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Abstract

Confocal quadrics constitute a special example of orthogonal coordinate systems. In
this cumulative thesis we propose two approaches to the discretization of confocal
coordinates, and study the closely related checkerboard incircular nets.

First, we propose a discretization based on factorizable solutions to an integrable
discretization of the Euler-Poisson-Darboux equation. The constructed solutions are
discrete Koenigs nets and feature a novel discrete orthogonality constraint defined on
pairs of dual discrete nets, as well as a corresponding discrete isothermicity condition.
The coordinate functions of these discrete confocal coordinates are explicitly given in
terms of gamma functions.

Secondly, we show that classical confocal coordinates and their reparametriza-
tions along coordinate lines are characterized by orthogonality and the factorization
property. We use these two properties to propose another discretization of confocal
coordinates, while again employing the aforementioned discrete orthogonality con-
straint. In comparison to the first approach, this definition results in a broader class
of nets capturing arbitrary reparametrizations also in the discrete case. We show that
these discrete confocal coordinate systems may equivalently be constructed geomet-
rically via polarity with respect to a sequence of classical confocal quadrics. Different
sequences correspond to different discrete parametrizations. We give several explicit
examples, including parametrizations in terms of Jacobi elliptic functions.

A particular example of discrete confocal coordinates in the two-dimensional case
is closely related to incircular nets, that is, congruences of straight lines in the plane
with the combinatorics of the square grid such that each elementary quadrilateral
admits an incircle. Thus, thirdly, we classify and integrate the class of checkerboard
incircular nets, which constitute the Laguerre geometric generalization of incircular
nets.

Further aspects of the novel discrete orthogonality constraint are studied in the
introduction of this thesis. These include discrete Lamé coefficients, discrete focal
nets, discrete parallel nets, and discrete isothermicity, as well as the relation to pairs
of circular and conical nets.





Zusammenfassung

Konfokale Quadriken bilden ein Beispiel für orthogonale Koordinatensysteme. In
dieser kumulativen Dissertation werden zwei Ansätze zur Diskretisierung konfokaler
Koordinaten sowie der Zusammenhang zu Schachbrettinkreisnetzen behandelt.

Der erste Ansatz begründet sich auf einer integrablen Diskretisierung der Euler-
Poisson-Darboux-Gleichung. Die konstruierten Lösungen sind diskrete Koenigs-Netze
und durch eine neue diskrete Orthogonalitätsbedingung gekennzeichnet. Die Koordi-
natenfunktionen sind explizit durch gamma-Funktionen gegeben.

Für den zweiten Ansatz zeigen wir zunächst, dass klassische konfokale Koordiaten-
systeme bis auf Umparametrisierung entlang der Koordinatenlinien durch Orthogo-
nalität und die Faktorsierbarkeit bereits charakterisiert sind. Wir übertragen diese
beiden Eigenschaften auf eine weitere Definition diskreter konfokaler Koordinaten,
wieder unter Verwendung der genannten neuen diskreten Orthogonalitätsbedingung.
Diese Definition führt zu einer größeren Klasse von Netzen als im ersten Ansatz und
beinhaltet beliebege Umparametriesierungen. Es wird gezeigt, dass diese diskreten
konfokalen Koordinaten durch eine äquivalente geometrische Konstruktion durch Po-
larität in einer Folge von klassischen konfokalen Quadriken charakterisiert ist. Ver-
schiedene Folgen entsprechen verschiedenen diskreten Parametrisierungen. Wir geben
eine Vielzahl von konkreten Beispielen an, insebesondere eine Parametrisierung durch
Jacobi elliptische Funktionen.

Ein besonderes Beispiel von diskreten konfokalen Koordinaten im zwei-dimensio-
nalen Fall ist durch Inkreisnetze gegeben. Inkreisnetzte sind durch zwei Folgen von
Geraden in der Ebene mit der Kombinatorik des Quadratgitters gegeben, so dass alle
elementaren Vierecke einen Inkreis besitzen. Wir klassifizieren und integrieren die
zugehörige Laguerre-geometrische Verallgemeinerung der Schachbrettinkreisnetze.

Weitere Aspekte der neuen diskreten Orthogonalitätzbedingung werden in der
Einleitung behandelt. Unter anderem diskrete Lamé-Koeffizienten, diskrete Fokalnetze,
diskrete Parallelnetze, sowie der Zusammenhang zu Paaren von zirkulären und konis-
chen Netzen.
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Introduction

The main subject of this cumulative doctoral thesis is orthogonal coordinate systems constituted by
families of confocal quadrics and their discretization, as well as the closely related checkerboard incircular
nets in the plane. The results have been published in the following articles and appear in this thesis as
the three enumerated chapters.

[BSST1] A.I. Bobenko, W.K. Schief, Y.B. Suris, J. Techter.
On a discretization of confocal quadrics. I. An integrable systems approach,
Journal of Integrable Systems, Volume 1, Issue 1, January 2016, xyw005,
https://doi.org/10.1093/integr/xyw005

[BSST2] A.I. Bobenko, W.K. Schief, Y.B. Suris, J. Techter.
On a discretization of confocal quadrics. II. A geometric approach to general parametrizations,
International Mathematics Research Notices, Volume 2020, Issue 24, December 2020,
Pages 10180–10230, https://doi.org/10.1093/imrn/rny279

[BST] A.I. Bobenko, W.K. Schief, J. Techter.
Checkerboard incircular nets. Laguerre geometry and parametrisation,
Geometriae Dedicata, Volume 204, Issue 1, February 2020, Pages 97-129,
https://doi.org/10.1007/s10711-019-00449-x

Besides featuring many further beautiful geometric properties and applications (Chapter 1: Section 1,
Chapter 2: Section 1), confocal quadrics constitute a special example of orthogonal coordinate systems,
i.e., a smooth map x : RN Ą U Ñ RN satisfying xBix, Bjxy “ 0 for i ‰ j.

The fundamental monograph [Da2] by Darboux is solely devoted to the study of orthogonal coordinate
systems with the main emphasis on triply orthogonal systems. Therein he classified all triply orthogonal
systems whose two-dimensional coordinate surfaces are isothermic. Such coordinate systems are closely
related to the separability in Laplace-type equations [SS]. Darboux found several families, all satisfying
the Euler-Poisson-Darboux system

BiBjx “
γ

ui ´ uj
pBjx ´ Bixq, i ‰ j.

with coefficient γ “ ˘ 1
2 ,´1, or ´2. The case corresponding to γ “ 1

2 includes confocal quadrics as
factorizable solutions, i.e.,

xkpu1, . . . , uN q “ fk1 pu1qfk2 pu2q ¨ ¨ ¨ fkN puN q, i “ 1, . . . , N

with some functions fki puiq.
Discretizing coordinate systems means finding suitable approximating discrete nets x : ZN Ą U Ñ RN .

According to the philosophy of structure preserving discretization [BS], it is crucial not to follow the path
of a straightforward discretization of differential equations, but rather to discretize a well chosen collec-
tion of essential geometric properties. A discretization of the Euler-Poisson-Darboux system (Chapter 1:
Section 5) following this principle has been introduced by Konopelchenko and Schief [KS2],

∆i∆jx “
γ

ni ` εi ´ nj ´ εj
p∆jx ´ ∆ixq, i ‰ j.

In particular, solutions of this discrete system satisfy a well-established notion of discrete Koenigs nets
(Chapter 1: Sections 4 and 5). In [BSST1] (Chapter 1), we take this discrete equation as our point of

13
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departure to obtain discrete confocal coordinates as certain factorizable solutions of this system, which
can be described in terms of gamma functions. The orthogonality in this discretization is implemented
by considering pairs of solutions defined on dual square lattices,

x : ZN Y
`

Z ` 1
2

˘N
Ą U Ñ RN ,

such that each pair of dual edges from the two lattices are orthogonal (Chapter 1: Section 6.2). It turns
out that this novel discrete orthogonality constraint generalizes a combined notion of circular and conical
nets [PW] (see Section 2.2 of the Introduction). Due to the factorizability of discrete confocal coordinates,
the solutions can be extended to the stepsize 1

2 lattice
`

1
2Z

˘N .
In [BSST2] (Chapter 2), we show that classical confocal coordinates are already characterized by the

factorization property and orthogonality (up to reparametrization along the coordinate lines). Different
parametrizations of confocal coordinates exhibit different geometric properties, revealing connections to
3-webs/4-webs in the plane [Ak, Ag] and on quadrics [ABST]. We take the two characterizing properties
of factorizability and orthogonality, while again employing the novel discrete orthogonality constraint
introduced in [BSST1], to define discrete confocal coordinates. This definition results in a broader class
of nets than the one from [BSST1], capturing arbitrary reparametrizations also in the discrete case,
and leading to a variety of examples of discrete confocal coordinates, which exhibit many geometric
features analogous to the smooth case (Chapter 2: Sections 8, 9, and B). Furthermore, discrete confocal
coordinates admit a geometric characterization in terms of polarity with respect to quadrics of a classical
confocal family (Chapter 2: Section 6), and satisfy a generalized discrete Euler-Poisson-Darboux system
(Chapter 2: Section A.2).

Incircular nets are congruences of straight lines in the plane with the combinatorics of the square grid
such that each elementary quadrilateral admits an incircle [Bö, AB]. All lines of an incircular net touch
a common conic, while the points of intersection of these lines lie on confocal conics. The incircle centers
of such a net provide a further example of discrete confocal conics as introduced in [BSST2] (Chapter 1:
Section A and Chapter 2: Sections 8.4 and 8.5). In [BST] (Chapter 3), we study checkerboard incircular
nets, which are the Laguerre geometric generalization of incircular nets. We classify generic checkerboard
incircular nets based on the classification of hypercycles [Bl], and give explicit parametrizations for the
subclass of confocal checkerboard incircular nets in terms of Jacobi elliptic functions.

This introduction serves the following purposes:

§ Summarizing the main results of the three publications in a coherent setup.

§ Introducing some of the relevant foundations.

§ Providing some supplementary results and explanations that support the concepts and definitions
from the publications.

Outline of the Introduction In Section 1, we introduce smooth and discrete nets as well as the
respective orthogonality conditions. Discrete nets are introduced on pairs of dual square lattices. These
pairs of dual discrete nets admit a novel orthogonality constraint and the definition of corresponding Lamé
coefficients. As a consequence of a discrete version of Dupin’s theorem, pairs of dual discrete orthogonal
nets have planar faces, i.e. are discrete conjugate nets. Replacing orthogonal pairs of dual discrete nets
by orthogonal sphere congruences leads to a Möbius invariant description.

Orthogonal pairs of two-dimensional dual discrete conjugate nets are discrete analogs of curvature
line parametrizations. In Section 2, we show that they generalize pairs of circular and conical nets and
admit a definition of discrete focal nets and discrete parallel nets.

In Section 3, discrete isothermic nets are defined by factorizing discrete Lamé coefficients.
In Section 4, confocal coordinates and their characterizing properties of factorizability and orthogo-

nality is introduced, as well as the corresponding definition of discrete confocal coordinates. The corre-
sponding discrete Lamé coefficients are computed and it is shown that all two-dimensional subnets of a
discrete confocal coordinate system are discrete isothermic in the sense of Section 3.
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The general discrete Euler-Poisson-Darboux system is introduced in Section 5. Its 3D-consistency is
shown and different forms of the equation are studied, revealing a discrete Koenigs-type condition.

In Section 6, confocal quadrics are described from the point of view of projective geometry. A
geometric proof for the closedness of a dynamical system defined by sequences of quadrics from a dual
pencil is given. This system, in particular, describes the geometric construction of discrete confocal
coordinates.

In Section 7, incircular nets and their relation to smooth and discrete confocal conics are introduced,
as well as their Laguerre geometric generalization of checkerboard incircular nets.

Conclusions and open problems are given in Section 8.

1 Orthogonal nets

1.1 Classical orthogonal nets

We start with the definition of (regular) nets, which represent parametrizations of submanifolds of RN ,
in particular,

§ parametrized curves in the case M “ 1,

§ parametrized surfaces in the case M “ 2, and

§ coordinate systems of (some region of) RN in the case M “ N .

Definition 1.1.
(i) Let U Ă RM be open and connected. Then a smooth map

x : RM Ą U Ñ RN , ps1, . . . , sM q ÞÑ xps1, . . . , sM q

is called an M -dimensional (smooth) net.

(ii) A net x : RM Ą U Ñ RN is called regular if the M tangent vectors

B1x, . . . , BMx P RN

are linearly independent at every point in U , where Bi “ B
Bsi

denotes the i-th partial derivative.

(iii) Let x : RM Ą U Ñ RN be a net and ti1, . . . , inu Ă t1, . . . ,Mu some indices. Then the map

psi1 , . . . , sinq ÞÑ xps1, . . . , sM q

for fixed sj with complementary indices is called an n-dimensional subnet of x. In particular,
1-dimensional subnets are called coordinate lines and 2-dimensional subnets are called coordinate
surfaces.

Remark 1.1. Concerning the “smoothness” of a net, we follow the tradition of classical differential ge-
ometry assuming that all required partial derivatives exist without explicitly stating. Furthermore, we
assume all appearing nets to be regular unless stated otherwise.

Our main object of interest are orthogonal nets.

Definition 1.2.
(i) A net x : RM Ą U Ñ RN is called orthogonal if

xBix, Bjxy “ 0, i, j “ 1, . . . ,M, i ‰ j. (1.1)

(ii) For an orthogonal net x : RM Ą U Ñ RN , the functions Hi : U Ñ R`,

H2
i “ xBix, Bixy, i “ 1, . . . ,M

are called its Lamé coefficients.
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Remark 1.2.
(i) The notion of orthogonal nets is invariant under Möbius transformations of the codomain.

(ii) The metric of an orthogonal net, or its first fundamental form, is diagonal and entirely determined
by its Lamé coefficients,

I “ H2
1ds21 ` . . .`H2

Mds2M .

Definition 1.3. A net x : RM Ą U Ñ RN is called conjugate if

BiBjx ^ Bix ^ Bjx “ 0, i, j “ 1, . . . , i ‰ j.

Remark 1.3.
(i) The condition of being a conjugate net is a condition on every two-dimensional subnet, and invariant

under projective transformations.

(ii) Conjugate nets are governed by partial differential equations of the form

BiBjx “ ajiBix ` aijBjx (1.2)

with functions aij , aji : U Ñ R satisfying some consistency conditions if M ě 3 (see, e.g., [BS]).

The fundamental monograph [Da2] by Darboux is solely devoted to the study of orthogonal coordinate
systems (M “ N) with the main emphasis on triply orthogonal systems (M “ N “ 3). A famous theorem
by Dupin states that any two coordinate surfaces of a triply orthogonal system x : R3 Ą U Ñ R3 intersect
in a common curvature line (cf. Section 2), i.e., x is orthogonal and conjugate. Its generalization to
arbitrary dimension takes the following form.

Theorem 1.4 (Dupin). For N ě 3 every orthogonal coordinate system x : RN Ą U Ñ RN is conjugate.

Proof. For three distinct i, j, k “ 1, . . . , N differentiating (1.1) with respect to sk leads to

xBix, BjBkxy ` xBjx, BkBixy “ 0.

By permutation of the indices, these are three equations which sum up to

2 pxBix, BjBkxy ` xBjx, BkBixy ` xBkx, BiBjxyq “ 0.

Dividing by 2 and subtracting one of the first three equations again leads to

xBix, BjBkxy “ 0.

Thus, for j, k “ 1, . . . , N , j ‰ k,

BjBkx P span tBix | i “ 1, . . . , N, i ‰ j, ku
K

“ spantBjx, Bkxu,

due to the regularity and orthogonality of x.

1.2 Discrete orthogonal nets

In discrete differential geometry, the classical notion of a net is replaced by that of a discrete net, which
is defined on the square lattice ZM .

Definition 1.5.
(i) A map

x : ZM Ñ RN , n “ pn1, . . . , nM q ÞÑ xpnq

is called an M -dimensional discrete net.
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Figure 1.1. Left: Elementary cube of the square lattice Z3 and its dual edges from
`

Z ` 1
2

˘3.
Right: Its image in R3 such that each pair of dual edges is orthogonal, e.g., the green and its dual
yellow edge are orthogonal. The two marked yellow edges contribute to a discrete Lamé coefficient,
combinatorially located at the center of the small gray cube.

(ii) Denote the forward and backward difference operators, or discrete tangent vectors, by

∆ixpnq “ xpn ` eiq ´ xpnq, ∆̄ixpnq “ xpnq ´ xpn ´ eiq

for any n P ZM and i “ 1, . . . ,M , where ei P ZM is the unit vector in the i-th coordinate direction.
A discrete net x : ZM Ñ RN is called regular if for any n P ZM all choices of M discrete
tangent vectors, arbitrarily chosen among ∆ixpnq and ∆̄ixpnq for all i “ 1, . . . ,M , are linearly
independent.

(iii) n-dimensional discrete subnets are defined as for smooth nets (see Definition 1.1).

Remark 1.4. Note that for now, we assume discrete nets to be defined on the whole lattice ZM . In
some sense, this replaces the openness condition on the domain assuring that, e.g., for every point in the
domain all necessary neighbors are contained in the domain as well. Furthermore, as in the smooth case,
we assume all appearing discrete nets to be regular unless stated otherwise.

For the purpose of introducing a novel discrete orthogonality condition, instead of using single lattices
as our discrete domains, we consider pairs of dual lattices. For the square lattice ZM we call

`

Z ` 1
2

˘M

its dual square lattice (see Figure 1.1, left), and say that any two edges

rn,n ` eis Ă ZM , rn ` 1
2σ,n ` 1

2σ ` ejs Ă
`

Z ` 1
2

˘M

are dual edges, where n P ZM and σ “ pσ1, . . . , σM q P t˘1uM with σi “ 1 and σj “ ´1. Furthermore,
for a point n P ZM , we call the 2M points n ` 1

2σ P
`

Z ` 1
2

˘M , σ P t˘1uM , its adjacent points from the
dual lattice.

Definition 1.6.
(i) A map

x : ZM Y
`

Z ` 1
2

˘M
Ñ RN

is called a pair of dual discrete nets.

(ii) A pair of dual discrete nets is called regular if the two discrete subnets x
ˇ

ˇ

ZM
and x

ˇ

ˇ

´

Z`
1
2

¯M are

regular.
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For the following, we consider pairs of dual discrete nets (not just each of their two discrete subnets)
as discrete analogs of smooth nets, and introduce the following discrete orthogonality condition (see
Figure 1.1).

Definition 1.7 (Chapter 1: Definition 6.4, Chapter 2: Definition 4.1).
(i) A pair of dual discrete nets x : ZM Y

`

Z ` 1
2

˘M
Ñ RN is called orthogonal if every pair of dual

edges is orthogonal in RN , i.e.,
x∆ixpnq,∆jxpn˚qy “ 0, (1.3)

for all distinct i, j “ 1, . . . ,M and n P ZM , n˚ “ n ` 1
2σ P

`

Z ` 1
2

˘M , where
σ “ pσ1, . . . , σM q P t˘1uM with σi “ 1 and σj “ ´1.

(ii) For a pair of dual discrete nets x : ZM Y
`

Z ` 1
2

˘M
Ñ RN the discrete (squared) Lamé coefficients

H2
i :

`

Z ` 1
4

˘M
Ñ R, i “ 1, . . . ,M

are defined by

H2
i pn ` 1

4σq “

#

x∆ixpnq, ∆̄ixpn ` 1
2σqy, σi “ 1

x∆̄ixpnq,∆ixpn ` 1
2σqy, σi “ ´1

for all n P ZM and σ “ pσ1, . . . , σM q P t˘1uM .

Remark 1.5. The discrete orthogonality condition is invariant under similarity transformations. Further-
more, it is invariant under individual translation of each of its two discrete subnets in space.

The standard discretization of conjugate nets is given by discrete nets with planar quadrilaterals.

Definition 1.8. A discrete net x : ZM Ñ RN is called conjugate, or a Q-net, if

∆i∆jx ^ ∆ix ^ ∆jx “ 0, i, j “ 1, . . . ,M, i ‰ j,

or equivalently, if all its elementary quadrilaterals pxpnq,xpn`eiq,xpn`ei`ejq,xpn`ejqq are coplanar.

With this, we obtain the following discrete version of Theorem 1.4 (“discrete Dupin’s theorem”).

Theorem 1.9 (Chapter 2: Proposition 4.2). Let N ě 3 and x : ZN Y
`

Z ` 1
2

˘N
Ñ RN be an orthogonal

pair of dual discrete nets. Then its two discrete subnets x
ˇ

ˇ

ZN
and x

ˇ

ˇ

´

Z`
1
2

¯N are discrete conjugate nets.

Remark 1.6. For a discrete conjugate net x : ZM Ñ RN , M ď N , there exists a second conjugate net
x˚ :

`

Z ` 1
2

˘M
Ñ RN such that x and x˚ together form an orthogonal pair of dual discrete nets. Thus,

from the point of view of a single discrete conjugate net, the discrete orthogonality is not a constraint.
Only if we consider pairs of dual discrete nets as discretizations of one smooth net does the discrete
orthogonality become an actual further constraint.

1.3 Discrete Möbius invariance

The discrete orthogonality constraint is not invariant under mapping each point of an orthogonal pair of
dual discrete nets by a Möbius transformation (cf. Remark 2.7). Nevertheless, one can replace the points
of the pair of nets by orthogonal spheres to obtain a Möbius invariant description.

Definition 1.10. Let S be the space of (hyper)spheres in RN . We call a map S : ZM Y
`

Z ` 1
2

˘M
Ñ S

an orthogonal pair of sphere congruences if each two adjacent spheres from the dual lattices Spnq and
Spn ` 1

2σq, n P ZM ,σ P t˘1uM , are orthogonal (see Figure 1.2, (left)).

Orthogonal pairs of sphere congruences are Möbius invariant. Furthermore, given a pair of dual dis-
crete nets x : ZM Y

`

Z ` 1
2

˘M
Ñ RN we can construct orthogonal spheres with centers at the points of x:

Choosing the radius for one sphere at n P ZM , the radii of all spheres at adjacent vertices n˚ P
`

Z ` 1
2

˘M

of the dual lattice are uniquely determined by the orthogonality condition. Can this be propagated
throughout the whole pair of dual lattices ZM Y

`

Z ` 1
2

˘M without contradiction?
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px, ρq pxi, ρiq

px˚, ρ˚q

px˚
j , ρ

˚
j q

px, ρq pxi, ρiq

px˚, ρ˚q

px˚
i , ρ

˚
i q

Figure 1.2. Left: Two dual edges from an orthogonal pair of sphere congruences. Right: Two
“parallel” edges from an orthogonal pair of sphere congruences.

Lemma 1.11. Two spheres in RN with centers x, x˚ and radii r, r˚, respectively, are orthogonal if and
only if

xx,x˚y “ ρ` ρ˚,

where
ρ “

1

2

´

|x|
2
´ r2

¯

, ρ˚ “
1

2

´

|x˚|
2
´ pr˚q2

¯

.

Proof. The orthogonality condition of the two spheres is equivalent to

|x´ x˚|
2
“ r2 ` pr˚q2 ô 2xx,x˚y “ |x|

2
´ r2 ` |x˚|

2
´ pr˚q2.

