
This version is available at https://doi.org/10.14279/depositonce-7081

© © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Terms of Use

Habermann, P., Chi, C. C., Álvarez-Mesa, M., & Juurlink, B. (2017). Syntax Element Partitioning for high-
throughput HEVC CABAC decoding. In 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE. https://doi.org/10.1109/icassp.2017.7952368

Habermann, P.; Chi, C. C.; Álvarez-Mesa, M.; Juurlink, B.

Syntax Element Partitioning for high-
throughput HEVC CABAC decoding

Accepted manuscript (Postprint)Conference paper |

SYNTAX ELEMENT PARTITIONING FOR HIGH-THROUGHPUT

HEVC CABAC DECODING

Philipp Habermann⋆, Chi Ching Chi†, Mauricio Alvarez-Mesa† and Ben Juurlink⋆

⋆ Embedded Systems Architecture Group, Technische Universität Berlin, Germany
† Spin Digital Video Technologies GmbH, Berlin, Germany

Email: {p.habermann, b.juurlink}@tu-berlin.de, {chi, mauricio}@spin-digital.com

ABSTRACT

Encoder and decoder implementations of the High Ef-

ficiency Video Coding (HEVC) standard have been subject

to many optimization approaches since the release in 2013.

However, the real-time decoding of high quality and ultra

high resolution videos is still a very challenging task. Espe-

cially entropy decoding (CABAC) is most often the through-

put bottleneck for very high bitrates. Syntax Element Parti-

tioning (SEP) has been proposed for the H.264/AVC video

compression standard to address this issue and the limitations

of other parallelization techniques. Unfortunately, it has not

been adopted in the latest video coding standard, although it

allows to multiply the throughput in CABAC decoding.

We propose an improved SEP scheme for HEVC CABAC

decoding with eight syntax element partitions. Experimental

results show throughput improvements up to 5.4× with neg-

ligible bitstream overhead, making SEP a useful technique to

address the entropy decoding bottleneck in future video com-

pression standards.

Index Terms— HEVC, H.265, CABAC, Parallelization

1. INTRODUCTION

High Efficiency Video Coding (HEVC, [1]) is the most recent

video coding standard developed by the Joint Collaborative

Team on Video Coding (JCT-VC). It allows the compression

of videos with the same perceptive quality as its predecessor

H.264/AVC [2] while requiring only half the bitrate. Context-

based Adaptive Binary Arithmetic Coding (CABAC, [3]) is

the entropy coding module in the HEVC standard and the

main throughput bottleneck for high bitrates because the se-

quential algorithm makes parallelization very challenging.

Many optimization approaches have been implemented

to improve the throughput of the critical CABAC decod-

ing. First of all, two high-level parallelization techniques

have been adopted in the HEVC standard, as it was not only

designed for high compression rates but also for high through-

put. By using Tiles, a frame is split into multiple rectangular

areas that can be decoded simultaneously. Wavefront Parallel

Processing (WPP) allows the parallel decoding of consecutive

rows of Coding Tree Units (CTUs) in the same frame. Both

techniques require the replication of the complete CABAC

decoding hardware. Tiles lead to a decreased compression

rate which is proportional to the number of tiles, because

there cannot be any inter-tile dependencies. The use of WPP

affects the CABAC learning process as the context variables

are reset at the beginning of every CTU row. However, the

coding losses are minimal for high resolution videos. Fur-

thermore, WPP has scalability issues as there is a ramp-up

and -down in active parallel threads due to the delayed decod-

ing start of consecutive CTU rows. Overlapped Wavefront

Processing (OWF) has been proposed by Chi et al. [4] as an

implementation optimization that extends WPP to multiple

parallel frames. This avoids the ramp-up/down phase in ev-

ery frame and scales to many more parallel threads. Tiles

and WPP are not mandatory, which means that they can only

be used for improved decoding throughput when they were

enabled in the encoding process.

