�). Choosing h = −u− ∈ W 1,p

0 (�) in the equality above shows
that u ≥ 0 with u 
= 0. Moreover, the nonlinear regularity theory of Lieberman [12]
and the nonlinear strong maximum principle, see Pucci and Serrin [23, pp. 111 and
120], imply that u ∈ int

(

C1
0(�)+

)

.
Next, we show the uniqueness of this positive solution. For this purpose, we intro-

duce the functional j : L1(�) → R ∪ {∞} defined by

j(u) =
⎧

⎨

⎩

1
p

∥
∥
∥∇u

1
τ

∥
∥
∥

p

p
+ 1

q

∥
∥
∥∇u

1
τ

∥
∥
∥

q

q
if u ≥ 0, u

1
τ ∈ W 1,p

0 (�),

+∞ otherwise.

Let dom j = {u ∈ L1(�) : j(u) < ∞} be the effective domain of j : L1(�) → R∪
{∞}. Using the ideas of Díaz and Saá [4] along with the fact that the function s �→ s

η̂
τ
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for τ < η̂ is increasing and convex, we know that j is convex. Let w ∈ W 1,p
0 (�) be

another positive solution of (3.30). As done before, we get w ∈ int
(

C1
0(�)+

)

. From
l’Hospital’s rule, we have

u

w
∈ L∞(�) and

w

u
∈ L∞(�). (3.32)

Let h = uτ − wτ ∈ C1
0(�). From (3.32), we know that wτ

uτ ≤ c with c > 0 and so
−wτ ≥ −cuτ . Then, for |t | small enough, we have

uτ + th = (1 + t)uτ − twτ ≥ ((1 + t) − tc)uc ≥ 0.

Clearly, (uτ + th)
1
τ ∈ W 1,p

0 (�). Hence, uτ + th ∈ dom j . Similarly, we can show
that wτ + th ∈ dom j .

Then the convexity of j implies that the directional derivative of j at uτ and at wτ ,
respectively, in the direction h exists. Moreover, using the nonlinear Green’s identity,
see Papageorgiou et al. [21, p. 35], we have

j ′
(

uτ
)

(h) = 1

τ

∫

�

−�pu − �qu

uτ−1 h dx = 1

τ

∫

�

[

ĉ2 − ĉ1u
r−τ

]

h dx,

j ′
(

wτ
)

(h) = 1

τ

∫

�

−�pw − �qw

wτ−1 h dx = 1

τ

∫

�

[

ĉ2 − ĉ1w
r−τ

]

h dx .

The convexity of j implies the monotonicity of j ′. So, we have

0 ≤ ĉ1
τ

∫

�

[

wr−τ − ur−τ
] (

uτ − wτ
)

dx ≤ 0.

Thus, u = w.
Since equation (3.30) is odd, v = −u ∈ − int

(

C1
0(�)+

)

is the unique negative
solution of (3.30).

Proposition 3.11 Let hypotheses H0 and H1 be satisfied. Then it holds u ≤ u for all
u ∈ S+ and v ≤ v for all v ∈ S−, where u, v are the unique nontrivial constant sign
solutions of (3.30) given in Proposition 3.10.

Proof Let u ∈ S+ and consider the Carathéodory function l+ : � × R → R defined
by

l+(x, s) =
{

ĉ2
(

s+)τ−1 − ĉ1
(

s+)r−1 if s ≤ u(x),

ĉ2u(x)τ−1 − ĉ1u(x)r−1 if u(x) < s.
(3.33)
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We set L+(x, s) = ∫ s
0 l+(x, t) dt and consider the C1-functional σ+ : W 1,p

0 (�) → R

defined by

σ+(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq −

∫

�

L+(x, u) dx

for all u ∈ W 1,p
0 (�).

From the truncation in (3.33), it is clear that σ+ : W 1,p
0 (�) → R is coercive.

