Stromal cell contact induced PI3K signalling and APRIL induced NF-kB signalling synergistically maintain memory plasma cells by inducing IRF4 and preventing endoplasmic reticulum stress

> vorgelegt von M. Sc. Rebecca Cornelis

an der Fakultät III – Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr.-rer.-nat. -

Promotionsausschuss:

Vorsitzender: Prof. Dr. Jens Kurreck Gutachter: Prof. Dr. Hyun-Dong Chang Gutachterin: Prof. Dr. Anja Hauser Tag der wissenschaftlichen Aussprache: 25. August 2022

Berlin 2022

ABSTRAKT

Langlebige Gedächtnis-Plasmazellen überleben im Knochenmark in engem Kontakt mit mesenchymalen Stromazellen, bieten eine humorale Immunität gegen längst verschwundene Krankheitserreger und bilden somit die Grundlage für ein schützendes humorales Gedächtnis. Gedächtnisplasmazellen, die pathogene (Auto-)Antikörper sezernieren, stellen eine therapeutische Herausforderung für die Behandlung von chronisch-rheumatischen Entzündungen dar, da sie gegenüber herkömmlichen immunsuppressiven Therapien refraktär sind. Die molekularen Mechanismen, die es diesen hochspezialisierten und einzigartigen Zellen ermöglichen, Jahrzehnte zu überleben, sind jedoch noch unklar. Ein detaillierteres Verständnis kann zum Impfstoffdesign sowie zur Behandlung von Antikörper-vermittelten Krankheiten beitragen.

Anhand einer *In-vitro*-Nische, die die Umgebung des Knochenmarks nachahmt, zeigen wir, dass der direkte Kontakt zu Stromazellen und die Aktivierung des BCMA-Rezeptors, z. B. durch seinen Liganden APRIL, notwendig und ausreichend sind, um den Caspase-vermittelten Tod von Plasmazellen zu verhindern. Stromalzellkontakt und APRIL verhindern synergistisch die Aktivierung der mit dem endoplasmatischen Retikulum assoziierten Caspase 12 und regulieren den Master-Transkriptionsfaktor IRF4 hoch. IRF4 reguliert verschiedene ER-assoziierte Gene, die die Proteinproduktion, -faltung und -glykosylierung kontrollieren, wie durch Einzelzell-RNA-Sequenzierung gezeigt wurde. Darüber hinaus behält IRF4 die Plasmazellidentität bei und kontrolliert die Expression des anti-apoptotischen Proteins BCL2.

BCMA induziert überlebensfördernde Signalwege durch Aktivierung des NF-κB-Signalwegs. Die Persistenz von Plasmazellen erfordert zusätzlich eine durch Zellkontakt induzierte Pl3K-Signalgebung. Wir zeigen weiter, dass der siRNA-vermittelte Knock-down von FoxO1/3 Plasmazellen in Abwesenheit von Stromazellen am Leben erhält. Es wurden nur geringfügige Transkriptionsunterschiede nach dem FoxO1/3-Knock-down festgestellt, und die aktive Caspasen 3 und 7 wurden weiterhin detektiert. Unerwarteterweise wurde das anti-apoptotische Protein MCL1 durch FoxO1/3-Knockdown verringert.

Diese Ergebnisse identifizieren PI3K/FoxO1/3 als einen neuen, lebenswichtigen Signalweg und als potenzielles therapeutisches Ziel für die Ablation pathogener langlebiger Plasmazellen bei rheumatischen Erkrankungen.

ABSTRACT

Long-lived memory plasma cells are maintained in the bone marrow in close contact to mesenchymal stromal cells, and provide humoral immunity against long gone pathogens, thus constituting the basis for protective humoral memory. Memory plasma cells secreting pathogenic (auto-) antibodies pose a therapeutic challenge for the treatment of chronic rheumatic inflammation as they are refractory to conventional immunosuppressive therapies. However, the molecular mechanisms enabling these highly specialised and unique cells to survive for up to decades remain unclear. More detailed understanding may contribute to vaccine design as well as treatment of antibody-mediated diseases.

Using an *in vitro* niche mimicking the bone marrow environment, we demonstrate that direct contact to stromal cells and activation of the BCMA receptor, e.g. by its ligand APRIL, are necessary and sufficient to prevent caspase-mediated death of plasma cells. Stromal cell contact and APRIL synergistically prevent activation of the endoplasmic reticulum associated caspase 12 and upregulate the master transcription factor IRF4. IRF4 regulates various ER associated genes controlling protein production, folding and glycosylation as revealed by single cell RNA sequencing. Moreover, IRF4 maintains plasma cell identity and controls the expression of the anti-apoptotic protein BCL2.

BCMA induces pro-survival signalling by activating the NF-κB pathway. Persistence of plasma cells additionally requires cell contact induced PI3K signalling. We further show that siRNA mediated knock-down of PI3K downstream targets FoxO1/3 maintains plasma cells in absence of stromal cells. Only minor transcriptional differences after FoxO1/3 knock-down were detected, and active levels of caspases 3 and 7 remained high. Unexpectedly, the anti-apoptotic protein MCL1 was decreased by FoxO1/3 knock-down.

These results identify PI3K/FoxO1/3 as a novel, vital signalling pathway and as a potential therapeutic target for the ablation of pathogenic long-lived plasma cells in rheumatic diseases.

List of Abbreviations

Apaf-1 Apoptotic Protease Activation Factor-1 APRIL A Proliferation-Inducing Ligand ATF6 Activating Transcription Factor ATG Autophagy-Related Genes BAD BCL2 Associated Agonist of Cell Death BAFF **B** Cell Activating Factor BAK BCL2-Antagonist/Killer 1 RAX Bcl2-Associated X Protein BCI 2 B Cell Lymphoma 2 BCL6 B-Cell Lymphoma 6 Protein BCI -w Bcl-2-Like Protein 2 BCL-xL B-Cell Lymphoma Extra-Large BCMA **B** Cell Maturation Antigen BCR **B** Cell Receptor BIM Bcl-2-Like Protein 11 BiP Binding Immunoglobulin Protein BLIMP-1 B lymphocyte-induced maturation protein-1 CCCP Carbonylcyanid-m-chlorphenylhydrazon CD Cluster of Differentiation CXCL12 C-X-C Chemokine Receptor Type 12 CXCR4 C-X-C Chemokine Receptor Type 4 DAPI 4',6-Diamidino-2-phenylindol EDTA Ethylenediaminetetraacetic Acid EF Extrafollicular Foci $eIF2\alpha$ Eukaryotic Initiation Factor 2a ELISA Enzyme-linked Immunosorbent Assay ER Endoplasmic Reticulum FAK **Focal Adhesion Kinase** FO Follicular

FoxO1 Forkhead-Box-Protein O1 FoxO3 Forkhead-Box-Protein O3 GC **Germinal Centre** GFP Green Fluorescent Protein GLUT1 Glucose Transporter 1 HLA-DR Human Leukocyte Antigen - DR Isotype ICAM-1 Intercellular Adhesion Molecule 1 IFA Incomplete Freund's Adjuvants lg Immunoglobulin II -6 Interleukin 6 IRE1 **Inositol-Requiring Protein 1** IRF4 Interferon regulatory factor 4 JNK c-Jun N-terminal Kinases LFA-1 Lymphocyte Function-Associated Antigen 1 LPS Lipopolysaccharide MACS Magnetic Cell Sorting MCL1 Myeloid Cell Leukemia 1 MHCII Major histocompatibility complex Mitf Microphthalmia-Associated Transcription Factor MOMP Mitochondrial Outer Membrane Permeabilisation mRNA Messenger Ribonucleic Acid mTOR Mammalian Target Of Rapamycin ΜZ Marginal Zone NF-κB Nuclear Factor kappa-Light-Chain-enhancer of Activated B Cells NOXA Phorbol-12-myristate-13-acetate-induced protein 1 NP-CGG 4-Hydroxy-3-Nitropheylacetyl Hapten Coupled Chicken Gamma Globulin PAX5 Paired Box gene 5 PDK1 Phosphoinositide Dependent Kinase 1

PERK PKR-Like Endoplasmic Reticulum Kinase PI3K Phosphoinositide 3-Kinases PIP2 Phosphatidylinositol (4,5)-bisphosphate PUMA P53 Upregulated Modulator of Apoptosis ROS Reactive Oxygen Species siRNA small interfering RNA TCR T Cell Receptor TMRM Tetramethylrhodamin-Methylester t-SNE t-distributed stochastic neighbour embedding

TNFR **Tumor Necrosis Factor Receptor** TRAF **TNF Receptor Associated Factor** UPR Unfolded Protein Response VCAM-1 Vascular Cell Adhesion Molecule 1 VLA-4 Very Late Antigen 4 WT wild type XBP-1 X-Box Binding Protein 1 ZBTB20 Zinc Finger And BTB Domain-Containing Protein 20

Acknowledgment

There are many people that I would like to acknowledge for their support and guidance throughout my doctoral thesis.

This project would have not been possible without Prof. Dr. Andreas Radbruch. I'm very grateful for the possibility to work in his group at DRFZ and for helpful, challenging, and interesting discussions. He allowed me to pursue my ideas, make my own decisions and learn from my mistakes which helped me grow as a scientist and person.

I'd also like to express my deepest thanks to Hyun-Dong. My scientific career started in 10th grade for a two-week internship in the DRFZ and I would not have chosen this path or worked on this project if it wasn't for him. Thank you for always offering guidance, the fun and welcoming work environment you have created, and moral support.

I cannot begin to express my thanks to Ute, for all her help and support, for always being patient and her positive spirit.

I would also like to extent my sincere thanks to Anja Hauser for the co-supervision of this thesis.

I'd like to acknowledge the help of the Lab managers and DRFZ facilities for providing reagents and devices for experiments. Furthermore, I'd like to thank the IRTG of the TRR130 for their support and opportunities to expand my skill sets.

A special thanks to former and current colleagues who have supported my project during the years: Richard for welcoming me in the group and helping me out in the beginning, Gitta and Gabriella for their help with single cell sequencing, Freddy and Pawel for the work and effort they put into data analysis, Marta and Padma for discussions and fun times in and outside of the lab. Darya, Manja, Lena and Lara for all their help and fun times in the lab. I would like to thank Valerie and Laura for their encouragement, scientific input, and their good company. Special thanks go to my PC buddy Antonia and my T cell Brudi Lukas, I am very grateful for your friendship and endless support.

Especially, I would like to thank my friends and my family who have always supported me. Thank to my parents, I would not be where I am without you. Thank you for supporting my academic training, all your patience and for believing in me. Thank you to my fantastic roommate Judith, and to my friends. I also want to express my gratitude to Gijs for always supporting me, cheering me up and his endless positive energy.

In loving memory of Paula.

Table of Content

1	INTE	RODUCTION	8
	1.1	THE IMMUNE SYSTEM	8
	1.2	IMMUNOLOGICAL MEMORY	8
	1.3	PLASMA CELLS	9
	1.3.1	.1 PLASMA CELL GENERATION	9
	1.3.2	2 PLASMA CELL TRANSCRIPTION FACTORS	11
	1.4	THE PLASMA CELL NICHE	12
	1.4.1		
	1.4.2	2 CELL-CELL-CONTACT	13
	1.5	SOURCES FOR CELL STRESS IN PLASMA CELLS	15
	1.5.1	.1 METABOLIC STRESS	16
	1.5.2	2 AUTOPHAGY	16
	1.5.3	.3 PROTEASOME STRESS	17
	1.5.4	4 ENDOPLASMIC RETICULUM STRESS	17
	1.5.8	5 APOPTOSIS	18
	1.6	RESEARCH AIM	21
2	MAT	TERIAL AND METHODS	22
	2.1	MATERIAL	22
	2.1.1	.1 BUFFERS AND MEDIA	22
	2.1.2	.2 REAGENTS; CHEMICALS, RECOMBINANT PROTEINS	22
	2.1.3	.3 STAINING KITS	23
	2.1.4	4 ANTIBODIES	23
	2.1.5	5 MAGNETIC BEADS	24
	2.1.6	.6 OLIGONUCLEOTIDES	24
	2.1.7	7 PRIMERS	24
	2.1.8	.8 KITS	25
	2.1.9	.9 CONSUMABLES	25
	2.1.1	.10 TECHNICAL EQUIPMENT	25
	2.1.1	.11 SOFTWARE	25
	2.2	METHODS	26
	2.2.2	.1 MICE	
	2.2.2	.2 CELL CULTURE	27
	2.2.3	.3 FLOW CYTOMETRY	29
	2.2.4	4 SINGLE CELL RNA SEQUENCING	31
	2.2.5	.5 STATISTICAL ANALYSIS	32

3	R	RESULT	⁻ S	3
	3.1		and ST2 cell contact prevent cell death of <i>ex vivo</i> memory plasma cells by ing specific caspases	33
	3.2		cell contact prevents formation of cellular ROS in <i>ex vivo</i> memory plasma cells	
	3.3	Integ	grin β 1 is important for <i>ex vivo</i> memory plasma cell survival <i>in vitro</i>	;7
	3.4		1/3 downregulation rescues <i>ex vivo</i> memory plasma cell survival <i>in vitro</i> in the ace of stromal cells	39
	3	.4.1	siRNA induced FoxO1/3 knock-down does not induce transcriptional changes in <i>ex vivo</i> memory plasma cells	1
	3	.4.2	FoxO1 and FoxO3 modulated MCL1 expression in <i>ex vivo</i> memory plasma cells	4
	3.5		is synergistically upregulated by APRIL and ST2 cells and essential for <i>ex vivo</i> bry plasma cell survival	6
	;	3.5.1	IRF4 knock-down downregulated BCL2 expression in <i>ex vivo</i> memory plasma cells	17
	3	.5.2	IRF4 regulates genes defining the plasma cell identity and ER-associated genes in <i>ex vivo</i> memory plasma cells	8
4	D	ISCUS	SION	51
	4.1		blasmic reticulum stress is the main driver of caspase activation and cell death vivo bone marrow memory plasma cells5	52
	4.2		1 mediated cell-cell contact to ST2 stromal cells is important for <i>ex vivo</i> memory a cell survival	
	4.3		ell contact induced downregulation of FoxO1/3 is essential for <i>ex vivo</i> memory a cell survival and modulates MCL1 expression	
	4.4		is induced by ST2 cells and APRIL and regulates <i>ex vivo</i> memory plasma cell al by maintaining a functional endoplasmic reticulum and BCL2 expression5	8
5	С	ONCLU	JSION	51
6	R	REFERE	ENCES	52
A	PPE	NDIX	6	58

1 INTRODUCTION

1.1 THE IMMUNE SYSTEM

The immune system is a complex network of cells that can differentiate "self" from "non-self" and thereby defend the body against infections caused by bacteria, fungi, parasites, and virus particles. It monitors the entire body for the emergence of tumour cells or infected cells while keeping a delicate balance between being protective and pathogenic. A misbalance can result either in infections or autoimmune diseases. The vertebrate immune system has been traditionally separated into the innate and the adaptive arms. From an evolutionary perspective, the innate arm of the immune system is older and composed of physical barriers such as the skin, small molecules, and cells. The adaptive immune system is a more recent evolutionarily development that is specific for vertebrates. B cells and T cells develop in the bone marrow or thymus respectively and represent the cellular part of the adaptive immune system. Contrary to the innate immune system, the adaptive immune system can deploy from an enormous variety of receptors making it a powerful tool. This is possible due to somatic recombination of BCR (B cell receptor) and TCR (T cell receptor) genes producing high numbers of unique receptors¹.

1.2 IMMUNOLOGICAL MEMORY

Immunological memory is a hallmark of the adaptive immune system and provides the body with long-term protection against reinfection. It describes the ability of immune cells to memorise previously encountered antigen even after an infection is cleared. Memory T and B cells are maintained as quiescent circulating or tissue-resident cells and can be found in blood, lymph or organs like skin, spleen, or bone marrow. They possess TCRs and BCRs that recognise their antigen more efficiently upon reencounter, allowing them to rapidly clear the pathogen².

Although plasma cells were initially thought to be exclusively short-lived, the existence of long-lived memory plasma cells as important components of immune memory is now widely accepted².

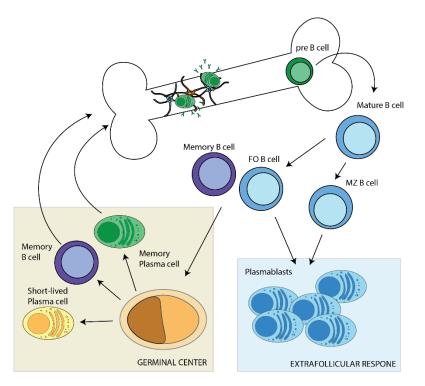
Memory plasma cells are unable to recirculate and can be found in various organs like the spleen, lymphoid tissues, and the bone marrow. They are quiescent in terms of proliferation and secret high-affinity antibodies after the infection is cleared providing the body with humoral memory².

⁸

The protective mechanism of vaccines relies on the formation of immunological memory, especially of memory plasma cells. Therefore, the success of vaccination is predominantly defined by the long-term detection of specific antibodies in the blood. However, the immunological memory can also play a detrimental role by facilitating pathogenesis in the context of autoimmune diseases. In patients suffering from rheumatoid arthritis or systemic lupus erythematosus, cells of the immunological memory plasma cells can harm the tissue as they continuously secrete antibodies directed against self-antigens that result in inflammation and are refractory to most treatments. Depletion of plasma cells result in decreased disease activity in systemic lupus erythematosus patients and other antibody-mediated autoimmune diseases^{3,4}. However, these treatments affect both pathogenic and protective plasma cells making patients vulnerable towards infections after treatment².

Thus, a more profound understanding of the biology of memory plasma cells is fundamental for the design of efficient vaccines and the treatment of autoimmune diseases.

1.3 PLASMA CELLS


1.3.1 PLASMA CELL GENERATION

Plasma cells can be generated in either T-dependent or T-independent reactions from MZ (marginal zone), FO (follicular) and memory B cells. However, most of them are short-lived and it remains elusive if all of them have the potential to become long-lived^{5,6}. Most memory plasma cells are derived from a GC response which is evident by their highly mutated antibodies^{7,8}. B cells can respond to antigen recognition either by massive proliferation in an extrafollicular response yielding low affinity antibodies produced by plasmablasts or they take part in a GC response, where they undergo rounds of somatic hypermutations and affinity maturation, resulting in plasma cells producing high affinity antibodies. These plasma cells are generated late in an immune response and mainly contribute to the pool of memory plasma cells⁸ (Figure 1). The transformation from B cell to plasma cell is accompanied by radical changes in morphology and cell biology as the ER (endoplasmic reticulum) massively expands transforming the cell into an antibody factory. This conversion is initiated by the activation of the plasma cell-specific transcriptional program of plasma cells defined by BLIMP-1 (B lymphocyte-induced maturation protein-1), IRF4 (Interferon regulatory

factor 4) and XBP-1 (X-box binding protein 1) and the suppression of the B cell transcriptional program PAX5 (Paired box gene 5), BCL6 (B-cell lymphoma 6) and Mitf (Microphthalmia-associated transcription factor)^{9,10}. Plasma cells can be identified by expression of the cell surface marker CD138, which is upregulated already at the plasmablast stage. Additionally, plasma cells lose the expression of the CD45 isoform B220 and HLA-DR (Human Leukocyte Antigen – DR isotype). Contrary to B cells, plasma cells express lower levels of surface IgA and IgM, and IgG is only expressed in secreted form¹⁰. CD19 is differentially expressed in plasma cells and its loss is associated with longevity¹¹.

Plasma cells exiting the GC express the chemokine receptor CXCR4 (C-X-C chemokine receptor type 4) and migrate through the body following a CXCL12 (C-X-C motif chemokine 12) gradient¹². CXCL12 is highly expressed in the bone marrow by CXCL12⁺-abundant reticular stromal cells. Memory plasma cells can be found in numerous organs, including the spleen, gut-associated lymphoid organs, lymph nodes and inflamed tissues, but the majority resides in the bone marrow^{11,13–15}. Once they have entered the bone marrow, they find a survival niche and lose their migratory capacity¹².

Plasma cells display a special and unique cell biology among immune cells. They represent the end stage of differentiation and are maintained for up to decades. Although they are quiescent in terms of proliferation, they produce enormous amounts of antibodies with one cell secreting antibodies in the range of 10⁸ molecules/hour¹⁶. Transcriptomes comparing B cells and plasma cells have revealed that unlike other long-lived cells, plasma cells are not metabolically quiescent but very active^{17–19}. How does a plasma cell persist so long while being constantly active? Is the survival of plasma cells an intrinsic property or is every plasma cell able to become a memory plasma cell if it finds the right niche?²⁰

Figure 1: Generation of plasma cells.

Mature naïve B cells originate from pre-B cells in the bone marrow. They can be separated into MZ (marginal zone) B cells giving rise to short-lived plasmablasts after antigen encounter in an extrafollicular response or FO (follicular) B cell capable of initiating a germinal centre response producing high-affinity plasma cells, and memory B cells. Memory B cells can upon reencounter of antigen enter a GC (Germinal centre) response. Memory plasma cells and memory B cells can migrate to the bone marrow where they survive in dedicated niches.

1.3.2 PLASMA CELL TRANSCRIPTION FACTORS

Plasma cell identity is orchestrated by the three transcription factors BLIMP-1, XBP-1 and IRF4⁹. They initiate the differentiation of B cells into plasmablast/plasma cells, yielding cells that are fundamentally different from their precursor B cells regarding morphology, metabolism, and mRNA (messenger ribonucleic acid) transcription. The changes initiated by these transcription factors are multifaceted and while some downstream targets are overlapping, they exert distinct functions²¹.

1.3.2.1 BLIMP-1

BLIMP-1 is crucial for the generation of plasma cells but dispensable for the long-term survival of memory plasma cells. While BLIMP-1 does not interfere with cell cycle regulation or known survival mediators of plasma cells, it is associated with metabolism and immunoglobulin secretion. BLMP-1 was demonstrated to control the UPR (unfolded protein response), a part of the ER stress response, and BLIMP-1-deficient plasma cells downregulate the amino acid transporter CD98 and decrease mTOR (mammalian target of rapamycin) activity^{22,23}.

1.3.2.2 XBP-1

XBP-1 is a direct target of BLIMP-1. Mice deficient in XBP-1 maintain memory plasma cell numbers comparable to wild type controls. However, the memory plasma cells display severe functional defects regarding their immunoglobulin production. The observed phenotype is comparable to that of BLIMP-1-deficient mice, but transcriptome analysis revealed that the genetic targets of XBP-1 and BLIMP-1 have only minimal overlap. Contrary to BLIMP-1, XBP-1 controls very specific functions of the UPR, which mainly regulate protein folding and targeting to the ER. XBP-1 directly regulates all *lgh* transcripts, whereas BLIMP-1 deficiency only decreased *lghm* and *lghg3* transcripts^{22,24}.

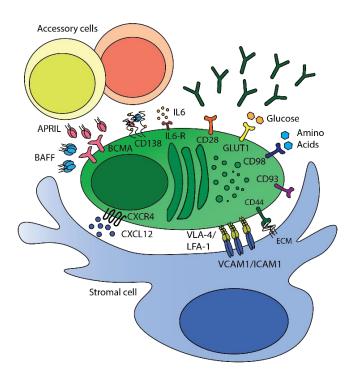
1.3.2.3 IRF4

IRF4 is the master transcription factor of plasma cells that controls their differentiation as well as long-term survival^{22,25}. Deletion of IRF4 in plasma cells results in rapid cell death, making it challenging to decipher how IRF4 regulates plasma cell survival. Using a mouse model with inducible IRF4 deletion and BCL2 (B cell lymphoma 2) overexpression, Low et al elucidated IRF4-dependent survival mechanisms in plasma cells: IRF4-induced cell death was prevented using caspase-inhibitors indicating that IRF4 signalling prevents the activation of caspases. The authors further described that IRF4 impacts mitochondrial homeostasis and deletion of IRF4 results in increased levels of ROS (reactive oxygen species) as well as a higher metabolic activity. Additionally, loss of IRF4 downregulates BLIMP-1, and thus XBP-1, and thereby impacts ER organisation^{21,26}. IRF4 has been shown to control the expression of CD98 and GLUT1 (Glucose transporter 1) in T cells²⁷.

1.4 THE PLASMA CELL NICHE

Plasma cells in the bone marrow of mice individually dock onto non-proliferating VCAM-1⁺ (vascular cell adhesion molecule 1) CXCL12⁺ mesenchymal bone marrow stromal cells²⁸. The role of stromal cells in memory cell maintenance remained elusive for a long time as they were merely regarded as physical organisers of the niche. The niche microenvironment additionally contains a variety of cells of hematopoietic origin that provide plasma cells with diverse and mainly redundant pro-survival signals, from cell-cell contact to soluble secreted cytokines (Figure 2). The individual micro-environment of plasma cells underlies some heterogeneity and dynamic as the vicinity to blood vessels and the composition of accessory cells differs²⁹. This might explain

the redundancy of many extrinsic factors for plasma cell survival. Until now, only two factors have been described as essential and sufficient for memory plasma cell survival: the cytokine APRIL (A proliferation-inducing ligand) and cell-cell contact³⁰.


1.4.1 SOLUBLE SURVIVAL FACTORS

In vitro plasma cell survival can be readily enhanced by the soluble factors IL-6 (Interleukin 6), CXCL12, BAFF (B-cell activating factor) and APRIL^{31,32}. However, IL-6 and CXCL12 are not essential for memory plasma cell maintenance in vivo^{33,34}. APRILdeficient mice develop a normal immune system and comparable levels of serum immunoglobulins indicating that APRIL is dispensable for memory plasma cell survival³⁵. However, another study showed a clear decrease in survival of plasmablasts homing to the bone marrow in APRIL but not BAFF-deficient mice³⁶. Additionally, a recently identified APRIL-deficient patient displayed impaired immunoglobulin secretion suggesting that APRIL is essential for memory plasma cell maintenance³⁷. The importance of APRIL signalling was unambiguously proven by deletion of the APRIL/BAFF receptor BCMA (B-cell maturation antigen) ablating almost all plasma cells in the bone marrow³⁸. BCMA is a member of the TNFR (tumour necrosis factor receptor) superfamily and its activation results in strong pro-survival signalling. BCMA associates with TRAF1 (TNF receptor associated factor), TRAF2 and TRAF3 and activates Elk-1, JNK (c-Jun N-terminal kinases) and NF-KB (nuclear factor kappa-light-chain-enhancer of activated B cells)³⁹. Atacicept, a recombinant fusion protein binding APRIL and BAFF, is effectively used in autoimmune diseases to target plasma cells, but initial studies using atacicept had to be halted after patients developed serious infections and severe reduction of serum antibodies, highlighting the significance of this signalling pathway⁴⁰. The plasma cell surface marker CD138 improves survival by amplifying IL-6 and APRIL signalling⁴¹.

1.4.2 CELL-CELL-CONTACT

Receptors involved in cell-cell interactions, such as CD44^{31,42}, CD28⁴³ and CD93⁴⁴ were reported as beneficial or essential for memory plasma cell maturation and long-term persistence *in vivo* and *in vitro*. These receptors enable plasma cells to interact with various accessory cells in their microenvironment. *In vitro* studies using stromal cell supernatant to enhance plasma cell survival revealed the impact of stromal cells on plasma cell maintenance³¹. More precisely two factors produced by stromal cells, fibronectin and the YWHAZ protein, were identified that maintained plasma cells

together with APRIL *in vitro*⁴⁵. Additionally, a study showed that extracellular vesicles produced by mesenchymal stromal cells enabled plasma cell survival *in vitro* possibly by activating integrin signalling⁴⁶. Inhibiting the binding of integrins VLA-4 (very late antigen 4, α 4 β 1) and LFA-1 (Lymphocyte function-associated antigen 1, α L β 2) to their respective partners VCAM-1 and ICAM-1 (Intercellular Adhesion Molecule 1) on stromal cells ablated plasma cells from the bone marrow indicating that integrin signalling is an essential survival signal⁴⁷. Furthermore, mice deficient in CD37, a tetraspanin that activates PI3K (Phosphoinositide 3-kinases) signalling by mediating VLA-4 clustering, also displayed decreased memory plasma cell survival⁴⁸. A study in mice infected with Salmonella suggested that the interaction between laminin β 1 and a so far unknown integrin binding partner is essential in the maintenance of lgG⁺ plasma cells in the bone marrow⁴⁹.

Figure 2: The plasma cell microenvironment in the bone marrow.

Memory plasma cells survive in niches organised by bone marrow stromal cells. They receive a variety of survival signals in the form of cell-cell contacts and soluble cytokines as well as nutrients enabling their persistence and continuous antibody secretion. Modified from⁵⁰.

1.4.2.1 INTEGRIN SIGNALLING via PI3K-AKT-FOXO

Integrin signalling is essential for memory plasma cell survival and activates the PI3K signalling pathway via the FAK (focal adhesion kinase)⁵¹. Integrins are heterodimers consisting of a α and β subunit and presented on the cell surface in different ligand affinity conformations: low, intermediate, and high. CXCL12:CXCR4 binding and signalling can activate integrin VLA-4³⁴. VLA-4 (α 4 β 1) interacts with VCAM-1 and can

activate PI3K-AKT signalling. The tetraspanin CD37 was shown to specifically colocalise with VLA-4 but not LFA-1 and to enable the phosphorylation and activation of AKT resulting in survival of plasma cells⁴⁸. The serine-threonine kinase AKT is activated by PI3K, a family of kinases that phosphorylate the hydroxyl group on the third position of the inositol ring of phosphatidylinositol (PIP2 (phosphatidylinositol (4,5)-bisphosphate) to PIP3). AKT binds PIP3 on the cell membrane and can subsequently be phosphorylated and activated by PDK1 (phosphoinositide dependent kinase 1) and mTORC2 (mammalian target of rapamycin complex 2). Active AKT regulates cell cycle, cell metabolism and overall cell survival by activating or deactivating downstream targets through phosphorylation. For example, AKT can promote cell survival by directly phosphorylating and deactivating the pro-apoptotic protein BAD (BCL2 associated agonist of cell death) and by activating the NF-κB pathway. Furthermore, AKT regulates cell metabolism by activating mTOR and deactivating glycogen synthase kinase 3. A substantial part of pro-survival signalling of AKT results from phosphorylation of FoxO1 (Forkhead-Box-Protein O1) and FoxO3 (Forkhead-Box-Protein O3) leading to their inactivation and degradation^{52,53}.

FOXO transcription factors were first identified in the nematode *Caenorhabditis elegans*. Mammals express four different FOXO proteins: FoxO1, FoxO3, FoxO4 and FoxO6. FOXO proteins have numerous downstream targets involved in cell cycle regulation, cell metabolism, autophagy, cell stress and survival⁵³. They positively influence the pro-apoptotic proteins BIM (Bcl-2-like protein 11) and PUMA (P53 Upregulated Modulator of Apoptosis) and can initiate the intrinsic apoptotic pathway^{54,55}. Therefore, FOXO proteins are tightly regulated by a variety of post-translational modifications including phosphorylation, acetylation, methylation, or ubiquitination. These modifications control their intracellular localisation and activation status and can result in their degradation. For example, phosphorylation by AKT promotes nuclear export and ultimately degradation of FOXOs whereas JNK phosphorylates FoxO3 causing nuclear translocation and activation of FoxO3 and initiation of apoptosis^{56,57}.

1.5 SOURCES FOR CELL STRESS IN PLASMA CELLS

Plasma cells, being professional secretors, experience high level of cell stress. Synthesis, folding and trafficking of proteins goes hand in hand with metabolic stress as high amounts of amino acids and energy are consumed. Additionally, the cells experience endoplasmic reticulum stress in form of the UPR, proteasome stress as well as oxidative stress (Figure 3). Therefore, memory plasma cells must find ways to cope with the burden of extensive protein production. Surprisingly, when comparing short-lived PC and memory PC on a transcriptional level, no clear differences in their biology were found¹⁹. Instead, the ability to cope with cell stress appears to distinguish memory and short-lived plasma cells^{19,58}.

1.5.1 METABOLIC STRESS

Memory plasma cells and short-lived plasma cells can be divided according to the expression of the cell surface receptor GLUT1 and correspondingly, the amount of imported glucose. Memory plasma cells import more glucose that is primarily used for the glycosylation of antibodies. However, under metabolic stress memory plasma cells but not short-lived plasma cells can also use glucose to generate pyruvate⁵⁹. Additionally, plasma cells express high amounts of the amino acid transporter CD98, as they need amino acids to produce immunoglobulins¹⁹. The intracellular domain of CD98 does not only form complexes with amino acid transporters, but has also been reported to support integrin signalling⁶⁰.

1.5.2 AUTOPHAGY

Autophagy is a stress-induced mechanism to recycle damaged and old intracellular organs, like mitochondria or the endoplasmic reticulum, to generate energy. The group of ATG (autophagy-related genes) control this process and ATG5 was reported to be essential for the survival of memory plasma cells⁶¹. Using ATG5-deficient mice, Pengo et al described that plasma cells lacking this key regulator of autophagy displayed an enlarged ER, amplified ER stress signalling and higher expression of BLIMP-1, ultimately resulting in increased immunoglobulin secretion and cell death. In plasma cells, autophagy is essential to preserve energy in form of ATP by negatively regulating antibody synthesis⁶¹. Notably, in plasma cells autophagy is focused on recycling of the ER and not of mitochondria or ribosomes. Stromal cells may be regulators of autophagy in plasma cells since stromal cell derived factors fibronectin1 and YWHAZ protein were shown to downregulate mTORC1 (mammalian target of rapamycin complex 1)⁴⁵. mTORC1 controls protein translation and is a cellular sensor that gives feedback when adequate amounts of energy are present to allow the production of proteins, thereby negatively regulating autophagy.

1.5.3 PROTEASOME STRESS

In addition to autophagy, cells utilise the ubiquitin-proteasome system to recycle unwanted short-lived and misfolded proteins. Proteins are tagged for degradation by a chain of small ubiquitin proteins that are abundant in the cell cytoplasm. Subsequently, ubiquitinylated proteins are directed to the proteasome, a protease complex dependent on ATP. The proteasome degrades proteins into small peptide fragments. Hence, recycling of misfolded and unwanted proteins generates amino acids for the production of new proteins. In activated B cells, the capacity to degrade proteins using the ubiquitin-proteasome system decreases, contrary to the need of the cell to cope with accumulation of misfolded proteins due to increased protein production. Thus, plasma cells are extremely vulnerable towards proteasome inhibition. The proteasome inhibitor bortezomib efficiently depletes all plasma cells *in vivo*^{3,62}.

1.5.4 ENDOPLASMIC RETICULUM STRESS

The endoplasmic reticulum serves many important functions in the cell, such as protein production, folding and transport. Additionally, it is the main calcium storage of the cell. When continuous, high levels of protein synthesis exceed the capacity of the ER to correctly fold and process proteins, the ER stress response is activated. More precisely, three independent signalling pathways controlled by ER stress sensors can be induced that are summarised as the UPR: IRE1 (inositol-requiring protein 1), PERK (PKR-like endoplasmic reticulum kinase), and ATF6 (activating transcription factor 6). Under normal conditions, these sensors are bound to chaperones, predominantly BiP (Binding immunoglobulin protein). When misfolded proteins accumulate, they bind to the chaperones, releasing and thereby activating the ER stress sensors. Upon activation, the stress sensors can either promote cell survival or cell death, depending on the intensity and duration of the ER stress⁶³.

While plasma cells express phosphorylated eIF2 α (eukaryotic initiation factor 2 α), the downstream target of PERK, PERK-deficient mice still developed memory plasma cells in comparable numbers to wild type animals, suggesting that PERK signalling is not essential for plasma cell maintenance^{19,64}. ATF6 is detectable very early in plasmablasts after LPS (lipopolysaccharide) stimulation⁶⁵. However, ATF6-deficient and WT (wild type) mice have comparable antibody responses *in vitro* and *in vivo*, indicating that ATF6 is also dispensable for memory plasma cell function and survival⁶⁶. Although the arms of the UPR individually are not essential in memory

17

plasma cell survival, the loss of XBP-1 severely diminishes antibody secretion²⁴. The transcription factor XBP-1, important for the generation of plasma cells, is specifically spliced following IRE1 activation. XBP-1's genetic targets reduce ER stress by increasing the capacity of the ER to correctly fold new proteins and degrade misfolded proteins. When cells experience prolonged ER stress, the IRE1-XBP-1 pathways can induce pro-apoptotic signalling. IRE1 associates with TRAF2, which can result in the induction of JNK and in the activation of caspase 12 and, ultimately in ER-stress induced cell death^{67,68}.

ATF6 and XBP-1 are both regulated by the plasma cell master transcription factor BLIMP-1, and ATF6 additionally promotes transcription of XBP-1^{22,69}. Considering that the UPR is upregulated prior to immunoglobulin synthesis, it does not represent a stress response but a general feature of memory plasma cell biology⁶³.

1.5.5 APOPTOSIS

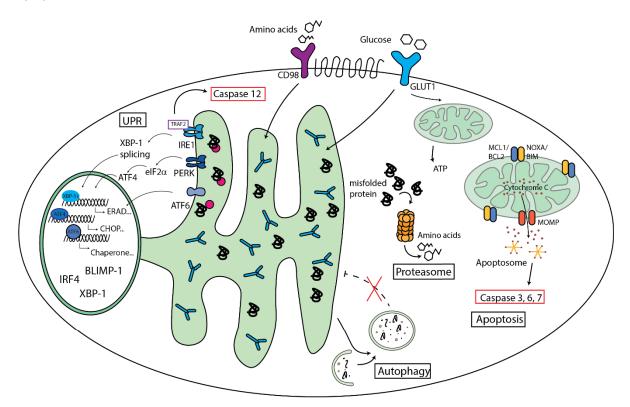
Apoptosis, or programmed cell death, is a controlled way of cell suicide mediated by caspases, a family of cysteine proteases. Apoptosis can be triggered by extrinsic or intrinsic factors. The extrinsic pathway is initiated by binding of a ligand to a death receptor, resulting in activation of the effector caspase 8, which, in turn, activates the caspase cascade. In the mitochondria, the linchpin of the intrinsic apoptosis pathway, MOMP (mitochondrial outer membrane permeabilisation) occurs through oligomerisation of BAX (Bcl2-associated X protein) and BAK (BCL2-antagonist/killer 1), followed by release of cytochrome C. As a result, the apoptosome, a complex of Apaf-1 (apoptotic protease activation factor-1) and caspase 9, activates the caspase cascade. The caspase cascade comprises effector caspases 3, 6 and 7, and has numerous downstream targets to ensure the orderly degradation of the cell^{70,71}.

MOMP represents the "point of no return" in apoptosis, and its initiation is therefore tightly controlled by the BCL2 family. The BCL2 family consists of over 20 members that are separated into pro-and anti-apoptotic proteins. Anti-apoptotic proteins such as BCL2, BCL-w (Bcl-2-like protein 2), BCL-xL (B-cell lymphoma extra-large) and MCL1 (myeloid cell leukaemia 1) prevent MOMP by binding to BAX and BAK. Pro-apoptotic proteins such as BIM, PUMA and NOXA (Phorbol-12-myristate-13-acetate-induced protein 1) compete in binding to the anti-apoptotic proteins, thereby allowing the oligomerisation of BAX and BAK and MOMP. Consequently, the balance of pro-and anti-apoptotic proteins plays a pivotal role in apoptosis initiation⁷⁰.

In plasma cells, the extrinsic apoptotic pathway was reported to be negligible as the first caspase detectable in apoptotic human plasma cells is the ER-associated caspase 4^{72} . In mice, caspase 12 is associated with the ER.

Studies regarding the intrinsic apoptosis pathway were predominantly focused on mitochondria as key players, but recently the ER has emerged as a platform coordinating and integrating signals that control autophagy, UPR and apoptosis. The ER and mitochondria can be found in proximity to one another, and they interact in a dynamic and complex manner to regulate diverse cellular functions. Being the main calcium storage of the cell, the ER communicates with the mitochondria via Ca²⁺ release, inducing either mitochondrial metabolism or apoptosis. The outcome of this communication is determined by the duration and intensity of ER stress and calcium release as well as by BCL2 family members. The crosstalk between the ER and BCL2 family members is bidirectional as ER stress regulates the expression of pro-apoptotic proteins and pro- and anti-apoptotic proteins regulate diverse ER-associated functions. Thus, the multifaceted role of BCL2 family members must be considered^{73,74}.

1.5.5.1 BCL2 family members MCL1 and BCL2 in plasma cell survival


The anti-apoptotic proteins BCL2 and Bcl-xL were found to be essential for the generation of plasma cells. Bcl-w, BCL2 and MCL1 are highly upregulated in bone marrow plasma cells, contrary to Bcl-xL^{33,75}.

MCL1 is the master survival factor of plasma cells and MCL1 deletion results in ablation of almost all memory plasma cells. BCMA, the receptor for APRIL and BAFF, has been shown to induce MCL1 expression³³. Furthermore, the transcription factor ZBTB20 (Zinc finger and BTB domain-containing protein 20) that is transcriptionally controlled by IRF4 was linked to MCL1 expression in plasma cells^{76,77}. MCL1 has a very short half-life, and its regulation is highly complex with steps at transcriptional, post-transcriptional and post-translational levels⁷⁸. In multiple myeloma, the balance between NOXA and MCL1 as well as MCL1 and BIM was reported to be decisive for cell survival^{79,80}.

The role of BCL2 in plasma cell survival remains elusive, as treatment with the drug ABT-737, specifically targeting BCL2 and Bcl-xL but with a preference for BCL2, did not decrease plasma cell numbers *in vivo*⁸¹. However, the same group later presented evidence that Blimp1^{high} memory plasma cells of spleen and bone marrow are decreased following ABT-737 treatment *in vivo* and *in vitro*. Additionally, the treatment

of BCMA^{-/-} mice, which exhibit decreased MCL1 levels and very low plasma cell numbers, with ABT-737 resulted in cell death of the remaining plasma cells, suggesting a synergistic effect of MCL1 and BCL2 with non-overlapping targets⁷⁵. Furthermore, BCL2 overexpression in mice rescued plasma cells from cell death following IRF4 deletion²¹.

Although BCL2 family members are primarily known as regulators of apoptosis, many of them have been implicated in regulation of autophagy. BCL2 can be located at the mitochondria, where is binds to BAX and inhibits MOMP, but it can also be found at the ER, where it binds to the autophagy regulating protein Beclin1. Additionally, Bcl-xL was shown to interact with Beclin1^{82–84}. MCL1 can also negatively regulate autophagy and lower levels of MCL1 induce autophagy without triggering the initiation of apoptosis⁸⁵.

Figure 3: Overview of intracellular mechanisms in memory plasma cells.

Memory plasma cells produce high amounts of antibodies in the ER (endoplasmic reticulum). The ER and immunoglobulin production are controlled by autophagy and misfolded proteins are degraded by proteasomes. Amino acids and glucose are primarily utilised for antibody generation. Under stress conditions, autophagy is blocked leading to an expansion of the ER, amplified antibody production and accumulation of misfolded proteins. The UPR (unfolded protein response) is activated to enable cell survival, but upon prolonged ER stress caspase 12 is activated and the cell undergoes apoptosis. Additionally, pro-apoptotic proteins (e.g. BIM, NOXA) bind to anti-apoptotic proteins (e.g. MCL1, BCL2) resulting in MOMP (mitochondrial outer membrane permeabilisation). Cytochrome c release and formation of the apoptosome activates effector caspases 3, 6 and 7.

A complex network of extracellular and intracellular signals influences the memory plasma cell phenotype, function, and survival. It remains elusive whether the property to survive for decades is intrinsically imprinted in the plasma cells, possibly during their generation, or predominantly determined by the supportive microenvironment. It is likely a combination of both factors. Cell stress elicits diverse signalling pathways that should not be regarded as isolated events since they are highly dynamic and interconnected. All previously mentioned signalling pathways have been shown to interact either directly or indirectly depending on the context, adding complexity to the molecular mechanism of plasma cell survival.

1.6 RESEARCH AIM

The aim of this thesis was to gain more insight into how the supportive microenvironment of memory plasma cells in the bone marrow enables their long-term survival. The influence of stromal cells was investigated to understand if they are merely physical organisers of the memory plasma cell niche or actively contribute to the survival. Furthermore, we wanted to elucidate which signalling pathways are essential for memory plasma cell maintenance.