There are also low-level parallelization approaches for

CABAC hardware decoding. Pipelining can be used to

overlap the decoding of consecutive binary symbols (bins).

Among others, this has been implemented by Chen and Sze

who used a five-stage pipeline [5]. It is also possible to de-

code multiple bins per clock cycle (e.g. Lin et al. [6] or Kim

and Park [7]). Unfortunately, the efficient implementation of

both techniques is limited to few parallel bins due to strong

data and control dependencies.

To address the drawbacks of the described parallelization

approaches, Sze et al. have proposed Syntax Element Par-

titioning (SEP, [8]) for H.264/AVC. Parallelism is exploited

by distributing syntax elements among different partitions, so

that they can be decoded simultaneously. This enables a sig-

nificant decoding speed-up with only minimal losses in cod-

ing efficiency. As only parts of the decoding hardware need

to be replicated, there is only a 50 % increase in hardware

cost for five parallel partitions. This proposal requires a mod-

ification of the bitstream format and is therefore not compli-

ant with the H.264/AVC standard. However, the multiplica-

tion of the decoding throughput with minimal coding losses

and moderate hardware requirements makes SEP a promising

1

Control

Luma

Chroma

(a) sequential

Control

Luma

Chroma

(b) parallel

Fig. 1. Decoding of syntax element partitions

candidate for adoption in future video compression standards.

In this paper we present an improved SEP scheme for

HEVC CABAC decoding. Section 2 describes the gen-

eral SEP functionality and the implementation of our SEP

scheme. Experimental results for decoding speed-up and bit-

stream overhead are presented in Section 3. Finally, the work

is concluded in Section 4 and an overview of future work is

provided.

2. SYNTAX ELEMENT PARTITIONING

Syntax element partitioning aims to divide a common bit-

stream in multiple parts that can be decoded in parallel. Fig-

ure 1 illustrates the effect by showing the decoding process

for three groups of syntax elements. In the example, there is

one for luma and one for chroma transform blocks, as well as

a control group that contains all remaining syntax elements,

e.g. for prediction modes, prediction units and loop filters.

In a common HEVC bitstream, all syntax elements are coded

consecutively in a single partition, which makes their sequen-

tial decoding necessary (a). However, if they are distributed

among different partitions, parallel decoding is possible (b).

Luma and chroma transform blocks are completely indepen-

dent from each other. Their decoding process can be started

as soon as the corresponding control block is decoded. At

the same time, the decoding of the next control block can be

initiated. This allows the overlapped decoding of all three

partitions. As a result, less time is required to decode all

partitions. The resulting video is the same as with the cor-

responding sequential bitstream as the same syntax elements

are only distributed in a different way.

2.1. Implementation

The proposed SEP scheme consists of eight partitions. First,

the common bitstream is divided into three parts according to

the example in Figure 1: control, luma and chroma. Each of

these partitions is further split into separate parts for context-

coded (cc) and bypass-coded (bc) bins. The latter are coded

without context models, which simplifies the decoding pro-

cess. In fact, a bc bin corresponds to a bit and does not need

to be encoded or decoded at all, if it is not interleaved with

cc bins in a common bitstream. This allows the highly par-

allel retrieval of bc bins as they only need to be read from

memory. Unfortunately, the Luma and Chroma CC Partitions

still contain significantly more bins than others. To achieve

a more balanced distribution, these partitions are divided into

two parts that contain the syntax elements for the significance

map and the coefficient level. All other bins are moved to the

Control CC Partition.