Moreover, it is also sequentially weakly lower semicontinuous. So, we can find ũ ∈
W 1,p

0 (�) such that

σ+ (ũ) = inf
[

σ+(u) : u ∈ W 1,p
0 (�)

]

. (3.34)

Since τ < q < p < r , we see that σ+(ũ) < 0 = σ+(0). Hence, ũ 
= 0.
From (3.34), we have σ ′+(ũ) = 0. This gives

〈

Ap (ũ) , h
〉 + 〈

Aq (ũ) , h
〉 =

∫

�

l+ (x, ũ) h dx (3.35)

for all h ∈ W 1,p
0 (�). In (3.35) we first choose h = −ũ− ∈ W 1,p

0 (�) and obtain ũ ≥ 0

and ũ 
= 0. Then we choose h = (ũ−u)+ ∈ W 1,p
0 (�). This yields by applying (3.33)

along with (3.29) and the fact that u ∈ S+
〈

Ap (ũ) , (ũ − u)+
〉 + 〈

Aq (ũ) , (ũ − u)+
〉

=
∫

�

[

ĉ2u
τ−1 − ĉ1u

r−1
]

(ũ − u)+ dx

≤
∫

�

[

ϑ(x)uτ−1 + f (x, u)
]

(ũ − u)+ dx

= 〈

Ap (u) , (ũ − u)+
〉 + 〈

Aq (u) , (ũ − u)+
〉

.

Hence, ũ ≤ u. So we have proved that

ũ ∈ [0, u], ũ 
= 0. (3.36)

From (3.36), (3.33), and (3.35), it follows that ũ is a positive solution of (3.30). Then
ũ = u ∈ int

(

C1
0(�)+

)

and so u ≤ u for all u ∈ S+.
Similarly, we show that v ≤ v for all v ∈ S−.

We have the following corollary.

Corollary 3.12 Let hypotheses H0 and H1 be satisfied. Then

∅ 
= S+ ⊆ int
(

C1
0(�)+

)

and ∅ 
= S− ⊆ − int
(

C1
0(�)+

)

.
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Now we are ready to produce extremal constant sign solutions.

Proposition 3.13 Let hypotheses H0 and H1 be satisfied. Then there exist solutions
u∗ ∈ S+ and v∗ ∈ S− such that

u∗ ≤ u for all u ∈ S+ and v ≤ v∗ for all v ∈ S−.

Proof From Papageorgiou et al. [19, Proposition 7], we know that S+ is downward
directed. So, using Lemma 3.10 of Hu and Papageorgiou [8], we can find a decreasing
sequence {un}n∈N such that

inf
n∈N un = inf S+.

Since un ∈ S+, we have

〈

Ap (un) , h
〉 + 〈

Aq (un) , h
〉 =

∫

�

ϑ(x)uτ−1
n h dx +

∫

�

f (x, un)h dx (3.37)

for all h ∈ W 1,p
0 (�). Evidently, the sequence {un}n∈N ⊆ W 1,p

0 (�) is bounded. So,
we may assume that

un⇀u∗ in W 1,p
0 (�) and un → u∗ in Lr (�). (3.38)

Choosing h = un − u in (3.37), passing to the limit as n → ∞, and using the
convergence properties in (3.38), we obtain

lim sup
n→∞

〈

Ap(un), un − u
〉 ≤ 0.

Then, by the (S+)-property of Ap, we get

un → u∗ in W 1,p
0 (�). (3.39)

Passing to the limit in (3.37) and using (3.39), we have

〈

Ap (u∗) , h
〉 + 〈

Aq (u∗) , h
〉 =

∫

�

ϑ(x)uτ−1∗ h dx +
∫

�

f (x, u∗)h dx

for all h ∈ W 1,p
0 (�). From Proposition 3.11, we know that u ≤ u∗. Hence, u∗ ∈ S+

and u∗ ≤ u for all u ∈ S+.
Similarly, we produce v∗ ∈ S− such that v ≤ v∗ for all v ∈ S−. Note that S− is

upward directed.

Using the extremal constant sign solutions obtained in Proposition 3.13, we are
going to prove the existence of a sign-changing solution. As explained earlier, we
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focus on the order interval [v∗, u∗] and look for solutions in [v∗, u∗] \ {0, u∗, v∗}.
Such a solution turns out to be sign-changing.

