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Abstract

The Einstein-Vlasov system governs the time evolution of a self-gravitating colli-
sionless gas in the context of general relativity. The aim of this thesis is to obtain
as much information as possible about global solutions of the initial value prob-
lem for the Einstein-Vlasov system with cosmological constant and spherical,
plane or hyperbolic symmetry, written in areal coordinates. Our investigation
is concerned with the spacetimes possessing a compact Cauchy hypersurface, in
this case the data are given on a compact 3-manifold.

The results on the local existence and continuation criteria obtained by G.
Rein for the Einstein-Vlasov system with vanishing cosmological constant are
extended to the case with a non-zero cosmological constant. We also prove the
solvability of the constraint problem on the initial data. We show that there is no
global solution in the future when the cosmological constant is negative so that
the study in the expanding direction deals only with the positive cosmological
constant case. Under the assumption of plane (k = 0) or hyperbolic (k = −1)
symmetry and that the cosmological constant Λ is positive we prove that the
area radius goes to infinity and so global existence in the future time direction
is shown, the spacetimes are future geodesically complete, and the expansion
becomes isotropic and exponential at late times. This proves a form of the
so-called cosmic no-hair theorem in this class of spacetimes. These results are
also proved in the spherically symmetric case (k = 1) provided that the initial
time t0 satisfies the additional assumption t20Λ > 1. Furthermore we analyze
the behaviour of the energy-momentum tensor at late times.

In addition, in the past time direction we prove global existence for generic
data if (Λ ≤ 0, k ≥ 0). Besides this we generalize some known results in the
literature by proving existence up to t = 0 for small data in the cases (Λ < 0, k =
−1) and Λ > 0, by proving that the curvature invariant called Kretschmann
scalar blows up as t → 0 so that there is a singularity at t = 0. Furthermore we
analyze the nature of this initial singularity and also show that the asymptotics
is Kasner-like at early times.
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Introduction

The Einstein-Vlasov system governs the time evolution of a self-gravitating col-
lisionless gas in the context of general relativity. In general two classes of initial
data are distinguished. This is the first class : if an isolated body is studied, the
data are called asymptotically flat. Spacetimes that possess a compact Cauchy
hypersurface are called cosmological spacetimes and data are given on a com-
pact 3-manifold, and this is the second class. In this case the whole universe
is modelled and the ”particles” in the kinetic description are galaxies or even
clusters of galaxies. Our investigation is concerned with the second class.

The aim of the present investigation is the determination of the global prop-
erties of solutions of the Einstein equations with cosmological constant coupled
to collisionless matter described by the Vlasov equation. The strategy we adopt
is to first establish a local-in-time existence theorem together with a contin-
uation criterion and then use this result to prove the existence of a suitable
global time coordinate t and to study the asymptotic behaviour of the solution
when t tends to its limiting values, which might correspond to the approach to
a singularity or a phase of unending expansion.

In [11], G. Rein obtained cosmological solutions of the Einstein-Vlasov sys-
tem with surface symmetry written in areal coordinates. In the present investi-
gation we consider the same problem when a cosmological constant Λ is added
to the source terms in the Einstein equations. A motivation for being interested
in this kind of generalization is from the point of view of astrophysics. In fact
present measurements indicate that in our universe it is the case that Λ > 0,
[18]. One piece of evidence for Λ > 0 is the data on supernovae of type Ia, very
distant astronomical objects whose distance can be determined precisely. This
shows that the expansion of the universe is accelerating and that, in mathemat-
ical terms, the mean curvature tends to a positive constant at late times. We
refer to the original paper [18] for the details of the evidence for Λ > 0. Another
reason for being interested in the Einstein-Vlasov system with Λ is that having
Λ > 0 makes it easier to obtain statements about asymptotic behaviour, as
shown by the results of [20], the results obtained in [19] on spherical symmetry,
and those obtained in [9] for the spatially homogeneous case. Hence from a
purely mathematical point of view it is interesting to study the case Λ > 0.

A large part of our discussion will focus on the initial value problem for
the surface-symmetric Einstein-Vlasov system with cosmological constant. The
more important results we obtain in the present investigation pertain to the
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case Λ > 0 and are presented in the second chapter. The proofs of these results
are built on the local existence theorem and continuation criterion proved in the
first chapter. Another result in chapter 1 is on the solvability of the constraint
equation. Furthermore we prove that in the spherically symmetric case with
Λ > 0 there is a class of initial data for which global existence fails ; also if
Λ < 0 then no global surface-symmetric solution could exist. For this reason
the analysis in the expanding direction deals only with the case Λ > 0.

The presence of a positive cosmological constant Λ can lead to exponential
expansion in cosmological models. This is the simplest mathematical description
of an inflationary universe. Under certain circumstances the de Sitter solution
acts as a late time attractor for more general solutions of the Einstein equations
with Λ > 0. This is sometimes known as the cosmic no hair theorem. Up to
now there are unfortunately not many cases where this kind of statement has
been proved rigorously for inhomogeneous spacetimes.

A positive cosmological constant can be introduced in Newtonian cosmology
and this provides a simplified model for the general relativistic case. In [4] a form
of the cosmic no hair theorem was proved in Newtonian cosmology. A perfect
fluid was used as a matter model and solutions were considered which evolve
from initial data which are small but finite perturbations of homogeneous data.
It was shown that if the homogeneous solution exists globally in the future
the same is true of the inhomogeneous solution. Of course a global in time
existence theorem is a prerequisite for a proof of the cosmic no hair theorem.
It was then shown that the inhomogeneous solutions have a behaviour at late
times which is qualitatively similar to that of the homogeneous model. If ρ̄ is
the mean density and δρ = ρ− ρ̄ then δρ/ρ̄ converges as t →∞. In Newtonian
cosmology there is also a theorem about the late time asymptotics of models
with a kinetic description of matter by the Vlasov equation and with vanishing
cosmological constant [12]. The boundedness of δρ/ρ̄ is also obtained in that
case. Adding a positive cosmological constant to the problem considered in [12]
would presumably simplify the analysis but this has not been attempted.

In general relativity the problem of proving the cosmic no hair theorem is
more difficult. In the spatially homogeneous case there is a general result of
Wald [21] on spacetimes with positive cosmological constant which does not
depend on the details of the matter content but only on energy conditions.
There is one example where future geodesic completeness has been proved for
a class of inhomogeneous spacetimes with matter [13]. This concerns solutions
of the Einstein-Vlasov system with hyperbolic symmetry and Λ = 0 satisfying
an additional inequality on the initial data. Under those assumptions geodesic
completeness was proved but only limited information was obtained on the
asymptotic behaviour at late times. In the following we will show that in the
presence of a positive cosmological constant this result can be strengthened a
lot. Future geodesic completeness is proved for all solutions with hyperbolic and
plane symmetry and even for a certain class of spherically symmetric solutions.
Moreover the asymptotic behaviour is shown to closely resemble that of the de
Sitter solution. It should be mentioned that in the case of the vacuum Einstein
equations there is a proof of a form of the cosmic no hair theorem which does
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not require symmetry assumptions but does require a small data restriction [6].
In the second chapter of the present investigation we study solutions of the

Einstein equations with positive cosmological constant coupled to the Vlasov
equation describing collisionless matter. Under the assumption of plane or hy-
perbolic symmetry we show that the solutions are future geodesically complete
and we obtain a detailed description of their late time behaviour, which is sim-
ilar to that of the de Sitter solution. The same results are also proved for a
large class of initial data in the spherically symmetric case. These reveal a be-
haviour qualitatively quite different from that with Λ = 0 for which it is proved
in [11] that no global spherically symmetric solution toward the future could
exist. Furthermore the behaviour of the energy-momentum tensor is analyzed
at late times.

In the contracting direction the main result in [11] was that solutions of the
surface-symmetric Einstein-Vlasov system with vanishing cosmological constant
exist up to t = 0 for small initial data, and then the nature of the initial
singularity was analyzed. In the following these results are generalized to the
case with positive cosmological constant or even negative cosmological constant
and hyperbolic symmetry. Also in the present investigation we show that these
results can be strengthened a lot for the plane or spherically symmetric case with
Λ ≤ 0. We prove in these cases that solutions of the Einstein-Vlasov system
exist on the whole interval (0, t0] for general initial data. This is the main result
of the third chapter in this work. An important tool of the proof is a change of
variables inspired by one done by M. Weaver in [22] where she showed existence
up to t = 0 for a certain class of T 2 symmetric solutions of the Einstein-Vlasov
system with vanishing cosmological constant.

Here is the organization of the present work : in chapter 1 we formulate the
surface symmetric Einstein-Vlasov system with cosmological constant written in
areal coordinates, prove some preliminary results useful to prove local existence
theorems and continuation criteria in both time directions, the proofs of the
latter are put in an appendix at the end of the work. In chapter 2 we use some
results of the first chapter to prove global existence theorems and statements
on asymptotic behaviour in the future. In chapter 3 we analyze the problem in
the past time direction and prove existence of solutions up to t = 0 as well as
their asymptotic behaviour.
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Chapter 1

Local Cauchy problem

1.1 Preliminaries

1.1.1 Statement of the problem

Let us recall the formulation of the Einstein-Vlasov system ; for the moment we
do not assume any symmetry of the spacetime.

Let (M, g) be a spacetime, i.e. M is a four-dimensional manifold and g is
a metric of Lorentz signature (−,+,+,+). The metric is assumed to be time-
orientable, i.e. that the two halves of the light cone at each point of M can
be labelled past and future in a way which varies continuously from point to
point. With this global direction of time, it is possible to distinguish between
future-pointing and past-pointing timelike vectors. Unless otherwise specified
in what follows Greek indices always run from 0 to 3, and Latin ones from 1 to
3. We use the Einstein summation convention that repeated indices are to be
summed over. The worldline of a particle of non-zero rest mass m is a timelike
curve in spacetime. The unit future-pointing tangent vector to this curve is
the four-velocity vα of the particle. Its four-momentum pα is given by mvα.
Here we assume that all particles have the same mass m, normalized to unity
and no distinction need be made between four-velocity and four-momentum.
There is also the possibility of considering massless particles, whose worldlines
are null curves. In the case m = 1 the possible values of the four-momentum are
precisely all future-pointing unit timelike vectors. These form a hypersurface

PM := {gαβpαpβ = −1, p0 > 0},

in the tangent bundle TM called the mass shell. The distribution function f ,
which represents the density of particles with given spacetime position and four-
momentum, is a non-negative real-valued function on PM . A basic postulate
in general relativity is that a free particle travels along a geodesic. Consider a
future-directed timelike geodesic parameterized by proper time. Then its tan-
gent vector at any time is future-pointing unit timelike. Thus this geodesic has
a natural lift to a curve on PM , taking its position and tangent vector together.
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This defines a flow on PM . Denote the vector field which generates this flow by
X. The condition that f represents the distribution of a collection of particles
moving freely in the given spacetime is that it should be constant along the flow,
i.e. that Xf = 0. This is the Vlasov equation. We use coordinates (t, xa) with
zero shift and corresponding canonical momenta pα. On the mass shell PM the
variable p0 becomes a function of the remaining variables (t, xa, pb):

p0 =
√
−g00

√
1 + gabpapb.

The Vlasov equation can be coupled to the Einstein equations, giving rise to
the Einstein-Vlasov system. The unknowns are a 4-manifold, a (time orientable)
Lorentz metric g on M and a non-negative real-valued function f on the mass
shell defined by g. The field equations consist of the Vlasov equation

∂tf +
pa

p0
∂xaf − 1

p0
Γa

βγpβpγ∂paf = 0

and the Einstein equations

Gαβ + Λgαβ = 8πTαβ

Tαβ = −
∫

R3
fpαpβ |g|1/2 dp1dp2dp3

p0

where pα = gαβpβ , Γα
βγ are the Christoffel symbols associated to the metric g,

|g| denotes the determinant of the metric g,

Gαβ := Rαβ −
1
2
gαβR

the Einstein tensor, Λ the cosmological constant, and Tαβ is the energy-momentum
tensor, R is the scalar curvature of g and

Rαβ = Rν
α,νβ = ∂νΓν

αβ − ∂βΓν
αν + Γν

νρΓ
ρ
αβ − Γν

ρβΓρ
αν

the Ricci tensor.
Remark The Einstein equation can be written :

Gαβ = 8π(Tαβ + T̃αβ)

where

T̃αβ = − Λ
8π

gαβ .

This plays the role of the energy-momentum tensor of a fictitious matter model.
Remark The Vlasov equation in a fixed spacetime is a linear hyperbolic

equation for a scalar function and hence solving it is equivalent to solving the
equations for its characteristics. In coordinate components these are :{

dXa/ds = P a

dP a/ds = −Γa
βγP βP γ

(1.1)
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Let Xa(s, xα, pa), P a(s, xα, pa) be the unique solution of (1.1) with initial con-
ditions Xa(s, xα, pa) = xa and P a(s, xα, pa) = pa. Then the solution of the
Vlasov equation can be written as :

f(xα, pa) = f0(Xa(t0, xα, pa), P a(t0, xα, pa))

where f0 is the restriction of f to the hypersurface t = t0. This function f0

serves as initial datum for the Vlasov equation. It follows immediately from
this that if f0 is bounded by some constant C, the same is true of f .

Now let us introduce the concept of symmetry that we use in the present in-
vestigation. In [14] a definition of spacetimes with surface symmetry was given.
This comprised three cases, namely spherical, plane or hyperbolic symmetry.
The spacetime (M, g) is topologically of the form R × S1 × F with F a com-
pact two-dimensional manifold. The universal cover F̂ of F induces a spacetime
(M̂, ĝ) by M̂ = R × S1 × F̂ and ĝ = p?g where p : M̂ −→ M is the canonical
projection. A three-dimensional group G of isometries is assumed to act on
(M̂, ĝ). If F = S2 and G = SO(3) then (M, g) is called spherically symmetric,
if F = T 2 and G = E2 (Euclidian group) then (M, g) is called plane symmet-
ric, and if F has genus greater than one and the connected component of the
symmetry group G of the hyperbolic plane H2 acts isometrically on F̂ = H2

then (M, g) is said to have hyperbolic symmetry. The diffeomorphic images
of F in the product decomposition of M are called surfaces of symmetry and
each surface in M diffeomorphic to S1 × F is called symmetric. The isometric
action forces the curvature of the surfaces of symmetry up to rescaling to be
k = 1, 0,−1 in the spherical, plane and hyperbolic case respectively. There-
fore they can be coordinatized by the angular coordinates (θ, ϕ) (they range in
[0, π] × [0, 2π], [0, 2π] × [0, 2π], or [0,∞[×[0, 2π] for k = 1, 0,−1 respectively )
which cast the metric g̃ of the surfaces of symmetry into the form

g̃ = dθ2 + sin2
k θdϕ2, sink θ :=

 sin θ if k = 1
1 if k = 0
sinh θ if k = −1

Define the area radius function R on a surface of symmetry F to be

R =

√
1
4π

V ol(F )

then R is independent of (θ, ϕ) and the metric of F reads

g = R2g̃.

We are going to write the system in areal coordinates, i.e., the coordinates
are chosen such that R = t.

It may be asked under which circumstances coordinates of this type exist in
spacetime with a given symmetry. In the case k = 1 the answer is not clear. For
k ≤ 0 this question has been answered in [2] for the Einstein-Vlasov system with
vanishing cosmological constant. It will now be shown that the analysis there

6



can be extended to the situation under consideration here. Consider first the
Einstein equations with a general matter model satisfying the dominant energy
condition and Λ = 0. For plane symmetric spacetimes it follows from Propo-
sition 3.1 of [15] that the gradient of R is always timelike. The corresponding
statement in the case of hyperbolic symmetry can be proved by the argument in
Step 1 in section 4 of [2]. The fictitious matter field introduced above satisfies
the dominant energy condition. The same is true of the tensor which is the sum
of the fictitious energy-momentum tensor with the energy-momentum tensor
of real matter satisfying the dominant energy condition. It can be concluded
from all this that the gradient of R is timelike for the Einstein-Vlasov system
with positive cosmological constant and plane or hyperbolic symmetry. The
remainder of Step 1 and Step 2 in section 4 of [1] and [2] can be extended to the
case where a positive cosmological constant is present using the same method
of the fictitious energy-momentum tensor. The only property which is required
in addition to the dominant energy condition is the inequality q ≤ ρ− p where
ρ, p, q are defined in terms of the energy-momentum tensor as below. This con-
dition is satisfied by the fictitious energy-momentum tensor. From this point it
is possible to argue exactly as in [1] and [2] to conclude that a solution of the
Einstein-Vlasov system with positive cosmological constant and plane or hyper-
bolic symmetry contains a Cauchy surface where R is constant. Hence there is
no loss of generality in restricting consideration to spacetimes evolving from a
hypersurface of constant areal time.

Since the gradient of R is everywhere timelike it must be either everywhere
future-pointing timelike or everywhere past-pointing timelike. We choose a time
orientation such that the latter is the case. Then the expanding direction of the
cosmological model corresponds to increasing area radius t.