Proposition 1.12. Let x : ZM Y
`

Z` 1
2

˘M
Ñ RN be a pair of dual discrete nets. Then there exists

a one-parameter family of orthogonal pairs of sphere congruences with centers in the points of x if and
only if the pair of discrete nets x is orthogonal.

Moreover, let S : ZM Y
`

Z` 1
2

˘M
Ñ S be an orthogonal pair of sphere congruences. Then the pair

of dual discrete nets x : ZM Y
`

Z` 1
2

˘M
Ñ RN given by the centers of S is orthogonal.

Proof. Consider a pair of dual edges of the net x, and denote the involved vertices such that ∆ixpnq “

xi ´ x and ∆jxpn
˚q “ x˚

j ´ x˚ (see Figure 1.2 (left)). Assume that the radius r at x is given by

ρ “ 1
2

´

|x|
2
´ r2

¯

. Then the two radii at x˚ and x˚
j are given by

ρ˚ “ xx,x˚y ´ ρ, ρ˚j “ xx,x˚
j y ´ ρ.

Now the radius at xi may be obtained in two ways

ρi “ xxi,x
˚y ´ ρ˚ “ xxi,x

˚y ´ xx,x˚y ` ρ,

ρ̃i “ xxi,x
˚
j y ´ ρ˚j “ xxi,x

˚
j y ´ xx,x˚

j y ` ρ.

Thus,
ρi “ ρ̃i ô xxi ´ x,x˚

j ´ x˚y,

which is the orthogonality of the two dual edges.

Now an orthogonal pair of dual discrete nets x : ZM Y
`

ZM
˘˚

Ñ RN may be transformed in the
following way:
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§ Choose an orthogonal pair of sphere congruences S : ZM Y
`

ZM
˘˚

Ñ S with centers in x.

§ Transform S under a Möbius transformation to obtain S̃.

§ Take the centers x̃ of the transformed pair of sphere congruences S̃.

Lemma 1.13. Let S : ZM Y
`

Z ` 1
2

˘M
Ñ S be an orthogonal pair of sphere congruences with centers x,

radii r, and ρ “ 1
2

´

|x|
2

´ r2
¯

. Then the corresponding quantities of the image of S under inversion in
the unit sphere centered at the origin are given by

x̃ “
x

2ρ
, r̃ “

r

|x|
2

´ r2
, ρ̃ “

1

4ρ
.

Proof. This reduces to a one-dimensional problem on the line through the origin and the center of each
sphere.

x̃ “
1

2

ˆ

1

x ´ r
`

1

x ` r

˙

“
x

|x|
2

´ r2
“

x

2ρ
,

r̃ “
1

2

ˆ

1

x ´ r
´

1

x ` r

˙

“
r

|x|
2

´ r2
“

r

2ρ
,

ρ̃ “
1

2
p|x̃|

2
´ r̃2q “

1

2

˜

|x|
2

4ρ2
´

r2

4ρ2

¸

“
1

4ρ
.

Lemma 1.14. Let S : ZM Y
`

Z ` 1
2

˘M
Ñ S be an orthogonal pair of sphere congruences.

(i) The discrete Lamé coefficients of the orthogonal pair of dual discrete nets of centers x are given by

H2
i pn ` 1

4σq “

#

ρpn ` eiq ` ρpn ` 1
2σ ´ eiq ´ xxpn ` eiq,xpn ` 1

2σ ´ eiqy, σi “ 1

ρpn ´ eiq ` ρpn ` 1
2σ ` eiq ´ xxpn ´ eiq,xpn ` 1

2σ ` eiqy, σi “ ´1

for i “ 1, . . . ,M , n P ZM , σ P t˘1uM .

(ii) The discrete Lamé coefficients transform under inversion in the unit sphere centered at the origin
by

H̃2
i pn ` 1

4σq “

#

1
4ρpn`eiqρpn`1{2σ´eiq

H2
i pn ` 1

4σq σi “ 1
1

4ρpn´eiqρpn`1{2σ`eiq
H2

i pn ` 1
4σq σi “ ´1

for i “ 1, . . . ,M , n P ZM , σ P t˘1uM .

Proof. Let σ P t˘1uM with σi “ 1. Denote the involved centers such that ∆̄ixpnq “ xi ´ x and
∆ixpn ` 1

2σq “ x˚
i ´ x˚ (see Figure 1.13 (right)).

(i) Then the discrete Lamé coefficients at n ` 1
4σ are given by

H2
i pn ` 1

4σq “ x∆ixpnq, ∆̄ixpn ` 1
2σqy

“ xx,x˚y ´ xx˚,xiy ` xxi,x
˚
i y ´ xx˚

i ,xy

“ ρ` ρ˚ ´ ρ˚ ´ ρi ` ρi ` ρ˚
` ´ xx˚

i ,xy

“ ρ` ρ˚
i ´ xx˚

i ,xy.

(ii) By Lemma 1.13 the discrete Lamé coefficients transform by

H̃2
i “

1

4ρ
`

1

4ρ˚
i

´ x
x

4ρ
,
x˚
i

4ρ˚
i

y “
1

4ρρ˚
i

pρ` ρ˚
i ´ xx˚

i ,xyq “
1

4ρρ˚
i

H2
i .
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2 Curvature lines, focal nets, and parallel nets

2.1 Classical curvature line parametrizations

Let x : R2 Ą U Ñ R3 be a net, i.e., a (regular) parametrization of a surface in R3. We denote its unit
normal field by

νps1, s2q “
B1x ˆ B2x

|B1x ˆ B2x|
, ps1, s2q P U,

its first fundamental form by
I “ E ds21 ` 2F ds1ds2 `G ds22

where E “ xB1x, B1xy, F “ xB1x, B2xy, G “ xB2x, B2xy, and its second fundamental form by

II “ e ds21 ` 2f ds1ds2 ` g ds22

where e “ xB1ν, B1xy, f “ xB1ν, B2xy “ xB2ν, B1xy, g “ xB2ν, B2xy.

Remark 2.1. For an orthogonally parametrized surface, i.e., G “ 0, its Lamé coefficients are given by
H2

1 “ E and H2
2 “ G.

Locally, and away from umbilic points, every surface in R3 has a unique curvature line parametrization,
i.e., a parametrization along principal directions. We denote by κ1, κ2 : U Ñ R the corresponding principal
curvatures and for the following of this section we assume that the net x has no umbilic and no parabolic
points, i.e., κ1 ‰ κ2 and κ1κ2 ‰ 0 at every point of U .

Proposition 2.1. A net x : R2 Ą U Ñ R3 is a curvature line parametrization if and only if one of the
following two equivalent conditions is satisfied:

(i) The first and second fundamental form are diagonal, i.e., F “ f “ 0.

(ii) The net x is orthogonal and conjugate.

Remark 2.2.
(i) The property of being a curvature line parametrization is Möbius invariant.

(ii) A parametrized surface is a two-parameter family of points in R3. Alternatively, it can be described
as the envelope of a two-parameter family of (oriented) planes, namely its tangent planes. For a
regular non-developable surface these two descriptions are equivalent. Yet the characterization
of a curvature line parametrization in terms of its tangent planes is invariant under Laguerre
transformations.

Focal nets

The normal direction ν defines a line

λ ÞÑ xps1, s2q ` λνps1, s2q, λ P R

at every point ps1, s2q P U , together constituting the normal congruence of the net x.

Proposition 2.2. Let x : R2 Ą U Ñ R3 be a conjugate net. Then x is orthogonal, i.e., a curvature line
parametrization, if and only if one of the following two equivalent conditions is satisfied:

(i) ν ^ B1ν ^ B1x “ 0 and ν ^ B2ν ^ B2x “ 0.

(ii) The two families of ruled surfaces contained in the normal congruence along the coordinate lines
of x

psi, λq ÞÑ xps1, s2q ` λνps1, s2q, i “ 1, 2, (2.1)

are developable.
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Figure 2.1. A curvature line parametrized surface (white) and its two focal nets (red and blue).
[Image by Ag2gaeh, CC BY-SA 4.0]

Intuitively the condition in Proposition 2.2 means that infinitesimally close normal lines along the
principal directions intersect. Along a curvature line the points of intersection are given by the centers
of the osculating circles, which have radii 1

κi
, i “ 1, 2, and together form the line of striction of the

developable surface (2.1). For each principal direction these lines of striction constitute one of the two
focal nets of x (see Figure 2.1),

fi : U Ñ R3, ps1, s2q ÞÑ xps1, s2q `
1

κips1, s2q
νps1, s2q, i “ 1, 2. (2.2)

Remark 2.3. The focal net fi is regular at each point ps1, s2q P U with Biκips1, s2q ‰ 0. Furthermore,

Biκips1, s2q “ 0 ô Bifips1, s2q “ 0.

Proposition 2.3. The two focal nets (2.2) are conjugate nets.

Remark 2.4. The envelope of a one-parameter family of spheres in R3 is called a channel surface. The
curvature lines in one direction of a channel surface are circles, and thus one of its focal nets degenerates
to a curve, i.e., Bifi “ 0 for one i “ 1, 2 (cf. Remark 2.3). In fact, this property characterizes channel
surfaces. A Dupin cyclide is a channel surface in both directions, i.e., the envelope of two distinct one-
parameter families of spheres, and therefore characterized by the condition that both of its focal nets
degenerate to curves.

Parallel nets

A parallel surface is a surface of constant offset in normal direction to a given surface. It is a special case
of a Combescure transform, i.e., corresponding tangent planes are parallel. A net x : R2 Ą U Ñ R3 can
be extended to a three-dimensional net by a family of parallel nets, given by

x̃ : U ˆ I Ñ R3, ps1, s2, s3q ÞÑ xps1, s2q ` ρps3qνps1, s2q, (2.3)

with some smooth function ρ : I Ñ R on an open interval I Ă R. Away from the focal points, which in the
case of a curvature line parametrization are given by (2.2), the three-dimensional net of parallel surfaces

https://commons.wikimedia.org/wiki/User:Ag2gaeh
https://creativecommons.org/licenses/by-sa/4.0


2. CURVATURE LINES, FOCAL NETS, AND PARALLEL NETS 23

x̃ is regular. By Dupin’s Theorem (cf. Theorem 1.4) a two-dimensional net can be a subnet of a three-
dimensional orthogonal net, i.e., a triply orthogonal system, only if it is a curvature line parametrization.
Yet every curvature line parametrization can be extended to a triply orthogonal system by its parallel
nets.

Proposition 2.4. Let x : R2 Ą U Ñ R3 be an orthogonal conjugate net, i.e., a curvature line
parametrization. Then the three-dimensional net of parallel surfaces x̃ given by (2.3) is orthogonal with
the third Lamé coefficient given by H2

3 “ pρ1q
2, which only depends on s3.

Remark 2.5. In particular, this implies that curvature line parametrizations are Möbius invariant (cf. Re-
mark 2.2). Indeed, by Proposition 2.4, a curvature line parametrization x : R2 Ą U Ñ R3 can be extended
to a triply orthogonal systems x̃. Application of a Möbius transformation maps x̃ to a triply orthogonal
system and thus, by Theorem 1.4 and Proposition 2.1, it maps x to a curvature line parametrization.

2.2 Discrete curvature line parametrizations

Two well-established discretizations of curvature line parametrizations are given by circular nets and
conical nets.

Definition 2.5. Let x : Z2 Ñ R3 be a discrete conjugate net.

(i) The net x is called a circular net if all its elementary quadrilaterals are circular, i.e., each four
points pxpnq,xpn ` eiq,xpn ` ei ` ejq,xpn ` ejqq lie on a circle.

(ii) The net x is called a conical net if all four planes corresponding to any elementary quadrilateral
containing a common vertex touch a common cone.

Remark 2.6.
(i) The notion of circular nets is invariant under Möbius transformations.

(ii) Conical nets are more naturally described as maps from the dual lattice into the set of (oriented)
planes of R3. Thus, they correspond to the description of a net in terms of its tangent planes (cf.
Remark 2.2 (ii)). The notion of conical nets is invariant under Laguerre transformations.

As described in [PW] circular nets and conical nets are intimately related. Given a circular net there
exists a canonical three-parameter family of corresponding conical nets:

§ Let x : Z2 Ñ R3 be a circular net.

§ Associate to each edge rn,n ` eis of Z2 the length bisecting plane of the segment rxpnq,xpn ` eiqs.

§ Choose a plane at some n P Z2 and reflect it in all bisecting planes.

This process is well-defined on Z2 in the sense that it closes along every cycle. Every four planes associated
to an elementary quadrilateral of Z2 intersect in a point, constituting an associated conical net x˚ :

pZ ` 1
2 q2 Ñ R3 on the dual lattice.

Vice versa, given a conical net there exists a canonical three-parameter family of corresponding
circular nets:

§ Let x :
`

Z2 ` 1
2

˘2
Ñ R3 be a conical net.

§ Associate to each edge rn˚,n˚ ` eis of
`

Z ` 1
2

˘2 the angle bisecting plane of the two adjacent face
planes.

§ Choose a point at some n P Z2 and reflect it in all bisecting planes.

This process is well-defined on Z2 and constitutes an associated circular net x : Z2 Ñ R3 on the dual
lattice.

We call two nets x : Z2 Ñ R3 and x˚ : pZ ` 1
2 q2 Ñ R3 obtained by either of the previously described

procedures a pair of associated circular and conical nets.



24

Figure 2.2. Patch of an orthogonal pair of dual discrete conjugate nets, its normal congruence,
and one quadrilateral of one of its two focal nets.

Proposition 2.6. A pair of associated circular and conical nets constitutes an orthogonal pair of dual
discrete nets (in the sense of Definition 1.7).

Proof. Consider one of the bisecting planes Π. A plane and its reflection in Π intersect in Π. On the
other hand, the line through a point and its reflection in Π is orthogonal to Π.

Thus, orthogonal pairs of dual discrete conjugate nets are generalizations of pairs of associated circular
and conical nets, and we view them as discrete curvature line parametrizations.

Remark 2.7. While circular nets are invariant under Möbius transformations and conical nets are invariant
under Laguerre transformations, the associated pairs of such nets are invariant under the intersection of
these transformation groups, i.e., similarity transformations. Similarly, general orthogonal pairs of dual
discrete nets are invariant under similarity transformations, but not under general Möbius or Laguerre
transformations (though cf. Section 1.3).

Discrete focal nets

For a pair of dual discrete conjugate nets x : Z2 Y
`

Z ` 1
2

˘2
Ñ R3 we associate to every vertex

n P Z2 Y
`

Z ` 1
2

˘2 the unit normal vector of the corresponding dual face plane, i.e.,

νpnq “
∆1xpn˚q ˆ ∆2xpn˚q

|∆1xpn˚q ˆ ∆2xpn˚q|
,

where n˚ “ n ´
`

1
2 ,

1
2

˘

. The corresponding normal lines

ℓpnq : λ ÞÑ xpnq ` λνpnq, λ P R.

together constitute the discrete normal congruence of the pair of discrete nets x, for which we immediately
obtain a discrete version of Proposition 2.2.



2. CURVATURE LINES, FOCAL NETS, AND PARALLEL NETS 25

Proposition 2.7. Let x : Z2 Y
`

Z ` 1
2

˘2
Ñ R3 be a pair of dual discrete conjugate nets. Then x

is orthogonal, i.e., a discrete curvature line parametrization, if and only if one of the following two
equivalent conditions is satisfied:

(i) ν ^ ∆1ν ^ ∆1x “ 0 and ν ^ ∆2ν ^ ∆2x “ 0

(ii) Any two adjacent normals ℓpnq and ℓpn ` eiq, i “ 1, 2, intersect (see Figure 2.2).

Proof. Let n P Z2 Y
`

Z ` 1
2

˘2 and n˚ “ n `
`

1
2 ,´

1
2

˘

so that ∆1xpnq and ∆2xpn˚q are dual edges and
therefore

νpnq,νpn ` e1q K ∆2xpn˚q.

Thus, under the assumption νpnq ‰ νpn ` e1q, we obtain

pν ^ ∆1ν ^ ∆1xq pnq “ νpnq ^ νpn ` e1q ^ ∆1xpnq “ 0 ô ∆1xpnq K ∆2xpn˚q.

Remark 2.8. Condition (ii) of Proposition 2.7 may be interpreted in the sense that the two families of
“discrete ruled surfaces” contained in the discrete normal congruence along the coordinate lines of x are
“discrete developable surfaces”.

For an orthogonal pair of dual discrete conjugate nets x : Z2 Y
`

Z ` 1
2

˘2
Ñ R3 we define their discrete

focal nets fi, i “ 1, 2, by the points of intersection of neighboring normal lines (see Figure 2.2)

fi : n ÞÑ ℓpnq X ℓpn ` eiq. (2.4)

Proposition 2.8. The two discrete focal nets (2.4) are discrete conjugate nets.

Proof. The two points fipnq and fipn`eiq lie on the line ℓpn`eiq, while the two points fipn`ejq and
fipn ` ei ` ejq lie on the line ℓpn ` ei ` ejq. By Proposition 2.7 these two lines intersect.

Furthermore, comparing with Remark 2.4, we obtain natural definitions for discrete channel surfaces
and discrete Dupin cyclides, whose properties are studied in a forthcoming publication.

Definition 2.9. Let x : Z2 Y
`

Z ` 1
2

˘2
Ñ R3 be a discrete curvature line parametrization.

(i) Then x is called a discrete channel surface if one of its discrete focal nets degenerates to a curve,
i.e., ∆ifi “ 0 for one i “ 1, 2.

(ii) It is called a discrete Dupin cyclide if both of its discrete focal nets degenerate to curves, i.e.,
∆ifi “ 0 for both i “ 1, 2.

Discrete parallel nets

For an orthogonal pair of dual discrete conjugate nets x : Z2 Y
`

Z ` 1
2

˘2
Ñ R3, a one-parameter family

of discrete parallel surfaces is defined by (see Figure 2.3)

x̃ : Z3 Y
`

Z ` 1
2

˘3
Ñ R3, pn1, n2, n3q ÞÑ xpn1, n2q ` ρpn1, n2, n3qνpn1, n2q, (2.5)

where ρ : Z2 Y
`

Z ` 1
2

˘3
Ñ R is chosen such that for i “ 1, 2 the edges ∆ixpn1, n2, n3q are parallel for all

values of n3. This is always possible due to the fact that neighboring normal lines of x intersect (see, e.g.,
[BS]). Thus, the function ρ may only be chosen at one point for each layer n3 “ const., and each two
coordinate surfaces x̃pn1, n2, n3 “ const.q are discrete Combescure transforms of each other, i.e., they are
discrete conjugate nets with parallel faces.

Similar to the smooth case, x can be extended to a discrete triply orthogonal system by its parallel
surfaces.

Proposition 2.10. Let x : Z2 Y
`

Z ` 1
2

˘2
Ñ R3 be an orthogonal pair of dual discrete conjugate nets.

Then the pair of discrete three-dimensional nets of parallel surfaces x̃ given by (2.5) is orthogonal with
the third discrete Lamé coefficient H2

3 only depending on n3.
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Figure 2.3. Patch of an orthogonal pair of dual discrete conjugate nets, and one layer of a discrete
parallel pair of nets.

Proof. The orthogonality of two dual edges ∆1x̃pnq and ∆2x̃pn˚q follows from parallelity to the corre-
sponding edges of x. An edge ∆3x̃pnq is always parallel to the discrete normal vector νpn1, n2q, which
in turn is orthogonal to any dual edge ∆1x̃pn˚q and ∆2x̃pn˚q.

Let n P Z3 Y
`

Z ` 1
2

˘3, σ1 “ p´1, 1, 1q, σ2 “ p1, 1, 1q, n˚
1 “ n ` 1

2σ1, n˚
2 “ n ` 1

2σ2, and consider
the two corresponding adjacent values of H2

3 . Then

H2
3 pn ` 1

4σ2q ´H2
3 pn ` 1

4σ1q “ x∆3xpnq, ∆̄3xpn˚
2 qy ´ x∆3xpnq, ∆̄3xpn˚

1 qy

“ x∆3pnq,∆1∆̄3xpn˚
1 qy

“ x∆3pnq, ∆̄3x∆1pn˚
1 qy

“ x∆3pnq,∆1pn˚
1 qy ´ x∆3pnq,∆1pn˚

1 ´ e3qy “ 0.

3 Isothermic nets

3.1 Classical isothermic nets

A surface is called isothermic if it (locally) possesses a conformal curvature line parametrization, i.e., a
parametrization x : R2 Ą U Ñ R3 with

F “ f “ 0, E “ G.

Definition 3.1. A net x : R2 Ą U Ñ R3 is called isothermic if it is a curvature line parametrization
and conformal up to reparametrization along the coordinate lines, i.e., F “ f “ 0 and the coefficients of
the first fundamental form satisfy

B1B2 log
E

G
“ 0,

or equivalently,
E

G
“
αps1q

βps2q
,
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ϕ “
H2

1

H2
2

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

Figure 3.1. Left: The edges of a pair of dual nets involved in the discrete isothermicity condition.
Middle: The four quotients of discrete Lamé coefficients around a vertex. Right: The four quotients
of discrete Lamé coefficients around a pair of dual edges. The double stroked indices denote half-
integer shifts in the corresponding lattice direction.

with some functions α and β only depending on s1 and s2, respectively.

The Möbius invariant notion of isothermic nets may be decomposed into the Möbius invariant notion
of orthogonal nets and the projectively invariant notion of Koenigs nets.

Definition 3.2. A net x : R2 Ą U Ñ R3 is called a Koenigs net if there exists a function ν : U Ñ R`

such that
B1B2x “

B2ν

ν
B1x`

B1ν

ν
B2x.

Remark 3.1. Comparing with (1.2) we see that Koenigs nets are special conjugate nets. For a conjugate
net x : R2 Ą U Ñ R3 satisfying the equation

B1B2x “ a B1x` b B2x.

its Laplace invariants are given by

â “ B1a´ ab, b̂ “ B2b´ ab.

Thus, Koenigs nets are conjugate nets with equal Laplace invariants.

Proposition 3.3. A net x : R2 Ą U Ñ R3 is isothermic if it is an orthogonal Koenigs net.

3.2 Discrete isothermic nets

Having a definition for discrete Lamé coefficients, we can immediately discretize Definition 3.1 in the
following sense:

Definition 3.4. An orthogonal pair of dual discrete conjugate nets x : Z2 Y
`

Z` 1
2

˘2
Ñ R3 is called

a discrete isothermic net if its discrete Lamé coefficients H2
1 , H

2
2 :

`

1
2Z` 1

4

˘2
Ñ R satisfy the following

factorization condition:

H2
1

H2
2

“
αpn1q

βpn2q
, n1, n2 P 1

2Z` 1
4 , (3.1)

where α, β :
`

1
2Z` 1

4

˘

Ñ R are two functions depending on n1 and n2 only, respectively.

If we denote the quotient of the discrete Lamé coefficients by

ϕ “
H2

1

H2
2

:
`

1
2Z` 1

4

˘2
Ñ R,
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the factorization condition (3.1) is equivalent to

ϕpn1, n2qϕpn1 ` 1
2 , n2 ` 1

2 q “ ϕpn1 ` 1
2 , n2qϕpn1, n2 ` 1

2 q (3.2)

for every pn1, n2q P
`

1
2Z ` 1

4

˘2. Equation (3.2) describes two combinatorially different configurations,
depending on whether the four values of ϕ are located around a vertex of the net x or around two dual
edges of it (see Figure 3.1).