2 MATERIAL AND METHODS

2.1 MATERIAL

2.1.1 BUFFERS AND MEDIA

Name	Composition	Source
PBS pH 7.2	137 mM NaCl	Carl Roth
(Phosphate	2.7 mM KCL	Carl Roth
buffered saline)	1.5mM KH2PO4	Carl Roth
	7.9mM NaHPO4 x 2H2O	Honeywell Riedel-
		de Haen
PBS/BSA pH	PBS	PAN Biotech
7.2	0.2% (w/V) BSA (bovine serum albumin)	
PBS/BSA/EDTA	PBS/BSA	Invitrogen by Life
pH 7.2	2 mM EDTA (ethylenediaminetetraacetic	technologies
	acid)	
MACS Buffer	PBS	Thermo Fisher
	1% FCS (fetal calf serum)	Scientific
	2 mM EDTA	
Complete cell	RPMI (Roswell Park Memorial Institute)	Gibco
culture medium	1640 Glutamax	Biowest
	10% FSC	Gibco
	10 U/mL Penicillin	Gibco
	10 µg/mL streptomycin	Gibco
	0.1 % (v/V) b-Mercaptoethanol	
Cell culture	RPMI (Roswell Park Memorial Institute)	Gibco
medium for	1640 Glutamax	Biowest
siRNA	5% FSC	Gibco
	20 U/mL Penicillin	Gibco
	20 µg/mL streptomycin	Gibco
	0.2 % (v/V) b-Mercaptoethanol	
50x TAE (pH	50 mM EDTA	
8,5)	2 M Tris	
	1 M glacial acid	
	in ultrapure water	

2.1.2 REAGENTS; CHEMICALS, RECOMBINANT PROTEINS

Name	Source
4-hydroxy-3-nitropheylacetyl hapten coupled	Biomol, DRFZ
chicken gamma globulin (NP-CGG)	
Incomplete Freud's Adjuvant	Sigma-Aldrich Chemie GmbH
Paraformaldehyde (PFA), 20 % (w/v)	Electron Microscopy Sciences,
	20%
Trypsin-EDTA	Gibco
Recombinant multimeric APRIL	Adipogene
HEPES (4-(2-hydroxyethyl)-1-	Merck
Piperazineethanesulfonic acid)	
EDTA (0,5 M)	Thermo Fisher Scientific

Cell Signalling Buffer Set A Wortmannin	Miltenyi Biotec Selleckchem
Pan Caspase Inhibitor Z-VAD-FMK	Santa Cruz Biotechnology
FCgR block	Miltenyi Biotec
Tunicamycin	Sigma-Aldrich Chemie GmbH
4',6-Diamidin-2-phenylindol (DAPI)	Thermo Fisher Scientific
Tetramethylrhodamine, Methyl Ester, Perchlorat	Life Technologies
(TMRM)	
Carbonyl cyanide m-chlorophenyl	abcam
hydrazine (CCCP)	
Antimycin A	Sigma-Aldrich Chemie GmbH
Agarose	Biozym Scientific GmbH
Gel Red	Biotium
Isoflurane	Baxter
DNA Polymerase Dream Taq, 10 x Dream Taq	Therme Fisher Scientific
Green Buffer	
dNTPs 10 mM	Therme Fisher Scientific
GeneRuler [™] 1kb Plus DNA Ladder	Therme Fisher Scientific

2.1.3 STAINING KITS

Name	Source
CaspGLOW™Fluorescein ActiveCaspase-12 Staining Kit	BioVision
CaspGLOW™Fluorescein Active Caspase-3 Staining Kit	BioVision
CaspGLOW™Fluorescein Active Caspase-8 Staining Kit	BioVision
CaspGLOW™Fluorescein Active Caspase-9 Staining Kit	ThermoFisher Scientific
CellROX™ Green Flow Cytometry Assay	ThermoFisher Scientific
MitoSOX™ Red	ThermoFisher Scientific

2.1.4 ANTIBODIES

Specificity	Clone		Sc	ource Identifier
Anti-mouse	D3E9	pure	Cell Signaling	Catalog # 8788
active caspase 3			Technology	
Anti-mouse	D6H1	pure	Cell Signaling	Catalog # 8438T
active caspase 7			Technology	
Anti-mouse	REA356	APC	Miltenyi	Catalog # 130-105-474
BCL2			biotec	
Anti-mouse BIM		APC	Cell Signaling	
			Technology	
Anti-mouse	114C307	A405	Abcam,	Catalog # ab13654
NOXA			DRFZ	

Anti-mouse MCL1	Y37	A488, pure	Abcam	Catalog # ab32087
Anti-mouse FoxO1	C29H4	Pure	Cell Signaling Technology	Catalog # 2880
Anti-mouse FoxO3	D19A7	pure	Cell Signaling Technology	Catalog # 12829
Anti-mouse IRF4	REA201	APC	Miltenyi biotec	Catalog # 130-100-913
Anti-mouse CD138	REA104	PE, PE- Vio770	Milentyi biotec	Catalog # 130-102-318
Anti-mouse B220	RA3-6B2	Biotin	Miltenyi biotec	Catalog # 130-101-928
Anti-mouse CD19	6D5	APC	Miltenyi biotec	Catalog # 130-112-036
Anti-mouse CD29	REA- 1074	PE	Miltenyi biotec	Catalog # 130-119-165
Anti-mouse CD49b	R1-2	Biotin	Miltenyi biotec	Catalog # 130-101-912
Anti-mouse CD98	4F2	APC	BioLegend	Catalog #128212

2.1.5 MAGNETIC BEADS

Specificity	Manufacturer	
Streptavidin	Miltenyi Biotec	
CD138	Miltenyi Biotec	

2.1.6 OLIGONUCLEOTIDES

FoxO1	SMARTPool	Catalog # E-041127-00-0010
FoxO3	SMARTPool	Catalog # E-040728-00-0010
ITGB1		Catalog # A-040783-13-0020
IRF4	Individual siRNA	Catalog # A-043796-13-0010
Non-Targeting	Individual siRNA	Catalog # D-001910-04-20

2.1.7 PRIMERS

Primer	Sequence
Oligo 1 (-5`)	GGCAAGATCAAGTATGAGTGC
Oligo 2 (-5`)	TGAGTAGTCACAGAGTACCCA
Oligo 3 (-5`)	GGCAAGATCAAGTATGAGTGC TGAGTAGTCACAGAGTACCCA GCGGAATTCATTTAATCACCCA

2.1.8 KITS

Name	Source	Cat number
PureLink [™] Genomic DNA	Thermo fisher scientific	K182002
Mini kit		
IgG (total) mouse	Thermo fisher scientific	88-50400-22
uncoated ELISA kit with		
plates		00 50450 00
IgA ELISA mouse uncoated ELISA kit with	Thermo fisher scientific	88-50450-22
plates		
IgM ELISA mouse	Thermo fisher scientific	88-50470-22
uncoated ELISA kit with		
plates		
NextGem5'version2	10xGenomics	

2.1.9 CONSUMABLES

Source
Greiner Bio-one GmbH
Greiner Bio-one GmbH
Miltenyi Biotech
Miltenyi Biotech
Miltenyi Biotech
B. Braun Melsungen AG

2.1.10 TECHNICAL EQUIPMENT

Centrifuge 5810 R ChemiDoc™ MP System Gel Electrophoresis System	Analytik Jena Eppendorf Bio-Rad Laboratories GmbH Peqlab Thermo Fisher Scientific Miltenyi Biotech 10x Genomics

2.1.11 SOFTWARE

Name	Source
Loupe Browser v5.0	10x Genomics
FlowJo10 v7.1	FlowJo LLC
GraphPad Prism 9	GraphPad Software
Microsoft Office	Microsoft Corporation

2.2 METHODS

2.2.1 MICE

2.2.1.1 Mice

All used mice were maintained under specific pathogen free (SPF) conditions at the experimental animal facility of the "Deutsches Rheuma Forschungszentrum" (DRFZ, Berlin, Germany). Experiments were performed according to institutional guidelines and German Federal laws on animal protection and with permission of the "Landesamt für Gesundheit und Soziales Berlin" (LAGeSo Berlin, Germany). Animals are housed in IVC cages with a maximum of 5 animals per cage. The animals are provided with enrichment in form of nesting material and wood. Special, autoclaved food as well as autoclaved water is supplied ad libitum. Cages are equipped with wood chip bedding material and a shelter made from red plastics. Animals have a settling-in-period of five days after arrival from breeding facilities. Animals are exposed to light for a cycle of 12 hours, followed by 12 hours of darkness

Following mouse strains were used for experiments described in this work:

1) **C57BL/6J**: Wild type strain purchased from Charles River Laboratories or Janvier Labs.

2) **Blimp-1:GFP**: Antibody secreting cells of heterozygous mice express the GFP (green fluorescent protein) under the control of the Blimp-1 regulatory elements (Kallies et al., 2004). The mice were donated by S. Nutt (Walter and Eliza Hall Institute, Melbourne, Australia). The genetic background of this mouse line is C57BL/6J. The mice were bred and maintained under SPF conditions at the "Bundesinstitut für Risikobewertung" (BfR, Berlin, Germany)

2.2.1.2 Immunisation

Mice were primed and challenged twice with 100µg NP-CGG (4-hydroxy-3nitropheylacetyl hapten coupled chicken gamma globulin) in IFA (incomplete Freud`s Adjuvants) intraperitoneally (i.p.) in a total volume of 200 µL (100 µg NP-CGG in PBS + 100 µL IFA). The period in between injections was 21 days. 30 days after the last injection, mice were ready for the experiment.

2.2.1.3 Genotyping

Ear punches or tail cuts were used for genotyping. Samples were processed using the PureLink[™] Genomic DNA Mini kit according to manufacturer's instructions.

After DNA Isolation, following primers were used for the polymerase chain reaction (PCR)

Oligo 1 (-5`): GGCAAGATCAAGTATGAGTGC Oligo 2 (-5`): TGAGTAGTCACAGAGTACCCA Oligo 3 (-5`): GCGGAATTCATTTAATCACCCA

The mastermix was prepared after following protocol:

Component	1x [µL]
10x PCR reaction buffer	1.8
dNTPs (1,25 mmol/L)	1
Oligo 1 (20 μΜ)	0.5
Oligo 2 (20 μM)	0.5
Oligo 3 (20 μM)	0.5
ddH ₂ O	13.5
DreamTaq Green DNA 5U/mL polymerase	0.2

18 μL Mastermix was added to 1 μL DNA of the respective sample in 0.2 μL sample tubes.

PCR was performed with following cycles:

Х

The PCR product was loaded on a 2 % agarose gel. It was run at 120V for 60 min. The wild-type product had a size of 611 bp and for the heterozygous an additional product at 531 bp was detected.

2.2.2 CELL CULTURE

2.2.2.1 ST2 cell culture

The stromal cell line ST2, originally isolated from bone marrow of a BALB/c mice, was used as feeder cell line in the plasma cell *in vitro* niche. ST2 cells were cultured in cell culture flasks in the presence of RPMI1640 Medium supplemented with 10% FCS, 10U/mL Penicillin, and 10 µg/mL streptomycin at 37°C and 5% CO₂. The cells were split when confluency was observed, approximately twice per week. Splitting of cells was performed by taking off the culture supernatant, washing with PBS and incubation with trypsin. Trypsin was incubated for 5 min and the reaction was stopped with RPMI1640 media. Cells were washed, counted, and plated in a new culture flask. For the *in vitro* niche, cells were trypsinised one day before the experiment. Cells were

counted using the MACSQuant Analyser and 2500 cells in 100 μ L were plated into wells of a 96 well plate.

2.2.2.2 Isolation of plasma cells by magnetic enrichment

Plasma cells were isolated from bone marrow in a two-step protocol consisting of a depletion step followed by an enrichment. Tibia, femur, and hip bones were used. The bone marrow was isolated by cleaning the bones from flesh, then cutting them on one end. Cut bones were placed in 0.2 mL reaction tubes with a hole in the bottom. These tubes were placed into 1.5 mL reaction tubes containing 0.2 mL MACS Buffer (PBS, 1% FCS, 2 mM EDTA). Tubes were centrifuged at 300xg for 15 seconds. If bone marrow remained in the bones, the procedure was repeated. Afterwards, bone marrow from the tubes was pooled and counted using anti-CD138 antibody and DAPI. The cell concentration was set to 1*10⁸ total cells per mL and samples were stained with biotinylated anti-CD49b and anti-B220 antibodies at 4°C. The samples were washed with MACS buffer and centrifuged at 300xg for 8 min with low break. Subsequently, cells were resuspended in MACS buffer, magnetic streptavidin beads were added, and the samples were incubated for 15 min at 4°C. Cells were washed and resuspended in buffer. LS columns with 30 µM filters were attached to MACS magnets and primed with buffer. Cells were added to the filters and to reduce the flow rate, e a 26G cannula was attached to the bottom of the column. Columns and filters were washed 3 times with 1 mL MACS buffer. The negative collection was collected, washed, and counted. Cells were resuspended in MACS buffer and incubated with magnetic anti-CD138 Microbeads for 15 min at 4°C. Cells were washed and added to a pre-wetted MS column placed in a MACS magnet. The column was washed three times with 0.5 mL MACS buffer. The cells were eluted on a second MS column using 1 mL MACS buffer. The column was washed three times and the cells were eluted using 2mL RPMI1640 media or PBS. Cells were counted using DAPI and anti-CD138 antibody³⁰.

2.2.2.3 Memory plasma cell in vitro niche

Isolated plasma cells were cultured in RPMI1640 media (10%FCS, 10U/mL Penicillin, 10 μ g/mL streptomycin, 0.1% β -Mercaptoethanol, 25 mM HEPES buffer) in the presence or absence of 50 ng/mL multimeric APRIL. Plasma cells were seeded on top of ST2 cells in a ratio of 1:1, 5000 plasma cells on 5000 stromal cells. If culture conditions without stromal cells were used, 5000 plasma cells were seeded into empty wells. The total culture volume was 200 μ L. If cells were cultured longer than 3 days,

the media was changed on day 3. 100 μ L media was carefully taken off without disturbing the cells and 100 μ L fresh media with or without 50 ng/mL APRIL was added to the culture. Cultures were performed at hypoxic conditions 4.2 % O₂, 5% CO₂, 37°C³⁰.

2.2.2.4 siRNA treatment

If plasma cells were treated with siRNA (small interfering RNA), the cells were eluted with PBS and washed following the isolation protocol. The Accell self-delivery system was used. Cells were resuspended in Accell medium in the presence of 100 ng/mL multimeric APRIL at a concentration of 100.000 cells/mL. siRNAs were added to obtain a concentration of 2 μ M. If multiple siRNAs were used, the concentration of all used siRNAs was 2 μ M. Cells were incubated for an hour at 37°C, 5% CO₂. 50 μ L RPMI1640 media with 5% FCS, 20U/mL Penicillin, 20 μ g/mL streptomycin, 0.2% b-Mercaptoethanol, 50 mM HEPES buffer was added to stromal cells or empty wells. After incubation, 50 μ L plasma cells were added to the respective wells and cultures were performed under hypoxic conditions.

2.2.2.5 ELISA

Total IgG, IgA and IgM ELISAs were performed using IgM, IgG or IgA mouse uncoated ELISA kits according to manufacturer's instructions. First, cell culture supernatants were titrated to identify the correct dilution of the samples. In brief, plates were coated overnight with capture antibodies in blocking buffer at 4°C. Plates were washed and blocked with blocking buffer. Standard was prepared, and standard and diluted samples were added to the plates and incubated for 2 hours at room temperature. Subsequently, plates were washed and incubated with detection antibodies for 1 hour at room temperature. Plates were washed again, and Substrate solution was added and incubated for 15min. Finally, stop solution was added and plates were read at 450nm using a plate reader.

2.2.3 FLOW CYTOMETRY

2.2.3.1 Plasma cell counts

Viable plasma cells were counted on different days of the culture using the MACSQuant Analyser. The cell culture supernatant was carefully removed without disturbing the cells. 100 μ L anti-CD138 PE antibody (diluted 1:100) in PBE was added to the wells and incubated for 5 min on ice. Using a multichannel pipet, cells were resuspended and scraped off the plate. Cells were transferred into a 96 well-v-bottom

plate. The MACSQuant Analyser was programmed to add DAPI (1:100) automatically to each well before measuring. Viable plasma cells were defined as CD138⁺/DAPI.

2.2.3.2 Cell surface staining

Single cell suspension was prepared in PBE buffer. Cells were incubated with $Fc\gamma R$ blocking reagent for 10 min on ice before the antibody mastermix was added. Cells were stained for 10 min on ice, washed and measured on a flow cytometer.

2.2.3.3 Intracellular staining

The cell culture supernatant was carefully removed and 50 μ L 4% PFA was added to the wells. Cells were incubated at 37°C for 10 min and washed with PBE. Cells were either stored in the fridge or 50 μ L pre-chilled (-20°C) methanol was added to the wells and incubated in the fridge for 30 min. Afterwards, cells were washed with PBE and resuspended in 10 μ L Fc γ R blocking reagent buffer. Cells were incubated for 10 min at room temperature (RT). The antibody mastermix was added to the well plates and incubates for 60 min at RT in the dark. The cells were washed and if necessary incubated with secondary antibody for 30 min at RT. Cells were washed and measured on a flow cytometer.

2.2.3.4 Active Caspase staining

Active caspase stainings were performed using a fluorescence-coupled substrate against the respective caspase. Cells were cultured with or without ST2 cells and with or without APRIL. On the day of analysis, 150 μ L of cell culture supernatant was carefully removed from the well plate. 50 μ L RPMI1640 with or without APRIL containing the fluorescence-coupled caspase substrate was added and cells were incubated at 37°C for 30 min. As a negative staining control, a pan caspase inhibitor was added according to manufacturer's instruction 2 hours before the staining. After incubation, cells were washed twice using wash buffer. Cells were resuspended in anti-CD138 antibody mastermix in PBE (diluted 1:100 or 1:50) and measured directly. DAPI was used to discriminate between life and dead cells. As negative control, cells were incubated for 24 hours with 10 mM panCaspase Inhibitor Z-VAD-FMK. As positive controls, cells were incubated with 10 mM wortmannin or 2.5 mM tunicamycin for 2 hours prior to staining.

2.2.3.5 TMRM staining

Mitochondrial membrane depolarisation was assessed using TMRM dye. Cells were incubated with 250 nM TMRM in pre-warmed HBSS for 30 min at 37°C protected from light. Next, cells were washed and resuspended in anti-CD138 antibody mastermix in PBE. As a negative control, cells were incubated with 5µM CCCP 30min prior to staining. Cells were measured on a MACSQuant Analyser and DAPI was added directly before acquisition.

2.2.3.6 Detection of reactive oxygen species (ROS)

Total cellular ROS was detected using CellROXTM dye. CellROXTM was diluted in DMSO and added to cells in cell culture medium to achieve a final concentration of 500 μ M. Samples were incubated for 30 min at 37°C, protected from light. Subsequently, samples were washed with PBE and stained with anti-CD138 antibodies. Samples were measured on a MACSQuant Analyser and DAPI was added directly prior to the sample. As negative control, 3000 μ M NAC (N-acetylcysteine) to increase the antioxidant capability of the cell was added one hour before CellROXTM dye and as positive control, 150 μ M TBHP (tert-butyl hydroperoxide) was added 30 min before CellROXTM dye to induce oxidative stress.

Mitochondria ROS was assessed using MitoSOXTM dye. Cells were incubated with 3μ M MitoSOXTM in pre-warmed HBSS for 15min at 37°C protected from light. Next, cells were washed, and surface stained with anti-CD138 antibodies. Samples were measured on a MACSQuant Analyser and DAPI was added directly prior to the sample. As positive control, 20 μ M Antimycin A was added 30 min prior to staining to the cells. As negative control, 5 μ M CCCP was added 30 min prior to staining to the cells

2.2.4 SINGLE CELL RNA SEQUENCING

For single cell RNA sequencing, plasma cells were isolated and cultured with siRNAs against FoxO1, FoxO3, IRF4 or the non-targeting scrambled control siRNA. After 3 days, cells were sorted for CD138⁺⁺ and DAPI⁻ cells. During preparation, no buffer containing EDTA was used as that can interfere with the single cell sequencing protocol. Cells were counted and adjusted to the cell concentration needed for the 10X genomics protocol. The NextGem5'version2 kit was used according to manufacturer's instruction. In short, the first step was the Gel Beads-in-emulsion (GEM) generation and barcoding where barcoded single cell VDJ 5' Ged beads, a master mix with cell surface protein labelled cells and partitioning oil were combined in a chromium next

GEM Chip K. That was followed by a post GEM-RT clean-up and cDNA Amplification. V(D)Js were amplified from full-length cDNA using primers specific to BCR constant regions and the V(D)J library was constructed. Afterwards, the 5' Gene Expression Library was constructed, and samples were sequenced. (Flow cell P3; 200 cycles; Read1: 26nt; Read2: 90nt; Index1: 10nt; Index2: 10nt).

2.2.4.1 Analysis of single cell data

Illumina output was demultiplexed and mapped to the mm10 reference genome by cellranger-5.0.0 (10x Genomics Inc.) using refdata-cellranger-mm10-1.2.0 in default parameter setting and 3000 expected cells. Raw UMI-counts were further analysed using R 4.1.2 with Seurat package ⁸⁶, as proposed by Butler and colleagues ⁸⁷, including log-normalisation of UMI counts, detection of variable genes and scaling. T-distributed Stochastic Neighbour Embedding (t-SNE) and the underlying Principle Component Analysis (PCA) was performed based on 30 components using variable genes and a perplexity of 30 as set by default. Data were analysed using 38,243 plasma cells

2.2.5 STATISTICAL ANALYSIS

Statistical analyses were performed using GraphPad prism. Datasets were tested for normal distribution. Subsequently, the appropriate test for parametric or nonparametric data was chosen. Respective analysis is indicated in figure legends.

3 RESULTS

3.1 APRIL and ST2 cell contact prevent cell death of *ex vivo* memory plasma cells by inhibiting specific caspases

Memory plasma cells can persist for decades in dedicated niches in the bone marrow while continuously secreting antibodies. However, taken out of their microenvironment they die fast in the absence of survival factors, indicating that their persistence is determined by external factors⁸⁸. Using an *in vitro* niche, we aimed to elucidate the molecular signalling network enabling plasma cell survival.

We previously reported that memory plasma cells require two essential survival signals *in vitro*: (1) stromal cell contact provided by the cell line **ST2** and (2) the cytokine **APRIL** (**ST2+A**). Additionally, bone marrow memory plasma cells were cultured under physiological oxygen conditions (4.2 % O₂). We isolated *ex vivo* memory plasma cells from the bone marrow of mice immunised and challenged twice in 21-day intervals with NP-CGG/IFA using a two-step magnetic cell sorting (MACS) protocol which routinely resulted in a purity of ~90%. Plasma cells were identified as CD138⁺⁺, B220⁻, HLA-DR⁻ and Ki67⁻ and cultured in a 1:1 ratio with cells of the stromal cell line ST2 and recombinant APRIL³⁰.

Using the *in vitro* culture system, we demonstrated that a pan-caspase inhibitor prevented cell death if memory plasma cells were cultured only with either APRIL or ST2 cells, suggesting that memory plasma cells die in a caspase-dependent way³⁰. The caspase-network can be activated by numerous stimuli, some being extrinsic and other intrinsic. Caspase 8 can be activated by FAS/FAS-L interaction whereas caspases 3, 7, and 12 are activated intrinsically by the release of mitochondrial apoptogenic factors or prolonged ER stress⁶⁸.

To examine the activation of different caspases and the contribution of ST2 and APRIL to prevent their activation, memory plasma cells were cultured with or without APRIL and with or without ST2 cells for one day. Subsequently, activation of caspases 3, 7, 8 and 12 was measured in viable plasma cells using flow cytometry (S 1) (Figure 4). Active caspase 7 was detected using intracellular antibodies whereas active caspases 3, 8 and 12 were detected using a caspase-specific fluorescence-coupled substrate.

33

Caspase 8 activation was not detected in any condition (Figure 4C) (APRIL 130.5 \pm 9.5; ST2 117.8 \pm 8.4; ST2+A 115.8 \pm 8.3; panC Inhib 117 \pm 11.6). Caspases 3 and 7 were highly activated in cells cultured only with APRIL and activation was significantly downregulated in co-culture with ST2 cells (Figure 4 A,B) (caspase 3 APRIL 742 \pm 38; ST2 573.7 \pm 47; ST2+A 478.8 \pm 76; panC Inhib 473 \pm 45; caspase 7 APRIL 1296 \pm 114; ST2 1088 \pm 133; ST2+A 1194 \pm 150). Memory plasma cells cultured with APRIL alone displayed lower levels of active caspase 12 compared to plasma cells cultured only with ST2 cells. Together with ST2 cells, the activation of caspase 12 was completely inhibited (APRIL 1988 \pm 590.7; ST2 2590 \pm 288; ST2+A 1354 \pm 258; panC Inhib 1162 \pm 355.7). As controls for the caspase stainings a pan-caspase inhibitor, wortmannin to block PI3K signalling, or tunicamycin as inducer of the unfolded protein response were used (S 2).

Based on these results, we conclude that the extrinsic pathway of apoptosis does not contribute to plasma cell death via activation of caspase 8 in line with previous work⁷². However, the intrinsic apoptotic pathway defined by caspases 3, 7 and 12 was activated in plasma cells when cultured only with APRIL. While activation of caspases 3 and 7 was very low in memory plasma cells cultured with ST2 cells alone, cells of this condition expressed the highest levels of the ER-associated caspase 12. Thus, the data suggest that ST2 cells are sufficient to prevent activation of caspases 3 and 7 but both signals are required to fully prevent activation of caspase 12.

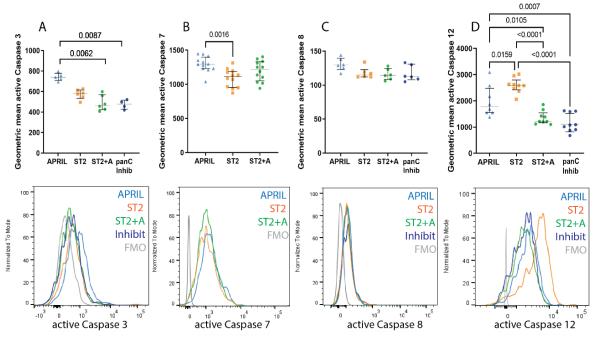


Figure 4: ST2 cells inhibit activation of caspases 3 and 7, and APRIL together with ST2 cells prevent the activation of caspase 12. Geometric mean expression of (A) active caspase 3, (B) active caspase 7, (C) active caspase 8, and (D) active caspase 12 in *ex vivo* memory plasma cells cultured with 50 ng/mL APRIL (blue), ST2 stromal cells (orange) or ST2+A (green) for one day measured by flow cytometry. Pan-caspase Inhibitor (panC Inhib) was used as control. Data is pooled from a minimum of two independent biological experiments with n = 6-12 technical replicates for each group. Statistics: Kruskal-Wallis (caspases 3, 8), Ordinary one-way ANOVA (caspases 7, 12). Significance is determined as p≤0.05; not significant is not indicated.

3.2 ST2 cell contact prevents formation of cellular ROS in ex vivo memory

plasma cells

Since mitochondria depolarisation is the main event leading to activation of caspases 3 and 7, we examined the influence of APRIL- and ST2 cell-signalling on mitochondria in memory plasma cells. Memory plasma cells were cultured with or without ST2 cells in the presence or absence of APRIL for one day and mitochondrial membrane potential, mitochondrial ROS levels as well as total cellular ROS formation were analysed (Figure 5).

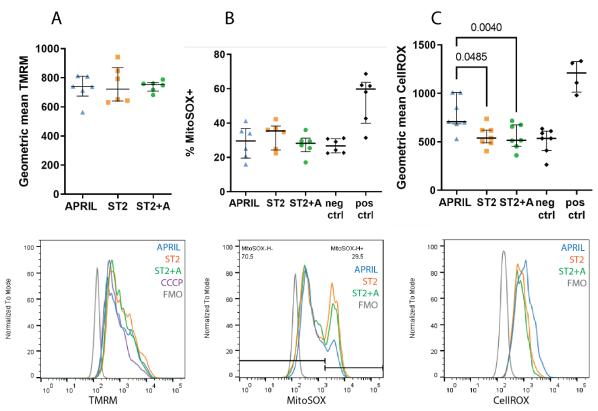
Mitochondrial membrane potential was analysed by TMRM staining, a non-cytotoxic positively charged dye that selectively localises in negatively charged mitochondria. Upon mitochondria depolarisation, the TMRM staining is reduced indicating the onset of apoptosis. As a staining control, cells were incubated with CCCP, an uncoupling agent that induces mitochondria depolarisation and decreases TMRM staining.

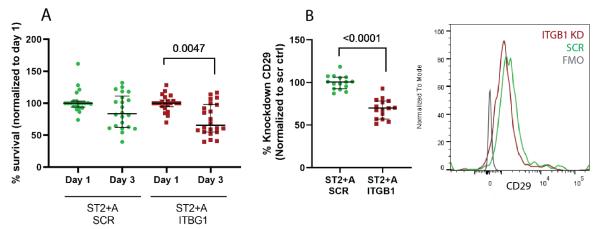
Mitochondrial ROS production was analysed using the MitoSOX[™] reagent, a cellpermeable, mitochondria-specific dye that is oxidated by superoxides. Superoxides are classified as ROS and are generated as a by-product of mitochondrial respiration. As a positive control Antimycin A, an inhibitor of oxidative phosphorylation, was used. CCCP was used as a negative control.

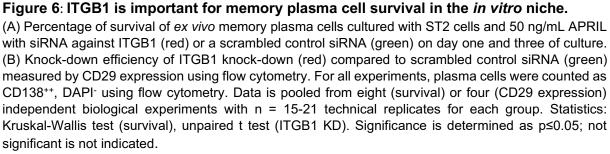
To analyse total cellular ROS production the cell-permeable dye CellROX was used. It emits fluorescence after oxidation by ROS and does not discriminate between cellular compartments or different ROS species. Positive and negative controls were treated with the oxidant TBHP (tert-butyl hydroperoxide) and the antioxidant NAC (N-acetylcysteine), respectively.

No differences between the conditions were observed in mitochondrial membrane potential (APRIL 729 ± 91; ST2 751 ± 129; ST2+A 742.8 ± 37) or mitochondrial ROS production (APRIL 28.7% ± 9.6; ST2 32.9% ± 7.2; ST2+A 27% ± 6; neg ctrl 26.7% ± 4; pos ctrl 54% ± 14). However, total cellular ROS levels (APRIL 785 ± 179; ST2 559 ± 109; ST2+A 556 ± 130.8; neg ctrl 511 ± 131.5; pos ctrl 1184 ± 168.7) were significantly increased in plasma cell cultured only with APRIL.

These results imply that mitochondria are not predominantly responsible for increased cell stress or onset of apoptosis due to mitochondria membrane depolarisation. Additionally, CellROX staining suggests that ST2 cell contact is sufficient to prevent formation of cellular ROS and that, as evident by MitoSOX staining, cellular ROS does not originate from mitochondria but might originate from other cellular compartments such as the ER.




Figure 5: ST2 cell contact dampens cellular ROS formation in memory plasma cells. Geometric mean expression of (A) TMRM, percentage of (B) MitoSOX positive cells and geometric mean expression of (C) CellROX in *ex vivo* memory plasma cells cultured with APRIL (blue), ST2 cells (orange) or ST2+A (green) for one day measured by flow cytometry. Data is pooled from two independent biological experiments with n = 6 technical replicates for each group. Statistics: Friedman test. Data was generated by Lena Peter and Rebecca Cornelis. Significance is determined by p<0.05; not significant (NS) is not shown.


3.3 Integrin β1 is important for *ex vivo* memory plasma cell survival *in vitro*

While signalling induced by APRIL via BCMA is well understood³⁹, it remains elusive how contact with stromal cells supports memory plasma cell survival. Work by DiLillo et al implies that the integrins LFA-1 and VLA-4 retain memory plasma cells in the bone marrow of mice *in vivo*, suggesting that cell-cell contact plays a vital role⁸⁹. Integrins are heterodimers that bind to their respective binding partners, LFA-1 to ICAM-1 and VLA-4 to VCAM-1. Since we detected only VCAM-1 expression in our ST2 cells, we focused on the role of VLA-4 (α 4 β 1) signalling in memory plasma cell survival.

Hence, we used a specific siRNA targeting integrin β 1 (CD29, ITGB1) in the *in vitro* culture system. Plasma cells were cultured with ST2+A and either scrambled control (SCR) siRNA (ST2+A SCR) or siRNA targeting ITGB1 (ST2+A ITGB1), and cells were counted by flow cytometry on day one and three of culture (Figure 6). ITGB1 protein expression on the plasma cells was reduced by 30% by the ITGB1 siRNA compared to scrambled control (ST2+A SCR 100.6% ± 8.2; ITGB1 68.9% ± 11.5). The survival

was significantly reduced in cells with ITGB1 knock-down (ST2+A SCR: day 1, 103% \pm 17.6, day 3, 87.6% \pm 26.6; ST2+A ITGB1: day 1, 99.9% \pm 12.8; day 3, 74% \pm 24.8), indicating that ITGB1 is important for the survival of memory plasma cells.

Integrins are known to signal via PI3K activation and we previously demonstrated that ST2 cell contact induces PI3K signalling in plasma cells which is essential for memory plasma cell survival *in vitro* and *in vivo*³⁰. Therefore, targets downstream of PI3K, FoxO1 and FoxO3, were analysed after ITGB1 knock-down. Moreover, activation of caspase 3 was measured using flow cytometry to assess apoptosis (Figure 7).

As expected, expression of FoxO1 (ST2+A ITGB1 871.6 \pm 194.6; APRIL SCR 1430 \pm 270, ST2+A SCR 906 \pm 259) and FoxO3 (ST2+A SCR 1102 \pm 217.8; APRIL SCR 1693 \pm 263, ST2+A ITGB1 1071 \pm 222;) was significantly increased in plasma cells cultured without ST2 cells (APRIL SCR) compared to plasma cells cultured in the presence of ST2 cells (ST2+A SCR). However, FoxO1 and FoxO3 expression was not increased in ST2+A ITGB1 cells compared to ST2+A SCR control suggesting that PI3K signalling in the surviving plasma cells was not impacted by ITGB1 knock-down. APRIL SCR cells also expressed higher levels of active caspase 3 compared to both ST2+A conditions, but no increase in ST2+A ITGB1 cells compared to ST2+A ITGB1 cells compared to ST2+A SCR control suggesting that PI3K signalling was observed (ST2+A ITGB1 778.4 \pm 225.9; APRIL SCR 1450 \pm 365.8; ST2+A SCR

761.8 \pm 227.8), indicating that cells did not undergo increased caspase-dependent cell death due to ITGB1 knock-down.

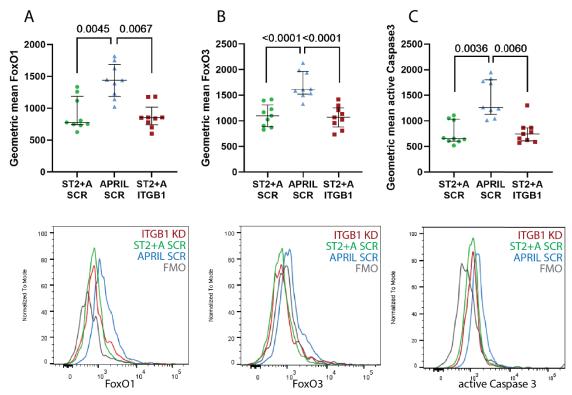


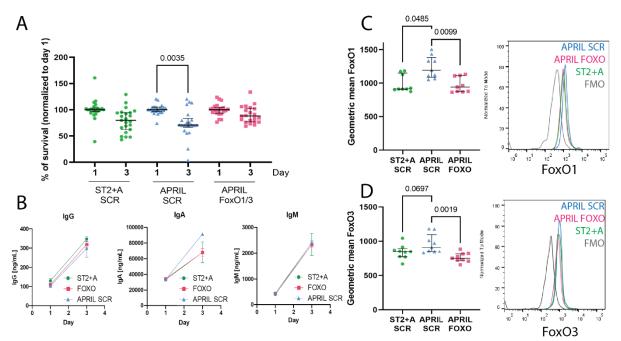
Figure 7: ITGB1 knock-down does not increase FoxO1 or FoxO3 expression or activation of caspase 3 in memory plasma cells. Geometric mean expression of (A) FoxO1, (B) FoxO3 and (C) active caspase 3 in *ex vivo* memory plasma cells cultured with APRIL and scrambled siRNA (blue), ST2+A ITGB1 (red) and ST2+A SCR (green) for three days measured by flow cytometry. Data is pooled from three independent biological experiments with n = 9 technical replicates for each group Statistics: Kruskal-Wallis test (FoxO1, Casp3), Ordinary one-way ANOVA (FoxO3). Significance is determined as $p \le 0.05$; not significant is not indicated.

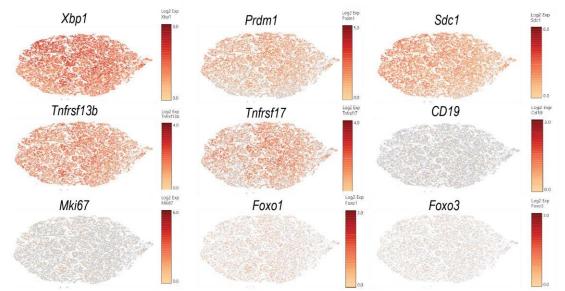
3.4 FoxO1/3 downregulation rescues *ex vivo* memory plasma cell survival *in vitro* in the absence of stromal cells

The PI3K signalling pathway is crucial for memory plasma cell maintenance and the downstream targets FoxO1 and FoxO3, inhibited by active PI3K signalling, were upregulated in the absence of ST2 cell contact and thus PI3K activation (Figure 7A, B)³⁰. To understand if the downregulation of FoxO1 and FoxO3 is essential for memory plasma cell survival, we used specific siRNA targeting FoxO1 and FoxO3.

Memory plasma cells were cultured with APRIL and with or without ST2 cells. Scrambled control siRNA was used for plasma cells cultured with only APRIL (APRIL SCR) and ST2+A (ST2+A SCR). Individual FoxO1 and FoxO3 targeting siRNAs were used for plasma cells cultured with APRIL (APRIL FOXO). Survival was analysed over three days and the knock-down efficiency was evaluated by flow cytometry (Figure 8). FoxO1 (ST2+A SCR 991.3 ± 129.4; APRIL SCR 1238 ± 166.5; APRIL FOXO 971.9 ± 114.7) and FoxO3 (ST2+A SCR 842 ± 103.7; APRIL SCR 960 ± 137.5; APRIL FOXO 763 ± 68.9) protein levels were successfully reduced by the knock-down to similar levels as in the ST2+A SCR control (Figure 8C,D). Regarding cell survival, knock-down of FoxO1 and FoxO3 could completely compensate for the absence of ST2 cell contact until day three of culture (ST2+A SCR: day1 100% ± 19.7%, day3 79% ± 22%; APRIL SCR: day 1 100.7% ±9.2%, day3 73% ± 27%; APRIL FOXO: day 1 99.7% ± 11.7%, day 3 90% ± 16%) (Figure 8A). Plasma cells continued to secret antibodies as determined by ELISA on day one and three of culture (Figure 8B).

Thus, stromal cell-contact induced PI3K signalling and subsequent downregulation of FoxO1 and FoxO3 is critical for memory plasma cell survival.




Figure 8: FoxO1/3 downregulation maintains memory plasma cells in the absence of stromal cells. *Ex vivo* memory plasma cells were cultured with 50 ng/mL APRIL and siRNA targeting FoxO1/3 (pink) or scrambles control (blue) or with ST2+A in the presence of scrambled control siRNA (green). (A) Percentage of survival of plasma cells normalised to day one. Data pooled from nine (survival) or three (FoxO1, FoxO3) independent biological experiments with n = 9-23 technical replicates for each group. Statistics: Ordinary one-way ANOVA (survival, FoxO3), Kruskal-Wallis test (FoxO1). (B) Concentration of IgG, IgM, and IgA in cell culture supernatant until day three of culture measured by ELISA. (C) FoxO1 and (D) FoxO3 protein expression levels of plasma cells cultured as in (A) at day 3. Significance is determined as $p \le 0.05$; not significant is not shown.

3.4.1 siRNA induced FoxO1/3 knock-down does not induce transcriptional changes in *ex vivo* memory plasma cells

With the aim to identify FoxO1/3 regulated signalling pathways, single-cell RNA sequencing of *ex vivo* isolated memory plasma cells after siRNA-induced FoxO1/3 knock-down was performed. As in the previous experiments, *ex vivo* memory plasma cells were cultured with ST2+A (ST2+A SCR) or only APRIL with scrambled control siRNA (APRIL SCR), and only APRIL with FoxO1- and FoxO3-specific siRNAs (APRIL FOXO). On day three of culture, plasma cells were sorted as live CD138⁺⁺ cells and sequenced using 10X Genomics-based droplet sequencing.

8,942 cells of ST2+A SCR were sequenced with 23,065 mean reads per cell and 1,249 median genes per cell. 9,298 cells were sequenced for the condition APRIL SCR with 22,555 mean reads per cell and 1,262 median genes per cell. 9,642 cells of APRIL FOXO were sequenced with 26,075 mean reads per cell and 1,288 median genes per cell. The sequencing saturation ranged from approximately 28% - 34%. Additionally, the sequences of their antibody heavy and light chain were determined.

Most cells expressed the genes associated with plasma cell identity: *Xbp1*, *Tnfrsf17* (BCMA), *Tnfrsf13b* (TACI), *Sdc1* (CD138), and *Prdm1* (BLIMP-1). *Mki67* and *Cd19* were expressed in few cells at low levels. Cells with low UMI counts and high expression of mitochondrial genes were excluded from the analysis as they were assumed to be of low quality. On a transcriptional level, expression of *Foxo1* and *Foxo3* genes was low (Figure 9) and no differences in *Foxo1* or *Foxo3* gene expression could be detected between the three samples (Figure 10E), possibly due to technical limitations of single cell RNA sequencing or insufficient sequencing depth. However, knock-down was verified on protein level using flow cytometry (S 3).

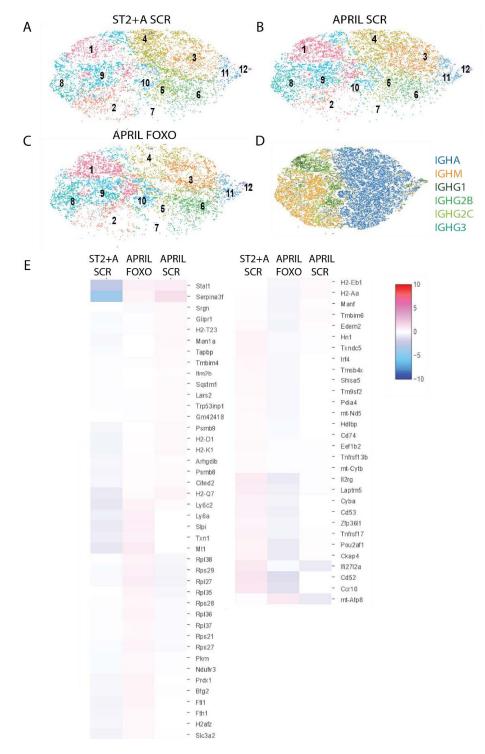


Figure 9: Expression of genes defining plasma cell identity and *Foxo1/Foxo3* in memory **plasma cells** *in vitro. Ex vivo* memory plasma cells were cultured with 50 ng/mL APRIL and with or without ST2 cells. Additionally, plasma cells were treated with scrambled control siRNA or siRNAs targeting FoxO1/FoxO3 for three days. Cells were sorted as DAPI-CD138⁺⁺ and subsequently sequenced using 10X Genomics-based droplet sequencing. t-SNE coordinates, and clustering was computed for 38,243 cells. Expression of representative genes defining the plasma cell phenotype as well as *Foxo1* and *Foxo3* in combined samples (ST2+A SCR, APRIL SCR, and APRIL FOXO) mapped on t-SNE are depicted.

According to their transcriptomes, memory plasma cells could be subdivided into 12 clusters that where equally present in the three analysed conditions and a clear separation into different immunoglobulin isotypes was observed (Figure 10A-D). Plasma cells expressing *Igha* clustered away from plasma cells expressing *Igha* or *Ighg1*, *Ighg2b*, *Ighg2c* and *Ighg3* (Figure 10D)

Five genes were significantly upregulated in APRIL FOXO cells (*mt-Atp8, Mt1, Rpl27, Slpi, Stat1*), two genes were significantly upregulated in APRIL SCR cells (*Serpina3f, Stat1*) and six genes in ST2+A SCR cells (*Cd52, Ccr10, Ifi27I2a, Il2rg, Laptm5, Tnfrsf17*) (Figure 10E). Differentiation into immunoglobulin subsets IgA (*Igha* expressing), IgM (*Ighm* expressing) and IgG (*Ighg1, Ighg2b, Ighg2c, Ighg3* expressing) did not reveal more differences between the culture conditions (S 5).

To conclude, transcriptional differences between the three analysed samples were most distinct between the groups cultured without ST2 cells (APRIL SCR and ARIL FOXO) and ST2+A SCR cells. ST2+A SCR and APRIL FOXO cells did not share a transcriptomic signature that could explain the observed survival advantage of these cells compared to APRIL SCR cells.

Figure 10: Differential gene expression of memory plasma cells *in vitro* **after FoxO1/3 knock-down.** *Ex vivo* memory plasma cells were cultured with 50 ng/mL APRIL and with or without ST2 cells. Additionally, plasma cells were treated with scrambled control siRNA or siRNAs targeting FoxO1/FoxO3 for three days. Cells were sorted as DAPI-CD138⁺⁺ and subsequently sequenced using 10X Genomics-based droplet sequencing. (A, B, C) 12 transcriptionally defined clusters were identified by shared nearest neighbour (SNN) modularity optimisation-based clustering algorithm mapped to t-SNE representation of memory plasma cells. t-SNE coordinates, and clustering was computed for 38,243 cells, presentation is separated by sample. (D) Distribution of immunoglobulin gene expression mapped on t-SNE are depicted. (E) Heatmap of differentially expressed genes between the samples APRIL FOXO, ST2+A SCR, APRIL SCR.

3.4.2 FoxO1 and FoxO3 modulated MCL1 expression in *ex vivo* memory plasma cells

FoxO1 and FoxO3 have numerous downstream targets and were previously described to upregulate pro-apoptotic proteins, e.g. BIM^{54,55}. Single cell RNA sequencing did not reveal differential expression of mRNA of pro- and anti-apoptotic proteins after FoxO1/3 knock-down compared to controls. However, this could be due to insufficient sequencing depth.

Thus, to investigate how FoxO1 and FoxO3 regulate apoptosis in memory plasma cells, the pro- and anti-apoptotic proteins BIM, NOXA, MCL1 and BCL2 as well as activation of caspases 3, 7 and 12 were analysed using flow cytometry.

Ex vivo memory plasma cells were, as described before, cultured with APRIL, with or without ST2 cells and treated either with scrambled control siRNA (APRIL SCR; ST2+A SCR) or siRNAs targeting FoxO1 and FoxO3 (APRIL FOXO). After three days, memory plasma cells were analysed for expression of BCL2, BIM, NOXA, MCL1, active caspases 3, 7, and 12, using flow cytometry (Figure 11).