The metric takes the form

ds2 = −e2µ(t,r)dt2 + e2λ(t,r)dr2 + t2(dθ2 + sin2
k θdϕ2)

Here t > 0, the functions λ and µ are periodic in r with period 1.
For the spherically symmetric case k = 1 the orbits of the symmetry action

are two-dimensional spheres. For the plane symmetric case k = 0 the orbits of
the symmetry action are flat tori, they are hyperbolic spaces for the hyperbolic
symmetry k = −1. It has been shown in [10] and [2] that due to the symmetry
f can be written as a function of

t, r, w := eλp1 and F := t4(p2)2 + t4 sin2
k θ(p3)2,

i.e. f = f(t, r, w, F ). In these variables we have p0 = e−µ
√

1 + w2 + F/t2.
We can calculate the Vlasov equation in these variables, the non-trivial compo-
nents of the Einstein tensor, and the energy-momentum tensor. Details of these
calculations had been done in [10] for Λ = 0. A simple way to obtain the equa-
tions for the case with non-zero Λ is to use the device of the fictitious matter
field. Denoting by a dot or by prime the derivatives of the metric components
with respect to t or r respectively, the complete Einstein-Vlasov system reads
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as follows :

∂tf +
eµ−λw√

1 + w2 + F/t2
∂rf − (λ̇w + eµ−λµ′

√
1 + w2 + F/t2)∂wf = 0 (1.2)

e−2µ(2tλ̇ + 1) + k − Λt2 = 8πt2ρ (1.3)

e−2µ(2tµ̇− 1)− k + Λt2 = 8πt2p (1.4)

µ′ = −4πteλ+µj (1.5)

e−2λ (µ′′ + µ′(µ′ − λ′))− e−2µ

(
λ̈ + (λ̇− µ̇)(λ̇ +

1
t
)
)

+ Λ = 4πq (1.6)

where

ρ(t, r) :=
π

t2

∫ ∞

−∞

∫ ∞

0

√
1 + w2 + F/t2f(t, r, w, F )dFdw = e−2µT00(t, r) (1.7)

p(t, r) :=
π

t2

∫ ∞

−∞

∫ ∞

0

w2√
1 + w2 + F/t2

f(t, r, w, F )dFdw = e−2λT11(t, r) (1.8)

j(t, r) :=
π

t2

∫ ∞

−∞

∫ ∞

0

wf(t, r, w, F )dFdw = −eλ+µT01(t, r) (1.9)

q(t, r) :=
π

t4

∫ ∞

−∞

∫ ∞

0

F√
1 + w2 + F/t2

f(t, r, w, F )dFdw =
2
t2

T22(t, r). (1.10)

The unknowns of the Einstein-Vlasov system (1.2)-(1.6) are f , λ and µ. In order
to study the initial value problem for this system we prescribe initial data at
some time t = t0 > 0,

f(t0, r, w, F ) =
◦
f(r, w, F ), λ(t0, r) =

◦
λ(r), µ(t0, r) =

◦
µ(r).

The aim of the present investigation is to obtain as much information as possible
about global solutions of the equations (1.2)-(1.10).

1.1.2 Preliminary results

Here are the regularity properties which are required for a solution, the same
as in [11].

Definition 1.1 Let I ⊂]0,∞[ be an interval
(a) f ∈ C1(I × R2 × [0,∞[) is regular, if f(t, r + 1, w, F ) = f(t, r, w, F ) for
(t, r, w, F ) ∈ I × R2 × [0,∞[, f ≥ 0, and suppf(t, r, ., .) is compact, uniformly
in r and locally uniformly in t.
(b) ρ (or p, j, q)∈ C1(I ×R) is regular, if ρ(t, r + 1) = ρ(t, r) for (t, r) ∈ I ×R
(c) λ ∈ C1(I × R) is regular, if λ̇ ∈ C1(I × R) and λ(t, r + 1) = λ(t, r) for
(t, r) ∈ I × R
(d) µ ∈ C1(I × R) is regular, if µ′ ∈ C1(I × R) and µ(t, r + 1) = µ(t, r) for
(t, r) ∈ I × R.
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Such functions are identified with their restrictions to the interval [0, 1] with
respect to r.

The following result shows how to obtain λ and µ from the field equations
(1.3) and (1.4) for given ρ and p. This proposition ends with a statement
which will allow us to drop in the local existence result the additional condition
◦
µ(r) < 0 imposed in [11] for the case of hyperbolic symmetry.

Proposition 1.2 Let ρ and p : I × R −→ R be regular, I ⊂]0,∞[ an interval

with t0 ∈ I,
◦
λ,

◦
µ ∈ C1(R) with

◦
λ(r) =

◦
λ(r + 1),

◦
µ(r) =

◦
µ(r + 1) for r ∈ R, and

assume that

t0(e−2
◦
µ(r) + k)
t

−k +
8π

t

∫ t0

t

s2p(s, r)ds+
Λ
3t

(t3− t30) > 0, (t, r) ∈ I ×R (1.11)

Then the equations (1.2) and (1.3) have a unique, regular solution (λ, µ) on

I × R with λ(t0) =
◦
λ and µ(t0) =

◦
µ. The solution is given by

e−2µ(t,r) =
t0(e−2

◦
µ(r) + k)
t

− k +
8π

t

∫ t0

t

s2p(s, r)ds +
Λ
3t

(t3 − t30) (1.12)

λ̇(t, r) = 4πte2µ(t,r)ρ(t, r)− 1 + ke2µ(t,r)

2t
+

Λ
2

te2µ(t,r) (1.13)

λ(t, r) =
◦
λ(r)−

∫ t0

t

λ̇(s, r)ds (1.14)

If I =]T, t0] (respectively I = [t0, T [) with T ∈ [0, t0[ (resp. T ∈]t0,∞] ) then
there exists some T ? ∈ [T, t0[ (resp. T ? ∈]t0, T ]) such that condition (1.11)
holds on ]T ?, t0] × R (resp. [t0, T ?[×R). T ? is independent of p for I =]T, t0],
whereas it depends on p for I = [t0, T [.

Proof : The proof for the first part of the present proposition is the same as
that for Proposition 2.4 in [10]. Let us prove the second part :
If I =]T, t0], the function of t and r defined by the right hand side of (1.12) is
bounded from below by

h(t, r) =
t0(e−2

◦
µ + k)
t

− k +
Λ
3t

(t3 − t30).

Since
◦
µ is continuous and periodic in r, it is bounded, so there exists some

β(t0) > 0 such that

h(t0, r) = e−2
◦
µ > β(t0) > 0.

Thus the continuity of t 7→ h(t, r) at t = t0 implies the existence of some
T ? ∈]0, t0[ such that

h(t, r) >
β(t0)

2
> 0 for every t ∈]T ?, t0], (1.15)

9



i.e. (1.11) holds for t ∈]T ?, t0]. Now if I = [t0, T [, we proceed as above by
setting in this case

h(t, r) =
t0(e−2

◦
µ + k)
t

− k − 8π

t

∫ t

t0

s2p(s, r)ds +
Λ
3t

(t3 − t30). �

The other preliminary results of [11] can be generalized with minor changes to
the case with non-zero Λ. We have :

Proposition 1.3 1) For
◦
f ∈ C1(R2× [0,+∞[) with

◦
f(r +1, w, F ) =

◦
f(r, w, F )

and given regular λ, µ, the Vlasov equation (1.2) has a unique regular solution
f . The solution is given by

f(t, r, w, F ) =
◦
f((R,W )(t0, t, w, F ), F ) (1.16)

where s 7→ (R,W )(s) is the solution of the characteristic system associated to
(1.2) such that (R,W )(t, t, r, w, F ) = (r, w).
2) The subsystem (1.2), (1.3), (1.4), (1.7)-(1.10) is equivalent to the full system
(1.2)-(1.10), provided that the initial data satisfy (1.5) at t = t0.

We conclude this section with a remark dealing with the solvability of the
constraint equation (1.5) for t = t0. Note that this result is the same for any
value of Λ and completes the results of [11].

Remark 1.4 The constraint equation
◦
µ
′
= −4πt0e

◦
λ+

◦
µ
◦
j is solvable.

Proof : Indeed this equation is equivalent to

(e−
◦
µ)′ = 4πt0e

◦
λ
◦
j =

4π2

t0
e
◦
λ

∫ ∞

−∞

∫ ∞

0

w
◦
f(r, w, F )dFdw

To solve this we need to impose the condition that

I(
◦
f) :=

4π2

t0

∫ 1

0

∫ ∞

−∞

∫ ∞

0

e
◦
λw

◦
f(r, w, F )dFdwdr = 0

since e−
◦
µ(r)is periodic in r with period 1. Let us choose

◦
λ freely, and f̄ a non-

negative function.

Firstly if I(f̄) = 0 then it suffices to take
◦
f = f̄ .

Next if I(f̄) > 0 then we fix Φ ∈ C∞
c , Φ ≥ 0 such that Φ does not vanish iden-

tically and suppΦ ⊂ {w < 0}, and we set
◦
f(r, w, F ) = f̄(r, w, F ) + aΦ(r, w, F )

where a is the positive constant defined by a = −I(f̄)/I(Φ). In fact

0 = I(
◦
f) =

4π2

t0

∫ 1

0

∫ ∞

−∞

∫ ∞

0

e
◦
λwf̄(r, w, F )dFdwdr

+
4π2a

t0

∫ 1

0

∫ ∞

−∞

∫ ∞

0

e
◦
λwΦ(r, w, F )dFdwdr.
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Now if I(f̄) < 0 then we proceed in the same way as above but now with
suppΦ ⊂ {w > 0}.
Thus we determine a candidate for e−

◦
µ up to an additive constant, having given

◦
λ and f̄ freely. Choosing a suitable constant ensures that this function is positive
and thus of the form e−

◦
µ.�

1.2 Local existence and continuation criteria

This section provides local existence and uniqueness results with the continu-
ation criteria in both time directions. Since their proofs are similar to Rein’s
ones in [10] and [11], we put them in an appendix.

Theorem 1.5 Let
◦
f ∈ C1(R2 × [0,∞[) with

◦
f(r + 1, w, F ) =

◦
f(r, w, F ) for

(r, w, F ) ∈ R2 × [0,∞[,
◦
f ≥ 0, and

w0 := sup{|w||(r, w, F ) ∈ supp
◦
f} < ∞

F0 := sup{F |(r, w, F ) ∈ supp
◦
f} < ∞

Let
◦
λ ∈ C1(R),

◦
µ ∈ C2(R) with

◦
λ(r) =

◦
λ(r + 1),

◦
µ(r) =

◦
µ(r + 1) for r ∈ R, and

◦
µ
′
(r) = −4πt0e

◦
λ+

◦
µ
◦
j(r) = −4π2

t0
e
◦
λ+

◦
µ

∫ ∞

−∞

∫ ∞

0

w
◦
f(r, w, F )dFdw, r ∈ R

Then there exists a unique, left maximal, regular solution (f, λ, µ) of (1.2)-(1.6)

with (f, λ, µ)(t0) = (
◦
f,

◦
λ,

◦
µ) on a time interval ]T, t0] with T ∈ [0, t0[.

This is the analogue of the first part of theorem 3.1 in [11].
Let us now state the continuation criterion for t decreasing.

Theorem 1.6 Let (
◦
f,

◦
λ,

◦
µ) be initial data as in Theorem 1.5. Assume that

(f, λ, µ) is a solution of (1.2)-(1.6) on a left maximal interval of existence ]T, t0].
If

sup{|w||(t, r, w, F ) ∈ suppf} < ∞

and

sup{e2µ(t,r)|r ∈ R, t ∈]T, t0]} < ∞

then T = 0.

This is the analogue of the second part of theorem 3.1 in [11].
Next we state the analogue of Theorem 1.5 and Theorem 1.6 for t ≥ t0 which

generalizes with minor changes Theorem 6.1 and 6.2 in [11], to the case with
non-zero Λ.
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Theorem 1.7 Let (
◦
f,

◦
λ,

◦
µ) be initial data as in Theorem 1.5. Then there

exists a unique, right maximal, regular solution (f, λ, µ) of (1.2)-(1.6) with

(f, λ, µ)(t0) = (
◦
f,

◦
λ,

◦
µ) on a time interval [t0, T [ with T ∈]t0,∞]. If

sup{e2µ(t,r)|r ∈ R, t ∈ [t0, T [} < ∞

then T = ∞.

1.3 Some cases for which future global existence
fails

In this section we prove that for Λ < 0 no solution exists for all t ≥ t0 and for
Λ > 0 and k = 1, the solution need not exist for all t ≥ t0.

Proposition 1.8 1) In the case Λ < 0, no solution exists for all t ≥ t0.
2) For Λ > 0 and k = 1, the solution may exist or not for all t ≥ t0, depending
on the choice of t0 and of the initial data.

Proof 1) If Λ < 0, then for any solution (f, λ, µ) we have [see (1.12)] :

e−2µ(t,r) =
t0(e−2

◦
µ(r) + k)
t

− k − 8π

t

∫ t

t0

s2p(s, r)ds +
Λ
3t

(t3 − t30)

thus

e−2µ(t,r) ≤ t0(e−2
◦
µ(r) + k)
t

− k +
Λ
3t

(t3 − t30) (1.17)

has to hold on the interval of existence [t0, T [. Since the right hand side of this
estimate tends to −∞ as t →∞ it follows that T < ∞ and
‖ e2µ(t) ‖−→ ∞ as t → T , by Theorem 1.7.
2) For Λ > 0 and k = 1, consider the vacuum case. The equation (1.4) then
becomes :

e−2µ(2tµ̇− 1)− 1 + Λt2 = 0 (1.18)

which is equivalent to
∂t(te−2µ) = Λt2 − 1,

integrating this with respect to t over [t0, t] yields

e−2µ = t−1(
Λt3

3
− t + C), where C = t0e

−2
◦
µ(r) − Λt30

3
+ t0. (1.19)

The solution can be defined only if Λt3

3 − t + C > 0. The variations of the
function t 7→ Λt3

3 − t + C allow us to conclude that :
a) for t0 < 1/

√
Λ, the solution exists on the whole interval [t0,+∞[ if

C− 2
3
√

Λ
> 0 whereas if C− 2

3
√

Λ
< 0, the solution exists on some interval [t0, t1],

0 < t1 ;

12



b) for t0 ≥ 1/
√

Λ, the solution exists on [t0,+∞[ regardless of the sign of
C − 2

3
√

Λ
.�

Hence, depending on the choice of t0, (1.19) shows that in the case Λ > 0
and k = 1 there exists a class of initial data for which global existence fails and
there is also a class of data with global existence in the future. In the next
chapter we identify a suitable condition on the initial data useful to prove the
latter statement. Note that the result stated for Λ < 0 was obtained in [11] in
the case Λ = 0, k = 1, by using (1.17) without the term in Λ.

1.4 Some cases for which past global existence
fails

This section is the analogue of the previous one in the other time direction.
Following the same argument as in the proof for 2) in Proposition 1.8 we consider
the vacuum case and prove the following

Proposition 1.9 If (Λ < 0, k = −1) or Λ > 0 then the solution may exist or
not for all t ∈ (0, t0], depending on the choice of t0 and of the initial data.

Proof Considering the vacuum case (1.4) can be written

∂t(te−2µ) = Λt2 − k,

integrating this with respect to t over [t, t0] yields

e−2µ = t−1(
Λt3

3
− kt + C), where C = t0e

−2
◦
µ(r) − Λt30

3
+ kt0. (1.20)

The solution can be defined only if Λt3

3 − kt + C > 0. The variations of the
function t 7→ Λt3

3 − kt + C allow us to conclude that :
a) for (Λ > 0, k ≤ 0) or (Λ < 0, k = −1), the solution exists on the whole
interval (0, t0] if C > 0, it exists on some interval (t1, t0] if C ≤ 0 instead, t1 is
positive ;
b) for (Λ > 0, k = 1) the solution exists on (0, t0] provided that t0 ≤ 1/

√
Λ or

(t0 > 1/
√

Λ, C − 2
3
√

Λ
> 0); if (t0 > 1/

√
Λ, C − 2

3
√

Λ
< 0) the solution exists on

some interval (t2, t0], t2 is positive;
c) in the case (Λ < 0, k ≥ 0) the solution exits regardless of the size of the initial
data.�
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Chapter 2

Global existence and
asymptotic behaviour in the
future

2.1 Global existence in the future

Let us suppose that Λ > 0 and that, in the case of spherical symmetry k = 1,
t20Λ > 1.

We now establish a series of estimates which will result in an upper bound
on µ and will therefore prove that T = ∞. Similar estimates were used in [1] for
the Einstein-Vlasov system with Gowdy symmetry and were generalized to the
case of T 2 symmetry in [3]. Unless otherwise specified in what follows constants
denoted by C will be positive, may depend on the initial data and on Λ and
may change their value from line to line.

Firstly, (1.12) implies that

e2µ(t,r) =

[
t0(e−2

◦
µ(r) + k)
t

− k − 8π

t

∫ t

t0

s2p(s, r)ds +
Λ
3t

(t3 − t30)

]−1

so that

e2µ(t,r) ≥ t

C − kt + Λ
3 t3

, t ∈ [t0, T [ for k = 0 or k = −1, (2.1)

and
e2µ(t,r) ≥ t

C + Λ
3 t3

, t ∈ [t0, T [ for k = 1. (2.2)

In these inequalities, C does not depend on Λ. Next let us show that∫ 1

0

eµ+λρ(t, r)dr ≤ Ct−3, t ∈ [t0, T [ for k = 0 or k = −1, (2.3)
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and ∫ 1

0

eµ+λρ(t, r)dr ≤ Ct−1, t ∈ [t0, T [ for k = 1. (2.4)

We have
d

dt

∫ 1

0

eµ+λρ(t, r)dr =
∫ 1

0

[(λ̇ + µ̇)eµ+λρ + eµ+λρ̇]dr

with
ρ̇ = −2

t
ρ− 1

t
q +

π

t2

∫ ∞

−∞

∫ ∞

0

√
1 + w2 + F/t2∂tfdFdw.