Proposition 3.5. Let x : Z2 Y
`

Z ` 1
2

˘2
Ñ R3 be an orthogonal pair of dual discrete conjugate nets.

Then the four values of ϕ around any vertex n P Z2 Y
`

Z ` 1
2

˘2 satisfy (3.2) (see Figure 3.1 (middle)).

Proof. Denote the plane of the quadrilateral through the four points xpn ` 1
2 p˘1,˘1qq by Π. Orthog-

onal projection of the four edges ∆1xpnq, ∆̄1xpnq,∆2xpnq, ∆̄2xpnq onto Π preserves the orthogonality
constraint as well as the involved Lamé coefficients. Thus, we may restrict ourselves to the planar case.

For simplicity, assume that all Lamé coefficients are positive, H2
i ą 0. Then we find

ϕpn1 ` 1
4 , n2 ` 1

4 q “
x∆1xpn1, n2q,∆1xpn1 ´ 1

2 , n2 ` 1
2 qy

x∆2xpn1, n2q,∆2xpn1 ` 1
2 , n2 ´ 1

2 qy
“

|∆1xpn1, n2q|
ˇ

ˇ∆1xpn1 ´ 1
2 , n2 ` 1

2 q
ˇ

ˇ

|∆2xpn1, n2q|
ˇ

ˇ∆2xpn1 ` 1
2 , n2 ´ 1

2 q
ˇ

ˇ

,

and similarly for the other values of ϕ. Thus, in (3.2) all lengths appear twice and cancel.

Thus, for an orthogonal pair of discrete conjugate nets the discrete isothermicity condition (3.2) only
needs to be checked around every pair of dual edges (Figure 3.1 (right)).

Remark 3.2. From Lemma 1.14 we immediately see that the factorization condition (3.1) is not invariant
under Möbius transformations for orthogonal pairs of sphere congruences as they are defined in Section
1.3. Yet, as mentioned in Remark 2.7, Möbius invariance is not necessarily to be expected in the setup
of orthogonal pairs of dual discrete nets.

4 Confocal quadrics

An important example of an orthogonal coordinate system in which all coordinate surfaces are isothermic
is given by confocal coordinates (also known as elliptic coordinates).

4.1 Classical confocal coordinates

For given a1 ą a2 ą ¨ ¨ ¨ ą aN , we consider the one-parameter family of confocal quadrics in RN given by

Qλ “

#

x “ px1, . . . , xN q P RN :
N
ÿ

k“1

x2k
ak ` λ

“ 1

+

, λ P R. (4.1)

Note that the quadrics of this family are centered at the origin and have their principal axes aligned along
the coordinate directions. For a given point x “ px1, . . . , xN q P RN with x1x2 . . . xN ‰ 0, the equation
řN

k“1 x
2
k{pak ` λq “ 1 is, after clearing the denominators, a polynomial equation of degree N in λ, with

N real roots u1, . . . , uN lying in the intervals

´a1 ă u1 ă ´a2 ă u2 ă ¨ ¨ ¨ ă ´aN ă uN ,

so that
N
ÿ

k“1

x2k
λ` ak

´ 1 “ ´

śN
m“1pλ´ umq

śN
m“1pλ` amq

. (4.2)

These N roots correspond to the N confocal quadrics of the family (4.1) that intersect at the point
x “ px1, . . . , xN q:

N
ÿ

k“1

x2k
ak ` ui

“ 1, i “ 1, . . . , N ô x P

N
č

i“1

Qui
. (4.3)
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Figure 4.1. Three confocal quadrics in R3.

The N quadrics Qui are all of different (affine) signatures. Evaluating the residue of the right-hand side
of (4.2) at λ “ ´ak, one can easily express x2k through u1, . . . , uN :

x2k “

śN
i“1pui ` akq

ś

i‰kpak ´ aiq
, k “ 1, . . . , N. (4.4)

Thus, for each point px1, . . . , xN q P RN with x1x2 . . . xN ‰ 0, there is exactly one solution pu1, . . . , uN q P

U of (4.4), where

U “
␣

pu1, . . . , uN q P RN | ´ a1 ă u1 ă ´a2 ă u2 ă . . . ă ´aN ă uN
(

.

On the other hand, for each pu1, . . . , uN q P U there are exactly 2N solutions px1, . . . , xN q P RN , which are
mirror symmetric with respect to the coordinate hyperplanes. Thus, we are dealing with a parametrization
of, say, the first hyperoctant of RN ,

x : U Ñ RN
` , u “ pu1, . . . , uN q ÞÑ x “ px1, . . . , xN q

given by

xk “

śk´1
i“1

a

´pui ` akq
śN

i“k

?
ui ` ak

śk´1
i“1

?
ai ´ ak

śN
i“k`1

?
ak ´ ai

, k “ 1, . . . , N,

such that the coordinate hyperplanes ui “ const are mapped to (parts of) the respective quadrics given
by (4.3). The coordinates pu1, . . . , uN q are called confocal coordinates.

Proposition 4.1. The system of confocal coordinates x : U Ñ RN
` is orthogonal. Its Lamé coefficients

are given by

H2
i puq “

1

4

ś

j‰ipui ´ ujq
śN

k“1pui ´ akq
, i “ 1, . . . , N. (4.5)

Remark 4.1.
(i) By Theorem 1.4 the system of confocal coordinates is conjugate. In particular, it satisfies the

Euler-Poisson-Darboux system (cf. Section 5)

BiBjxpuq “
1

2pui ´ ujq
pBjxpuq ´ Bixpuqq, i, j “ 1, . . . , N, i ‰ j.

Comparing with Definition 3.2 we find that all two-dimensional coordinate subnets of x are Koenigs
nets, and thus, by Proposition 3.3, isothermic nets, which is also imminent from the form of the
Lamé coefficients (4.5).
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Figure 4.2. Left: Three discrete confocal quadrics as part of a (stepsize 1) subnet of a discrete
confocal coordinate system in R3. Right: Part of an orthogonal pair of dual discrete conjugate nets
which are (stepsize 1) subnets of a discrete confocal coordinate system in R3.

(ii) The orthogonal coordinate systems with coordinate hypersurfaces belonging to a common family
of confocal quadrics are uniquely defined only up to reparametrization along the coordinate lines
ui “ uipsiq, i “ 1, . . . , N . This reparametrization leads to different nets with different geometric
properties (see Chapter 2: Section 8, Section 9, and Appendix B, as well as [Ak, Ag, ABST]). Note
that under reparametrization the Lamé coefficients (4.5) take the form

H2
i psq “

1

4

`

u1
ipsiq

˘2

ś

j‰ipuipsiq ´ ujpsjqq
śN

k“1puipsiq ´ akq
, i “ 1, . . . , N.

The system of confocal coordinates is orthogonal and its coordinate functions factorize in the sense
that each coordinate function is a product of functions each depending on only one of the N variables.
It turns out that these two properties characterize confocal coordinates (up to reparametrization along
the coordinate lines).

Theorem 4.2 (Chapter 2: Theorem 3.1). If a coordinate system x : RN Ą U Ñ RN satisfies two
conditions:

(i) xpsq factorizes, in the sense that
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x1psq “ f11 ps1qf12 ps2q ¨ ¨ ¨ f1N psN q,

x2psq “ f21 ps1qf22 ps2q ¨ ¨ ¨ f2N psN q,

. . .

xN psq “ fN1 ps1qfN2 ps2q ¨ ¨ ¨ fNN psN q,

with all fki psiq ‰ 0 and
`

fki
˘1

psiq ‰ 0, and

(ii) x is orthogonal, that is,

xBix, Bjxy “ 0, i, j “ 1, . . . , N, i ‰ j,

then all coordinate hypersurfaces are confocal quadrics.

4.2 Discrete confocal coordinates

Consider applying a factorizability condition, similar to (3.1),

xipnq “ f i1pn1qf i2pn2q ¨ ¨ ¨ f iN pnN q, i “ 1, . . . , N,



4. CONFOCAL QUADRICS 31

to an orthogonal pair of dual discrete nets x : ZN Y
`

Z ` 1
2

˘N
Ñ RN defined on the dual pair of square

lattices ZN and
`

Z ` 1
2

˘N . Then the functions fki must each be defined on 1
2Z, and thus, the net x can be

extended to all of
`

1
2Z

˘N . The two dual lattices ZM and
`

Z ` 1
2

˘M are just one pair of dual sublattices
of

`

1
2Z

˘M . More generally we call two lattices

ZM ` 1
2δ, ZM ` 1

2 δ̄,

a pair of dual sublattices of
`

1
2Z

˘M , where

δ “ pδ1, . . . , δM q P t0, 1uM , δ̄ “ p1 ´ δ1, . . . , 1 ´ δM q P t0, 1uM .

The stepsize 1
2 square lattice

`

1
2Z

˘M has 2M´1 such pairs of dual sublattices.

Definition 4.3.
(i) A map

x :
`

1
2Z

˘M
Ñ RN

is called a stepsize 1
2 discrete net.

(ii) A stepsize 1
2 discrete net is called regular if all of its 2M (stepsize 1) discrete subnets are regular.

(iii) A stepsize 1
2 discrete net is called orthogonal if all of its 2M´1 pairs of dual discrete subnets are

orthogonal.

Remark 4.2.
(i) For a general stepsize 1

2 discrete net, the discrete orthogonality constraint (1.3) only correlates the
two nets from each pair of dual discrete subnets. The 2M´1 different pairs of dual discrete subnets
are not mutually correlated by this condition unless an additional constraint, like the factorizability,
is introduced.

(ii) Each of the 2M´1 different pairs of dual discrete subnets leads to a different definition of discrete
Lamé coefficients on the lattice

`

1
2Z ` 1

4

˘M . In general these do not coincide.

We turn the characterizing properties of classical confocal coordinates (Theorem 4.2) into a definition
for discrete confocal coordinates using stepsize 1

2 discrete nets.

Definition 4.4 (Chapter 2: Definition 5.1). A discrete coordinate system x :
`

1
2Z

˘N
Ą U Ñ RN is called

a discrete confocal coordinate system if it satisfies two conditions:

(i) xpnq factorizes, in the sense that for any n P U
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x1pnq “ f11 pn1qf12 pn2q ¨ ¨ ¨ f1N pnN q,

x2pnq “ f21 pn1qf22 pn2q ¨ ¨ ¨ f2N pnN q,

. . .

xN pnq “ fN1 pn1qfN2 pn2q ¨ ¨ ¨ fNN pnN q,

with fki pniq ‰ 0 and ∆̄fki pniq “ fki pniq ´ fki pni ´ 1q ‰ 0, and

(ii) x is orthogonal, in the sense of Definition 4.3.

The quadratic equations (4.1) identifying the coordinate surfaces in the smooth case as confocal
quadrics are replaced by bilinear identities relating adjacent points in the dual sublattices.

Theorem 4.5 (Chapter 2: Theorem 5.2). For a discrete confocal coordinate system, there exist a1, . . . , aN P

R, and sequences ui :
`

1
2Z ` 1

4

˘

Ñ R, i “ 1, . . . , N , such that

N
ÿ

k“1

xkpnqxkpn ` 1
2σq

ak ` ui
“ 1, ui “ uipni ` 1

4σiq, i “ 1, . . . , N. (4.6)
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for any n P U and σ P t˘1uN , or equivalently,

xkpnqxkpn ` 1
2σq “

śN
j“1puj ` akq

ś

j‰kpak ´ ajq
, uj “ ujpnj ` 1

4σjq, k “ 1, . . . , N.

Remark 4.3.
(i) Different choices for the discrete functions ui lead to different “discrete reparametrizations” of the

system of confocal coordinates, which resemble many of the geometric properties from the smooth
case (see Chapter 2: Section 8, Section 9, and Appendix B).

(ii) Equation (4.6) leads to a remarkable geometric interpretation via polarity with respect to sequences
of classical confocal quadrics (see Section 6.4).

Proposition 4.6. Let x :
`

1
2Z

˘N
Ñ RN be a discrete confocal coordinate system. Then at each

n P
`

1
2Z

˘N and for i “ 1, ..., N the 2N´1 scalar products

x∆ixpn ` 1
2δq, ∆̄ixpn ` 1

2σ ` 1
2 δ̄qy

are equal for all δ “ pδ1, . . . , δM q P t0, 1uM and δ̄ “ p1 ´ δ1, . . . , 1 ´ δM q and σ “ p1, . . . , 1q. Thus, the
discrete Lamé coefficients defined by the different pairs of dual discrete subnets coincide on

`

1
2Z ` 1

4

˘N .
They are given by

H2
i pnq “

`

uipni ` 1
2 q ´ uipniq

˘ `

uipniq ´ uipni ´ 1
2 q
˘

ś

j‰i puipniq ´ ujpnjqq
śN

k“1 puipniq ´ akq
. (4.7)

Proof. Let i “ 1, . . . , N , n P
`

1
2Z

˘N , and σ “ p1, . . . , 1q. For k “ 1, . . . , N the discrete differences satisfy

∆ixkpnq “ xkpnq
uipni ` 3

4 q ´ uipni ` 1
4 q

uipni ` 1
4 q ` ak

,

∆̄ixkpn ` 1
2σq “ xkpn ` 1

2σq
uipni ` 1

4 q ´ uipni ´ 1
4 q

uipni ` 1
4 q ` ak

,

and thus,
x∆ixpnq, ∆̄ixpn ` 1

2σqy “

`

uipni ` 3
4 q ´ uipni ` 1

4 q
˘ `

uipni ` 1
4 q ´ uipni ´ 1

4 q
˘

N
ÿ

k“1

xkpnqxkpn ` 1
2σq

puipni ` 1
4 q ` akq,

,

which by Lemma 4.7 yields (4.7). By symmetry, adding different choices of δ and δ̄ gives the same
result.

Lemma 4.7. The system of discrete confocal coordinates x :
`

1
2Z

˘N
Ñ RN satisfies

N
ÿ

k“1

xkpnqxkpn ` 1
2σq

puipni ` 1
4 q ` akq2

“

ś

j‰ipuipni ` 1
4 q ´ ujpnj ` 1

4 qq
śN

k“1puipni ` 1
4 q ` akq

.

Proof. This is the remarkable identity (3.10) from Chapter 1 that immediately carries over to the discrete
setting.

That the Lamé coefficients coincide for all pairs of dual discrete subnets implies together with Propo-
sition 3.5, that all pairs of dual discrete subnets are discrete isothermic in the sense of Definition 3.4. On
the other hand, this also follows immediately from the explicit expressions of the Lamé coefficients (4.7).

Proposition 4.8. Let x :
`

1
2Z

˘N
Ñ RN be a discrete confocal coordinate system. All two-dimensional

pairs of dual discrete subnets x
ˇ

ˇ

pZN` 1
2δq

and x
ˇ

ˇ

pZN` 1
2 δ̄q

are discrete isothermic. In particular, for i, j “

1, . . . , N , i ă j,
H2

i pnq “ αijpn1, . . . , nj´1, nj`1, . . . , nN qs2ijpni, njq,

H2
j pnq “ βijpn1, . . . , ni´1, ni`1, . . . , nN qs2ijpni, njq,



5. EULER-POISSON-DARBOUX EQUATION 33

with
s2ij “ ujpnjq ´ uipniq,

αij “ ´
`

uipni ` 1
2 q ´ uipniq

˘ `

uipniq ´ uipni ´ 1
2 q
˘

ś

l‰i,j puipniq ´ ulpnlqq
śN

k“1 puipniq ´ akq
,

βij “
`

ujpnj ` 1
2 q ´ ujpnjq

˘ `

ujpnjq ´ ujpnj ´ 1
2 q
˘

ś

l‰i,j pujpnjq ´ ulpnlqq
śN

k“1 pujpnjq ´ akq
.

Remark 4.4. For a discrete Koenigs condition satisfied by the discrete confocal coordinates see Section 5.2.

5 Euler-Poisson-Darboux equation

5.1 Classical Euler-Poisson-Darboux equation

The classical Euler-Poisson-Darboux system is given by

BiBjxpuq “
γ

ui ´ uj
pBjxpuq ´ Bixpuqq, i, j “ 1, . . . , N, i ‰ j

with some constant γ P R. Confocal coordinates constitute certain factorizable solutions of this system
(see Chapter 1: Proposition 3.6).

Eisenhart classified conjugate nets in R3 with all two-dimensional coordinate surfaces being Koenigs
nets [Ei1]. The generic case is described by solutions of the Euler-Poisson-Darboux system with an arbi-
trary coefficient γ. Darboux classified orthogonal nets in R3 whose two-dimensional coordinate surfaces
are isothermic [Da2, Livre II, Chap. III–V]. He found several families, all satisfying the Euler-Poisson-
Darboux system with coefficient γ “ ˘ 1

2 ,´1, or ´2. The family corresponding to γ “ 1
2 consists of

confocal cyclides and includes the case of confocal quadrics (or their Möbius images).
To factor in arbitrary reparametrizations along the coordinate lines ui “ uipsiq the Euler-Poisson-

Darboux system should be replaced by

BiBjxpsq “
γ

uipsiq ´ ujpsjq

`

u1
ipsiqBjxpsq ´ u1

jpsjqBixpsq
˘

.

Considering only one component and two independent directions we obtain the Euler-Poisson-Darboux
equation, which may equivalently be written as

B1B2x “ γ

ˆ

B2τ

τ
B1x`

B1τ

τ
B2x

˙

B1B2τ “ 0,

where τ “ u1 ´ u2.

Remark 5.1. Note that the Euler-Poisson-Darboux equation can further be rewritten as

B1B2x “

ˆ

B2ν

ν
B1x`

B1ν

ν
B2x

˙

with ν “ |τ |
γ . Comparing with Definition 3.2 this reflects the fact that all solutions are Koenigs nets.

5.2 Discrete Euler-Poisson-Darboux equation

It turns out that discrete confocal coordinate systems also satisfy a corresponding discrete Euler-Poisson-
Darboux system.

Theorem 5.1 (Chapter 2: Theorem A.2). Discrete confocal coordinate systems satisfy the discrete Euler-
Poisson-Darboux system with γ “ 1

2 :

∆i∆jx “
1

ui ´ uj

´

∆
1{2ui∆jx ´ ∆

1{2uj∆ix
¯

, (5.1)

where x “ xpnq, ui “ uipni ` 1
4 q, and

∆
1{2ui “ uipni ` 3

4 q ´ uipni ` 1
4 q.
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x12
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v

Figure 5.1. Combinatorial picture for the locations of the values of u, v, and τ in the discrete
Euler-Poisson-Darboux equation.

Remark 5.2.
(i) The choice of γ “ 1

2 in (5.2) is encoded in the half-differences of the functions ui and thus also in
the stepsize 1

2 of the lattice which serves as the domain for x.

(ii) In the case uipni `
1
4 q “ ni ` εi we recover the version of the discrete Euler-Poisson-Darboux

equation that was introduced in [KS2], and used in [BSST1] (see Chapter 1) to obtain discrete
confocal coordinates.

The discrete Euler-Poisson-Darboux system satisfies the following discrete integrability condition.

Proposition 5.2. Equation (5.1) is 3D-consistent.

Proof. For 3D-consistency as a discrete integrability condition see [BS]. One computes that

∆i∆j∆kx “
∆1{2uj∆

1{2uk

pui ´ ujqpui ´ ukq
∆ix`

∆1{2uk∆
1{2ui

puj ´ uiqpuj ´ ukq
∆jx`

∆1{2ui∆
1{2uj

puk ´ uiqpuk ´ ujq
∆kx,

which is symmetric with respect to permutations of i, j, k.

Consider the corresponding discrete Euler-Poisson-Darboux equation

∆1∆2x “
∆1{2u

u´ v
∆2x´

∆1{2v

u´ v
∆1x (5.2)

where u “ upn1 `
1
4 q and v “ vpn2 `

1
4 q are functions on 1

2Z` 1
4 .

Proposition 5.3. Let τ “ τ
`

n1 `
1
4 , n2 `

1
4

˘

be a function on
`

1
2Z` 1

4

˘2 satisfying

∆
1{2

1 ∆
1{2

2 τ “ τ ´ τ ´ τ ` τ “ 0. (5.3)

Then the following three equations are equivalent:

∆1∆2x “
τ τ ´ ττ

τpτ ` τ q
∆1x`

τ τ ´ ττ

τpτ ` τ q
∆2x, (5.4)

∆1∆2x “
∆

1{2

2 τ

τ
∆1x`

∆
1{2

1 τ

τ
∆2x, (5.5)

τ x` τx12 “ τ x2 ` τ x1, (5.6)

where the double stroked indices denote half-integer shifts τ “ τ
`

n1 `
3
4 , n2 `

1
4

˘

,
τ “ τ

`

n1 `
1
4 , n2 `

3
4

˘

, etc. (see Figure 5.1).
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Proof. Resolving the differences in (5.4) one obtains

pτ1 ` τ2qpτ12x` τx12q “ pτ ` τ12qpτ1x2 ` τ2x1q.

Analogously, for (5.5) one obtains

pτ1 ` τ2 ´ τqx` τx12 “ τ1x2 ` τ2x1,

Under the assumption (5.3) both equations become equivalent to (5.6).

Condition (5.3) is equivalent to

τ
`

n1 ` 1
4 , n2 ` 1

4

˘

“ u
`

n1 ` 1
4

˘

´ v
`

n2 ` 1
4

˘

for some functions u and v. Substituting this into (5.5) one immediately obtains (5.2). Thus, the discrete
Euler-Poisson-Darboux equation (5.2) is equivalent to any of the three equations from Proposition 5.3.

Remark 5.3.
(i) While equation (5.4) resembles the equation for the standard notion of discrete Koenigs nets (see

equation (4.1) from Chapter 1), it is yet different, due to the half-integer shifts in the τ ’s. The
values of τ are assigned to the faces of the stepsize 1

2 lattice
`

1
2Z

˘2. Thus, there are four values of τ
that belong to one face of any integer sublattice (see Figure 5.1). But adjacent faces of an integer
sublattice do not share any values of τ . Thus, on one integer sublattice, equation (5.4) poses no
restriction on a net x beyond having planar faces. The restriction here comes from x being defined
on the whole stepsize 1

2 lattice
`

1
2Z

˘2, and, in the case of the Euler-Poisson-Darboux equation,
from the additional harmonicity condition (5.3).

(ii) An analogous discretization of the Euler-Poisson-Darboux equation in the case of γ “ 1 is given by

τ12x` τx12 “ τ1x2 ` τ2x1

τ12 ` τ “ τ1 ` τ2

where x and τ are functions on the integer lattice Z2. Here we are back to the case of a standard
discrete Koenigs net, and the surfaces satisfying this equation are projective translational surfaces
(see [BPR]).

6 Confocal quadrics as dual pencils of quadrics

From the point of view of projective geometry, confocal quadrics are special dual pencils of quadrics,
where one of the quadrics in the pencil is distinguished to induce the metric.