A further split into partitions for both chroma components

is not gainful as they use the same context models, thus mak-

ing their parallel decoding impossible. In contrast to the pro-

posal of Sze et al. we use a static partitioning scheme which

does not adapt to video characteristics. A dynamic scheme al-

lows a balanced distribution of bins to the partitions for all test

sequences. However, the Luma/Chroma Significance Map

Partitions most often contain the majority of bins for high bi-

trates, so the maximum speed-up is determined by these par-

titions. As they cannot be split further, a dynamic partitioning

would not lead to a higher speed-up. On the other hand, the

corresponding decoding hardware can be simplified for static

partitions. The decoding of low bitrate videos is most often

dominated by the size of the Control CC Partition and does

not benefit from this static partitioning. Nevertheless, their

throughput requirements are very low, so that real-time de-

coding is possible even without the use of SEP. An overview

of the proposed distribution among syntax element partitions

is provided in Table 1. It should be noted that some syntax

elements appear in more than one partition as they consist of

cc and bc bins. Also the same syntax elements exist for luma

and chroma transform blocks.

2.2. Bitstream Overhead

The ability to decode multiple bitstream partitions in parallel

comes at the cost of additional bitstream overhead. First, there

is a variable-sized length field for every partition (1-4 bytes)

to signal the starting position of the next partition. Addition-

ally, there is an arithmetic coding overhead for each of the five

cc partitions (2 bytes). Finally, byte alignment bits are added

to all partitions (3.5 bits on average). This adds 16-47 bytes

of additional bitstream size per slice. The relative overhead

depends on the bitrate of the video and can be significant for

very low bitrates. SEP can be disabled for these videos with a

single bit in the sequence parameter set or the slice header as

CABAC decoding is usually not critical in these cases.

3. EVALUATION

The HEVC reference software [9] has been modified to en-

code and decode bitstreams according to the proposed SEP

scheme. Furthermore, a cycle-accurate architectural model of

2

Partition Syntax elements

Control CC

end of slice segment flag, end of subset one bit, sao merge left flag, sao merge up flag, sao type idx luma,

sao type idx chroma, split cu flag, cu transquant bypass flag, cu skip flag, pred mode flag, part mode,

pcm flag, prev intra luma pred flag, intra chroma pred mode, rqt root cbf, merge flag, merge idx,

inter pred idc, ref idx l0, mvp l0 flag, ref idx l1, mvp l1 flag, split transform flag, cbf luma, cbf cb, cbf cr,

abs mvd greater0 flag, abs mvd greater1 flag, cu qp delta abs, cu chroma qp offset flag,

cu chroma qp offset idx, log2 res scale abs plus1, res scale sign flag, transform skip flag, explicit rdpcm flag,

explicit rdpcm dir flag, last sig coeff x prefix, last sig coeff y prefix, coded sub block flag

Control BC

sao type idx luma, sao type idx chroma, sao offset abs, sao offset sign, sao band position, sao eo class luma,

sao eo class chroma, part mode, mpm idx, rem intra luma pred mode, intra chroma pred mode, merge idx,

ref idx l0, ref idx l1, abs mvd minus2, mvd sign flag, cu qp delta abs, cu qp delta sign flag,

last sig coeff x suffix, last sig coeff y suffix

Luma Sig Map sig coeff flag

Luma Coeff Level coeff abs level greater1 flag, coeff abs level greater2 flag

Luma BC coeff sign flag, coeff abs level remaining

Chroma Sig Map sig coeff flag

Chroma Coeff Level coeff abs level greater1 flag, coeff abs level greater2 flag

Chroma BC coeff sign flag, coeff abs level remaining

Table 1. Syntax element partitions (CC: context-coded, BC: bypass-coded)

the corresponding hardware decoder has been implemented to

estimate the maximum speed-up that can be achieved with the

parallel decoding. To cover a wide range of video sequences,

the following JCT-VC test sets are used for evaluation.

• Common test conditions (class A-E) [10]

• Natural content coding conditions for HEVC range ex-

tensions (YCbCr 4:2:2, YCbCr 4:4:4, RGB 4:4:4) [11]

They are encoded in all-intra (AI), random-access (RA)

and low-delay (LD) modes with quantization parameters (QP)

from 12 up to 37 (common test set only specified for QP 22 to

37). In general, higher QPs result in lower bitrates and lower

video quality. The presented results are the geometric means

of all test sequences of a specific class.