Using the Vlasov equation,

π

t2

∫ 1

0

eµ+λ

∫ ∞

−∞

∫ ∞

0

√
1 + w2 + F/t2∂tfdFdwdr

=
π

t2

∫ 1

0

∫ ∞

−∞

∫ ∞

0

eµ+λ
√

1 + w2 + F/t2
[
(λ̇w + eµ−λµ′

√
1 + w2 + F/t2)∂wf−

eµ−λw√
1 + w2 + F/t2

∂rf

]
dFdwdr

=
π

t2

∫ 1

0

∫ ∞

−∞

∫ ∞

0

[
λ̇weµ+λ

√
1 + w2 + F/t2 + e2µµ′(1 + w2 + F/t2)

]
∂wfdFdwdr −

π

2

∫ 1

0

∫ ∞

−∞

∫ ∞

0

e2µw∂rfdFdwdr;

integrating by parts, in the right hand side, the first term with respect to w and
the second one with respect to r, we obtain

π

t2

∫ 1

0

eµ+λ

∫ ∞

−∞

∫ ∞

0

√
1 + w2 + F/t2∂tfdFdwdr = −

∫ 1

0

λ̇eµ+λ(ρ + p)dr

and so

d

dt

∫ 1

0

eµ+λρ(t, r)dr = −1
t

∫ 1

0

eµ+λ(2ρ + q)dr +
∫ 1

0

eµ+λ(µ̇ρ− λ̇p)dr

that is

d

dt

∫ 1

0

eµ+λρ(t, r)dr = −1
t

∫ 1

0

eµ+λ

[
2ρ + q − ρ + p

2
(1 + ke2µ − Λt2e2µ)

]
dr.

(2.5)
For k = 1, (2.5) implies the following, since q ≥ 0 :

d

dt

∫ 1

0

eµ+λρ(t, r)dr ≤ −2
t

∫ 1

0

eµ+λρdr +
1
t

∫ 1

0

eµ+λ ρ + p

2
dr

+
1
t

∫ 1

0

(1− Λt2)e2µeµ+λ

2
(ρ + p)dr

≤ −1
t

∫ 1

0

eµ+λρdr,
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we have used the fact that ρ ≥ p and 1−Λt2 ≤ 0. By Gronwall’s inequality, we
obtain ∫ 1

0

eµ+λρ(t, r)dr ≤ Ct−1, t ∈ [t0, T [ for k = 1

that is (2.4) holds.
Whereas for k ≤ 0, we use (2.1) to get

1 + ke2µ − Λt2e2µ ≤ 1 +
kt− Λt3

C − kt + Λ
3 t3

=
C − 2

3Λt3

C − kt + Λ
3 t3

.

The right hand side of this inequality is negative if t ≥ ( 3C
2Λ )1/3. In this case

1+ke2µ−Λt2e2µ ≤ 0 so that, using the fact that q ≥ 0 and p ≥ 0, (2.5) implies
that

d

dt

∫ 1

0

eµ+λρ(t, r)dr ≤ −1
t

∫ 1

0

eµ+λ
[
2ρ− ρ

2
(1 + ke2µ − Λt2e2µ)

]
dr. (2.6)

Setting C ′(Λ) := 3
Λ (3C − 2k), we have the estimate

1 + ke2µ − Λt2e2µ ≤ 1 +
kt− Λt3

C − kt + Λ
3 t3

≤ C ′(Λ)t−2 − 2,

and combining this with (2.6) yields

d

dt

∫ 1

0

eµ+λρ(t, r)dr ≤ −3
t

∫ 1

0

eµ+λρdr +
C ′(Λ)
2t3

∫ 1

0

eµ+λρ(t, r)dr

which multiplied by t3 gives

d

dt

[
t3
∫ 1

0

eµ+λρdr

]
≤ Ct−3

[
t3
∫ 1

0

eµ+λρdr

]
By Gronwall’s inequality, this implies that∫ 1

0

eµ+λρ(t, r)dr ≤ Ct−3,

i.e. (2.3) for t ≥ ( 3C
2Λ )1/3. For t < ( 3C

2Λ )1/3, (2.5) implies the following, since
q ≥ 0 :

d

dt

∫ 1

0

eµ+λρ(t, r)dr ≤ −2
t

∫ 1

0

eµ+λρdr +
1
t

∫ 1

0

eµ+λ ρ + p

2
dr

+
1
t

∫ 1

0

(k − Λt2)e2µeµ+λ

2
(ρ + p)dr

≤ −1
t

∫ 1

0

eµ+λρdr,
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we have used the fact that ρ ≥ p and k−Λt2 ≤ 0. By Gronwall’s inequality, we
obtain ∫ 1

0

eµ+λρ(t, r)dr ≤ Ct−1

≤ (Ct2 + C)t−3

≤
[
C(

3C

2Λ
)2/3 + C

]
t−3 since t < (

3C

2Λ
)1/3

that is (2.3) holds for t < ( 3C
2Λ )1/3 as well. Using the equation µ′ = −4πteµ+λj

and (2.3) for k = 0 or k = −1, and (2.4) for k = 1 we find

| µ(t, r)−
∫ 1

0

µ(t, σ)dσ | =|
∫ 1

0

∫ r

σ

µ′(t, τ)dτdσ |≤
∫ 1

0

∫ 1

0

|µ′(t, τ)|dτdσ

≤ 4πt

∫ 1

0

eµ+λ|j(t, τ)|dτ ≤ 4πt

∫ 1

0

eµ+λρ(t, τ)dτ

that is

| µ(t, r)−
∫ 1

0

µ(t, σ)dσ |≤ Ct−2, t ∈ [t0, T [, r ∈ [0, 1] for k = 0 or k = −1,

(2.7)
and

| µ(t, r)−
∫ 1

0

µ(t, σ)dσ |≤ C, t ∈ [t0, T [, r ∈ [0, 1] for k = 1. (2.8)

Next we show that

eµ(t,r)−λ(t,r) ≤ Ct−2, t ∈ [t0, T [, r ∈ [0, 1]. (2.9)

To see this observe that :
for k ≤ 0, (1.3), (1.4) and (2.1) imply that

∂

∂t
eµ−λ = eµ−λ

[
4πte2µ(p− ρ) +

1 + ke2µ

t
− Λte2µ

]
≤ eµ−λ

[
1 + ke2µ

t
− Λte2µ

]
≤

[
1
t

+
k − Λt2

C − kt + Λ
3 t3

]
eµ−λ;

using the fact that −k + Λt2 is the derivative of C − kt + Λ
3 t3 and integrating

this inequality with respect to t yields

eµ−λ ≤ C
t

C − kt + Λ
3 t3

≤ Ct−2,

i.e. (2.9) ;
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whereas for k = 1, (1.3), (1.4) and (2.2) imply that

∂

∂t
eµ−λ = eµ−λ

[
4πte2µ(p− ρ) +

1 + e2µ

t
− Λte2µ

]
≤ eµ−λ

[
1 + e2µ

t
− Λte2µ

]
≤

[
1
t

+
1− Λt2

C + Λ
3 t3

]
eµ−λ

≤

[
1
t
− Λt2

C + Λ
3 t3

+
3
Λ

t−3

]
eµ−λ;

integrating this inequality with respect to t yields

eµ−λ ≤ C
t

C + Λ
3 t3

≤ Ct−2,

i.e. (2.9) holds as well in the case k = 1.
We now estimate the average of µ over the interval [0, 1] which in combination

with (2.5) will yield the desired upper bound on µ :
For k ≤ 0, we have, using (2.1), (2.3), (2.9) and the fact that p ≤ ρ :∫ 1

0

µ(t, r)dr =
∫ 1

0

◦
µ(r)dr +

∫ t

t0

∫ 1

0

µ̇(s, r)drds

≤ C +
∫ t

t0

1
2s

∫ 1

0

[e2µ(8πs2p + k − Λs2) + 1]drds

≤ C +
1
2

ln(t/t0) + C

∫ t

t0

s−4ds− 1
2

∫ t

t0

−k + Λs2

C − ks + Λ
3 s3

ds

≤ C +
1
2

[
ln

s

C − ks + Λ
3 s3

]s=t

s=t0

.

With (2.5) this implies

µ(t, r) ≤ C(1 + t−2 + ln(t−2)) ≤ C, t ∈ [t0, T [, r ∈ [0, 1] for k = 0 or k = −1.
(2.10)

Whereas in the case k = 1, we have, using (2.2), (2.4), (2.9) and the fact
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that p ≤ ρ :∫ 1

0

µ(t, r)dr =
∫ 1

0

◦
µ(r)dr +

∫ t

t0

∫ 1

0

µ̇(s, r)drds

≤ C +
∫ t

t0

1
2s

∫ 1

0

[e2µ(8πs2p + 1− Λs2) + 1]drds

≤ C +
1
2

ln(t/t0) +
1
2

∫ t

t0

1− Λs2

C + Λ
3 s3

ds + 4π

∫ t

t0

s

∫ 1

0

eµ−λeµ+λρdrds

≤ C +
1
2

ln(t/t0) + C

∫ t

t0

s−2ds + C

∫ t

t0

s−3ds− 1
2

∫ t

t0

Λs2

C + Λ
3 s3

ds

≤ C +
1
2

[
ln

s

C + Λ
3 s3

]s=t

s=t0

.

With (2.8) this implies

µ(t, r) ≤ C(1 + ln(t−2)) ≤ C, t ∈ [t0, T [, r ∈ [0, 1] for k = 1. (2.11)

(2.10) and (2.11) then imply by Theorem 1.7 that T = ∞. Thus we have proven
the following :

Theorem 2.1 For initial data as in Theorem 1.5 with t20 > 1/Λ in the case
of spherical symmetry, the solution of the Einstein-Vlasov system with positive
cosmological constant and surface symmetry, written in areal coordinates, exists
for all t ∈ [t0,∞[ where t denotes the area radius of the surfaces of symmetry of
the induced spacetime. The solution satisfies the estimates (2.3), (2.4), (2.9),
(2.10) and (2.11).

2.2 On future asymptotic behaviour

In the first part of this section we prove that the spacetime obtained in Theorem
2.1 is timelike and null geodesically complete in the expanding direction. The
analogue of this result was proved by Rein (cf. [13]), in the case Λ = 0, k = −1
but with initial data satisfying a certain size restriction, an additional assump-
tion which we are able to drop here due to the fact that Λ does not vanish.
The proofs of the results obtained in the first two subsections are modelled on
the approach of [13]. In this section we are interested in proving statements
about the asymptotic behaviour of solutions at late times. Therefore there is
no loss of generality in prescribing data at some large time t = t0 > 0. Note
that throughout this section we assume in the case of spherical symmetry k = 1
that t20 > 1/Λ.

Firstly we establish a bound on w along characteristics of the Vlasov equa-
tion.
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2.2.1 An estimate along characteristics

Let

w0 := sup{|w||(r, w, F ) ∈ supp
◦
f} < ∞,

F0 := sup{F |(r, w, F ) ∈ supp
◦
f} < ∞.

Except in the vacuum case we have w0 > 0 and F0 > 0. For t ≥ t0 define

P+(t) := max{0,max{w|(r, w, F ) ∈ suppf(t)}},

P−(t) := min{0,min{w|(r, w, F ) ∈ suppf(t)}}.

Fix ε ∈]0, 1[. We claim that

P+(t) ≤ w0

(
t

t0

)−1+ε

, P−(t) ≥ −w0

(
t

t0

)−1+ε

, t ≥ t0. (2.12)

Assume that the estimate on P+ were false for some t. Define

t1 := sup

{
t ≥ t0|P+(s) ≤ w0

(
s

t0

)−1+ε

, t0 ≤ s ≤ t

}

so that t0 ≤ t1 < ∞ and P+(t1) = w0

(
t1
t0

)−1+ε

> 0. Choose α ∈]0, 1[. By
continuity, there exists some t2 > t1 such that the following holds :

(1− α)P+(s) > 0, s ∈ [t1, t2].

If for some characteristic curve (r(s), w(s), F ) in the support of f , that is with

(r(t0), w(t0), F ) ∈ supp
◦
f , and for some t ∈]t1, t2] the estimate

(1− α/2)P+(t) ≤ w(t) ≤ P+(t) (2.13)

holds then
(1− α)P+(s) ≤ w(s) ≤ P+(s), s ∈ [t1, t]. (2.14)

Note that the estimates on w from above hold by definition of P+ in any case.
Let (r(s), w(s), F ) be a characteristic in the support of f satisfying (2.13) for
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some t ∈]t1, t2] and thus (2.14) on [t1, t]. Then on [t1, t],

ẇ =
4π2

s
e2µ

∫ ∞

−∞

∫ ∞

0

(
w̃
√

1 + w2 + F/s2 − w

√
1 + w̃2 + F̃ /s2

)
fdF̃dw̃

+
1 + ke2µ

2s
w − Λ

2
swe2µ

≤ 4π2

s
e2µ

∫ P+(s)

0

∫ F0

0

w̃2(1 + w2 + F/s2)− w2(1 + w̃2 + F̃ /s2)

w̃
√

1 + w2 + F/s2 + w
√

1 + w̃2 + F̃ /s2

fdF̃dw̃

+
1 + ke2µ

2s
w − Λ

2
swe2µ

≤ 4π2

s
e2µ

∫ P+(s)

0

∫ F0

0

w̃(1 + F )
w

fdF̃dw̃ +
1 + ke2µ

2s
w − Λ

2
swe2µ

≤ 4π2F0(1 + F0) ‖
◦
f ‖ e2µ

2s
P 2

+(s)
1
w

+
1 + ke2µ − Λs2e2µ

2s
w (2.15)

≤ 4π2F0(1 + F0) ‖
◦
f ‖ 1

(1− α)2
e2µ

2s
w +

1 + ke2µ − Λs2e2µ

2s
w, using (2.14)

≤ 1 + (C + k − Λs2)e2µ

2s
w.

Since s is large, C + k − Λs2 is negative so that using (2.1) for k ≤ 0 and (2.2)
for k = 1 we have

ẇ ≤
1 + Cs+ks−Λs3

C−ks+Λ
3 s3

2s
w, (2.16)

for k ≤ 0 and

ẇ ≤
1 + Cs+ks−Λs3

C+Λ
3 s3

2s
w, (2.17)

for k = 1.
Now for k ≤ 0,

3 +
Cs + ks− Λs3

C − ks + Λ
3 s3

=
3C + Cs− 2ks

C − ks + Λ
3 s3

≤
(

9C

Λ
s−1 +

3C

Λ
− 6k

Λ

)
s−2

≤ C − 6k

Λ
s−2

and for k = 1,

3 +
Cs + s− Λs3

C + Λ
3 s3

=
3C + Cs

C + Λ
3 s3

≤
(

9C

Λ
s−1 +

3C

Λ

)
s−2

≤ C

Λ
s−2
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so that setting C ′(Λ) := C−6k
Λ for k ≤ 0 and C ′(Λ) := C

Λ for k = 1 we obtain
the estimates

1 +
Cs + ks− Λs3

C − ks + Λ
3 s3

≤ C ′(Λ)s−2 − 2 (2.18)

and

1 +
Cs + s− Λs3

C + Λ
3 s3

≤ C ′(Λ)s−2 − 2 (2.19)

if k ≤ 0 and k = 1 respectively.
Thus (2.16) and (2.17) imply that

ẇ ≤ −w

s
+

C ′(Λ)
2

s−3w

which multiplied by s1−ε gives

d

ds
(s1−εw) ≤ s1−εw

(
−εs−1 +

C ′(Λ)
2

s−3

)
≤ 0 since s is large.

Thus the function s 7→ s1−εw(s) is decreasing on [t1, t]. This implies that

t1−εw(t) ≤ t1−ε
1 w(t1) ≤ t1−ε

1 P+(t1) =
w0

t−1+ε
0

by assumption on t1 and so

w(t) ≤ w0

(
t

t0

)−1+ε

. (2.20)

This estimate holds only for characteristics which satisfy (2.13), but this is
sufficient to conclude that

P+(t) ≤ w0

(
t

t0

)−1+ε

, t ∈ [t1, t2],

in contradiction to the choice of t1. The estimate on P+ is now established. The
analogous arguments for characteristics with w < 0 yield the assertion for P−.
Next we consider characteristics which are not in the support of f . We can
rewrite the inequality (2.15) for s ∈ [t0, t] and w(s) > 0 :

ẇ ≤ 4π2F0(1 + F0) ‖
◦
f ‖ e2µ

2s
P 2

+(s)
1
w

+
1 + (k − Λs2)e2µ

2s
w.

From (2.1), (2.2), (2.18) and (2.19) it follows that 1+(k−Λs2)e2µ

2s ≤ 0. Using
estimate (2.12) on P+, (2.10) and (2.11) we obtain

ẇ ≤ Cs2ε−3 1
2w

.
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Hence
d

ds
(w2) ≤ Cs2ε−3.