Activation of caspase 3 (ST2+A SCR 1589 ± 215.5; APRIL SCR 2316 ± 289.5; APRIL FOXO 2333 ± 387;), caspase 7 (ST2+A SCR 1608 ± 130; APRIL SCR 2117 ± 284.3; APRIL FOXO 1900 ± 231;) and caspase 12 (ST2+A 4571 ± 1736; APRIL SCR 13000 ± 2553; APRIL FOXO 11624 ± 3514) was not prevented by FoxO1/3 knock-down but remained at a similar level to the APRIL SCR control, whereas all caspases where significantly inhibited in ST2+A SCR control (Figure 11A-C).

BCL2 was equally expressed in all analysed conditions (ST2+A SCR 140 ± 23; APRIL SCR 154 ± 20; APRIL FOXO 135 ± 14) (Figure 11E). Co-culture with ST2 cells prevented increased expression of the pro-apoptotic proteins NOXA and BIM. However, FoxO1/3 knock-down did not alter NOXA (ST2+A SCR 336 ± 32.7; APRIL SCR 417 ± 36.6; APRIL FOXO 384.9 ± 38.6) or BIM (ST2+A SCR 177 ± 36; APRIL SCR 254.8 ± 33.8; APRIL FOXO 238 ± 17.6) expression compared to APRIL SCR control (Figure 11F, G).

The anti-apoptotic protein MCL1 was significantly upregulated in APRIL SCR cells compared to ST2+A SCR cells. APRIL FOXO cells did not significantly upregulate MCL1 compared to ST2+A SCR control and expressed reduced levels of MCL1

(*p*=0.0622) compared to APRIL SCR cells (ST2+A SCR 425 ± 66; APRIL SCR 485 ± 27.6; APRIL FOXO 436.7 ± 20.9) (Figure 11D).

The results demonstrate that knock-down of FoxO1/3 in memory plasma cells neither prevented the activation of caspases 3, 7 and 12 nor dampened the expression of the pro-apoptotic proteins BIM and NOXA. Surprisingly, plasma cells cultured with ST2+A SCR and APRIL FOXO expressed lower levels of MCL1.

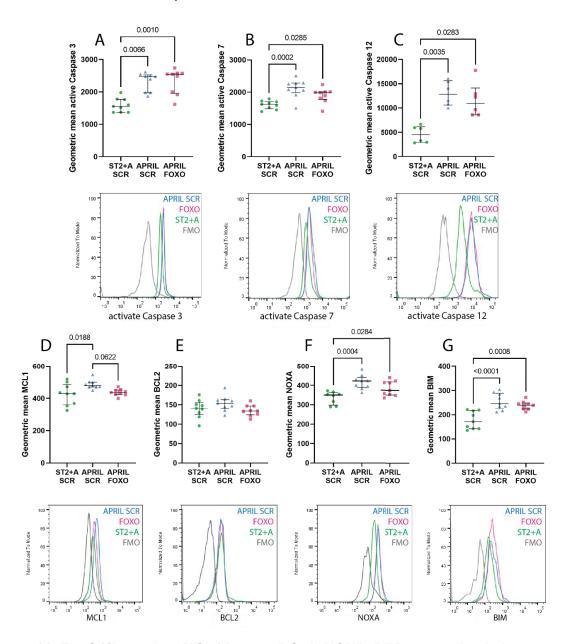


Figure 11: FoxO1/3 regulate MCL1 but not BCL2, NOXA, BIM expression in bone marrow memory plasma cells. Geometric mean expression of (A) active caspase 3 and (B) active caspase 7 and (C) active caspase 12, (D) MCL1, (E), BCL2, (F) NOXA, and (G) BIM in *ex vivo* memory plasma cells cultured with APRIL and siRNAs targeting FoxO1/3 or scrambled control or cultured with ST2+A and scrambled control siRNA on day 3 of culture measured using flow cytometry. Data is pooled from three independent biological experiments with n = 9 technical replicates for each group. Statistic Kruskal-Wallis test (caspase 12), ordinary one-way ANOVA (MCL1, BCL2, BIM, NOXA, caspase 3, caspase 7). Significance is determined by $p \le 0.05$; not significant is not shown.

3.5 IRF4 is synergistically upregulated by APRIL and ST2 cells and essential for *ex vivo* memory plasma cell survival

IRF4 has been demonstrated to be essential for memory plasma cell survival^{22,25}. To gain a more detailed understanding of how this central transcription factor is regulated, we analysed IRF4 expression in bone marrow derived memory plasma cells cultured with stromal cells and with or without APRIL (ST2+A, ST2) and only APRIL (Figure 12).

Plasma cells cultured with either stromal cells or APRIL alone expressed low levels of IRF4 that were significantly upregulated in plasma cells receiving both signals (ST2+A 92 \pm 12; ST2 78.5 \pm 11.9; APRIL 75.7 \pm 16.8), indicating that both ST2 and APRIL induce signalling pathways that are required for full IRF4 expression.

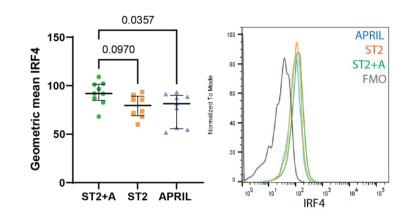
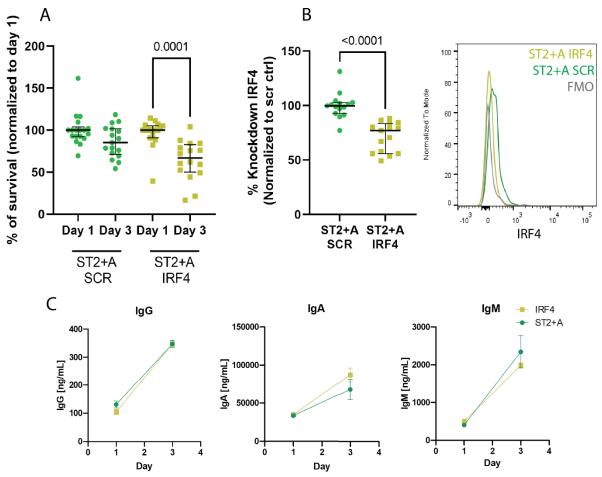



Figure 12: IRF4 is synergistically upregulated by ST2 cells and APRIL in memory plasma cells *in vitro*. *Ex vivo* memory plasma cells were cultured for one day with ST2 cells (orange) in the presence of 50 ng/mL APRIL (green) or with APRIL alone (blue). Plasma cells were identified as CD138⁺⁺ cells and IRF4 expression was analysed using flow cytometry. Pooled from three independent experiments with n=9 technical replicates per group. Statistics: Ordinary one-way ANOVA. Significance is determined as p≤0.05.

Next, we used specific siRNA targeting IRF4 to analyse its role in plasma cell maintenance. Memory plasma cells were cultured with ST2 stromal cells with either scrambled control siRNA (ST2+A SCR) or siRNA targeting IRF4 (ST2+A IRF4). Survival was analysed over three days and protein levels of IRF4 were measured after three days of culture using flow cytometry. Additionally, immunoglobulin levels of IgG, IgA and IgM in the cell culture supernatant were assessed using ELISA (Figure 13).

ST2+A IRF4 cells displayed significantly decreased survival compared to ST2+A SCR cells (ST2+A IRF4: day 1 96.5% \pm 16 day 3 64% \pm 23.7; ST2+A SCR: day 1 100% \pm 18.9, day 3 86 \pm 18.7) and surviving cells continued to secret immunoglobulins of all subclasses. IRF4 siRNA significantly decreased protein expression of IRF4 by 30% compared to scrambled control (ST2+A SCR 100% \pm 11.6; ST2+A IRF4 71% \pm 13.5).

(A) Percentage of survival of *ex vivo* memory plasma cells cultured with ST2+A, and scrambled siRNA or siRNA targeting IRF4 for three days. B) Knock-down efficiency of IRF4 compared to scrambled control on day 3 of culture. Data is pooled from at least four independent biological experiments with n= 15-17 technical replicates. (C) Concentration of IgG, IgM and IgA antibodies on day 3 of culture from plasma cells cultured as in (A) measured by ELISA. Statistics: Kruskal-Wallis test (survival), Mann-Whitney test (IRF4 KD). Significance is determined as p≤0.05; not significant is not shown

3.5.1 IRF4 knock-down downregulated BCL2 expression in *ex vivo* memory plasma cells

IRF4 has been previously reported to regulate plasma cell survival by controlling mitochondrial homeostasis, ROS production and cell metabolism. Moreover, the authors showed that BCL2 overexpression rescued IRF4-deficient plasma cells from cell death²¹. IRF4 has also been implied in controlling MCL1 expression via the transcription factor ZBTB20⁷⁷.

Our goal was to examine the influence of IRF4 on the expression of pro- and antiapoptotic proteins BCL2, MCL1, BIM and NOXA using our *in vitro* culture system. We cultured memory plasma cells in the presence of ST2 cells and APRIL with either IRF4specific siRNA or a scrambled control. After three days of culture, we analysed the proand anti-apoptotic proteins using flow cytometry (Figure 14). MCL1 (ST2+A SCR 967.8 ± 451; ST2+A IRF4 1145 ± 309), NOXA (ST2+A SCR 1436 ± 273.8; ST2+A IRF4 1618 ± 559.5) and BIM (ST2+A SCR 177 ± 36; ST2+A IRF4 162 ± 40) expression were not affected by IRF4 knock-down. BCL2 expression was significantly decreased by IRF4 knock-down (ST2+A SCR 278.8 ± 20; ST2+A IRF4 208 ± 11) (Figure 14B).

The results show that IRF4 might promote survival by regulating the anti-apoptotic protein BCL2 in memory plasma cells.

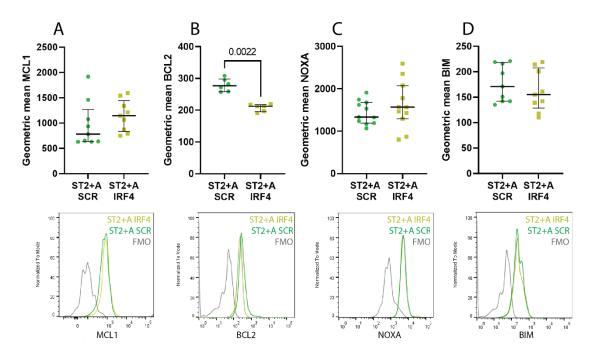
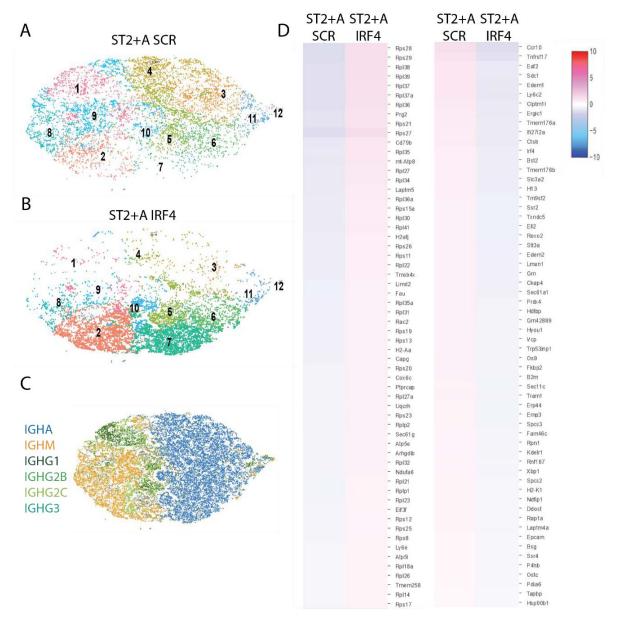


Figure 14: IRF4 regulates expression of BCL2 in memory plasma cells. Geometric mean expression of (A) MCL1, (B) BCL2, (C) NOXA and (D) BIM in *ex vivo* memory plasma cells cultured with ST2+A and scrambled siRNA or siRNA targeting IRF4 for three days and measured using flow cytometry. Pooled from two-three independent biological experiments with n= 6-9 technical replicates per group. Statistics: Unpaired t test. Significance is determined as p≤0.05; not significant is not shown.

3.5.2 IRF4 regulates genes defining the plasma cell identity and ERassociated genes in *ex vivo* memory plasma cells

With the aim to identify IRF4 downstream targets in memory plasma cells, single cell sequencing of IRF4 knock-down plasma cells was performed. Plasma cells were cultured with ST2 cells and APRIL with scrambled control siRNA (ST2+ APRIL SCR) or IRF4 specific siRNA (ST2+A IRF4). On day three of culture, plasma cells were sorted as live, CD138⁺⁺ cells and sequenced using 10X Genomics-based droplet sequencing.


For the condition ST2+A SCR 8,942 cells were sequenced with 23,065 mean reads per cells and 1,249 median genes per cell and a sequencing saturation of 30%. 10,361 cells were sequences for ST2+A IRF4 with 23,129 mean reads per cells and 1,274 median genes per cell and a sequencing saturation of 32.4%. Additionally, BCR sequencing of the samples was performed. Cells with low UMI counts and high expression of mitochondrial genes were excluded from the analysis as they were assumed to be low quality.

Xbp1, Tnfrsf17, Tnfrsf13b, Sdc1, and *Prdm1* were expressed in memory plasma cells, however apart from *Tnfrsf13b* they were downregulated by IRF4 knock-down (S 6).

Memory plasma cells clustered into 12 population according to their transcriptomes (Figure 15A, B). ST2+A SCR cells were predominantly assigned to clusters 1, 3, 4, 8 and 9 whereas ST2+A IRF4 cells were mostly in clusters 5 and 6 as well as 2 and 7 that were enriched for ribosomal genes (S 7).

34 genes were significantly upregulated in ST2+A IRF4 cells with the majority encoding for ribosomal genes (*Rps* and *Rpl* genes, *Prg2, Cd79b, mt-Atp8, Laptm5, H2afj, Tmsb4x, Fau, Limd2, Rac2, Capg*). 27 genes were significantly upregulated in ST2+A SCR cells (*Ccr10, Tnfrsf17, Ly6c2, Edem1, Sdc1, Eaf2, Clptm11, Ergic1, Tmem176a, Ctsb, Ifi27l2a, Bst2, Irf4, Tmem176b, H13, Slc3a2, Tm9sf, Txndc5, Ssr2, Ell2, Rexo2, Edem2, Stt3a, Lman1, Grn, Sec61a1, Ckap4*) (Figure 15D).

The data illustrates that IFR4 knock-down results in downregulation of typical plasma cell markers such as *Tnfrsf17, Prdm1, Xbp1* and *Sdc1*, which could explain the reduced survival. Ribosomal, lysosomal, and mitochondrial genes were upregulated, possibly as a result of elevated cell stress. Some of the differential regulated genes are indirect targets of IRF4, as IRF4 regulates BLIMP-1 expression. Among BLIMP-1 target genes are *Xbp1, Ell2, H2-Aa, Sdc1* and *Cd79b*²².

Figure 15: Differential gene expression of memory plasma cells *in vitro* **after IFR4 knock-down.** Memory plasma cells were cultured with 50 ng/mL APRIL and ST2 cells. Additionally, plasma cells were treated with scrambled control siRNA or siRNA targeting IRF4 for three days. Cells were sorted as DAPI-CD138⁺⁺ and subsequently sequenced using 10X Genomics-based droplet sequencing. (A, B) 12 transcriptionally defined clusters were identified by shared nearest neighbour (SNN) modularity optimisation-based clustering algorithm mapped to tSNE representation of memory plasma cells. tSNE coordinates and clustering was computed for 38,243 cells, presentation is separated by sample. (C) Distribution of immunoglobulin gene expression as determined by BCR sequencing mapped on tSNE are depicted. (D) Heatmap of differentially expressed genes between the samples ST2+A IRF4 and ST2+A SCR.

Since IRF4 has been described to regulate the amino acid transporter CD98 and the glucose transporter GLUT1 in T cells, thereby influencing their metabolism²⁷, we analysed the expression of these transporters in memory plasma cells. GLUT1 was not detected in single cell RNA sequencing, probably due to technical limitations, as it is reported to be expressed by plasma cells⁹⁰. CD98 is a heterodimer of SLC3A2 and SLC7A5. *Slc3a2* was significantly downregulated in memory plasma cells after IRF4

knock-down and is a direct target of IRF4 according to a published ChIP seq databank⁹¹. Reduced expression of CD98 as well as CD138 (*Sdc1*) and BLIMP-1GFP due to IRF4 knock-down could be verified using flow cytometry (Figure 16).

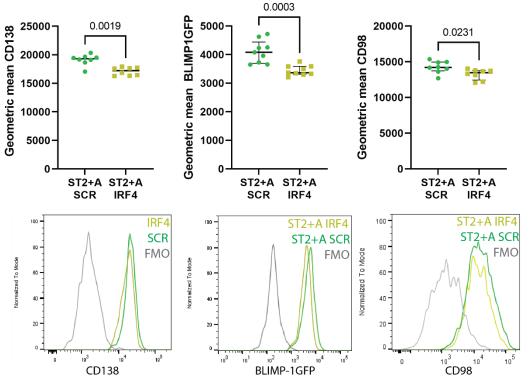


Figure 16: Blimp1GFP, CD138 and CD98 expression of memory plasma cells after siRNA induced IRF4 knock-down *in vitro*. Memory plasma cells were cultured with ST2+A, and scrambled siRNA or siRNA targeting IRF4 for three days. Cells were analysed for CD98 using flow cytometry. Pooled from two independent biological experiments with n=8 technical replicates per group. Statistic: Unpaired t-test. Significance is determined by $p \le 0.05$.

Taken together the results indicate that IRF4 regulates the anti-apoptotic protein BCL2, as well as a variety of genes associated to ER functions such as protein production and protein folding, and cellular metabolism. Genes defining the typical plasma cell identify are reduced in IRF4 knock-down cells, potentially decreasing cell survival.

4 DISCUSSION

Durable protective immunity is provided by memory plasma cells that can survive years to decades in dedicated niches while continuously secreting antibodies. The basis of their longevity remains poorly understood owing to their low frequency and rapid cell death once isolated from tissue. Thus, various *in vitro* culture systems for memory plasma cells have been described using *in vitro* generated memory plasma cells, differentiated either from B cells or from antibody-secreting cells in the blood after booster vaccination^{32,45,92}. It is questionable that the survival requirements of these

cells are identical to memory plasma cells that migrated to and reside in the bone marrow.

Therefore, we isolated *ex vivo* memory plasma cells from the bone marrow of mice immunised and challenged twice in 21-day intervals with NP-CGG/IFA for our *in vitro* culture system. We have identified two essential survival factors of memory plasma cells that are sufficient to maintain *ex vivo* memory plasma cells *in vitro*: (1) direct cell contact to stromal cells of the cell line ST2 and (2) recombinant multimeric APRIL. Additionally, we previously showed that memory plasma cells cultured *in vitro* maintained the transcriptional program of *ex vivo* bone marrow plasma cells³⁰.

Memory plasma cells in the bone marrow can be found in direct contact to mesenchymal stromal cells⁹³. These stromal cells organise the survival niche of memory plasma cells where they receive different and majorly redundant survival signals from accessory cells^{31,42,94,95}. Signalling via BCMA, the receptor of APRIL and BAFF, is essential for memory plasma cells as BCMA deficient mice display severely reduced numbers of bone marrow memory plasma cells⁹⁵. Downstream of BCMA, the NF- κ B pathway is activated and induces pro-survival signalling, resulting in expression of the anti-apoptotic protein MCL1^{39,95}. Contrary to BCMA, the role of stromal cells and the survival signalling pathways they induce in memory plasma cells remains largely unknown. Thus, we aimed to elucidate how stromal cells promote memory plasma cell maintenance in the bone marrow using our *in vitro* culture system.

4.1 Endoplasmic reticulum stress is the main driver of caspase activation and cell death in *ex vivo* bone marrow memory plasma cells

Ex vivo plasma cells lacking survival signals rapidly die *in vitro*. We previously demonstrated that the essential survival signals (1) ST2 stromal cells and (2) the cytokine APRIL protect plasma cells from caspase-mediated apoptosis³⁰. Caspases are serine/cysteine proteases with numerous downstream targets to ensure orderly degradation of the cell. The caspase-cascade is activated either by extrinsic or intrinsic factors. Indicative for the extrinsic apoptotic pathway is caspase 8 activation. The intrinsic apoptotic pathway is activated by mitochondria or the ER. ER stress can activate caspase 12 whereas activation of caspases 3, 7 and 9 is associated with mitochondria⁷¹. To gain a deeper understanding of how the individual survival signals protect memory plasma cells from cell death, we analysed the activation of caspases

3, 7, 8 and 12 in *ex vivo* memory plasma cells cultured with APRIL alone, with ST2 cells alone or the combination of both (ST2+A).

In line with previous reports, we did not observe activation of caspase 8, the mediator of the extrinsic pathway of apoptosis⁹⁶. Moreover, memory plasma cells cultured with ST2+A did not display activation of any of the other analysed caspases, corresponding to cell survival in this condition.

As professional secretory cells, plasma cells experience high ER stress, which is counteracted by the UPR, enabling the cells to cope with amplified protein production. As a result of excessive and prolonged ER stress, the stress sensor IRE1 associates with TRAF2 and activates caspase 12. Activation of the ER-associated caspase 12 was detected in memory plasma cells cultured only with either APRIL or ST2 cells. Activation of caspases 3 and 7 is preceded by mitochondria depolarisation, cytochrome c release and caspase 9 activation^{70,71}. Memory plasma cells cultured with APRIL, but not ST2 cells, expressed high levels of active caspases 3 and 7. Unexpectedly, memory plasma cells cultured with APRIL alone did not display mitochondria membrane depolarisation, as measured by TMRM staining. Reports demonstrated that caspase 12 can activate caspase 9 in a cytochrome c independent way. Thus, ER stress-induced activation of caspases 3 and 7 does not always depend on mitochondrial membrane depolarisation⁹⁷.

While memory plasma cells co-cultured with ST2 cells also expressed active caspase 12, activation of caspases 3 and 7 was not detected in this condition. This observed discrepancy might be explained with the fact that caspase 9 can be regulated by Ras kinase, protein kinase C as well as AKT^{98,99}. PI3K/AKT signalling induced by stromal cell contact appears to prevent caspase 9 activation and subsequently activation of caspases 3 and 7. Indeed, inhibition of PI3K/AKT signalling using wortmannin resulted in activation of caspases 3 and 7 in memory plasma cells co-cultured with ST2 cells.

We suggest that plasma cell death is mediated by excessive ER stress and activation of caspase 12. Downstream of caspase 12, caspases 3 and 7 are activated, presumably by caspase 9 which is prevented by stromal cell induced PI3K/AKT signalling. However, caspase 12 activation alone is sufficient to induce cell death and APRIL and stromal cell contact are both necessary to protect plasma cells from ER stress-induced cell death. Future studies will explore caspase 9 activation and evaluate if specific inhibition of caspase 12 is sufficient to rescue plasma cells from apoptosis. As an additional indicator of cell stress, we analysed mitochondrial ROS formation in *ex vivo* memory plasma cells. Since ROS is produced during oxidative phosphorylation and utilised as secondary messenger, e.g. to amplify the NF- κ B signalling pathway, basal levels of ROS are expected¹⁰⁰. However, high levels of ROS are a source of cell stress and can result in apoptosis. *Ex vivo* memory plasma cells in all culture conditions displayed a basal level of mitochondrial ROS.

Apart from mitochondrial ROS production, ROS can also be generated during increased protein folding in the ER of plasma cells with approximately 10^5 H₂O₂ molecules generated per second in IgM producing cells¹⁰¹. Accordingly, we evaluated total cellular ROS levels in *ex vivo* memory plasma cells. Interestingly, memory plasma cells cultured with APRIL expressed high ROS levels indicating oxidative stress, while ST2 cells protected plasma cells from excessive ROS production. A recent study suggests that the PI3K signalling pathway is important to generate a robust UPR and could consequently impact ROS production by preventing protein stress¹⁰².

Collectively, our data highlights that uncontrolled ER stress is the initiator of memory plasma cell death, and stromal cells and APRIL synergistically prevent excessive ER stress. It would be interesting to determine if the secretory capacity of memory plasma cells correlates with ER stress and differs depending on the respective culture condition. Potentially, both survival signals are required for memory plasma cells to establish a tolerable amount of immunoglobulin production. Further investigations are necessary to understand how ST2 cell contact prevents the formation of ROS and if it impacts redox homeostasis of memory plasma cells.

It should be noted that in the present study memory plasma cells were analysed after one day in culture, and while the data indicates that the ER is the initiator of cell stress, mitochondria likely play a role at later time points. It is to be expected that prolonged ER stress and Ca²⁺⁺ release from the ER will ultimately result in mitochondrial membrane depolarisation¹⁰¹.

4.2 ITGB1 mediated cell-cell contact to ST2 stromal cells is important for *ex vivo* memory plasma cell survival

Bone marrow memory plasma cells are found in proximity to stromal cells, which are heterogeneous and express cell adhesion molecules e.g., VCAM-1 and secret soluble factors (e.g., CXCL12, BAFF) relevant for plasma cell maintenance^{93,103}. We

previously illustrated that ST2 cell contact is essential for memory plasma cell survival *in vitro*³⁰. Moreover, the importance of integrin mediated cell-cell contact *in vivo* was demonstrated by targeting the integrins LFA-1 (α L β 2) and VLA-4 (α 4 β 1) with antibodies ablating memory plasma cells from the bone marrow of mice⁸⁹. Integrins can activate the PI3K signalling pathway resulting in pro-survival signalling¹⁰⁴.

To elucidate whether VLA-4 is important for memory plasma cell survival and activates the PI3K signalling pathway *in vitro*, we treated *ex vivo* memory plasma cells with specific siRNA against ITGB1. VLA-4 is a heterodimer consisting of ITGB1 and ITGA4 and the binding partner of VCAM-1 on stromal cells.

siRNA mediated knock-down of ITGB1 reduced ITGB1 protein levels by 30% and significantly decreased cell survival of plasma cells compared to control cells. Unexpectedly, the PI3K/AKT downstream targets FoxO1 and FoxO3 were not upregulated and activation of caspase 3 which would be suggestive of apoptosis was not detected in ITGB1 knock-down memory plasma cells. Collectively, this indicated that ST2 cell contact still induced pro-survival PI3K/AKT signalling in memory plasma cells after ITGB1 knock-down which prevented caspase activation.

Hence, the observed survival disadvantage of memory plasma cells following ITGB1 knock-down might be a consequence of weaker attachment to ST2 stromal cells. Conceivably, memory plasma cells are more easily detached from stromal cells and die as a result of absent stromal cell contact. Memory plasma cells that successfully attach to ST2 stromal cells still receive survival signals, most likely through other cell-cell contacts.

Of note, single cell RNA sequencing data of *ex vivo* memory plasma cells (S 8) revealed gene expression of *Itga4* and *Itgb7*, encoding for the receptor for MAdCAM-1, and *Itga1* and *Itgb2*, encoding for the receptor for ICAM-1. Although we previously excluded ICAM-1 expression on ST2 stromal cells, it is yet to be determined if ST2 cells express MAdCAM-1. Additionally, as ITGB1 expression was only decreased by 30%, residual VLA-4 could induce PI3K signalling. Other cell-cell contacts such as via CD44 have also been reported to induce pro-survival signalling in memory plasma cells^{31,42}. To assess the impact of integrin mediated signalling in *ex vivo* plasma cells, siRNAs targeting all expressed integrins should be used in the future. It would be interesting to investigate if memory plasma cells expressing different immunoglobulin

subtypes utilise distinct cell-cell contacts to ST2 stromal cells *in vitro*. For *in vivo* plasma cells it was suggested that laminin β 1 binding to a so far unknown integrin is important for the maintenance of IgG⁺ plasma cells in the bone marrow⁴⁹.

4.3 ST2 cell contact induced downregulation of FoxO1/3 is essential for

ex vivo memory plasma cell survival and modulates MCL1 expression Using our *in vitro* culture system, we previously demonstrated that stromal cells are not only organisers of the plasma cell survival niche but induce PI3K signalling in memory plasma cells. PI3K activates AKT that has a variety of downstream targets, among them FoxO1 and FoxO3³⁰. FoxO1 and FoxO3 are transcription factors regulating numerous signalling pathways such as cell survival, autophagy, and cell stress⁵³. We demonstrate here that FoxO1 and FoxO3 downregulation is essential for plasma cell survival and induced by stromal cell contact. Knock-down of FoxO1 and FoxO3 using specific siRNAs sufficed to maintain plasma cells in the absence of stromal cells for three days *in vitro*.

Single cell RNA sequencing of plasma cells revealed very few transcriptional differences between plasma cells with siRNA induced FoxO1/3 knock-down compared to scrambled control. Notably, although verified on protein level by flow cytometry, siRNA induced downregulation of FoxO1 and FoxO3 was not detected on transcript level. As close to 70% of transcripts encode for immunoglobulins, plasma cells are challenging to sequence. Thus the sequencing depth was possibly not sufficient to detect subtle changes in mRNA levels²³.

The observed transcriptional differences predominantly distinguished memory plasma cells cultured with or without stromal cell contact (ST2+A SCR vs APRIL SCR and APRIL FOXO). Further separation into immunoglobulin subtypes only revealed transcriptional differences according to their respective immunoglobulin expression but not due to FoxO1/3 downregulation. *Stat1* was among the significantly upregulated genes in memory plasma cells cultured with APRIL, independent of FoxO1/3 knock-down. As BLIMP-1 is described to directly antagonise *Stat1* expression it would be interesting to determine BLIMP-1 expression in plasma cells cultured with and without stromal cells¹⁰⁵. Potentially, *Stat1* expression is increased as a result of lower BLIMP-1 expression.

Unexpectedly, activation of caspases 3, 7 and 12 was not prevented by FoxO1/3 knock-down. On a transcriptional level, plasma cells cultured in the absence of stromal cells upregulated *Serpina3f*, encoding for the serine protease inhibitor A3F. Serpins are serine protease inhibitors, but some were shown to also inhibit cysteine proteases, such as caspases. In T cells, serpins exhibit anti-apoptotic properties and are important for cell survival¹⁰⁶. One might speculate that in *ex vivo* memory plasma cells the upregulation of *Serpin* genes results in higher tolerance of caspase activation. However, *Serpina3f* expression was not exclusive to memory plasma cells after FoxO1/3 knock-down (APRIL FOXO) but also expressed in scrambled control cells (APRIL SCR). Thus, the mechanism enabling memory plasma cells to survive despite caspase activation remains to be elucidated.

Since FoxO1 and FoxO3 can positively regulate pro-apoptotic proteins such as BIM^{54,55}, we determined the expression of pro- and anti-apoptotic proteins in memory plasma cells after FoxO1/3 knock-down. Although expression of BIM and NOXA was decreased in memory plasma cells co-cultured with stromal cells compared to plasma cells cultured without stromal cells, this was independent of FoxO1/3 expression. Instead, we observed that expression of the anti-apoptotic protein MCL1 was modulated by FoxO1/3. Memory plasma cells cultured with APRIL+SCR, i.e., high FoxO1/3 expression, displayed significantly higher expression of MCL1 compared to memory plasma cells co-cultured with stromal cells, i.e., low FoxO1/3 expression. Conversely, *Mcl1* transcript expression was elevated in memory plasma cells cultured with stromal cells, indicating posttranscriptional regulation of MCL1.

MCL1 expression is essential for memory plasma cell survival and induced by NF- κ B signalling downstream of BCMA⁹⁵. In addition to inhibiting apoptosis, MCL1 regulates autophagy and mitophagy, the recycling of damaged and old mitochondria, modulates calcium oscillations from the ER and positively regulates mitochondrial Ca²⁺ voltage-dependent anion channels (VDAC), which is reported to induce ROS production¹⁰⁷.

Collectively, the data suggests that stromal cell contact induced FoxO1/3 downregulation ensures that the optimal protein concentration of MCL1 is expressed in memory plasma cells thereby promoting survival. In line with that, suppression of FoxO1/3 by AKT in multiple myeloma cell lines enhances cell survival and stabilises MCL1 expression¹⁰⁸.

Mechanistically there is evidence that FoxO3 activates the NF- κ B pathway through BCL10 (B cell lymphoma 10)¹⁰⁹. Thus, in the absence of stromal cell contact, memory plasma cells can potentially upregulate the NF- κ B signalling pathway through BCMA and FoxO3, resulting in high expression of MCL1. In the presence of stromal cell contact, FoxO3 is inhibited, and NF- κ B signalling is only induced by BCMA, resulting in adequate MCL1 expression.

Of note, FoxO1/3 additionally regulate other signalling pathways, such as metabolism and redox homeostasis. Thus, more in depth analysis will be necessary to understand how FoxO1/3 downregulation enhances memory plasma cell survival.

4.4 IRF4 is induced by ST2 cells and APRIL and regulates *ex vivo* memory plasma cell survival by maintaining a functional endoplasmic reticulum and BCL2 expression.

IRF4 is the master transcription factor of memory plasma cells and essential for their generation and survival. Genetic deletion of IRF4 results in loss of memory plasma cells²². IRF4 is a target of NF- κ B and plasma cells expressing only one IRF4 allele displayed reduced uptake of glucose, reduced mitochondrial mass, and expressed elevated levels of ROS¹⁰⁰, suggesting that IRF4 controls metabolism in memory plasma cells. Moreover, Low and colleagues showed that IRF4-deficiency resulted in caspase-dependent cell death of plasma cells due to mitochondria depolarisation and indicated that IRF4 controls mitochondrial homeostasis. However, previous studies have concentrated on splenic plasma cells, and the experimental model was based on observations in cell lines. Thus, the authors disregarded potential differences between *ex vivo* plasma cells and cell lines¹¹⁰.

We aimed to elucidate the signalling pathways regulating IRF4 expression as well as downstream targets of IRF4 in *ex vivo* bone marrow plasma cells using our *in vitro* culture system. Our data demonstrates that the two essential survival signals, stromal cell contact, and APRIL are required for full expression of IRF4, corresponding to the survival of *ex vivo* memory plasma cells in the respective *in vitro* conditions. IRF4 expression in plasma cells cultured with ST2+A was not significantly upregulated compared to plasma cells cultured with only ST2 cells (p=0.09). However, this was most likely due to low intensity of IRF4 staining. We have previously shown that this difference is reliable and significant³⁰.

Using specific siRNA we assessed the impact of IRF4 on the regulation of pro-and antiapoptotic proteins, as it was previously suggested that IRF4 induces MCL1 expression¹¹¹. However, neither MCL1, nor the pro-apoptotic proteins BIM and NOXA were regulated by IRF4. Surprisingly, we found BCL2 expression significantly decreased in memory plasma cells with IRF4 knock-down. This observation is contrary to previous results demonstrating that BCL2 is not a target of IRF4. However, as the study was limited to mouse and human plasma cell lines it is likely that *ex vivo* plasma cells differ from cell lines in this aspect. Accordingly, the authors demonstrated that IRF4-deficient plasma cells can be rescued *in vivo* by BCL2 overexpression, which, with regards to our data, highlights IRF4-dependent BCL2 regulation in bone marrow memory plasma cells²¹.

Single cell RNA sequencing of plasma cells comparing IRF4 knock-down and scrambled control cells illustrated that IRF4 regulates almost all genes defining plasma cell identity, as described before²¹. Downregulation of *Cd98, Prdm1* (BLIMP-1) and *Sdc1* (CD138) was confirmed on protein level in IRF4 knock-down cells. As IRF4 controls BLIMP-1 expression, it is challenging to differentiate between direct targets of IRF4 and genes which are indirectly affected by altered BLIMP-1 expression.

IRF4-deficient plasma cells display a disorganised ER structure which was ascribed to downregulation of XBP-1 and not as a direct effect of IRF4²¹. However, siRNAmediated IRF4 knock-down predominantly downregulated genes associated to functions in the ER such as ribosomal genes, UPR genes and genes encoding for protein folding, glycosylation, transport to Golgi and redox metabolism. One interesting example is the apoptosis suppressor *Tmbim6* (encoding for BI1 (Bax Inhibitor 1)) identified as a target of IRF4 in published ChIP (Chromatin immunoprecipitation) seq dataset⁹¹. BI1 is predominantly located at the ER where it can interfere with all three UPR signalling pathways and directly interacts with IRE1, BAX, BCL2, and BCL-xL. Additionally, BI1 is described to regulate ROS production and Ca²⁺ efflux from the ER¹¹². The TMBIM family and the BCL-2 family closely interact at the ER to integrate cellular pathways, such as UPR, calcium signalling, and autophagy and the ER directly impacts mitochondria homeostasis and cell survival⁷³. Thus, we suggest that IRF4 possibly impacts ER function independently of regulating XBP-1 expression. The effect on mitochondrial homeostasis is most likely a direct result of a dysregulated ER as these organelles are highly interconnected.

Ckap4, encoding for the ER protein Ckap4, is upregulated by IRF4. Ckap4 can also localise to the cell surface membrane where it forms the receptor for DKK1 (Dickkopf1). DKK1 is produced by bone marrow stromal cells¹¹³ and can induce PI3K and NF- κ B signalling by binding to Ckap4¹¹⁴. Thus, IRF4 deficiency might impact pro-survival signalling in plasma cells induced by stromal cell contact.

Interestingly, *Ifnar2*, a direct target of IRF4 based on ChIP seq data, was significantly decreased⁹¹. *Ifnar2* encodes for IFNAR2 (Interferon Alpha/Beta Receptor 2) and is highly expressed in IgG⁺ plasma cells compared to IgA⁺ and IgM⁺ plasma cells based on single cell sequencing data (S 9). A pilot experiment using IFNAabR (interferon- α/β receptor) deficient mice did not display any differences in plasma cell survival *in vitro* between knock-out and wild type mice (S 10). As the mice used for this experiment were not immunised, the isolated plasma cells expressed presumably predominantly IgA and IgM. Hence, future experiment should assess the survival of IFNAabR knock-out IgG⁺ memory plasma cells *in vitro* and *in vivo*.

Collectively, our data illustrates that the master transcription factor IRF4 is synergistically induced by stromal cell contact and APRIL in *ex vivo* memory plasma cells. IRF4 knock-down predominantly affected genes associated with diverse functions in the ER, mostly ribosomal genes. Additionally, IRF4 controls genes defining the plasma cell identity, and influences metabolism by regulating CD98. The higher expression of ribosomal genes could result in higher transcription in IRF4 knock-down cells, thus in the future it should be determined if IRF4 knock-down cells produce more immunoglobulins compared to control cells. To gain deeper insight into IRF4-dependent ER regulation, it would be interesting to analyse Ca²⁺ signalling in memory plasma cells *in vitro* using the FRET-reporter YellowCaB mice, expressing an intracellular calcium indicator¹¹⁵. As the ER is the biggest Ca²⁺ storage in the cell and high levels of cytoplasmic calcium indicate cell stress, this could be helpful in determining if IRF4 influences calcium signalling in plasma cells and how this might impact plasma cell survival.

Mathematic modelling of survival data as well as protein expression of the analysed pro-and anti-apoptotic proteins and active caspases in *in vitro* cultured memory plasma cells supports that these parameters are essential and can explain the survival of the memory plasma cells *in vitro*¹¹⁶. Thus, it is of interest to gain deeper understanding of

60

how ST2 cells and APRIL influence the expression of these parameters and how they interact in the context of memory plasma cell survival.

5 CONCLUSION

Stromal cell contact and APRIL prevent caspase-dependent cell death in *ex vivo* memory plasma cells. They synergistically prevent activation of caspase 12 and induce expression of the essential master transcription factor IRF4. IRF4 expression is required to maintain the memory plasma cell identity and a functional ER.

While APRIL induces NF-κB signalling, stromal cell contact induces PI3K signalling. Downstream of PI3K, activation of caspases 3 and 7 is prevented. However, this is not sufficient for plasma cell survival most likely due to high caspase 12 activation Moreover, PI3K activation downregulates FoxO1/3, which is essential for memory plasma cell survival, potentially by modulating MCL1.

Thus, we propose a model in which IRF4, and FoxO1/3 control independent and essential survival signalling pathways in memory plasma cells that regulate BCL2 and MCL1 respectively.

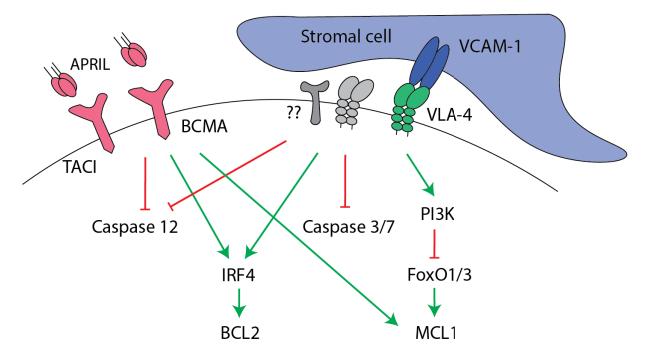


Figure 17: Graphical summary of survival signalling pathways in memory plasma cell. Stromal cells prevent activation of caspases 3 and 7 and together with APRIL inhibit activation of caspase 12. APRIL activates the NF- κ B pathway and stromal cells activate PI3K resulting in inactivation of FoxO1/3. Stromal cells and APRIL synergistically regulate IRF4 expression. BCL2 and MCL1 are regulated by IRF4 and FoxO1/3 respectively.

6 REFERENCES

- 1. Murphy, K., Travers, P. & Walport, M. Janeway's Immunobiology 8th edition. (2012).
- 2. Chang, H. D. & Radbruch, A. Maintenance of quiescent immune memory in the bone marrow. *Eur. J. Immunol.* **51**, 1592–1601 (2021).
- 3. Alexander, T. *et al.* The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. *Ann. Rheum. Dis.* **74**, 1474–1478 (2015).
- 4. Chang, H. D. *et al.* Pathogenic memory plasma cells in autoimmunity. *Curr. Opin. Immunol.* **61**, 86–91 (2019).
- 5. Bortnick, A. & Allman, D. What Is and What Should Always Have Been: Long-Lived Plasma Cells Induced by T Cell-Independent Antigens. *J. Immunol.* **190**, 5913–5918 (2013).
- 6. Bortnick, A. *et al.* Long-Lived Bone Marrow Plasma Cells Are Induced Early in Response to T Cell-Independent or T Cell-Dependent Antigens. *J. Immunol.* **188**, 5389–5396 (2012).
- 7. Renshaw, B. R. *et al.* Humoral Immune Responses in CD40 Ligand-deficient Mice. *J. Exp. Med.* **180**, 1889–1900 (1994).
- Weisel, F. J., Zuccarino-Catania, G. V., Chikina, M. & Shlomchik, M. J. A Temporal Switch in the Germinal Center Determines Differential Output of Memory B and Plasma Cells. *Immunity* 44, 116–130 (2016).
- 9. Nutt, S. L., Taubenheim, N., Hasbold, J., Corcoran, L. M. & Hodgkin, P. D. The genetic network controlling plasma cell differentiation. *Semin. Immunol.* **23**, 341–349 (2011).
- Fairfax, K. A., Kallies, A., Nutt, S. L. & Tarlinton, D. M. Plasma cell development: From B-cell subsets to long-term survival niches. *Semin. Immunol.* 20, 49–58 (2008).
- 11. Mei, H. E. *et al.* A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. *Blood* **125**, 1739–1748 (2015).
- Hauser, A. E. *et al.* Chemotactic responsiveness toward ligands for CXCR3 and CXCR4 is regulated on plasma blasts during the time course of a memory immune response. *J. Immunol.* **169**, 1277–82 (2002).
- 13. Hoyer, B. F. *et al.* Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. *J. Exp. Med.* **199**, 1577–84 (2004).
- Mohr, E. *et al.* Dendritic Cells and Monocyte/Macrophages That Create the IL-6/APRIL-Rich Lymph Node Microenvironments Where Plasmablasts Mature. *J. Immunol.* **182**, 2113–2123 (2009).
- 15. Landsverk, O. J. B. *et al.* Antibody-secreting plasma cells persist for decades in human intestine. *J. Exp. Med.* **214**, 309–317 (2017).
- 16. Hibi, T. & Dosch, H. -M. Limiting dilution analysis of the B cell compartment in human bone marrow. *Eur. J. Immunol.* **16**, 139–145 (1986).
- Corcoran, L. M. & Nutt, S. L. Long-Lived Plasma Cells Have a Sweet Tooth. *Immun. Previews* 45, 3–5 (2016).
- 18. Cenci, S. & Sitia, R. Managing and exploiting stress in the antibody factory. *FEBS Lett.* **581**, 3652–3657 (2007).
- 19. Lam, W. Y. et al. Metabolic and Transcriptional Modules Independently Diversify Plasma Cell

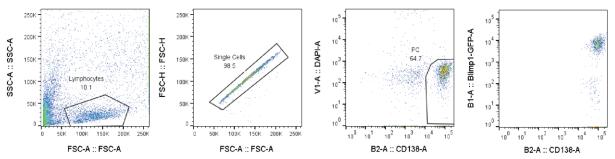
Lifespan and Function. Cell Rep. 24, 2479-2492.e6 (2018).