6.1 Quadrics in projective space

Consider the N -dimensional real projective space

RPN “ PpRN`1q “

`

RN`1zt0u
˘

ä„

as it is generated via projectivization from its homogeneous coordinate space RN`1 by the equivalence
relation x „ y ô x “ λy for some λ P R. We denote points in RPN and their homogeneous coordinates
by x “ rx1, . . . , xN`1s. Projective subspaces of RPN are induced by linear subspaces of RN`1, and the
group of projective transformations is induced by the group of general linear transformations of RN`1

and denoted by PGLpN ` 1q.
The N -dimensional dual real projective space is given by

pRPN q˚ “ P
`

pRN`1q˚
˘

,
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where
`

RN`1
˘˚ is the space of linear functionals on RN`1. We identify pRPN q˚˚ “ RPN in the canonical

way, and obtain a bijection between projective subspaces U Ă RPN and their dual projective subspaces

U‹ “
␣

y P pRPN q˚ | ypxq “ 0 for all x P RN`1 with x P U
(

,

which satisfies dimU `dimU‹ “ N ´ 1. Every projective transformation f P PGLpN ` 1q induces a dual
projective transformation f‹ : pRPN q˚ Ñ pRPN q˚ satisfying

fpUq‹ “ f‹pU‹q

for every projective subspace U Ă RPN . Introduce a basis on RN`1, say the canonical basis, and its
dual basis on pRN`1q˚. Then, if F P RpN`1qˆpN`1q is a matrix representing the transformation f “ rF s,
a matrix F ‹ P RpN`1qˆpN`1q representing the dual transformation f‹ “ rF ‹s is given by the inverse
transposed matrix

F ‹ “ F´⊺.

A quadric in RPN is given by

Q “
␣

x P RPN | xx, xy “ 0
(

,

where x¨, ¨y is a non-zero symmetric bilinear form on RN`1. Its signature pr, s, tq (up to interchanging r
and s) characterizes the quadric up to projective transformations. The quadric Q is called non-degenerate
if t “ 0. To ensure that the bilinear form corresponding to a quadric is well-defined up to a non-zero
scalar multiple for all signatures, we consider the complexification of real quadrics. For non-neutral
signature, i.e., r ‰ s, the subgroup of projective transformations that preserve the quadric Q is given by
the projective orthogonal group POpr, s, tq.

If we denote the Gram matrix of the bilinear form x¨, ¨y by

Q P RpN`1qˆpN`1q, Qij “ xei, ejy,

one can write
xx, yy “ x⊺Qy.

A quadric induces the notion of polarity by the map πQ “ rQs : RPN Ñ
`

RPN
˘˚. The polar subspace

of a projective subspace U Ă RPN is given by

πQpUq‹ “ UK “
␣

y P RPN | xx, yy “ 0 for all x P RN`1 with x P U
(

.

Any two points x,y P RPN lying in polar subspaces, i.e., satisfying xx, yy “ 0, are called conjugate. The
involutory nature of the polarity relation is expressed by π‹

Q ˝ πQ “ id.

Dual quadrics

For a quadric Q Ă RPN its dual quadric Q‹ Ă pRPN q˚ may be defined as the set of points dual to the
tangent hyperplanes of Q. For a non-degenerate quadric Q Ă RPN of signature pr, sq its dual quadric
Q‹ Ă pRPN q˚ is a non-degenerate quadric with the same signature, and its Gram-matrix is given by

Q‹ “ Q´1.

For a once-degenerate quadric Q Ă RPN of signature pr, s, 1q, i.e., a cone its dual quadric Q‹ Ă pRPN q˚

consists of the set of points on a lower dimensional quadric of signature pr, sq contained in the hyperplane
v‹ Ă pRPN q˚ where v P Q is the vertex of the cone. Thus, it is in itself not a quadric in pRPN q˚.

Remark 6.1. A more involved concept of quadrics considers them as pairs of primal and dual objects.
This can be advantageous when considering more than once-degenerate quadrics (see [Kl]).
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6.2 Cayley-Klein metric and orthogonality

A non-degenerate quadric Q Ă RPN with corresponding symmetric bilinear form x¨, ¨y induces a Cayley-
Klein metric on the projective space by

KQ px,yq “
xx, yy2

xx, xy xy, yy
, x,y P RPN (6.1)

The quadric Q is called the corresponding absolute quadric.

§ An absolute quadric Q with signature pN, 1, 0q induces hyperbolic geometry. The hyperbolic distance
d of two points x,y P RPN “inside” Q is given by

cosh2 dpx,yq “ KQ px,yq ,

while the angle α between two hyperbolic hyperplanes n‹,m‹ with n,m P
`

RPN
˘˚ “outside” Q‹ is

given by
cos2 αpm‹,n‹q “ KQ‹ pm,nq .

§ An absolute quadric Q with signature pN ` 1, 0, 0q induces elliptic geometry. The elliptic distance d
of two points x,y P RPN is given by

cos2 dpx,yq “ KQ px,yq ,

while the angle α between two elliptic hyperplanes n‹,m‹ with n,m P
`

RPN
˘˚ is given by

cos2 αpm‹,n‹q “ KQ‹ pm,nq .

§ While Euclidean geometry can not be introduced by taking an absolute quadric in RPN , it can be
introduced by a (once) degenerate quadric Q Ă

`

RPN
˘˚ of signature pN, 0, 1q on the dual space.

The corresponding dual quadric Q‹ Ă RPN is not a quadric in RPN , but a quadric contained in the
“hyperplane at infinity”. Thus, while the Cayley-Klein metric can not be defined on the primal space
in the usual way as in (6.1), it can still be defined on the dual space leading to the notion of angle
between two Euclidean hyperplanes n‹,m‹ with n,m P

`

RPN
˘˚, which is given by

cos2 αpm‹,n‹q “ KQ pm,nq .

Remark 6.2. The group of transformations preserving the absolute quadric Q Ă
`

RPN
˘˚ in the Euclidean

case is the group of similarity transformations. The Euclidean metric and the group of Euclidean trans-
formations can still be obtained by a limiting procedure in an appropriately chosen pencil of absolute
quadrics (see, e.g., [Kl]).

We find that in all above examples, two hyperplanes are orthogonal if the corresponding dual points are
conjugate with respect to the absolute quadric on the dual space. We take this as the general definition
of orthogonality with respect to an absolute quadric.

Definition 6.1. Let Q Ă
`

RPN
˘˚ be a quadric with corresponding symmetric bilinear form x¨, ¨y. Then

two hyperplanes m‹,n‹ Ă RPN are orthogonal (with respect to Q) if the two points m,n P
`

RPN
˘˚ are

conjugate, i.e.,
xm,ny “ 0.

6.3 Pencils and dual pencils of quadrics

Let Q1,Q2 Ă RPN be two distinct quadrics with corresponding bilinear forms x¨, ¨y1 and x¨, ¨y2, respec-
tively. Every linear combination of these two bilinear forms yields a new quadric. The family of quadrics
obtained by all linear combinations of the two bilinear forms is called a pencil of quadrics (see Figure
6.1, left):

Q1 ^ Q2 “
`

Qrλ1,λ2s

˘

rλ1,λ2sPRP1 , Qrλ1,λ2s :“
␣

x P RPN | λ1xx, xy1 ` λ2xx, xy2 “ 0
(

.
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Figure 6.1. Top: A pencil of conics (left) containing three pairs of lines as degenerate conics
(colored) and the corresponding dual pencil (right).
Bottom: A pencil of conics (left) containing a real pair of lines, an imaginary pair of lines, and a pair
of complex conjugate lines intersecting in a real point as degenerate conics, and the corresponding
dual pencil (right).
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It is a line in the projective space of quadrics of RPN . In the following, we additionally assume a pencil
of quadrics to be non-degenerate, i.e., not exclusively consisting of degenerate quadrics, in which case it
contains at most N`1 degenerate quadrics (exactly N`1 counting imaginary solutions and multiplicity).

A point contained in two quadrics from a pencil of quadrics is called a base point. It is then contained
in every quadric of the pencil. The variety of base points has codimension (at least) 2.

§ For a generic point there exists a unique quadric from the pencil containing that point.

§ For a generic hyperplane on the other hand there exist N quadrics from the pencil tangent to that
hyperplane (counting imaginary solutions and multiplicity).

The different points of tangency of a single hyperplane are conjugate.

Lemma 6.2. Let pQλqλPRP1 be a pencil of quadrics. Let Π be a common tangent plane of two distinct
quadrics from the pencil touching them in the points x1 and x2, respectively. Then x1 and x2 are
conjugate.

While a single quadric induces the notion of polarity, a pencil of quadrics induces the following
relation.

Lemma 6.3. Let pQλqλPRP1 be a pencil of quadrics. Let x be a point. Then the polar hyperplanes with
respect to all quadrics from the pencil intersect in a common subspace U of codimension (at most) 2.
Vice versa, all polar hyperplanes of points in U contain the point x.

Remark 6.3. Generically a pencil of quadrics defines a map x ÞÑ U of points to codimension 2 subspaces.
Note that every point in U is conjugate to x with respect to every quadric from the pencil.

Remark 6.4. The classification of pencils of quadrics in RPN can be done by the theory of elementary
divisors [Ki, Ca], or, for N “ 2, by more elementary methods [Le].

Dual pencils of quadrics

The pencil of quadrics Q1 ^ Q2 induces a dual pencil of quadrics (see Figure 6.1, right)

pQ1 ^ Q2q
‹

“

´

Q‹
rλ1,λ2s

¯

rλ1,λ2sPRP1
.

Note that a dual pencil of quadrics is itself not a pencil of quadrics.

§ For a generic hyperplane there exists a unique quadric from the dual pencil tangent to that hyperplane.

§ For a generic point there exist N quadrics from the dual pencil through that point (counting imaginary
solutions and multiplicity).

By dualization of Lemma 6.2 we obtain the following statement:

Lemma 6.4. Let pQλqλPRP1 be a dual pencil of quadrics. Let x be a point of intersection of two quadrics
from the dual pencil and Π1 and Π1 the two tangent planes at x, respectively. Then Π1 and Π2 are
orthogonal with respect to every quadric in the pencil.

And by dualization of Lemma 6.3:

Lemma 6.5. Let Π be a hyperplane. Then all poles of Π (with respect to all quadrics from the dual
pencil) lie on a common line ℓ. Vice versa, all poles of hyperplanes containing the line ℓ lie in Π.

Remark 6.5. Generically, a dual pencil of quadrics defines a map Π ÞÑ ℓ of hyperplanes into the space of
lines. Note that the line ℓ is orthogonal to the hyperplane Π with respect to every quadric from the dual
pencil in the sense that every hyperplane containing ℓ is orthogonal to Π.
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Confocal quadrics

From the projective point of view, confocal quadrics can be introduced on every Cayley-Klein space.

Definition 6.6. Let Q Ă
`

RPN
˘˚ be an (at most once degenerate) absolute quadric on the dual projective

space. Then a dual pencil of quadrics in RPN is called a confocal pencil of quadrics if it contains the
absolute quadric Q‹.

Remark 6.6. The well-known metric/optical properties of confocal quadrics follow from this definition.
For the two-dimensional case of confocal conics in hyperbolic and elliptic space see, e.g., [Iz].

From Lemma 6.4 we immediately find:

Proposition 6.7. Any two confocal quadrics intersect orthogonally.

Together with the fact that, generically, in a point of space there intersect N confocal quadrics, we
find, that this definition of confocal quadrics again constitutes special orthogonal coordinate systems.

Finally, we convince ourselves that our main example from Section 4.1 of Euclidean confocal quadrics
is indeed a dual pencil containing the absolute quadric. The absolute quadric on the dual space is given
by the quadratic form

rpxq “ x21 ` . . .` x2N “ 0,

while a generic quadric on the dual space may be written as

qpxq “ a1x1 ` . . .` aNx
2
N ´ x2N`1 “ 0.

with some a1 ă . . . ă aN . Therefore, a generic pencil containing the absolute quadric is given by

qpxq ` λrpxq “ 0 λ P R Y t8u

After dualization, and introducing affine coordinates (xN`1 “ 1) we obtain the generic form of a dual
pencil in Euclidean space containing the absolute quadric

x21
a1 ` λ

` . . .`
x2N

aN ` λ
“ 1,

which coincides with (4.1).

6.4 A discrete dynamical system from dual pencils

Let pQλqλPRP1 be a dual pencil of quadrics. Take N arbitrary discrete subfamilies of quadrics by choosing
maps

uk :
`

1
2Z ` 1

4

˘

Ñ RP1.

On
´

ZN Y
`

Z ` 1
2

˘N
¯

ˆ RPN define the maps

Cσ : pn,xq ÞÑ

˜

n ` 1
2σ,

N
č

k“1

πQ
ukpnk` 1

4
σkq

pxq

¸

.

for σ P t˘1uN . It maps a point on the square lattice ZN to an adjacent point on the dual square lattice
`

Z ` 1
2

˘N via polarity with respect to N quadrics from the dual pencil, and vice versa. We may propagate
one initial value for px,nq throughout the whole pair of dual lattices using this map. To see that this
results in a well-defined pair of dual discrete nets

x : ZN Y
`

Z ` 1
2

˘N
Ñ RPN ,

`

n ` 1
2σ,x

`

n ` 1
2σ

˘˘

“ Cσpn,xpnqq,

that does not depend on the path along which this construction is applied, we show the following closed-
ness condition:
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Cσ̃l

Cσ̃r

Cσl

Cσr

Q1

Q̃1

x

xl

xr

x̃l “ x̃ “ x̃r

Π1

C´σ̃l

Cσl

Q1

Q̃1

x

x̂l “ xl

x̃

Π1

Q2, . . . ,QN

Figure 6.2. Closedness of the discrete dynamical system defined by sequences from a dual pencil
of quadrics.

Theorem 6.8. The maps C satisfy:

(i) Cσ ˝ C´σ “ id, for any σ P t˘1uN .

(ii) Cσ̃l ˝ Cσl “ Cσ̃r ˝ Cσr , for any σl, σ̃l,σr, σ̃r P t˘1uN

with 1
2 pσ

l ` σ̃lq “ 1
2 pσ

r ` σ̃rq “ ˘ei
for some i “ 1, . . . , N .

Proof.
(i) This identity is the involutivity of the polarity relation π‹

Q ˝ πQ “ id for any (non-degenerate)
quadric Q Ă RPN .

(ii) W.l.o.g. 1
2 pσ

l, σ̃lq “ 1
2 pσ

r, σ̃rq “ e1. Let x P RPN and define xl, x̃l,xr, x̃r by (see Figure 6.2
(left))

x
C

σl
ÞÝÝÑ xl C

σ̃l
ÞÝÝÑ x̃l,

x
Cσr
ÞÝÝÝÑ xr Cσ̃r

ÞÝÝÝÑ x̃r.

Further define
Q1 “ Qu1pn1`

1
4 q

“ Q
u1

´

n1`
1
4σ

l
1

¯ “ Q
u1

´

n1`
1
4σ

r
1

¯,

Q̃1 “ Q
u1

´

n1`
3
4

¯ “ Q
u1

´

n1`
3
4σ

l
1

¯ “ Q
u1

´

n1`
3
4σ

r
1

¯,

and x̃ by
x

πQ1
ÞÝÝÝÑ Π1

πQ̃1
ÞÝÝÝÑ x̃.

We show that x̃l “ x̃ (and by symmetry x̃r “ x̃), i.e.,

Cσ̃l ˝ Cσl “ πQ̃1
˝ πQ1 “ Cσ̃r ˝ Cσr .

Due to (i) we may equivalently show that with x̂l :“ C´σ̃lpx̃q we have xl “ x̂l (see Figure 6.2
(right)). Denote

Qk :“ Q
uk

´

nk`
1
4σ

l
k

¯, k “ 2, . . . , N

and
Πk :“ πQk

pxq, Π̃k :“ πQk
px̃q, k “ 2, . . . , N.

We now show that
Πk X Π̃k Ă Π1.
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Indeed, let ℓ be the line through x and x̃, and let y P Πk X Π̃k for some k “ 2, . . . , N . Then, from
the involutivity of the polarity relation, we get ℓ Ă πQk

pyq. Since Q1, Q̃1,Qk come from a dual
pencil of quadrics, this implies, by Lemma 6.9, that the pole of πQk

pyq with respect to Qk must
lie on Π1, i.e.,

y “ πQk
˝ πQk

pyq P Π1.

Thus, we have
Π2 X Π̃2, . . . ,ΠN X Π̃N Ă Π1.

But the intersection of N ´ 1 subspaces of dimension N ´ 2 in an pN ´ 1q-dimensional subspace
generically is a point. Therefore,

N
č

k“2

Πk X Π̃k “

N
č

k“1

Πk “ xl

and, on the other hand,
N
č

k“2

Πk X Π̃k “ Π1 X

N
č

k“2

Π̃k “ x̂l.

Lemma 6.9. Let Q, Q̃,Q1 be three non-degenerate quadrics from a dual pencil of quadrics. Let Π be a
hyperplane and set

x :“ πQpΠq, x̃ :“ πQ̃pΠq.

Let ℓ be the line through x and x̃. Then
πQ1 pΠq P ℓ.

Furthermore, let Π1 be a hyperplane with ℓ Ă Π1. Then

πQ1 pxq P Π.

Proof. Follows from Lemma 6.5.

Discrete confocal coordinate systems, as described in Section 4.2 constitute a special case of this
construction. Indeed, as we have seen in Section 6.3, the system of (Euclidean) confocal quadrics is a
dual pencil, while equation (4.6) describes the polarity of adjacent points from dual lattices with respect
to quadrics from this pencil.

7 Checkerboard incircular nets

7.1 Incircular nets and discrete confocal conics

Incircular nets are defined as congruences of straight lines in the plane with the combinatorics of the
square grid such that each elementary quadrilateral admits an incircle.

Definition 7.1. A discrete net f : Z2 Ą U Ñ R2 is called an incircular net if

(i) The points fi,j with i “ const, respectively j “ const, lie on straight lines, preserving the order.

(ii) Every elementary quadrilateral pfi,j , fi`1,j , fi`1,j`1, fi,j`1q has an incircle.

All lines of an incircular net touch a common conic α (see Figure 7.1). The relation to confocal conics
is revealed by the classical Graves-Chasles theorem:

Theorem 7.2. Suppose that all sides of a complete quadrilateral touch a conic α. Denote pairs of its
opposite vertices by ta, cu, tb,du, and te,fu (see Figure 7.2). Then, the following four properties are
equivalent:
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Figure 7.1. Periodic incircular nets. All lines are tangent to a common conic.

a

b
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

d

e

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

Figure 7.2. Left: Graves–Chasles theorem. Right: A pair of dual discrete nets from incircle centers
of an incircular net.

(i) pabcdq circumscribes a circle,

(ii) Points a and c lie on a conic confocal with α,

(iii) Points b and d lie on a conic confocal with α,

(iv) Points e and f lie on a conic confocal with α.

Remark 7.1. The Graves-Chasles theorem also holds in the hyperbolic and elliptic plane and is best
proven in a projective setting [Iz].

Thus, the vertices of incircular nets lie on conics confocal with α (see Figure 7.2 (left)). Furthermore,
the incircle centers constitute pairs of dual discrete nets (see Figure 7.2 (right)) that possess the following
properties:

Proposition 7.3 (Chapter 1: Theorem A.2, Chapter 2: Proposition 8.2 and Proposition 8.4). Let
x : Z2 Y

`

Z ` 1
2

˘2
Ñ R2 be the pair of dual discrete nets of incircle centers of an incircular net. Then
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Figure 7.3. Periodic confocal checkerboard incircular nets.

(i) x is an orthogonal pair of dual discrete nets from a system of discrete confocal coordinates,

(ii) each of the two subnets of x is circular and conical, i.e., opposite angles in each quadrilateral and
at each vertex sum up to π

2 ,

(iii) each of the two subnets of x is a discrete Koenigs net.

7.2 Checkerboard incircular nets

Planar Laguerre geometry is the geometry of oriented lines, oriented circles, and their oriented contact
in the Euclidean plane. A projective model of Laguerre geometry is given by the Blaschke cylinder, a
degenerate quadric Z Ă RP3 of signature p2, 1, 1q. Every point on Z corresponds to an oriented line,
while every plane constitutes an oriented circle.

Due to the combinatorial structure of incircular nets, their lines and circles may not be consistently
oriented in such a manner that they are in oriented contact. However, checkerboard incircular nets, which
constitute the Laguerre geometric generalization of incircular nets exhibit this feature. Once again, the
(oriented) lines of a checkerboard incircular net have the combinatorics of the square grid, but it is only
required that every second quadrilateral (in a checkerboard manner) admits an incircle (see Figure 7.3).

All lines of a checkerboard incircular net are tangent to a hypercycle (see Figure 7.4 and Chapter 3:
Theorem 3.5), which are curves corresponding to the intersection of the Blaschke cylinder with another
quadric. Thus, hypercycles are in correspondence to base curves of pencils of quadrics in RP3 that contain
the Blaschke cylinder.

Confocal checkerboard incircular nets constitute an important subclass of checkerboard incircular nets
and are characterized by their lines being tangent to a conic as in the case of incircular nets (see Figure 7.3).
The corresponding base curve of the hypercycle can be parametrized by elliptic functions, which in turn
leads to explicit parametrizations for confocal checkerboard incircular nets, and all checkerboard incircular
nets that are obtained under Laguerre transformation of those (see Chapter 3: Section 5).

Different generalizations of checkerboard incircular nets to three dimensions are described in [ABST].
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Figure 7.4. Left: All lines of a checkerboard incircular net are tangent to a common hypercycle.
Right: The corresponding base curve as the intersection of the Blaschke cylinder with another
quadric.

8 Conclusion

In this thesis we introduce discrete confocal coordinate systems, which are characterized, as in the smooth
case, by factorizability and orthogonality.

The main open questions are whether the theory of pairs of discrete nets and in particular the theory
of discrete orthogonal coordinate systems using the novel discrete orthogonality constraint can be further
extended.

§ Discrete surfaces with planar curvature lines employing the novel orthogonality constraint, in particu-
lar discrete Dupin cyclides, as well as discrete focal conics are the subject of a forthcoming publication.
Are there more interesting examples making use of the novel orthogonality constraint?

§ Is there a sensible definition for a discrete first and second fundamental form and corresponding
principal curvatures for pairs of discrete nets? The discrete orthogonality corresponds to a diagonal
first fundamental form, while the discrete Lamé coefficients provide the remaining coefficients. Con-
jugacy (planar faces) corresponds to a diagonal second fundamental form, while certain additional
factorization properties of discrete confocal coordinates suggest the form of the remaining coefficients.

§ Is there a geometric characterization of the discrete isothermicity condition for pairs of discrete nets,
e.g., a discrete Christoffel dual, and is there a corresponding notion of discrete Koenigs nets?

§ Is the novel discrete orthogonality constraint applicable to a discrete theory of separability in Laplace-
type equations?
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Figure 0.1. Left: three quadrics of different signature from a family of confocal quadrics in R3.
Right: the corresponding three discrete quadrics from a family introduced in the present paper.

1 Introduction

Confocal quadrics in RN belong to the favorite objects of classical mathematics, due to their beautiful
geometric properties and numerous relations and applications to various branches of mathematics. To
mention just a few well-known examples:

§ Optical properties of quadrics and their confocal families were discovered by the ancient Greeks
and continued to fascinate mathematicians for many centuries, culminating in the famous Ivory and
Chasles theorems from 19th century given a modern interpretation by Arnold [Ar].