Integrating this over [t0, t] yields

w2(t) ≤ C, t ≥ t0. (2.21)

The analogous arguments for characteristics outside the support of f with w < 0
yield the same estimate. Thus by (2.20), (2.12) and (2.21) we can state :

Proposition 2.2 For any characteristic (r, w, F ), for any solution of the Einstein-
Vlasov system with positive cosmological constant and surface symmetry written
in areal coordinates and with initial data as in Theorem 1.5 and with t20Λ > 1
in the case of spherical symmetry,

|w(t)| ≤ C, t ≥ t0,

where the positive constant C depends on the initial data.

2.2.2 Geodesic completeness

Let ]τ−, τ+[3 τ 7→ (xα(τ), pβ(τ)) be a geodesic whose existence interval is max-
imally extended and such that x0(τ0) = t(τ0) = t0 for some τ0 ∈]τ−, τ+[. We
want to show that for future-directed timelike and null geodesics τ+ = +∞.
Consider first the case of a timelike geodesic, i.e.,

gαβpαpβ = −m2 ; p0 > 0

with m > 0. Since dt
dτ = p0 > 0, the geodesic can be parameterized by the

coordinate time t. With respect to coordinate time the geodesic exists on the
interval [t0,∞[ since on bounded t-intervals the Christoffel symbols are bounded
and the right hand sides of the geodesic equations written in coordinate time
are linearly bounded in p1, p2, p3. Recall that along geodesics the variables t,
r, p0, w := eλp1, F := t4

[
(p2)2 + sin2

k θ(p3)2
]

satisfy the following system of
differential equations :

dr

dτ
= e−λw,

dw

dτ
= −λ̇p0w − e2µ−λµ′(p0)2,

dF

dτ
= 0 (2.22)

dt

dτ
= p0,

dp0

dτ
= −µ̇(p0)2 − 2e−λµ′p0w − e−2µλ̇w2 − e−2µt−3F. (2.23)

Along the geodesic we define w and F as above. Then the relation between
coordinate time and proper time along the geodesic is given by

dt

dτ
= p0 = e−µ

√
m2 + w2 + F/t2,

and to control this we need to control w as a function of coordinate time. By
(2.1) and (2.2) we have the estimate

eµ ≥ Ct−1, t ≥ t0.
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Combining this with the estimate on w in Proposition 2.2 yields the following
along the geodesic :

dτ

dt
=

eµ√
m2 + w2 + F/t2

≥ Ct−1

√
m2 + C + F

.

Since the integral of the right hand side over [t0,∞[ diverges, τ+ = +∞ as
desired. In the case of a future-directed null geodesic, i.e. m = 0 and p0(τ0) > 0,
p0 is everywhere positive and the quantity F is again conserved. The argument
can now be carried out exactly as in the timelike case, implying that τ+ = +∞.
We have proven :

Theorem 2.3 Consider initial data with surface symmetry for the Einstein-
Vlasov system with positive cosmological constant. Suppose that the regularity
properties required in the statement of Theorem 1.7 are satisfied with t20 > 1/Λ
in the case of spherical symmetry. If the gradient of R is initially past-pointing
then there is a corresponding Cauchy development which is future geodesically
complete.

2.2.3 Determination of the leading asymptotic behaviour

In this subsection we determine the explicit leading behaviour of λ, µ, λ̇, µ̇, µ′,
and later on we compute the generalized Kasner exponents and prove that each
of them tends to 1/3 as t tends to +∞.

Let us recall briefly some of the relevant notation. Let I be a set of real
numbers and t∗ a real number or infinity. The asymptotic behaviour of a func-
tion g defined on I as t → t∗ is to be described. It will be compared with a
positive function h(t), typically a power of t. The notation g(t) = O(h(t)) as
t → t∗ means that there is a neighbourhood U of t∗ such that there is a con-
stant C with |g(t)| ≤ Ch(t) for all t belonging to both I and U . The notation
g(t) = o(h(t)) as t → t∗ means that g(t)/h(t) tends to 0 as t → t∗.

Now (1.4) can be written in the form

d

dt
(te−2µ) = Λt2 − k − 8πt2p. (2.24)

Integrating this over [t0, t] yields

te−2µ = (t0e−2µ(t0) + kt0 −
Λ
3

t30) +
Λ
3

t3 − kt−
∫ t

t0

8πs2pds. (2.25)

By (2.20) we have the following, where C is a positive constant and ε ∈]0, 1[ :

w ≤ Ct−1+ε for t ≥ t0.

Using the expression (1.8) for p, this implies that

p ≤ Ct−5+3ε
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so that
8πt2p ≤ Ct−3+3ε. (2.26)

Assuming ε < 2/3 we obtain, using (2.25)

|te−2µ − Λ
3

t3 + kt| ≤ C,

i.e.,

e−2µ =
Λ
3

t2
(
1 + O(t−2)

)
.

It follows that

eµ =

√
3
Λ

t−1
(
1 + O(t−2)

)
. (2.27)

Now by (1.3), and using (2.27) and the fact that 8πtρ = O(t−2+ε), we have

λ̇ =
1
2
(Λt + 8πtρ)e2µ − 1 + ke2µ

2t

=
3

2Λ
t−2

(
1 + O(t−2)

) (
Λt + O(t−2+ε)

)
− 1

2t
− k

2t

[
3
Λ

t−2
(
1 + O(t−2)

)]
and hence

λ̇ = t−1
(
1 + O(t−2)

)
. (2.28)

Integrating this over [t0, t] yields

λ = ln t
[
1 + O

(
(ln t)−1

)]
. (2.29)

Next, using (1.4), (2.26) and (2.27) we have

µ̇ = −t−1
(
1 + O(t−2)

)
(2.30)

and integrating this over [t0, t] yields

µ = − ln t
[
1 + O

(
(ln t)−1

)]
. (2.31)

Now (2.29) implies that
eλ = O(t),

the expression (1.9) of j implies that

|j| ≤ Ct−4+2ε

and thus using equation (1.5) we obtain

µ′ = O(t−3+2ε). (2.32)

We can now compute the limiting values of the generalized Kasner exponents
namely

K1
1 (t, r)

K(t, r)
=

tλ̇(t, r)
tλ̇(t, r) + 2

,
K2

2 (t, r)
K(t, r)

=
K3

3 (t, r)
K(t, r)

=
1

tλ̇(t, r) + 2
,
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where K(t, r) = Ki
i (t, r) is the trace of the second fundamental form Kij of the

metric. In fact we have
Remark (cf. [11]) For a metric of the form

ds2 = −ϕ2(t, x)dt2 + gijdxidxj

where i, j run from 1 to 3, the second fundamental form or extrinsic curvature
of the surfaces of constant t is given by

Kij = −(2ϕ)−1∂tgij ,

cf. [5, (1.0.2)], and its trace K(t, x) = Ki
i (t, x) is the mean curvature of that

surface. For the metric in our situation we obtain

K11 = −1
2
e−µ∂t(e2λ) = −e2λ−µλ̇, K22 = −te−µ, K33 = −te−µ sin2

k θ,

and
K(t, r) = −e−µ(λ̇ +

2
t
).

Using (2.28), we see that as t tends to +∞, each of those quantities tends
to 1/3 uniformly in r ∈ R. We have proved the following :

Theorem 2.4 Let (f, λ, µ) be a solution of the Einstein-Vlasov system with sur-
face symmetry and Λ > 0 given in the expanding direction under the assumption
t20 > 1/Λ in case of spherical symmetry. Then the following properties hold at
late times : (2.28), (2.29), (2.30), (2.31), (2.32), with ε ∈]0, 2/3[ ; and

lim
t→+∞

K1
1 (t, r)

K(t, r)
= lim

t→+∞

K2
2 (t, r)

K(t, r)
= lim

t→+∞

K3
3 (t, r)

K(t, r)
=

1
3
.

This theorem shows how the de Sitter solution acts as a model for the dy-
namics of the class of solutions considered in this investigation. For if we set
λ = ln t, µ = − ln t and k = 0 the spacetime obtained is the de Sitter solution as
can be seen in [7, p.125] by a change of the time coordinates. Thus the leading
terms in the asymptotic expansions of the metric components are exactly the
quantities defined by the de Sitter spacetime.

2.3 Asymptotics of matter terms

In this section we determine the explicit leading behaviour of the components ρ,
p, j and q of the energy-momentum tensor and later on we compare ρ to other
matter terms. Note that these results hold for the spherical, plane or hyperbolic
symmetry. The hypotheses on the data are those required in Theorem 1.5.

We first establish the following useful result :

Lemma 2.5 For any characteristic (r, w, F ), for any solution of Einstein-Vlasov
system with positive cosmological constant and spherical, plane or hyperbolic
symmetry written in areal coordinates, with initial data as in theorem 1.5 and
with t20Λ > 1 in the case of spherical symmetry, consider the quantity u = tw.
Then u converges to a constant along the characteristics, as t tends to infinity.
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Proof For a characteristic s 7→ (r, w, F )(s) of the Vlasov equation (1.2), we
have, using the field equations (1.3)-(1.5) and the expressions (1.7), (1.9) of ρ
and j :

ẇ =
4π2

t
e2µ

∫ ∞

−∞

∫ ∞

0

(
w̃
√

1 + w2 + F/t2 − w

√
1 + w̃2 + F̃ /t2

)
fdF̃dw̃

+
1 + ke2µ

2t
w − Λ

2
twe2µ. (2.33)

Then u satisfies an equation of the form u̇ = au + b with

a(t) =
3 + (k − Λt2)e2µ

2t

and

b(t) = 4π2e2µ

∫ ∞

−∞

∫ ∞

0

(
w̃
√

1 + w2 + F/t2 − w

√
1 + w̃2 + F̃ /t2

)
fdF̃dw̃

(2.34)
It suffices to prove that the functions a and b are integrable up to t = ∞ in
order to conclude that u does converge to a limit for large t.

Now (2.2) implies

e2µ(t,r) ≥ t

C − kt + Λ
3 t3

, k ≤ 0

Using this inequality for k ≤ 0, inequality (5.1) for k = 1 and the fact that
k − Λt2 ≤ 0 for large t we obtain :
a(t) ≤ ( 9C

2Λ t−1 − 3k
2Λ )t−3 for k ≤ 0 and a(t) ≤ ( 9C

2Λ t−1 + 3
2Λ )t−3 for k = 1.

Either way, since t−1 ≤ t−1
0 , a(t) is bounded by a constant C times by t−3 and

hence is integrable up to t = ∞.
Now about b(t), by proposition 2.2, the factor of 4π2e2µ in (6.2) is bounded.

So b(t) will be integrable if e2µ is integrable. But by (5.10) e2µ falls off faster
than t−2 at late times. Thus e2µ is integrable up to t = +∞ and so is b(t). This
completes the proof of Lemma 2.5.�

This result allows us to obtain estimates stronger than those in [20] for the
components of the energy-momentum tensor using the same procedure as in
proposition 6 of [9] :

Proposition 2.6 Under the same hypotheses as in lemma 2.5, the following
properties hold at late times :

ρ = O(t−3) ; p = O(t−5) ; j = O(t−4) ; q = O(t−5) (2.35)

p

ρ
= O(t−2) ;

j

ρ
= O(t−1) ;

q

ρ
= O(t−2) (2.36)
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Proof Lemma 2.5 implies that u(t) is uniformly bounded in large time t. So,
using (2.6) and the fact that f(t0, r, w, F ) has compact support on w, there is
a constant C such that

|w| ≤ Ct−1 and f(t, r, w, F ) = 0, if |w| ≥ Ct−1. (2.37)

Now by (1.7) we have, using (2.37):

ρ(t, r) =
π

t2

∫
|w|≤Ct−1

∫ F0

0

√
1 + w2 + F/t2f(t, r, w, F )dFdw;

and since f(t, r, w, F ) is constant along the characteristics we deduce from the
latter equation that

ρ ≤ Ct−3. (2.38)

Next (1.8) implies that

p(t, r) ≤ π

t2

∫
|w|≤Ct−1

∫ F0

0

w2f(t, r, w, F )dFdw;

thus
p ≤ Ct−5. (2.39)

By (1.9) we obtain
j ≤ Ct−4. (2.40)

By (1.10),
q ≤ Ct−5, (2.41)

and (2.35) is proved.
Now let us prove (2.36). We have, using w2 ≤ Ct−2 and 1 ≤

√
1 + w2 + F/t2:

p

ρ
≤

∫
|w|≤Ct−1

∫ F0

0
w2f(t, r, w, F )dFdw∫

|w|≤Ct−1

∫ F0

0

√
1 + w2 + F/t2f(t, r, w, F )dFdw

≤ Ct−2.

Similarly we get

j

ρ
≤ Ct−1 ;

q

ρ
≤ Ct−2. �

This proposition shows that all other components of the energy-momentum
tensor become negligible with respect to ρ. This has an interpretation that the
asymptotics is ”dust-like” (pressure negligible with respect to density) and that
”tilt is asymptotically negligible”.
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Chapter 3

Global existence and
asymptotic behaviour in the
past

This chapter deals with the analysis in the (past time) contracting direction.
We first prove that for the cases Λ ≤ 0 and k ≥ 0 the solutions obtained in

Theorem 1.5 exist on the whole interval ]0, t0]. Next for Λ < 0 and k = −1,
and in the case Λ > 0, we show that those solutions exist on ]0, t0] provided
the initial data are sufficiently small. Later on we investigate the behaviour of
solutions as t → 0.

3.1 Existence up to t = 0

Theorem 3.1 Consider a solution of the Einstein-Vlasov system with k ≥ 0
and Λ ≤ 0 and initial data given for t = t0 > 0. Then this solution exists on
the whole interval (0, t0].

Proof Observe that since there are two choices between two alternatives, this
covers four cases in total namely

(Λ, k) ∈ {(0, 0), (0, 1)}, (Λ < 0, k = 0) or (Λ < 0, k = 1).

In the case Λ = 0, k = 0 the theorem is a special case of what was proved by
M. Weaver in [22]. We then have to prove the other three cases.

The strategy of the proof is the following : suppose we have a solution on an
interval (t1, t0] with t1 > 0. We want to show that the solution can be extended
to the past. By consideration of the maximal interval of existence this will prove
the assertion.

Firstly let us prove that under the hypotheses of the theorem, µ is bounded
above.
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For
d

dt
(te−2µ) = −k + Λt2 − 8πt2p ≤ 0. (3.1)

So te−2µ cannot increase towards the future, i.e. it cannot decrease towards the
past. Thus on (t1, t0], e−2µ must remain bounded away from zero and hence µ
is bounded above.

Recalling that the analogue of Theorems 1.5 and 1.6 for Λ = 0 was proved
by G. Rein in [11], we can deduce that for all three cases being considered it is
enough to bound w to get existence up to t = 0, using Theorem 1.6.

So let us prove that w is bounded.
Consider the following rescaled version of w, called u1, which has been inspired
by the work of M. Weaver [22] (see p. 1090) :

u1 =
eµ

2t
w.

If we prove that µ is bounded below then the boundedness of u1 will imply the
boundedness of w. So let us show that µ is bounded below under the assumption
that u1 is bounded.
Using the first equality in (3.1) and transforming the integral defining p to u1

as an integration variable instead of w yields

p =
∫ ∞

−∞

∫ ∞

0

8πte−3µu2
1√

1 + 4t2e−2µu2
1 + F/t2

fdFdu1,

the integrand can then be estimated by 4πe−2µ|u1|. Thus, using the bound for
u1, p can be estimated by Ce−2µ and so (3.1) implies that

| d
dt

(te−2µ)| ≤ C(1 + te−2µ),

integrating this with respect to t over [t, t0] yields

te−2µ(t, r) ≤ t0e
−2µ(t0, r) +

∫ t0

t

C
(
1 + se−2µ(s, r)

)
ds,

which implies by the Gronwall inequality that te−2µ is bounded on (t1, t0] that
is µ is bounded below on the given time interval.

The next step is to prove that u1 is bounded. To this end, it suffices to get a
suitable integral inequality for ū1, where ū1 is the maximum modulus of u1 on
support of f at a given time. In the vacuum case there is nothing to be proved
and therefore we can assume without loss of generality that ū1 > 0.

We can compute u̇1 :

u̇1 = − eµ

2t2
w +

eµ

2t
w(µ̇ + ṙµ′) +

eµ

2t
ẇ

i.e.

u̇1 =
(

µ̇ + ṙµ′ − 1
t

)
u1 +

eµ

2t
ẇ (3.2)
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but we have

µ′ = −4πteµ+λj, ṙ =
eµ−λw√

1 + w2 + F/t2

and

ẇ = 4πte2µ(j
√

1 + w2 + F/t2 − ρw) +
1 + ke2µ

2t
w − Λ

2
te2µw

so that (3.2) implies the following :

u̇1 = e2µ

[
−4πt(ρ− p) +

k

t
− Λt

]
u1 + 2πe3µj

1 + F/t2√
1 + 4t2e−2µu2

1 + F/t2
. (3.3)

Now the first term on the right hand side of equation (3.3) will be estimated.
What we need to estimate is e2µ(ρ− p)ū1. For convenience let log+ be defined
by log+(x) = log x when log x is positive and log+(x) = 0, otherwise. Then
estimating the integral defining ρ− p shows that

ρ− p ≤ C(1 + log+(w̄)),

i.e.
ρ− p ≤ C(1 + log+(ū1)− µ).