- 20. Radbruch, A. *et al.* Competence and competition: the challenge of becoming a long-lived plasma cell. *Nat. Rev. Immunol.* **6**, 741–750 (2006).
- 21. Low, M. S. Y. *et al.* IRF4 Activity Is Required in Established Plasma Cells to Regulate Gene Transcription and Mitochondrial Homeostasis. *Cell Rep.* **29**, 2634-2645.e5 (2019).
- 22. Tellier, J. *et al.* Blimp-1 controls plasma cell function through regulation of immunoglobulin secretion and the unfolded protein response. *Nat. Immunol.* **17**, 323–330 (2016).
- 23. Shi, W. *et al.* Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. *Nat. Immunol.* **16**, 663–673 (2015).
- 24. Taubenheim, N. *et al.* High Rate of Antibody Secretion Is not Integral to Plasma Cell Differentiation as Revealed by XBP-1 Deficiency. *J. Immunol.* **189**, 3328–3338 (2012).
- 25. Klein, U. *et al.* Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. *Nat. Immunol.* **7**, 773–782 (2006).
- 26. Ochiai, K. *et al.* Transcriptional Regulation of Germinal Center B and Plasma Cell Fates by Dynamical Control of IRF4. *Immunity* **38**, 918–929 (2013).
- 27. Kratchmarov, R. *et al.* IRF4 Couples Anabolic Metabolism to Th1 Cell Fate Determination. *Immunohorizons* **7**, 156–161 (2017).
- 28. Zehentmeier, S. *et al.* Static and dynamic components synergize to form a stable survival niche for bone marrow plasma cells. *Eur. J. Immunol.* **44**, 2306–17 (2014).
- Lindquist, R. L., Niesner, R. A. & Hauser, A. E. In the Right Place, at the Right Time: Spatiotemporal Conditions Determining Plasma Cell Survival and Function. *Front. Immunol.* 10, 1–13 (2019).
- Cornelis, R. *et al.* Stromal Cell-Contact Dependent PI3K and APRIL Induced NF- k B Signaling Prevent Mitochondrial- and ER Stress Induced Death of Memory Plasma Cells. *Cell Rep.* 32, 1–8 (2020).
- 31. Cassese, G. *et al.* Plasma Cell Survival Is Mediated by Synergistic Effects of Cytokines and Adhesion-Dependent Signals. *J. Immunol.* **4**, 1684–1690 (2003).
- 32. Jourdan, M. *et al.* IL-6 supports the generation of human long-lived plasma cells in combination with either APRIL or stromal cell-soluble factors. *Leukemia* **28**, 1647–1656 (2014).
- 33. Peperzak, V. *et al.* Mcl-1 is essential for the survival of plasma cells. *Nat. Immunol.* **14**, 290–297 (2013).
- 34. Moore, N. *et al.* Impact of CXCR4/CXCL12 Blockade on Normal Plasma Cells In Vivo. *Am. J. Transplant.* **17**, 1663–1669 (2017).
- 35. Varfolomeev, E. *et al.* APRIL-deficient mice have normal immune system development. *Mol. Cell. Biol.* **24**, 997–1006 (2004).
- 36. Belnoue, E. *et al.* APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. *Blood* **111**, 2755–2764 (2008).
- 37. Yeh, T. W. *et al.* APRIL-dependent lifelong plasmacyte maintenance and immunoglobulin production in humans. *J. Allergy Clin. Immunol.* **146**, 1109-1120.e4 (2020).
- 38. O'Connor, B. P. *et al.* BCMA is essential for the survival of long-lived bone marrow plasma cells. *J. Exp. Med.* **199**, 91–8 (2004).

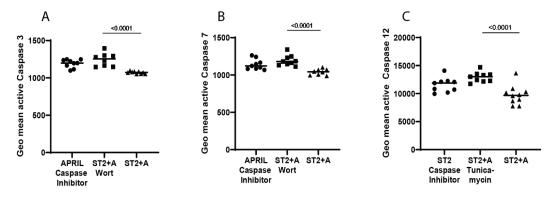
- Hatzoglou, A. *et al.* TNF receptor family member BCMA (B cell maturation) associates with TNF receptor-associated factor (TRAF) 1, TRAF2, and TRAF3 and activates NF-kappa B, elk-1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. *J Immunol* **165**, 1322– 1330 (2000).
- 40. Ginzler, E. M. *et al.* Atacicept in combination with MMF and corticosteroids in lupus nephritis: Results of a prematurely terminated trial. *Arthritis Res. Ther.* **14**, 1–7 (2012).
- 41. McCarron, M. J., Park, P. W. & Fooksman, D. R. CD138 mediates selection of mature plasma cells by regulating their survival. *Blood* **129**, 2749–2759 (2017).
- 42. Driel, M. Van *et al.* CD44 variant isoforms are involved in plasma cell adhesion to bone marrow stromal cells. *Leukemia* **16**, 135–143 (2002).
- 43. Rozanski, C. H. *et al.* CD28 Promotes Plasma Cell Survival, Sustained Antibody Responses, and BLIMP-1 Upregulation through Its Distal PYAP Proline Motif. *J. Immunol.* **194**, 4717–28 (2015).
- 44. Chevrier, S. *et al.* CD93 is required for maintenance of antibody secretion and persistence of plasma cells in the bone marrow niche. *PNAS* **106**, 3895–900 (2009).
- 45. Nguyen, D. C. *et al.* Factors of the bone marrow microniche that support human plasma cell survival and immunoglobulin secretion. *Nat. Commun.* **9**, 3698 (2018).
- 46. Nguyen, D. C. *et al.* Extracellular vesicles from bone marrow-derived mesenchymal stromal cells support ex vivo survival of human antibody secreting cells. *J. Extracell. Vesicles* **7**, 1463778 (2018).
- 47. Dilillo, D. J. *et al.* Maintenance of Long-Lived Plasma Cells and Serological Memory Despite Mature and Memory B Cell Depletion During CD20 Immunotherapy in Mice. *J. Immunol.* **180**, 361–371 (2008).
- 48. Spriel, A. B. Van *et al.* The Tetraspanin CD37 Orchestrates the a 4 b 1 Integrin Akt Signaling Axis and Supports Long-Lived Plasma Cell Survival. *Sci. Signal.* **5**, (2012).
- 49. Männe, C. *et al.* Salmonella SiiE prevents an efficient humoral immune memory by interfering with IgG+ plasma cell persistence in the bone marrow. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 7425–7430 (2019).
- 50. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibodysecreting plasma cells. *Nat. Publ. Gr.* **15**, 160–171 (2015).
- 51. Chen, H. C. & Guan, J. L. Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3-kinase. *Proc. Natl. Acad. Sci. U. S. A.* **91**, 10148–10152 (1994).
- 52. Kim, E. H. & Suresh, M. Role of PI3K/Akt signaling in memory CD8 T cell differentiation. *Front. Immunol.* **4**, 1–11 (2013).
- 53. Zhang, X., Tang, N., Hadden, T. J. & Rishi, A. K. Akt, FoxO and regulation of apoptosis. *Biochim. Biophys. Acta - Mol. Cell Res.* **1813**, 1978–1986 (2011).
- 54. You, H. *et al.* FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. *J. Exp. Med.* **203**, 1657–1663 (2006).
- 55. Stahl, M. *et al.* The Forkhead Transcription Factor FoxO Regulates Transcription of p27 Kip1 and Bim in Response to IL-2 . *J. Immunol.* **168**, 5024–5031 (2002).
- 56. Calnan, D. R. & Brunet, a. The FoxO code. Oncogene 27, 2276–2288 (2008).
- 57. Monsalve, M. & Olmos, Y. The Complex Biology of FOXO. *Curr. Drug Targets* **12**, 1322–1350

(2011).

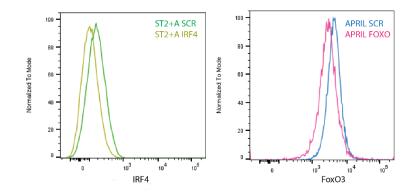
- 58. Auner, H. W., Beham-Schmid, C., Dillon, N. & Sabbattini, P. The life span of short-lived plasma cells is partly determined by a block on activation of apoptotic caspases acting in combination with endoplasmic reticulum stress. *Blood* **116**, 3445–3455 (2010).
- 59. Lam, W. Y. *et al.* Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells. *Immunity* **45**, 60–73 (2016).
- 60. Nguyen, H. T. T. & Merlin, D. Homeostatic and innate immune responses: Role of the transmembrane glycoprotein CD98. *Cell. Mol. Life Sci.* **69**, 3015–3026 (2012).
- 61. Pengo, N. *et al.* Plasma cells require autophagy for sustainable immunoglobulin production. *Nat. Immunol.* **14**, 298–305 (2013).
- 62. Cenci, S. The Proteasome in Terminal Plasma Cell Differentiation. *Semin. Hematol.* **49**, 215–222 (2012).
- 63. Ricci, D., Gidalevitz, T. & Argon, Y. The special unfolded protein response in plasma cells. *Immunol. Rev.* **303**, 35–51 (2021).
- 64. Gass, J. N., Jiang, H.-Y., Wek, R. C. & Brewer, J. W. The Unfolded Protein Response of B-Lymphocytes: PERK- independent Development of Antibody-Secreting Cells. *Mol Immunol.* **45**, 1035–1043 (2008).
- 65. Ma, Y., Shimizu, Y., Mann, M. J., Jin, Y. & Hendershot, L. M. Plasma cell differentiation initiates a limited ER stress response by specifically suppressing the PERK-dependent branch of the unfolded protein response. *Cell Stress Chaperones* **15**, 281–293 (2010).
- Aragon, I. V, Barrington, R. A., Jackowski, S., Mari, K. & Brewer, J. W. The Specialized Unfolded Protein Response of B Lymphocytes: ATF6α-Independent Development of Antibody-Secreting B cells. *Mol Immunol.* 51, 347–55 (2012).
- 67. Yoneda, T. *et al.* Activation of Caspase-12, an Endoplastic Reticulum (ER) Resident Caspase, through Tumor Necrosis Factor Receptor-associated Factor 2-dependent Mechanism in Response to the ER Stress. *J. Biol. Chem.* **276**, 13935–13940 (2001).
- 68. Urano, F. *et al.* Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. *Science (80-.).* **287**, 664–666 (2000).
- 69. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA Is Induced by ATF6 and Spliced by IRE1 in Response to ER Stress to Produce a Highly Active Transcription Factor. *Cell* **107**, 881–891 (2001).
- 70. Shamas-Din, A., Brahmbhatt, H., Leber, B. & Andrews, D. W. BH3-only proteins: Orchestrators of apoptosis. *Biochim. Biophys. Acta Mol. Cell Res.* **1813**, 508–520 (2011).
- 71. Julien, O. & Wells, J. A. Caspases and their substrates. *Cell Death Differ.* **24**, 1380–1389 (2017).
- 72. Pelletier, N. *et al.* The endoplasmic reticulum is a key component of the plasma cell death pathway. *J. Immunol.* **176**, 1340–1347 (2006).
- 73. Pihán, P., Carreras-Sureda, A. & Hetz, C. BCL-2 family: Integrating stress responses at the ER to control cell demise. *Cell Death Differ.* **24**, 1478–1487 (2017).
- 74. Breckenridge, D. G., Germain, M., Mathai, J. P., Nguyen, M. & Shore, G. C. Regulation of apoptosis by endoplasmic reticulum pathways. *Oncogene* **22**, 8608–8618 (2003).
- 75. Vikstrom, I. B. et al. MCL-1 is required throughout B-cell development and its loss sensitizes

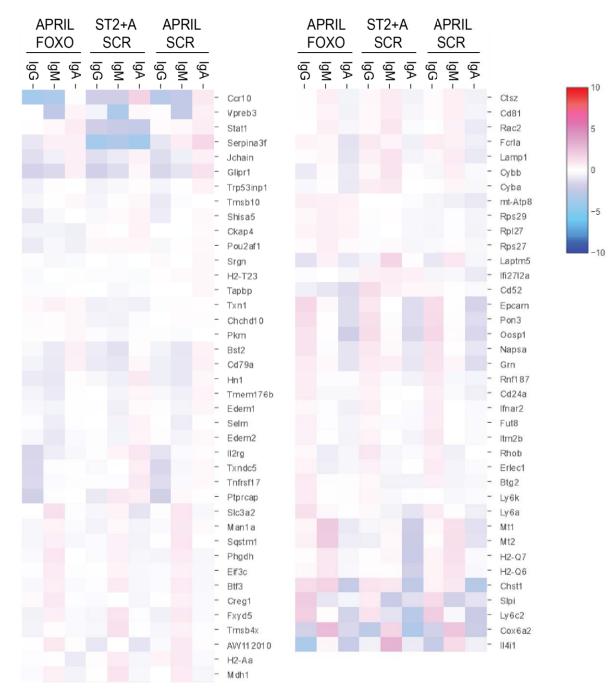

specific B-cell subsets to inhibition of BCL-2 or BCL-XL. Cell Death Dis 7, e2345 (2016).

- 76. Wang, Y. & Bhattacharya, D. Adjuvant-specific regulation of long-term antibody responses by ZBTB20. *J. Exp. Med.* **211**, 841–856 (2014).
- 77. Chevrier, S. *et al.* The BTB-ZF transcription factor Zbtb20 is driven by Irf4 to promote plasma cell differentiation and longevity. *J. Exp. Med.* **211**, 827–840 (2014).
- 78. Le Gouill, S., Podar, K., Harousseau, J. L. & Anderson, K. C. Mcl-1 regulation and its role in multiple myeloma. *Cell Cycle* **3**, 1259–1262 (2004).
- 79. Gomez-Bougie, P. *et al.* Noxa up-regulation and Mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma. *Cancer Res.* **67**, 5418–5424 (2007).
- 80. Gomez-Bougie, P., Bataille, R. & Amiot, M. The imbalance between Bim and Mcl-1 expression controls the survival of human myeloma cells. *Eur. J. Immunol.* **34**, 3156–3164 (2004).
- Carrington, E. M. *et al.* BH3 mimetics antagonizing restricted prosurvival Bcl-2 proteins represent another class of selective immune modulatory drugs. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 10967–10971 (2010).
- 82. Cooper, K. F. Till Death Do Us Part: The Marriage of Autophagy and Apoptosis. *Oxid. Med. Cell. Longev.* **2018**, 1–13 (2018).
- 83. Pattingre, S. *et al.* Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. *Cell* **122**, 927–939 (2005).
- 84. Maiuri, M. C. *et al.* Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. *EMBO J.* **26**, 2527–2539 (2007).
- 85. Germain, M. *et al.* MCL-1 is a stress sensor that regulates autophagy in a developmentally regulated manner. *EMBO J.* **30**, 395–407 (2011).
- 86. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of singlecell gene expression data. *Nat. Biotechnol.* **33**, 495–502 (2015).
- Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. *Nat. Biotechnol.* 36, 411–420 (2018).
- 88. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibodysecreting plasma cells. *Nat. Rev. Immunol.* **15**, 160–171 (2015).
- 89. DiLillo, D. J. *et al.* Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. *J. Immunol.* **180**, 361–371 (2008).
- Caro-Maldonado, A. *et al.* Metabolic Reprogramming is Required for Antibody Production That is Suppressed in Anergic but Exaggerated in Chronically BAFF-Exposed B cells. *J Immunol* 192, 3626–3636 (2014).
- 91. Rouillard, A. D. *et al.* The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. *Database (Oxford).* **2016**, 1–16 (2016).
- 92. Cocco, M. *et al.* In Vitro Generation of Long-lived Human Plasma Cells. *J. Immunol.* **189**, 5773–5785 (2012).
- 93. Zehentmeier, S. *et al.* Static and dynamic components synergize to form a stable survival niche for bone marrow plasma cells. *Eur. J. Immunol.* **44**, 2306–17 (2014).

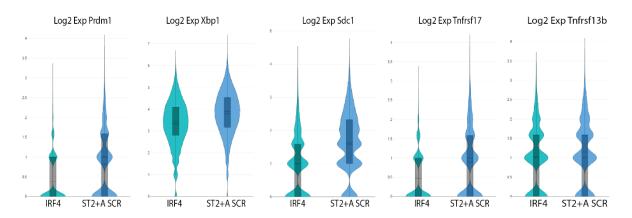

- 94. Rozanski, C. H. *et al.* CD28 Promotes Plasma Cell Survival, Sustained Antibody Responses, and BLIMP-1 Upregulation through Its Distal PYAP Proline Motif. *J. Immunol.* **194**, 4717–28 (2015).
- 95. Peperzak, V. *et al.* Mcl-1 is essential for the survival of plasma cells. *Nat. Immunol.* **14**, 290–297 (2013).
- 96. Pelletier, N. *et al.* The Endoplasmic Reticulum Is a Key Component of the Plasma Cell Death Pathway. *J. Immunol.* **176**, 1340–1347 (2006).
- 97. Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T. & Yasuhiko, Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. *J. Biol. Chem.* **277**, 34287–34294 (2002).
- Brady, S. C., Allan, L. A. & Clarke, P. R. Regulation of Caspase 9 through Phosphorylation by Protein Kinase C Zeta in Response to Hyperosmotic Stress. *Mol. Cell. Biol.* 25, 10543–10555 (2005).
- 99. Cardone, M. H. *et al.* Regulation of Cell Death Protease Caspase-9 by Phosphorylation. *Science* **282**, 1318–21 (1998).
- 100. Utley, A. *et al.* CD28 Regulates Metabolic Fitness for Long-Lived Plasma Cell Survival. *Cell Rep.* **31**, 107815 (2020).
- Masciarelli, S. & Sitia, R. Building and operating an antibody factory: Redox control during B to plasma cell terminal differentiation. *Biochim. Biophys. Acta - Mol. Cell Res.* **1783**, 578–588 (2008).
- Winnay, J. N., Solheim, M. H., Sakaguchi, M., Njølstad, P. R. & Kahn, C. R. Inhibition of the PI 3-kinase pathway disrupts the unfolded protein response and reduces sensitivity to ER stressdependent apoptosis. *FASEB J.* 34, 12521–12532 (2020).
- 103. Addo, R. K. *et al.* Single-cell transcriptomes of murine bone marrow stromal cells reveal nicheassociated heterogeneity. *Eur. J. Immunol.* **49**, 1372–1379 (2019).
- 104. van Spriel, A. B. *et al.* The Tetraspanin CD37 Orchestrates the 4 1 Integrin-Akt Signaling Axis and Supports Long-Lived Plasma Cell Survival. *Sci. Signal.* **5**, ra82–ra82 (2012).
- 105. Elias, S., Robertson, E. J., Bikoff, E. K. & Mould, A. W. Blimp-1/PRDM1 is a critical regulator of Type III Interferon responses in mammary epithelial cells. *Sci. Rep.* **8**, 1–11 (2018).
- 106. Ashton-Rickardt, P. G. An Emerging Role for Serine Protease Inhibitors in T Lymphocyte Immunity and Beyond. *Immunol Lett.* **152**, 65–76 (2013).
- 107. Widden, H. & Placzek, W. J. The multiple mechanisms of MCL1 in the regulation of cell fate. *Commun. Biol.* **4**, 1029 (2021).
- 108. Bloedjes, T. A. *et al.* AKT signaling restrains tumor suppressive functions of FOXO transcription factors and GSK3 kinase in multiple myeloma. *Blood Adv.* **4**, 4151–4164 (2020).
- 109. Li, Z., Zhang, H., Chen, Y., Fan, L. & Fang, J. Forkhead transcription factor FOXO3a protein activates nuclear factor κB through B-cell lymphoma/leukemia 10 (BCL10) protein and promotes tumor cell survival in serum deprivation. *J. Biol. Chem.* **287**, 17737–17745 (2012).
- 110. Pont, M. J. *et al.* y-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. *Blood* **134**, 1585–1597 (2019).
- 111. Chevrier, S. *et al.* The BTB-ZF transcription factor Zbtb20 is driven by Irf4 to promote plasma cell differentiation and longevity. *J. Exp. Med.* **211**, 827–40 (2014).

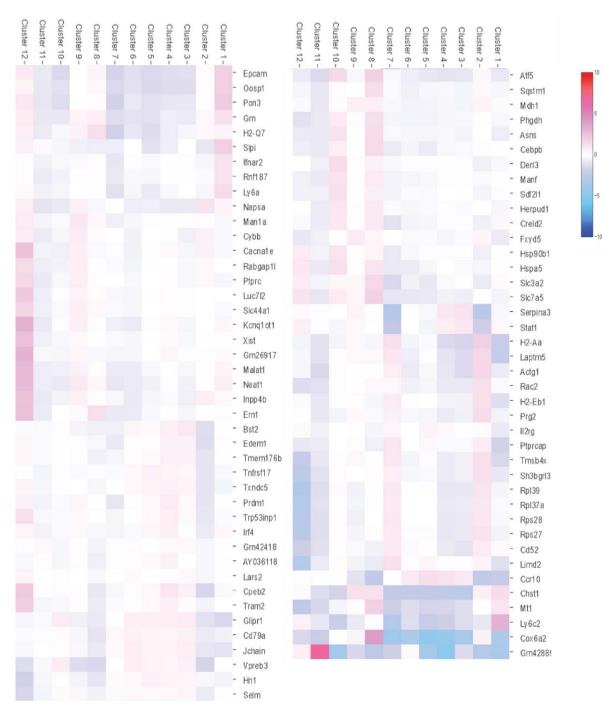
- 112. Robinson, K. S., Clements, A., Williams, A. C., Berger, C. N. & Frankel, G. Bax Inhibitor 1 in apoptosis and disease. *Oncogene* **30**, 2391–2400 (2011).
- 113. Fowler, J. A., Mundy, G. R., Lwin, S. T. & Edwards, C. M. Bone marrow stromal cells create a permissive microenvironment for myeloma development: A new stromal role for Wnt inhibitor Dkk1. *Cancer Res.* **72**, 2183–2189 (2012).
- 114. Li, X. *et al.* DKK1 activates noncanonical NF-kB signaling via IL-6–induced CKAP4 receptor in multiple myeloma. *Blood Adv.* **5**, 3656–3667 (2021).
- 115. Ulbricht, C. *et al.* Intravital quantification reveals dynamic calcium concentration changes across B cell differentiation stages. *Elife* **10**, (2021).
- 116. Burt, P. *et al.* Data-Driven Mathematical Model of Apoptosis Regulation in Memory Plasma Cells. *Cells* **11**, (2022).


APPENDIX

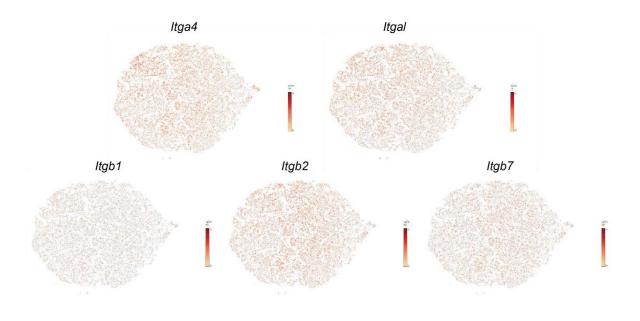

S 1: Exemplary gating of memory plasma cell staining after *in vitro* **culture using flow cytometry.** Plasma cells were identified by big scatter gate, DAPI⁻ CD138⁺⁺ cells expressing high levels of BlimpGFP.

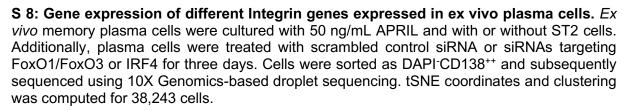
S 2: Controls of active caspases 3, 7 and 12 flow cytometric staining in memory plasma cells after *in vitro* culture. Active caspases (A) 3 and (7) stainings were validated using a pan Caspase Inhibitor that decreased staining or the PI3K Inhibitor Wortmannin (Wort, 10 μ M) to trigger caspase activation. (C) Active caspase 12 staining was validated using a pan Caspase Inhibitor and Tunicamycin to trigger ER stress.

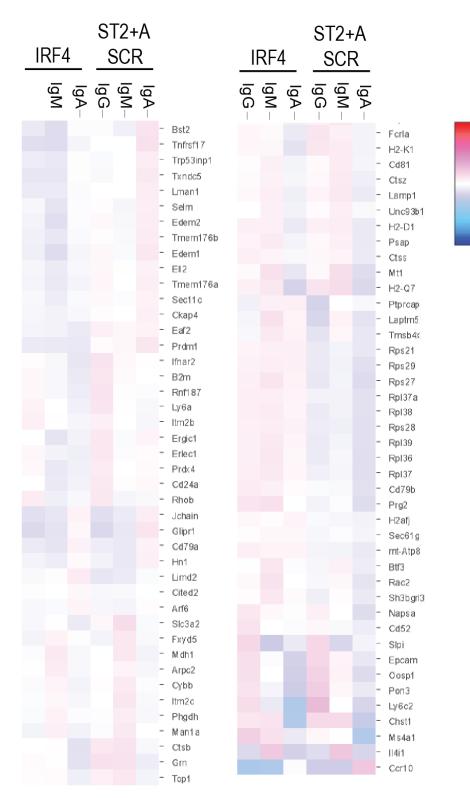

S 3: Validation of IRF4 and FoxO3 protein knock-down of cells used in single cell sequencing. Memory plasma cells were cultured with 50 ng/mL APRIL and with or without ST2 cells for three days with scrambled control siRNA, IRF4 siRNA or FoxO1/3 siRNA. Cells were sorted as DAPI⁻CD138⁺⁺ and used for single cell sequencing, left over cells were used to assess protein expression of IRF4 (left) and FoxO3 (right) using flow cytometry.


S 4: Differential gene expression of memory plasma cells *in vitro* **after FoxO1/3 knock-down.** Memory plasma cells were cultured with 50 ng/mL APRIL and with or without ST2 cells. Additionally, plasma cells were treated with scrambled control siRNA or siRNA targeting FoxO1/FoxO3 for three days. Cells were sorted as DAPI⁻CD138⁺⁺. Subsequently, cells were sequenced using 10X Genomics-based droplet sequencing. Depicted is a heatmap of differentially expressed genes between the samples APRIL FOXO, ST2+A SCR, APRIL SCR further divided in the expression of IgA, IgM or IgG as defined by BCR sequencing.

А			В					C			
lghm -	lgha	lghg									
T	T		- Slpi - Epcam					lghm	lgha	lghg	
			- Oosp1 - Pon3	lghm	lgha	lghg		5			Jchain 10 Glipr1
			- Ly6c2 - Chst1				- Grn				Bst2 5
			- Mt1 - Napsa				- Top1 - Ctsb				Cd79a 0
			- Rnf187 - Itm2b				- Psap - Ctss			-	Txndc5 Shisa5
			- Ly6a				- Npc2 - H2-K1			-	Tmsb10 -10 Trp53inp1
			- Btg2 - Cd24a				- H2-D1				ll2rg Ptprcap
			 Prdx4 Erlec1 				 Fcrla H2-Q7 			-	Serpina3f
			- Fut8 - Cd52				 Lamp1 M dh1 			-	Tmern176b Edern2
			- B2m - Sdf4				- Slc3a2 - Rac2			-	Edolini
			 Pafah1b3 Zfp706 				 Itm2c Phgdh 			-	
			- Ucp2				- Sqstm1			-	SelpIg Ppib
			- Txnip - Ergic3				- Cd81				Nfkbia
			- Sel1I - Fis1				CtszUnc93b1				Mrpl57 Tnfrsf13b
			- Cd79b - Cd74				 H2-Aa Arpc2 			-	Dello
			 Malat1 Ergic1 				- Psmb9 - Npm1			-	Emp3 Ckap4
			- Itga4 - Grn				- Prg2 - Cyba			-	Pkm Tmem176a
			- Top1 - Ctsb				- Gpx4 - Erp29			-	Gm42418 Sec11c
			- Psap				- Psme1 - Srp14				E∥2 Tspan13
			- Ctss - Npc2				- Man1a				Lax1 AY036118
			- H2-K1 - H2-D1				 Fxyd5 Tmsb4x 			-	Ly6d
			 Fcrla H2-Q7 				 Scand1 Zfp36l1 	_			Fam46c Pqlc3
			 Lamp1 Midh1 				- Aldoa - Laptm5	_			Vpreb3 Ccr10

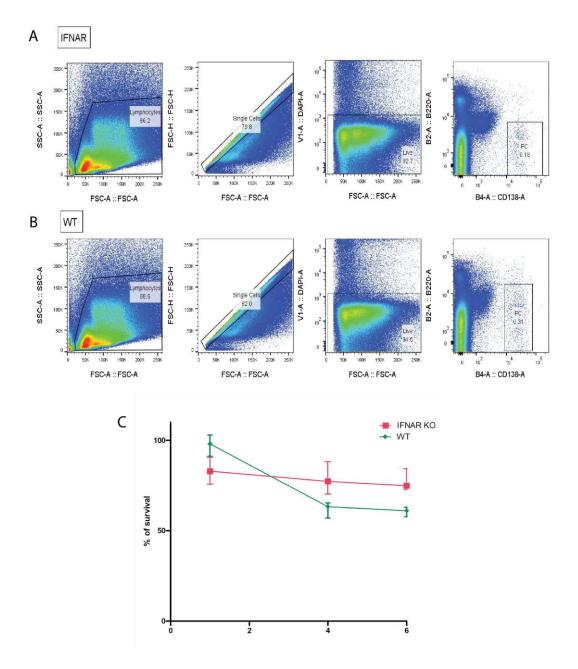

S 5: Differential gene expression of *Ighg, Ighm* and *Igha* expressing memory plasma cells *in vitro*. Memory plasma cells were cultured with 50 ng/mL APRIL and with or without ST2 cells. Additionally, plasma cells were treated with scrambled control siRNA or siRNA targeting FoxO1/FoxO3 or IRF4 for three days. Cells were sorted as DAPI⁻CD138⁺⁺. Subsequently, cells were sequenced using 10X Genomics-based droplet sequencing. Depicted is a heatmap of differentially expressed genes between the samples APRIL FOXO, ST2+A SCR, APRIL SCR generated using the Cell loupe browser.




S 6: Expression of *Prdm1, Xbp1, Sdc1* and *Tnfrsf17* but not *Tnfrsf13b* is reduced in memory plasma cells after IRF4 siRNA treatment *in vitro*. *Ex vivo* memory plasma cells were cultured with ST2+A and scrambled siRNA (ST2+A SCR) or siRNA targeting IRF4 (ST2+A IRF4) for three days. Cells were sorted as DAPI⁻CD138⁺⁺ and subsequently sequenced using 10X Genomics-based droplet sequencing. Expression of selected genes (*Xbp1, Tnfrsf17, Sdc1, Prdm1, Tnfrsg13b*) defining plasma cell identity after IRF4 knock-down is depicted.

S 7: Differential gene expression of 12 different clusters of memory plasma cells after *in vitro* culture. Memory plasma cells were cultured with 50 ng/mL APRIL and with or without ST2 cells. Additionally, plasma cells were treated with scrambled control siRNA or siRNA targeting FoxO1/FoxO3 or IRF4 for three days. Cells were sorted as DAPI⁻CD138⁺⁺. Subsequently, cells were sequenced using 10X Genomics-based droplet sequencing. Depicted is a heatmap of differentially expressed genes between the samples APRIL FOXO, ST2+A SCR, APRIL SCR generated using the Cell loupe browser.

10


5

0

-5

-10

S 9: Differential gene expression of memory plasma cells *in vitro* **after IRF4 knock-down.** Memory plasma cells were cultured with 50 ng/mL APRIL and with or without ST2 cells. Additionally, plasma cells were treated with scrambled control siRNA or siRNA targeting IRF4 for three days. Cells were sorted as DAPI⁻CD138⁺⁺. Subsequently, cells were sequenced using 10X Genomics-based droplet sequencing. Depicted is a heatmap of differentially expressed genes between the samples ST2+A SCR and ST2+A IRF4 further divided in the expression of IgA, IgM or IgG as defined by BCR sequencing.

S 10: IFNAR deficient mice express bone marrow plasma cells that can be maintained *in vitro.* Plasma cells were identified by big scatter gate, DAPI⁻ B220⁻CD138⁺⁺ cells in (A) IFNAabR knock-out and (B) wild-type (WT) mice. (C) Survival of bone marrow plasma cells isolated from IFNAR KO (pink) and WT control (green) mice. Cells were identified as DAPI⁻ CD138⁺⁺ and counted on day one, four and six on culture by flow cytometry. **Table 1: FeatureID table for single cell sequencing of ST2+A+ SCR, APRIL SCR and APRIL FOXO.** Displayed are Feature ID, Feature name, Log2FolgChange, p-value and Average expression for the samples APRIL SCR (Ascr), APRIL FOXO (FOXO) and ST2+A+SCR (ST2_AScr).

FeatureID	Featur	Ascr	Ascr Log2	Ascr	FOXO	FOXO	FOXO	ST2_AS	ST2_AS	ST2_AS
	eNam e	Aver age	Fold Change	P- Value	Avera ge	Log2 Fold Change	P-Value	cr Average	cr Log2 Fold Change	cr P- Value
ENSMUSG0 0000000682	Cd52	5,171 39	-0,03846	1,000 00	2,6237	-1,33800	0,00002	8,18153	1,07158	0,00011
ENSMUSG0	Ccr10	0,898	-0,06022	1,000	3 0,5045	-1,17687	0,00034	1,39799	0,99658	0,00049
0000044052 ENSMUSG0 0000079017	lfi27l2	23 0,718 56	-0,77029	00 0,148 57	6 0,9289	-0,26795	1,00000	1,54258	0,90423	0,00268
ENSMUSG0 0000031304	a Il2rg	0,980 18	-0,15623	1,000 00	8 0,6854 5	-0,86165	0,02238	1,52692	0,87550	0,00384
ENSMUSG0 0000028581	Laptm 5	0,854 40	-0,18739	1,000 00	0,6676 6	-0,68068	0,14779	1,29902	0,77204	0,01982
ENSMUSG0 0000022496	Tnfrsf 17	0,782 79	-0,17174	1,000 00	0,6563 2	-0,53003	0,43522	1,12259	0,64211	0,10095
ENSMUSG0 0000040747	Cd53	0,806 62	-0,06101	1,000 00	0,6034 5	-0,65001	0,18633	1,09576	0,63693	0,10752
ENSMUSG0 0000006519	Cyba	3,861 53	-0,06703	1,000 00	3,0124 9	-0,57454	0,33124	5,14805	0,58351	0,18805
ENSMUSG0 0000046841	Ckap4	1,361 28	0,14647	1,000 00	0,8696 6	-0,77118	0,05894	1,61461	0,53474	0,28843
ENSMUSG0 0000032053	Pou2a f1	1,630 98	0,15828	1,000 00	1,0313 9	-0,78054	0,05385	1,92091	0,53031	0,30013
ENSMUSG0 0000021127	Zfp36l 1	1,246 53	0,03007	1,000 00	0,9190 1	-0,59748	0,28342	1,54320	0,51202	0,35276
ENSMUSG0 0000038991	Txndc 5	9,126 70	-0,17746	1,000 00	8,5446 3	-0,31479	1,00000	12,2183 8	0,46775	0,46070
ENSMUSG0 0000020737	Hn1	0,934 08	-0,16159	1,000 00	0,8672 2	-0,31644	1,00000	1,23450	0,45507	0,50161
ENSMUSG0 0000021356	Irf4	1,279 03	-0,07729	1,000 00	1,1007 8	-0,38969	0,83557	1,61503	0,44109	0,55006
ENSMUSG0 0000049775	Tmsb4 x	1,206 34	-0,05483	1,000 00	1,0182 0	-0,40780	0,78362	1,50395	0,43569	0,57118
ENSMUSG0 0000025647	Shisa5	2,590 28	0,00340	1,000 00	2,1340 3	-0,40250	0,79691	3,06490	0,37623	0,79855
ENSMUSG0 0000025544	Tm9sf 2	0,898 13	-0,02862	1,000 00	0,7765 3	-0,33464	0,94807	1,06527	0,34775	0,85936
ENSMUSG0 0000025967	Eef1b 2	2,186 03	-0,16476	1,000 00	2,1612 0	-0,18944	1,00000	2,75944	0,34425	0,87204
ENSMUSG0 0000064367	mt- Nd5	2,786 20	0,03241	1,000 00	2,3271 4	-0,34807	0,90613	3,14842	0,30082	1,00000
ENSMUSG0 0000038312	Edem 2	4,718 29	0,21992	1,000 00	3,2732 2	-0,55169	0,37963	4,88194	0,28995	1,00000
ENSMUSG0 0000025823	Pdia4	4,696 92	0,04069	1,000 00	3,9297 4	-0,33696	0,94087	5,24598	0,28285	1,00000
ENSMUSG0 0000064370	mt- Cytb	8,463 19	-0,11588	1,000 00	8,2609 3	-0,16763	1,00000	10,1424 3	0,27847	1,00000
ENSMUSG0 0000034088	Hdlbp	2,181 79	-0,02654	1,000 00	1,9586 1	-0,25556	1,00000	2,50387	0,27464	1,00000
ENSMUSG0 0000024610	Cd74	55,16 610	0,00781	1,000 00	47,974 32	-0,28856	1,00000	62,2276 2	0,27134	1,00000
ENSMUSG0 0000010142	Tnfrsf 13b	1,221 31	-0,10430	1,000 00	1,1842 4	-0,17015	1,00000	1,45029	0,27003	1,00000
ENSMUSG0 0000037805	Rpl10 a	3,459 25	-0,10660	1,000 00	3,3629 3	-0,16697	1,00000	4,11055	0,26911	1,00000
ENSMUSG0 0000064357	mt- Atp6	6,446 39	0,12324	1,000 00	5,0187 9	-0,40748	0,78036	6,87928	0,26371	1,00000
ENSMUSG0 0000105650	Gm42 889	39,20 512	-0,01013	1,000 00	34,851 45	-0,26023	1,00000	44,4236 6	0,26296	1,00000
ENSMUSG0 0000032116	Stt3a	1,033 27	0,14462	1,000 00	0,7906 0	-0,42322	0,72694	1,08866	0,25628	1,00000
ENSMUSG0 0000038642	Ctss	2,870 41	-0,15734	1,000 00	2,9498 4	-0,09989	1,00000	3,46944	0,25348	1,00000
ENSMUSG0 0000028757	Ddost	2,150 08	0,03428	1,000 00	1,8408 5	-0,29578	1,00000	2,37588	0,25213	1,00000
ENSMUSG0 0000001576	Ergic1	1,493 37	0,00721	1,000 00	1,3157 8	-0,26217	1,00000	1,66765	0,24800	1,00000
ENSMUSG0 0000022498	Txndc 11	1,752 53	0,12006	1,000 00	1,3827 2	-0,38351	0,84708	1,85807	0,24585	1,00000

ENSMUSG0	Tmem	4,300	-0,00572	1,000	3,8468	-0,24294	1,00000	4,81941	0,24283	1,00000
0000023367	176a	4,300	-0,00372	00	3,6400 7	-0,24294	1,00000	4,01941	0,24203	1,00000
ENSMUSG0 0000044533	Rps2	3,557 36	-0,22567	1,000 00	3,9146 9	-0,02272	1,00000	4,42113	0,24258	1,00000
ENSMUSG0 0000057113	Npm1	0,889 56	-0,05803	1,000 00	0,8371 2	-0,18767	1,00000	1,02111	0,24230	1,00000
ENSMUSG0 0000038612	Mcl1	1,448 26	0,01617	1,000 00	1,2696 5	-0,26406	1,00000	1,60563	0,24098	1,00000
ENSMUSG0 0000027073	Prg2	8,177 44	0,11819	1,000 00	6,4836 9	-0,37529	0,86856	8,65581	0,24033	1,00000
ENSMUSG0 0000034994	Eef2	6,260 52	0,05577	1,000 00	5,2826 5	-0,30566	1,00000	6,81361	0,23987	1,00000
ENSMUSG0 0000065947	mt- Nd4l	3,584 64	-0,34593	1,000 00	4,4119 1	0,09494	1,00000	4,70958	0,23556	1,00000
ENSMUSG0 0000067274	Rplp0	9,097 15	-0,02324	1,000 00	8,3122 4	-0,21567	1,00000	10,2403 6	0,23458	1,00000
ENSMUSG0 0000024516	Sec11 c	8,458 66	0,11307	1,000 00	6,7641 7	-0,36264	0,88109	8,94938	0,23418	1,00000
ENSMUSG0 0000071644	Eef1g	0,988 16	-0,07998	1,000 00	0,9551 7	-0,15272	1,00000	1,13992	0,23047	1,00000
ENSMUSG0 0000008668	Rps18	2,756 35	0,13085	1,000 00	2,1707 8	-0,37750	0,86493	2,88743	0,22966	1,00000
ENSMUSG0 0000032518	Rpsa	7,687 89	-0,03658	1,000 00	7,1490 1	-0,19181	1,00000	8,67116	0,22524	1,00000
ENSMUSG0 0000021025	Nfkbia	2,026 75	-0,02348	1,000 00	1,8630 4	-0,20335	1,00000	2,27033	0,22340	1,00000
ENSMUSG0 0000025935	Tram1	1,865 21	0,08035	1,000 00	1,5514 9	-0,31228	1,00000	1,99128	0,22157	1,00000
ENSMUSG0 0000029580	Actb	4,077 05	-0,10989	1,000 00	4,0802 3	-0,10865	1,00000	4,74069	0,21694	1,00000
ENSMUSG0 0000020321	Mdh1	1,476 92	0,00349	1,000 00	1,3290 7	-0,22186	1,00000	1,62745	0,21437	1,00000
ENSMUSG0 0000032399	Rpl4	1,779 22	-0,00093	1,000 00	1,6081 7	-0,21690	1,00000	1,96424	0,21404	1,00000
ENSMUSG0 0000022283	Pabpc 1	1,579 66	0,11007	1,000 00	1,2820 6	-0,33527	0,94454	1,65752	0,21270	1,00000
ENSMUSG0 0000016559	H3f3b	4,637 13	-0,01447	1,000 00	4,2494 9	-0,20109	1,00000	5,14753	0,21243	1,00000
ENSMUSG0 0000060036	Rpl3	3,892 95	0,01888	1,000 00	3,4550 8	-0,23603	1,00000	4,25577	0,21234	1,00000
ENSMUSG0 0000030062	Rpn1	1,529 72	-0,08654	1,000 00	1,5022 4	-0,12563	1,00000	1,75461	0,21091	1,00000
ENSMUSG0 0000028495	Rps6	3,075 30	-0,02215	1,000 00	2,8428 3	-0,19028	1,00000	3,42184	0,20979	1,00000
ENSMUSG0 0000032575	Manf	4,221 35	0,25131	1,000 00	2,9742 8	-0,49458	0,53013	4,15753	0,20953	1,00000
ENSMUSG0 0000036908	Unc93 b1	1,376 55	0,17858	1,000 00	1,0458 6	-0,40738	0,78243	1,39830	0,20798	1,00000
ENSMUSG0 0000028788	Ptp4a 2	1,184 97	-0,03983	1,000 00	1,1153 4	-0,16948	1,00000	1,32794	0,20751	1,00000
ENSMUSG0 0000064351	mt- Co1	11,45 063	-0,02049	1,000 00	10,590 61	-0,18758	1,00000	12,7070 6	0,20557	1,00000
ENSMUSG0 0000020592	Sdc1	2,436 42	0,17709	1,000 00	1,8606 9	-0,39834	0,80727	2,46921	0,20139	1,00000
ENSMUSG0 0000059291	Rpl11	5,400 90	0,04211	1,000 00	4,7196 5	-0,24628	1,00000	5,80690	0,19887	1,00000
ENSMUSG0 0000041355	Ssr2	1,234 91	0,17382	1,000 00	0,9477 4	-0,39132	0,82654	1,25173	0,19857	1,00000
ENSMUSG0 0000024353	Mzb1	20,01 794	0,13919	1,000 00	15,933 65	-0,34852	0,90528	20,5715 4	0,19517	1,00000
ENSMUSG0 0000041571	Sepw1	2,974 82	0,21557	1,000 00	2,1963 8	-0,43238	0,70104	2,95226	0,19212	1,00000
ENSMUSG0 0000023010	Tmbim 6	2,377 02	0,26305	1,000 00	1,6720 8	-0,48780	0,54921	2,31053	0,19156	1,00000
ENSMUSG0 0000038900	Rpl12	2,161 60	-0,07021	1,000 00	2,1113 6	-0,12088	1,00000	2,43810	0,19054	1,00000
ENSMUSG0 0000029632	Ndufa 4	1,362 56	-0,00347	1,000 00	1,2515 7	-0,18561	1,00000	1,48787	0,18713	1,00000
ENSMUSG0 0000062683	Atp5g 2	1,499 68	-0,00420	1,000 00	1,3791 0	-0,18390	1,00000	1,63748	0,18622	1,00000
ENSMUSG0 0000058558	Rpl5	2,397 61	-0,01934	1,000 00	2,2373 3	-0,16776	1,00000	2,63562	0,18574	1,00000
ENSMUSG0 0000012405	Rpl15	2,883 51	-0,00073	1,000 00	2,6441 6	-0,18653	1,00000	3,14205	0,18522	1,00000