§ Dynamical systems: integrability of geodesic flows on quadrics (discovered by Jacobi) and of billiards
in quadrics was given a far reaching generalization, with applications to the spectral theory, by Moser
[Mo].

§ Gravitational properties of ellipsoids were studied in detail starting with Newton and Ivory, see [Ar,
Appendix 15], [FT, Part 8], and are based to a large extent on the geometric properties of confocal
quadrics.

§ Quadrics in general and confocal systems of quadrics in particular serve as favorite objects in dif-
ferential geometry. They deliver a non-trivial example of isothermic surfaces which form one of the
most interesting classes of “integrable” surfaces, that is, surfaces described by integrable differential
equations and possessing a rich theory of transformations with remarkable permutability properties.

§ Confocal quadrics lie at the heart of the system of confocal coordinates which allows for separation of
variables in the Laplace operator. As such, they support a rich theory of special functions including
Lamé functions and their generalizations [EMOT].

In the present paper, we are interested in a discretization of a system of confocal quadrics, or, what
is the same, of a system of confocal coordinates in RN . In general, coordinate systems are instances of
smooth nets, that is, maps RM Ą U Ñ RN . Discretizing them consists of finding suitable approximating
discrete nets, that is, maps ZM Ą U Ñ RN . According to the philosophy of structure preserving
discretization [BS], it is crucial not to follow the path of a straightforward discretization of differential
equations, but rather to discretize a well chosen collection of essential geometric properties. In the case
of confocal quadrics, the choice of properties to be preserved in the course of discretization becomes
especially difficult, due to the above-mentioned abundance of complementary geometric and analytic
features.
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A number of attempts to discretize quadrics in general and confocal systems of quadrics in particular
are available in the literature. In [Ts] a discretization of the defining property of a conic as an image
of a circle under a projective transformation is considered. Since a natural discretization of a circle
is a regular polygon, one ends up with a class of discrete curves which are projective images of regular
polygons. More sophisticated geometric constructions are developed in [AB] and lead to a very interesting
class of quadrilateral nets in a plane and in space, with all quadrilaterals possessing an incircle, resp. all
hexahedra possessing an inscribed sphere. The rich geometric content of these constructions still waits
for an adequate analytic description.

Our approach here is based on a discretization of the classical Euler-Poisson-Darboux equation which
has been introduced in [KS2] in the context of discretization of semi-Hamiltonian systems of hydrody-
namic type. The discrete Euler-Poisson-Darboux equation is integrable in the sense of multi-dimensional
consistency [BS], which, in turn, gives rise to Darboux-type transformations with remarkable permutabil-
ity properties. As we will demonstrate, the integrable nature of the discrete Euler-Poisson-Darboux
equation is reflected in the preservation of a suite of algebraic and geometric properties of the confocal
coordinate systems.

Our proposal takes as a departure point two properties of the confocal coordinates: they are separable,
and all two-dimensional coordinate subnets are isothermic surfaces (which is equivalent to being conjugate
nets with equal Laplace invariants and with orthogonal coordinate curves). We propose here a novel
concept of discrete isothermic nets. Remarkably, the incircular nets of [AB] turn out to be another
instance of this geometry, see Appendix A. Discretization of confocal coordinate systems based on more
general curvature line parametrizations will be addressed in [BSST2].

2 Euler-Poisson-Darboux equation

Definition 2.1. Let U Ă RM be open and connected. We say that a net

x : U Ñ RN , pu1, . . . , uM q ÞÑ px1, . . . , xN q

satisfies the Euler-Poisson-Darboux system if all its two-dimensional subnets satisfy the (vector) Euler-
Poisson-Darboux equation with the same parameter γ:

B2x

BuiBuj
“

γ

ui ´ uj

ˆ

Bx

Buj
´

Bx

Bui

˙

(EPDγ)

for all i, j P t1, . . . ,Mu, i ‰ j.

For any s distinct indices i1, . . . , is P t1, . . . ,Mu, we write

Ui1...is :“ tpui1 , . . . , uisq P Rs | pu1, . . . , uM q P Uu .

Definition 2.2. A two-dimensional subnet of a net x : RM Ą U Ñ RN corresponding to the coordinate
directions i, j P t1, . . . ,Mu, i ‰ j, is called a Koenigs net, or, classically, a conjugate net with equal
Laplace invariants, if there exists a function ν : Uij Ñ R` such that

B2x

BuiBuj
“

1

ν

Bν

Buj

Bx

Bui
`

1

ν

Bν

Bui

Bx

Buj
. (2.1)

Proposition 2.3. Let x : RM Ą U Ñ RN be a net satisfying the Euler-Poisson-Darboux system (EPDγ).
Then all two-dimensional subnets of x are Koenigs nets.

Proof. The function νpui, ujq “ |ui ´ uj |γ solves

1

ν

Bν

Bui
“

γ

ui ´ uj
,

1

ν

Bν

Buj
“

γ

uj ´ ui
,

thus the Euler-Poisson-Darboux system (EPDγ) is of the Koenigs form (2.1).

Remark 2.1. Eisenhart classified conjugate nets in R3 with all two-dimensional coordinate surfaces being
Koenigs nets [Ei1]. The generic case is described by solutions of the Euler-Poisson-Darboux system
(EPDγ) with an arbitrary coefficient γ.
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3 Confocal coordinates

For given a1 ą a2 ą ¨ ¨ ¨ ą aN ą 0, we consider the one-parameter family of confocal quadrics in RN

given by

Qλ “

#

x “ px1, . . . , xN q P RN :
N
ÿ

k“1

x2k
ak ` λ

“ 1

+

, λ P R. (3.1)

Note that the quadrics of this family are centered at the origin and have the principal axes aligned along
the coordinate directions. For a given point x “ px1, . . . , xN q P RN with x1x2 . . . xN ‰ 0, equation
řN

k“1 x
2
k{pak ` λq “ 1 is, after clearing the denominators, a polynomial equation of degree N in λ, with

N real roots u1, . . . , uN lying in the intervals

´a1 ă u1 ă ´a2 ă u2 ă ¨ ¨ ¨ ă ´aN ă uN ,

so that
N
ÿ

k“1

x2k
λ` ak

´ 1 “ ´

śN
m“1pλ´ umq

śN
m“1pλ` amq

. (3.2)

These N roots correspond to the N confocal quadrics of the family (3.1) that intersect at the point
x “ px1, . . . , xN q:

N
ÿ

k“1

x2k
ak ` ui

“ 1, i “ 1, . . . , N ô x P

N
č

i“1

Qui . (3.3)

Each of the quadrics Qui
is of a different signature. Evaluating the residue of the right-hand side of (3.2)

at λ “ ´ak, one can easily express x2k through u1, . . . , uN :

x2k “

śN
i“1pui ` akq

ś

i‰kpak ´ aiq
, k “ 1, . . . , N. (3.4)

Thus, for each point px1, . . . , xN q P RN with x1x2 . . . xN ‰ 0, there is exactly one solution pu1, . . . , uN q P

U of (3.4), where

U “
␣

pu1, . . . , uN q P RN | ´ a1 ă u1 ă ´a2 ă u2 ă . . . ă ´aN ă uN
(

.

On the other hand, for each pu1, . . . , uN q P U there are exactly 2N solutions px1, . . . , xN q P RN , which
are mirror symmetric with respect to the coordinate hyperplanes. In what follows, when we refer to a
solution of (3.4), we always mean the solution with values in

RN
` “

␣

px1, . . . , xN q P RN | x1 ą 0, . . . , xN ą 0
(

.

Thus, we are dealing with a parametrization of the first hyperoctant of RN , x : U Q pu1, . . . , uN q ÞÑ

px1, . . . , xN q P RN
` , given by

xk “

śk´1
i“1

a

´pui ` akq
śN

i“k

?
ui ` ak

śk´1
i“1

?
ai ´ ak

śN
i“k`1

?
ak ´ ai

, k “ 1, . . . , N, (3.5)

such that the coordinate hyperplanes ui “ const are mapped to the respective quadrics given by (3.3).
The coordinates pu1, . . . , uN q are called confocal coordinates (or elliptic coordinates, following Jacobi [Ja,
Vorlesung 26]).

3.1 Confocal coordinates and isothermic surfaces

Proposition 3.1. The net x : U Ñ RN
` given by (3.5) satisfies the Euler-Poisson-Darboux system

(EPDγ) with γ “ 1
2 . As a consequence, all two-dimensional subnets of x are Koenigs nets.
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Proof. The partial derivatives of (3.5) satisfy

Bxk
Bui

“
1

2

xk
pak ` uiq

. (3.6)

From this we compute the second order partial derivatives for i ‰ j:

B2xk
BuiBuj

“
1

2pak ` uiq

Bxk
Buj

“
xk

4pak ` uiqpak ` ujq

“
xk

4pui ´ ujq

ˆ

1

ak ` uj
´

1

ak ` ui

˙

“
1

2pui ´ ujq

ˆ

Bxk
Buj

´
Bxk
Bui

˙

.

Proposition 3.2. The net x : U Ñ RN
` given by (3.5) is orthogonal, and thus gives a curvature line

parametrization of any of its two-dimensional coordinate surfaces.

Proof. With the help of (3.6), we compute, for i ‰ j, the scalar product

B

Bx

Bui
,

Bx

Buj

F

“
1

4

N
ÿ

k“1

x2k
pak ` uiqpak ` ujq

“
1

4pui ´ ujq

N
ÿ

k“1

ˆ

x2k
ak ` uj

´
x2k

ak ` ui

˙

“ 0,

since xpu1, . . . , uN q satisfies (3.3) for ui and for uj .

We recall the following classical definition.

Definition 3.3. A curvature line parametrized surface x : Uij Ñ RN is called an isothermic surface
if its first fundamental form is conformal, possibly upon a reparametrization of independent variables
ui ÞÑ φipuiq, uj ÞÑ φjpujq, that is, if

|Bx{Bui|
2

|Bx{Buj |2
“
αipuiq

αjpujq

at every point pui, ujq P Uij.

In other words, isothermic surfaces are characterized by the relations B2x{BuiBuj P spanpBx{Bui, Bx{Bujq

and
B

Bx

Bui
,

Bx

Buj

F

“ 0,

ˇ

ˇ

ˇ

ˇ

Bx

Bui

ˇ

ˇ

ˇ

ˇ

2

“ αipuiqs
2,

ˇ

ˇ

ˇ

ˇ

Bx

Buj

ˇ

ˇ

ˇ

ˇ

2

“ αjpujqs2, (3.7)

with a conformal metric coefficient s : Uij Ñ R` and with the functions αi, αj , each depending on the
respective variable ui, uj only. These conditions may be equivalently represented as

B2x

BuiBuj
“

1

s

Bs

Buj

Bx

Bui
`

1

s

Bs

Bui

Bx

Buj
,

B

Bx

Bui
,

Bx

Buj

F

“ 0.

Comparison with (2.1) shows that isothermic surfaces are nothing but orthogonal Koenigs nets.
Thus, Propositions 3.1, 3.2 immediately imply the first statement of the following proposition.

Proposition 3.4. All two-dimensional coordinate surfaces x : Uij Ñ RN (for fixed values of um, m ‰ i, j)
of a confocal coordinate system are isothermic. Specifically, one has (3.7) with

s “ spui, ujq “ |ui ´ uj |1{2, (3.8)

αipuiq

αjpujq
“ ´

ś

m‰i,jpui ´ umq
śN

m“1pui ` amq
¨

śN
m“1puj ` amq

ś

m‰i,jpuj ´ umq
. (3.9)
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Proof. Differentiate both sides of (3.2) with respect to ui. Taking into account (3.6), we find:

N
ÿ

k“1

x2k
pui ` akqpλ` akq

“

ś

m‰ipλ´ umq
śN

m“1pλ` amq
.

Setting λ “ ui, we finally arrive at
ˇ

ˇ

ˇ

ˇ

Bx

Bui

ˇ

ˇ

ˇ

ˇ

2

“

N
ÿ

k“1

ˆ

Bxk
Bui

˙2

“
1

4

N
ÿ

k“1

x2k
pui ` akq2

“
1

4

ś

m‰ipui ´ umq
śN

m“1pui ` amq
. (3.10)

This proves (3.7) with (3.8), (3.9).

Remark 3.1. Darboux classified orthogonal nets in R3 whose two-dimensional coordinate surfaces are
isothermic [Da2, Livre II, Chap. III–V] . He found several families, all satisfying the Euler-Poisson-
Darboux system with coefficient γ “ ˘ 1

2 ,´1, or ´2. The family corresponding to γ “ 1
2 consists of

confocal cyclides and includes the case of confocal quadrics (or their Möbius images).

3.2 Confocal coordinates and separability

From (3.5) we observe that confocal coordinates are described by very special (separable) solutions of
Euler-Poisson-Darboux equations (EPDγ). We will now show that the separability property is almost
characteristic for confocal coordinates.

Proposition 3.5. A separable function x : RN Ą U Ñ R,

xpu1, . . . , uN q “

N
ź

i“1

ρipuiq (3.11)

is a solution of the Euler-Poisson-Darboux system (EPDγ) iff the functions ρi : Ui Ñ R, i “ 1, . . . , N ,
satisfy

ρ1
ipuiq

ρipuiq
“

γ

c` ui
(3.12)

for some c P R and for all ui P Ui.

Proof. Computing the derivatives of (3.11) for i “ 1, . . . , N, we obtain:

Bx

Bui
“ x ¨

ρ1
ipuiq

ρipuiq
,

and for the second derivatives (i ‰ j):

B2x

BuiBuj
“ x ¨

ρ1
ipuiq

ρipuiq

ρ1
jpujq

ρjpujq
. (3.13)

On the other hand, x satisfies the Euler-Poisson-Darboux system (EPDγ), which implies

B2x

BuiBuj
“

γ

ui ´ uj

ˆ

ρ1
jpujq

ρjpujq
´
ρ1
ipuiq

ρipuiq

˙

x. (3.14)

From (3.13) and (3.14) we obtain

ui ´ uj “ γ

˜

ρipuiq

ρ1
ipuiq

´
ρjpujq

ρ1
jpujq

¸

,

or
γ
ρipuiq

ρ1
ipuiq

´ ui “ γ
ρjpujq

ρ1
jpujq

´ uj

for all i, j “ 1, ..., N , i ‰ j, and pui, ujq P Uij . Thus, both the left-hand side and the right-hand side of
the last equation do not depend on ui, uj . So, there exists a c P R such that (3.12) is satisfied.
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For γ “ 1
2 general solutions of (3.12) are given, up to constant factors, by

ρipui, cq “
?
ui ` c for ui ą ´c,

respectively by

ρipui, cq “
a

´pui ` cq for ui ă ´c.

A separable solution of the Euler-Poisson-Darboux system (EPDγ) with γ “ 1
2 finally takes the form

xpu1, . . . , uN q “ D
N
ź

i“1

ρipui, cq

with some c P R, and with a constant D P R, which is the product of all the constant factors of ρipui, cq
mentioned above.

Proposition 3.6. Let a1 ą ¨ ¨ ¨ ą aN and set

U “
␣

pu1, . . . , uN q P RN | ´ a1 ă u1 ă ´a2 ă u2 ă ¨ ¨ ¨ ă ´aN ă uN
(

.

a) Let xk : U Ñ R`, k “ 1, . . . , N , be N independent separable solutions of the Euler-Poisson-Darboux
system (EPDγ) with γ “ 1

2 defined on U and satisfying there the following boundary conditions:

lim
ukŒ p´akq

xkpu1, . . . , uN q “ 0 for k “ 1, . . . , N, (3.15)

lim
uk´1Õ p´akq

xkpu1, . . . , uN q “ 0 for k “ 2, . . . , N. (3.16)

Then

xkpu1, . . . , uN q “ Dk

N
ź

i“1

ρipui, akq, k “ 1, . . . , N, (3.17)

with some D1, . . . , DN ą 0 and with

ρipui, akq “

$

&

%

?
ui ` ak for i ě k,

a

´pui ` akq for i ă k.

Thus, the net x “ px1, . . . , xN q : U Ñ RN
` coincides with the confocal coordinates (3.5) on the positive

hyperoctant, up to independent scaling along the coordinate axes px1, . . . , xN q ÞÑ pC1x1, . . . , CNxN q

with some C1, . . . , CN ą 0.

b) The choice of the constants D1, . . . , DN ą 0 that specifies the system of confocal coordinates (3.5)
among the separable solutions (3.17), namely

D´2
k “

ź

iăk

pai ´ akq
ź

iąk

pak ´ aiq,

is the unique scaling (up to a common factor) such that the parameter curves are pairwise orthogonal.

Proof. a) We have

xkpu1, . . . , uN q “ Dk ¨ ρ1pu1, ckq ¨ . . . ¨ ρN puN , ckq, k “ 1, . . . , N.

Boundary conditions (3.15), (3.16) yield that the constants are given by ck “ ak, and that the solutions
are actually given by (3.17). Formulas (3.5) are now equivalent to a specific choice of the constants Dk.

b) From (3.6) we compute:

B

Bx

Bui
,

Bx

Buj

F

“
1

4

N
ÿ

k“1

x2k
pui ` akqpuj ` akq

“
1

4

N
ÿ

k“1

p´1qk´1D2
k

ź

l‰i,j

pul ` akq. (3.18)
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We have:
ź

l‰i,j

pul ` akq “

N´2
ÿ

m“0

p
pN´2´mq

ij puqamk ,

where ppN´2´mq

ij puq is an elementary symmetric polynomial of degree N ´ 2 ´m in ul, l ‰ i, j. Thus,

B

Bx

Bui
,

Bx

Buj

F

“
1

4

N´2
ÿ

m“0

˜

N
ÿ

k“1

p´1qk´1amk D
2
k

¸

p
pN´2´mq

ij puq.

Since the polynomials ppN´2´mq

ij puq are independent on U , the latter expression is equal to zero if and
only if

N
ÿ

k“1

p´1qk´1amk D
2
k “ 0, m “ 0, . . . , N ´ 2.

This system of N ´ 1 linear homogeneous equations for the N unknowns D2
k does not depend on i, j.

Supplying it by the non-homogeneous equation
řN

k“1p´1qk´1aN´1
k D2

k “ 1, we find the unique solution of
the resulting system as quotients of Vandermonde determinants, or finally p´1qk´1D2

k “ 1{
ś

i‰kpak ´

aiq.

Remark 3.2. The boundary conditions ensure that the 2N ´ 1 faces of the boundary of U are mapped
into coordinate hyperplanes. Their images are degenerate quadrics of the confocal family (3.1).

4 Discrete Koenigs nets

For a function f on ZM we define the difference operator in the standard way:

∆ifpnq “ fpn ` eiq ´ fpnq

for all n P ZM , where ei is the i-th coordinate vector of ZM .

Definition 4.1. A two-dimensional discrete net x : ZM Ą Uij Ñ RN corresponding to the coordinate
directions i, j P t1, . . . ,Mu, i ‰ j, is called a discrete Koenigs net if there exists a function ν : Uij Ñ R`

such that
∆i∆jx “

νpjqνpijq ´ ννpiq

νpνpiq ` νpjqq
∆ix `

νpiqνpijq ´ ννpjq

νpνpiq ` νpjqq
∆jx. (4.1)

Here we use index notation to denote shifts of ν:

νpiqpnq :“ νpn ` eiq, νpijqpnq :“ νpn ` ei ` ejq, n P ZM .

The geometric meaning of this algebraic definition is as follows. Like in the continuous case, discrete
Königs nets constitute a subclass of discrete conjugate nets (Q-nets), in the sense that all two-dimensional
subnets have planar faces. See [BS] for more information on Q-nets, as well as on geometric properties
of discrete Koenigs nets. Consider an elementary planar quadrilateral px,xpiq,xpijq,xpjqq of a Q-net
governed by the discrete Darboux equation

∆i∆jx “ A∆ix `B∆jx. (4.2)

Let M be the intersection point of its diagonals rx,xpijqs and rxpiq,xpjqs. Then one can easily compute
that M divides the corresponding diagonals in the following relations:

ÝÝÝÝÑ
xpiqM :

ÝÝÝÝÑ
Mxpjq “ pB ` 1q : pA` 1q,

ÝÝÑ
xM :

ÝÝÝÝÑ
Mxpijq “ 1 : pA`B ` 1q.

A Q-net is called a Koenigs net, if there is a positive function ν defined at the vertices of the net such
that

ÝÝÝÝÑ
xpiqM :

ÝÝÝÝÑ
Mxpjq “ νpiq : νpjq,

ÝÝÑ
xM :

ÝÝÝÝÑ
Mxpijq “ ν : νpijq.
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One can show [BS] that this happens if and only if the intersection points of the diagonals of four adjacent
quadrilaterals are coplanar. The function ν should satisfy

pA` 1qνpiq “ pB ` 1qνpjq, νpijq “ pA`B ` 1qν. (4.3)

This is clearly equivalent to

A “
νpjqνpijq ´ ννpiq

νpνpiq ` νpjqq
, B “

νpiqνpijq ´ ννpjq

νpνpiq ` νpjqq
.

The pair of linear equations (4.3) is compatible if and only if the following nonlinear equation is satisfied
for the coefficients A,B associated with four adjacent quadrilaterals:

Apijq ` 1

Bpijq ` 1
“

pApjq `Bpjq ` 1q

pApiq `Bpiq ` 1q

pA` 1q

pB ` 1q
. (4.4)

If this relation for the coefficients A,B of the discrete Darboux equation (4.2) holds true everywhere,
then the linear equations (4.3) determine a function ν uniquely, as soon as initial data are prescribed,
consisting, for instance, of the values of ν at two neighboring vertices. The associated discrete Darboux
equation is then of Koenigs type (4.1).

5 Discrete Euler-Poisson-Darboux equation

Definition 5.1. Let U Ă ZM . We say that a discrete net

x : U Ñ RN , pn1, . . . , nM q ÞÑ px1, . . . , xN q

satisfies the discrete Euler-Darboux system if all of its two-dimensional subnets satisfy the (vector) dis-
crete Euler-Poisson-Darboux equation with the same parameter γ:

∆i∆jx “
γ

ni ` εi ´ nj ´ εj
p∆jx ´ ∆ixq (dEPDγ)

for all i, j P t1, . . . ,Mu, i ‰ j, and some γ P R, ε1, . . . , εM P R.

Remark 5.1. This discretization of the Euler-Poisson-Darboux system was introduced by Konopelchenko
and Schief [KS2].

Proposition 5.2. Let x : ZM Ą U Ñ RN be a discrete net satisfying the discrete Euler-Poisson-Darboux
system (dEPDγ). Then all two-dimensional subnets of x are discrete Koenigs nets.

Proof. It is straightforward to verify that the coefficients

A “ ´B “
γ

ni ` εi ´ nj ´ εj

indeed obey the Koenigs condition (4.4).