The expression −µ is not under control ; however the expression we wish to
estimate contains a factor e2µ. The function µ 7→ −µe2µ has an absolute maxi-
mum at −1/2 where it has the value (1/2)e−1. Thus the first term on the right
hand side of equation (3.3) can be estimated by Cū1(1 + log+(ū1)).

Next the second term on the right hand side of equation (3.3) will be esti-
mated. By definition

j =
π

t2

∫ ∞

−∞

∫ ∞

0

wf(t, r, w, F )dFdw

then j can be estimated by Cw̄2, i.e.

j ≤ Cū2
1e
−2µ,

so that it suffices to estimate the quantity

ū2
1(1 + F/t2)√

1 + 4t2e−2µu2
1 + F/t2

(3.4)

in order to estimate the second term on the right hand side of equation (3.3).
But since µ and t−1 are bounded on the interval being considered, the quantity
(3.4) can be estimated by Cū2

1/|u1|. Thus adding the estimates for the first and
second terms on the right hand side of (3.3) allows us to deduce from (3.3) that

u̇1 ≤ Cū1(1 + log+(ū1)) + C
ū2

1

|u1|
. (3.5)
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This inequality will be used only in the case that u1 does not vanish. So we can
derive the following integral inequality for ū1

ū1(t) ≤ ū1(t0) + C

∫ t0

t

ū1(s)
(
1 + log+(ū1)(s)

)
ds + C

∫ t0

t

ū2
1(s)

|u1(s)|
ds (3.6)

On the other hand consider the following integral inequality that we want to
prove in order to conclude that u1 is bounded :

ū1(t) ≤ ū1(t0) + 3C

∫ t0

t

ū1(s)
(
1 + log+(ū1)(s)

)
ds. (3.7)

Let t∗ be the infimum of values of t such that (3.7) holds on [t, t0]. We
wish to show that t∗ = 0. Assume this is false to get a contradiction. Thus
the assumption is that t∗ > 0. In this case ū1 is bounded on (t∗, t0]. Indeed
the important property which we need in the integral inequality (3.7) is the
behaviour of the nonlinear function g(ū1) = ū1

(
1 + log+(ū1)

)
for large values

of ū1 for getting a bound on ū1. So for large values of ū1, (3.7) implies that

ū1(t) ≤ ū1(t0) + 3C

∫ t0

t

ū1(s) log(ū1)(s)ds, (3.8)

so that ū1 is bounded, since the solutions of v̇ = v log v are bounded, in fact
we get a bound like exp(exp t) for ū1. Thus by the continuation criterion the
solution can be extended to the past slightly beyond t∗, say to an interval [t2, t0].

Consider the following inequality

|u1(t)| ≤ ū1(t0) + 3C

∫ t0

t

ū1(s)
(
1 + log+(ū1)(s)

)
ds. (3.9)

obtained by replacing ū1 by |u1| on the left hand side of (3.7). To show (3.7) we
need to show (3.9)for each characteristic in the support of f . First consider ’high
velocity’ particles, i.e. those for which |u1(s)| ≥ (1/2)ū1(s) for all s ∈ [t2, t∗].
We know that (3.6) is true globally and for a particle of the kind just mentioned
(3.6) implies (3.9). Thus (3.9) holds on [t2, t0] for high velocity particles.

Now consider ’low velocity’ particles, i.e. those satisfying |u1(s)| ≤ (1/2)ū1(s)
for some s ∈ [t2, t∗]. On [t2, t0] the quantity u̇1 can be bounded uniformly on the
support of f by a constant C∗, this because we have a solution on this interval
and we can use the fact that a continuous function on a compact set is bounded.
Now for any particle |u1(s1)−u1(s2)| ≤ C∗|s1− s2| for s1 and s2 in the interval
[t2, t∗]. As a consequence ū1(s2) ≤ ū1(s1) + C∗|s1 − s2|. By continuity ū1 has a
positive lower bound on the interval [t2, t0]. Applying the above estimates with
s = s1 and s2 a time at which |u1(s2)| ≤ (1/2)ū1(s2) yields

u1(s) ≤ u1(s2) + C∗|s− s2|
≤ (1/2)ū1(s2) + C∗|s− s2|

≤ (1/2)ū1(s) +
3
2
C∗|s− s2|. (3.10)
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Choosing t3 < t∗ to make |t3 − t∗| smaller than (1/6)(C∗)−1ū1(s) allows us to
deduce from (3.10) the following inequality on [t3, t∗]

u1(s) ≤
3
4
ū1(s). (3.11)

Hence on this interval the value of ū1 is determined by the high velocity particles.
Consequently (3.7) holds on [t3, t0], contradicting the definition of t∗. We

have then proved the integral inequality (3.7) on (t1, t0], and so u1 is bounded,
i.e. w is bounded and the proof of the theorem is complete. �

It is important to note that in the case (Λ = 0, k = 1) the result proved in
Theorem 3.1 is new and so strengthens the existence up to t = 0 for small data
obtained in [11].

Next we have the following result which generalizes Theorem 4.1 in [11] to
the case with non-zero cosmological constant Λ.

Theorem 3.2 Let (
◦
f,

◦
λ,

◦
µ) be initial data as in Theorem 1.5, and assume that

e−2
◦
µ(r) − 4

3Λt20 − 2 > 0 for r ∈ R and c > 0 with

c :=
1
2
(1− ‖ e2

◦
µ ‖)−10π2w0F0

√
1 + w2

0 + F0/t20 ‖
◦
f ‖ ‖ e2

◦
µ ‖

1− ‖ e2
◦
µ ‖

if k = −1 and Λ < 0,

and for Λ > 0

c :=



1
2

(
1− Λt20‖e

2
◦
µ‖

1−Λ
3 t20‖e2

◦
µ‖

)
− 10π2w0F0

√
1 + w2

0 + F0/t20 ‖
◦
f ‖ ‖e2

◦
µ‖

1−Λ
3 t20‖e2

◦
µ‖

,

if k = 0 or k=1
1
2

(
1− (Λt20+1)‖e2

◦
µ‖

1−(Λ
3 t20+1)‖e2

◦
µ‖

)
− 10π2w0F0

√
1 + w2

0 + F0/t20 ‖
◦
f ‖ ‖e2

◦
µ‖

1−(Λ
3 t20+1)‖e2

◦
µ‖

,

if k = −1.

Then the corresponding solution exists on the interval ]0, t0], and

|w| ≤ w0t
c, (r, w, F ) ∈ suppf(t), t ∈]0, t0].

Proof Let (f, λ, µ) be a left-maximal solution on an interval ]T, t0], with

initial data (
◦
f,

◦
λ,

◦
µ) satisfying the smallness assumption, and define

P (t) := sup{|w||(r, w, F ) ∈ suppf(t)}, t ∈]T, t0].

Using the field equations (1.7) and (1.9) and the characteristic system for (1.6)
we get :

ẇ = −λ̇w − eµ−λµ′
√

1 + w2 + F/t2

= 4πte2µ(j
√

1 + w2 + F/t2 − ρw) +
1 + ke2µ

2t
w − Λ

2
twe2µ (3.12)
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Assume that P (t) ≤ w0 for some t ∈]T, t0], which is true at least for t = t0.
Then, for that value of t, we have

ρ(t, r) ≤ π

t2

∫ w0

−w0

∫ F0

0

√
1 + w2 + F/t2f(t, r, w, F )dFdw

≤ 2πt0w0F0

√
1 + w2

0 + F0/t20 ‖
◦
f ‖ t−3

By equation (1.9) defining j we get

j(t, r) ≤ π

t2

∫ P (t)

0

∫ F0

0

wf(t, r, w, F )dFdw ≤ π

t2

[
w2

2

]P (t)

0

‖
◦
f ‖ F0

that is
j(t, r) ≤ π

2
w0F0 ‖

◦
f ‖ P (t)t−2 (sinceP (t) ≤ w0)

and

j(t, r) ≥ π

t2

∫ 0

−P (t)

∫ F0

0

wf(t, r, w, F )dFdw ≥ −π

2
w0F0 ‖

◦
f ‖ P (t)t−2.

Next we have

e−2µ(t,r) =
t0(e−2

◦
µ(r) + k)
t

− k +
8π

t

∫ t0

t

s2p(s, r)ds +
Λ
3t

(t3 − t30)

≥ t0(e−2
◦
µ(r) + k)
t

− k +
Λ
3t

(t3 − t30)

so that {
e−2µ(t,r) ≥ c1

t for k = 0 or k = 1
e−2µ(t,r) ≥ c1

t + 1 for k = −1

where
c1 := t0(inf e−2

◦
µ − α(Λ, k))

with

α(Λ, k) :=

{
Λt20
3 if k = 0 or k = 1

Λt20
3 + 1 if k = −1

for Λ > 0

and

α(Λ, k) :=

{
0 if k = 0 or k = 1
1 if k = −1

in case Λ < 0

Thus {
e2µ(t,r) ≤ c−1

1 t if k = 0 or k = 1
e2µ(t,r) ≤ t

t+c1
if k = −1,

and so, in any case, µ is bounded above on the interval under consideration.
The first continuation criterion in Theorem 1.6 is then fulfilled.
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Now we then have for Λ < 0 :

1 + ke2µ

2t
− Λ

2
te2µ ≥ 1

2t
=:

c2

t
for k = 0 or k = 1

(c2 := 1
2 if k = 0 or k = 1, and Λ < 0);

1 + ke2µ

2t
− Λ

2
te2µ ≥ 1

2t
(1− 1

1 + c1t−1
) ≥ 1

2
c1

t0 + c1

1
t

=:
c2

t
if k = −1

(c2 :=
c1

2(t0 + c1)
=

1− ‖ e2
◦
µ ‖

2
if k = −1 and Λ < 0);

and in case Λ > 0:

1 + ke2µ

2t
− Λ

2
te2µ ≥ 1

2t
− Λ

2t
c−1
1 t30 ≥

1
2
(1− Λc−1

1 t30)
1
t

=:
c2

t
if k = 0 or k = 1

(c2 :=
1− Λc−1

1 t30
2

=
inf e−2

◦
µ − 4

3Λt20

2(inf e−2
◦
µ − Λt20

3 )
if k = 0 or k = 1, and Λ > 0);

since e−2µ(t,r) ≥ c1
t ,

1 + ke2µ

2t
− Λ

2
te2µ ≥ 1

2t
(1− t

c1
)− Λ

2
t2
c1
≥ 1

2t

[
1− t0

c1
− Λt30

c1

]
≥ 1

2t

inf e−2
◦
µ − 4

3Λt20 − 2

inf e−2
◦
µ − Λt20

3 − 1
=:

c2

t

(i.e.

c2 :=
1
2

inf e−2
◦
µ − 4

3Λt20 − 2

inf e−2
◦
µ − Λt20

3 − 1
if k = −1 and Λ > 0).

It is at this point that we need our additional assumption

e−2
◦
µ − 4

3
Λt20 − 2 > 0,

thus we have
1 + ke2µ

2t
− Λ

2
te2µ ≥ c2

t

where

c2 :=

{
1
2 if k = 0 or k = 1
1−‖e2

◦
µ‖

2 if k = −1
for Λ < 0

and

c2 :=


1
2

inf e−2
◦
µ− 4

3Λt20

inf e−2
◦
µ−Λt20

3

if k = 0 or k = 1

1
2

inf e−2
◦
µ− 4

3Λt20−2

inf e−2
◦
µ−Λt20

3 −1
if k = −1

in case Λ > 0.
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Let (r(s), w(s), F ) be a solution of the characteristic system of (1.6) with

(r(t0), w(t0), F ) ∈ supp
◦
f so that (r(t), w(t), F ) ∈ suppf(t), in particular,

|w(t)| ≤ P (t) ≤ w0 by assumption on t, and 0 ≤ F ≤ F0.

Assume that w(t) > 0. Then from (3.12) we obtain the estimate

ẇ(t) ≥
(

c2 − 8π2t0w0F0

√
1 + w2

0 + F0/t20 ‖
◦
f ‖ 1

c1

)
w(t)

t

−2π2t0w0F0

√
1 + w2

0 + F0/t20 ‖
◦
f ‖ 1

c1

P (t)
t

(3.13)

whereas if w(t) < 0 we get the estimate

ẇ(t) ≤
(

c2 − 8π2t0w0F0

√
1 + w2

0 + F0/t20 ‖
◦
f ‖ 1

c1

)
w(t)

t

+2π2t0w0F0

√
1 + w2

0 + F0/t20 ‖
◦
f ‖ 1

c1

P (t)
t

. (3.14)

If we let t = t0 in (3.13) and (3.14) our smallness assumption on the initial data
implies that there exists a small constant δ > 0 such that

ẇ(t0) > 0 if
w0

1 + δ
< w(t0) ≤ w0, and ẇ(t0) < 0 if − w0 ≤ w(t0) < − w0

1 + δ
.

Indeed if
w0

1 + δ
< w(t0) then w0 < (1 + δ)w(t0)

so that (3.13) implies for t = t0 :

ẇ(t0) ≥
(

c2 − 10π2t0w0F0

√
1 + w2

0 + F0/t20 ‖
◦
f ‖ 1

c1

)
w(t0)

t0

−δ

(
2π2t0w0F0

√
1 + w2

0 + F0/t20 ‖
◦
f ‖ 1

c1

)
w(t0)

t0
.

We can then choose δ small enough to obtain ẇ(t0) ≥ C1 > 0 (C1 constant).
Now since ẅ is bounded [see (3.12)], we can write |ẅ(t)| ≤ C2, this implies that

ẇ(t) ≥ ẇ(t0)− C2(t0 − t) ≥ C1 − C2(t0 − t).

For t > t0 − C1
C2

, ẇ(t) > 0 and so

w(t) < w0, for t ∈
]
t0 −

C1

C2
, t0

[
. (3.15)

Similarly we can prove that if

−w0 ≤ w(t0) < − w0

1 + δ
,
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then

−w(t) < w0, for t ∈
]
t0 −

C1

C2
, t0

[
. (3.16)

Now if
|w(t0)| ≤

w0

1 + δ

then we obtain the following, since |ẇ(t)| ≤ C3 with C3 > 0 (see (3.12)):

|w(t)| ≤ |w(t0)|+ C3(t0 − t) ≤ w0

1 + δ
+ C3(t0 − t).

Since we claim that |w(t)| < w0, it suffices that

w0

1 + δ
+ C3(t0 − t) < w0,

that is
t > t0 −

w0

C3

δ

1 + δ
,

thus

|w(t)| < w0, for t ∈
]
t0 −

w0δ

C3(1 + δ)
, t0

[
. (3.17)

Choosing

t1 = t0 −min
(

C1

C2
,

w0δ

C3(1 + δ)

)
,

we deduce from (3.15), (3.16) and (3.17) that

|w(t)| < w0, for t ∈]t1, t0[.

This implies that P (t) < w0 on some interval ]t1, t0[ which we choose maximal
with this property. On the interval ]t1, t0] the estimates (3.13) and (3.14) hold
for any characteristic which runs in suppf for which w(t) > 0 or w(t) < 0
respectively.
Let t ∈]t1, t0] be such that w(t) > 0 for a characteristic in suppf , and choose
t2 > t maximal with w(s) > 0 for s ∈ [t, t2[. Then (3.13) holds on [t, t2[, which
implies that

w(t) ≤ w(t2) + c3

∫ t

t2

w(s)
s

ds− c4

∫ t

t2

P (s)
s

ds

where

c3 := c2 − 8π2t0w0F0

√
1 + w2

0 + F0/t20 ‖
◦
f ‖ 1

c1
(c3 > c > 0)

c4 := 2π2t0w0F0

√
1 + w2

0 + F0/t20 ‖
◦
f ‖ 1

c1
(c4 > 0).

This implies by Gronwall’s inequality that

w(t) ≤ (t/t2)c3

[
w(t2) + c4t

c3
2

∫ t2

t

s−1−c3P (s)ds

]
, (3.18)
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since

x(t) := (t/t2)c3

[
w(t2) + c4t

c3
2

∫ t2

t

s−1−c3P (s)ds

]
,

is the solution of the integral equation

ẋ(t) = w(t2) + c3

∫ t

t2

x(s)
s

ds− c4

∫ t

t2

P (s)
s

ds,

which is equivalent to the initial value problem

ẋ(t) = c3
x(t)

t
− c4

P (t)
t

, x(t2) = w(t2).

If t2 = t0 then

w(t) ≤ (t/t0)c3

[
w0 + c4t

c3
0

∫ t2

t

s−1−c3P (s)ds

]
.

If t2 < t0 then w(t2) = 0 (since t2 = sup{s > t, w(s) > 0}), and

w(t) ≤ (t/t2)c3c4t
c3
2

∫ t2

t

s−1−c3P (s)ds

i.e.

w(t) ≤ (tc3

[
w0) + c4

∫ t0

t

s−1−c3P (s)ds

]
. (3.19)

Consider now t ∈]t1, t0] such that w(t) < 0, and choose t2 > t maximal with
w(s) < 0 for s ∈ [t, t2[. Repeating the above argument but now using (3.14)
instead of (3.13), yields the estimate

w(t) ≥ (t/t2)c3

[
w(t2)− c4t

c3
2

∫ t2

t

s−1−c3P (s)ds

]
(3.20)

and distinguishing the cases t2 = t0 and t2 < t0 as above implies that

−w(t) ≤ (tc3

[
w0) + c4

∫ t0

t

s−1−c3P (s)ds

]
. (3.21)

(3.19) and (3.21) imply

|w(t)| ≤ (tc3

[
w0) + c4

∫ t0

t

s−1−c3P (s)ds

]
for every characteristic s 7→ (r(s), w(s), F ) such that (r(t), w(t), F ) ∈ suppf(t).
Therefore

P (t) ≤ tc3

[
w0) + c4

∫ t0

t

s−1−c3P (s)ds

]
(3.22)
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for all t ∈]t1, t0]. Applying Gronwall’s inequality again yields the estimate

P (t) ≤ w0(t/t0)c3−c4 , t ∈]t1, t0],

since z(t) := w0(t/t0)c3−c4 is the solution of the integral equation

z(t) = tc3

[
w0) + c4

∫ t0

t

s−1−c3z(s)ds

]
which is equivalent to the initial value problem

ż(t) = (c3 − c4)
z(t)
t

, z(t0) = w0.