ENSMUSG0	Ctsb	2,650	-0,12881	1,000	2,7470	-0,05259	1,00000	3,05927	0,18070	1,00000
0000021939		56		00	6					
ENSMUSG0 0000029810	Tmem 176b	6,937 81	0,10541	1,000 00	5,7563 2	-0,29446	1,00000	7,18840	0,18004	1,00000
ENSMUSG0 0000021610	Clptm 1I	1,390 73	0,12262	1,000 00	1,1388 0	-0,30571	1,00000	1,42544	0,17308	1,00000
ENSMUSG0 0000041891	Lman1	1,848 47	0,10761	1,000 00	1,5367 3	-0,28834	1,00000	1,90661	0,17225	1,00000
ENSMUSG0	Prdx4	2,522	0,06184	1,000	2,1946	-0,23658	1,00000	2,65295	0,17015	1,00000
0000025289 ENSMUSG0	mt-	11 8,253	-0.08213	00	2 8,2358	-0,08709	1.00000	9,27186	0,16933	1,00000
0000064358	Co3	58	,	00	2		,	-	-	
ENSMUSG0 0000031320	Rps4x	8,533 72	-0,05404	1,000 00	8,2978 7	-0,11446	1,00000	9,45852	0,16852	1,00000
ENSMUSG0 0000037706	Cd81	2,241 78	-0,00681	1,000 00	2,0852 7	-0,16232	1,00000	2,43079	0,16820	1,00000
ENSMUSG0 0000061983	Rps12	3,629 95	-0,11271	1,000 00	3,7357 5	-0,05140	1,00000	4,12673	0,16403	1,00000
ENSMUSG0 0000020048	Hsp90 b1	16,71 047	0,02684	1,000 00	15,088 03	-0,19258	1,00000	17,8052 1	0,16356	1,00000
ENSMUSG0	Herpu	3,197	-0,04460	1,000	3,0920	-0,11712	1,00000	3,51830	0,16189	1,00000
0000031770 ENSMUSG0	d1 Mef2c	83 1,223	0,03463	00	3	-0,19519	1,00000	1,29589	0,15842	1,00000
0000005583 ENSMUSG0	Vcp	38 1,862	0,00318	00 1,000	1,7246	-0,16213	1,00000	2,00109	0,15814	1,00000
0000028452 ENSMUSG0	Fndc3	45 1,399	0,12686	00	6 1,1521	-0,29004	1,00000	1,41908	0,15430	1,00000
0000033487	а	01		00	8					
ENSMUSG0 0000027808	Serp1	5,176 12	0,09676	1,000 00	4,3938 4	-0,25537	1,00000	5,31697	0,15249	1,00000
ENSMUSG0 0000038393	Txnip	1,152 66	-0,08192	1,000 00	1,1593 2	-0,06984	1,00000	1,28482	0,15240	1,00000
ENSMUSG0 0000002778	Kdelr1	1,200 53	-0,02077	1,000 00	1,1413 4	-0,12970	1,00000	1,29975	0,15070	1,00000
ENSMUSG0 0000020719	Ddx5	2,922 42	0,08569	1,000 00	2,5109 6	-0,24056	1,00000	3,01323	0,14983	1,00000
ENSMUSG0	H3f3a	1,544	-0,09404	1,000	1,5726	-0,05504	1,00000	1,72872	0,14959	1,00000
0000060743 ENSMUSG0	Fam4	10 2,879	0,13551	00 1,000	0 2,3589	-0,29328	1,00000	2,90204	0,14838	1,00000
0000044468 ENSMUSG0	6c Pdia6	77 2,902	0,06025	00	0 2,5577	-0,21145	1,00000	3,02429	0,14803	1,00000
0000020571		13		00	7					
ENSMUSG0 0000030082	Sec61 a1	1,894 66	0,15088	1,000 00	1,5291 1	-0,30974	1,00000	1,89596	0,14791	1,00000
ENSMUSG0 0000012848	Rps5	5,936 65	-0,04349	1,000 00	5,7758 7	-0,10280	1,00000	6,48371	0,14685	1,00000
ENSMUSG0 0000047215	Rpl9	5,425 53	-0,09439	1,000 00	5,5350 7	-0,05170	1,00000	6,06675	0,14654	1,00000
ENSMUSG0 0000090841	Myl6	0,976 64	-0,18303	1,000 00	1,0808 4	0,03457	1,00000	1,13856	0,14603	1,00000
ENSMUSG0 0000029614	Rpl6	3,821 54	-0,06699	1,000 00	3,8022 1	-0,07818	1,00000	4,21756	0,14586	1,00000
ENSMUSG0	H13	3,705	0,11281	1,000	3,1132	-0,26195	1,00000	3,76186	0,14233	1,00000
0000019188 ENSMUSG0	Surf4	70 1,051	-0,01716	00 1,000	4 1,0005	-0,12454	1,00000	1,13219	0,14214	1,00000
0000014867 ENSMUSG0	Gnas	60 2,382	-0,06874	00	1 2,3811	-0,07051	1,00000	2,62497	0,14007	1,00000
0000027523		83		00	8					
ENSMUSG0 0000040462	Os9	1,486 77	0,06127	1,000 00	1,3172 4	-0,19952	1,00000	1,53997	0,13572	1,00000
ENSMUSG0 0000031708	Tecr	1,107 84	-0,19297	1,000 00	1,2433 6	0,05511	1,00000	1,29098	0,13472	1,00000
ENSMUSG0 0000020372	Gnb2l 1	3,077 56	-0,04174	1,000 00	3,0071 1	-0,09186	1,00000	3,33947	0,13445	1,00000
ENSMUSG0 0000041084	Ostc	0,914 28	-0,15414	1,000 00	0,9909 4	0,01887	1,00000	1,04565	0,13420	1,00000
ENSMUSG0 0000025130	P4hb	2,029 61	-0,06463	1,000 00	2,0278 0	-0,06681	1,00000	2,22377	0,13240	1,00000
ENSMUSG0	Rbm3	2,205	0,02879	1,000	2,0192	-0,16189	1,00000	2,31512	0,13229	1,00000
0000031167 ENSMUSG0	Tmsb1	93 1,369	-0,29665	00	0 1,6879	0,15350	1,00000	1,67485	0,13129	1,00000
0000079523 ENSMUSG0	0 mt-	06 2,582	0,16765	00 1,000	1 2,0689	-0,30929	1,00000	2,54406	0,13019	1,00000
0000064363	Nd4	00		00	5					

	Cm12	1 601	0 12946	1 000	1 2060	0.07590	1 00000	1 67715	0.12020	1 00000
ENSMUSG0 0000105646	Gm43 291	1,681 11	0,13846	1,000 00	1,3869 2	-0,27589	1,00000	1,67715	0,12920	1,00000
ENSMUSG0 0000000740	Rpl13	9,384 18	-0,10872	1,000 00	9,7808 5	-0,01979	1,00000	10,4786 9	0,12879	1,00000
ENSMUSG0	Ppib	3,342	0,08567	1,000	2,9054	-0,21622	1,00000	3,41004	0,12680	1,00000
0000032383 ENSMUSG0 0000053565	Eif3k	23 0,961 47	-0,00536	00 1,000 00	8 0,9116 8	-0,12017	1,00000	1,02205	0,12615	1,00000
ENSMUSG0 0000021484	Lman2	1,171 57	0,10782	1,000 00	0,9975 8	-0,23870	1,00000	1,18293	0,12567	1,00000
ENSMUSG0 0000061315	Naca	1,851 91	-0,06318	1,000 00	1,8552 2	-0,05958	1,00000	2,01978	0,12384	1,00000
ENSMUSG0 0000020460	Rps27 a	6,498 50	-0,11940	1,000 00	6,8597 4	-0,00303	1,00000	7,27171	0,12241	1,00000
ENSMUSG0 0000032115	Hyou1	0,997 91	0,03786	1,000 00	0,9110 0	-0,15883	1,00000	1,03729	0,12033	1,00000
ENSMUSG0 0000005610	Eif4g2	1,229 68	-0,05686	1,000 00	1,2275 3	-0,06087	1,00000	1,33420	0,11893	1,00000
ENSMUSG0 0000026864	Hspa5	7,218 83	-0,04380	1,000 00	7,1198 9	-0,07379	1,00000	7,78409	0,11865	1,00000
ENSMUSG0 0000039236	lsg20	0,971 02	0,04636	1,000 00	0,8803 1	-0,16535	1,00000	1,00441	0,11806	1,00000
ENSMUSG0 0000032042	Srpr	2,175 29	0,01236	1,000 00	2,0367 9	-0,12976	1,00000	2,28474	0,11763	1,00000
ENSMUSG0 0000030744	Rps3	5,250 10	-0,07647	1,000 00	5,3419 7	-0,03928	1,00000	5,74260	0,11667	1,00000
ENSMUSG0 0000016756	Cmah	0,992 89	0,03171	1,000 00	0,9134 4	-0,14841	1,00000	1,03312	0,11644	1,00000
ENSMUSG0 0000053477	Tcf4	1,167 43	0,00321	1,000 00	1,1034 2	-0,11867	1,00000	1,23043	0,11607	1,00000
ENSMUSG0 0000021917	Spcs1	5,664 39	-0,04730	1,000 00	5,6129 6	-0,06721	1,00000	6,10934	0,11562	1,00000
ENSMUSG0 0000062328	Rpl17	6,721 11	-0,03213	1,000 00	6,5693 0	-0,08165	1,00000	7,19581	0,11484	1,00000
ENSMUSG0 0000037742	Eef1a 1	15,00 001	0,02919	1,000 00	13,848 19	-0,14342	1,00000	15,6076 4	0,11392	1,00000
ENSMUSG0 0000042079	Hnrnpf	1,050 71	-0,00006	1,000 00	0,9977 8	-0,11183	1,00000	1,10734	0,11268	1,00000
ENSMUSG0 0000074227	Spint2	1,339 02	-0,09228	1,000 00	1,3851 6	-0,01939	1,00000	1,47263	0,11245	1,00000
ENSMUSG0 0000030432	Rpl28	5,465 32	-0,10335	1,000 00	5,7116 6	-0,00842	1,00000	6,04117	0,11218	1,00000
ENSMUSG0 0000027642	Rpn2	1,890 23	0,09488	1,000 00	1,6416 9	-0,20954	1,00000	1,90682	0,11108	1,00000
ENSMUSG0 0000054408	Spcs3	2,024 49	0,10101	1,000 00	1,7484 1	-0,21558	1,00000	2,03617	0,11056	1,00000
ENSMUSG0 0000041736	Tspo	0,947 68	-0,04322	1,000 00	0,9383 6	-0,06477	1,00000		0,10934	1,00000
ENSMUSG0 0000043716	Rpl7	3,259 10	-0,03722	1,000 00	3,2096 0	-0,07048	1,00000	3,48792	0,10888	1,00000
ENSMUSG0 0000028639	Ybx1	1,256 58	-0,09945	1,000 00	1,3117 7	-0,00683	1,00000	1,38306	0,10688	1,00000
ENSMUSG0 0000064341	mt- Nd1	3,327 85	-0,09178	1,000 00	3,4503 0	-0,01395	1,00000	3,64890	0,10641	1,00000
ENSMUSG0 0000021877	Arf4	1,422 94	0,00622	1,000 00	1,3481 2	-0,11066	1,00000	1,49017	0,10516	1,00000
ENSMUSG0 0000056201	Cfl1	1,411 52	-0,09754	1,000 00	1,4728 2	-0,00591	1,00000	1,55020	0,10406	1,00000
ENSMUSG0 0000031029	Eif3f	1,644 67	0,01566	1,000 00	1,5467 0	-0,11724	1,00000	1,71254	0,10210	1,00000
ENSMUSG0 0000075706	Gpx4	2,304 23	-0,02245	1,000 00	2,2458 3	-0,07813	1,00000	2,44123	0,10175	1,00000
ENSMUSG0 0000036594	H2-Aa	1,197 77	0,37718	1,000 00	0,7889 4	-0,52224	0,49179	1,06454	0,10102	1,00000
ENSMUSG0 0000038179	Slamf 7	2,623 67	-0,02473	1,000 00	2,5666 6	-0,07241	1,00000	2,77823	0,09835	1,00000
ENSMUSG0 0000023175	Bsg	1,849 06	0,11087	1,000 00	1,5922 4	-0,21248	1,00000	1,84042	0,09747	1,00000
ENSMUSG0 0000022365	Derl1	1,610 59	0,01356	1,000 00	1,5212 9	-0,10994	1,00000	1,67475	0,09704	1,00000
ENSMUSG0 000006333	Rps9	5,560 08	-0,05567	1,000 00	5,6015 3	-0,03980	1,00000	5,96778	0,09663	1,00000
ENSMUSG0 0000027828	Ssr3	1,148 82	-0,05506	1,000 00	1,1574 6	-0,03903	1,00000	1,23200	0,09539	1,00000

ENSMUSG0	Rpl13	5,100	-0,03471	1,000	5,0537	-0,05483	1,00000	5,40706	0,09078	1,00000
0000074129	a	5,100 57	-0,03471	00	5,0537 8	-0,05465	1,00000	5,40706	0,09078	1,00000
ENSMUSG0 0000071866	Ppia	5,936 75	-0,05057	1,000 00	5,9700 5	-0,03864	1,00000	6,33871	0,09039	1,00000
ENSMUSG0	Sep	1,744	-0,03197	1,000	1,7252	-0,05598	1,00000	1,84554	0,08927	1,00000
0000037072 ENSMUSG0	15 Ptma	35 1,966	-0,11477	00	5 2,0995	0,02642	1,00000	2,16166	0,08819	1,00000
0000026238		77	-	00	3		,		-	
ENSMUSG0 0000078812	Eif5a	1,763 17	-0,00337	1,000 00	1,6991 5	-0,08358	1,00000	1,84001	0,08804	1,00000
ENSMUSG0 0000017404	Rpl19	8,020 33	-0,03802	1,000 00	7,9885 7	-0,04678	1,00000	8,49650	0,08601	1,00000
ENSMUSG0	Aup1	1,370	0,10584	1,000	1,1935	-0,19396	1,00000	1,35946	0,08487	1,00000
0000068328 ENSMUSG0	Rpl14	74 3,383	-0,11680	00 1,000	2 3,6248	0,03194	1,00000	3,71645	0,08452	1,00000
0000025794 ENSMUSG0	mt-	90 7,375	-0,13878	00	3 8,0599	0,05303	1,00000	8,18498	0,08444	1,00000
0000064354	Co2	94		00	1					
ENSMUSG0 0000025362	Rps26	3,835 33	0,00758	1,000 00	3,6680 3	-0,08918	1,00000	3,97222	0,08248	1,00000
ENSMUSG0 0000028081	Rps3a 1	8,631 63	-0,04296	1,000 00	8,6510 5	-0,03825	1,00000	9,14971	0,08239	1,00000
ENSMUSG0	Jund	3,039	0,06236	1,000	2,7689	-0,13969	1,00000	3,06208	0,07661	1,00000
0000071076 ENSMUSG0	Sdf2l1	34 2,362	-0,01254	00 1,000	5 2,3132	-0,05849	1,00000	2,45794	0,07221	1,00000
0000022769 ENSMUSG0	Rps14	64 6,593	0,01387	00	6 6,3005	-0,08493	1,00000	6,77613	0,07185	1,00000
0000024608		84		00	6		1.00000			
ENSMUSG0 0000008682	Rpl10	9,478 54	-0,06387	1,000 00	9,7348 3	-0,00615	,	10,0912 8	0,07085	1,00000
ENSMUSG0 0000029390	Tmed 2	2,134 02	-0,05020	1,000 00	2,1694 1	-0,01464	1,00000	2,25238	0,06587	1,00000
ENSMUSG0	Ly6d	10,60	-0,24650	1,000	12,863	0,17203	1,00000	12,2775	0,06471	1,00000
0000034634 ENSMUSG0	Sumo	470 1,263	-0,09953	00 1,000	21 1,3448	0,03555	1,00000	7 1,36343	0,06389	1,00000
0000020738 ENSMUSG0	2 Rpl8	57 5,692	-0,06324	00	0 5,8629	0,00076	1,00000	6,03700	0,06321	1,00000
000003970		27		00	4 0,9903	-0,20958	1,00000	1,12478	-	1.00000
ENSMUSG0 0000055447	Cd47	1,164 48	0,14195	1,000 00	5	,			0,06252	
ENSMUSG0 0000055681	Cope	2,069 60	0,04427	1,000 00	1,9316 4	-0,10561	1,00000	2,08753	0,06150	1,00000
ENSMUSG0 0000002014	Ssr4	13,79 120	-0,10637	1,000 00	14,795 34	0,04611	1,00000	14,8996 2	0,05966	1,00000
ENSMUSG0	Rpl21	5,065	-0,08564	1,000	5,3370	0,02762	1,00000	5,41594	0,05811	1,00000
0000041453 ENSMUSG0	Calr	60 2,309	0,02559	00	8 2,1978	-0,08229	1,00000	2,34498	0,05734	1,00000
0000003814 ENSMUSG0		65 2,404	-0,00702	00	5 2,3593	-0,04801	1,00000	2,47621	0,05609	1,00000
0000064345	mt- Nd2	21		00	9					
ENSMUSG0 0000007815	Rhoa	1,055 14	-0,09139	1,000 00	1,1186 6	0,03548	1,00000	1,13000	0,05592	1,00000
ENSMUSG0 0000018293	Pfn1	1,694 71	-0,16208	1,000 00	1,9146 4	0,10278	1,00000	1,87644	0,05588	1,00000
ENSMUSG0	H2-	1,051	0,33096	1,000	0,7456	-0,41386	0,77469	0,93206	0,05392	1,00000
0000060586 ENSMUSG0	Eb1 Gabar	30 2,005	0,10291	00	5 1,7778	-0,15905	1,00000	1,96320	0,05382	1,00000
0000018567 ENSMUSG0	ap Erp44	58 1,133	0,07086	00	2 1,0364	-0,12340	1,00000	1,12447	0,05190	1,00000
0000028343		35		00	8					
ENSMUSG0 0000003429	Rps11	5,527 08	-0,09035	1,000 00	5,8659 7	0,03888	1,00000	5,90337	0,05122	1,00000
ENSMUSG0 0000048758	Rpl29	3,329 03	-0,28219	1,000 00	4,1902 7	0,21724	1,00000	3,89622	0,05076	1,00000
ENSMUSG0	Krtcap	4,493	0,04557	1,000	4,2117	-0,09523	1,00000	4,50496	0,04976	1,00000
0000042747 ENSMUSG0	2 Emp3	41 1,647	-0,04549	00 1,000	7 1,6804	-0,00304	1,00000	1,72225	0,04937	1,00000
0000040212 ENSMUSG0	Btf3	92 1,499	-0,05332	00	9 1,5417	0,00656	1,00000	1,57171	0,04744	1,00000
0000021660		77		00	2				-	
ENSMUSG0 0000005873	Reep5	2,016 02	-0,00795	1,000 00	1,9899 8	-0,03631	1,00000	2,06676	0,04520	1,00000
ENSMUSG0 0000046364	Rpl27 a	4,957 45	-0,03801	1,000 00	5,0313 0	-0,00594	1,00000	5,15191	0,04470	1,00000
0000040304	u		<u> </u>	00	v	1		1	1	1

	Ducih	4 440	0.05000	1 000	4 4575	0.04004	1 00000	4 47050	0.04440	1 00000
ENSMUSG0 0000004460	Dnajb 11	1,412 11	-0,05620	1,000 00	1,4575 8	0,01264	1,00000	1,47952	0,04412	1,00000
ENSMUSG0 0000061787	Rps17	1,203 29	-0,13300	1,000 00	1,3316 1	0,08729	1,00000	1,30654	0,04351	1,00000
ENSMUSG0 0000005881	Ergic3	1,022 24	0,05534	1,000 00	0,9523 3	-0,09883	1,00000	1,01735	0,04348	1,00000
ENSMUSG0 0000040592	Cd79b	2,293 79	0,16276	1,000 00	1,9308 6	-0,21185	1,00000	2,17523	0,04278	1,00000
ENSMUSG0 0000061904	Slc25a 3	1,113 36	0,01811	1,000 00	1,0753 7	-0,05751	1,00000	1,12520	0,04017	1,00000
ENSMUSG0 0000004980	Hnrnp a2b1	1,446 98	-0,06127	1,000 00	1,5050 7	0,02435	1,00000	1,51470	0,03718	1,00000
ENSMUSG0 0000057841	Rpl32	7,328 37	-0,16843	1,000 00	8,3929 6	0,12668	1,00000	8,06732	0,03698	1,00000
ENSMUSG0 0000054452	Aes	1,166 25	0,01311	1,000 00	1,1339 1	-0,04819	1,00000	1,17896	0,03585	1,00000
ENSMUSG0 0000037563	Rps16	6,978 49	0,01281	1,000 00	6,7952 4	-0,04522	1,00000	7,04610	0,03298	1,00000
ENSMUSG0 0000034708	Grn	1,826 01	0,01347	1,000 00	1,7785 1	-0,04401	1,00000	1,84157	0,03117	1,00000
ENSMUSG0 0000047675	Rps8	10,94 423	-0,11902	1,000 00	12,025 71	0,08618	1,00000	11,7344 9	0,03067	1,00000
ENSMUSG0 0000079435	Rpl36 a	1,875 55	-0,15073	1,000 00	2,1203 5	0,11639	1,00000	2,04118	0,03049	1,00000
ENSMUSG0 0000025508	Rplp2	2,814 56	-0,18639	1,000 00	3,2851 4	0,15023	1,00000	3,11449	0,02976	1,00000
ENSMUSG0 0000022136	Dnajc 3	3,472 75	0,04284	1,000 00	3,2939 4	-0,07240	1,00000	3,45337	0,02965	1,00000
ENSMUSG0 0000022174	Dad1	2,561 12	-0,01146	1,000 00	2,5544 5	-0,01721	1,00000	2,61036	0,02931	1,00000
ENSMUSG0 0000015092	Edf1	1,387 88	0,02064	1,000 00	1,3447 0	-0,04828	1,00000	1,39319	0,02819	1,00000
ENSMUSG0 0000001542	Ell2	1,676 48	0,03358	1,000 00	1,6052 4	-0,06112	1,00000	1,67276	0,02787	1,00000
ENSMUSG0 0000003072	Atp5d	1,249 68	-0,04679	1,000 00	1,2902 7	0,02285	1,00000	1,29150	0,02414	1,00000
ENSMUSG0 0000001175	Calm1	2,390 71	-0,06097	1,000 00	2,5008 9	0,03722	1,00000	2,48633	0,02353	1,00000
ENSMUSG0 0000052146	Rps10	8,357 80	-0,10888	1,000 00	9,1295 1	0,08362	1,00000	8,88768	0,02325	1,00000
ENSMUSG0 0000058569	Tmed 9	1,122 22	-0,02650	1,000 00	1,1380 1	0,00392	1,00000	1,14837	0,02307	1,00000
ENSMUSG0 0000067149	Jchain	497,3 6808	-0,01491	1,000 00	499,11 561	-0,00731	1,00000	506,138 52	0,02260	1,00000
ENSMUSG0 0000024425	Ndfip1	1,391 52	0,00481	1,000 00	1,3720 7	-0,02594	1,00000	1,40269	0,02167	1,00000
ENSMUSG0 0000059070	Rpl18	5,565 69	-0,10887	1,000 00	6,0839 0	0,08521	1,00000	5,91391	0,02159	1,00000
ENSMUSG0 0000062647	Rpl7a	3,636 55	-0,01662	1,000 00	3,6577 7	-0,00398	1,00000	3,70079	0,02098	1,00000
ENSMUSG0 0000025393	Atp5b	1,401 17	0,05909	1,000 00	1,3146 0	-0,08005	1,00000	1,37732	0,02065	1,00000
ENSMUSG0 0000056629	Fkbp2	3,568 39	0,11587	1,000 00	3,1757 9	-0,13838	1,00000	3,41798	0,01978	1,00000
ENSMUSG0 0000024014	Pim1	1,899 88	0,11143	1,000 00	1,6981 8	-0,13340	1,00000	1,82320	0,01954	1,00000
ENSMUSG0 0000035227	Spcs2	4,200 08	0,01890	1,000 00	4,0931 3	-0,03741	1,00000	4,20096	0,01880	1,00000
ENSMUSG0 0000063457	Rps15	1,530 31	-0,10570	1,000 00	1,6707 1	0,08575	1,00000	1,62088	0,01796	1,00000
ENSMUSG0 0000032026	Rexo2	2,911 49	0,01088	1,000 00	2,8605 2	-0,02769	1,00000	2,92052	0,01715	1,00000
ENSMUSG0 0000090862	Rps13	4,554 68	-0,04494	1,000 00	4,7109 5	0,02864	1,00000	4,68547	0,01614	1,00000
ENSMUSG0 0000030104 ENSMUSC0	Edem 1	7,419 08	0,15735	1,000 00	6,3609 5	-0,17837	1,00000	6,96332	0,01564	1,00000
ENSMUSG0 0000030824	Nucb1	1,571 88	-0,06097	1,000 00	1,6504 9	0,04550	1,00000	1,62818	0,01497	1,00000
ENSMUSG0 0000001289 ENSMUSC0	Pfdn5	2,057 68	0,05529	1,000 00	1,9431 7	-0,06971	1,00000	2,01988	0,01409	1,00000
ENSMUSG0 0000073421	H2- Ab1	1,468 06	0,20428	1,000 00	1,2045 6	-0,22726	1,00000	1,34861	0,01376	1,00000
ENSMUSG0 0000025381	Cnpy2	1,158 17	0,16030	1,000 00	0,9917 2	-0,17831	1,00000	1,08406	0,01262	1,00000

Display Display <t< th=""><th>ENSMUSG0</th><th>MyI12</th><th>1,628</th><th>-0,06600</th><th>1,000</th><th>1,7217</th><th>0,05579</th><th>1,00000</th><th>1,68612</th><th>0,00934</th><th>1,00000</th></t<>	ENSMUSG0	MyI12	1,628	-0,06600	1,000	1,7217	0,05579	1,00000	1,68612	0,00934	1,00000
000033781 1 92 00 7 0 000 5,4598 0000 5,4598 0000 5,4598 0,00341 1,00000 00000938 Paiza 7,37 -0.0238 1,00000 7,4823 1,00000 2,3326 0,00244 1,00000 00004128 Paiza 2,354 0,0229 1,0000 2,3329 -0,02548 1,00000 2,33266 0,00246 1,00000 00000200507 56 0,0737 1,000 1,6459 -0,0743 1,00000 1,70774 0,00246 1,00000 0000020507 13 13 0,0024 1,00000 2,26699 0,00542 1,00000 ENSMUSCO Nbp1 1,47 0,02543 1,00000 2,30287 -0,00343 1,00000 2,00543 1,00000 1,00364 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,000000 1,00000 1,00000			,	-0,00000	· ·	,	0,05579	1,00000	1,00012	0,00934	1,00000
000006033 i 98 0.00 4 - - 0000 7.4823 0.0024 1.00000 000004128 Partia 2.3324 0.02294 1.00000 2.3326 0.00244 1.00000 0000027248 Fda3 2.3344 0.02294 1.00000 2.3326 0.00246 1.00000 0000027248 Fda3 2.3344 0.0299 -0.02548 1.00000 1.70774 0.00246 1.00000 0000027248 Fda3 1.33 0.13089 0.000 2.2669 0.00156 1.00000 0.00534 - 0.00002 - 0.00534 - 0.00002 - 1.00000 - 0.00542 - 0.00542 - 0.00542 - 0.00002 - 0.00002 - 0.00002 - 0.00642 - 0.00002 - 0.00002 - 0.00002 - 0.00002 - 0.00002 - 0.00002 - 0.00002 - 0.00002 - 0.00002		Rps27 I	,	0,06168	· ·	1,3373 7	-0,06613	1,00000	1,38118	0,00384	
0000045128 a 73 00 3 - 00 2 00 2 00 0 0		Rpl26	,	-0,02896		.'	0,02521	1,00000	5,45686	0,00341	1,00000
0000027248		-	,	-0,05233	· ·	,	0,04853	1,00000	7,48635	0,00294	1,00000
0000023076 05 06 9 - 00000111115 </td <td></td> <td>Pdia3</td> <td>,</td> <td>0,02292</td> <td></td> <td></td> <td>-0,02548</td> <td>1,00000</td> <td></td> <td>0,00248</td> <td>,</td>		Pdia3	,	0,02292			-0,02548	1,00000		0,00248	,
0000020577 13 13 0.00 0 0.000 1.756 . ENSMUSG0 Np1 14.34 0.0212 0.0000 1.756 . . .00000 ENSMUSG0 Rs23 3.84 0.0044 1.0000 9.00 9.0048 1.00000 1.756 . . .000042 1.00000 1.00000 1.21341 .000002 . . .000000 1.21341 . .000000 000002 . . .00000 1.21341 . .000000 000000 .		Sdf4	,	0,07397	,		-0,07743	1,00000		0,00246	1,00000
0000020484 134 00 22 8 0.00034 0.000534 ENSMUSGO Rps23 3,841 -0,01944 1,000 9.002 0,04633 1,00000 3.00687 -0.0000 ENSMUSGO Pebp1 1,266 0,08673 1,000 1,1726 -0.08131 1,00000 1,21341 -0.000692 ENSMUSGO Pubp1 1,000 1,0001 1,0000 1,38277 -0.000692 1,00000 0000023254 9 77 1 0,000 8 0,00000 1,6671 -0.02216 1,00000 1,67743 - 1,00000 0000039218 Smr02 7,71 0,000 8 0,0000 7,7783 - 1,00000 ENSMUSGO Rpi23 7,428 -0,1102 0,000 7 1,00000 2,9326 - 1,00000 ENSMUSGO Rpi30 4,012 -0,4623 1,000 1,00000 2,9218 1,00000 ENSMUSGO Rpi30 0,0234 1,0000 <	0000020577	13	13		00	0				0,00156	
0000049517 93 00 9 1000 10000 1.0000 1.00000	0000020484		134		00	22		,	8	- 0,00534	
ENSMUSC0 Pebr 1 226 0.08673 1.000 1.1726 -0.08131 1.00000 1.21341 - 1.00000 ENSMUSG0 Nutb 1.401 0.0467 1.000 1.4013 0.0409 1.00000 1.38277 - 0.00912 ENSMUSG0 Srma 1.701 0.03595 1.000 1.6571 -0.02215 1.00000 1.66264 - 0.011441 1.00000 C0000012713 454 - 0.06688 1.000 2.1365 0.03377 1.00000 2.03826 - 0.011441 1.00000 ENSMUSG0 Prisid 4.066688 1.000 2.1365 0.03377 1.00000 0.20180 - 0.02180 1.00000 0.02180 0.02180 1.00000 0.02180 0.02180 1.00000 0.02180 1.00000 0.02180 1.00000 0.02180 1.00000 0.02180 1.00000 0.02180 1.00000 0.02180 1.00000 0.02180 1.00000 0.02180 1.00000 0.02180		Rps23	,	-0,04194	· ·		0,04643	1,00000	3,90687	- 0.00542	1,00000
ENSMUSCO 000022334 Nature 9 1.401 7 0.00467 00 1.4013 8 0.00409 0.0021 1.00000 1.6264 - 0.0144 1.00000 1.00000 ENSMUSCO 000033216 Rpi23 7.428 -0.11598 1.000 1.6571 -0.02215 1.00000 1.66264 - 0.01444 1.00000 D000013216 Rpi23 7.428 -0.11598 1.000 2.1365 0.08397 1.00000 2.03826 - 0.01440 1.00000 D0000171157 3 4.012 -0.14625 1.000 4.6140 0.15984 1.00000 4.25462 - 1.00000 D000018770 3 4.012 -0.14625 1.000 1.0111 0.02342 1.00000 0.29042 - 0.00000 D000001013 0.999 0.0712 1.0000 1.2199 -0.03978 1.00000 1.21059 - 1.00000 D0000022830 P3 0.01611 1.000 1.2236 0.03962 1.0000 1.16557 - 1.00000 D000002770 H D0000	ENSMUSG0	Pcbp1	1,266	0,08673	1,000	1,1726	-0,08131	1,00000	1,21341	-	1,00000
0000039218 70 00 3 - 0,01444 ENSMUSG0 Rpi23 7,428 -0,11598 1,000 0,01681 - - 1,00000 0000071415 64 0,00 7,1783 - 1,00000 - 0,01940 ENSMUSG0 Rpi30 4,06 0,000 7,186 0,08397 1,00000 2,03262 - 0,01940 ENSMUSG0 Mpi11 0,994 -0,06688 0,00 7 1 0,0000 4,25462 - 0,0218 ENSMUSG0 Dynll1 0,999 -0,06194 1,000 1,2019 -0,02378 1,00000 1,2019 - 0,0239 ENSMUSG0 Attp5 1,081 -0,01681 1,000 1,1258 0,00255 1,00000 1,1825 - 0,02394 ENSMUSG0 Vimp 1,690 0,01650 1,000 1,1854 0,00942 1,00000 1,5700 - 0,02895 ENSMUSG0 Vimp 1,690 0,01	ENSMUSG0		1,401	0,00467	1,000	,	0,00409	1,00000	1,39277	-	1,00000
0000071415 64 00 0 1 0.01821 0.01681 ENSMUSCO 000018770 3 4.012 -0.06688 1.000 2.1365 0.08397 1.00000 2.03826 - 0.01940 ENSMUSCO 0000058600 33 -0.0218 1.00000 4.25462 - 0.0218 ENSMUSCO 000009807 0 1.011 0.02342 1.00000 .99042 - 0.0213 ENSMUSCO 0000048076 0.44 00 1.2019 -0.03978 1.00000 1.12159 - 0.02394 ENSMUSCO 0000048076 0.44 00 3 0.02397 1.00000 1.01825 - 0.02394 1.00000 ENSMUSCO 0000028280 Numb 1.192 -0.01881 1.000 1.2268 0.09255 1.00000 1.1825 - 0.02397 1.00000 ENSMUSCO 0000028318 Numb 1.690 0.01650 1.000 1.1827 1.00000 1.6570 - 1.00000 0.02895 1.00000 0.02894 1.00000 </td <td></td> <td>Srrm2</td> <td>,</td> <td>0,03595</td> <td></td> <td></td> <td>-0,02215</td> <td>1,00000</td> <td>1,66264</td> <td>- 0,01444</td> <td>1,00000</td>		Srrm2	,	0,03595			-0,02215	1,00000	1,66264	- 0,01444	1,00000
0000018770 3 45 00 7 1 0 0,01940 1 ENSMUSG0 Rp130 4,012 -0,14625 1,000 1,6110 0,15984 1,00000 4,25462 - 1,00000 00000093600 Dynll1 0,999 -0,0294 1,000 1,0111 0,02342 1,00000 0,02136 - 1,00000 0000009076 0/4 0/0 3 - 0,02397 1,00000 - 0,02397 1,00000 - 0,02397 1,00000 - 0,02397 1,00000 - 0,02397 1,00000 - 0,02397 1,00000 0,02895 1,00000 1,1855 - 0,02397 1,00000 - 0,02895 1,00000 1,8570 - 1,00000 - 0,02895 1,00000 1,8570 - 1,00000 - 0,02895 - 0,00295 - 1,00000 0,02895 - 0,02895 - 0,02895 - 0,00000 - -		Rpl23	,		,	- ,		·	7,77783	- 0,01681	
0000056600 33 00 1 0.0214 0.02018 ENSMUSG0 Dynil1 0.99 -0.00294 1,000 1.0111 0.02342 1,00000 0,9042 - 1,00000 ENSMUSG0 Arf1 1.259 0.06194 1,000 1,2109 -0.02348 1,00000 1,21059 - 1,00000 ENSMUSG0 Arb5j 1.081 -0.07126 1,000 1,1658 0,09255 1,00000 1,10557 - 0,02394 ENSMUSG0 Nutht 1,192 -0.01681 1,000 1,2836 0,03962 1,00000 1,65700 - 1,00000 000003180 1 0.95 1,000 1,8825 - 0,02937 1,00000 0000031818 1 0.4 0.0 7 0 1,3710 -0.02683 - 0,02834 ENSMUSG0 Ubxr4 1,380 0,3040 1,3010 -0,18503 - 0,02843 - 0,0000 - 0,02834 - <td< td=""><td>0000018770</td><td>3</td><td>45</td><td></td><td>00</td><td>7</td><td>-</td><td></td><td>-</td><td>- 0,01940</td><td>1,00000</td></td<>	0000018770	3	45		00	7	-		-	- 0,01940	1,00000
0000009013 09 00 7 0007 ENSMUSG0 Art1 1,259 0,06194 1,000 1,2019 -0,03978 1,00000 1,21059 - 1,00000 ENSMUSG0 Atp5j 1,081 0,07126 1,000 1,1658 0,02255 1,0000 1,10557 - 1,00000 0,02397 ENSMUSG0 Ndufb 1,192 0,01681 1,000 1,2236 0,03962 1,00000 1,6570 - 1,00000 0,02397 ENSMUSG0 Vimp 1,690 0,01650 1,000 1,6854 0,00942 1,00000 1,65700 - 0,02895 - 1,00000 0,02833 - 0,002835 - 1,00000 0,02833 - 0,02883 - 0,02883 - 0,02883 - 0,02883 - 0,02883 - 0,0000 - 0,02883 - 0,0000 - 0,02883 - 0,02883 - 0,0000 0,02883 - 0,00000 0,0284	0000058600		33		00	1	·	·	,	- 0,02018	,
0000048076 04 00 3 0 0,02339 0,02339 ENSMUSG0 Atp5j 1,081 -0,07126 1,000 7 1,0000 1,10557 - 0,02394 ENSMUSG0 Ndufb 1,192 -0,01681 1,000 7 0,03962 1,0000 1,1825 - 1,00000 0000021091 11 55 00 2 - 0,02397 - 1,00000 0000075701 96 0,01650 1,000 1,6854 0,00942 1,00000 1,65700 - 1,00000 0000075701 96 0,03540 1,000 1,3007 0,11827 1,00000 1,35727 - 1,00000 0000026353 32 0,03540 1,000 1,8603 0,04608 1,0000 1,35727 - 1,00000 0000026351 07 - 0,01693 1,000 1,258 1,6254 1,00000 1,0328 - 1,00000 00000027820 9 60	0000009013		09	*	00	7				- 0,02130	1,00000
0000022890 Nu 93 00 7 Nu Nu 0,02394 ENSMUSG0 Ndufb 1,192 -0,01681 1,000 1,2236 0,03922 1,00000 1,18825 - 0,02397 ENSMUSG0 Vimp 1,690 0,01650 1,000 1,6854 0,00942 1,0000 1,65700 - 1,00000 0000075701 96 0,03540 1,000 3,0007 0,11827 1,00000 2,80735 - 1,00000 0000026353 Ubxn4 1,398 0,03540 1,000 1,3710 -0,0768 1,0000 1,35727 - 1,00000 0000026353 32 0,01693 1,000 1,8603 0,04608 1,0000 1,35727 - 1,00000 0000026511 07 -0,01683 1,000 2,1772 0,09669 1,0000 1,03060 0,3311 1,00000 0,33151 ENSMUSG0 Srp9 2,019 -0,06881 1,0000 2,1772 0,09669 1,00000	0000048076	Arf1	,		· ·	· ·		·		- 0,02339	
0000031059 11 55 00 2 1 0 0,02397 ENSMUSG0 Vimp 1,690 0,01650 1,000 1,6864 0,00942 1,0000 1,65700 - 1,00000 ENSMUSG0 Cox4it 2,724 -0,09395 1,000 3,0007 0,11827 1,00000 2,80735 - 1,00000 0000026353 1 04 0.03540 1,000 1,3710 -0,00768 1,00000 1,35727 - 0,02833 1,00000 0000026353 Srp9 2,019 -0.06881 1,000 1,8603 0,04608 1,00000 1,79553 - 1,00000 0000026311 07 -0.01693 1,000 1,2058 0,16254 1,00000 1,10463 - 1,00000 0,03151 1,00000 1,0004 1,01463 - 0,03151 1,00000 0,03311 1,00000 0,03311 1,00000 0,03311 1,00000 0,03311 1,00000 0,03661 0,003661 0,003661 <t< td=""><td>0000022890</td><td></td><td>93</td><td>*</td><td>00</td><td>7</td><td></td><td>·</td><td>,</td><td>- 0,02394</td><td>,</td></t<>	0000022890		93	*	00	7		·	,	- 0,02394	,
ENSMUSC0 0000075701 Vimp 96 1,690 00 0,01650 00 1,000 7 1,0000 0 1,6854 7 0,00942 1,0000 1,6700 1,65700 0,02834 - 1,0000 0,02834 ENSMUSG0 00002633 Cox41 32 0,03540 1,000 1,3710 -0,00768 1,0000 1,35727 - 1,00000 ENSMUSG0 00002653 Ubxn4 1,398 0,03540 1,000 1,8603 0,04608 1,0000 1,79553 - 1,00000 ENSMUSG0 0000026511 Srp9 2,019 -0,06881 1,000 2,1772 0,09669 1,0000 1,10463 - 1,00000 ENSMUSG0 0000026261 Srp9 2,019 -0,03769 1,000 1,2058 0,16254 1,00000 1,1043 - 1,00000 0,0311 - 1,00000 0,0311 - 1,00000 0,03661 - 1,00000 0,03661 - 1,00000 0,03661 - 1,00000 0,03661 - 0,03661 - 0,03661 - 0,036661 - 0,036661 <td< td=""><td></td><td></td><td>,</td><td>-0,01681</td><td></td><td></td><td>0,03962</td><td>1,00000</td><td>1,18825</td><td>- 0.02397</td><td>1,00000</td></td<>			,	-0,01681			0,03962	1,00000	1,18825	- 0.02397	1,00000
ENSMUSC0 000031818 Cox4i 1 2,724 04 -0,09395 00 1,000 6 3,0007 6 0,11827 0,00768 1,0000 1,35727 - 0,02883 1,0000 0,02834 ENSMUSC0 0000026353 Ubnr4 1,388 0,03540 1,000 1,3710 -0,00768 1,0000 1,35727 - 0,02883 1,0000 ENSMUSC0 000000927 Rps25 1,807 -0,01693 1,000 2,1772 0,09669 1,00000 2,05402 - 0,03092 1,0000 ENSMUSC0 0000027620 Srp9 2,019 -0,06881 1,000 2,1772 0,09669 1,00000 1,0463 - 0,03092 1,0000 ENSMUSC0 0000027620 Selk 4,377 0,00731 1,000 4,4118 0,02437 1,00000 1,0463 - 0,03611 1,00000 ENSMUSC0 0000042682 Cdc42 1,101 -0,17270 1,000 1,3051 0,19964 1,00000 1,07353 - 0,03661 1,00000 ENSMUSC0 000003067 Peic3 1,745 -0,04502 1,000 1,6049 0,04085 - 1,00000 1,0466	ENSMUSG0		1,690	0,01650	1,000	1,6854	0,00942	1,00000	1,65700	-	1,00000
ENSMUSG0 000026353 BNSMUSG0 Ubxn4 32 1,398 00 0,03540 00 1,000 9 1,3710 00 -0,00768 0,0068 1,00000 1,0000 1,35727 0,0283 - 0,0283 - 0,0283 1,00000 0,02835 ENSMUSG0 0000026515 Rps25 1,807 -0,01693 1,000 1,8603 0,04608 1,0000 2,05402 - 0,03069 1,00000 ENSMUSG0 0000027620 9 60 -0,13769 1,000 1,2058 0,16254 1,00000 2,05402 - 0,03151 1,00000 ENSMUSG0 0000027620 9 60 -0,0731 1,000 1,2058 0,16254 1,00000 1,17453 - 0,03311 1,00000 ENSMUSG0 000000699 44 -00 2 1,00000 1,0753 - 0,03661 1,00000 ENSMUSG0 00000045679 Pqic3 1,108 0,13258 1,000 0,9972 -0,09967 1,00000 1,02623 - 0,03661 1,00000 ENSMUSG0 Chrla 1,514 -0,04502 1,000 1,8176 0,06866 1,00000 1,73185 - <	ENSMUSG0	Cox4i 1	2,724	-0,09395	1,000	- ,	0,11827	1,00000	2,80735	-	1,00000
0000009927 69 00 0 1 0 0,03069 1,0000 ENSMUSG0 Srp9 2,019 -0,06881 1,000 2,1772 0,09669 1,0000 2,05402 - 1,00000 D000027620 9 60 -0,13769 1,000 1,2058 0,16254 1,00000 1,10463 - 1,00000 ENSMUSG0 Selk 4,377 0,00731 1,000 4,4118 0,02437 1,00000 4,29533 - 1,00000 0000042682 77 000 2 - 0,03661 - 0,03661 ENSMUSG0 Cdc42 1,101 -0,17270 1,000 1,3051 0,19964 1,0000 1,17353 - 1,00000 ENSMUSG0 Pqlc3 1,118 0,13258 1,000 1,6997 -0,09967 1,00000 1,51617 - 1,00000 00000030057 63 0.0 9 - 0,04685 - 1,00000 0,04114 -	ENSMUSG0	Ubxn4	,	0,03540	·		-0,00768	1,00000	1,35727	-	1,00000
0000026511 07 00 3 6 0,03092 ENSMUSG0 Rbm3 1,051 -0,13769 1,000 1,2058 0,16254 1,0000 1,10463 - 1,0000 D000027620 9 60 0,0371 1,000 4,4118 0,02437 1,0000 4,29533 - 1,0000 D000042682 77 0,07311 1,000 1,3051 0,19964 1,0000 1,17353 - 1,0000 D000006699 44 0,0325 00 2 -0,09967 1,0000 1,02623 - 1,00000 D0000045679 63 0,04502 1,000 1,6049 0,08310 1,0000 1,51617 - 1,00000 ENSMUSG0 Derl3 1,745 -0,02478 1,000 1,8176 0,06366 1,0000 1,73185 - 1,00000 000009092 93 -0 0 9 - 0,04463 - 1,00000 1,73185 - 1,00000 0,04463	ENSMUSG0 0000009927	•	69		00	0		<i>'</i>	·	- 0,03069	<i>.</i>
0000027620 9 60 00 3 0 0,03151 ENSMUSG0 000042682 Selk 4,377 0,00731 1,000 2 1,00000 4,29533 - 1,00000 ENSMUSG0 000006699 Cdc42 1,101 -0,17270 1,000 2 00 2 0,03611 0,03311 ENSMUSG0 000006699 Cdc42 1,108 0,13258 1,000 0,9972 -0,09967 1,0000 1,02623 - 1,00000 ENSMUSG0 0000045679 Chbp 1,514 -0,04502 1,000 1,6049 0,08310 1,0000 1,02623 - 1,00000 ENSMUSG0 0000030057 Derl3 1,745 -0,02478 1,000 1,8176 0,06366 1,00000 1,73185 - 1,00000 0,04114 ENSMUSG0 0000098274 Derl3 1,455 0,05871 1,000 1,4086 -0,01354 1,00000 1,38598 - 1,00000 0000021244 C3b 74 O0 2 -		Srp9				3		1,00000	2,05402	- 0,03092	1,00000
0000042682 77 00 2 00 2 0,03311 ENSMUSG0 Cdc42 1,101 -0,17270 1,000 1,3051 0,19964 1,0000 1,17353 - 1,0000 ENSMUSG0 Pqlc3 1,108 0,13258 1,000 0,9972 -0,09967 1,00000 1,02623 - 1,00000 ENSMUSG0 Cnbp 1,514 -0,04502 1,000 1,6049 0,08310 1,0000 1,51617 - 1,00000 0,04085 ENSMUSG0 Derl3 1,745 -0,02478 1,000 1,8176 0,06366 1,0000 1,73185 - 1,00000 0,04085 ENSMUSG0 Derl3 1,745 -0,02478 1,000 4,4473 0,13403 1,0000 4,0413 - 0,04653 - 1,00000 0,04453 ENSMUSG0 Map11 1,455 0,05871 1,000 1,4086 -0,01354 1,00000 1,38598 - 1,00000 0,04723 - <td< td=""><td></td><td>-</td><td></td><td>-0,13769</td><td></td><td></td><td>0,16254</td><td></td><td>1,10463</td><td>- 0,03151</td><td>1,00000</td></td<>		-		-0,13769			0,16254		1,10463	- 0,03151	1,00000
0000006699 44 00 2 1 0 0 2 ENSMUSG0 000045679 Pqlc3 63 1,108 63 0,13258 63 1,000 00 0,9972 9 -0,09967 -0,09967 1,0000 1,0000 1,02623 -0,03680 - 1,0000 0,03680 ENSMUSG0 000030057 Chbp 06 1,514 -0,04502 1,000 1,6049 0,08310 1,0000 1,51617 - 1,00000 ENSMUSG0 000009092 Derl3 1,745 -0,02478 1,000 1,8176 0,06366 1,0000 1,73185 - 1,00000 ENSMUSG0 0000098274 Rpl24 4,011 -0,09270 1,000 4,4473 0,13403 1,0000 4,09625 - 1,00000 0000038121 c3b 74 00 2 0 0 0,04723 1,0000 0,04723 1,0000 0,04723 1,00000 0,04723 1,00000 0,04723 1,00000 0,04723 1,00000 0,04723 1,00000 0,04723 1,00000 0,04723 1,00000 0,04723 1,000			77		00	2				- 0,03311	
0000045679 1 63 00 9 1 1 0,03680 1 ENSMUSG0 000030057 Cnbp 06 1,514 06 -0,04502 00 1,000 00 1,6049 5 0,08310 1,0000 1,51617 - 0,04085 1,0000 0,04085 ENSMUSG0 000009092 Derl3 1,745 -0,02478 1,000 1,8176 0,06366 1,0000 1,73185 - 0,04114 - 1,0000 ENSMUSG0 000098274 Rpl24 4,011 -0,09270 1,000 4,4473 0,13403 1,00000 4,09625 - 0,04653 1,00000 ENSMUSG0 0000031812 Map11 1,455 0,05871 1,000 1,4086 -0,01354 1,00000 1,38598 - 0,04723 1,00000 ENSMUSG0 0000062997 Rpl35 2,235 -0,47357 1,000 3,4371 0,46870 0,53062 2,74701 - 0,04730 - 1,00000 ENSMUSG0 0000021248 Tmed 3,310 0,03566 1,000 3,2728 0,01588 1,00000 0,04828 - 0,0482	000006699		44		00	2				- 0,03661	
ENSMUSG0 000030057 Cnbp 06 1,514 06 -0,04502 00 1,000 00 1,6049 5 0,08310 00 1,00000 1,0000 1,51617 - 1,0000 0,04085 ENSMUSG0 000009092 Derl3 1,745 93 -0,02478 00 1,000 00 1,8176 00 0,06366 0 1,00000 1,73185 - 1,00000 0,04114 ENSMUSG0 0000098274 Rpl24 4,011 -0,09270 1,000 4,4473 0,13403 1,0000 4,09625 - 1,00000 BNSMUSG0 Map11 1,455 0,05871 1,000 1,4086 -0,01354 1,0000 1,38598 - 1,00000 0000031812 c3b 74 00 2 - 0,04723 0,04723 ENSMUSG0 Rpl35 2,235 -0,47357 1,000 3,4371 0,46870 0,53062 2,74701 - 1,00000 0000021248 10 52 00 3 3,2728 0,01058 1,00000 0,04828 - 1,00000 0000021967 72 0,06559		Pqlc3		0,13258		- 1	-0,09967			- 0,03680	
ENSMUSG0 000009092 Derl3 1,745 93 -0,02478 00 1,000 00 1,8176 00 0,06366 0 1,0000 1,73185 - 1,0000 0,04114 ENSMUSG0 000098274 Rpl24 4,011 -0,09270 1,000 4,4473 0,13403 1,0000 4,09625 - 1,00000 0000098274 55 0,05871 1,000 1,4866 -0,01354 1,0000 1,38598 - 1,0000 0000031812 c3b 74 00 2 - 0 0,04723 - 1,0000 ENSMUSG0 Rpl35 2,235 -0,47357 1,000 3,4371 0,46870 0,53062 2,74701 - 1,00000 0000062997 08 0,03566 1,000 3,2728 0,01058 1,0000 3,18339 - 1,00000 0000021248 10 52 00 3 0 0 0 0 0 ENSMUSG0 Mrpl57 1,089 -0,04125 1,000 1,1558 0,08829	ENSMUSG0	Cnbp	06		00	5				- 0,04085	
0000098274 55 00 9 00 9 000098274 0,04653 ENSMUSG0 Map11 1,455 0,05871 1,000 1,4086 -0,01354 1,0000 1,38598 - 1,00000 0000031812 c3b 74 00 2 - - 1,00000 0,04723 - ENSMUSG0 Rpl35 2,235 -0,47357 1,000 3,4371 0,46870 0,53062 2,74701 - 1,00000 0000062997 08 - 00 3,2728 0,01058 1,0000 3,18339 - 1,00000 0000021248 10 52 00 3 - 1,00000 0,04828 ENSMUSG0 Mrpl57 1,089 -0,04125 1,000 1,1558 0,08829 1,0000 1,08448 - 1,00000 0000021967 72 -0,06559 1,000 10,599 0,11314 1,00000 9,82788 - 1,00000 0000028234 07	ENSMUSG0 0000009092		93		00	0				- 0,04114	
0000031812 c3b 74 00 2 0 0,04723 ENSMUSG0 000062997 Rpl35 2,235 08 -0,47357 1,000 00 3,4371 00 0,46870 00 0,53062 2,74701 - 1,0000 0,04730 ENSMUSG0 000021248 Tmed 10 3,310 0,03566 1,000 00 3,2728 0,01058 1,0000 3,18339 - 1,00000 ENSMUSG0 0000021967 Mrpl57 1,089 72 -0,04125 1,000 00 1,1558 00 0,08829 1,00000 1,08448 - 1,00000 ENSMUSG0 0000028234 Rps20 9,772 07 -0,06559 1,000 00 10,599 00 0,11314 1,00000 9,82788 - 1,00000 0,05187 ENSMUSG0 Eaf2 1,059 -0,04481 1,000 1,1289 0,09390 1,0000 1,05546 - 1,00000	0000098274		55		00	9				- 0,04653	
0000062997 08 00 0 00 0,04730 ENSMUSG0 Tmed 3,310 0,03566 1,000 3,2728 0,01058 1,0000 3,18339 - 1,0000 0,04828 ENSMUSG0 Mrpl57 1,089 -0,04125 1,000 0 1,0000 1,08448 - 1,0000 0,05021 ENSMUSG0 Mrpl57 1,089 -0,06559 1,000 10,599 0,11314 1,0000 9,82788 - 1,00000 0,05187 ENSMUSG0 Eaf2 1,059 -0,04481 1,000 1,1289 0,09390 1,0000 1,05546 - 1,00000	0000031812	c3b	74		00	2				- 0,04723	
0000021248 10 52 00 3 000021000 0,04828 ENSMUSG0 0000021967 Mrpl57 1,089 72 -0,04125 1,000 00 1,1558 00 0,08829 1,0000 1,08448 - 1,0000 0,05021 ENSMUSG0 0000028234 Rps20 9,772 -0,06559 1,000 10,599 0,11314 1,00000 9,82788 - 1,00000 0,05187 ENSMUSG0 Eaf2 1,059 -0,04481 1,000 1,1289 0,09390 1,0000 1,05546 - 1,00000	ENSMUSG0		08		00	0				- 0,04730	
0000021967 72 00 0 0,05021 ENSMUSG0 Rps20 9,772 -0,06559 1,000 10,599 0,11314 1,0000 9,82788 - 1,0000 0000028234 07 00 01 0 1,0000 0,05187 1,0000 ENSMUSG0 Eaf2 1,059 -0,04481 1,000 1,1289 0,09390 1,0000 1,05546 - 1,00000	0000021248	10	52		00	3				- 0,04828	
0000028234 07 00 01 0,05187 ENSMUSG0 Eaf2 1,059 -0,04481 1,000 1,1289 0,09390 1,0000 1,05546 - 1,00000	0000021967		72		00	0				- 0,05021	
	0000028234		07		00	01				- 0,05187	
	ENSMUSG0	Eaf2		-0,04481			0,09390	1,00000	1,05546	-	1,00000