We now show that for a discrete net satisfying the discrete Euler-Poisson-Darboux equation (dEPDγ),
the function ν can be found explicitly. For this aim, use the ansatz

νpni, njq “ µpni ´ njq,

so that νpijq “ νpni ` 1, nj ` 1q “ νpni, njq “ ν. Under this ansatz, equation (4.1) simplifies to

∆i∆jx “
νpjq ´ νpiq

νpiq ` νpjq

∆ix `
νpiq ´ νpjq

νpiq ` νpjq

∆jx.
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Comparing with (dEPDγ) we obtain

νpiq ´ νpjq

νpiq ` νpjq

“
γ

ni ` εi ´ nj ´ εj

ô νpiq

ˆ

1 ´
γ

ni ` εi ´ nj ´ εj

˙

“ νpjq

ˆ

1 `
γ

ni ` εi ´ nj ´ εj

˙

ô νpni ` 1, njq “ νpni, nj ` 1q
ni ` εi ´ nj ´ εj ` γ

ni ` εi ´ nj ´ εj ´ γ
.

Thus, the function µ should satisfy

µpm` 1q “ µpm´ 1q
m` εi ´ εj ` γ

m` εi ´ εj ´ γ
.

This equation is easily solved:

µpmq “
Γ
`

1
2 pm` εi ´ εj ` γ ` 1q

˘

Γ
`

1
2 pm` εi ´ εj ´ γ ` 1q

˘bpmq,

where Γ denotes the gamma function and b is any function of period 2. It is recalled that Γpx`1q “ xΓpxq.

6 Discrete confocal quadrics

We have seen in the continuous case (Proposition 3.6) that confocal quadrics are described, up to a
componentwise scaling, by separable solutions of the Euler-Poisson-Darboux system (EPDγ) with γ “ 1

2 .
It is therefore natural to consider separable solutions of the discrete Euler-Poisson-Darboux system.

6.1 Separability

Proposition 6.1. [KS2] A separable function x : ZN Ą U Ñ R,

xpn1, . . . , nN q “ ρ1pn1q ¨ ¨ ¨ ρN pnN q, (6.1)

is a solution of the discrete Euler-Poisson-Darboux system (dEPDγ) iff the functions ρi : Ui Ñ R,
i “ 1, . . . , N , satisfy

∆ρipniq “
γρipniq

ni ` εi ` c
, (6.2)

or, equivalently,
ρipni ` 1q “ ρipniq

ni ` εi ` c` γ

ni ` εi ` c
(6.3)

for some c P R and for all ni P Ui.

Proof. Substituting (6.1) into (dEPDγ) we obtain
`

ρipni ` 1q ´ ρipniq
˘`

ρjpnj ` 1q ´ ρjpnjq
˘

“
γ

ni ` εi ´ nj ´ εj

´

ρipniq
`

ρjpnj ` 1q ´ ρjpnjq
˘

´ ρjpnjq
`

ρipni ` 1q ´ ρipniq
˘

¯

,

which is equivalent to

ni ` εi ´ nj ´ εj “
γρipniq

ρipni ` 1q ´ ρipniq
´

γρjpnjq

ρjpnj ` 1q ´ ρjpnjq
.

So, the expression
γρipniq

ρipni ` 1q ´ ρipniq
´ pni ` εiq “ c

depends neither on ni nor on nj , i.e., is a constant. This is equivalent to (6.2) and thus to (6.3).
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If the constants γ, c and εi are such that neither εi ` c nor εi ` c` γ is an integer, then the general
solution of (6.3) is given by

ρipni, εi ` cq “ di
Γpni ` εi ` c` γq

Γpni ` εi ` cq
“ d̃i

Γp´ni ´ εi ´ c` 1q

Γp´ni ´ εi ´ c´ γ ` 1q

for all ni P Z with some constants di, d̃i P R.
In what follows, we will use the Pochhammer symbol puqγ with a not necessarily integer index γ:

puqγ “
Γpu` γq

Γpuq
, u, γ ą 0.

Because of the asymptotics puqγ „ uγ as u Ñ `8, which can also be put as

lim
εÑ0

εγ
´u

ε

¯

γ
“ uγ ,

the function puqγ has been considered as a discretization of uγ in [GGR, p. 47]. With this notation, the
above formulas take the form

ρipni, εi ` cq “ dipni ` εi ` cqγ “ d̃ip´ni ´ εi ´ c´ γ ` 1qγ .

Definition 6.2. The discrete square root function is defined by

puq1{2 “
Γpu` 1

2 q

Γpuq
.

To achieve boundary conditions similar to (3.15) and (3.16), we will be more interested in the cases
where solutions are only defined on an integer half-axis, and vanish at its boundary point. For γ “ 1

2 this
is the case if:

§ either εi ` c P Z, and then the general solution to the right of ´c´ εi is given by multiples of

ρipni, εi ` cq “ pni ` εi ` cq1{2 for ni ě ´c´ εi, (6.4)

§ or εi ` c` 1
2 P Z, and then the general solution to the left of ´c´ ε` 1

2 is given by multiples of

ρipni, εi ` cq “ p´ni ´ εi ´ c` 1
2 q

1{2
for ni ď ´c´ εi `

1

2
. (6.5)

In terms of discrete square roots, the expressions for the separable solutions of the discrete Euler-Poisson-
Darboux system for γ “ 1

2 now resemble their classical counterparts.

Proposition 6.3. Let α1, . . . , αN P Z with α1 ą α2 ą ¨ ¨ ¨ ą αN , and set

U “
␣

pn1, . . . , nN q P ZN | ´ α1 ď n1 ď ´α2 ď n2 ď ¨ ¨ ¨ ď ´αN ď nN
(

.

Let xk : U Ñ R`, k “ 1, . . . , N , be N independent separable solutions of the discrete Euler-Poisson-
Darboux system (dEPDγ) with γ “ 1

2 defined on U and satisfying the following boundary conditions:

xk|nk“´αk
“ 0 for k “ 1, . . . , N, (6.6)

xk|nk´1“´αk
“ 0 for k “ 2, . . . , N. (6.7)

Then the shifts εi of the variables ni are given by

εi ´ εj “
j ´ i

2
for i, j “ 1, . . . , N, (6.8)

and the solutions are expressed by

xkpn1, . . . , nN q “ Dk

N
ź

i“1

ρ
pkq

i pniq, (6.9)

for some constants D1, . . . , DN ą 0 and

ρ
pkq

i pniq “

$

’

&

’

%

pni ` αk ` k´i
2 q

1{2
for i ě k,

p´ni ´ αk ´ k´i
2 ` 1

2 q
1{2

for i ă k.
(6.10)
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Proof. Separable solutions of (dEPDγ) with γ “ 1
2 are of the general form (6.9), where each ρ

pkq
i pniq “

ρipni, εi ` ckq is defined by one of the formulas (6.4), (6.5), and all multiplicative constants are collected
in D1, . . . , DN ą 0. We have to determine suitable constants εi and ck.

The boundary conditions (6.6) and (6.7) imply that xk is defined for nk ě ´αk, while vanishing for
nk “ ´αk, and also that xk is defined for nk´1 ď ´αk, while vanishing for nk´1 “ ´αk. This shows that

αk “ ck ` εk “ ck ` εk´1 ´
1

2
.

We obtain εk ´ εk´1 “ ´ 1
2 , and equation (6.8) follows. Together with ck ` εk “ ak this implies that

ck ` εi “ αk `
k ´ i

2
. (6.11)

It remains to substitute (6.11) into (6.4) and (6.5).

6.2 Orthogonality

The remaining scaling freedom (multiplicative constants Dk) of the components xk as given by (6.9) is
the same as in the continuous case. As we have seen in Proposition 3.6, in the continuous case, one can
fix the scaling by imposing the orthogonality condition pBx{Buiq K pBx{Bujq. In the discrete case, it
turns out to be possible to introduce a notion of orthogonality, which will allow us to fix the scaling in a
similar way.

Definition 6.4. Let U Ă ZN , U˚ Ă pZN q
˚, where pZN q

˚
“ pZ` 1

2 q
N . Consider a function

x : U Y U˚ Ñ RN ,

such that both restrictions xpUq and xpU˚q are Q-nets. We say that the discrete net x is orthogonal if
each edge of xpUq is orthogonal to the dual facet of xpU˚q.

∆jxpn´ ej `
1
2fq

∆ixpnq

xpnq

xpn´ ej `
1
2fq

Figure 6.1. Discrete orthogonality for a system of Q-nets defined on a square lattice and on its
dual.

The (space of the) facet of xpU˚q dual to the edge rxpnq,xpn` eiqs of xpUq is spanned by the N ´ 1

edges rxpn´ej`
1
2fq,xpn` 1

2fqs with j ‰ i, where f “ p1, . . . , 1q. Therefore, the orthogonality condition
in the sense of Definition 6.4 reads:

@

∆ixpnq,∆jxpn´ ej `
1
2fq

D

“ 0 (6.12)

for all i ‰ j and n P ZN . From this it is easy to see that xpUq and xpU˚q actually play symmetric roles
in Definition 6.4 (that is, each edge of xpU˚q is orthogonal to the dual facet of xpUq, compare Fig. 6.1).

Turning to separable solutions of the discrete Euler-Poisson-Darboux system (dEPDγ) with γ “ 1
2 ,

we extend the function x “ px1, . . . , xN q defined in Proposition 6.3 to a bigger domain:

x : U Y U˚ Ñ RN
` ,
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where
U˚ “

!

pn1, . . . , nN q P pZN q
˚

| ´ α1 ď n1 ď ´α2 ď n2 ď ¨ ¨ ¨ ď ´αN ď nN

)

.

It is emphasized that the lattices xpUq and xpU˚q are on equal footing except that the boundary conditions
do not apply to xpU˚q.

Proposition 6.5. Let α1, . . . , αN P Z with α1 ą α2 ą ¨ ¨ ¨ ą αN . Then the net x : U YU˚ Ñ RN
` defined

by (6.9) and (6.10) is orthogonal if and only if

D´2
k “ C

ź

iăk

pαi ´ αk ` i´k
2 q

ź

iąk

pαk ´ αi ` k´i
2 q (6.13)

with some C P R`.

Proof. We will use the following formulas for the “discrete derivative” of the “discrete square root function”
puq1{2 “ Γpu` 1

2 q{Γpuq, which are immediate consequences of the identity Γpu` 1q “ uΓpuq:

∆
`

puq1{2

˘

“
1

2pu` 1
2 q

1{2

, ∆
`

p´uq1{2

˘

“ ´
1

2p´u´ 1
2 q

1{2

, (6.14)

where ∆fpuq “ fpu ` 1q ´ fpuq. We also note that the “discrete squares” of discrete square roots obey
the relations

puq1{2pu` 1
2 q

1{2
“ u, p´uq1{2p´u´ 1

2 q
1{2

“ ´u´ 1
2 . (6.15)

Substituting (6.11) and γ “ 1
2 into (6.2), we obtain:

∆ρ
pkq

i pniq “
ρ

pkq

i pniq

2pni ` αk ` k´i
2 q

. (6.16)

Upon using property (6.15) and expressions (6.10), we arrive at

ρ
pkq

i pniqρ
pkq

i pni ` 1
2 q “

$

&

%

ni ` αk ` k´i
2 , i ě k,

´pni ` αk ` k´i
2 q, i ă k.

(6.17)

We use (6.9), (6.16), (6.17) to compute the left-hand side of equation (6.12):

@

∆ixpnq,∆jxpn ´ ej ` 1
2fq

D

“
1

4

N
ÿ

k“1

p´1qk´1D2
k

ź

l‰i,j

ˆ

nl ` αk `
k ´ l

2

˙

.

Observe that this literally coincides with the analogous expression in the continuous case (3.18), if we set

ak “ αk `
k

2
, ul “ nl ´

l

2
.

Therefore, the proof of part b) of Proposition 3.6 can be literally repeated, leading to the condition
D´2

k “ C
ś

iăkpai ´ akq
ś

iąkpak ´ aiq, which coincides with (6.13).

6.3 Definition of discrete confocal coordinates

Definition 6.6. Let α1, . . . , αN P Z with α1 ą α2 ą ¨ ¨ ¨ ą αN . Discrete confocal coordinates are given
by the discrete net x : U Y U˚ Ñ RN

` defined by

xkpnq “ Dk

k´1
ź

i“1

p´ni ´ αk ´ k´i
2 ` 1

2 q
1{2

N
ź

i“k

pni ` αk ` k´i
2 q

1{2

with

D´1
k “

k´1
ź

i“1

b

αi ´ αk ` i´k
2

N
ź

i“k`1

b

αk ´ αi ` k´i
2 .
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The characteristic properties of this net can be summarized as follows.

(i) Each two-dimensional subnet of xpUq and of xpU˚q satisfies (dEPDγ) with γ “ 1
2 ;

(ii) Therefore each two-dimensional subnet of xpUq and of xpU˚q is a Koenigs net;

(iii) The net xpU Y U˚q is orthogonal in the sense of Definition 6.4;

(iv) Both nets xpUq and xpU˚q are separable;

(v) Boundary conditions (6.6), (6.7) are satisfied.

Properties (ii) and (iii) lead to a novel discretization of the notion of isothermic surfaces.
Property (v) allows us to define discrete confocal quadrics by reflecting the net x in the coordinate

hyperplanes. Like in the continuous case, the boundary conditions correspond to the 2N ´ 1 degenerate
quadrics of the confocal family lying in the coordinate hyperplanes.

Remark 6.1. In [BSST2] we will describe more general discrete confocal quadrics, corresponding to general
reparametrizations of the curvature lines. They will be defined in a more geometric way, less based on
integrable difference equations.

6.4 Further properties of discrete confocal coordinates

We now obtain a variety of properties of discrete confocal quadrics and discrete confocal coordinates,
which serve as discretizations of their respective continuous analogs.

Proposition 6.7. For any N -tuple of signs σ “ pσ1, . . . , σN q, σi “ ˘1, we have:

xkpnq ¨ xkpn ` 1
2σq “

śN
i“1

`

ni ` αk ` k´i
2 ´ 1

4 p1 ´ σiq
˘

ś

i‰k

`

αk ´ αi ` k´i
2

˘ , (6.18)

and therefore
N
ÿ

k“1

xkpnqxkpn ` 1
2σq

ni ` αk ` k´i
2 ´ 1

4 p1 ´ σiq
“ 1, i “ 1, . . . , N. (6.19)

Proof. Equation (6.18) is obtained by straightforward computation. Using this result, equation (6.19)
follows from the continuous equations (3.3), (3.4) upon replacing ak “ αk ` k

2 and ui “ ni ´ i
2 ´ 1

4 p1 ´

σiq.

We notice that (6.18) can be seen as a discrete version of the parametrization formulas (3.4), while
(6.19) can be seen as a discrete version of the quadric equation (3.3). The above formulas take the
simplest form for σ “ f “ p1, . . . , 1q:

xkpnq ¨ xkpn ` 1
2fq “

śN
i“1

`

ni ` αk ` k´i
2

˘

ś

i‰k

`

αk ´ αi ` k´i
2

˘ (6.20)

and
N
ÿ

k“1

xkpnqxkpn ` 1
2fq

ni ` αk ` k´i
2

“ 1, i “ 1, ..., N. (6.21)

In the continuous setting one can obtain from (3.4)

xxpuq,xpuqy “

N
ÿ

k“1

x2kpuq “

N
ÿ

k“1

puk ` akq, (6.22)

so that the hypersurfaces
řN

k“1 uk “ const are (parts) of spheres. In particular, this implies that
B

x,
Bx

Bui

F

“
1

2
,

for all i “ 1, . . . , N , which can be regarded as a characterization of the particular parametrization of the
confocal quadrics considered in this paper. In the discrete case one obtains the following:
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Proposition 6.8. For any N -tuple of signs σ “ pσ1, . . . , σN q, σk “ ˘1, we have:

xxpnq,xpn ` 1
2σqy “

N
ÿ

k“1

`

nk ` αk ´ 1
4 p1 ´ σkq

˘

, (6.23)

and therefore, for any i “ 1, . . . , N and for any σ with σi “ ´1:

xxpnq,∆ixpn ` 1
2σqy “

1

2
.

Proof. The right-hand sides of (3.4) and (6.18) may be identified by setting ak “ αk ` k
2 and ui “

ni ´ i
2 ´ 1

4 p1 ´ σiq and hence the right-hand side of (6.22) also applies in the discrete case, leading upon
the above identification to (6.23).

Finally, we obtain a factorization similar to (3.7), (3.8), (3.9), which characterizes isothermic surfaces
in the continuous case.

Proposition 6.9. For i ‰ j we have

x∆ixpnq,∆ixpn ` 1
2fqy “ s2ϕipniq,

x∆jxpn ´ ej ` 1
2fq,∆jxpn ´ ej ` fqy “ s2ϕjpnjq,

where

spni, njq “

ˇ

ˇ

ˇ

ˇ

ni ´ nj `
j ´ i

2
`

1

2

ˇ

ˇ

ˇ

ˇ

1{2

,

and
ϕipniq

ϕjpnjq
“ ´

ś

m‰i,jpni ´ nm ` m´i
2 ` 1

2 q
śN

m“1pni ` αm ´ m´i
2 ` 1

2 q
¨

śN
m“1pnj ` αm ´

m´j
2 q

ś

m‰i,jpnj ´ nm `
m´j
2 ´ 1

2 q
.

Proof. For any i, k we compute

∆ixkpnq ¨ ∆ixkpn ` 1
2fq “

1

4

1
ś

m‰kpαk ´ αm ` k´m
2 q

ś

m‰ipnm ` αk ` k´m
2 q

ni ` αk ` k´i
2 ` 1

2

.

Here, the right-hand side can be identified with the right-hand side of the corresponding continuous
expression, put as

ˆ

Bxk
Bui

˙2

“
1

4

1
ś

m‰kpak ´ amq

ś

m‰ipum ` akq

pui ` akq
,

upon replacing

ak “ αk `
k

2
, um “

#

nm ´ m
2 , for m ‰ i,

ni ´ i
2 ` 1

2 , for m “ i.

Therefore, the continuous identity (3.10) upon the above identification implies

x∆ixpnq,∆ixpn ` 1
2fqy “

ś

m‰ipni ´ nm ` m´i
2 ` 1

2 q

4
śN

m“1pni ` αm ´ m´i
2 ` 1

2 q
.

Similarly, we find:

x∆jxpn ´ ej ` 1
2fq,∆jxpn ´ ej ` fqy “

ś

m‰jpnj ´ nm `
m´j
2 ´ 1

2 q

4
śN

m“1pnj ` αm ´
m´j
2 q

.

The observation that the only factors in each of the latter two expressions which depends on both ni and
nj are equal (up to sign) finishes the proof.

Remark 6.2. Similar to equations (6.20), (6.21) it is possible to generalize Proposition 6.9 by replacing the
vector f by a vector of signs σ with σi “ σj “ 1 and all other components components being arbitrary.
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7 The case N “ 2

Here, and in the following section, we examine in greater detail the general theory set down in the
preceding in the cases N “ 2 and N “ 3. For the benefit of the reader, these two sections are made as
self-contained as possible.

7.1 Continuous confocal coordinates

Let a ą b ą 0. Then formulas
xpu1, u2q “

?
u1 ` a

?
u2 ` a

?
a´ b

,

ypu1, u2q “

a

´pu1 ` bq
?
u2 ` b

?
a´ b

,

(7.1)

define a parametrization of the first quadrant of R2 by confocal coordinates

U “
␣

pu1, u2q P R2 | ´ a ă u1 ă ´b ă u2
(

Ñ R2
`.

A family of confocal conics is obtained by reflections in the coordinate axes.

Figure 7.1. Square grid on the domain U and its image under the map (7.1). The horizontal lines
u2 “ const are mapped to ellipses with the degenerate case u2 Œ ´b, which is mapped to a line
segment on the x-axis. The vertical lines u1 “ const are mapped to hyperbolas with the degenerate
cases u1 Õ ´b, which is mapped to a ray on the x-axis, and u2 Œ ´a, which is mapped to the
positive y-axis.

7.2 Discrete confocal coordinates

We start with the general formula

xpn1, n2q “ D1pn1 ` ε1 ` c1q1{2pn2 ` ε2 ` c1q1{2,

ypn1, n2q “ D2p´n1 ´ ε1 ´ c2 ` 1
2 q

1{2
pn2 ` ε2 ` c2q1{2

for a separable solution of the discrete Euler-Poisson-Darboux system (dEPDγ) with γ “ 1
2 , where a

suitable choice of solutions (6.4), (6.5) has already been made according to the continuous case. We
use the above ansatz to illustrate the choice of the coordinate shifts εi and ck according to boundary
conditions (6.6) and (6.7). For α, β P Z with α ą β, we define c1, c2 and ε1, ε2 such that we obtain a map

U “
␣

pn1, n2q P Z2 | ´ α ď n1 ď ´β ď n2
(

Ñ R2
` ,
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where the boundary components n1 “ ´α, n1 “ ´β, and n2 “ ´β correspond to degenerate conics that
lie on the coordinate axes:

x|n1“´α “ 0 (degenerate hyperbola),

y|n1“´β “ 0 (degenerate hyperbola),

y|n2“´β “ 0 (degenerate ellipse).

For this, the following linear system of equations has to be satisfied:

ε1 ` c1 “ α,

ε1 ` c2 “ β `
1

2
,

ε2 ` c2 “ β.

As a consequence, we find:

ε2 ` c1 “ α ´
1

2
.

Thus, we end up with the formula

xpnq “

˜

D1pn1 ` αq1{2pn2 ` α ´ 1
2 q

1{2

D2p´n1 ´ βq1{2pn2 ` βq1{2

¸

. (7.2)

Up to scaling along the coordinate axes, the latter defines discrete confocal coordinates on the first
quadrant of R2, if the domain U is extended to U Y U˚ as demonstrated below. From this we generate a
family of discrete confocal conics by reflections in the coordinate axes.

Figure 7.2. Points of the square grid on the domain U and their images under the map (7.2), joined
by straight line segments respectively. The horizontal lines n2 “ const are mapped to discrete ellipses
with the degenerate case n2 “ ´β, which is mapped to a line segment on the x-axis. The vertical
lines n1 “ const are mapped to discrete hyperbolas with the degenerate cases n1 “ ´β, which is
mapped to a ray on the x-axis, and n1 “ ´α, which is mapped to the positive y-axis.

In order to implement the orthogonality condition, we extend x to U˚, and compute the discrete
derivatives of the extension of x along the dual edges of the two dual square lattices U and U˚. Formulas
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(6.14) for the “discrete derivatives” of the discrete square root immediately lead to

∆1xpnq “
1

2

¨

˚

˚

˚

˚

˚

˝

D1

pn2 ` α ´ 1
2 q

1{2

pn1 ` α ` 1
2 q

1{2

´D2

pn2 ` βq1{2

p´n1 ´ β ´ 1
2 q

1{2

˛

‹

‹

‹

‹

‹

‚

and

∆2xpnq “
1

2

¨

˚

˚

˚

˚

˚

˝

D1

pn1 ` αq1{2

pn2 ` αq1{2

D2

p´n1 ´ βq1{2

pn2 ` β ` 1
2 q

1{2

˛

‹

‹

‹

‹

‹

‚

.

If we introduce the notation
nσ1, σ2 “ n ` 1

2 pσ1, σ2q, σi “ ˘1,

then it turns out that
x∆1xpnq,∆2xpn`´qy “ 1

4 pD2
1 ´D2

2q,

so that dual edges are orthogonal if and only if

D2
1 “ D2

2.