The remaining evaluation section covers the speed-up and

bitstream overhead resulting from the implementation of the

proposed SEP scheme.

3.1. Speed-up

The parallel decoding of multiple syntax element partitions

reduces the processing time and results in a speed-up (see

Figure 2). The most significant improvements can be reached

for AI sequences. They require the highest bitrates as they

go without the effective inter-picture prediction. Smaller QPs

also raise the speed-ups as the resulting increased bitrates lead

to a more balanced distribution of bins among the different

partitions. For very low bitrate sequences, the Control CC

Partition contains most bins and determines the overall decod-

ing throughput. Furthermore, the fraction of bc bins grows

with decreasing QPs. This also improves the throughput as

they can be decoded in a highly parallel way.

For all high bitrate sequences from the common test set

(Figure 2 a), the Luma CC Partition is the decoding bottle-

neck. The maximum speed-up for a single sequence is 3.8×.

This is a significant improvement compared to the implemen-

tation of Sze et al. who reached up to 2.3× speed-up for high

bitrates. The sequences from the range extensions test set

(Figure 2 b) allow an even better distribution of bins among

the partitions due to the reduced chroma subsampling. 4:2:2

subsampling results in the best balanced partitions, while the

decoding of 4:4:4 sequences is dominated by the size of the

Chroma CC Partition. The result is a maximum speed-up of

5.4× for a single test sequence.

3.2. Bitstream Overhead

The partitioning of the bitstream for the purpose of parallel

decoding comes at the cost of additional bitstream overhead

(see Figure 3) as described in Section 2.2. In general, the

overhead depends strongly on the bitrate. This means in rela-

tive terms that AI videos add less bytes to the bitstream than

RA and LD videos. Also, lower QPs relatively add less bytes.

Except for the very low bitrate videos in LD mode or with

high QPs, the overhead is less than one per cent and therefore

negligible. This is especially true for the range extensions test

set. SEP can be disabled for videos where it results in a sig-

nificant overhead as their throughput requirements are very

low.

There is one abnormal value in the results, because a sin-

gle test sequence (DucksAndLegs) has 60× more overhead

than the other sequences from the RGB 4:4:4 class when

encoded in AI mode with QP 12. The reason is that there

are many zero bytes in one of the partitions. According to

the HEVC standard, an emulation prevention 3 byte is al-

3

QP22 QP27 QP32 QP37
1 x

2 x

3 x

4 x

5 x
sp

ee
d
-u

p

a) Common test set

class A class B class C

class D class E

all-intra random-access low-delay

QP12 QP17 QP22 QP27 QP32 QP37
1 x

2 x

3 x

4 x

5 x

sp
ee

d
-u

p

b) Range extensions test set

YCbCr 4:2:2 YCbCr 4:4:4 RGB 4:4:4

all-intra random-access low-delay

Fig. 2. Speed-up

QP22 QP27 QP32 QP37
0.001

0.01

0.1

1

10

o
v
er

h
ea

d
in

%

a) Common test set

class A class B class C

class D class E

all-intra random-access low-delay

QP12 QP17 QP22 QP27 QP32 QP37
0.001

0.01

0.1

1

10

o
v
er

h
ea

d
in

%
b) Range extensions test set

YCbCr 4:2:2 YCbCr 4:4:4 RGB 4:4:4

all-intra random-access low-delay

Fig. 3. Bitstream overhead

ways added after two consecutive zero bytes. This behavior

depends on the video characteristics and cannot be avoided.

However, the resulting overhead of the specific sequence is

still only 0.024% and therefore negligible.