ENSMUSG0	Rabac	3,127	0,07578	1,000	2,9863	-0,02566	1,00000	2,94704	-	1,00000
000003380	1	50		00	9				0,05275	
ENSMUSG0 0000019505	Ubb	9,613 09	-0,02033	1,000 00	10,037 97	0,07496	1,00000	9,44057	- 0,05786	1,00000
ENSMUSG0	Psmb	1,209	0,00612	1,000	1,2340	0,04962	1,00000	1,17364	-	1,00000
0000014769 ENSMUSG0	1 Rplp1	98 6,271	-0,03970	00	8 6,6669	0.09487	1,00000	6,21113	0,05836	1,00000
0000007892	Крірт	85	-0,03970	00	3	0,09407	1,00000	0,21113	- 0,05901	1,00000
ENSMUSG0	Sec61	3,322	-0,05118	1,000	3,5683	0,10622	1,00000	3,30721	-	1,00000
0000053317 ENSMUSG0	b Rps15	24 4,700	-0,16296	00	5 5,5789	0.21419	1,00000	4,92412	0,05927 -	1,00000
000008683	a	46		00	5	, , , , , , , , , , , , , , , , , , , ,	,		0,06237	
ENSMUSG0 0000073702	Rpl31	0,919 21	-0,11030	1,000 00	1,0425 4	0,16697	1,00000	0,93853	- 0,06401	1,00000
ENSMUSG0	Sub1	2,538	-0,00291	1,000	2,6177	0,06515	1,00000	2,46378	-	1,00000
0000022205 ENSMUSG0	Atp5o	27 1,060	0,00574	00	7 1,0851	0,05696	1,00000	1,02498	0,06552	1,00000
0000022956		26	,	00	4		*	-	0,06573	
ENSMUSG0 0000035242	Oaz1	2,296 94	-0,06942	1,000 00	2,5165 3	0,13183	1,00000	2,29643	- 0,06799	1,00000
ENSMUSG0	Mtdh	3,312	0,05077	1,000	3,2585	0,01467	1,00000	3,13318	-	1,00000
0000022255 ENSMUSG0	Slc25a	58 1,063	0,03240	00	6 1,0645	0,03504	1.00000	1,01318	0,06852	1,00000
0000016319	5 SIC25a	32	0,03240	00	2	0,03304	1,00000	1,01310	- 0,07050	1,00000
ENSMUSG0 0000040952	Rps19	3,811	-0,20854	1,000 00	4,7274	0,26588	1,00000	4,05887	- 0,07367	1,00000
ENSMUSG0	Eif3a	59 1,026	0,02560	1,000	7 1,0358	0,04503	1,00000	0,97988	-	1,00000
0000024991	A	87		00	9	0.44050	4.00000	0.00070	0,07393	4.00000
ENSMUSG0 0000006304	Arpc2	0,922 95	-0,07291	1,000 00	1,0176 2	0,14250	1,00000	0,92079	- 0,07581	1,00000
ENSMUSG0	Rpl22	2,427	-0,06902	1,000	2,6675	0,13887	1,00000	2,41733	-	1,00000
0000028936 ENSMUSG0	Psene	65 1,027	0,01130	00	1,0506	0,06150	1,00000	0,98530	0,07603	1,00000
0000036835	n	07	·	00	5		,		0,07642	,
ENSMUSG0 0000020267	Hint1	0,988 26	0,01087	1,000 00	1,0117 5	0,06283	1,00000	0,94783	- 0,07737	1,00000
ENSMUSG0	Rps7	2,861	-0,04860	1,000	3,0897	0,12110	1,00000	2,81946	-	1,00000
0000061477 ENSMUSG0	Cst3	15 5,237	0,02151	00	9 5,3157	0,05432	1,00000	4,99354	0,07797	1,00000
0000027447	0513	68	0,02131	00	8	0,05452	1,00000	4,99004	- 0,07969	1,00000
ENSMUSG0 0000036372	Tmem	1,401 08	-0,08781	1,000 00	1,5679 1	0,16048	1,00000	1,40467	- 0,08008	1,00000
ENSMUSG0	258 Hspa8	2,431	0,07805	1,000	2,3470	0,00058	1,00000	2,25593	-	1,00000
0000015656	Find	10	0.04040	00	7	0.00004	1 00000	1.00545	0,08268	1 00000
ENSMUSG0 0000019054	Fis1	1,067 16	0,04343	1,000 00	1,0636 4	0,03631	1,00000	1,00545	- 0,08354	1,00000
ENSMUSG0	Top1	2,347	-0,01909	1,000	2,4759	0,09834	1,00000	2,27555	-	1,00000
0000070544 ENSMUSG0	Sel1I	87 2,249	0,02600	00	7 2,2796	0,05540	1,00000	2,13441	0,08416	1,00000
0000020964	0	66	0.00000	00	4	0.00000			0,08553	
ENSMUSG0 0000020077	Srgn	6,801 58	0,38290	1,000 00	4,9294 7	-0,32629	0,97297	5,52180	- 0,08628	1,00000
ENSMUSG0	Gm42	52,17	0,25678	1,000	42,786	-0,18078	1,00000	44,5996	-	1,00000
0000098178 ENSMUSG0	418 Ube2j	138 1,698	0,07741	00	07 1,6489	0,01270	1,00000	8 1,56701	0,08976	1,00000
0000028277	1	06		00	2			-	0,09479	
ENSMUSG0 0000062006	Rpl34	4,573 69	-0,17505	1,000 00	5,5579 4	0,25556	1,00000	4,74215	- 0,09587	1,00000
ENSMUSG0	Ywhaz	1,382	0,05967	1,000	1,3657	0,03229	1,00000	1,28524	-	1,00000
0000022285 ENSMUSG0	Atp5g	85 1,437	0,01992	00	1 1,4721	0,07347	1,00000	1,35873	0,09662	1,00000
000006057	1	03		00	4				0,09843	
ENSMUSG0 0000060126	Tpt1	13,23 792	0,02427	1,000 00	13,507 81	0,06909	1,00000	12,4915 8	- 0,09848	1,00000
ENSMUSG0	Cd79a	6,548	0,04049	1,000	6,5858	0,05311	1,00000	6,13409	-	1,00000
0000003379 ENSMUSG0	Trp53i	93 2,995	0,28271	00	2 2,4066	-0,20021	1,00000	2,52099	0,09855	1,00000
0000028211	np1	2,995 02	0,20211	00	2,4066 9	-0,20021	1,00000	2,32099	- 0,09885	1,00000
ENSMUSG0	AY036	7,406	0,06301	1,000	7,3081	0,03350	1,00000	6,85725	-	1,00000
0000105361 ENSMUSG0	118 Pnrc1	97 1,107	0,15762	00	1 1,0022	-0,06226	1,00000	0,98217	0,10162 -	1,00000
0000040128		15		00	7				0,10251	
ENSMUSG0 0000028618	Tmem 59	1,293 71	0,11167	1,000 00	1,2222 5	-0,01381	1,00000	1,17071	- 0,10357	1,00000
			ı	•		ı	í	1	-,	

ENSMUSG0	Lars2	4,965	0,27685	1,000	4,0384	-0,18027	1,00000	4,16254		1,00000
0000035202	Larsz	4,965 63	0,27000	00	4,0364	-0,16027	1,00000	4,10204	- 0,11258	1,00000
ENSMUSG0 0000022587	Ly6e	12,08 832	-0,01172	1,000 00	12,819 82	0,11862	1,00000	11,5096 2	- 0,11402	1,00000
ENSMUSG0 0000084786	Ubl5	1,244 26	-0,09514	1,000 00	1,4219 1	0,20061	1,00000	1,22991	- 0,11661	1,00000
ENSMUSG0 0000034566	Atp5h	1,470 22	-0,04458	1,000 00	1,6077 8	0,15378	1,00000	1,41866	- 0,11774	1,00000
ENSMUSG0 0000035530	Eif1	6,863 05	-0,04610	1,000 00	7,5196 8	0,15658	1,00000	6,62194	- 0,11934	1,00000
ENSMUSG0 0000063882	Uqcrh	1,190 68	-0,12758	1,000 00	1,4036 3	0,23724	1,00000	1,19086	- 0,12382	1,00000
ENSMUSG0 0000036199	Ndufa 13	1,409 45	-0,12896	1,000 00	1,6655 4	0,24133	1,00000	1,40843	- 0,12699	1,00000
ENSMUSG0 0000004207	Psap	1,949 63	0,03758	1,000 00	1,9910 6	0,08449	1,00000	1,80159	- 0,12927	1,00000
ENSMUSG0 0000023944	Hsp90 ab1	3,504 76	0,01921	1,000 00	3,6408 6	0,10400	1,00000	3,26326	- 0,13091	1,00000
ENSMUSG0 0000068798	Rap1a	1,917 02	-0,03081	1,000 00	2,0854 6	0,15639	1,00000	1,82257	- 0,13519	1,00000
ENSMUSG0 0000074884	Serf2	2,889 52	-0,12721	1,000 00	3,4227 4	0,24886	1,00000	2,87062	- 0,13733	1,00000
ENSMUSG0 0000062397	Zfp70 6	1,923 72	-0,00556	1,000 00	2,0513 6	0,13741	1,00000	1,80263	- 0,14109	1,00000
ENSMUSG0 0000079641	Rpl39	2,487 84	-0,17967	1,000 00	3,0878 3	0,30007	1,00000	2,52913	- 0,14116	1,00000
ENSMUSG0 0000024121	Atp6v 0c	1,440 58	-0,23836	1,000 00	1,8810 2	0,35369	0,87123	1,50531	- 0,14260	1,00000
ENSMUSG0 0000093674	Rpl41	9,627 97	-0,23780	1,000 00	12,574 53	0,35493	0,86856	10,0475 3	- 0,14471	1,00000
ENSMUSG0 0000027422	Rrbp1	1,760 41	0,06254	1,000 00	1,7706 9	0,07577	1,00000	1,59488	- 0,14671	1,00000
ENSMUSG0 0000046330	Rpl37 a	3,133 61	-0,23764	1,000 00	4,1014 4	0,36027	0,86444	3,26002	- 0,15094	1,00000
ENSMUSG0 0000092341	Malat1	49,13 893	0,11860	1,000 00	47,075 05	0,02347	1,00000	43,3186 1	- 0,15121	1,00000
ENSMUSG0 0000041841	Rpl37	2,896 32	-0,30716	1,000 00	4,0226 7	0,42213	0,67189	3,11418	- 0,15269	1,00000
ENSMUSG0 0000003363	Pld3	1,181 91	0,19104	1,000 00	1,0609 1	-0,04887	1,00000	1,00796	- 0,15356	1,00000
ENSMUSG0 0000014313	Cox6c	0,907 49	-0,12057	1,000 00	1,0755 7	0,25748	1,00000	0,89156	- 0,15379	1,00000
ENSMUSG0 0000048163	Selplg	1,204 27	0,07116	1,000 00	1,2065 2	0,07561	1,00000	1,08198	- 0,15584	1,00000
ENSMUSG0 0000038690	Atp5j2	1,241 50	-0,13987	1,000 00	1,4976 4	0,27748	1,00000	1,22928	- 0,15645	1,00000
ENSMUSG0 0000078974	Sec61 g	2,036 41	-0,22275	1,000 00	2,6397 6	0,35434	0,87123	2,09495	- 0,15919	1,00000
ENSMUSG0 0000064356	mt- Atp8	1,101 63	-0,94880	0,017 92	2,5741 9	0,91305	0,00462	1,64823	- 0,15946	1,00000
ENSMUSG0 0000067288	Rps28	1,606 35	-0,32494	1,000 00	2,2714 3	0,44470	0,60015	1,73509	- 0,16123	1,00000
ENSMUSG0 0000038274	Fau	5,076 73	-0,13210	1,000 00	6,0998 3	0,27680	1,00000	4,99020	- 0,16389	1,00000
ENSMUSG0 0000038803	Ost4	2,175 29	-0,07031	1,000 00	2,4776 3	0,21975	1,00000	2,07688	- 0,16413	1,00000
ENSMUSG0 0000069744	Psmb 3	0,969 35	0,02007	1,000 00	1,0206 4	0,13526	1,00000	0,88686	- 0,16612	1,00000
ENSMUSG0 0000022108	ltm2b	7,899 77	0,24295	1,000 00	6,8047 2	-0,08912	1,00000	6,53675	- 0,16925	1,00000
ENSMUSG0 0000041697	Cox6a 1	1,281 89	-0,09289	1,000 00	1,4935 4	0,24789	1,00000	1,23210	- 0,17203	1,00000
ENSMUSG0 0000057863	Rpl36	2,043 70	-0,32147	1,000 00	2,9019 6	0,45922	0,56096	2,18180	- 0,18167	1,00000
ENSMUSG0 0000025290	Rps24	18,71 960	-0,03584	1,000 00	20,842 79	0,20426	1,00000	17,4235 3	- 0,18347	1,00000
ENSMUSG0 0000004285	Atp6v 1f	0,980 77	-0,06662	1,000 00	1,1218 9	0,23365	1,00000	0,92590	- 0,18365	1,00000
ENSMUSG0 0000053398	Phgdh	1,003 82	-0,16163	1,000 00	1,2501 0	0,32839	0,92232	0,98687	- 0,19212	1,00000
ENSMUSG0 0000049751	Rpl36 al	6,653 83	-0,08345	1,000 00	7,7474 8	0,25673	1,00000	6,30446	- 0,19225	1,00000
ENSMUSG0 0000061518	Cox5b	1,169 89	-0,09693	1,000 00	1,3783 2	0,26951	1,00000	1,11538	- 0,19241	1,00000
000001010	1	00	1	00	-	1	1	1	0,10241	

0000026223 39 00 4 1 1 1 0 0.19298 ENSMUSC3 Tmbim 1,633 0,31302 0,00 4,3722 0,14091 1,00000 1,33504 - 1,00000 000000086 Caxeb 0,97 0,06612 1,000 2 1,00000 0,9460 - 1,00000 0,9460 - 1,00000 0,9971 1,0000 0,0002 1,0000 0,0977 1,00000 0,0001 1,8124 - 1,00000 0,19973 1,00000 0,0000 1,8124 - 1,00000 1,00000 1,00000 1,00000 1,8124 - 0,19964 1,00000 1,00000 1,36656 - 0,0003316 1,0000 1,00000 1,36656 - 0,00003147 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000	ENGLARGE		4.450	0.00405	4 000	4 0007	0.45700	4 00000	1 000 10		4 00000
000002222 4 08 000 4 0 </td <td>ENSMUSG0 0000026223</td> <td>ltm2c</td> <td>1,150 39</td> <td>0,02135</td> <td>1,000 00</td> <td>1,2227 4</td> <td>0,15799</td> <td>1,00000</td> <td>1,03813</td> <td>- 0,19298</td> <td>1,00000</td>	ENSMUSG0 0000026223	ltm2c	1,150 39	0,02135	1,000 00	1,2227 4	0,15799	1,00000	1,03813	- 0,19298	1,00000
ENSMUSCG Cox6b 0.907 J.05812 1.0000 1.0348 0.23530 1.00000 0.84886 - 1.00000 ENSMUSCG Cox5a 1.020 0.07349 1.0000 1.0375 0.11121 1.00000 0.89719 - 1.00000 ENSMUSCG Evers 5.315 0.10130 1.000 5.2777 0.08564 1.00000 4.61051 - 1.00000 D0000003485 Serinc 5.315 0.10130 1.000 5.2777 0.08564 1.00000 1.36666 - 1.00000 0.20435 ENSMUSCG Parlan 1.551 0.06313 1.0000 1.5968 0.12728 1.00000 1.64262 - 1.00000 0.20435 ENSMUSCG Eak 1.823 0.17953 1.0000 1.6902 0.01050 1.00000 1.52400 - 1.00000 0.20486 - 0.00003 - 0.20481 1.00000 1.02000 2.37713 - 0.00004 - 0.20871 - <t< td=""><td></td><td></td><td>,</td><td>0,31302</td><td>· ·</td><td></td><td>-0,14091</td><td>1,00000</td><td>1,33504</td><td>-</td><td>1,00000</td></t<>			,	0,31302	· ·		-0,14091	1,00000	1,33504	-	1,00000
ENSMUSC0 Cox5a 1.020 0.07349 1.000 1.0375 0.11121 1.00000 0.89719 . 1.00000 ENSMUSC0 Ucp2 2.049 0.03618 1.000 2.1558 0.14943 1.00000 1.83124 - 0.19763 1.00000 ENSMUSC0 Serinc 5.315 0.10130 1.0000 6 0.00001 4.61051 0.20023 1.00000 ENSMUSC0 Pafah 1.551 0.06313 1.0000 1.5998 0.12728 1.00000 0.20435 0.20435 ENSMUSC0 11100 1.243 0.17263 1.0000 1.6902 0.01743 1.00000 1.22406 0.20465 ENSMUSC0 Lax1 1.823 0.07562 1.0000 2.5169 0.09059 1.00000 2.20465 1.00000 ENSMUSC0 Rps21 2.349 -0.26116 1.000 2.5169 -0.09059 1.00000 0.20641 1.00000 0000051937 1 66 0.0732 1.00001 1.2	ENSMUSG0	-	0,907	-0,05812	1,000	-	0,23530	1,00000	0,84886	-	1,00000
000000000000000000000000000000000000				0.07349			0.11121	1.00000	0.89719	0,19460 -	1.00000
0000033685 70 00 2 0.19964 0.10006 ENSMUSG0 Serinc 5.315 0.10130 1.000 6.2777 0.08564 1.00000 4.61051 - 0.00000 ENSMUSG0 Pafah 1.551 0.06313 1.000 1.5968 0.12728 1.00000 1.36656 - 0.20435 ENSMUSG0 11100 1.243 0.17267 1.000 1.1599 0.01743 1.00000 1.36566 - 0.20435 ENSMUSG0 Lax1 1.823 0.17953 1.000 1.6902 0.01050 1.00000 2.37713 - 0.20485 ENSMUSG0 Rix 2.365 0.27592 1.000 2.5169 -0.09059 1.00000 2.37713 - 0.20621 1.00000 0.20645 - 0.00003993 1 0.0002 2.5169 -0.09059 1.00000 2.0665 - 1.00000 0.20645 - 0.0000203993 - 0.20641 - 0.20645 - 0.00033000 <td>000000088</td> <td></td> <td>37</td> <td>-,</td> <td>00</td> <td>5</td> <td></td> <td>,</td> <td></td> <td>0,19773</td> <td>,</td>	000000088		37	-,	00	5		,		0,19773	,
0000017707 3 80 00 6 1 0 0.20023 ENSMUSG0 Pafah 1,551 0,06313 1,000 3,596 0,12728 1,00000 1,36666 - 0,20435 ENSMUSG0 11100 1,243 0,17267 1,000 1,1599 0,01743 1,00000 1,04262 - 0,20465 ENSMUSG0 Lax1 1,823 0,17953 1,000 1,6902 0,01050 1,00000 1,52400 - 0,20465 ENSMUSG0 Gasta 2,565 0,27592 1,000 2,5169 -0,09059 1,00000 2,37713 - 1,00000 0000039001 E4 0,2541 0,02651 - 0,20651 - 0,0002 ENSMUSG0 Aps12 2,349 -0,26687 1,000 1,3220 0,18476 1,00000 0,20743 1,00000 0000023904 F21 0 0.687 1,000 1,3220 0,18476 1,00000 1,02067 1,00000 <		Ucp2	,	0,03618	· ·	,	0,14943	1,00000	1,83124	- 0,19964	1,00000
ENSMUSG0 Pafah 1.51 0.06313 1.000 1.5968 0.12728 1.00000 1.36656 - 1.00000 D000005447 1b3 98 0.17267 1.000 1.1599 0.01743 1.00000 1.04262 - 0.20465 ENSMUSG0 Lax1 1.823 0.17953 1.000 1.6902 0.01750 1.00000 1.52400 - 1.00000 0000051998 25 00 6 - 0.00059 1.00000 2.37713 - 1.00000 0000051908 Sastm 2.965 0.27592 1.000 2.5169 -0.09059 1.00000 2.37713 - 1.00000 0000051937 1 64 - 0.0 4 0.25766 1.00000 0.39615 - 1.00000 0000020496 7 2.12 0.00687 1.000 1.3220 0.18476 1.00000 1.01050 - 1.00000 0000042494 7 21 0.00687 -0.01			,	0,10130	· ·		0,08564	1,00000	4,61051	- 0.20023	1,00000
ENSMUSG0 11100 1.243 0.17267 1.000 0.1599 0.01743 1.00000 1.04262 - 1.00000 ENSMUSG0 Lax1 1.823 0.17953 1.000 1.6902 0.01050 1.00000 1.52400 - 1.00000 ENSMUSG0 Sastm 2.965 0.27592 1.000 2.5169 -0.09059 1.00000 2.37713 - 1.00000 C000039001 64 -0.26116 1.000 3.1993 0.42853 0.65058 2.40615 - 1.00000 ENSMUSG0 Rnf18 1.221 0.00687 1.0000 3.25796 1.00000 0.89615 - 1.00000 ENSMUSG0 Rnf18 1.221 0.00687 1.0000 3 1.3220 0.18476 1.00000 1.10150 - 1.00000 ENSMUSG0 Rpi38 1.563 -0.42190 0.00 3 1.2217 1.2020 0.33412 0.90263 0.86055 - 1.00000 0.20977 1.00000 0	ENSMUSG0	Pafah	1,551	0,06313	1,000	1,5968	0,12728	1,00000	1,36656	-	1,00000
Rik -		11100		0,17267			0,01743	1,00000	1,04262	-	1,00000
ENSMUSC0 Lax1 1,823 0,17953 1,000 1,6902 0,01050 1,0000 1,52400 - 1,00000 ENSMUSC0 Sqstm 2,965 0,27592 1,000 2,5169 -0,09059 1,0000 2,37713 - 1,00000 ENSMUSC0 Rps21 2,349 -0,26116 1,000 3,1993 0,42853 0,65058 2,40615 - 1,0000 000003011 64 0.0 4 0,25796 1,00000 0,20641 1,0000 ENSMUSC0 Rnf18 1,221 0,00687 1,000 1,3220 0,18476 1,00000 1,0150 - 0,20695 ENSMUSC0 Rp138 1,563 -0.42190 1,000 1,422 0,33412 0,90263 0,86055 - 1,00000 ENSMUSC0 Ndufa 0,887 -0,15110 1,000 1,7716 0,26953 1,0000 1,41814 - 0,20977 1,00000 0,21977 1,00000 0,21967 1,00000 0,21967 <t< td=""><td>0000039195</td><td></td><td>47</td><td></td><td>00</td><td>0</td><td></td><td></td><td></td><td>0,20465</td><td></td></t<>	0000039195		47		00	0				0,20465	
ENSMUSG0 Sqstm 2,965 0,27592 1,000 2,5169 -0,09059 1,00000 2,37713 - 1,00000 ENSMUSG0 Rps21 2,349 -0,26116 1,000 3,1993 0,42853 0,65058 2,40615 - 1,00000 ENSMUSG0 Atp51 0,958 -0,07082 1,000 1,1098 0,25796 1,00000 0,8615 - 1,00000 C000020496 7 21 0,00687 1,000 1,3220 0,18476 1,00000 1,0150 - 1,00000 C0000257322 01 0.00 3 0.20743 -0,20637 1,0000 0,20967 - 1,00000 0,20967 - 1,00000 0,20967 - 1,00000 0,20967 - 1,00000 0,20967 - 1,00000 0,20967 - 1,00000 0,20967 - 1,00000 0,21457 1,00000 0,21457 1,00000 0,21457 1,00000 0,21457 1,00000 0,21457 1,00000 0				0,17953			0,01050	1,00000	1,52400	-	1,00000
ENSMUSG0 Rps21 2,349 -0,26116 1,000 3,1993 0,42853 0,65058 2,40615 - 1,0000 ENSMUSG0 AtpS1 0,9588 -0,07082 1,000 1,1098 0,25796 1,00000 0,89615 - 1,00000 ENSMUSG0 Rtp18 1,221 0,00687 1,000 1,3220 0,18476 1,00000 1,11050 - 0,20695 ENSMUSG0 Rtp188 1,563 -0,42190 1,000 2,4346 0,56638 0,27757 1,7297 - 1,00000 0000014294 2 39 -0,07621 1,000 1,1022 0,33412 0,90263 0,86055 - 1,00000 0000044894 0.887 -0,15110 1,000 1,7716 0,26953 1,00000 1,41814 - 1,00000 0000014294 2 39 -0,07621 1,000 1,614 0,26703 1,00000 1,71981 - 1,00000 0000021424 Cox8a 2,006 0	ENSMUSG0	Sqstm		0,27592			-0,09059	1,00000	2,37713	-	1,00000
0000039001 64 00 4 0,20641 ENSMUSG0 Atp5i 0,958 -0,07082 1,000 1,1098 0,25796 1,00000 0,89615 - - 1,00000 ENSMUSG0 Rnf18 1,221 0,00687 1,000 1,3220 0,18476 1,00000 1,11050 - 1,00000 ENSMUSG0 Rp138 1,563 -0,42190 00 3 - 1,00000 1,117297 - 1,00000 0000057322 01 0 3 - 0,33412 0,90263 0,86055 - - 1,00000 ENSMUSG0 Ndufa 0,887 -0,15110 1,000 1,7716 0,26953 1,00000 1,41814 - 1,00000 ENSMUSG0 Vqcrq 1,518 -0,07621 1,000 1,7716 0,26973 1,0000 1,71981 - 1,0000 0,21457 ENSMUSG0 Npc2 1,379 -0,06725 1,000 1,6014 0,26703 1,00000				-0 26116		_	0 42853	0.65058	2 40615	0,20521	1 00000
0000038717 31 00 7 0.20695 ENSMUSG0 Rnf18 1,221 0,00687 1,000 1,3220 0,18476 1,0000 0,20743 ENSMUSG0 Rpl38 1,563 -0,42190 1,000 2,4346 0,56638 0,27757 1,72997 - 1,0000 00000057322 01 00 3 - 0,20967 - 1,0000 ENSMUSG0 Ndufa 0,887 -0,15110 1,000 1,1172 0,33412 0,90263 0,86055 - 1,00000 0000014294 2 39 00 7 - 0,21457 - ENSMUSG0 Uqcrq 1,518 -0,07621 1,000 1,614 0,26703 1,0000 1,27897 - 1,00000 0000021242 70 00 3 1,6014 0,26703 1,0000 1,27897 - 1,00000 0000021242 70 00 2,0367 0,36820 0,83764 1,55563 -	0000039001	-	64		00	4	-			0,20641	,
0000020496 7 21 00 3 0 0,20743 ENSMUSG0 Rpl38 1,563 -0,42190 1,000 2,4346 0,56638 0,27757 1,72997 - 1,0000 0000057322 01 1,000 1,1022 0,33412 0,90263 0,86055 - 1,00000 0000014294 2 39 -0.07621 1,000 1,7716 0,26953 1,00000 1,41814 - 1,00000 0000044894 39 -0.07621 1,000 2,1825 0,19510 1,00000 1,71981 - 1,00000 0000035885 96 -0.06725 1,000 2,1825 0,19510 1,00000 1,27897 - 1,00000 0000021242 70 -0,06725 1,000 2,0367 0,36820 0,83764 1,55563 - 1,00000 000021242 70 -0,0778 1,000 1,1516 0,13862 1,00000 0,22534 - 1,00000 000029759		Atp5l	,	-0,07082	· ·	_'	0,25796	1,00000	0,89615	- 0,20695	1,00000
ENSMUSG0 Rpi38 1,563 -0,42190 1,000 2,4346 0,56638 0,27757 1,72997 - 1,0000 ENSMUSG0 Ndufa 0,887 -0,15110 1,000 1,1022 0,33412 0,90263 0,86055 - 1,00000 ENSMUSG0 Uqcrq 1,518 -0,07621 1,000 1,7716 0,26953 1,00000 1,41814 - 1,00000 0,21457 ENSMUSG0 Cox8a 2,006 0,00680 1,000 2,1825 0,19510 1,00000 1,7981 - 1,00000 0,21457 ENSMUSG0 Npc2 1,379 -0.06725 1,000 2,1825 0,19510 1,00000 1,27897 - 1,00000 0,22130 ENSMUSG0 Ndufa 1,598 -0,17425 1,000 2,0367 0,38764 1,55563 - 0,22539 1,00000 0,22539 1,00000 0,2254 1,00000 0,2254 1,00000 0,2254 1,00000 0,22554 1,00000 0,23017<		_	,	0,00687			0,18476	1,00000	1,10150	- 0 20743	1,00000
ENSMUSG0 Ndufa 0,887 -0,15110 1,000 1,1022 0,33412 0,90263 0,86055 - 1,00000 ENSMUSG0 Uqcrq 1,518 -0,07621 1,000 1,7716 0,26953 1,00000 1,41814 - 1,00000 ENSMUSG0 Cox8a 2,006 0,00680 1,000 2,1825 0,19510 1,00000 1,71981 - 1,00000 0000035885 96 00 0 2,1825 0,19510 1,00000 1,27897 - 1,00000 0000021242 70 0 0 3 - 0,26703 1,00000 1,27897 - 1,00000 0000016427 1 87 0,0778 1,000 1,1516 0,13862 1,00000 0,97048 - 1,00000 0000021282 Pon3 1,117 0,07078 1,000 1,4428 0,26024 1,00000 0,22554 1,00000 0000021282 T9 00 2 0 1,10220	ENSMUSG0		1,563	-0,42190	1,000	2,4346	0,56638	0,27757	1,72997	-	1,00000
0000014294 2 39 00 5 0,20977 ENSMUSG0 Uqcrq 1,518 -0,07621 1,000 1,7716 0,26953 1,0000 1,41814 - 1,0000 0000044894 39 00 7 0,21457 1,0000 0,21457 1,0000 ENSMUSG0 Cox8a 2,006 0,00680 1,000 2,1825 0,19510 1,0000 1,79981 - 1,0000 0000021242 70 -0,06725 1,000 1,6014 0,26703 1,0000 1,27897 - 1,00000 0000016427 1 87 -0,17425 1,000 2,0367 0,36820 0,83764 1,55563 - 1,00000 0000029759 59 00 9 0 2 1,00000 1,1566 1,2254 1,00000 0,2254 1,00000 0,2254 1,00000 0,23613 1,00000 0,23613 1,00000 0,23613 1,00000 0,23613 1,00000 0,23613 1,00000 0		Ndufa		-0,15110			0,33412	0,90263	0,86055	0,20967	1,00000
0000044894 39 00 7 0.21457 ENSMUSG0 Cox8a 2,006 0,00680 1,000 2,1825 0,19510 1,0000 1,79981 - 1,0000 ENSMUSG0 Npc2 1,379 -0,06725 1,000 1,6014 0,26703 1,0000 1,27897 - 1,00000 ENSMUSG0 Ndufa 1,598 -0,17425 1,000 2,0367 0,36820 0,83764 1,55563 - 1,00000 0000021242 70 00 3 0 0 0 0,22539 ENSMUSG0 Pon3 1,117 0,07078 1,000 1,1516 0,13862 1,0000 0,97048 - 1,00000 ENSMUSG0 Eif5 1,255 -0,05156 1,000 1,4428 0,26024 1,00000 0,83017 - 1,00000 ENSMUSG0 Srp14 0,931 0,00413 1,000 1,1253 0,28484 1,00000 0,23513 ENSMUSG0 Ndufa 0,894				-0.07621			0 26953	1 00000		0,20977	1 00000
0000035885 96 00 0 <t< td=""><td>0000044894</td><td></td><td>39</td><td></td><td>00</td><td>7</td><td></td><td></td><td></td><td>0,21457</td><td></td></t<>	0000044894		39		00	7				0,21457	
ENSMUSG0 0000021242 Npc2 70 1,379 70 -0,06725 00 1,000 00 1,6014 3 0,26703 00 1,0000 0,83764 1,27897 1,5563 - 0,22130 1,0000 0,22539 ENSMUSG0 0000016427 Ndufa 1 1,598 -0,17425 1,000 00 2,0367 0,36820 0,83764 1,55563 - 0,22539 1,0000 ENSMUSG0 000029759 Pon3 1,117 0,07078 1,000 1,1516 0,13862 1,00000 0,97048 - 0,22554 1,00000 ENSMUSG0 0000221282 Eif5 1,255 -0,05156 1,000 1,4428 0,26024 1,00000 0,83017 - 0,23040 - 0,23040 1,00000 ENSMUSG0 000009549 Srp14 0,931 0,00413 1,000 1,0220 0,21170 1,00000 0,88017 - 0,23615 1,00000 ENSMUSG0 0000028648 Ndufa 0,959 -0,07257 1,000 1,1253 0,28484 1,00000 0,82036 - 0,23802 - 0,23802 ENSMUSG0 000002379 Ndufa 0,894 -0,06204 1,000 1,0399		Cox8a	,	0,00680	· ·	,	0,19510	1,00000	1,79981	- 0,21918	1,00000
ENSMUSG0 000016427 Ndufa 1 1,598 87 -0,17425 00 1,000 00 2,0367 00 0,36820 0.13862 0,83764 1,5563 - 1,0000 0,22539 ENSMUSG0 000029759 Pon3 1,117 0,07078 1,000 1,1516 0,13862 1,00000 0,97048 - 1,00000 0000029759 59 -0,05156 1,000 1,4428 0,26024 1,00000 1,15046 - 1,00000 0000021282 79 00 2 00 1,0220 0,21170 1,00000 0,83017 - 1,00000 ENSMUSG0 Srp14 0,959 -0,07257 1,000 1,1253 0,28484 1,00000 0,88540 - 1,00000 0000028648 5 79 00 1 1,0399 0,27667 1,00000 0,88540 - 1,00000 000002379 11 49 -0,06204 1,000 3,1430 0,03017 1,00000 0,23921 - 1,00000 0000002379 11 49 <td></td> <td>Npc2</td> <td></td> <td>-0,06725</td> <td>· ·</td> <td></td> <td>0,26703</td> <td>1,00000</td> <td>1,27897</td> <td>- 0.22130</td> <td>1,00000</td>		Npc2		-0,06725	· ·		0,26703	1,00000	1,27897	- 0.22130	1,00000
ENSMUSG0 000029759 Pon3 59 1,117 59 0,07078 00 1,000 00 1,1516 9 0,13862 1,0000 1,0000 0,97048 0,22554 - 1,0000 0,22554 ENSMUSG0 000021282 Eif5 79 1,255 79 -0,05156 0,00413 1,000 00 1,4428 2 0,26024 1,00000 1,15046 - 1,00000 ENSMUSG0 000009549 Srp14 0,931 92 0,00413 1,000 1,0220 0,21170 1,00000 0,83017 - 1,00000 ENSMUSG0 0000028648 Ndufs 0,959 -0,07257 1,000 1,1253 0,28484 1,00000 0,88540 - 1,00000 0000028648 5 79 00 1 00 1 0,23667 1,00000 0,82036 - 1,00000 000002379 11 49 -0,06204 1,000 3,1430 0,03017 1,00000 0,23802 0,23802 0,23802 0,23921 ENSMUSG0 Creld2 3,376 0,19060 1,000 3,1430 0,03017 1,00000 0,23921 <td>ENSMUSG0</td> <td>Ndufa</td> <td>1,598</td> <td>-0,17425</td> <td>1,000</td> <td>2,0367</td> <td>0,36820</td> <td>0,83764</td> <td>1,55563</td> <td>-</td> <td>1,00000</td>	ENSMUSG0	Ndufa	1,598	-0,17425	1,000	2,0367	0,36820	0,83764	1,55563	-	1,00000
ENSMUSG0 0000021282 Eif5 79 1,255 79 -0,05156 0,00413 1,000 00 1,4428 2 0,26024 1,0000 1,15046 - 0,23040 1,0000 0,23040 1,0000 0,23040 1,0000 0,23040 1,0000 0,23040 1,0000 0,23040 1,0000 0,23040 1,0000 0,23040 1,0000 0,23040 1,0000 0,23040 1,0000 0,23513 1,0000 0,23513 1,0000 0,23513 1,0000 0,23513 1,0000 0,23513 1,0000 0,23513 1,0000 0,23513 1,0000 0,23513 1,0000 0,23513 1,0000 0,23513 1,0000 0,23513 1,0000 0,23513 1,0000 0,23513 1,0000 0,23615 1,0000 0,23615 1,0000 0,23615 1,0000 0,23615 1,0000 0,23802 1,0000 0,23802 1,0000 0,23802 1,00000 0,23802 1,00000 0,23802 1,00000 0,23802 1,00000 0,23921 1,00000 0,23921 1,00000 0,23921 1,00000 0,	ENSMUSG0	Pon3		0,07078		÷	0,13862	1,00000	0,97048	-	1,00000
0000021282 79 00 2 0,23040 ENSMUSG0 000009549 Srp14 92 0,931 92 0,00413 00 1,000 1 1,0220 00 0,21170 1 1,00000 0,83017 - 0,23513 1,0000 0,23513 ENSMUSG0 0000028648 Ndufs 5 0,959 79 -0,07257 1,000 00 1,1253 0,28484 1,00000 0,88540 - 0,23615 1,00000 ENSMUSG0 0000023379 Ndufa 11 0,894 49 -0,06204 1,000 1,0399 0,27667 1,00000 0,82036 - 0,23802 1,00000 ENSMUSG0 0000023272 Creld2 3,376 0,19060 1,000 3,1430 0,03017 1,00000 2,76142 - 0,23921 1,00000 ENSMUSG0 0000023272 Creld2 3,376 0,19060 1,000 5 0,210000 0,23921 1,00000 ENSMUSG0 0000090733 Rps27 1,844 -0,32383 1,000 2,6774 0,51092 0,41299 1,91517 - 1,00000 ENSMUSG0 0000067212 H2- 723 3,810 0,39880 1,000		Fif5		-0.05156		-	0.26024	1.00000	1,15046	0,22554	1.00000
0000009549 92 00 1 0,23513 ENSMUSG0 Ndufs 0,959 -0,07257 1,000 1,1253 0,28484 1,0000 0,88540 - 1,00000 0000028648 5 79 -0,06204 1,000 1,1253 0,27667 1,0000 0,82036 - 1,00000 000002379 11 49 -0,06204 1,000 9 0,27667 1,00000 0,82036 - 1,00000 0000023272 11 49 -0,06204 1,000 3,1430 0,03017 1,00000 2,76142 - 1,00000 0000023272 51 -0,32383 1,000 2,6774 0,51092 0,41299 1,91517 - 1,00000 ENSMUSG0 Rps27 1,844 -0,32383 1,000 2,6774 0,51092 0,41299 1,91517 - 1,00000 000090733 72 00 8 - 0,24063 - 1,00000 0000067212 T23 <	0000021282		79		00	2		,		0,23040	,
0000028648 5 79 00 1 0,23615 ENSMUSG0 Ndufa 0,894 -0,06204 1,000 1,0399 0,27667 1,0000 0,82036 - 1,0000 000002379 11 49 00 9 00 1 0,03017 1,0000 0,82036 - 1,0000 0,23802 0,23802 0,23802 0,000023272 0 1 00 5 0,03017 1,00000 2,76142 - 1,00000 0,23921 0,03017 0,0000 0,23921 0,0000 0,23921 0 0,03017 1,00000 0,23921 0,0000 0,23921 0 0,03017 1,00000 0,23921 0,0000 0,24063 0,24063 0,0000 0,24063 0,24063 0,24063 0,0000 0,24063 0,24063 0,041299 1,91517 - 1,00000 0,248536 - 1,00000 0,248536 - 1,00000 0,24383 0,24383 0,0000 0,24383 0,24383 0,24383 0,24383		Srp 14			00	1		·		- 0,23513	
ENSMUSG0 000002379 Ndufa 11 0,894 49 -0,06204 00 1,000 00 1,0399 9 0,27667 1,0000 0 0,82036 0,23802 - 1,0000 0,23802 ENSMUSG0 000023272 Creld2 3,376 51 0,19060 1,000 00 3,1430 0,03017 1,00000 2,76142 - 1,00000 ENSMUSG0 0000023272 Rps27 1,844 -0,32383 1,000 2,6774 0,51092 0,41299 1,91517 - 1,00000 ENSMUSG0 0000090733 H2- 00 3,810 0,39880 1,000 2,9315 -0,18900 1,00000 2,84536 - 1,00000 0000067212 T23 21 00 7 1,00000 2,84536 - 1,00000			,	-0,07257			0,28484	1,00000	0,88540	- 0.23615	1,00000
ENSMUSG0 0000023272 Creld2 51 3,376 51 0,19060 00 1,000 5 3,1430 5 0,03017 1,00000 2,76142 - 1,00000 ENSMUSG0 000090733 Rps27 1,844 -0,32383 1,000 2,6774 0,51092 0,41299 1,91517 - 1,00000 ENSMUSG0 0000090733 H2- 000 3,810 0,39880 1,000 2,9315 -0,18900 1,00000 2,84536 - 1,00000 0000067212 T23 21 00 7 0,18900 1,00000 2,84536 - 1,00000	ENSMUSG0		,	-0,06204			0,27667	1,00000	0,82036	-	1,00000
ENSMUSG0 Rps27 1,844 -0,32383 1,000 2,6774 0,51092 0,41299 1,91517 - 1,0000 0000090733 72 00 8 0 0 0,24063 0,24063 ENSMUSG0 H2- 3,810 0,39880 1,000 2,9315 -0,18900 1,00000 2,84536 - 1,00000 0000067212 T23 21 00 7 0 1,00000 0,24383	ENSMUSG0			0,19060		-	0,03017	1,00000	2,76142	-	1,00000
0000090733 72 00 8 0,24063 ENSMUSG0 H2- 3,810 0,39880 1,000 2,9315 -0,18900 1,00000 2,84536 - 1,00000 0000067212 T23 21 00 7 1 0,24383 - 1,00000		Rps27		-0.32383			0.51092	0.41299	1.91517	0,23921	1.00000
0000067212 T23 21 00 7 0,24383	0000090733		72	-	00	8				0,24063	
ENSMUSG0 Ubc 3 809 0 12614 1 000 3 7649 0 10036 1 00000 3 19665 1 1 00000			21		00	7				- 0,24383	
0000008348 23 00 7 0,12014 1,000 3,7043 0,10030 1,0000 3,13003 0 1,00000 0,13003 0,130000 0,130000 0,130000000000	ENSMUSG0 0000008348	Ubc	3,809 23	0,12614	1,000 00	3,7649 7	0,10036	1,00000	3,19665	- 0.24455	1,00000
ENSMUSG0 Tapbp 2,525 0,32110 1,000 2,0967 -0,09680 1,00000 1,94159 - 1,00000	ENSMUSG0	Tapbp	2,525	0,32110	1,000	2,0967	-0,09680	1,00000	1,94159	-	1,00000
0000024308 76 00 0 0,25093 ENSMUSG0 Rpl35 5,034 -0,10666 1,000 6,1134 0,33014 0,91213 4,68066 - 1,00000	ENSMUSG0	Rpl35	5,034	-0,10666		-	0,33014	0,91213	4,68066	-	1,00000
0000060636 a 58 00 1 0,25261 ENSMUSG0 Atp5e 1,553 -0,13919 1,000 1,9420 0,36318 0,85799 1,46355 - 1,00000				-0.13919			0.36318	0.85799	1,46355	0,25261	1.00000
0000016252 36 00 0 0.25662	0000016252	-	36		00	0				0,25662	
ENSMUSG0 Rps29 1,870 -0,50297 1,000 3,1614 0,67218 0,10375 2,10434 - 1,0000 0000034892 24 00 2 00 2 0,00075 0,25916 1,0000	0000034892		24		00	2				- 0,25916	
ENSMUSG0 Gng5 1,650 0,00849 1,000 1,8235 0,23327 1,0000 1,44591 - 1,0000 0000068523 68 00 6 0 1,0000 1,44591 - 1,0000		Gng5		0,00849	· ·	-	0,23327	1,00000	1,44591	- 0.26502	1,00000
ENSMUSG0 Bst2 2,534 0,03056 1,000 2,7484 0,21356 1,00000 2,19600 - 1,00000	ENSMUSG0	Bst2	2,534	0,03056	1,000	2,7484	0,21356	1,00000	2,19600	-	1,00000
0000046718 53 00 3 0,26673 ENSMUSG0 Glipr1 2,774 0,37481 1,000 2,2113 -0,13568 1,00000 2,06331 - 1,00000		Glipr1		0,37481			-0,13568	1,00000	2,06331	-	1,00000
0000056888 67 00 3 0,27231 ENSMUSG0 Tceb2 1,131 -0,11839 1,000 1,3979 0,35901 0,86856 1,04627 - 1,0000		Tceh2		-0.11839		3	0.35901	0.86856	1,04627	0,27231	1,00000
	0000055839	10002		0,11000			3,00001	0,00000	1,0 1021	0,27399	1,00000