We make the choice
D2

1 “ D2
2 “

1

α ´ β ´ 1
2

. (7.3)

Formulas (7.2) with the constants (7.3) constitute a discretization of the parametrization (7.1).

Figure 7.3. Points of the square grid on the domain U YU˚ and their images under the map (7.2).
All pairs of corresponding dual edges are mutually orthogonal.

It is readily verified that with the choice (7.3), a lattice point xpnq and its nearest neighbours xpn``q

and xpn`´q are related by

xpnqxpn``q “
pn1 ` αqpn2 ` α ´ 1

2 q

α ´ β ´ 1
2

,

ypnqypn``q “
pn1 ` β ` 1

2 qpn2 ` βq

β ´ α ` 1
2

,

(7.4)
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respectively by

xpnqxpn`´q “
pn1 ` αqpn2 ` α ´ 1q

α ´ β ´ 1
2

,

ypnqypn`´q “
pn1 ` β ` 1

2 qpn2 ` β ´ 1
2 q

β ´ α ` 1
2

,

(7.5)

which are natural discretizations of the formulas

x2 “
pu1 ` aqpu2 ` aq

a´ b
, y2 “

pu1 ` bqpu2 ` bq

b´ a

for the squares of coordinates. From (7.4), (7.5) one easily derives

xpnqxpn``q

n1 ` α
`
ypnqypn``q

n1 ` β ` 1
2

“ 1,

xpnqxpn``q

n2 ` α ´ 1
2

`
ypnqypn``q

n2 ` β
“ 1,

and
xpnqxpn`´q

n1 ` α
`
ypnqypn`´q

n1 ` β ` 1
2

“ 1,

xpnqxpn`´q

n2 ` α ´ 1
`
ypnqypn`´q

n2 ` β ´ 1
2

“ 1,

which can be considered as discretizations of the defining equations of the two confocal conics through
the point px, yq P R2:

x2

u1 ` a
`

y2

u1 ` b
“ 1,

x2

u2 ` a
`

y2

u2 ` b
“ 1.

Observe that relations (7.4) and (7.5) may be regarded as two maps

τ`` : xpnq ÞÑ xpn``q, τ`´ : xpnq ÞÑ xpn`´q,

whose commutativity τ`` ˝ τ`´ “ τ`´ ˝ τ`` is directly verified. Thus, the net x can be uniquely
determined from its value at a single vertex.

Proposition 6.9 in the case N “ 2 can be shown by simple calculations starting either with the explicit
parametrization (7.2) or the maps (7.4), (7.5). For instance, a factorization property associated with τ``

(shift by 1
2f) reads:

@

∆1xpnq,∆1xpn ` 1
2fq

D

@

∆2xpn ´ e2 ` 1
2fq,∆2xpn ´ e2 ` fq

D “
ϕ1pn1q

ϕ2pn2q
, (7.6)

where
ϕ1pn1q

ϕ2pn2q
“ ´

pn2 ` α ´ 1
2 qpn2 ` βq

pn1 ` α ` 1
2 qpn1 ` β ` 1q

,

and a similar property is associated with the map τ`´. This can be seen as a discretization of the
isothermicity property of the system of confocal conics which reads

|Bx{Bu1|2

|Bx{Bu2|2
“
α1pu1q

α2pu2q
,

where
α1pu1q

α2pu2q
“ ´

pu2 ` aqpu2 ` bq

pu1 ` aqpu1 ` bq
.

The combinatorics of the factorization property (7.6) is illustrated in
Figure 7.4.
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xpnq xpn` e1q

xpn´ e2 `
1
2fq

xpn` 1
2fq

xpn` e1 ` e2q

xpn` 1
2f ` e1q

Figure 7.4. Combinatorics of the factorization property (7.6).

8 The case N “ 3

8.1 Continuous confocal coordinates

Let a ą b ą c ą 0. Then formulas

xpu1, u2, u3q “

?
u1 ` a

?
u2 ` a

?
u3 ` a

?
a´ b

?
a´ c

,

ypu1, u2, u3q “

a

´pu1 ` bq
?
u2 ` b

?
u3 ` b

?
a´ b

?
b´ c

,

zpu1, u2, u3q “

a

´pu1 ` cq
a

´pu2 ` cq
?
u3 ` c

?
a´ c

?
b´ c

define a parametrization of the first octant of R3 by confocal coordinates,

U “ tpu1, u2, u3q | ´ a ă u1 ă ´b ă u2 ă ´c ă u3u Ñ R3
` .

Confocal quadrics are obtained by reflections of the coordinate surfaces (corresponding to ui “ const for
i “ 1, 2 or 3) in the coordinate planes of R3, see Figure 0.1, left.

§ The planes u3 “ const are mapped to ellipsoids. In the degenerate case u3 Œ ´c one has z “ 0, while
xpu1, u2q and ypu1, u2q exactly recover the two-dimensional case (7.1) on the interior of an ellipse
given by u2 Õ ´c.

§ The planes u2 “ const are mapped to one-sheeted hyperboloids with the two degenerate cases corre-
sponding to u2 Õ ´c and u2 Œ ´b.

§ The planes u1 “ const are mapped to two-sheeted hyperboloids with the two degenerate cases corre-
sponding to u1 Õ ´b and u1 Œ ´a.

8.2 Discrete confocal coordinates

Let α, β, γ P Z with α ą β ą γ. Then the formula

xpnq “

¨

˚

˚

˝

D1pn1 ` αq1{2pn2 ` α´ 1
2 q1{2pn3 ` α´ 1q1{2

D2p´n1 ´ βq1{2pn2 ` βq1{2pn3 ` β ´ 1
2 q1{2

D3p´n1 ´ γ ´ 1
2 q1{2p´n2 ´ γq1{2pn3 ` γq1{2

˛

‹

‹

‚

(8.1)

with xpnq “ pxpnq, ypnq, zpnqq defines a discrete net in the first octant of R3 (discrete confocal coordinate
system), that is, a map

U “
␣

pn1, n2, n3q P Z3 | ´ α ď n1 ď ´β ď n2 ď ´γ ď n3

(

Ñ R3
`
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which is a separable solution of (dEPD1{2). If this net is extended to U Y U˚ then discrete confocal
quadrics are obtained by reflections of the coordinate surfaces (ni “ const for i “ 1, 2 or 3) in the
coordinate planes of R3, see Figure 0.1, right, provided that the constants Dk are chosen in the manner
described below. The five boundary components n1 “ ´α, n1 “ ´β, n2 “ ´β, n2 “ ´γ, and n3 “ ´γ

are mapped to degenerate quadrics that lie in the coordinate planes of R3.
One computes the discrete derivatives with the help of formulas (6.14):

∆1xpnq “
1

2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

D1

pn2 ` α ´ 1
2 q

1{2
pn3 ` α ´ 1q1{2

pn1 ` α ` 1
2 q

1{2

´D2

pn2 ` βq1{2pn3 ` β ´ 1
2 q

1{2

p´n1 ´ β ´ 1
2 q

1{2

´D3

p´n2 ´ γq1{2pn3 ` γq1{2

p´n1 ´ γ ´ 1q1{2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

∆2xpnq “
1

2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

D1

pn1 ` αq1{2pn3 ` α ´ 1q1{2

pn2 ` αq1{2

D2

p´n1 ´ βq1{2pn3 ` β ´ 1
2 q

1{2

pn2 ` β ` 1
2 q

1{2

´D3

p´n1 ´ γ ´ 1
2 q

1{2
pn3 ` γq1{2

p´n2 ´ γ ´ 1
2 q

1{2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and

∆3xpnq “
1

2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

D1

pn1 ` αq1{2pn2 ` α ´ 1
2 q

1{2

pn3 ` α ´ 1
2 q

1{2

D2

p´n1 ´ βq1{2pn2 ` βq1{2

pn3 ` βq1{2

D3

p´n1 ´ γ ´ 1
2 q

1{2
p´n2 ´ γq1{2

pn3 ` γ ` 1
2 q

1{2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

In accordance with the general orthogonality condition, we now demand that dual pairs of edges and
faces of the nets xpUq and xpU˚q be orthogonal, so that

x∆1xpnq,∆2xpn ´ e2 ` 1
2fqy “ 0,

x∆1xpnq,∆3xpn ´ e3 ` 1
2fqy “ 0,

x∆2xpnq,∆3xpn ´ e3 ` 1
2fqy “ 0.

Evaluation of the above conditions leads to

D2
1pn3 ` a´ 3

2 q ´D2
2pn3 ` b´ 3

2 q `D2
3pn3 ` c´ 3

2 q “ 0,

D2
1pn2 ` a´ 1q ´D2

2pn2 ` b´ 1q `D2
3pn2 ` c´ 1q “ 0,

D2
1pn1 ` a´ 1

2 q ´D2
2pn1 ` b´ 1

2 q `D2
3pn1 ` c´ 1

2 q “ 0,

(8.2)

where
a “ α ` 1

2 , b “ β ` 1, c “ γ ` 3
2 .

These are, mutatis mutandis, identical with their classical continuous counterparts as demonstrated in
connection with the general case analyzed in Section 6. Since the coefficients Di are independent of, for
instance, n3, the first condition in (8.2) splits into the pair

D2
1 ´D2

2 `D2
3 “ 0,

D2
1a´D2

2b`D2
3c “ 0,
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and it is evident that the remaining two conditions constitute linear combinations thereof. Accordingly,
the orthogonality requirement leads to the unique relative scaling

D2
1

b´ c
“

D2
2

a´ c
“

D2
3

a´ b
“: D2.

Figure 8.1. A discrete ellipsoid (n1, n2 integer, n3 “ const) from the system (8.1) and its two
adjacent layers from the dual n (n1, n2 half-integer, n3 “ const ˘ 1

2 ). All faces are planar and
orthogonal to the corresponding edges of the other net.

Remark 8.1. The curvature lines of a smooth surface are characterized by the following properties: they
form a conjugate net, and along each curvature line two infinitesimally close normals intersect. In the
case of discrete confocal coordinates the edges of the dual net xpU˚q can be interpreted as normals to the
faces of the net xpUq. Since both nets have planar faces, any two neighboring normals intersect. Thus,
extended edges of xpU˚q constitute a discrete line congruence normal to the faces of the Q-net (discrete
conjugate net) xpUq (cf. [BS] for the notion of a discrete line congruence).

The bilinear relations between a lattice point xpnq and its nearest neighbours xpn ` 1
2σq may be

formulated as follows:

xpnqxpn ` 1
2σq

u` a
`
ypnqypn ` 1

2σq

u` b
`
zpnqzpn ` 1

2σq

u` c
“ 1,

xpnqxpn ` 1
2σq

v ` a
`
ypnqypn ` 1

2σq

v ` b
`
zpnqzpn ` 1

2σq

v ` c
“ 1,

xpnqxpn ` 1
2σq

w ` a
`
ypnqypn ` 1

2σq

w ` b
`
zpnqzpn ` 1

2σq

w ` c
“ 1,

provided that

D2 “
1

pa´ bqpa´ cqpb´ cq
,

and
u “ n1 ` 1

4σ1 ´ 3
4 , v “ n2 ` 1

4σ2 ´ 5
4 , w “ n3 ` 1

4σ3 ´ 7
4 .

8.3 Discrete umbilics and discrete focal conics

An interesting feature of discrete confocal quadrics which is not present in the two-dimensional case is
obtained by considering the “discrete umbilics” (that is, vertices of valence different from 4) of the discrete
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ellipsoids n3 “ const and the discrete two-sheeted hyperboloids n1 “ const. In the case of the discrete
ellipsoids, these have valence 2 and are located at n1 “ n2 “ ´β so that (8.1) reduces to the planar
discrete curve

xpn3q “

¨

˚

˝

D1pα ´ β ´ 1
2 qpn3 ` α ´ 1q1{2

0
D3pβ ´ γ ´ 1

2 qpn3 ` γq1{2

˛

‹

‚

.

Once again, it turns out convenient to extend the domain of this one-dimensional lattice to the appropriate
subset of Z Y Z˚ so that

xpn3qxpn3 ` 1
2 q

α ´ β ´ 1
2

´
zpn3qzpn3 ` 1

2 q

β ´ γ ´ 1
2

“ 1.

The latter constitutes a discretization of the focal hyperbola [So]

x2

a´ b
´

z2

b´ c
“ 1

which is known to be the locus of the umbilical points of confocal ellipsoids. Similarly, evaluation of (8.1)
at n2 “ n3 “ ´γ produces the planar discrete curve

xpn1q “

¨

˚

˚

˝

D1pα ´ γ ´ 1qpn1 ` αq1{2

D2pβ ´ γ ´ 1
2 qp´n1 ´ βq1{2

0

˛

‹

‹

‚

which consists of the discrete umbilics of the discrete two-sheeted hyperboloids. Extension to half-integers
yields

xpn1qxpn1 ` 1
2 q

α ´ γ ´ 1
`
ypn1qypn1 ` 1

2 q

β ´ γ ´ 1
2

“ 1,

which reproduces, in the formal continuum limit, the classical focal ellipse

x2

a´ c
`

y2

b´ c
“ 1

as the locus of the umbilical points of confocal two-sheeted hyperboloids.

A Incircular nets as orthogonal Koenigs nets

A geometric discretization of confocal conics as incircular nets (IC-nets) was recently suggested in [AB].
This version of discrete confocal conics is given via a simple local geometric condition: one considers
a congruence of straight lines with the combinatorics of the square grid such that all the quadrilaterals
formed by neighboring lines possess inscribed circles. In this appendix we show that, surprisingly, IC-nets
share two crucial properties with discrete confocal coordinates introduced in the present paper, namely
the Koenigs property and the orthogonality in the sense of Definition 6.4. One should mention however
that IC-nets are not separable, therefore they do not constitute a special case of discrete confocal conics
as defined in Defintion 6.6.1

Definition A.1. A discrete net f : Z2 Ą U Ñ R2 is called an incircular net (IC-net) if

(i) The points fi,j with i “ const, respectively j “ const, lie on straight lines, preserving the order.

(ii) Every elementary quadrilateral pfi,j , fi`1,j , fi`1,j`1, fi,j`1q has an incircle.

All lines of an IC-net touch some conic α, while all vertices of one diagonal i ` j “ const, resp.
i´ j “ const, lie on a conic confocal to α.

1This observation, made on the basis of numerical experiments, was not correct (cf. Chapter 2: Remark 8.1).
In fact IC-nets do constitute a special case of discrete confocal conics (see Chapter 2: Sections 8.4 and 8.5).



70 CHAPTER 1. DISCRETE CONFOCAL QUADRICS. I.

Denote the incenter of the quadrilateral pfi,j , fi`1,j , fi`1,j`1, fi,j`1q by ωi,j . So, ω : U Ñ R2 is
the net of incenters of f . Note that ω also possesses property (i). Denote the two dual subnets of ω,
corresponding to pi, jq with 2k :“ i` j and 2l :“ j ´ i even, respectively odd, by η and η̃:

ηk,l :“ ωk´l,k`l, pk, lq P Z2 and η̃k,l :“ ωk´l,k`l, pk, lq P pZ2q
˚
.

In Figure A.1, the edges of the nets η and η̃ are shown. The intersection points of dual pairs of edges
happen to be points of the underlying IC-net f . At each such point, the intersecting edges of η and of
η̃ are tangent to the confocal conics mentioned above (the conics through fi,j with i ` j “ 2k “ const,
resp. with j ´ i “ 2l “ const). Therefore, the dual pairs of edges are orthogonal. We show that these
nets also possess the Koenigs property and collect their important properties in the following theorem.

Figure A.1. Two dual subnets η and η̃ of the net of incenters of an IC-net. The edges are tangent
to confocal conics, and corresponding edges of the two nets are orthogonal.

Theorem A.2. For the two dual subnets η and η̃ of the incenter-net of an IC-net:

(i) the edges are tangent to confocal conics, the points of tangency being the points of the IC-net;

(ii) each subnet consists of intersection points of diagonals of elementary quadrilaterals of the other
subnet;

(iii) both subnets are circular-conical (that is, opposite angles sum up to π in each quadrilateral and at
each vertex-star);

(iv) each pair of dual edges intersects orthogonally;

(v) both subnets are Koenigs nets.
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Proof.

(i) See [AB].

(ii) This holds for the two dual subnets of any net consisting of straight lines.

(iii) Each of the dual nets corresponds to the incenters of a checkerboard IC-net, that is, a net having
incircles in every other quadrilateral (both checkerboard IC-nets fitting perfectly into each other
forming a regular IC-net). Checkerboard IC-nets have been observed to be circular-conical in [AB].

(iv) Dual edges intersect at a point where two lines of the IC-net intersect. The dual edges of η and of η̃
are the two angle bisectors of those two lines of the IC-net, and therefore are mutually orthogonal.

(v) From now on, we use the shift notation, like in Section 4, so that ηp˘iqpnq :“ ηpn ˘ eiq and
ηpijqpnq :“ ηpn ` ei ` ejq, with the understanding that the argument of η, η̃ is pk, lq, while the
argument of f is pi, jq. Consider four quadrilaterals of the net η adjacent to one vertex (compare
Figure A.2). The points of intersection of diagonals of these four quadrilaterals are the points η̃,
η̃p1q, η̃p12q, η̃p2q of the net η̃. We show that

|ηp1qη̃p12q|

|η̃p12qηp2q|
¨

|ηp2qη̃p2q|

|η̃p2qηp´1q|
¨

|ηp´1qη̃|

|η̃ηp´2q|
¨

|ηp´2qη̃p1q|

|η̃p1qηp1q|
“ 1.

This is equivalent to the net η being Koenigs (see [BS, p. 52]).

Considering one of the four quotients on the left-hand side, we find:

|ηp1qη̃p12q|

|η̃p12qηp2q|
“

areapηp1q, η̃p12q, ηq

areapη̃p12q, ηp2q, ηq
“

|fp1qη̃p12q| ¨ |ηηp1q|

|fp12qη̃p12q| ¨ |ηηp2q|
,

since the dual edges of η and of η̃ are orthogonal. In the product the lengths of the edges |ηηpiq|

cancel out, and we obtain

|ηp1qη̃p12q|

|η̃p12qηp2q|
¨

|ηp2qη̃p2q|

|η̃p2qηp´1q|
¨

|ηp´1qη̃|

|η̃ηp´2q|
¨

|ηp´2qη̃p1q|

|η̃p1qηp1q|

“

ˆ

|η̃f |

|fη̃p1q|
¨

|η̃p1qfp1q|

|fp1qη̃p12q|
¨

|η̃p12qfp12q|

|fp12qη̃p2q|
¨

|η̃p2qfp2q|

|fp2qη̃|

˙´1

.

The latter product is equal to 1 since the triangles pη̃, f, fp2qq and pη̃p12q, fp1q, fp12qq are perspective
triangles (Menelaus condition for Desargues configuration, cf. [BS, p. 361]). We mention that the
right-hand side of the latter formula being equal to 1 is the Koenigs condition for the net ω, while
the left-hand side being equal to 1 is the Koenigs condition for the net η.

Apparently, there also holds:

(vi) the dual subnets η and η̃ satisfy the discrete factorization property (7.6),

but at present this only has been checked via numerical experiments.
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Figure A.2. Koenigs property of the incenter net ω of an IC-net implies the Koenigs property for
its two diagonal nets η and η̃.
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1 Introduction

Confocal quadrics have played a prominent role in classical mathematics due to their beautiful geometric
properties and numerous relations and applications to various branches of mathematics. Optical proper-
ties of quadrics and their confocal families were already discovered by the ancient Greeks and continued to
fascinate mathematicians for many centuries, culminating in the famous Ivory and Chasles theorems from
19th century given a modern interpretation by Arnold [Ar, Appendix 15]. Geodesic flows on quadrics and
billiards in quadrics are classical examples of integrable systems [Ja, Mo, Ve, FT]. Gravitational proper-
ties of ellipsoids were studied in detail by Newton, Ivory and others, see [FT, Part 8], and are based to a
large extent on the geometric properties of confocal quadrics. Quadrics in general and confocal systems
of quadrics in particular constitute popular objects in geometry. Poncelet and Ivory theorems play a
central role there [DR, IT]. In differential geometry quadrics provide non-trivial examples of isothermic
surfaces which form one of the most interesting classes of “integrable” surfaces, that is, surfaces which are
governed by integrable differential equations and possess a rich theory of transformations with remarkable
permutability properties [BS]. Importantly, confocal quadrics also lie at the heart of confocal coordinate
systems which give rise to separation of variables in the Laplace operator. As such, they support a rich
theory of special functions, including Lamé functions and their generalizations [EMOT, WW].

In general, coordinate systems are instances of smooth nets, that is, maps RM Ą U Ñ RN . In
this paper we present a novel characterization of confocal coordinate systems: a coordinate system
RN Ą U Q s ÞÑ xpsq P RN is confocal if and only if it is orthogonal and the coordinates xi factorize as
functions of the parameters sj , that is,

xipsq “ f i1ps1qf i2ps2q ¨ ¨ ¨ f iN psN q, i “ 1, . . . , N

(see Section 3).
Orthogonal coordinate systems constitute a classical topic in differential geometry. They were ex-

tensively treated in the fundamental monograph by Darboux [Da2]. From the viewpoint of the theory
of integrable systems they were investigated in [Za]. Algebro-geometric orthogonal coordinate systems
were constructed in [Kr]. Although it is natural to expect that confocal coordinate systems belong to
this class, it remains an open problem to include them in Krichever’s construction (see [MT]).

Discretizing coordinate systems consists of finding suitable approximating discrete nets, that is, maps
ZM Ą U Ñ RN . Various discretizations of orthogonal coordinate systems have been proposed. The most
investigated variant is the class of circular nets [Bo, CDS, KS1], where all elementary quadrilaterals are
inscribed in circles. This class inherits the property of orthogonal coordinate systems to be invariant under
Möbius transformations. A special case of Darboux-Egorov metrics was discretized in [AVK] as circular
nets whose quadrilaterals have two opposite right angles. Another discretization of orthogonal nets is
given by conical nets [LPWYW], which are characterized by the property that any four neighboring planar
quadrilaterals are tangent to a sphere. This class is preserved by Laguerre transformations. Circular and
conical nets may be unified in the context of Lie geometry as principal contact element nets [BS, PW].

Recently, in [BSST1], we have proposed an integrability-preserving discretization of systems of con-
focal quadrics or, equivalently, systems of confocal coordinates in RN . The discretization is based on
a discrete version [KS2] of the Euler-Poisson-Darboux system, which is known to encode algebraically
classical systems of confocal quadrics. This algebraic approach resulted in particular in a new geometric
orthogonality condition, which is of central importance in the current paper. In this new sense, a discrete
coordinate system p 1

2Zq
N

Ą U Q n ÞÑ xpnq P RN is discrete orthogonal if any edge of any of the ZN

sublattices is orthogonal to the dual facet of the dual ZN sublattice (see Section 4).
In Section 5 we define discrete confocal coordinate systems as orthogonal (in the new sense) nets

p 1
2Zq

N
Ą U Q n ÞÑ xpnq P RN such that the coordinates xi factorize as functions of the lattice arguments

nj , that is,

xipnq “ f i1pn1qf i2pn2q ¨ ¨ ¨ f iN pnN q, i “ 1, . . . , N.