Note that the smallness assumption on the initial data implies that c3 − c4 =
c > 0. Hence the estimate on P (t) implies in particular that t1 = T , i.e. it holds
on the whole existence interval of the solution, and so the second continuation
criterion in Theorem 1.6 is fulfilled as well. We then obtain the boundedness
of the maximum velocity and the lapse function, which by Theorem 1.6 implies
that T = 0, and the proof is complete. �

3.2 On past asymptotic behaviour

In this section we examine the behaviour of solutions as t → 0.

3.2.1 The initial singularity

First we analyze the curvature invariant RαβγδR
αβγδ called the Kretschmann

scalar in order to prove that there is a spacetime singularity

Theorem 3.3 Let (f, λ, µ) be a regular solution of the surface-symmetric Einstein-
Vlasov system with cosmological constant on the interval ]0, t0]. In the cases
(Λ < 0, k = −1) and Λ > 0 assume in addition that the initial data are small
as described in Theorem 3.2. Then

lim
t→0

(RαβγδR
αβγδ)(t, r) = ∞,

uniformly in r ∈ R.

Proof We can compute the Kretschmann scalar and obtain

RαβγδR
αβγδ = 4[e−2λ(µ′′ + µ′(µ′ − λ′))− e−2µ(λ̈ + λ̇(λ̇− µ̇))]2

+
8
t2

[e−4µλ̇2 + e−4µµ̇2 − 2e−2(λ+µ)(µ′)2]

+
4
t4

(e−2µ + k)2

=: K1 + K2 + K3 (3.23)

39



Since K1 is nonnegative it can be dropped.
Now let us distinguish the cases Λ > 0 and Λ < 0.

Case Λ > 0 :
Inserting the expressions

e−2µλ̇ = 4πtρ−k + e−2µ

2t
+

Λ
2

t, e−2µµ̇ = 4πtp+
k + e−2µ

2t
−Λ

2
t, e−λ−µµ′ = −4πtj

into the formula for K2 yields

K2 =
8
t2

[
16π2t2(ρ2 + p2 − 2j2)− 4πt(ρ− p)

k + e−2µ

t
+

(k + e−2µ)2

2t2
+

Λ2

2
t2

− (k + e−2µ)Λ + 4πt2Λ(ρ− p)
]
.

Now

|j(t, r)| ≤ π

t2

∫ ∞

−∞

∫ ∞

0

(1 + w2 + F/t2)1/4f1/2 |w|
(1 + w2 + F/t2)1/4

f1/2dFdw

≤ ρ(t, r)1/2p(t, r)1/2

by the Cauchy-Schwarz inequality. Therefore

ρ2 + p2 − 2j2 ≥ ρ2 + p2 − 2ρp = (ρ− p)2

and

K2 ≥
8
t2

[(
4πt(ρ− p)

k + e−2µ

2t

)2

+
(

k + e−2µ

2t
− Λt

)2

− Λ2

2
t2 + 4πt2Λ(ρ− p)

]
(3.24)

≥ −4Λ2

since 4πt2Λ(ρ− p) ≥ 0.
Recalling the expression for e−2µ we get

e−2µ + k =
t0(e−2

◦
µ(r) + k)
t

+
8π

t

∫ t0

t

s2p(s, r)ds +
Λ
3t

(t3 − t30)

≥
t0(inf e−2

◦
µ + k − Λ

3 t20)
t

(3.25)

thus

K3 =
4
t4

(e−2µ + k)2 ≥ 4t20
t6

(
inf e−2

◦
µ + k − Λ

3
t20

)2

and so

(RαβγδR
αβγδ)(t, r) ≥ 4t20

t6

(
inf e−2

◦
µ + k − Λ

3
t20

)2

−4Λ2, t ∈]0, t0], r ∈ R,Λ > 0,
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and the assertion is proved for Λ > 0.
Case Λ ≤ 0

We have by (3.24) :
K2 ≥ −4Λ2 + 32πΛ(ρ− p).

If k ≥ 0 we are in the situation of Theorem 3.1 where we proved the boundedness
of w so that

(ρ−p)(t, r) ≤ ρ(t, r) =
π

t2

∫ P (t)

−P (t)

∫ F0

0

√
1 + w2 + F/t2f(t, r, w, F )dFdw ≤ Ct−3,

(3.26)
whereas if k = −1 we use the estimate for w in Theorem 3.2 and (3.26) is
replaced by

(ρ− p)(t, r) ≤ Ct−3+c, (3.27)

where c is defined in Theorem 3.2.
Thus

K2 ≥ −4Λ2 + CΛt−3, if k ≥ 0

and
K2 ≥ −4Λ2 + CΛt−3+c, if k = −1.

(3.25) becomes in this case (Λ < 0)

e−2µ + k ≥ t0(inf e−2
◦
µ + k)

t
,

therefore

K3 ≥
4t20
t6

(
inf e−2

◦
µ + k

)2

and

(RαβγδR
αβγδ)(t, r) ≥ 4t20

t6

(
inf e−2

◦
µ + k

)2

+ CΛt−3 − 4Λ2, t ∈]0, t0], r ∈ R, Λ ≤ 0, and k ≥ 0,

and

(RαβγδR
αβγδ)(t, r) ≥ 4t20

t6

(
inf e−2

◦
µ + k

)2

+ CΛt−3+c − 4Λ2, t ∈]0, t0], r ∈ R, Λ ≤ 0, and k = −1,

that is the assertion in the theorem holds for Λ ≤ 0 as well, and the proof is
complete. �

Next we prove that the singularity at t = 0 is a crushing singularity i.e.
the mean curvature of the surfaces of constant t blows up, also it is a velocity
dominated singularity i.e the generalized Kasner exponents have limits as t → 0.
We have the same results as in [11] :

Theorem 3.4 Let (f, λ, µ) be a solution of the surface-symmetric Einstein-
Vlasov system with cosmological constant on the interval ]0, t0], assume that the
initial data satisfy e−2

◦
µ(r) − Λ

3 t20 − 1 > 0 for r ∈ R. Let

K(t, r) := −e−µ

(
λ̇(t, r) +

2
t

)
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which is the mean curvature of the surfaces of constant t. Then

lim
t→0

K(t, r) = −∞,

uniformly in r ∈ R.

Proof We have

λ̇ = e2µ

(
4πtρ− k + e−2µ

2t
+

Λ
2

t

)
. (3.28)

If Λ > 0 :
then

λ̇ ≥ −e2µ k + e−2µ

2t

and

K(t, r) ≤ eµ k − e−2µ

2t
.

For k = 0 or k = −1,

K(t, r) ≤ − 3
2t

e−µ.

and the estimate

e−2µ ≥
t0(e−2

◦
µ + k − Λ

3 t20)
t

implies

e−µ ≥
t
1/2
0 (inf e−2

◦
µ + k − Λ

3 t20)
1/2

t1/2
,

thus

K(t, r) ≤ −3
2

t
1/2
0 (inf e−2

◦
µ + k − Λ

3 t20)
1/2

t3/2
≤ −

t
1/2
0 (inf e−2

◦
µ + k − Λ

3 t20)
1/2

t3/2
for k = 0 or k = −1.

For k = 1 we have

e−2µ ≥
t0(e−2

◦
µ − Λ

3 t20)
t

> 1 = k (since t < t0)

thus

K(t, r) ≤ −e−µ

t
≤ −

t
1/2
0 (inf e−2

◦
µ − Λ

3 t20)
1/2

t3/2
for k = 1.

Now if Λ < 0

λ̇ ≥ −e2µ k + e−2µ

2t
+

Λ
2

te2µ

and

K(t, r) ≤ eµ k − 3e−2µ

2t
− Λ

2
teµ;
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for k = 0 or k = −1,

K(t, r) ≤ − 3
2t

e−µ − Λ
2

teµ

but

e−2µ ≥ t0(e−2
◦
µ + k)
t

which implies

e−µ ≥ t
1/2
0 (inf e−2

◦
µ + k)1/2

t1/2
,

and so

K(t, r) ≤ −3
2

t
1/2
0 (inf e−2

◦
µ + k)1/2

t3/2
− Λ

2
t
−1/2
0 (inf e−2

◦
µ + k)−1/2

t−3/2
for k = 0 or k = −1.

For k = 1 we have

e−2µ ≥ t0e
−2

◦
µ

t
> 1 = k (since t ≤ t0)

thus

K(t, r) ≤ −e−µ

t
− Λ

2
teµ ≤ − t

1/2
0 (inf e−

◦
µ)

t3/2
− Λ

2
t
−1/2
0 (inf e−

◦
µ)−1

t−3/2
for k = 1. �

Theorem 3.5 Let (f, λ, µ) be a regular solution of the surface-symmetric Einstein-
Vlasov system with cosmological constant on the interval ]0, t0] with small initial
data as described in Theorem 3.2. Then

lim
t→0

K1
1 (t, r)

K(t, r)
= −1

3
; lim

t→0

K2
2 (t, r)

K(t, r)
= lim

t→0

K3
3 (t, r)

K(t, r)
=

2
3
,

uniformly in r ∈ R,
where

K1
1 (t, r)

K(t, r)
,

K2
2 (t, r)

K(t, r)
,

K3
3 (t, r)

K(t, r)

are the generalized Kasner exponents.

Proof We have

K1
1 (t, r)

K(t, r)
=

tλ̇(t, r)
tλ̇(t, r) + 2

;
K2

2 (t, r)
K(t, r)

=
K3

3 (t, r)
K(t, r)

=
1

tλ̇(t, r) + 2
.

From (3.28)

tλ̇ = 4πt2e2µρ− k

2
e2µ − 1

2
+

Λ
2

t2e2µ.
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As we have seen in the proof of Theorem 3.2

e2µ(t,r) ≤ Ct

and
ρ(t, r) ≤ Ct−3+c

so that
4πt2e2µ(t,r)ρ(t, r) ≤ Ctc,

where c is the one defined in Theorem 3.2. Note that for Λ < 0 and k ≥ 0 it
suffices to let

c :=
1
2
− 10π2w0F0

√
1 + w2

0 + F0/t20 ‖
◦
f ‖‖ e2

◦
µ ‖

in the hypotheses of Theorem 3.2. The above estimates imply that

e2µ(t,r) → 0 and 4πt2e2µ(t,r)ρ(t, r) → 0 as t → 0

thus
tλ̇(t, r) → −1

2
as t → 0, uniformly in r

and the proof is complete. �

3.2.2 Determination of the leading asymptotic behaviour

In this subsection we determine the explicit leading behaviour of λ, µ, λ̇, µ̇, µ′

We have
d

dt
(te−2µ) = Λt2 − k − 8πt2p.

By Theorem 3.1 and Theorem 3.2,{
|w| ≤ C if (Λ < 0, k ≥ 0)
|w| ≤ Ctc if Λ > 0 or (Λ < 0, k = −1).

(3.29)

Using the expression for p, we have{
p ≤ Ct−2 if (Λ < 0, k ≥ 0)
p ≤ Ct−2+3c if Λ > 0 or (Λ < 0, k = −1)

so that
8πt2p ≤ C,

thus
| d

dt
(te−2µ) |≤ C,

integrating this over [t1, t2] yields

| t2e−2µ(t2) − t1e
−2µ(t1) |≤ C(t2 − t1) (3.30)
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so s 7→ se−2µ(s) verifies the Lipschitz condition with Lipschitz constant C. Thus

te−2µ(t) → L as t → 0;

note that L > 0, using the lower bound on e−2µ(t). (3.30) then implies

| te−2µ(t) − L |≤ Ct

or
| e−2µ(t) − L

t
|≤ C

and so
e−2µ(t) =

L

t
+ O(1) =

L

t
(1 + O(t))

thus
e2µ(t) = L−1t(1 + O(t)) (3.31)

that is
µ =

1
2

ln t + O(1). (3.32)

Now we have

λ̇ =
1
2
(Λt + 8πtρ)e2µ − 1 + ke2µ

2t
. (3.33)

Using (3.29) and the expression for ρ we can see that{
ρ ≤ Ct−3 if (Λ < 0, k ≥ 0)
ρ ≤ Ct−3+c if Λ > 0 or (Λ < 0, k = −1)

so that {
8πtρ ≤ Ct−2 if (Λ < 0, k ≥ 0)
8πtρ ≤ Ct−2+c if Λ > 0 or (Λ < 0, k = −1)

thus (3.33) implies that

λ̇ =
1
2
[Λt + O(t−2+c)][L−1t + O(t2)]− 1

2t
− k

2
(L−1 + O(t))

=
1
2
[L−1Λt2 + O(t3) + O(t−1+c) + O(tc)]− 1

2t
− kL−1

2
+ O(t)

that is, using the fact that −1 + c < 0,{
λ̇ = − 1

2t + O(t−1) if (Λ < 0, k ≥ 0)
λ̇ = − 1

2t + O(t−1+c) if Λ > 0 or (Λ < 0, k = −1)
(3.34)

and so {
λ = − 1

2 ln t + O(1) if (Λ < 0, k ≥ 0)
λ = − 1

2 ln t + O(tc) if Λ > 0 or (Λ < 0, k = −1).
(3.35)
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Now using (3.29) and the expression for j we can see that{
j ≤ Ct−2 if (Λ < 0, k ≥ 0)
j ≤ Ct−2+c if Λ > 0 or (Λ < 0, k = −1)

and thus using equation µ′ = −4πteλ+µj we obtain

µ′ = −4πtL−1/2t1/2[1 + O(t)]
[
t−1/2(1 + O(tc))

]
O(t−2+c)

i.e. {
µ′ = O(t−1) if (Λ < 0, k ≥ 0)
µ′ = O(t−1+c) if Λ > 0 or (Λ < 0, k = −1)

(3.36)

we have used equations (3.31) and (3.35).
Recalling that

µ̇ =
1
2
(−Λt + 8πtp)e2µ +

1 + ke2µ

2t
,

we use (3.31) and the fact that 8πtp ≤ C to obtain

µ̇ =
1
2t

+ O(1). (3.37)

Thus we have proven the following

Theorem 3.6 Let (f, λ, µ) be a solution of the surface-symmetric Einstein-
Vlasov system with cosmological constant on the interval ]0, t0] with small initial
data as described in Theorem 3.2 in the cases (Λ < 0, k = −1) and Λ > 0. Then
the following properties hold at early times : (3.32), (3.34), (3.35), (3.36),
(3.37).

This theorem shows that the model for the dynamics of the class of solutions
considered here is the Kasner solution with Kasner exponents (2/3, 2/3,−1/3)
for which λ = − 1

2 ln t and µ = 1
2 ln t.
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Conclusion and outlook

In the expanding direction we have proved, for the case (Λ > 0, k ≤ 0), the
global existence of solutions and we have obtained detailed information about
asymptotics. The same results are also shown for (Λ > 0, k = 1) provided that
t20Λ > 1. However it would be useful to know more information about asymp-
totics of the spatial derivative of the matter quantities. It may be asked what
happens if the restriction t20Λ > 1 is not satisfied in the spherically symmetric
case with Λ > 0. It must be taken into account the case where the area of orbits
is not monotonic. In this case the areal time coordinate is not appropriate.
Similar comments apply also to the cases (Λ ≤ 0, k = 1) and (Λ < 0, k ≤ 0).
Note that similar problems have been investigated in the vanishing cosmolog-
ical constant case by O. Henkel [8] using a different kind of time coordinate.
For (Λ = 0, k ≤ 0) less is known about late time asymptotics except in the
homogeneous case where the detailed dynamics were determined in [16] and
[17].

In the contracting direction we have shown the global existence for (Λ ≤
0, k ≥ 0), asymptotics have been obtained if (Λ < 0, k ≥ 0). Similar results
have been obtained for small initial data in the cases (Λ < 0, k = −1) and
Λ > 0. In the homogeneous case more information is available in [16]. It may
be asked what happens for general data.
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Appendix

Proof of Theorem 1.5

In order to avoid some problems while estimating the term µ′ in the iterative
scheme, Rein proves that, instead of considering the subsystem (1.2), (1.3),
(1.4), it is more convenient to consider an auxiliary system which consists of the
modified Vlasov equation

∂tf +
eµ−λw√

1 + w2 + F/t2
∂rf − (λ̇w + eµ−λµ̃

√
1 + w2 + F/t2)∂wf = 0 (3.38)

together with (1.3), (1.4) and

µ̃ = −4πteλ+µj. (3.39)

Next by proving that µ′ = µ̃ he shows that if a regular solution (f, λ, µ, µ̃) of
(3.38), (1.3), (1.4), (3.39) on some time interval I ⊂]0,∞[ with t0 ∈ I, and with
the initial data satisfying (1.5) for t = t0, then (f, λ, µ) solves (1.2)-(1.6).