Implementing the approach just described, let u∗ ∈ S+ and v∗ ∈ S− be the extremal
constant sign solutions from Proposition 3.13 and consider the truncation functions
k1, k2 : � × R → R defined by

k1(x, s) =

⎧

⎪⎨

⎪⎩

ϑ(x)|v∗(x)|τ−2v∗(x) if s < v∗(x),
ϑ(x)|s|τ−2s if v∗(x) ≤ s ≤ u∗(x),
ϑ(x)u∗(x)τ−1 if u∗(x) < s,

(3.40)

and

k2(x, s) =

⎧

⎪⎨

⎪⎩

f (x, v∗(x)) if s < v∗(x),
f (x, s) if v∗(x) ≤ s ≤ u∗(x),
f (x, u∗(x)) if u∗(x) < s.

(3.41)

It is clear that both are Carathéodory functions. We set

k(x, s) = k1(x, s) + k2(x, s). (3.42)

Furthermore, we introduce the positive and negative truncations of k(x, ·), namely the
Carathéodory functions

k±(x, s) = k1
(

x,±s±) + k2
(

x,±s±)

. (3.43)

We set

K1(x, s) =
∫ s

0
k1(x, t) dt, K2(x, s) =

∫ s

0
k2(x, t) dt,

K (x, s) = K1(x, s) + K2(x, s), K±(x, s) =
∫ s

0
k±(x, t) dt

and consider the C1-functionals ζ, ζ± : W 1,p
0 (�) → R defined by

ζ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq −

∫

�

K (x, u) dx for all u ∈ W 1,p
0 (�) (3.44)

ζ±(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq −

∫

�

K±(x, u) dx for all u ∈ W 1,p
0 (�),

Applying (3.40), (3.41), (3.42), and (3.43), we check easily that

Kζ ⊆[v∗, u∗] ∩ C1
0(�), Kζ+ ⊆[0, u∗] ∩ C1

0(�) and Kζ− ⊆[v∗, 0] ∩
(

−C1
0(�)

)

.
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Due to the extremality of u∗ and v∗, we conclude that

Kζ ⊆ [v∗, u∗] ∩ C1
0(�), Kζ+ = {0, u∗} and Kζ− = {0, v∗}. (3.45)

Proposition 3.14 Let hypotheses H0 and H1 be satisfied. Then u∗ ∈ S+ and v∗ ∈ S−
are local minimizers of ζ : W 1,p

0 (�) → R.

Proof Because of (3.40), (3.41), and (3.43), it is clear that ζ+ : W 1,p
0 (�) → R is

coercive and it is also sequentially weakly lower semicontinuous. Hence, we find
ũ∗ ∈ W 1,p

0 (�) such that

ζ+ (ũ∗) = inf
[

ζ+(u) : u ∈ W 1,p
0 (�)

]

< 0 = ζ+(0), (3.46)
since τ < q < p, for t ∈ (0, 1) small enough, we have by using H1 (iv) and choosing
ε ∈ (0, η − ‖ϑ‖∞)

ζ+ (tu∗) ≤ t p
‖∇u∗‖p

p

p
+ tq

‖∇u∗‖qq
q

+ tτ
1

τ

(∫

�

[‖ϑ‖∞ − (η − ε)] uτ∗ dx
)

< 0.

Due to (3.46), we know that ũ∗ ∈ Kζ+ and so ũ∗ = u∗, see (3.45). Let � > 0 and

B
C1
0

� =
{

u ∈ C1
0(�) : ‖u − u∗‖C1

0 (�) ≤ �
}

.

Since ζ |C1
0 (�)+= ζ+ |C1

0 (�)+ , we obtain for u ∈ B
C1
0

�

ζ(u) − ζ(u∗) = ζ(u) − ζ+(u∗)
≥ ζ(u) − ζ+(u)

=
∫

�

[

K+(x, u) − K (x, u)
]

dx

=
∫

�

−K1
(

x,−u−)

dx +
∫

�

−K2
(

x,−u−)

dx .