4. CONCLUSIONS

We have presented a Syntax Element Partitioning scheme for

HEVC CABAC decoding. Bins of different syntax elements

are distributed among eight partitions to enable their paral-

lel decoding. As a result, a speed-up of up to 5.4 × can be

achieved with negligible bitstream overhead. The overhead

can exceed 5 % for very low bitrates, however, SEP can be

disabled for these sequences because the very low through-

put requirements even allow sequential real-time decoding.

The proposed optimization is most effective for high bitrates

where CABAC decoding throughput is most critical for the

overall decoding performance, thus making it a reasonable

choice for adoption in future video compression standards.

Future work will cover the implementation of the corre-

sponding hardware decoder for the proposed SEP scheme. An

additional speed-up is expected as the clustering of the com-

mon decoder will result in multiple faster decoders for the

different partitions due to smaller state machines and context

model memories. Furthermore, a higher level of customiza-

tion can be achieved due to the specialized operation of the

decoders for the fixed syntax element partitions. We expect

that the parallel CABAC hardware decoder will consume less

than 2× the hardware resources of a sequential decoder be-

cause only parts need to be replicated.

4

5. REFERENCES

[1] G. J. Sullivan, J. Ohm, W.-J. Han and T. Wiegand,

”Overview of the High Efficiency Video Coding (HEVC)

Standard”, IEEE Transactions on Circuits and Systems for

Video Technology, Volume 22, Issue 12, pp. 1649-1668,

December 2012

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra,

”Overview of the H.264/AVC Video Coding Standard”,

IEEE Transactions on Circuits and Systems for Video

Technology, Volume 13, Issue 7, pp. 560-576, July 2003

[3] V. Sze and M. Budagavi, ”High Throughput CABAC En-

tropy Coding in HEVC”, IEEE Transactions on Circuits

and Systems for Video Technology, Volume 22, Issue 12,

pp. 1778-1791, December 2012

[4] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare,

F. Henry, S. Pateux and T. Schierl, ”Parallel Scalabil-

ity and Efficiency of HEVC Parallelization Approaches”,

IEEE Transactions on Circuits and Systems for Video

Technology, Volume 22, Issue 12, pp. 1827-1838, Decem-

ber 2012

[5] Y.-H. Chen and V. Sze, ”A Deeply Pipelined CABAC

Decoder for HEVC Supporting Level 6.2 High-tier Ap-

plications”, IEEE Transactions on Circuits and Systems

for Video Technology, Volume 25, Issue 5, p. 856-868,

May 2015

[6] P.-C. Lin, T.-D. Chuang and L.-G. Chen, ”A Branch Se-

lection Multi-symbol High Throughput CABAC Decoder

Architecture for H.264/AVC”, IEEE International Sympo-

sium on Circuits and Systems (ISCAS 2009), pp. 365-368,

Taipei, Taiwan, May 2009

[7] C.-H. Kim and I.-C. Park, ”High Speed Decoding of

Context-based Adaptive Binary Arithmetic Codes using

Most Probable Symbol Prediction”, IEEE International

Symposium on Circuits and Systems (ISCAS 2006),

pp. 1707-1710, Island of Kos, Greece, May 2006

[8] V. Sze, A. P. Chandrakasan, ”A High Throughput CABAC

Algorithm using Syntax Element Partitioning”, IEEE In-

ternational Conference on Image Processing (ICIP 2009),

pp. 773-776, Cairo, Egypt, November 2009

[9] HEVC Test Model v16.7, https:

//hevc.hhi.fraunhofer.de/svn/

svn HEVCSoftware/

[10] F. Bossen, ”Common HM test conditions and soft-

ware reference configurations”, Joint Collaborative Team

on Video Coding (JCT-VC), Document JCTVC-L1100,

Geneva, Switzerland, January 2013

[11] C. Rosewarne, K. Sharman and D. Flynn, ”Common

test conditions and software reference configurations for

HEVC range extensions”, Joint Collaborative Team on

Video Coding (JCT-VC), Document JCTVC-P1006, San

Jose, CA, USA, January 2014

5