Now define
◦
µ̃ :=

◦
µ
′
, and consider the auxiliary system (3.38), (1.3), (1.4),

(3.39) in f , λ, µ and µ̃ respectively. We construct a sequence of iterative solu-
tions in the following way :

Iterative scheme : Let λ0(t, r) :=
◦
λ(r), µ0(t, r) :=

◦
µ(r), µ̃0(t, r) :=

◦
µ̃(r) for

t ∈]0, t0], r ∈ R ; T0 = 0. If λn−1, µn−1, µ̃n−1 are already defined and regular
on ]Tn−1, t0]× R with Tn−1 ≥ 0 then let

Gn−1(t, r, w, F ) :=

(
weµn−1−λn−1√
1 + w2 + F/t2

,−λ̇n−1w − eµn−1−λn−1 µ̃n−1

√
1 + w2 + F/t2

)
(3.40)

for t ∈]Tn−1, t0] and denote by (Rn,Wn)(s, t, r, w, F ) the solution of the char-
acteristic system

d

ds
(R,W ) = Gn−1(s,R, W, F )

with initial data

(Rn,Wn)(t, t, r, w, F ) = (r, w), (t, r, w, F ) ∈]Tn−1, t0]× R2 × [0,∞[ ;
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note that F is constant along characteristics. Define

fn(t, r, w, F ) :=
◦
f ((Rn,Wn)(t0, t, r, w, F ), F ) ,

that is, fn is the solution of

∂tfn+
weµn−1−λn−1√
1 + w2 + F/t2

∂rfn−(λ̇n−1w+eµn−1−λn−1 µ̃n−1

√
1 + w2 + F/t2)∂wfn = 0

(3.41)

with fn(t0) =
◦
f , and define ρn, pn, jn, qn by the integrals (1.7)-(1.10) with f

replaced by fn. Now (1.12) can be used to define µn as long as the right hand
side is positive. Thus we define

Tn := inf

{
t′ ∈]Tn−1, t0[ |

t0(e−2
◦
µ(r) + k)
t

− k +
8π

t

∫ t0

t

s2pn(s, r)ds

+
Λ
3t

(t3 − t30) > 0, r ∈ R, t ∈ [t′, t0]
}

,

and let

e−2µn(t,r) :=
t0(e−2

◦
µ(r) + k)
t

− k +
8π

t

∫ t0

t

s2pn(s, r)ds +
Λ
3t

(t3 − t30) (3.42)

λ̇n(t, r) := 4πte2µnρn(t, r)− 1 + ke2µn

2t
+

Λ
2

te2µn(t,r), (3.43)

λn(t, r) :=
◦
λ(r) +

∫ t

t0

λ̇n(s, r)ds,

µ̃n(t, r) := −4πteµn+λnjn(t, r) (3.44)

By Proposition 1.2, Tn ≤ T ? for all n. So all the iterates are well defined
and regular on the fixed time interval ]T ?, t0], in particular, since λn−1, µn−1,
λ̇n−1, µ̃n−1 are continuous on ]T ?, t0]×R and periodic in r, these functions are
bounded on compact subintervals of ]T ?, t0], uniformly in r, and since Gn−1 is
linearly bounded with respect to w the characteristics Rn, Wn exist on the time
interval ]T ?, t0].
The proof of Theorem 1.5 now consists in showing in a number of steps that
the iterates constructed above converge in a sufficiently strong sense.
Step 1 : As a first step we establish a uniform bound on the momenta in the
support of the distribution functions fn, more precisely we want to bound the
quantities

Pn(t) := sup{|w||(r, w, F ) ∈ suppfn(t)}

uniformly in n. On suppfn(t) we have√
1 + w2 + F/t2 ≤

√
1 + Pn(t)2 + F0/t2 ≤ max(1, t0)

t
(1 + F0)(1 + Pn(t)),
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and thus

‖ ρn(t) ‖≤ c
(1 + F0)2

t3
(1+ ‖

◦
f ‖)(1 + Pn(t))2 (3.45)

and
‖ pn(t) ‖, ‖ jn(t) ‖≤ c

1 + F0

t2
(1+ ‖

◦
f ‖)(1 + Pn(t))2. (3.46)

Throughout the proof ‖ . ‖ denotes the L∞-norm on the function space in

question ; we have used the fact that ‖ fn(t) ‖=‖
◦
f ‖ for n ∈ N and t ∈]T ?, t0].

The numerical constant c may change from line to line and does not depend on
n or t or on the initial data. In view of the continuation criterion it is important
to keep track of any dependence on the latter. From Proposition 1.2 it follows
that there exists some positive constant c1 such that

e−2µn(t,r) ≥ c1. (3.47)

By (3.43), (3.44), and the above estimates on ρn and jn, we get

| eµn−λn µ̃n(s, r) |≤ 4πse2µn | jn(s, r) |≤ c
1 + F0

c1s
(1+ ‖

◦
f ‖)(1 + Pn(s))2

and

| λ̇n(s, r) | ≤ 4πse2µn | ρn(s, r) | +1 + e2µn

2s
+
| Λ |
2

t0e
2µn

≤ c

c1
(1 + F0)2(1+ ‖

◦
f ‖) (1 + Pn(s))2

s2
+

1 + 1/c1

2s
+
| Λ | t0

2c1
.

Thus, on suppfn+1(t) :

| Ẇn+1(s) | ≤| λ̇n(s, r) || Wn+1(s, t0, r, w, F ) | +

| eµn−λn µ̃n(s, r) | max(1, t0)
s

(1 + F0)(1 + Pn+1(s))

≤ c2

s2
(1 + Pn(s))2(1 + Pn+1(s))

where

c2 = c2(
◦
f, F0,

◦
µ,Λ) :=

c

c1
(1 + 1/c1)(1 + F0)2(1+ ‖

◦
f ‖)( | Λ | t30

2c1
+ 1)

We then have

Wn+1(t, t0, r, w, F ) ≤ Wn+1(t0, t0, r, w, F ) + c2

∫ t0

t

1
s2

(1 + Pn(s))2(1 + Pn+1(s))ds

this implies

Pn+1(t) ≤ w0 + c2

∫ t0

t

1
s2

(1 + Pn(s))2(1 + Pn+1(s))ds. (3.48)
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Now define Qn(t) := sup{Pm(t)|m ≤ n}. Then (Qn)n∈N is increasing and by
(3.48) we have :

Pn+1(t) ≤ w0 + c2

∫ t0

t

1
s2

(1 + Qn+1(s))3ds.

and

Pm(t) ≤ w0 + c2

∫ t0

t

1
s2

(1 + Qn+1(s))3ds, ∀m ≤ n

thus

Qn+1(t) ≤ w0 + c2

∫ t0

t

1
s2

(1 + Qn+1(s))3ds.

Let z1 be the left maximal solution of the equation

z1(t) = w0 + c2

∫ t0

t

1
s2

(1 + z1(s))3ds,

which exists on some interval ]T (1), t0] with T (1) ∈ [T ?, t0[. By Gronwall’s
inequality it follows that

Qn+1(t) ≤ z1(t), t ∈]T (1), t0], n ∈ N

since Pn(t) ≤ Qn+1(t), this implies that

Pn(t) ≤ z1(t), t ∈]T (1), t0], n ∈ N,

and all the quantities which were estimated against Pn in the above argument
are bounded by certain powers of z1 on ]T (1), t0].
Step 2 : Here we establish bounds on certain derivatives of the iterates. In
particular we need a uniform bound on the Lipschitz-constant of the right hand
side Gn of the characteristic system in order to prove convergence in the next
step. Differentiating (3.42) and (3.43) with respect to r one obtains the identities

µ′n(t, r) =
e2µn

t

(
t0
◦
µ
′
(r)e−2

◦
µ − 4π

∫ t0

t

s2p′n(s, r)ds

)
,

λ̇′n(t, r) = e2µn

(
8πtµ′n(t, r)ρn(t, r) + 4πtρ′n(t, r)− k

t
µ′n(t, r) + Λtµ′n

)

λ′n(t, r) =
◦
λ
′
(r) +

∫ t

t0

λ̇′n(s, r)ds.

In the following C1 denotes a continuous function on ]T (1), t0] which depends
only on z1 as an increasing function of z1. By Step 1, and using once more (1.7),
(1.8), (1.9) :

‖ ρ′n(t) ‖, ‖ p′n(t) ‖, ‖ j′n(t) ‖≤ C1(t) ‖ ∂rfn(t) ‖ .
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Define

Dn(t) := sup{‖ ∂rfn(s) ‖ |t ≤ s ≤ t0}.

Then the above estimates, the formulas for the derivatives of the metric com-
ponents and (3.47) show that

‖ µ′n(t) ‖, ‖ λ′n(t) ‖, ‖ λ̇′n(t) ‖≤ C1(t)(c3 + Dn(t))

where c3 :=‖ e−2
◦
µ ◦µ

′
‖ + ‖

◦
λ
′
‖ +1+ | Λ |. From (3.44) it follows that

eµn−λn µ̃n = −4πte2µnjn,

and

| (eµn−λn µ̃n)′(t, r) |≤ C1(t)(c3 + Dn(t)).

We are now in the position to estimate the derivatives of Gn with respect to r
and w :

∂rGn(t, r, w, F ) = ((µn − λn)′eµn−λn
w√

1 + w2 + F/t2
,

− (eµn−λn µ̃n)′
√

1 + w2 + F/t2 − λ̇′nw),

∂wGn(t, r, w, F ) = (eµn−λn
1 + F/t2

(1 + w2 + F/t2)3/2
,

− eµn−λn µ̃n
w√

1 + w2 + F/t2
− λ̇n),

and thus

| ∂rGn(t, r, w, F ) |≤ C1(t)(c3 + Dn(t)),

| ∂wGn(t, r, w, F ) |≤ C1(t),

for t ∈]T (1), t0], r ∈ R, F ∈ [0, F0] and | w |≤ z1(t). Differentiating the
characteristic system with respect to r, we obtain

d

ds
∂r(Rn+1,Wn+1)(s, t, r, w, F ) = ∂rGn(s,Rn+1,Wn+1, F ).∂r(Rn+1,Wn+1)(s, t, r, w, F )

it follows that

| d

ds
∂r(Rn+1,Wn+1)(s, t, r, w, F ) |≤ C1(s)(c3 + Dn(s)) | ∂r(Rn+1,Wn+1)(s, t, r, w, F ) |

therefore by Gronwall’s inequality we obtain,
for (r, w, F ) ∈ suppfn+1(t) ∪ suppfn(t)

| ∂r(Rn+1,Wn+1)(t0, t, r, w, F ) |≤ exp
[∫ t0

t

C1(s)(c3 + Dn(s))ds

]
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The definition of fn implies that

‖ ∂rfn(t) ‖≤‖ ∂(r,w)

◦
f ‖ sup{| ∂r(Rn,Wn)(t0, t, r, w, F ) | |(r, w, F ) ∈ suppfn(t)}.

Combining this with the previous inequality and using the definition of Dn we
obtain the following :

Dn+1(t) ≤‖ ∂(r,w)

◦
f ‖ exp

[∫ t0

t

C1(s)(c3 + Dn(s))ds

]
.

Let En(t) := sup{Dm(t)|m ≤ n}. Then (En)n is increasing, therefore

Dn+1(t) ≤‖ ∂(r,w)

◦
f ‖ exp

[∫ t0

t

C1(s)(c3 + En+1(s))ds

]
and

Dm(t) ≤‖ ∂(r,w)

◦
f ‖ exp

[∫ t0

t

C1(s)(c3 + En+1(s))ds

]
, for m ≤ n.

These inequalities imply that

En+1(t) ≤‖ ∂(r,w)

◦
f ‖ exp

[∫ t0

t

C1(s)(c3 + En+1(s))ds

]
.

Now let z2 be the left maximal solution of

z2(t) =‖ ∂(r,w)

◦
f ‖ exp

[∫ t0

t

C1(s)(c3 + z2(s))ds

]
,

i.e.

ż2(t) = C1(t) (c3 + z2(t)) z2(t), z2(t0) =‖ ∂(r,w)

◦
f ‖

which exists on an interval ]T (2), t0] ⊂]T (1), t0]. Then we have

En+1(t) ≤ z2(t), t ∈]T (2), t0], n ∈ N,

and so

Dn(t) ≤ z2(t), t ∈]T (2), t0], n ∈ N,

and all the quantities estimated against Dn above can be bounded in terms of
z2 on ]T (2), t0], uniformly in n.
Step 3 : Let [δ, t0] ⊂]T (2), t0] be an arbitrary compact subset on which the
estimates of Steps 1 and 2 hold. We will show that on such an interval the
iterates converge uniformly. Define for t ∈ [δ, t0] :

αn(t) := sup{‖ fn+1(τ)− fn(τ) ‖ |τ ∈ [t, t0]},
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and let C denote a constant which may depend on the functions z1 and z2

introduced in the previous two steps. Then :

‖ ρn+1(t)− ρn(t) ‖, ‖ pn+1(t)− pn(t) ‖, ‖ jn+1(t)− jn(t) ‖≤ Cαn(t).

and thus

‖ λn+1(t)− λn(t) ‖, ‖ λ̇n+1(t)− λ̇n(t) ‖, ‖ µn+1(t)− µn(t) ‖, ‖ µ̃n+1(t)− µ̃n(t) ‖≤ Cαn(t).

Therefore,
| Gn+1 −Gn | (s, r, w, F ) ≤ Cαn(s) (3.49)

and by Step 2

| ∂(r,w)Gn(s, r, w, F ) |≤ C

for all s ∈ [δ, t0], n ∈ N and (r, w, F ) ∈ R2 × [0, F0] with |w| ≤ z1(s). For
(r, w, F ) ∈ suppfn(t) ∪ suppfn+1(t), using the last two estimates on the differ-
ence of two consecutive iterates of the characteristics we get :

| d

ds
(R,W )n+1 −

d

ds
(R,W )n | =| Gn(s,R, W, F )−Gn−1(s,R, W, F ) |

≤ Cαn−1(s)

using (3.49). Then, integrating directly over [t, t0] :

| [(R,W )n+1 − (R,W )n](t0, t, r, w, F )− [(R,W )n+1 − (R,W )n](t0, t0, r, w, F ) |

≤ C

∫ t0

t

αn−1(s)ds

and since [(R,W )n+1 − (R,W )n](t0, t0, r, w, F ) vanishes, we have

| (R,W )n+1 − (R,W )n | (t0, t, r, w, F ) ≤ C

∫ t0

t

αn−1(s)ds. (3.50)

If we recall how fn was defined in terms of the characteristics this implies, using
the mean value theorem :

αn(t) ≤ C

∫ t0

t

αn−1(s)ds, n ≥ 1. (3.51)

By induction we obtain

αn(t) ≤ C
Cn(t0 − t)n

n!
≤ Cn+1

n!
for n ∈ N and t ∈ [δ, t0]. (3.52)

Since the series
∑∞

n=0
Cn+1

n! converges, (fn) converges on [δ, t0]. Similarly (µn),
(λn), (λ̇n), (µ̃n) converge on [δ, t0], uniformly with respect to all their ar-
guments. These quantities therefore have continuous limits, but the estab-
lished convergence is not yet strong enough to conclude differentiability of say,
f := limn→∞ fn, µ := limn→∞ µn, λ := limn→∞ λn, µ̃ := limn→∞ µ̃n.

In the next step we establish the convergence of the derivatives of the iterates,
using the following lemma which is proved in [10].
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Lemma 3.7 Let I ⊂]0,∞[ be an interval, let λ, µ, µ̃ : I × R −→ R be regular
and let (R,W )(., t, r, w, F ) be the solution of

ṙ =
eµ−λw√

1 + w2 + F/s2
, ẇ = −λ̇(s, r)w − eµ−λµ̃(s, r)

√
1 + w2 + F/s2

with

(R,W )(t, t, r, w, F ) = (r, w) for (t, r, w, F ) ∈ I × R2 × [0,∞[.

For ∂ ∈ {∂r, ∂w} define

ξ(s) := e(λ−µ)(s,R)∂R(s, t, r, w, F ),
η(s) := ∂W (s, t, r, w, F )

+ (
√

1 + w2 + F/s2eλ−µλ̇)|(s,(R,W )(s,t,r,w,F ))∂R(s, t, r, w, F ).