(3.47)

We write as abbreviation

{−u− < v∗} := {x ∈ � : −u−(x) < v∗(x)},
{v∗ ≤ −u−} := {x ∈ � : v∗(x) ≤ −u−(x)}.
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Then, for the first integral on the right-hand side in (3.47), we have

∫

�

−K1
(

x,−u−)

dx

=
∫

{−u−<v∗}

(

−ϑ(x)

τ
|v∗|τ − ϑ(x)

[

|v∗|τ−2v∗(−u− − v∗)
])

dx

+
∫

{v∗≤−u−}
−ϑ(x)

τ
(u−)τ dx

≥
∫

{v∗≤−u−}
−ϑ(x)

τ
(u−)τ dx .

(3.48)

From H1 (iv), for given ε > 0, we can find ĉ11 = ĉ11(ε) > 0 such that

F(x, s) ≤ ε − c̃

β
|s|β + ĉ11

(

λ|s|μ̂(λ) + |s|r
)

(3.49)

for a. a. x ∈ � and for all s ∈ R. Using (3.49), the second integral on the right-hand
side in (3.47) can be estimated by (see also the proof of Proposition 3.4)

∫

�

−K2
(

x,−u−)

dx

=
∫

{−u−<v∗}
− [

F(x, v∗) + f (x, v∗)(−u− − v∗)
]

dx

−
∫

{v∗≤−u−}
F

(

x,−u−)

dx

≥
∫

{−u−<v∗}
− [

F(x, v∗) + f (x, v∗)(−u− − v∗)
]

dx

−
∫

{v∗≤−u−}
ξλ

(∥
∥u−∥

∥∞
) (

u−)p
dx .

(3.50)

Combining (3.47), (3.48), (3.50) and applying hypotheses H0, we obtain

ζ(u) − ζ(u∗)

≥
∫

{−u−<v∗}
− [

F(x, v∗) + f (x, v∗)(−u− − v∗)
]

dx

+
∫

{v∗≤−u−}

(−ϑ(x)

τ
(u−)τ − ξλ

(∥
∥u−∥

∥∞
) (

u−)p
)

dx

≥
∫

{−u−<v∗}
− [

F(x, v∗) + f (x, v∗)(−u− − v∗)
]

dx

+
∫

{v∗≤−u−}

(
1

τ
c0

(

u−)τ − ξλ

(∥
∥u−∥

∥∞
) (

u−)p
)

dx .

(3.51)
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Recall that u∗ ∈ C1
0(�)+ \ {0} and u ∈ B

C1
0

� . Hence, we have

∥
∥u−∥

∥∞ → 0 as � → 0+.

Thus, |{−u− ≤ v∗}|N → 0 as � → 0+ and |{v∗ ≤ −u−}|N > 0 for � > 0 small
enough and it is also decreasing in �. Then, for λ small and for � > 0 small enough,
from (3.51), it follows that u∗ is a localC1

0(�)-minimizer of ζ and from Papageorgiou

and Rădulescu [16], we deduce that u∗ is a local W 1,p
0 (�)-minimizer of ζ .

Similarly, working with ζ− instead of ζ+, we can show the result for v∗ ∈ S−.

Now we are ready to generate a sign-changing solution for problem (1.1).

Proposition 3.15 Let hypotheses H0 and H1 be satisfied. Then problem (1.1) has a
sign-changing solution y0 ∈ [v∗, u∗] ∩ C1

0(�).

Proof We assume that Kζ is finite, otherwise on account of (3.45), (3.40), and (3.41),
we would have infinity smooth sign-changing solutions. Moreover, we assume that
ζ(v∗) ≤ ζ(u∗). The analysis is similar if the opposite inequality holds. From Propo-
sition 3.14, we know that u∗ is a local minimizer of ζ . Recall that the functional ζ

is coercive. So, it satisfies the C-condition, see, for example, Papageorgiou et al. [21,
p. 369]. So, using Theorem 5.7.6 of Papageorgiou et al. [21], we can find ρ ∈ (0, 1)
small enough such that

ζ(v∗) ≤ ζ(u∗) < inf [ζ(u) : ‖u − u∗‖ = ρ] =: mρ and ‖v∗ − u∗‖ > ρ.