0000032294 98 0.0400 8 0.0600 0.07001 0.07784 0.07000 0000000065 Albao 2,135 0.1400 0.000 1.7320 0.02000 1.77784 0.0000 0000002005 Albao 2,135 0.0000 0.73706 0.81141 0.83424 1.00000 000005316 Para 2,27 0.61111 3.660 1.6627 1.00000 0.83663 0.32450 1.00000 00000532 Para 1.277 0.20791 1.000 1.2152 0.09526 1.00000 0.91536 - 0.33450 0.33457 0.33457 0.33457 0.38468 0.39467 0.39451 0.39461 0.3452 0.09027 0.33010 0.99270 0.3302 7.9 0.38452 0.000027444 0.33457 0.38562 0.00002744 0.33457 0.38450 0.33457 0.38562 0.0000274534 1.00000 1.77144 0.36268 0.37037 0.86433 0.3047 0.34561 0.0000 2.024666 1.00000 2.024	ENSMUSG0	Pkm	1,150	-0,13567	1,000	1.4443	0,37626	0,81859	1,07227	1	1,00000
ENSMUSCO 000003085 Aldoa 9 2,135 0,10400 0,0000 0,5 2,1891 0,0000 0,00000 1,77184 0,22760 1,0000 0,22760 ENSMUSCO 000024308 ENSMUSCO 0000024308 Nufw 0,997 0,997 0,997 0,1111 0,580 1,870 1,850 0,79000 0,2868 0,02466 1,1627 - 0,02271 1,00000 ENSMUSCO 0000024308 H2af 1,045 0,1879 0,0001 0,8986 - 0,31450 1,00000 ENSMUSCO ENSMUSCO 000002766 H2af 1,027 0,20794 1,000 1,2152 0,09526 1,00000 0,98988 - 0,33310 0,3162 0,3316 0,3316 0,3162 0,33467 0,3467 0,3467 0,3467 0,3467 0,3467 0,3467 0,3467 0,3467 0,3467 0,3467 0,3467 0,3467 0,3467 0,3467 0,3562 0,99921 0,35162 0,99921 0,3562 0,3467 0,3676 0,86493 1,02000 2,32639 - 0,37345 0,37346 0,37037 0,85486 ENSMUSCO 000002434 Marta 1,775 0,17661 1,1000		FKIII	,	-0,13307	· ·	, -	0,37020	0,01009	1,07227	- 0.27591	1,00000
ENSMUSG0 Nutry 0.904 -0.12726 1.000 5 0.81141 0.831424 - 1.00000 0000024038 63 0.997 -0.61111 0.560 1.8670 0.73906 0.2868 1.16277 - 0.30271 1.00000 ENSMUSG0 R426 1.045 0.18139 1.0000 1.1644 0.26897 1.00000 0.89868 - 1.10000 0.31460 0.01236 - 0.33310 0.321460 0.33467 0.33310 0.33467 0.33467 0.33467 0.33467 0.33467 0.34678 0.46633 0.32676 0.86493 1.00000 1.03620 0.32467 0.36562 0.90927 0.33467 0.36562 0.90927 0.33467 0.36562 0.90927 0.33652 0.000022434 1.17144 0.36520 0.90927 0.33467 0.36493 1.00001 1.17144 0.36520 0.86938 1.00003 1.2024 0.40693 1.0010 1.6243 0.40693 1.0010 1.6243 0.40654 0.70007 1.2042	ENSMUSG0	Aldoa	2,135	0,10400	1,000	2,1891	0,16006	1,00000	1,77184	-	1,00000
ENSMUSGO Rpi27 0.987 -0.61411 0.560 1.8670 0.79308 0.02466 1.16247 - 1.00000 200008316 1.045 0.01839 1.000 1.664 0.26597 1.00000 0.8888 - 1.00000 ENSMUSGO Pama 1.277 0.20744 1.000 1.2152 0.09526 1.00000 0.88988 - 0.33467 ENSMUSGO Paint 1.172 0.18786 1.000 1.1345 0.00002 0.98883 - 0.33467 ENSMUSGO Cav7a 1.202 0.2297 1.000 8 0.35762 0.38683 1.00000 1.17144 - 0.35462 ENSMUSGO Maria 1.679 0.41766 1.000 1.3305 -0.0731 1.00000 2.30927 - 0.85488 ENSMUSGO Braz -0.35522 1.000 1.5033 0.36276 0.86433 1.0893 - 0.42886 ENSMUSGO Bar 2.976 0.15661 1.000 <td>ENSMUSG0</td> <td></td> <td>,</td> <td>-0,12726</td> <td>1,000</td> <td></td> <td>0,37906</td> <td>0,81141</td> <td>0,83424</td> <td>-</td> <td>1,00000</td>	ENSMUSG0		,	-0,12726	1,000		0,37906	0,81141	0,83424	-	1,00000
ENSMUSGO H2afi 1.045 0.01839 1.000 0.05697 1.00000 0.88968 - 1.00000 ENSMUSGO Psma 1.277 0.20794 1.000 1.2152 0.09626 1.00000 0.98927 - 0.331450 ENSMUSGO Psip1 1.172 0.18766 1.000 1.3447 0.28953 1.0000 0.91536 - 0.90432 ENSMUSGO Coxra 1.202 0.02997 1.000 1.3457 0.28953 1.0000 0.91536 - 0.90427 ENSMUSGO Maria 1.679 0.41676 1.000 1.3355 0.00731 1.00000 1.7144 - 0.45648 ENSMUSGO Braa 1.285 -0.03552 1.000 3.0247 0.84481 1.0000 2.3028 - 0.437405 ENSMUSGO Braa 2.766 0.15661 1.000 3.1422 0.24066 1.00000 2.3028 - 0.43245 ENSMUSGO Bra 0.101331 0.006<	ENSMUSG0		0,997	-0,61411	0,560	1,8670	0,79308	0,02466	1,16247	-	1,00000
ENSMUSG0 Psma 1,277 0,20794 1,000 1,2152 0,09526 1,0000 0,98927 . 0,33340 ENSMUSG0 Psip1 1,172 0,18786 1,000 1,1164 0,11716 1,0000 0,91536 0,33447 0,36433 ENSMUSG0 Cox7a 1,202 0,2997 1,000 1,3457 0,28593 1,0000 0,91536 0,33447 0,36562 ENSMUSG0 Man1 1,679 0,41676 1,000 1,3395 -0,9731 1,00000 1,17144 0,36526 0,86493 1,08939 0,37037 0,86498 ENSMUSG0 Epoa 1,225 0,015661 1,000 3,0344 0,18148 1,00000 2,30928 0,37405 0,37405 0,37405 0,37405 0,37405 0,37405 0,37405 0,37405 0,42865 0,57118 0,000020205 0,42865 0,57118 0,000020201 1,33 0,00 6 1,4101 0,41319 0,41354 0,40001 1,4141 0,45951 0,42865	ENSMUSG0	H2afj	1,045	0,01839	1,000	1,1664	0,26597	1,00000	0,88968	-	1,00000
ENSMUSC0 Peipt 1.172 0.18786 1.000 1.1364 0.11716 1.00000 0.91536 - 0.96433 ENSMUSC0 Cox74 1.202 0.02997 1.000 1.3457 0.28593 1.00000 0.99888 - 0.90027 ENSMUSC0 Marta 1.679 0.41676 1.000 1.3395 -0.09731 1.00000 1.17144 - 0.85526 ENSMUSC0 Epca 1.285 -0.03552 1.000 1.5303 0.36276 0.86493 1.09939 - 0.85526 ENSMUSC0 Barn 2.976 0.15661 1.000 3.1242 0.24066 1.00000 2.32639 - 0.38340 0.79872 O000002023 13 0.01434 1.000 1.4481 0.7104 1.07268 0.42885 ENSMUSC0 Park 1.268 0.35420 1.000 1.6084 0.41054 0.70104 1.07268 0.45910 0.55803 O000009277 B 0.05435 0.000	ENSMUSG0		1,277	0,20794	1,000	1,2152	0,09526	1,00000	0,98927	-	0,97220
ENSMUSC0 Cox7a 1,202 0,02997 1,000 1,3457 0,28593 1,00000 0,9888 - 0,08676 0000003230 2 79 0 0 8 0,28593 1,00000 0,36526 0,086768 0000003740 74 1,285 -0,03552 1,000 1,5303 0,36276 0,86493 1,08939 - 0,37037 0,8626 ENSMUSG0 Egra 1,285 -0,03552 1,000 3,0827 0,86493 1,09939 - 0,27037 0,82810 0000045394 14 - 0,01341 1,000 3,1242 0,24066 1,00000 2,32639 - 0,27872 0,38340 0,79872 00000203284 4a 99 00 8 0,71156 0,55755 - 0,57856 - 0,57868 000002423 13 0 0 6 - 0,568057 1,20423 - 0,56805 - 0,56805 - 0,56805 -	ENSMUSG0		1,172	0,18786	1,000	1,1364	0,11716	1,00000	0,91536	-	0,96433
ENSMUSC0 Marta 1.679 0.41876 1.000 1.3395 -0.09731 1.00000 1.17144 - 0.68708 0000002539 m 14 0.03552 1.000 1.5303 0.36276 0.86493 1.09393 - 0.85488 0000045394 m 14 0.00 3.084 1.0000 2.3028 - 0.82401 0000020285 4 9.9 0.15661 1.000 3.1242 0.24066 1.00000 2.32639 - 0.8840 0000020285 4 9.9 0.0143 1.000 1.4497 0.47156 0.52745 0.95795 - 0.8840 0000020284 13 0.00143 1.000 1.6084 0.41054 0.70104 1.02680 0.42885 0.5571 0000020857 9 M 0.06435 1.000 1.1131 0.05490 1.0000 0.46801 0.5613 0000020861 0 1.4181 0.17158 1.0000 1.6181 0.46861	ENSMUSG0		1,202	0,02997			0,28593	1,00000	0,99888	-	0,90927
ENSMUSC0 Eproca 1.285 0.03552 1.000 1.5303 0.36276 0.86493 1.08939 - 0.87037 ENSMUSC0 B2m 29.76 0.15661 1.000 30.084 0.18148 1.00000 2.30928 - 0.37405 0.82810 ENSMUSC0 Laptm 2.943 0.10434 1.000 3.1242 0.24066 1.00000 2.32639 - 0.38340 ENSMUSC0 Big2 1.128 -0.10433 1.000 1.6084 0.47156 0.52745 0.95795 - 0.68886 ENSMUSC0 Park 71 0 6 0.41054 0.70104 1.07268 - 0.57118 ENSMUSC0 Perdt 1.481 -0.05435 1.000 1.8502 0.45627 0.56567 1.20423 - 0.5619 ENSMUSC0 Chridi 2.452 0.14254 1.000 1.6814 0.10001 1.8118 - 0.46389 ENSMUSC0 Chridi 2.452 0.14254				0,41676		÷	-0,09731	1,00000	1,17144	0,35162	0,86708
0000045394 m 14 00 8 - 0,37037 ENSMUSCO BZm 27.6 0,15661 1,000 30,084 0,18148 1,00000 2,30928 - 0,82810 ENSMUSCO Laptm 2,943 0,10434 1,000 3,1422 0,24066 1,00000 2,32639 - 0,68886 0000020855 4a 99 0,01043 1,000 1,4497 0,47156 0,52745 0,95795 - 0,68886 0000020437 11 0,01043 1,000 1,6084 0,41054 0,70104 1,07268 - 0,57118 0000009877 9 40 00 9 1,6084 0,41054 1,0000 1,8138 - 0,56803 0000009877 9 40 0.05 9 0,46861 0,5671 1,2423 - 0,46861 0,5671 0,47953 ENSMUSCO Preht 1,414 0,0513 1,501 0,25372 1,000 1,4481 0,17158		Epca		-0.03552			0.36276	0.86493	1.08939	0,36526	0.85488
0000060802 726 00 20 4 0,37405 ENSMUSG0 Lapim 99 000 8 1,0000 2,3263 - 0,79872 00000202655 4a 99 000 8 0,47156 0,52745 0,38340 0,79872 0000021242 13 00 6 0,47156 0,52745 0,64288 0,45816 ENSMUSG0 Hzatz 1,339 -0,01043 1,000 1,1131 0,05490 1,00000 0,86305 - 0,55863 ENSMUSG0 Prob 1,268 0,35420 1,000 1,8131 0,066305 - 0,56857 1,20423 - 0,56619 000002891 06 0 4 0,21454 1,000 1,6812 1,0000 1,81318 - 0,56619 000002891 1,501 0,25372 1,000 1,4481 0,17059 1,0000 2,17293 - 0,49767 000002431 So 0,25494 0,00 1,4484		m	14	-		8				0,37037	
0000020565 4a 99 00 8 0.38340 ENSMUSG0 Big2 1.128 -0.10343 1,000 1.4497 0.47156 0.52745 0.95795 - 0.68886 000003784 71 0.01043 1,000 1.6084 0.41054 0.70104 1,07268 - 0.57118 000003784 71 0.000 0 9 0.66305 - 0.6399 ENSMUSG0 Pisth 1.288 0.38420 1,000 1.61820 0.45827 0.56657 1.20423 - 0.56619 000009691 06 0 4 0.01 1.8502 0.45827 0.56657 1.20423 - 0.50619 000004922 0 0.82 0.00 1 1.000 1.81318 - 0.50619 0000022030 b 25 0.00 1 1.0000 1.05723 0.05619 0000024338 3.6 0.25549 0.00 2.9564 0.18354 1.00000	0000060802		726		00	20		·	4	0,37405	,
0000020423 13 00 6 1 0.42885 ENSMUSG0 H2afz 1,339 -0,01043 1,000 1,6084 0,41054 0,70104 1,07268 - 0,55118 000003784 -711 -0,01043 1,000 1,1131 0,5540 0,06305 - 0,55603 0000096727 9 40 0 9 - 0,46399 - 0,56135 ENSMUSG0 Prdx1 1,481 -0,05435 1,000 2,6034 0,28145 1,0000 1,81318 - 0,56619 ENSMUSG0 Chchd 2,452 0,14254 1,000 2,6034 0,15769 1,0000 1,64861 0,47963 ENSMUSG0 Chchd 2,554 0,00 1 0,47983 - 0,49767 000002320 b 2,5 0,00 1 1,000 2,1825 - 0,44399 ENSMUSG0 Filt 0,2549 1,000 2,9643 0,15769 1,0000 2,12825	0000020585	4a	99	,	00	8	-	,		0,38340	·
0000037894 71 00 6 - 0.45910 ENSMUSG0 Psmb 1,268 0,35420 1,000 1,1131 0,05490 1,0000 0,86305 - 0,46399 ENSMUSG0 Prdx1 1,461 -0,05435 1,000 1,8502 0,45827 0,56557 1,20423 - 0,56163 000002891 06 06 00 4 - 0,56193 0,47953 0000049422 10 08 0,2572 1,000 1,4481 0,17158 1,0000 1,6723 - 0,47953 ENSMUSG0 Chrchd 3,114 0,25579 1,000 2,9643 0,15769 1,0000 2,17293 - 0,49767 0000024338 8 36 00 1 0,0002 2,12825 - 0,43664 ENSMUSG0 FH1 5,481 0,2994 1,000 6,4564 0,40899 0,70104 4,20649 - 0,36528 ENSMUSG0 FL1 11,11	0000020423	Ŭ	13		00	6				- 0,42885	-,
0000096727 9 40 00 9 1 0 0,48399 ENSMUSG0 Prdx1 1,481 -0,05435 1,000 1,8502 0,45827 0,56557 1,20423 - 0,64839 ENSMUSG0 Chchd 2,452 0,14254 1,000 2,6034 0,28145 1,0000 1,81318 - 0,50619 0000049422 10 08 0 0 1 1,15723 - 0,47953 ENSMUSG0 Chcld 3,114 0,27555 1,000 2,9643 0,15769 1,0000 2,17293 - 0,449712 ENSMUSG0 Fht1 5,481 0,0294 1,000 2,9564 0,18354 1,0000 2,17293 - 0,44712 ENSMUSG0 Fht1 5,481 0,0294 1,000 6,4564 0,40899 0,70104 4,20649 - 0,5457 ENSMUSG0 Fil1 5,481 0,0294 1,000 14,434 0,52672 0,36928 8,85573 -	0000037894		71		00	6				- 0,45910	
0000028691 06 00 4 0.4 0.4 0.46861 ENSMUSG0 Chchd 2,452 0,14254 1,000 2,6034 0,28145 1,0000 1,81318 - 0,47953 ENSMUSG0 Arhgdi 1,501 0,25372 1,000 1,4481 0,17158 1,0000 1,65723 - 0,50619 0000039910 30 1 0,27555 1,000 2,9643 0,15769 1,0000 2,12825 - 0,445674 0000024338 8 36 0,25549 1,000 2,9564 0,18354 1,0000 2,12825 - 0,45674 0000024661 3.8 36 0,0294 1,000 4,434 0,52672 0,36929 8,85573 - 0,37924 0000024661 18.8 8 00 9 0,141432 0,52672 0,36929 8,85573 - 0,37924 00000708 H2-K1 16,07 0,34022 1,000 14,132 0,08485 1,0000	0000096727		,		·	,		1,00000		- 0,46399	0,55803
0000049422 10 08 00 1 0 0,47953 ENSMUSG0 Arhgdi 1,501 0,25372 1,000 1,4481 0,17158 1,00000 1,05723 - 0,47998 ENSMUSG0 Cited2 3,114 0,2755 1,000 2,9643 0,15769 1,0000 2,17293 - 0,48399 ENSMUSG0 Psmb 3,051 0,25549 1,000 2,9564 0,18354 1,00000 2,12825 - 0,449712 ENSMUSG0 Fth1 5,481 0,02994 1,000 6,4564 0,40899 0,70104 4,20649 - 0,44416 0000020708 TOO 0 84 0 3 - 0,36528 - 0,36528 0 0,52955 - 0,36528 0 0,54674 0,40899 0,70104 4,20649 - 0,35626 ENSMUSG0 H2-K1 16,07 0,38220 1,000 14,132 0,8685 1,0000 10,4100 - 0,5405		Prdx1	,	-0,05435	· ·			0,56557	1,20423	- 0,46861	0,54135
ENSMUSC0 000030220 Arhgdi b 1,501 25 0,25372 00 1,000 00 1,4481 0 0,17158 0,15769 1,00000 1,0000 2,1723 2,1723 - 0,50619 0,48399 ENSMUSC0 00000239910 Cited2 3,114 3,051 0,25549 1,000 0 2,9643 0,15769 1,00000 2,17293 - 0,48399 ENSMUSC0 000002481 Psmb 3,051 0,25549 1,000 2,9564 0,18354 1,00000 2,12825 - 0,47674 0000024861 38 36 00 9 - 0,48354 1,00000 2,12825 - 0,47674 ENSMUSC0 000024661 FH1 5,481 0,02994 1,000 6,4564 0,40899 0,70104 4,20649 - 0,47416 ENSMUSC0 FH1 11,11 -0,07840 1,000 14,434 0,52672 0,36929 8,8573 - 0,37924 0000061232 398 000 0 1,4332 0,08485 1,0000 10,4100 - 0,54562 ENSMUSC0 H			,	0,14254	·		0,28145	1,00000	1,81318	- 0.47953	0,50619
ENSMUSG0 000039910 Cited2 30 3,114 30 0,27055 00 1,000 1 2,9643 00 0,15769 1,0000 1,00000 2,12825 - 0,48399 0,48399 ENSMUSG0 000024338 Psmb 3,051 0,25549 1,000 2,9564 0,48394 0,49767 0000024338 8 36 0,25549 1,000 6,4564 0,40899 0,70104 4,20649 - 0,44416 0000026061 38 000 3 - 0,52957 - 0,37924 ENSMUSG0 Ftl1 11,11 -0,07840 1,000 14,434 0,52672 0,36929 8,85573 - 0,37924 0000050708 Ftl1 16,07 0,38220 1,000 14,432 0,08485 1,0000 10,4100 - 0,3562 0000073111 F6 0,0477 0,34022 1,000 7,3799 0,13176 1,0000 5,31290 - 0,35626 ENSMUSG0 Sic3a2 9,831 0,08991 1,000 1,253 0,40535 0,71688 7,0	ENSMUSG0	Arhgdi	,	0,25372	· ·		0,17158	1,00000	1,05723	-	0,50619
ENSMUSG0 Psmb 3,051 0,25549 1,000 2,9564 0,18354 1,00000 2,12825 - 0,49674 ENSMUSG0 Fth1 5,481 0,02994 1,000 6,4564 0,40899 0,70104 4,20649 - 0,44416 0000024661 38 - 00 3 0,52672 0,36929 8,85573 - 0,37924 0000050708 700 0,38220 1,000 14,132 0,08485 1,0000 10,4100 - 0,36528 ENSMUSG0 H2-K1 16,07 0,34022 1,000 73799 0,13176 1,0000 5,31290 - 0,35657 ENSMUSG0 B12-D1 8,077 0,34022 1,000 11,253 0,40535 0,71688 7,08243 - 0,27737 0000073411 76 00 1 1,0253 0,40535 0,71688 7,08243 - 0,23865 0000079197 2 70 00 6 - 0,59080 <	ENSMUSG0		3,114	0,27055	1,000	-	0,15769	1,00000	2,17293	-	0,49767
ENSMUSG0 000024661 Fth1 38 5,481 0,02994 0,02994 1,000 1,000 3 6,4564 0,52672 0,70104 0,3899 4,20649 0,63629 - 0,50537 0,34416 0,50537 ENSMUSG0 0000061232 Ftl1 11,11 396 -0,07840 1,000 84 14,434 0,52672 0,36929 8,85573 - 0,52955 0,37924 ENSMUSG0 0000061232 H2-K1 16,07 0,38220 1,000 14,132 0,08485 1,00000 10,4100 - 0,53657 0,36528 ENSMUSG0 0000073411 R2-D1 8,077 0,34022 1,000 7,3799 0,13176 1,00000 5,31290 - 0,54056 0,27737 0000073411 76 0,04 1,000 11,253 0,40535 0,71688 7,08243 - 0,57436 0,23865 ENSMUSG0 0000079197 2 70 00 77 0 0,17743 14,2513 - 0,59080 0,07573 ENSMUSG0 000075602 Ly6a 19,66 -0,08749 1,000 27,105 0,66997 0,10743 14,2513 - 0,75965 0,07573	ENSMUSG0		3,051	0,25549	1,000	2,9564	0,18354	1,00000	2,12825	-	0,45674
ENSMUSG0 0000050708 Fti1 700 11,11 700 -0,07840 00 1,000 84 14,434 0,52672 0,36929 0,86929 8,85573 8,85573 - 0,52955 0,37924 0,52955 ENSMUSG0 000061232 H2-K1 396 16,07 396 0,38220 1,000 08 14,132 0,08485 1,00000 10,4100 - 0,53657 0,36528 ENSMUSG0 0000073411 H2-D1 76 8,077 0,34022 1,000 7,3799 0,13176 1,00000 5,31290 - 0,54056 0,27737 0000010095 37 00 77 7 7 0,57436 0,57436 ENSMUSG0 0000079197 2 70 00 1,6987 0,31923 0,94678 1,09847 - 0,59980 0,07573 ENSMUSG0 0000075602 Ly6a 19,66 -0,08749 1,000 27,105 0,66997 0,10743 14,2513 - 0,75965 0,04622 ENSMUSG0 0000028367 Txn1 2,292 0,04857 1,000 2,8654 0,57790 0,25262 1,52400 - 0,75965 0,04622 ENSMUSG0 <t< td=""><td>ENSMUSG0</td><td></td><td>5,481</td><td>0,02994</td><td>1,000</td><td>6,4564</td><td>0,40899</td><td>0,70104</td><td>4,20649</td><td>-</td><td>0,44416</td></t<>	ENSMUSG0		5,481	0,02994	1,000	6,4564	0,40899	0,70104	4,20649	-	0,44416
ENSMUSG0 0000061232 H2-K1 396 16,07 396 0,38220 00 1,000 08 14,132 0.88 0,08485 1,00000 10,4100 0 - 0,36528 ENSMUSG0 000073411 H2-D1 8,077 0,34022 1,000 7,3799 0,13176 1,00000 5,31290 - 0,35657 ENSMUSG0 0000073411 Slc3a2 9,831 0,08991 1,000 11,253 0,40535 0,71688 7,08243 - 0,57436 ENSMUSG0 0000079197 Psme 1,609 0,19258 1,000 1,6987 0,31923 0,94678 1,09847 - 0,57436 ENSMUSG0 0000075602 Ly6a 19,66 -0,08749 1,000 27,105 0,66997 0,10743 14,2513 - 0,07573 0000028367 Txn1 2,292 0,04857 1,000 2,8654 0,57790 0,25262 1,52400 - 0,01642 0000028367 K8 0,46083 1,000 1,3761 0,23733 1,00000 0,88209 - 0,01643 <	ENSMUSG0	Ftl1	11,11	-0,07840	1,000	14,434	0,52672	0,36929	8,85573	-	0,37924
ENSMUSG0 0000073411 H2-D1 76 8,077 76 0,34022 0,34022 1,000 4 7,3799 4 0,13176 1,0000 7,0 5,31290 7,0 - 0,35562 0,54056 ENSMUSG0 000010995 SIc3a2 9,831 37 0,08991 1,000 11,253 00 0,40535 0,71688 7,08243 - 0,27737 ENSMUSG0 000079197 Psme 1,696 0,19258 1,000 1,6987 0,31923 0,94678 1,09847 - 0,23865 ENSMUSG0 0000075602 Ly6a 19,66 -0,08749 1,000 27,105 0,66997 0,10743 14,2513 - 0,07573 0000028367 Txn1 2,292 0,04857 1,000 2,8654 0,57790 0,25262 1,52400 - 0,04622 0000028367 B0 00 1 0,77 0 0.84804 - 0,01643 0000060550 H2-Q7 1,512 0,46083 1,000 3,4057 0,85151 0,01532 - 0,01643 0000017002 651 00	ENSMUSG0	H2-K1	16,07	0,38220	1,000	14,132	0,08485	1,00000		-	0,36528
ENSMUSG0 000010095 SIc3a2 9,831 37 0,08991 0,19258 1,000 00 11,253 77 0,40535 0,71688 7,08243 - 0,57436 0,27737 ENSMUSG0 000079197 Psme 2 1,609 0,19258 1,000 1,6987 0,31923 0,94678 1,09847 - 0,59080 0,23865 ENSMUSG0 000075602 Ly6a 19,66 -0,08749 1,000 27,105 0,66997 0,10743 14,2513 - 0,71539 0,04622 ENSMUSG0 0000075602 Txn1 2,292 0,04857 1,000 2,8654 0,57790 0,25262 1,52400 - 0,75965 0,04622 ENSMUSG0 0000028367 H2-Q7 1,512 0,46083 1,000 1,3761 0,23733 1,0000 0,80209 - 0,01643 0000060550 09 00 7 - 0,01432 - 0,01643 0000017002 651 0,04979 1,000 3,4057 0,85151 0,01432 1,40770 - 0,00156 0000031765 99 00	ENSMUSG0	H2-D1	8,077	0,34022	1,000	7,3799	0,13176	1,00000	-	-	0,35562
ENSMUSG0 Psme 1,609 0,19258 1,000 1,6987 0,31923 0,94678 1,09847 - 0,23865 0000079197 2 70 0 00 6 0 0 0 0 0 0 0 0 0,31923 0,94678 1,09847 - 0,23865 0,59080 ENSMUSG0 Ly6a 19,66 -0,08749 1,000 27,105 0,66997 0,10743 14,2513 - 0,07573 0000028367 Txn1 2,292 0,04857 1,000 2,8654 0,57790 0,25262 1,52400 - 0,04622 0000028367 80 0 1 0 7 0 0 - 0,04622 0000060550 09 0,046083 1,000 1,3761 0,23733 1,0000 0,80209 - 0,01643 0000017002 651 00 -0,04979 1,000 3/4057 0,85151 0,01432 1,40770 - 0,001648	ENSMUSG0	Slc3a2	9,831	0,08991	1,000	11,253	0,40535	0,71688	7,08243	-	0,27737
ENSMUSG0 Ly6a 19,66 -0,08749 1,000 27,105 0,66997 0,10743 14,2513 - 0,07573 0000075602 215 00 24 0 1 0,71539 0,71539 ENSMUSG0 Txn1 2,292 0,04857 1,000 2,8654 0,57790 0,25262 1,52400 - 0,04622 0000028367 80 0 1 0 7 0 0 80 0 0 1 0,02573 0,04622 0,04622 0000028367 1512 0,46083 1,000 1,3761 0,23733 1,0000 0,80209 - 0,01643 0000060550 09 -0,04979 1,000 91,411 0,72881 0,05819 43,6543 - 0,01648 0000017002 651 00 44 - 6 0,85140 - 0,00156 0000031765 99 00 3 - 0,0151 - 0,00137 0	ENSMUSG0			0,19258	1,000		0,31923	0,94678	1,09847	-	0,23865
0000075602 215 00 24 1 0,71539 ENSMUSG0 000028367 Txn1 2,292 80 0,04857 1,000 00 2,8654 1 0,57790 0,25262 1,52400 - 0,04622 ENSMUSG0 0000060550 H2-Q7 1,512 0,46083 1,000 1,3761 0,23733 1,0000 0,80209 - 0,01643 ENSMUSG0 0000017002 Slpi 66,00 -0,04979 1,000 91,411 0,72881 0,05819 43,6543 - 0,01648 0000017002 651 00 44 - 66 0,85140 - ENSMUSG0 000031765 Mt1 2,339 -0,06024 1,000 3,4057 0,85151 0,01432 1,40770 - 0,00156 0000031765 99 00 3 - 0,01737 - 0,00137 ENSMUSG0 Ly6c2 13,64 0,27880 1,000 15,200 0,54260 0,34421 7,02930 - 0,00137 000002584 86				-0,08749			0,66997	0,10743	14,2513	0,59080 -	0,07573
0000028367 80 00 1 0 0,75965 ENSMUSG0 H2-Q7 1,512 0,46083 1,000 0,23733 1,0000 0,80209 - 0,01643 0000060550 09 -0,04979 1,000 91,411 0,72881 0,05819 43,6543 - 0,01643 0000017002 651 00 44 - 66 0,85140 - ENSMUSG0 Mt1 2,339 -0,06024 1,000 3,4057 0,85151 0,01432 1,40770 - 0,00156 0000031765 99 - 00 3 - 1,5200 0,54260 0,34421 7,02930 - 0,00156 0000022584 Ly6c2 13,64 0,27880 1,000 15,200 0,54260 0,34421 7,02930 - 0,00137 0000022584 Ly6c2 13,64 0,27880 0,082 4,6525 0,72109 0,06141 0,78716 - 0,00000 ENSMUSG0 Stat	0000075602	-	215		00	24			1	0,71539 -	
0000060550 09 00 7 0 0,84804 ENSMUSG0 Slpi 66,00 -0,04979 1,000 91,411 0,72881 0,05819 43,6543 - 0,01648 0000017002 651 00 44 0 6 0,85140 0 ENSMUSG0 Mt1 2,339 -0,06024 1,000 3,4057 0,85151 0,01432 1,40770 - 0,00156 0000031765 99 00 3 - 0,54260 0,34421 7,02930 - 0,00137 ENSMUSG0 Ly6c2 13,64 0,27880 1,000 15,200 0,54260 0,34421 7,02930 - 0,00137 0000022584 867 0 51 - 1,03745 - 0,00000 ENSMUSG0 Stat1 4,742 0,76859 0,082 4,6525 0,72109 0,06141 0,78716 - 0,00000 ENSMUSG0 Serpin 2,164 1,28880 0,000	0000028367		80		00	1				0,75965 -	
0000017002 651 00 44 66 0,85140 ENSMUSG0 Mt1 2,339 -0,06024 1,000 3,4057 0,85151 0,01432 1,40770 - 0,00156 0000031765 99 00 3 - 1,03021 1,03021 ENSMUSG0 Ly6c2 13,64 0,27880 1,000 15,200 0,54260 0,34421 7,02930 - 0,00137 0000022584 867 00 51 - 1,03745 - 0,00000 ENSMUSG0 Stat1 4,742 0,76859 0,082 4,6525 0,72109 0,06141 0,78716 - 0,00000 0000026104 42 45 1 - 0,00000 2,57701 ENSMUSG0 Serpin 2,164 1,28880 0,000 1,6057 0,45575 0,59416 0,11713 - 0,00000	0000060550		09		00	7				0,84804	
0000031765 99 00 3 1000 10000 10000 10000 100000 100000 100000 100000 100000 100000 1000000 1000000 1000000 10000000 1000000000 1000000000000000000000000000000000000	0000017002		651		00	44			6	- 0,85140	
0000022584 867 00 51 1,03745 ENSMUSG0 Stat1 4,742 0,76859 0,082 4,6525 0,72109 0,06141 0,78716 - 0,00000 0000026104 42 45 1 - 0,00000 2,57701 ENSMUSG0 Serpin 2,164 1,28880 0,000 1,6057 0,45575 0,59416 0,11713 - 0,00000	0000031765		99		00	3				- 1,03021	
0000026104 42 45 1 2,57701 ENSMUSG0 Serpin 2,164 1,28880 0,000 1,6057 0,45575 0,59416 0,11713 - 0,00000	0000022584	-	867		00	51				- 1,03745	
ENSMUSG0 Serpin 2,164 1,28880 0,000 1,6057 0,45575 0,59416 0,11713 - 0,00000		Stat1								- 2,57701	
0000066363 a3f 85 02 3 4,00654				1,28880	0,000 02		0,45575	0,59416	0,11713	- 4,00654	0,00000

Table 2: FeatureID table for single cell sequencing of ST2+A+SCR, ST2+A+IRF4. Displayed are Feature ID, Feature name, Log2FolgChange, p-value and Average expression for the samples ST2+A+IRF4 (IRF4) and ST2+A+SCR (ST2_AScr).