Then

ξ̇(s) = a1(s,R(s),W (s), F )ξ(s) + a2(s,R(s),W (s), F )η(s)

η̇(s) = (a3 + a5)(s,R(s),W (s), F )ξ(s) + a4(s,R(s),W (s), F )η(s)

where

a1(s, r, w, F ) :=
w2

1 + w2 + F/s2
λ̇− µ̇, a2(s, r, w, F ) :=

1 + F/s2

(1 + w2 + F/s2)3/2
,

a3(s, r, w, F ) := −1
s

√
1 + w2 + F/s2(λ̇− µ̇ +

F/s2

1 + w2 + F/s2
λ̇),

a4(s, r, w, F ) := − w√
1 + w2 + F/s2

(eµ−λµ̃ +
w√

1 + w2 + F/s2
λ̇),

a5(s, r, w, F ) := −
√

1 + w2 + F/s2e2µ[e−2λ(µ̃′ + µ̃(µ′ − λ′))− e−2µ(λ̈ + (λ̇ +
1
s
)(λ̇− µ̇))]

If µ ∈ C2(I × R) and if we let µ̃ = µ′ then we take :

a3(s, r, w, F ) := −1
s

√
1 + w2 + F/s2(λ̇− µ̇ +

F/s2

1 + w2 + F/s2
λ̇)− e2µ(s,r)H

√
1 + w2 + F/s2

with

H := e−2λ(µ′′ + µ′(µ′ − λ′))− e−2µ(λ̈ + (λ̇ +
1
s
)(λ̇− µ̇)),

and we drop the coefficient a5. In particular, if (f, λ, µ) solves the full system
(1.2)-(1.6) the second order derivatives of λ and µ can be removed from the
coefficients since H can be expressed via q, using (1.10).
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Note that also by (3.50), (3.51) and (3.52),

| (R,W )n+1 − (R,W )n | (t0, t, r, w, F ) ≤ Cn+1

n!

thus the sequence of characteristics (R,W )n converges pointwise, for all
t ∈ [δ, t0]. We set (R,W ) := limn→∞(Rn,Wn).
Step 4 : Fix δ ∈]T (2), t0] and U > 0, and consider the system derived in the
previous lemma with (λn, µn, µ̃n) instead of (λ, µ, µ̃), and call the corresponding
coefficients an,i, i = 1, · · · , 5. By Steps 1 and 2 we have :

| an,i(t, r, w, F ) | + | ∂(r,w)an,i(t, r, w, F ) |≤ C (3.53)

for n ∈ N, i = 1, 2, 3, 4, 0 ≤ F ≤ F0, |w| ≤ U , and t ∈ [δ, t0]. The only new
terms to estimate here are µ̇n and µ̇′n, but from (3.42) we obtain

µ̇n = 4πte2µnpn +
1 + ke2µn

2t
− Λt

2
e2µn ,

µ̇′n = 2µ′n(µ̇n −
1
2t

) + 4πte2µnp′n

so both of these terms are bounded by Steps 1 and 2. The convergence estab-
lished in Step 3 shows that

an,i(t, r, w, F )− am,i(t, r, w, F ) −→ 0, n,m →∞, i = 1, 2, 3, 4,

uniformly on [δ, t0] × R × [−U,U ] × [0, F0]. The crucial term in the present
argument is an,5, more precisely the expression

Hn := e−2λn(µ̃′n + µ̃n(µ′n − λ′n))− e−2µn(λ̈n + (λ̇n +
1
t
)(λ̇n − µ̇n)).

If the iterates solved the field equation (1.6) then this term would equal 4πqn−Λ
and would also converge. The idea how to treat an,5 is to show that
Hn − 4πqn + Λ −→ 0 for n → ∞ and then use the fact that qn converges and
has uniformly bounded r-derivative. Now using (3.44) we have :

µ̃′n = (µ′n + λ′n)µ̃n − 4πteλn+µnj′n

and by (3.43)

λ̈n = 2λ̇nµ̇n +
µ̇n − λ̇n

t
+ 4πte2µn(ρ̇n +

2ρn

t
) + Λe2µn .

From the definition of ρn we obtain

ρ̇n = −2
t
ρn −

1
t
qn − eµn−1−λn−1j′n − 2µ̃n−1e

µn−1−λn−1jn − λ̇n−1(ρn + pn)
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where we used the Vlasov equation to express ∂tfn and integrated by parts ;
note that the coefficients in that equation have index n − 1. Inserting all this
into the expression for Hn yields, after cancelling a number of terms :

Hn = 2e−2λn µ̃n(µ′n − µ̃n−1e
µn−1−µn+λn−λn−1) + 4πt(eµn−1−λn−1 − eµn−λn)j′n

+ e−2µn(λ̇n + µ̇n)(λ̇n−1 − λ̇n) + 4πqn − Λ

By Steps 1, 2 and 3, it remains to show that µ′n − µ̃n−1 −→ 0 for n → ∞ in
order to conclude that Hn−4πqn +Λ −→ 0, since the second and third terms in
the right hand side of Hn tend to 0 as n → ∞. To see the former differentiate
(3.42) with respect to r to obtain

µ′n =
e2µn

t

(
t0
◦
µ
′
e−2

◦
µ + 4π

∫ t

t0

s2p′n(s, r)ds

)
Differentiating the defining integral of pn, using the Vlasov equation for fn to
express ∂rfn, and integrating by parts with respect to w and s results in the
relation :

µ′n =
e2µn

t
[t0

◦
µ
′
e−2

◦
µ + 4πt20e

◦
λ−◦µ◦j] + eµn−µn−1−λn+λn−1 µ̃n

+
e2µn

t

∫ t

t0

se−2µn [(λ̇n−1 + µ̇n−1)µ̃neµn−µn−1−λn+λn−1 − (λ̇n + µ̇n)µ̃n−1]ds

and since the initial data satisfy the constraint (1.5), µ′n → µ̃ as n → ∞, in
particular, µ′n − µ̃n−1 −→ 0 for n → ∞. In Step 3 we have shown that among
other quantities the characteristics (Rn,Wn)(t0, t, r, w, F ) converge. Now for
any ε > 0, there exists N ∈ N such that for n, m ≥ N , s ∈ [δ, t0], r ∈ R,
|w| ≤ U , and F ∈ [0, F0] we have

| ∂rqn(s, r) |≤ C, | qn(s, r)− qm(s, r) |≤ ε

and

| an,5(s, r, w, F )− e2µn
√

1 + w2 + F/s2(Λ− 4πqn(s, r)) |≤ ε

which together with the estimates (3.42) implies that

| ξ̇n − ξ̇m | (s)+ | η̇n − η̇m | (s) ≤ Cε + C | ξn − ξm | (s) + C | ηn − ηm | (s).

Gronwall’s inequality now shows that (ξn) and (ηn) are Cauchy sequences and
thus also (∂(r,w)(Rn,Wn)(t0, t, r, w, F )) is a Cauchy sequence uniformly on [δ, t0]×
R× [−U,U ]× [0, F0]. This implies the convergence of
(∂(r,w)(Rn,Wn)(t0, t, r, w, F ) ; note that the transformation from ∂(R,W ) to
(ξ, η) in the previous lemma is invertible, and the coefficients in the transfor-
mation are convergent in the present situation. Thus the limiting characteristic
(R,W )(t0, t, r, w, F ) and therefore also f are continuously differentiable with
respect to r and w. This in turn implies that all the moments (i.e. ρn, pn, jn,
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qn) calculated from f are differentiable with respect to r, the coefficients in the
limiting characteristic system are continuously differentiable with respect to r,
w and F , and thus (R,W )(t0, t, r, w, F ) is also differentiable with respect to F
and t, and the regularity of the limit (f, λ, µ) is established. Note that, using
the convergence of the derivatives, we can prove that the limit (f, λ, µ, µ̃) is a
regular solution of (3.38), (1.3), (1.4), (3.39) and so we conclude that (f, λ, µ)
is a solution of the full system (1.2)-(1.6).
Step 5 : In this step we show uniqueness of the solution. Let (f1, λ1, µ1),

(f2, λ2, µ2) be two regular solutions of the full system such that
◦
f1 =

◦
f2 =

◦
f ,

◦
λ1 =

◦
λ2 =

◦
λ,

◦
µ1 =

◦
µ2 =

◦
µ. Setting Gi := G(fi, λi, µi), i = 1, 2 and (Ri,Wi)

such that d
ds (Ri,Wi) = Gi, we have :

f1 =
◦
f [(R1,W1)(t0, t, r, w, F )] and f2 =

◦
f [(R2,W2)(t0, t, r, w, F )].

Now following the same arguments as in Step 3 with this time

α(t) = sup{‖ f1(τ)− f2(τ) ‖ |τ ∈ [t, t0]} ; | G1 −G2 | (s) ≤ α(s)

yields the following

α(t) ≤ C

∫ t0

t

α(s)ds

thus α(t) = 0 and so f1 = f2 =: f and by Proposition 1.2, we obtain µ1 = µ2

and λ1 = λ2. The solution (f, λ, µ) is then unique. This ends the proof of
Theorem 1.5. �

Proof of Theorem 1.6

Let (f, λ, µ, µ̃) be a left maximal solution of the auxiliary system (3.38), (1.3),
(1.4), (3.39) with existence interval ]T, t0]. Then (f, λ, µ) solves (1.2)-(1.6). Now
assume that

P ? := sup{|w||(r, w, F ) ∈ suppf(t), t ∈]T, t0]} < ∞.

We want to show that T = 0, so let us assume that T > 0 and take t1 ∈]T, t0[.
We will show that the system has a solution with initial data (f(t1), λ(t1), µ(t1))
prescribed at t = t1 which exists on an interval [t1−δ, t1] with δ > 0 independent
of t1. By moving t1 close enough to T this would extend our initial solution
beyond T , a contradiction to the initial solution being left maximal.

Steps 1-5 in the proof of Theorem 1.5 have shown that such a solution exists
at least on the left maximal existence interval of the solutions (z1, z2) of

z1(t) = W0 + c2

∫ t1

t

1
s2

(1 + z1(s))3ds
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z2(t) =‖ ∂(r,w)f(t1) ‖ exp
[∫ t1

t

C1(s)(c3 + z2(s))ds

]
,

where

W0 := sup{|w||(r, w, F ) ∈ suppf(t1)},

c2 = c2(f(t1), F0, µ(t1),Λ) :=
c

c1
(1 + 1/c1)(1 + F0)2(1+ ‖ f(t1) ‖)(

| Λ | t31
2c1

+ 1)

here c1 = c1(µ(t1)) := β(t1)
2 , β is the positive number obtained in the proof of

Proposition 1.2.

c3 :=‖ e−2µ(t1)µ′(t1) ‖ + ‖ λ′(t1) ‖ + | Λ | +1

and the function C1 depends on z1. Now W0 ≤ P ?, ‖ f(t1) ‖=‖
◦
f ‖, F0 is

unchanged since F is constant along characteristics, and c1(µ(t1)) ≥ β? with
1

β? = sup{e2µ(t,r)|r ∈ R, t ∈]T, t0]}. Thus there exists a constant c?
2 > 0 such

that

c2(f(t1), F0, µ(t1),Λ)/s2 ≤ c?
2 for t1 ∈]T, t0] and s ∈ [T/2, t0].

Let z?
1 denote the left maximal solution of

z?
1(t) = P ? + c?

2

∫ t1

t

(1 + z?
1(s))3ds.

Next observe that the coefficients a1, · · · , a5 in Lemma 3.7 are bounded on ]T, t0]
along characteristics in suppf if we let µ̃ = µ′ and use the field equation (1.6).
The lemma then shows that

D? := sup{‖ ∂(r,w)f(t) ‖ |t ∈]T, t0]} < ∞.

From

µ′(t, r) =
e2µ

t

(
t0
◦
µ
′
(r)e−2

◦
µ + 4π

∫ t

t0

p′(s, r)s2ds

)
,

λ̇′(t, r) = e2µ

(
8πtµ′(t, r)ρ(t, r) + 4πtρ′(t, r)− k

t
µ′(t, r)

)
,

λ′(t, r) =
◦
λ
′
(r) +

∫ t

t0

λ̇′(s, r)ds

we obtain a uniform bound c3(µ(t1), λ(t1)) ≤ c?
3. Let z?

2 be the left maximal
solution of

z?
2(t) = D? exp

[∫ t1

t

C?
1 (s)(c?

3 + z?
2(s))ds

]
,

where C?
1 depends on z?

1 in the same way as C1 depends on z1. Clearly, z?
1 and

z?
2 exist on an interval [t1 − δ, t1] with δ > 0 independent of t1. If we choose

δ < T/2 then z1 ≤ z?
1 and z2 ≤ z?

2 by construction, in particular, z1 and z2 exist
on [t1 − δ, t1], and the proof of Theorem 1.6 is complete. �
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Proof of Theorem 1.7

We give only those parts of the proof which differ from the proof of Theorem
1.5 for t ≤ t0. The iterates are defined in the same way as before, except that
now (3.42) is used to define µn only on the interval [t0, Tn[, where

Tn := sup

{
t′ ∈]t0, Tn−1[ |

t0(e−2
◦
µ(r) + k)
t

− k − 8π

t

∫ t

t0

s2pn(s, r)ds

+
Λ
3t

(t3 − t30) > 0, r ∈ R, t ∈ [t0, t′]
}

,

[t0, Tn−1[ being the existence interval of the previous iterates and T0 = ∞. With
Pn as before and

Qn(t) := sup
{

e2µn(s,r)|r ∈ R, t0 ≤ s ≤ t
}

we obtain the iterates

‖ ρn(t) ‖, ‖ pn(t) ‖, ‖ jn(t) ‖≤ c

t
(1 + F0)2(1+ ‖

◦
f ‖)(1 + Pn(t))2

and

| eµn−λn µ̃n(t, r) | + | λ̇n(t, r) |≤ c(1+F0)2(1+ ‖
◦
f ‖)(1+Pn(t))2(1+ | Λ |)(1+Qn(t)).

Thus

Pn+1(t) ≤ w0+c(1+F0)2(1+ ‖
◦
f ‖)(1+ | Λ |)

∫ t

t0

(1+Pn(s))2(1+Qn(s))(1+Pn+1(s))ds.

(3.54)
Now multiplying

µ̇n = 4πte2µnpn +
1 + ke2µn

2t
− Λ

2
te2µn

by 2e2µn and integrating over [t0, t] yields the following estimate

Qn(t) ≤‖ e2
◦
µ ‖ +c(1+F0)2(1+ ‖

◦
f ‖)(1+ | Λ |)

∫ t

t0

(1+s)(1+Pn(s))2(1+Qn(s))2ds.

(3.55)
Reasoning in the same way as in the proof of Theorem 1.5, we can say the
differential inequalities (3.54), (3.55) allow us to estimate Pn and Qn against
the solution z1 and z2 of the system

z1(t) = w0 + c(1 + F0)2(1+ ‖
◦
f ‖)(1+ | Λ |)

∫ t

t0

(1 + z1(s))3(1 + z2(s))ds,

z2(t) =‖ e2
◦
µ ‖ +c(1+F0)2(1+ ‖

◦
f ‖)(1+ | Λ |)

∫ t

t0

(1+s)(1+z1(s))2(1+z2(s))2ds,
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and in particular Tn ≥ T where [t0, T [ is the right maximal existence interval of
(z1, z2).

One can now establish a bound on first order derivatives of the iterates in
the same way as in the proof of Theorem 1.5 and obtains a local solution on a
right maximal existence interval which is extendible if the quantities P (t) and
Q(t) =‖ e2µ(t) ‖ can be bounded, reasoning as in the proof of theorem 1.6.

Now for the continuation criterion assume that T < ∞. We show that under
the assumption on e2µ we obtain the bound

sup {| w | |(t, r, w, F ) ∈ suppf} < ∞

which is a contradiction of the statement at the end of the previous paragraph.
Define

P+(t) := sup {w|(r, w, F ) ∈ suppf(t)} ,

P−(t) := inf {w|(r, w, F ) ∈ suppf(t)} ,

and assume that P+ > 0 for some t ∈ [t0, T [, and let w(t) = w > 0 denote the
w-component of a characteristic in suppf . We have

ẇ =
4π2

t
e2µ

∫ ∞

−∞

∫ ∞

0

(
w̃
√

1 + w2 + F/t2 − w

√
1 + w̃2 + F̃ /t2

)
fdF̃dw̃

+
1 + ke2µ

2t
w − Λ

2
twe2µ.

Let us abbreviate

ξ = w̃
√

1 + w2 + F/t2 − w

√
1 + w̃2 + F̃ /t2.

As long as w(s) > 0 we have the following estimates : if w̃ ≤ 0 then ξ ≤ 0. If
w̃ > 0 then

ξ =
w̃2(1 + F/s2)− w2(1 + F̃ /s2)

w̃
√

1 + w2 + F/t2 + w
√

1 + w̃2 + F̃ /t2

≤ C
w̃

w(s)
,

and thus

ẇ(s) ≤ C
1

sw(s)

∫ P̃+(s)

0

∫ F0

0

w̃f(s, r, w̃, F̃ )dF̃dw̃ +
C

s
w(s)(1 + s2 | Λ |)

≤ C

s

[
P̃+(s)2

w(s)
+ w(s)(1 + s2 | Λ |)

]

where P̃+ := max{P+, 0}. Thus

d

ds
w2(s) ≤ C

s
P̃+(s)2

(
1 + s2 | Λ |

)
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as long as w(s) > 0. Let t1 ∈ [t0, t[ be defined minimal such that w(s) > 0 for
s ∈]t1, t]. Then

w2(t) ≤ w2(t1) + C

∫ t

t1

1 + s2 | Λ |
s

P̃+(s)2ds.

Now either t1 > t0 and w(t1) = 0 or t1 = t0 and w(t1) ≤ w0. Thus

P̃+(t)2 ≤ w2
0 + C

∫ t

t0

1 + s2 | Λ |
s

P̃+(s)2ds

for all t ∈ [t0, T [, since this estimate is trivial if P+(t) ≤ 0. If T < ∞ this
estimate implies that P+ is bounded on [t0, T [, using Gronwall’s lemma. Esti-
mating ẇ(s) from below in case w(s) < 0 along the same lines shows that P− is
bounded as well, and the proof is complete. �
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