Therefore, we can use the mountain pass theorem and find y0 ∈ W 1,p
0 (�) such that

y0 ∈ Kζ ⊆ [v∗, u∗] ∩ C1
0(�), (3.52)

see (3.45), and

ζ(v∗) ≤ ζ(u∗) < mρ ≤ ζ(y0). (3.53)

From (3.53), we see that y0 /∈ {v∗, u∗}. Moreover, Theorem 6.5.8 of Papageorgiou
et al. [21] implies that

C1 (ζ, y0) 
= 0. (3.54)

On the other hand, the presence of the concave term and theC1-continuity of critical
groups imply that

Ck(ζ, 0) = 0 for all k ∈ N0, (3.55)

see Leonardi and Papageorgiou [11, Proposition 6] and Papageorgiou et al. [21, Propo-
sition 6.3.4]. Comparing (3.54) and (3.55), we infer that y0 
= 0. Taking (3.52) into
account, we conclude that y0 is a smooth sign-changing solution of problem (1.1).
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Summarizing this, we can state the following multiplicity theorem for problem
(1.1).

Theorem 3.16 Let hypotheses H0 and H1 be satisfied. Then problem (1.1) has at least
three nontrivial smooth solutions

u0 ∈ int
(

C1
0(�)+

)

, v0 ∈ − int
(

C1
0(�)+

)

and

y0 ∈ [v0, u0] ∩ C1
0(�) being sign-changing.

4 Infinitely Many Nodal Solutions

In this section, under a local symmetry condition on f (x, ·), we prove the existence
of a whole sequence of nodal solutions converging to 0 in C1

0(�).
The new conditions on the perturbation f : � × R → R are the following ones:

H2: f : �×R → R is a Carathéodory function such that f (x, ·) is odd for a. a. x ∈ �

in [−γ, γ ] with γ > 0 and it satisfies the following assumptions:

(i) there exist r ∈ (p, p∗) and 0 ≤ a(·) ∈ L∞(�) such that

| f (x, s)| ≤ a(x)
(

1 + |s|r−1
)

for a. a. x ∈ � and for all s ∈ R;
(ii) if F(x, s) = ∫ s

0 f (x, t) dt , then

lim
s→+∞

F(x, s)

s p
= +∞

uniformly for a. a. x ∈ � and there exists

μ ∈
(

(r − p)max

{
N

p
, 1

}

, p∗
)

such that

0 < β0 ≤ lim inf
s→+∞

f (x, s)s − pF(x, s)

sμ

uniformly for a. a. x ∈ �;
(iii) there exist β1 ∈ L∞(�) and β2 > 0 such that

λ̂1(p) ≤ β1(x) for a. a. x ∈ �
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with β1 
≡ λ̂1(p) and

β1(x) ≤ lim inf
s→−∞

f (x, s)

|s|p−2s
≤ lim sup

s→−∞
f (x, s)

|s|p−2s
≤ β2

uniformly for a. a. x ∈ �.
(iv) there exists β ∈ (1, τ ) such that

lim
s→0

f (x, s)

|s|β−2s
= 0

uniformly for a. a. x ∈ � and

lim inf
s→0

f (x, s)

|s|τ−2s
≥ η > ‖ϑ‖∞

uniformly for a. a. x ∈ � and for every λ > 0 there exists μ̂(λ) ∈ (1, β) such
that μ̂(λ) → μ̂ ∈ (1, β) as λ → 0+ and

f (x, s)s ≤ ĉ
(

λ|s|μ̂(λ) + |s|r
)

− c̃|s|β

for a. a. x ∈ �, for all s ∈ R with ĉ, c̃ > 0.

Recall that the functional ζ : W 1,p
0 (�) → R is given by

ζ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq −

∫

�

K (x, u) dx for all u ∈ W 1,p
0 (�),

see (3.44), where the difference is that, due to the local oddness of f (x, ·), we
truncate in (3.40), (3.41) above at int

(

C1
0(�)+

) � η̂ < min{γ, u∗} instead
of u∗ and below at − int

(

C1
0(�)+

) � (−η̂
)

> max{−γ, v∗} instead of v∗.
Let V ⊆ W 1,p

0 (�) ∩ L∞(�) be a finite-dimensional subspace.