FeatureID	FeatureNam e	IRF4 Average	IRF4 Log2 Fold Change	IRF4 P- Value	ST2_AScr Average	ST2_AScr Log2 Fold Change	ST2_AScr P-Value
ENSMUSG0 0000044052	Ccr10	0,540692	-1,34292	7,00E-07	1,371686	1,342923	7,00E-07
ENSMUSG0 0000022496	Tnfrsf17	0,484432	-1,18491	1,87E-05	1,101467	1,184911	1,87E-05
ENSMUSG0 0000022584	Ly6c2	3,431863	-1,00695	0,000901	6,897048	1,00695	0,000901
ENSMUSG0 0000030104	Edem1	3,506	-0,96251	0,001181	6,83231	0,962512	0,001181
ENSMUSG0 0000020592	Sdc1	1,253407	-0,95073	0,001486	2,422756	0,950732	0,001486
ENSMUSG0 0000022838	Eaf2	0,539553	-0,94052	0,001848	1,035602	0,94052	0,001848
ENSMUSG0 0000021610	Clptm1I	0,75732	-0,88495	0,004166	1,398626	0,884953	0,004166
ENSMUSG0 0000001576	Ergic1	0,901388	-0,86012	0,005808	1,636272	0,860122	0,005808
ENSMUSG0 0000023367	Tmem176a	2,6543	-0,83309	0,008308	4,728737	0,833086	0,008308
ENSMUSG0 0000021939	Ctsb	1,71672	-0,80608	0,012523	3,001709	0,806084	0,012523
ENSMUSG0 0000079017	lfi27l2a	0,874835	-0,79079	0,017636	1,513556	0,790792	0,017636
ENSMUSG0 0000046718	Bst2	1,28811	-0,74217	0,03004	2,154687	0,742172	0,03004
ENSMUSG0 0000021356	lrf4	0,947658	-0,74166	0,030649	1,584645	0,741661	0,030649
ENSMUSG0 0000029810	Tmem176b	4,239922	-0,7342	0,031933	7,053157	0,734201	0,031933
ENSMUSG0 0000019188	H13	2,230772	-0,72646	0,035396	3,691086	0,726464	0,035396
ENSMUSG0 0000010095	Slc3a2	4,201188	-0,72602	0,036545	6,949187	0,726017	0,036545
ENSMUSG0 0000025544	Tm9sf2	0,632444	-0,72473	0,037025	1,045231	0,724733	0,037025
ENSMUSG0 0000038991	Txndc5	7,303115	-0,71504	0,040189	11,9885	0,715041	0,040189
ENSMUSG0 0000041355	Ssr2	0,748644	-0,7141	0,041758	1,228177	0,714096	0,041758
ENSMUSG0 0000001542	Ell2	1,005583	-0,70674	0,044922	1,641291	0,706742	0,044922
ENSMUSG0 0000032026	Rexo2	1,766671	-0,69775	0,048666	2,865575	0,69775	0,048666
ENSMUSG0 0000038312	Edem2	2,985288	-0,68215	0,057629	4,790095	0,682151	0,057629
ENSMUSG0 0000032116	Stt3a	0,666708	-0,67995	0,060595	1,068176	0,67995	0,060595
ENSMUSG0 0000041891	Lman1	1,171383	-0,67535	0,062749	1,870742	0,675347	0,062749
ENSMUSG0 0000034708	Grn	1,136155	-0,66933	0,06792	1,806926	0,669327	0,06792
ENSMUSG0 0000030082	Sec61a1	1,182951	-0,65309	0,077562	1,860294	0,653092	0,077562
ENSMUSG0 0000046841	Ckap4	1,01049	-0,64868	0,082191	1,584236	0,648679	0,082191
ENSMUSG0 0000025289	Prdx4	1,681404	-0,63049	0,100171	2,603038	0,63049	0,100171
ENSMUSG0 0000034088	Hdlbp	1,594035	-0,62404	0,106734	2,456764	0,624036	0,106734
ENSMUSG0 0000105650	Gm42889	28,83923	-0,59587	0,3615	43,58788	0,595872	0,3615
ENSMUSG0 0000040462	Os9	1,005232	-0,58792	0,149325	1,510996	0,587922	0,149325
ENSMUSG0 0000028452	Vcp	1,31142	-0,58221	0,155002	1,963444	0,582214	0,155002
ENSMUSG0 0000032115	Hyou1	0,679853	-0,58207	0,158614	1,017779	0,582068	0,158614

ENSMUSG0	Trp53inp1	1,653011	-0,58146	0,157578	2,473563	0,581456	0,157578
0000028211	прозпрт	1,055011	-0,36140	0,157578	2,473503	0,561450	0,157576
ENSMUSG0 0000056629	Fkbp2	2,247598	-0,57732	0,160915	3,353671	0,577324	0,160915
ENSMUSG0 0000060802	B2m	15,23359	-0,57277	0,167156	22,65838	0,572766	0,167156
ENSMUSG0 0000025935	Tram1	1,31659	-0,56945	0,173205	1,953815	0,569446	0,173205
ENSMUSG0 0000024516	Sec11c	5,927898	-0,56684	0,174956	8,781004	0,566839	0,174956
ENSMUSG0 0000028343	Erp44	0,74733	-0,56197	0,185605	1,103311	0,561966	0,185605
ENSMUSG0 0000040212	Emp3	1,151315	-0,55356	0,194923	1,689844	0,553564	0,194923
ENSMUSG0 0000054408	Spcs3	1,380737	-0,53298	0,23044	1,997862	0,532979	0,23044
ENSMUSG0 0000030062	Rpn1	1,201441	-0,51894	0,259513	1,721599	0,518942	0,259513
ENSMUSG0 0000044468	Fam46c	1,990484	-0,51652	0,262141	2,847445	0,516516	0,262141
ENSMUSG0 0000002778	Kdelr1	0,89797	-0,50605	0,287038	1,275296	0,506047	0,287038
ENSMUSG0 0000020484	Xbp1	10,30155	-0,49103	0,312141	14,47856	0,491033	0,312141
ENSMUSG0 0000020496	Rnf187	0,772831	-0,48379	0,334438	1,080775	0,483794	0,334438
ENSMUSG0 0000035227	Spcs2	2,976174	-0,46983	0,357205	4,121921	0,46983	0,357205
ENSMUSG0 0000024425	Ndfip1	0,99866	-0,46268	0,374031	1,376296	0,462685	0,374031
ENSMUSG0 0000061232	H2-K1	7,425975	-0,45989	0,379226	10,21415	0,459893	0,379226
ENSMUSG0 0000068798	Rap1a	1,303445	-0,45621	0,388522	1,788283	0,456209	0,388522
ENSMUSG0 0000028757	Ddost	1,699281	-0,4561	0,388199	2,33118	0,456104	0,388199
ENSMUSG0 0000020585	Laptm4a	1,666068	-0,45421	0,391745	2,282627	0,454215	0,391745
ENSMUSG0 0000045394	Epcam	0,78545	-0,44448	0,427571	1,068893	0,444482	0,427571
ENSMUSG0 0000023175	Bsg	1,330173	-0,44099	0,424568	1,805799	0,440989	0,424568
ENSMUSG0 0000002014	Ssr4	10,8099	-0,4355	0,434134	14,6193	0,435498	0,434134
ENSMUSG0 0000041084	Ostc	0,763454	-0,42634	0,457523	1,025973	0,426337	0,457523
ENSMUSG0 0000025130	P4hb	1,627948	-0,42252	0,467573	2,181935	0,422522	0,467573
ENSMUSG0 0000020571	Pdia6	2,22753	-0,41372	0,488631	2,967394	0,413724	0,488631
ENSMUSG0 0000020048	Hsp90b1	13,17282	-0,40731	0,505501	17,47023	0,407311	0,505501
ENSMUSG0 0000024308	Tapbp	1,43691	-0,40683	0,506355	1,905057	0,406833	0,506355
ENSMUSG0 0000014867	Surf4	0,839694	-0,40374	0,515307	1,110891	0,403742	0,515307
ENSMUSG0 0000026353	Ubxn4	1,009526	-0,3996	0,528681	1,331737	0,399596	0,528681
ENSMUSG0 0000075701	Vimp	1,237108	-0,39417	0,542612	1,625823	0,394167	0,542612
ENSMUSG0 0000025823	Pdia4	3,931192	-0,38882	0,555157	5,14728	0,388818	0,555157
ENSMUSG0 0000004460	Dnajb11	1,11819	-0,37653	0,588785	1,451687	0,376532	0,588785
ENSMUSG0 0000023010	Tmbim6	1,747742	-0,3753	0,588917	2,267057	0,3753	0,588917
ENSMUSG0 0000055681	Cope	1,580802	-0,37371	0,594745	2,048259	0,373712	0,594745
ENSMUSG0 0000022498	Txndc11	1,411847	-0,36879	0,608404	1,82311	0,368789	0,608404
ENSMUSG0 0000021248	Tmed10	2,424089	-0,3657	0,615408	3,123503	0,365696	0,615408
ENSMUSG0 0000067212	H2-T23	2,170481	-0,36317	0,623784	2,791823	0,363166	0,623784

ENSMUSG0	Top1	1,737226	-0,362	0,627802	2,232742	0,362003	0,627802
0000070544	1001	1,707220	-0,302	0,027002	2,202142	0,002000	0,027002
ENSMUSG0 0000003746	Man1a	0,895341	-0,36034	0,632777	1,149406	0,360345	0,632777
ENSMUSG0 0000024121	Atp6v0c	1,15079	-0,36	0,632282	1,476988	0,360003	0,632282
ENSMUSG0 0000024338	Psmb8	1,629438	-0,35786	0,632777	2,088208	0,357863	0,632777
ENSMUSG0 0000021917	Spcs1	4,686935	-0,35495	0,63559	5,994405	0,354948	0,63559
ENSMUSG0 0000042682	Selk	3,303131	-0,35151	0,644717	4,214521	0,35151	0,644717
ENSMUSG0 0000022136	Dnajc3	2,662274	-0,34792	0,649441	3,388396	0,347918	0,649441
ENSMUSG0 0000020225	Tmbim4	1,0338	-0,34149	0,669011	1,309919	0,341489	0,669011
ENSMUSG0 0000056888	Glipr1	1,597803	-0,34144	0,670723	2,024494	0,341445	0,670723
ENSMUSG0 0000074227	Spint2	1,148161	-0,33164	0,695397	1,444926	0,331642	0,695397
ENSMUSG0 0000030824	Nucb1	1,272949	-0,32766	0,703387	1,597552	0,32766	0,703387
ENSMUSG0 0000023272	Creld2	2,168465	-0,32131	0,710321	2,709467	0,321309	0,710321
ENSMUSG0 0000003380	Rabac1	2,314987	-0,32084	0,708609	2,891593	0,320836	0,708609
ENSMUSG0 0000051695	Pcbp1	0,957823	-0,31381	0,726548	1,190584	0,313809	0,726548
ENSMUSG0 0000028618	Tmem59	0,925136	-0,31222	0,730294	1,148689	0,312221	0,730294
ENSMUSG0 0000027642	Rpn2	1,511572	-0,30769	0,744147	1,870947	0,307692	0,744147
ENSMUSG0 0000026511	Srp9	1,632155	-0,30425	0,753155	2,015378	0,304247	0,753155
ENSMUSG0 0000038393	Txnip	1,025125	-0,29834	0,766244	1,260648	0,298339	0,766244
ENSMUSG0 0000058569	Tmed9	0,916636	-0,29774	0,766244	1,126768	0,297742	0,766244
ENSMUSG0 0000027828	Ssr3	0,983762	-0,29719	0,767194	1,208817	0,297187	0,767194
ENSMUSG0 0000029076	Sdf4	1,366278	-0,29441	0,772075	1,675606	0,294407	0,772075
ENSMUSG0 0000068328	Aup1	1,087782	-0,29422	0,772566	1,333888	0,294222	0,772566
ENSMUSG0 0000021877	Arf4	1,194606	-0,29152	0,77664	1,462135	0,291516	0,77664
ENSMUSG0 0000032042	Srpr	1,834148	-0,2895	0,780881	2,241756	0,289495	0,780881
ENSMUSG0 0000041571	Sepw1	2,373788	-0,2872	0,787873	2,896715	0,287203	0,787873
ENSMUSG0 0000033487	Fndc3a	1,142727	-0,28504	0,795559	1,392378	0,285043	0,795559
ENSMUSG0 0000025381	Cnpy2	0,874309	-0,28281	0,795559	1,063669	0,282807	0,795559
ENSMUSG0 0000032383	Ppib	2,75201	-0,28188	0,795559	3,345886	0,281879	0,795559
ENSMUSG0 0000039195	1110008P14 Rik	0,841885	-0,28109	0,797964	1,023003	0,281088	0,797964
ENSMUSG0 0000092341	Malat1	35,03467	-0,27878	0,804015	42,50363	0,278781	0,804015
ENSMUSG0 0000079197	Psme2	0,890346	-0,27563	0,804015	1,077805	0,275632	0,804015
ENSMUSG0 0000031708	Tecr	1,047208	-0,27449	0,804015	1,266692	0,274492	0,804015
ENSMUSG0 0000062397	Zfp706	1,462498	-0,27425	0,804015	1,768718	0,274245	0,804015
ENSMUSG0 0000038179	Slamf7	2,258113	-0,27162	0,804015	2,725959	0,271623	0,804015
ENSMUSG0 0000026223	ltm2c	0,845829	-0,26812	0,807014	1,018598	0,268122	0,807014
ENSMUSG0 0000020964	Sel1I	1,743536	-0,2644	0,814583	2,094252	0,264396	0,814583
ENSMUSG0 0000020577	Tspan13	1,857808	-0,25975	0,82323	2,224342	0,259754	0,82323

			-		-	-	
ENSMUSG0 0000005873	Reep5	1,704539	-0,25056	0,838783	2,027875	0,250564	0,838783
ENSMUSG0 0000075602	Ly6a	11,80514	-0,24426	0,84671	13,98319	0,244256	0,84671
ENSMUSG0 0000105361	AY036118	5,698564	-0,23961	0,850861	6,728238	0,239609	0,850861
ENSMUSG0	Ndufb9	1,158414	-0,23838	0,854085	1,366564	0,238381	0,854085
0000022354 ENSMUSG0	Sub1	2,050424	-0,23753	0,855736	2,417429	0,237529	0,855736
0000022205 ENSMUSG0	Atp5g3	1,696652	-0,23722	0,856823	1,99991	0,237223	0,856823
0000018770 ENSMUSG0	Atp5o	0,855906	-0,23264	0,866925	1,005691	0,232641	0,866925
0000022956 ENSMUSG0	Atp5g1	1,136418	-0,23035	0.871031	1,333171	0,230347	0,871031
0000006057 ENSMUSG0	Sep 15	1,54645	-0,22766	0,876148	1,810818	0,22766	0,876148
0000037072 ENSMUSG0	Tmed2	1,889969	-0,22566	0,880274	2,210001	0,225663	0,880274
0000029390						-	
ENSMUSG0 0000055447	Cd47	0,945116	-0,22366	0,887799	1,103618	0,223656	0,887799
ENSMUSG0 0000021127	Zfp36l1	1,301605	-0,21822	0,899701	1,514171	0,218216	0,899701
ENSMUSG0 0000032294	Pkm	0,905331	-0,21673	0,903072	1,052094	0,216726	0,903072
ENSMUSG0 0000010142	Tnfrsf13b	1,225803	-0,21519	0,906629	1,423005	0,215193	0,906629
ENSMUSG0 0000016559	H3f3b	4,352617	-0,21457	0,906858	5,050685	0,214575	0,906858
ENSMUSG0 0000098178	Gm42418	37,79299	-0,21149	0,914302	43,76059	0,211492	0,914302
ENSMUSG0 0000034868	Myl12b	1,432528	-0,20773	0,916903	1,654402	0,207727	0,916903
ENSMUSG0	Lars2	3,54263	-0,20522	0,922123	4,084226	0,205221	0,922123
0000035202 ENSMUSG0	Calr	2,006696	-0,19733	0,930403	2,30086	0,197331	0,930403
0000003814 ENSMUSG0	Cmah	0,891573	-0,18516	0,930403	1,013681	0,185162	0,930403
0000016756 ENSMUSG0	Unc93b1	1,207488	-0,18425	0,930403	1,371993	0,184247	0,930403
0000036908 ENSMUSG0	Lman2	1,023898	-0,18087	0,930403	1,160673	0,180873	0,930403
0000021484 ENSMUSG0	Jund	2,667007	-0,17187	0,930403	3,004475	0,171872	0,930403
0000071076 ENSMUSG0	Eif4g2	1,162532	-0,17129	0,930403	1,309099	0,171287	0,930403
0000005610 ENSMUSG0	Hn1	1,078931	-0,16691	0,930403	1,211275	0,166908	0,930403
0000020737 ENSMUSG0	Mrpl57	0,949848	-0,16382	0,930403	1,064079	0,16382	0,930403
0000021967						-	
ENSMUSG0 0000053317	Sec61b	2,911589	-0,15639	0,937969	3,244989	0,156388	0,937969
ENSMUSG0 0000025393	Atp5b	1,21371	-0,15502	0,939862	1,351404	0,15502	0,939862
ENSMUSG0 0000032053	Pou2af1	1,6949	-0,15318	0,943263	1,884775	0,153175	0,943263
ENSMUSG0 0000015092	Edf1	1,231587	-0,15045	0,946549	1,366974	0,150452	0,946549
ENSMUSG0 0000028639	Ybx1	1,224839	-0,14785	0,946549	1,357038	0,147853	0,946549
ENSMUSG0 0000004980	Hnrnpa2b1	1,352519	-0,13597	0,958743	1,486207	0,13597	0,958743
ENSMUSG0 0000022365	Derl1	1,495448	-0,13595	0,958743	1,643237	0,135947	0,958743
ENSMUSG0	Jchain	452,7609	-0,13336	0,961755	496,6161	0,13336	0,961755
0000067149 ENSMUSG0	Ywhaz	1,152455	-0,12991	0,96796	1,261058	0,129911	0,96796
0000022285 ENSMUSG0	Aes	1,062193	-0,12306	0,978155	1,156781	0,123057	0,978155
0000054452 ENSMUSG0	Lax1	1,373814	-0,12226	0,980017	1,495323	0,122256	0,980017
0000051998							

ENSMUSG0 0000037706	Cd81	2,195807	-0,11926	0,98261	2,38506	0,119258	0,98261
ENSMUSG0 0000022174	Dad1	2,362747	-0,11636	0,982994	2,561246	0,116364	0,982994
ENSMUSG0 0000039218	Srrm2	1,505088	-0,11621	0,982994	1,631355	0,116208	0,982994
ENSMUSG0 0000021282	Eif5	1,041862	-0,11563	0,982994	1,128816	0,115634	0,982994
ENSMUSG0 0000021242	Npc2	1,161919	-0,11106	0,984861	1,254912	0,111064	0,984861
ENSMUSG0 0000033685	Ucp2	1,66379	-0,11093	0,984861	1,796785	0,110929	0,984861
ENSMUSG0 0000020738	Sumo2	1,242365	-0,10674	0,991114	1,337781	0,106739	0,991114
ENSMUSG0 0000017002	Slpi	39,98617	-0,0992	0,996873	42,83305	0,099202	0,996873
ENSMUSG0 0000050708	Ftl1	8,117658	-0,09813	0,996873	8,689121	0,098127	0,996873
ENSMUSG0 0000027248	Pdia3	2,143665	-0,09448	1	2,288773	0,094479	1
ENSMUSG0 0000022769	Sdf2l1	2,263371	-0,09156	1	2,411693	0,091557	1
ENSMUSG0 0000026864	Hspa5	7,222405	-0,08063	1	7,637642	0,080628	1
ENSMUSG0 0000007815	Rhoa	1,051502	-0,07646	1	1,108739	0,076461	1
ENSMUSG0 0000038612	Mcl1	1,494922	-0,07566	1	1,575426	0,07566	1
ENSMUSG0 0000035242	Oaz1	2,138232	-0,07556	1	2,253228	0,07556	1
ENSMUSG0 0000078812	Eif5a	1,71821	-0,07139	1	1,805389	0,071391	1
ENSMUSG0 0000049422	Chchd10	1,697791	-0,06745	1	1,779064	0,067446	1
ENSMUSG0 0000027523	Gnas	2,469395	-0,06073	1	2,575586	0,060728	1
ENSMUSG0 0000053477	Tcf4	1,159202	-0,05862	1	1,20728	0,058621	1
ENSMUSG0 0000008348	Ubc	3,011665	-0,05858	1	3,136512	0,058583	1
ENSMUSG0 0000032575	Manf	3,918924	-0,05785	1	4,079309	0,05785	1
ENSMUSG0 0000031812	Map1lc3b	1,308791	-0,05526	1	1,359906	0,055263	1
ENSMUSG0 0000027808	Serp1	5,02248	-0,05478	1	5,216935	0,054784	1
ENSMUSG0 0000024610	Cd74	58,91347	-0,05154	1	61,05688	0,051535	1
ENSMUSG0 0000073411	H2-D1	5,031593	-0,05106	1	5,21294	0,051064	1
ENSMUSG0 0000030057	Cnbp	1,438837	-0,04811	1	1,487641	0,048113	1
ENSMUSG0 0000019505	Ubb	8,990741	-0,04301	1	9,262953	0,043013	1
ENSMUSG0 0000042747	Krtcap2	4,293816	-0,04184	1	4,420208	0,041837	1
ENSMUSG0 0000020077	Srgn	5,268201	-0,04041	1	5,417909	0,040408	1
ENSMUSG0 0000028788	Ptp4a2	1,269707	-0,03728	1	1,302953	0,037282	1
ENSMUSG0 0000001175	Calm1	2,379923	-0,03569	1	2,439555	0,035689	1
ENSMUSG0 0000006519	Cyba	4,945275	-0,03056	1	5,051198	0,030557	1
ENSMUSG0 0000090841	Myl6	1,093828	-0,03042	1	1,117139	0,030418	1
ENSMUSG0 0000048163	Selplg	1,040636	-0,0288	1	1,06162	0,028799	1
ENSMUSG0 0000003379	Cd79a	5,902134	-0,02819	1	6,018681	0,028192	1
ENSMUSG0 0000006699	Cdc42	1,129232	-0,02811	1	1,151454	0,02811	1
ENSMUSG0 0000020719	Ddx5	2,915445	-0,02018	1	2,956536	0,020177	1

ENSMUSG0 0000031304	ll2rg	1,479324	-0,01828	1	1,498191	0,018276	1
ENSMUSG0	Atp5j	1,072621	-0,01625	1	1,08477	0,016245	1
0000022890 ENSMUSG0 0000048076	Arf1	1,176554	-0,01374	1	1,187818	0,013743	1
ENSMUSG0 0000042079	Hnrnpf	1,081034	-0,00729	1	1,086511	0,007289	1
ENSMUSG0 0000027447	Cst3	4,874907	-0,00727	1	4,899596	0,007271	1
ENSMUSG0 0000025967	Eef1b2	2,701621	-0,00313	1	2,707521	0,003133	1
ENSMUSG0 0000022283	Pabpc1	1,622953	-0,003	1	1,626336	0,002995	1
ENSMUSG0 0000003072	Atp5d	1,266727	-0,00054	1	1,267204	0,000538	1
ENSMUSG0 0000031765	Mt1	1,38284	0,001705	1	1,381212	-0,00171	1
ENSMUSG0 0000038803	Ost4	2,040873	0,002177	1	2,037811	-0,00218	1
ENSMUSG0 0000022108	ltm2b	6,424336	0,002393	1	6,413767	-0,00239	1
ENSMUSG0 0000040747	Cd53	1,078843	0,00496	1	1,075141	-0,00496	1
ENSMUSG0 0000056201	Cfl1	1,531465	0,009867	1	1,521034	-0,00987	1
ENSMUSG0 0000041697	Cox6a1	1,218617	0,01153	1	1,208919	-0,01153	1
ENSMUSG0 0000031059	Ndufb11	1,180146	0,017527	1	1,165897	-0,01753	1
ENSMUSG0 0000027422	Rrbp1	1,5879	0,021079	1	1,564876	-0,02108	1
ENSMUSG0 0000079523	Tmsb10	1,670801	0,023916	1	1,64334	-0,02392	1
ENSMUSG0 0000036199	Ndufa13	1,405712	0,024622	1	1,381929	-0,02462	1
ENSMUSG0 0000028367	Txn1	1,527434	0,030658	1	1,495323	-0,03066	1
ENSMUSG0 0000031818	Cox4i1	2,830353	0,039184	1	2,754537	-0,03918	1
ENSMUSG0 0000064367	mt-Nd5	3,176064	0,040026	1	3,089188	-0,04003	1
ENSMUSG0 0000014769	Psmb1	1,185492	0,0419	1	1,151557	-0,0419	1
ENSMUSG0 0000018567	Gabarap	1,983473	0,042234	1	1,926261	-0,04223	1
ENSMUSG0 0000034994	Eef2	6,885108	0,042479	1	6,685421	-0,04248	1
ENSMUSG0 0000060743	H3f3a	1,749056	0,044281	1	1,696195	-0,04428	1
ENSMUSG0 0000020321	Mdh1	1,647227	0,04483	1	1,596835	-0,04483	1
ENSMUSG0 0000025647	Shisa5	3,118927	0,052622	1	3,007241	-0,05262	1
ENSMUSG0 0000036835	Psenen	1,002691	0,052631	1	0,966767	-0,05263	1
ENSMUSG0 0000028277	Ube2j1	1,603324	0,060459	1	1,537526	-0,06046	1
ENSMUSG0 0000009092	Derl3	1,774207	0,062266	1	1,699268	-0,06227	1
ENSMUSG0 0000071644	Eef1g	1,172435	0,067977	1	1,118471	-0,06798	1
ENSMUSG0 0000060126	Tpt1	12,86848	0,070305	1	12,25657	-0,07031	1
ENSMUSG0 0000071866	Ppia	6,545444	0,073721	1	6,219451	-0,07372	1
ENSMUSG0 0000035530	Eif1	6,8384	0,073824	1	6,497353	-0,07382	1
ENSMUSG0 0000034566	Atp5h	1,467406	0,076143	1	1,391968	-0,07614	1
ENSMUSG0 0000022255	Mtdh	3,243365	0,077278	1	3,074232	-0,07728	1
ENSMUSG0 0000026238	Ptma	2,257588	0,090054	1	2,120987	-0,09005	1

ENSMUSG0	Nfkbia	2,383778	0,097755	0,999655	2,22762	-0,09776	0,999655
0000021025							
ENSMUSG0 0000024014	Pim1	1,914769	0,098105	0,998326	1,788898	-0,0981	0,998326
ENSMUSG0 0000028691	Prdx1	1,266552	0,100198	0,997017	1,18157	-0,1002	0,997017
ENSMUSG0	Gpx4	2,589627	0,112544	0,985096	2,395303	-0,11254	0,985096
0000075706 ENSMUSG0	Uqcrq	1,509031	0,117026	0,982994	1,391456	-0,11703	0,982994
0000044894							
ENSMUSG0 0000031770	Herpud1	3,744973	0,11749	0,982994	3,452109	-0,11749	0,982994
ENSMUSG0 0000037894	H2afz	1,148949	0,126481	0,976244	1,052504	-0,12648	0,976244
ENSMUSG0	Atp6v1f	1,001814	0,14107	0,956558	0,908482	-0,14107	0,956558
0000004285 ENSMUSG0	Mzb1	22,33366	0,145991	0,946549	20,18451	-0,14599	0,946549
0000024353							
ENSMUSG0 0000029632	Ndufa4	1,616644	0,147149	0,946549	1,459881	-0,14715	0,946549
ENSMUSG0 0000045679	Pqlc3	1,116438	0,14894	0,946549	1,006921	-0,14894	0,946549
ENSMUSG0	Eif3k	1,114334	0,152102	0,946549	1,002823	-0,1521	0,946549
0000053565 ENSMUSG0	Slc25a3	1.23886	0,166227	0,930403	1,104028	-0,16623	0,930403
0000061904		4.000400					,
ENSMUSG0 0000030695	Aldoa	1,960426	0,173325	0,930403	1,7385	-0,17332	0,930403
ENSMUSG0 0000062647	Rpl7a	4,106808	0,177597	0,930403	3,631163	-0,1776	0,930403
ENSMUSG0	Rpl15	3,493556	0,180399	0,930403	3,082939	-0,1804	0,930403
0000012405 ENSMUSG0	Psap	2,003629	0,180748	0,930403	1,767694	-0,18075	0,930403
0000004207 ENSMUSG0	Rbm3	2 506462		0,930403		-0,19287	0,930403
0000031167		2,596462	0,192866		2,271564		
ENSMUSG0 0000032399	Rpl4	2,2079	0,196107	0,930403	1,927285	-0,19611	0,930403
ENSMUSG0	Rbm39	1,243417	0,198134	0,930403	1,083848	-0,19813	0,930403
0000027620 ENSMUSG0	Ctss	3,905779	0,198317	0,930403	3,40417	-0,19832	0,930403
0000038642 ENSMUSG0	Sqstm1	2,677522	0,199083	0.930403	2,332409	-0,19908	0,930403
0000015837				-,	-		-
ENSMUSG0 0000020372	Gnb2l1	3,767057	0,20123	0,929095	3,276641	-0,20123	0,929095
ENSMUSG0 0000008682	Rpl10	11,41132	0,204776	0,92145	9,901421	-0,20478	0,92145
ENSMUSG0	Ly6d	13,93041	0,209632	0,916903	12,04658	-0,20963	0,916903
0000034634 ENSMUSG0	Npm1	1,160517	0,21201	0,916059	1,001901	-0,21201	0,916059
0000057113 ENSMUSG0	Pafah1b3	1,558193	0,216714	0,909096	1,340854	-0,21671	0,909096
0000005447			-				
ENSMUSG0 0000038690	Atp5j2	1,401944	0,217004	0,908412	1,206154	-0,217	0,908412
ENSMUSG0 0000018293	Pfn1	2,142877	0,218951	0,902221	1,841139	-0,21895	0,902221
ENSMUSG0	Rpl5	3,010088	0,21907	0,901599	2,586034	-0,21907	0,901599
0000058558 ENSMUSG0	Rplp0	11,72338	0,222542	0,895169	10,0477	-0,22254	0,895169
0000067274 ENSMUSG0	Rps6	3,920326	0,223613	0,892014	3,357461	-0,22361	0,892014
0000028495	-						
ENSMUSG0 0000037805	Rpl10a	4,712786	0,224662	0,889475	4,033214	-0,22466	0,889475
ENSMUSG0 0000030744	Rps3	6,614323	0,231306	0,871818	5,634556	-0,23131	0,871818
ENSMUSG0	Mef2c	1,494922	0,233522	0,870121	1,271506	-0,23352	0,870121
0000005583 ENSMUSG0	Rpl3	4,916181	0,235532	0,864693	4,175699	-0,23553	0,864693
0000060036 ENSMUSG0							
0000032330	Cox7a2	1,154821	0,236673	0,863515	0,980083	-0,23667	0,863515

ENSMUSG0	Rpl8	6,982117	0,237249	0,860985	5,923418	-0,23725	0,860985
000003970							-
ENSMUSG0 0000025290	Rps24	20,18071	0,23936	0,856964	17,09573	-0,23936	0,856964
ENSMUSG0 0000016427	Ndufa1	1,811275	0,246904	0,84671	1,526361	-0,2469	0,84671
ENSMUSG0 0000031320	Rps4x	11,02416	0,248401	0,845448	9,280572	-0,2484	0,845448
ENSMUSG0 0000015656	Hspa8	2,62985	0,248664	0,845448	2,213484	-0,24866	0,845448
ENSMUSG0 0000064341	mt-Nd1	4,256484	0,24961	0,845448	3,580253	-0,24961	0,845448
ENSMUSG0 0000061518	Cox5b	1,303883	0,25266	0,842521	1,094399	-0,25266	0,842521
ENSMUSG0 0000064357	mt-Atp6	8,048516	0,253882	0,8373	6,749851	-0,25388	0,8373
ENSMUSG0 0000073421	H2-Ab1	1,581941	0,257616	0,835829	1,323235	-0,25762	0,835829
ENSMUSG0 0000000740	Rpl13	12,33059	0,262201	0,82323	10,28155	-0,2622	0,82323
ENSMUSG0 0000049751	Rpl36al	7,424836	0,263401	0,821714	6,185853	-0,2634	0,821714
ENSMUSG0 0000023944	Hsp90ab1	3,853287	0,267186	0,813502	3,201864	-0,26719	0,813502
ENSMUSG0 0000020267	Hint1	1,122046	0,270815	0,807147	0,929993	-0,27082	0,807147
ENSMUSG0 0000064370	mt-Cytb	12,01205	0,271497	0,804195	9,951613	-0,2715	0,804195
ENSMUSG0 0000068523	Gng5	1,717772	0,275956	0,804015	1,418703	-0,27596	0,804015
ENSMUSG0 0000064363	mt-Nd4	3,023495	0,276488	0,804015	2,4962	-0,27649	0,804015
ENSMUSG0 0000044533	Rps2	5,265923	0,279683	0,804015	4,337954	-0,27968	0,804015
ENSMUSG0 0000043716	Rpl7	4,163068	0,282689	0,79873	3,422301	-0,28269	0,79873
ENSMUSG0 0000105646	Gm43291	2,002139	0,282929	0,804015	1,645593	-0,28293	0,804015
ENSMUSG0 0000017404	Rpl19	10,14688	0,283512	0,796714	8,336648	-0,28351	0,796714
ENSMUSG0 0000047215	Rpl9	7,250973	0,284666	0,795559	5,952612	-0,28467	0,795559
ENSMUSG0 0000084786	Ubl5	1,475205	0,289751	0,790881	1,206768	-0,28975	0,790881
ENSMUSG0 0000029622	Arpc1b	1,09453	0,293361	0,781102	0,893117	-0,29336	0,781102
ENSMUSG0 0000061477	Rps7	3,392866	0,29449	0,776065	2,76642	-0,29449	0,776065
ENSMUSG0 0000039910	Cited2	2,619334	0,29696	0,774316	2,13205	-0,29696	0,774316
ENSMUSG0 0000029614	Rpl6	5,086451	0,297664	0,770553	4,138208	-0,29766	0,770553
ENSMUSG0 0000059291	Rpl11	7,010159	0,299092	0,767756	5,697655	-0,29909	0,767756
ENSMUSG0 0000001289	Pfdn5	2,444771	0,302826	0,75921	1,981882	-0,30283	0,75921
ENSMUSG0 0000059070	Rpl18	7,168161	0,304905	0,75451	5,802649	-0,3049	0,75451
ENSMUSG0 0000052146	Rps10	10,78309	0,306309	0,753344	8,720466	-0,30631	0,753344
ENSMUSG0 0000036106	Prr5	1,044491	0,308766	0,75241	0,843232	-0,30877	0,75241
ENSMUSG0 0000064351	mt-Co1	15,4539	0,309759	0,744993	12,46799	-0,30976	0,744993
ENSMUSG0 0000048758	Rpl29	4,757917	0,315665	0,727697	3,822918	-0,31567	0,727697
ENSMUSG0 0000074129	Rpl13a	6,622999	0,320053	0,718078	5,305335	-0,32005	0,718078
ENSMUSG0 0000038900	Rpl12	2,986427	0,320066	0,718503	2,39223	-0,32007	0,718503
ENSMUSG0 0000028081	Rps3a1	11,21625	0,32121	0,713617	8,977574	-0,32121	0,713617
ENSMUSG0 0000029580	Actb	5,829487	0,325683	0,708609	4,651502	-0,32568	0,708609

ENSMUSG0	Atp5g2	2,01467	0,326464	0,708002	1,606668	-0,32646	0,708002
0000062683	Alpbyz	2,01407	0,320404	0,708002	1,000000	-0,32040	0,708002
ENSMUSG0 0000036781	Rps27I	1,700596	0,327527	0,705639	1,355194	-0,32753	0,705639
ENSMUSG0 0000074884	Serf2	3,535006	0,327756	0,705057	2,816612	-0,32776	0,705057
ENSMUSG0 0000055762	Eef1d	1,217916	0,32796	0,705434	0,970249	-0,32796	0,705434
ENSMUSG0 0000064345	mt-Nd2	3,067312	0,336247	0,692192	2,429619	-0,33625	0,692192
ENSMUSG0 0000055839	Tceb2	1,301079	0,341826	0,680921	1,026588	-0,34183	0,680921
ENSMUSG0 0000006333	Rps9	7,462167	0,349814	0,652421	5,855505	-0,34981	0,652421
ENSMUSG0 0000012848	Rps5	8,155077	0,358293	0,637359	6,361731	-0,35829	0,637359
ENSMUSG0 0000036751	Cox6b1	1,071219	0,363024	0,632777	0,832886	-0,36302	0,632777
ENSMUSG0 0000008668	Rps18	3,647789	0,364643	0,628509	2,833104	-0,36464	0,628509
ENSMUSG0 0000037563	Rps16	8,902845	0,364856	0,627283	6,91354	-0,36486	0,627283
ENSMUSG0 0000021660	Btf3	2,003278	0,377422	0,598879	1,542135	-0,37742	0,598879
ENSMUSG0 0000061315	Naca	2,577534	0,379191	0,590607	1,98178	-0,37919	0,590607
ENSMUSG0 0000035885	Cox8a	2,299125	0,380631	0,588228	1,765952	-0,38063	0,588228
ENSMUSG0 0000024038	Ndufv3	1,067013	0,382402	0,586089	0,818546	-0,3824	0,586089
ENSMUSG0 0000014294	Ndufa2	1,102154	0,384358	0,578648	0,844359	-0,38436	0,578648
ENSMUSG0 0000098274	Rpl24	5,259	0,387896	0,566011	4,019181	-0,3879	0,566011
ENSMUSG0 0000060586	H2-Eb1	1,196709	0,387942	0,58225	0,914526	-0,38794	0,58225
ENSMUSG0 0000022312	Eif3h	1,195219	0,390838	0,563419	0,911555	-0,39084	0,563419
ENSMUSG0 0000017707	Serinc3	5,951471	0,395731	0,546852	4,523768	-0,39573	0,546852
ENSMUSG0 0000032518	Rpsa	11,25709	0,403954	0,524597	8,508019	-0,40395	0,524597
ENSMUSG0 0000020460	Rps27a	9,465008	0,407725	0,513049	7,134898	-0,40772	0,513049
ENSMUSG0 0000065947	mt-Nd4l	6,136551	0,40924	0,510304	4,620977	-0,40924	0,510304
ENSMUSG0 0000064354	mt-Co2	10,67732	0,410915	0,505665	8,030986	-0,41091	0,505665
ENSMUSG0 0000037742	Eef1a1	20,36351	0,411152	0,504679	15,314	-0,41115	0,504679
ENSMUSG0 0000024661	Fth1	5,498762	0,413899	0,499002	4,12735	-0,4139	0,499002
ENSMUSG0 0000062328	Rpl17	9,40866	0,414247	0,497813	7,060429	-0,41425	0,497813
ENSMUSG0 0000063457	Rps15	2,130433	0,421762	0,47955	1,590382	-0,42176	0,47955
ENSMUSG0 0000000682	Cd52	10,77967	0,425286	0,475321	8,027606	-0,42529	0,475321
ENSMUSG0 0000041881	Ndufa7	1,0416	0,446043	0,425941	0,764563	-0,44604	0,425941
ENSMUSG0 0000030432	Rpl28	8,100307	0,450561	0,410432	5,927516	-0,45056	0,410432
ENSMUSG0 0000064358	mt-Co3	12,44407	0,451945	0,408436	9,097421	-0,45194	0,408436
ENSMUSG0 0000024608	Rps14	9,133143	0,458064	0,393428	6,648647	-0,45806	0,393428
ENSMUSG0 0000061787	Rps17	1,76115	0,45815	0,394177	1,281954	-0,45815	0,394177
ENSMUSG0 0000025794	Rpl14	5,033959	0,465176	0,379217	3,646528	-0,46518	0,379217
ENSMUSG0 0000036372	Tmem258	1,911615	0,471943	0,363775	1,378242	-0,47194	0,363775
ENSMUSG0 0000045128	Rpl18a	10,19919	0,473536	0,360476	7,345502	-0,47354	0,360476

ENSMUSG0 0000060938	Rpl26	7,441486	0,474932	0,358119	5,354196	-0,47493	0,358119
ENSMUSG0 0000038717	Atp5l	1,227468	0,481233	0,348779	0,879289	-0,48123	0,348779
ENSMUSG0	Ly6e	15,84912	0,48898	0,330695	11,29308	-0,48898	0,330695
0000022587 ENSMUSG0	Rps8	16,22839	0,495182	0,315196	11,51372	-0,49518	0,315196
0000047675 ENSMUSG0	Eif3f	2,392366	0,50969	0,290293	1,680318	-0,50969	0,290293
0000031029 ENSMUSG0	Rps12	5,769546	0,510867	0,287038	4,049091	-0,51087	0,287038
0000061983 ENSMUSG0	Rps25	2,51733	0,514871	0,279995	1,761753	-0,51487	0,279995
0000009927 ENSMUSG0	Rplp1	8,821435	0,53357	0,240197	6,094277	-0,53357	0,240197
0000007892 ENSMUSG0	Rpl23	11,09287	0,539608	0,228694	7,631496	-0,53961	0,228694
0000071415 ENSMUSG0 0000041453	Rpl21	7,851168	0,563107	0,190311	5,314042	-0,56311	0,190311
ENSMUSG0 0000057841	Rpl32	11,76142	0,571315	0,179758	7,915544	-0,57131	0,179758
ENSMUSG0 0000022450	Ndufa6	1,009877	0,571905	0,182364	0,679339	-0,57191	0,182364
ENSMUSG0 0000016252	Atp5e	2,150764	0,582756	0,164524	1,436014	-0,58276	0,164524
ENSMUSG0 0000030220	Arhgdib	1,554775	0,583773	0,164524	1,037343	-0,58377	0,164524
ENSMUSG0 0000078974	Sec61g	3,119102	0,601609	0,141796	2,055532	-0,60161	0,141796
ENSMUSG0 0000063882	Uqcrh	1,778676	0,606164	0,137428	1,168458	-0,60616	0,137428
ENSMUSG0 0000049517	Rps23	5,84158	0,607751	0,133619	3,833366	-0,60775	0,133619
ENSMUSG0 0000025508	Rplp2	4,665815	0,610534	0,130337	3,055897	-0,61053	0,130337
ENSMUSG0 0000046364	Rpl27a	7,757927	0,617972	0,122439	5,054988	-0,61797	0,122439
ENSMUSG0 0000014313	Cox6c	1,349189	0,625044	0,115086	0,874782	-0,62504	0,115086
ENSMUSG0 0000045826	Ptprcap	1,405011	0,629	0,111259	0,908482	-0,629	0,111259
ENSMUSG0 0000028234	Rps20	15,07603	0,64472	0,09176	9,642981	-0,64472	0,09176
ENSMUSG0 0000056737	Capg	1,049837	0,649582	0,090478	0,669198	-0,64958	0,090478
ENSMUSG0 0000090862	Rps13	7,224596	0,652132	0,084928	4,597315	-0,65213	0,084928
ENSMUSG0 0000036594	H2-Aa	1,643722	0,654092	0,102801	1,044514	-0,65409	0,102801
ENSMUSG0 0000040952	Rps19	6,331358	0,668841	0,073271	3,98251	-0,66884	0,073271
ENSMUSG0 0000073702	Rpl31	1,468983	0,673685	0,070752	0,920877	-0,67368	0,070752
ENSMUSG0 0000033220	Rac2	1,242716	0,674672	0,070935	0,778494	-0,67467	0,070935
ENSMUSG0 0000060636	Rpl35a	7,384262	0,685148	0,061789	4,592603	-0,68515	0,061789
ENSMUSG0 0000040699	Limd2	1,06009	0,723564	0,042921	0,64195	-0,72356	0,042921
ENSMUSG0 0000038274	Fau	8,086198	0,723771	0,040997	4,896318	-0,72377	0,040997
ENSMUSG0 0000049775	Tmsb4x	2,449853	0,731312	0,040252	1,475656	-0,73131	0,040252
ENSMUSG0 0000003429	Rps11	9,626865	0,732938	0,036975	5,792303	-0,73294	0,036975
ENSMUSG0 0000028936	Rpl22	3,944776	0,733924	0,036975	2,371846	-0,73392	0,036975
ENSMUSG0 0000060032	H2afj	1,459519	0,741481	0,034399	0,872938	-0,74148	0,034399
ENSMUSG0 0000025362	Rps26	6,525114	0,743461	0,032699	3,89749	-0,74346	0,032699
ENSMUSG0 0000008683	Rps15a	8,361364	0,79128	0,017709	4,831478	-0,79128	0,017709
	•	•			•	•	•

ENSMUSG0	Rpl30	7,257546	0,797857	0,016109	4,174572	-0,79786	0,016109
0000058600							
ENSMUSG0	Rpl41	17,28515	0,810107	0,013495	9,858501	-0,81011	0,013495
0000093674							
ENSMUSG0	Rpl36a	3,56708	0,832724	0,010121	2,002779	-0,83272	0,010121
0000079435			0.0700/0	0.000001		0.0700.4	0.000001
ENSMUSG0	Laptm5	2,333302	0,872312	0,006031	1,274579	-0,87231	0,006031
0000028581	D=107	0.110400	0.000000	0.004004	4 4 4 0 5 0 0	0.00000	0.004004
ENSMUSG0 0000063316	Rpl27	2,112468	0,889093	0,004681	1,140596	-0,88909	0,004681
ENSMUSG0	Rpl34	8,647747	0,894187	0,00431	4,652936	-0.89419	0,00431
0000062006	крізч	0,047747	0,094107	0,00431	4,052950	-0,09419	0,00431
ENSMUSG0	Rpl35	5,216147	0,952513	0.001848	2,695331	-0,95251	0,001848
0000062997	трюб	5,210147	0,352515	0,001040	2,030001	-0,35251	0,001040
ENSMUSG0	mt-Atp8	3.177553	0.974371	0.001317	1.617219	-0.97437	0.001317
0000064356	int / tipo	0,111000	0,011011	0,001011	1,011210	0,01101	0,001011
ENSMUSG0	Cd79b	4.260953	0,997393	0.000905	2,134303	-0.99739	0.000905
0000040592		.,	-,	-,	_,	-,	-,
ENSMUSG0	Rps21	5,201951	1,139708	6,49E-05	2,360886	-1,13971	6,49E-05
0000039001					-		
ENSMUSG0	Prg2	18,88874	1,153198	6,18E-05	8,492961	-1,1532	6,18E-05
0000027073	_						
ENSMUSG0	Rpl36	5,071466	1,24426	8,49E-06	2,140756	-1,24426	8,49E-06
0000057863							
ENSMUSG0	Rpl37	7,281732	1,252821	7,23E-06	3,055589	-1,25282	7,23E-06
0000041841							
ENSMUSG0	Rpl37a	7,638922	1,25588	6,81E-06	3,198689	-1,25588	6,81E-06
0000046330	5.100	1 1050 10	4.004000	1 105 00			1.105.00
ENSMUSG0	Rpl38	4,125649	1,281239	4,12E-06	1,697424	-1,28124	4,12E-06
0000057322	D.: 100	0.000000	4 00 4007	0.005.00	0.404550	1 00 1 1	0.005.00
ENSMUSG0	Rpl39	6,086688	1,294397	3,02E-06	2,481552	-1,2944	3,02E-06
0000079641 ENSMUSG0	Drade	4 266925	1 22552	1,66E-06	1,702444	1 22552	1,66E-06
0000067288	Rps28	4,266825	1,32552	1,000-00	1,702444	-1,32552	1,000-00
ENSMUSG0	Rps29	5,228504	1,340404	1,23E-06	2,064751	-1,3404	1,23E-06
0000034892	174929	5,220504	1,340404	1,232-00	2,004731	-1,3404	1,232-00
ENSMUSG0	Rps27	5,057533	1,428328	1,62E-07	1,879141	-1,42833	1,62E-07
0000090733	1,0021	0,007000	1,720020	1,020 01	1,010141	1,42000	1,022 01
000000100	I	1	1	1		1	

7 List of Publications

Burt P, **Cornelis R**, Geissler G, Hahne S, Radbruch A, Chang H-D, Thurley K. (2022). Mathematical modeling reveals a complex network of signaling and apoptosis pathways in the survival of memory plasma cells. Cells. 11.

Cornelis R, Chang H-D, Radbruch, Andreas. (2021). Keeping up with the stress of antibody production: BAFF and APRIL maintain memory plasma cells. Current Opinion in Immunology. 71. 97-102.

Cornelis R, Hahne S, Taddeo A, Petkau G, Malko D, Durek P, Thiem M, Heiberger L, Peter L, Mohr E, Klaeden C, Tokoyoda K, Siracusa F, Hoyer B, Hiepe F, Mashreghi M-F, Melchers F, Chang H-D, Radbruch A. (2020). Stromal Cell-Contact Dependent PI3K and APRIL Induced NF-κB Signaling Prevent Mitochondrial- and ER Stress Induced Death of Memory Plasma Cells. Cell Reports. 32.

Riedel, René & Addo, Richard & Ferreira-Gomes, Marta & Heinz, Gitta & Heinrich, Frederik & Kummer, Jannis & Greiff, Victor & Lenz, Daniel & Klaeden, Cora & **Cornelis, Rebecca** & Menzel, Ulrike & Kröger, Stefan & Stervbo, Ulrik & Köhler, Ralf & Haftmann, Claudia & Kühnel, Silvia & Lehmann, Katrin & Maschmeyer, Patrick & Mcgrath, Mairi & Radbruch, Andreas. (2020). Discrete populations of isotype-switched memory B lymphocytes are maintained in murine spleen and bone marrow. Nature Communications. 11.

Cornelis, Rebecca & Radbruch, Andreas & Chang, Hyun-Dong. (2020). Plasmazellüberleben wird durch extrinsische Signale reguliert. BIOspektrum. 26. 158-161.

Männe, Christian & Takaya, Akiko & Yamasaki, Yuzuru & Mursell, Mathias & Hojyo, Shintaro & Wu, Tsungyen & Sarkander, Jana & McGrath, Mairi & **Cornelis, Rebecca** & Hahne, Stefanie & Cheng, Qingyu & Kawamoto, Tadafumi & Hiepe, Falk & Kaufmann, Stefan & Yamamoto, Tomoko & Radbruch, Andreas & Tokoyoda, Koji. (2019). Salmonella SiiE prevents an efficient humoral immune memory by interfering with IgG + plasma cell persistence in the bone marrow. Proceedings of the National Academy of Sciences of the United States of America. 116. 7425-7430.

Martrus G, Niehrs A, **Cornelis R**, et al. Kinetics of HIV-1 latency reversal quantified on the single cell level using a novel flow-based technique. *J Virol*. 2016;90:JVI.01448-16.