Proposition 4.1 Let hypotheses H0 and H2 be satisfied. Then there exists ρV > 0 such
that

sup [ζ(u) : u ∈ V , ‖u‖ = ρV ] < 0.

Proof On account of hypothesis H2 (iv), for a given ε > 0, there exists δ = δ(ε) > 0
such that

F(x, s) ≥ 1

τ
(η − ε) |s|τ (4.1)

for a. a. x ∈ � and for all |s| ≤ δ.
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Since V is finite dimensional, all norms are equivalent. Therefore, we can find
ρV > 0 such that

u ∈ V and ‖u‖ ≤ ρV imply |u(x)| ≤ δ for a. a. x ∈ �. (4.2)

Applying (4.1) and (4.2), we have for ‖u‖ ≤ ρV

ζ(u) ≤ 1

p
‖∇u‖p + 1

q
‖∇u‖q − 1

τ

∫

�

(η − ε − ‖ϑ‖∞) |u|τ dx,

see the truncations in (3.40) and (3.41). Recalling that η > ‖ϑ‖∞, we choose ε ∈
(0, η −‖ϑ‖∞). Then, using once more the fact that on V all norms are equivalent, we
obtain

ζ(u) ≤ 1

p
‖∇u‖p + 1

q
‖∇u‖q − ĉ1‖u‖τ

for some ĉ1 > 0.
Since τ < q < p, choosing ρV ∈ (0, 1) even smaller if necessary, we have

sup [ζ(u) : u ∈ V , ‖u‖ = ρV ] < 0.

Now we are ready for the new multiplicity theorem for problem (1.1) under H2.

Theorem 4.2 Let hypotheses H0 and H2 be satisfied. Then problem (1.1) has a whole
sequence of distinct nodal solutions {un}n∈N such that un → 0 in C1

0(�).

Proof Evidently, the functional ζ : W 1,p
0 (�) → R is even, ζ(0) = 0 and it is bounded

below and satisfies the C-condition being coercive due to (3.40) as well as (3.41). Then
it satisfies the PS-condition as well, see Papageorgiou et al. [21, Proposition 5.1.14].
On account of Proposition 4.1, we can apply Theorem 1 of Kajikiya [9] and obtain a
sequence {un}n∈N ⊆ W 1,p

0 (�) such that

un ∈ Kζ for all n ∈ N and un → 0 in W 1,p
0 (�).

Note that un ∈ L∞(�) (see, for example Ho et al. [7, Theorem 3.1]). Then, from the
nonlinear regularity theory due to Lieberman [12, p. 320], there exist α ∈ (0, 1) and
M > 0 such that

un ∈ C1,α
0 (�) and ‖un‖C1,α

0 (�)
≤ M .

Using the compactness of C1,α
0 (�) into C1

0(�) gives

un ∈ C1
0(�) for all n ∈ N and un → 0 in C1

0(�).

Since intC1
0 (�)[v∗, u∗] 
= ∅ (recall that v∗ ∈ − int

(

C1
0(�)+

)

, u∗ ∈ int
(

C1
0(�)+

)

), it
follows that {un}n≥n0 ⊆ [v∗, u∗] for some n0 ∈ N. These are nodal solutions of (1.1).
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Remark 4.3 It will be interesting to extend the results of this paper to anisotropic
equations. We believe that this is feasible. However, concerning possible extensions
to double-phase problems with unbalanced growth, we doubt that this is possible due
to the lack of a global regularity theory for such problems.
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21. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear Analysis-Theory and Methods.

Springer, Cham (2019)
22. Perera, K.: Multiplicity results for some elliptic problems with concave nonlinearities. J. Differ. Equ.

140(1), 133–141 (1997)
23. Pucci, P., Serrin, J.: The Maximum Principle. Birkhäuser Verlag, Basel (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	(p,q)-Equations with Negative Concave Terms
	Abstract
	1 Introduction
	2 Preliminaries
	3 Multiple Solutions
	4 Infinitely Many Nodal Solutions
	Acknowledgements
	References