We provide an explicit description of discrete confocal coordinate systems in Theorems 5.2, 5.5, 5.6.
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In Section 6 we show that discrete confocal coordinate systems admit a geometric characterization
in terms of polarity with respect to quadrics of a classical confocal family. The connection with the
particular case discussed in [BSST1] is set down in Section 7.

Sections 8–9 contain an extensive collection of examples of discrete confocal coordinates in the cases
N “ 2 andN “ 3. We begin by presenting in Section 8.2 the discrete analogue of the classical parametriza-
tion of systems of confocal conic sections in terms of trigonometric and hyperbolic functions. Then, in
Sections 8.4–8.5 we record a novel parametrization of confocal coordinate systems in R2, both continuous
and discrete, in terms of Jacobi elliptic functions. The discrete confocal coordinate systems of these fam-
ilies are intimately related to incircular (IC) nets studied in [AB]. In Section 9, we show that the classical
confocal coordinate systems in R3 parametrized in terms of Jacobi elliptic functions admit a natural
discrete analogue. Finally, in the Appendix, we present a generalized discrete Euler-Poisson-Darboux
systems which algebraically encodes discrete confocal coordinate systems.

2 Classical confocal coordinate systems

For given a1 ą a2 ą ¨ ¨ ¨ ą aN ą 0, we consider the one-parameter family of confocal quadrics in RN

given by

Qpλq “

#

x “ px1, . . . , xN q P RN :
N
ÿ

k“1

x2k
ak ` λ

“ 1

+

, λ P R. (2.1)

Note that the quadrics of this family are centered at the origin and have the principal axes aligned along
the coordinate directions. For a given point x “ px1, . . . , xN q P RN with x1x2 . . . xN ‰ 0, equation
řN

k“1 x
2
k{pak ` λq “ 1 is, after clearing the denominators, a polynomial equation of degree N in λ, with

N real roots u1, . . . , uN lying in the intervals

´a1 ă u1 ă ´a2 ă u2 ă ¨ ¨ ¨ ă ´aN ă uN , (2.2)

so that
N
ÿ

k“1

x2k
λ` ak

´ 1 “ ´

śN
m“1pλ´ umq

śN
m“1pλ` amq

. (2.3)

These N roots correspond to the N confocal quadrics of the family (2.1) that intersect at the point
x “ px1, . . . , xN q:

N
ÿ

k“1

x2k
ak ` ui

“ 1, i “ 1, . . . , N ô x P

N
č

i“1

Qpuiq. (2.4)

The N quadrics Qpuiq are all of different signatures. Evaluating the residue of the right-hand side of
(2.3) at λ “ ´ak, one can easily express x2k through u1, . . . , uN :

x2k “

śN
i“1pui ` akq

ś

i‰kpak ´ aiq
, k “ 1, . . . , N. (2.5)

Thus, for each point px1, . . . , xN q P RN with x1x2 . . . xN ‰ 0, there is exactly one solution pu1, . . . , uN q P

U of (2.5), where

U “
␣

pu1, . . . , uN q P RN | ´ a1 ă u1 ă ´a2 ă u2 ă . . . ă ´aN ă uN
(

.

On the other hand, for each pu1, . . . , uN q P U there are exactly 2N solutions px1, . . . , xN q P RN , which
are mirror symmetric with respect to the coordinate hyperplanes. In what follows, when we refer to a
solution of (2.5), we always mean the solution with values in

RN
` “

␣

px1, . . . , xN q P RN | x1 ą 0, . . . , xN ą 0
(

.

Thus, we are dealing with a parametrization of the first hyperoctant of RN , x : U Q pu1, . . . , uN q ÞÑ

px1, . . . , xN q P RN
` , given by

xk “

śk´1
i“1

a

´pui ` akq
śN

i“k

?
ui ` ak

śk´1
i“1

?
ai ´ ak

śN
i“k`1

?
ak ´ ai

, k “ 1, . . . , N, (2.6)
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such that the coordinate hyperplanes ui “ const are mapped to (parts of) the respective quadrics given
by (2.4). The coordinates pu1, . . . , uN q are called confocal coordinates (or elliptic coordinates, following
Jacobi [Ja, Vorlesung 26]).

For various applications, it is often useful to re-parametrize the coordinate lines according to ui “

uipsiq, i “ 1, . . . , N . One of the reasons of the usefulness of this procedure is the possibility to uniformize
the square roots in the above formulas, that is, to present them as single-valued functions of the new
coordinates si. A classical example in the dimension N “ 2, where

x1 “

?
u1 ` a1

?
u2 ` a1

?
a1 ´ a2

, x2 “

a

´pu1 ` a2q
?
u2 ` a2

?
a1 ´ a2

,

is to set
u1 “ ´a1 sin

2 s1 ´ a2 cos
2 s1, u2 “ a1 sinh

2 s2 ´ a2 cosh
2 s2,

so that
u1 ` a1 “ pa1 ´ a2q cos2 s1, ´pu1 ` a2q “ pa1 ´ a2q sin2 s1,

and
u2 ` a1 “ pa1 ´ a2q cosh2 s2, u2 ` a2 “ pa1 ´ a2q sinh2 s2.

Accordingly, one obtains a version of elliptic coordinates in the plane free from branch points and naturally
periodic with respect to s1:

x1 “
?
a1 ´ a2 cos s1 cosh s2, x2 “

?
a1 ´ a2 sin s1 sinh s2.

Such a re-parametrization, being a relatively trivial operation for classical coordinate systems, does not
have a simple counterpart in the discrete context. Actually, the lack of the notion of a re-parametrization is
one of the main and fundamental differences between discrete differential geometry and discrete analysis,
on the one hand, and their classical analogs, on the other hand. It is one of the principal goals of
this paper to present a natural geometric construction of a general parametrization for discrete confocal
coordinate systems.

3 Characterization of confocal coordinate systems

Our main subject in this paper are coordinate systems, i.e., maps x : RN Ą U Ñ RN on open sets
U such that detpBxi{BsjqNi,j“1 ‰ 0. We now demonstrate that the two properties, factorization and
orthogonality, are sufficient to characterize confocal coordinates. For the sake of simplicity, we restrict
ourselves to coordinate systems satisfying the additional condition Bxi{Bsj ‰ 0, which excludes degenerate
cases like cylindric, spherical coordinates etc.

Theorem 3.1. If a coordinate system x : RN Ą U Ñ RN satisfies two conditions:

i) xpsq factorizes, in the sense that
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x1psq “ f11 ps1qf12 ps2q ¨ ¨ ¨ f1N psN q,

x2psq “ f21 ps1qf22 ps2q ¨ ¨ ¨ f2N psN q,

. . .

xN psq “ fN1 ps1qfN2 ps2q ¨ ¨ ¨ fNN psN q,

(3.1)

with all fki psiq ‰ 0 and
`

fki
˘1

psiq ‰ 0;

ii) x is orthogonal, that is,
xBix, Bjxy “ 0 for i ‰ j, (3.2)

then all coordinate hypersurfaces are confocal quadrics.
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Proof. One easily computes that the orthogonality condition (3.2) for a factorized net (3.1) is equivalent
to

N
ÿ

k“1

`

fki
˘1

psiqf
k
i psiq

`

fkj
˘1

psjqfkj psjq
ź

ℓ‰i,j

`

fkℓ psℓq
˘2

“ 0,

or
N
ÿ

k“1

`

F k
i

˘1
psiq

`

F k
j

˘1
psjq

ź

ℓ‰i,j

F k
ℓ psℓq “ 0, (3.3)

where F k
i psiq “

`

fki psiq
˘2.

Lemma 3.2. Equation (3.3) is equivalent to

N
ÿ

k“1

F k
1 ps1qF k

2 ps2q ¨ ¨ ¨F k
N psN q “ A1ps1q `A2ps2q ` . . .`AN psN q, (3.4)

with some functions Aipsiq.

Proof. Equation (3.3) reads: B2F {BsiBsj “ 0, where the function F is the left-hand side of (3.4). Induc-
tion with respect to N shows that this is equivalent to F being a sum of functions of single arguments.

Lemma 3.3. Assume that all fki ‰ 0 and
`

fki
˘1

‰ 0. Then, for each i “ 1, . . . , N there exists a function
Fipsiq such that

F k
i psiq “ αk

i Fipsiq ` βk
i , k “ 1, . . . , N, (3.5)

for some constants αk
i ‰ 0 and βk

i .

Proof. Note that the assumption of lemma is equivalent to
`

F k
i

˘1
‰ 0. We will prove that for each

i “ 1, . . . , N we have
¨

˝

`

F 1
i

˘1
psiq

. . .
`

FN
i

˘1
psiq

˛

‚P R

¨

˝

α1
i

. . .
αN
i

˛

‚. (3.6)

For any fixed i, equation (3.3) can be formulated as the following N ´ 1 orthogonality conditions:
¨

˚

˚

˚

˝

`

F 1
i

˘1

. . .
`

FN
i

˘1

˛

‹

‹

‹

‚

K

¨

˚

˚

˚

˝

`

F 1
j

˘1 ś

ℓ‰i,j F
1
ℓ

. . .
`

FN
j

˘1 ś

ℓ‰i,j F
N
ℓ

˛

‹

‹

‹

‚

, j ‰ i. (3.7)

To prove (3.6), we will show that the N ´ 1 vectors on the right-hand side of (3.7) span an pN ´ 1q-
dimensional subspace of RN which is obviously independent of si. Thus, its orthogonal complement is a
one-dimensional space which does not depend on si. To prove the claim about the dimension, we multiply
the N ´ 1 vectors on the right-hand side of (3.7) from the left by the non-degenerate matrix

diag
´

ź

ℓ‰i

F 1
ℓ , . . . ,

ź

ℓ‰i

FN
ℓ

¯´1

,

to obtain vectors
¨

˚

˚

˚

˝

`

F 1
j

˘1
{F 1

j

. . .
`

FN
j

˘1
{FN

j

˛

‹

‹

‹

‚

“
1

2

¨

˚

˚

˚

˝

`

f1j
˘1

{f1j

. . .
`

fNj
˘1

{fNj

˛

‹

‹

‹

‚

, j ‰ i.

Multiplying the latter vectors from the left by the non-degenerate matrix

diag
´

N
ź

ℓ“1

f1ℓ , . . . ,
N
ź

ℓ“1

fNℓ

¯

,
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we obtain vectors

1

2

¨

˚

˚

˚

˝

`

f1j
˘1 ś

ℓ‰j f
1
ℓ

. . .
`

fNj
˘1 ś

ℓ‰j f
N
ℓ

˛

‹

‹

‹

‚

“
1

2
Bjx, j ‰ i.

By definition of a coordinate system, the latter vectors are linearly independent and span an pN ´ 1q-
dimensional subspace of RN . This finishes the proof of Lemma 3.3.

Substituting (3.5) into the left-hand side of equation (3.4), we arrive at an expression which may be
represented as the polynomial

N
ÿ

k“1

pαk
1z1 ` βk

1 q ¨ ¨ ¨ pαk
NzN ` βk

N q

of degree N in N formal variables z1, . . . , zN , evaluated at zi “ Fipsiq. It is easy to deduce that the result
is a sum of functions of single variables, as in (3.4), if and only if in the above polynomial all monomials
of degree ě 2 vanish, leaving us with

N
ÿ

k“1

`

αk
1z1 ` βk

1

˘

¨ ¨ ¨
`

αk
NzN ` βk

N

˘

“

N
ÿ

i“1

ρizi ` c. (3.8)

We can identify the coefficients of the monomials of degree ď 1:

ρi “

N
ÿ

k“1

αk
i

ź

ℓ‰i

βk
ℓ , c “

N
ÿ

k“1

N
ź

ℓ“1

βk
ℓ ,

while the vanishing of the coefficients of all monomials of degree ě 2 can be expressed as a certain set of
equations for the coefficients αk

i , βk
i . As a result, (3.4) adopts the concrete form

N
ÿ

k“1

`

αk
1F1ps1q ` βk

1

˘

¨ ¨ ¨
`

αk
NFN psN q ` βk

N

˘

“

N
ÿ

i“1

ρiFipsiq ` c.

It turns out that the above mentioned equations for the coefficients αk
i , βk

i imply certain identities
involving functions of N ´ 1 variables.

Lemma 3.4. The following formulas hold true for all i “ 1, 2, . . . , N :

N
ÿ

k“1

αk
i

ź

ℓ‰i

F k
ℓ psℓq “ ρi. (3.9)

Proof. Differentiate equation (3.4), written as

N
ÿ

k“1

N
ź

ℓ“1

F k
ℓ psℓq “

N
ÿ

i“1

ρiFipsiq ` c,

with respect to si:
N
ÿ

k“1

`

F k
i

˘1
psiq

ź

ℓ‰i

F k
ℓ psℓq “ ρiF

1
i psiq.

Taking into account equation (3.5) and dividing by F 1
i ‰ 0, we arrive at (3.9).

Equations (3.9) describe coordinate hypersurfaces si “ const. Indeed, observe that, according to
(3.1) and to F k

i “
`

fki
˘2, these equations can be expressed as quadrics:

N
ÿ

k“1

αk
i

F k
i psiq

x2k “ ρi,
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or, equivalently, due to (3.5),
N
ÿ

k“1

x2k
ρiFipsiq ` ρiβk

i {αk
i

“ 1. (3.10)

In order to show that these quadrics for all i “ 1, . . . , N and for any values of si belong to a confocal
family

N
ÿ

k“1

x2k
λ` ak

“ 1,

it remains to show that, for any two indices k ‰ m from 1, . . . , N , the expressions

ρi

ˆ

βk
i

αk
i

´
βm
i

αm
i

˙

,

which should be equal to ak ´ am, do not depend on i. Upon setting in identity (3.8)

z1 “ ´
β

pk1q

1

α
pk1q

1

, . . . , zN “ ´
β

pkN q

N

α
pkN q

N

for an arbitrary permutation pk1, . . . , kN q of p1, . . . , Nq, which makes one of the factors in each term on
the left-hand side of (3.8) vanish, we arrive at

ρ1
β

pk1q

1

α
pk1q

1

` . . .` ρN
β

pkN q

N

α
pkN q

N

“ c.

Subtracting two such equations for two permutations, differing at only two positions i, j, where they take
values k, m and m, k, respectively, we arrive at

ρi
βk
i

αk
i

` ρj
βm
j

αm
j

“ ρi
βm
i

αm
i

` ρj
βk
j

αk
j

,

or

ρi

ˆ

βk
i

αk
i

´
βm
i

αm
i

˙

“ ρj

˜

βk
j

αk
j

´
βm
j

αm
j

¸

.

This is the desired result, since i and j are arbitrary.
We have demonstrated that the equations of the coordinate hypersurfaces of a factorized orthogonal

coordinate system (3.1) can be put as

N
ÿ

k“1

x2k
ui ` ak

“ 1, i “ 1, . . . , N, (3.11)

where the parameters ak are given by

ak “ ρi
βk
i

αk
i

` ci, k “ 1, . . . , N, (3.12)

with suitable constants ci (which ensure that the right-hand side of (3.12) does not depend on i), while
the quantities

ui “ uipsiq “ ρiFipsiq ´ ci, i “ 1, . . . , N

can be considered as the confocal coordinates of the points xpsq.
Observe that ak ‰ am for k ‰ m. Indeed, ak “ am would imply βk

i {αk
i “ βm

i {αm
i for all i. Due to

(3.5) this implies the proportionality F k
i psiq “ pαk

i {αm
i qFm

i psiq for all i, and finally xkpsq{xmpsq “ const.
This contradicts to x being a coordinate system. This finishes the proof of Theorem 3.1.

We remark that, since confocal quadrics of the same signature do not intersect, the N confocal
coordinates should belong to N disjoint intervals (2.2) (possibly, upon a re-numbering).



80 CHAPTER 2. DISCRETE CONFOCAL QUADRICS. II.

The statement converse to Theorem 3.1 is almost obvious. We know that for any confocal coordinate
system, equation (3.11) is equivalent to

x2
k “

śN
i“1pui ` akq

ś

i‰kpak ´ aiq
, k “ 1, . . . , N,

and positivity of these expressions is equivalent to (2.2). Thus, formulas for xk contain square roots
a

˘pui ` akq (see (2.6)). Suppose that these square roots are uniformized by the re-parametrization

`

fk
i psiq

˘2
“

$

&

%

ui ` ak, k ď i,

´
`

ui ` ak
˘

, k ą i.

The latter equations are consistent, if for any 1 ď i ď N the squares of the functions fk
i psiq, 1 ď k ď N ,

satisfy a system of N ´ 1 linear equations:
$

&

%

`

f1
i psiq

˘2
´
`

fk
i psiq

˘2
“ a1 ´ ak, k ď i,

`

f1
i psiq

˘2
`
`

fk
i psiq

˘2
“ a1 ´ ak, k ą i.

Under such a re-parametrization, formulas for confocal coordinates can be written as

xkpsq “

śN
j“1 f

k
j psjq

śk´1
i“1

?
ai ´ ak

śN
i“k`1

?
ak ´ ai

, k “ 1, . . . , N (3.13)

and, hence, the coordinate system factorizes. Note that (3.13) is equivalent to (3.1) modulo a scaling of
the functions fk

i .

4 Discrete orthogonality

We will use the discrete version of the characteristic properties from Theorem 3.1 to define discrete
confocal coordinate systems. These will be special nets defined on the square lattice of stepsize 1{2,

x : p 12Zq
N Ą U Ñ RN . (4.1)

The suitable notion of orthogonality is a novel one, introduced in [BSST1]. We denote by ei the unit
vector of the coordinate direction i.

Definition 4.1. A net (4.1) is called orthogonal if for each edge rn,n`eis, all 2N´1 vertices of the dual
facet,

xpn` 1
2σq for all σ “ pσ1, . . . , σN q P t˘1uN with σi “ 1,

lie in a hyperplane orthogonal to the line pxpnq,xpn` eiqq (see Fig. 4.1).

xpn` ekq

xpn´ 1
2ei ´

1
2ej `

1
2ekq xpn` 1

2ei ´
1
2ej `

1
2ekq

xpn` 1
2ei `

1
2ej `

1
2ekqxpn´ 1

2ei `
1
2ej `

1
2ekq

xpnq

Figure 4.1. Discrete orthogonality in dimension N “ 3.
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Note that the original definition from [BSST1] referred to pairs of nets defined on two dual lattices
ZN and pZ ` 1

2 qN . The lattice p 1
2ZqN contains 2N´1 pairs of dual sublattices of this type, namely

ZN ` 1
2δ and ZN ` 1

2 δ̄,

for any δ “ pδ1, . . . , δN q P t0, 1uN and δ̄ “ p1 ´ δ1, . . . , 1 ´ δN q P t0, 1uN .

Proposition 4.2. All elementary quadrilaterals

pxpnq,xpn ` ejq,xpn ` ej ` ekq,xpn ` ekqq (4.2)

of a generic orthogonal net are planar.

Proof. An elementary quadrilateral (4.2) can be considered as the intersection of N ´ 2 facets dual to
the edges

“

xpn ` 1
2

ÿ

ℓ‰i

eℓ ´ 1
2eiq,xpn ` 1

2

ÿ

ℓ‰i

eℓ ` 1
2eiq

‰

, i ‰ j, k

of the dual sublattice. Each of these N ´ 2 facets lies in a hyperplane. The intersection of N ´ 2

hyperplanes in RN is generically a two-dimensional plane.

Clearly, the definition of orthogonality can be equivalently formulated as follows: the two lines con-
taining any pair of dual edges are orthogonal:

`

xpnq,xpn ` eiq
˘

K
`

xpn ` 1
2σq,xpn ` 1

2σ ` ejq
˘

, (4.3)

where σ P t˘1uN is any N -tuple of signs with σi “ 1 and σj “ ´1 (and orthogonality is understood
in the sense of orthogonality of the direction vectors). From this it is easy to see that pairs of dual
sublattices actually play symmetric roles in the definition of orthogonality.

5 Discrete confocal coordinate systems

For discrete nets x : ZN Ą U Ñ RN , at any point n P U and for any coordinate direction j “ 1, . . . , N ,
there exist two natural discrete tangent vectors, ∆jxpnq “ xpn ` ejq ´ xpnq and ∆̄jxpnq “ xpnq ´

xpn´ejq. We call such a net a discrete coordinate system if at any n P U , the N discrete tangent vectors
(arbitrarily chosen among ∆jxpnq and ∆̄jxpnq for any j) are linearly independent.

A net x :
`

1
2Z

˘N
Ñ RN defined on the lattice of a half stepsize can be considered as consisting of 2N

subnets defined on sublattices ZN ` 1
2δ for δ P t0, 1uN , and we call it a discrete coordinate system if all

2N subnets satisfy the above condition.

Definition 5.1. A discrete coordinate system x :
`

1
2Z

˘N
Ą U Ñ RN is called a discrete confocal

coordinate system if it satisfies two conditions:

i) xpnq factorizes, in the sense that for any n P U
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x1pnq “ f11 pn1qf12 pn2q ¨ ¨ ¨ f1N pnN q,

x2pnq “ f21 pn1qf22 pn2q ¨ ¨ ¨ f2N pnN q,

. . .

xN pnq “ fN1 pn1qfN2 pn2q ¨ ¨ ¨ fNN pnN q,

(5.1)

with fki pniq ‰ 0 and ∆̄fki pniq “ fki pniq ´ fki pni ´ 1q ‰ 0;

ii) x is orthogonal in the sense of Definition 4.1.
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Theorem 5.2. For a discrete confocal coordinate system, there exist N real numbers ak, 1 ď k ď N ,
and N sequences ui : 1

2Z ` 1
4 Ñ R such that the following equations are satisfied for any n P U and for

any σ P t˘1uN :
N
ÿ

k“1

xkpnqxkpn ` 1
2σq

ak ` ui
“ 1, ui “ uipni ` 1

4σiq, i “ 1, . . . , N.

Equivalently,

xkpnqxkpn ` 1
2σq “

śN
j“1puj ` akq

ś

j‰kpak ´ ajq
, uj “ ujpnj ` 1

4σjq, k “ 1, . . . , N. (5.2)

Proof. Orthogonality condition (4.3) written in full reads:

N
ÿ

k“1

pfki pni ` 1q ´ fki pniqqfki pni ` 1
2 q ¨

pfkj pnj ` 1
2 q ´ fkj pnj ´ 1

2 qqfkj pnjq ¨
ź

ℓ‰i,j

fkℓ pnℓqf
k
ℓ pnℓ ` 1

2σℓq “ 0.

We introduce the quantities
F k
i pni ` 1

4 q “ fki pniqf
k
i pni ` 1

2 q,

assigned to the points of the lattice 1
2Z ` 1

4 , and the difference operator

∆
1{2F pnq “ F pn` 1

4 q ´ F pn´ 1
4 q.

With this notation, relation (5.3) takes the form

N
ÿ

k“1

∆
1{2F k

i pni ` 1
2 q ¨ ∆

1{2F k
j pnjq ¨

ź

ℓ‰i,j

F k
ℓ pnℓ ` 1

4σℓq “ 0.

Since it is supposed that this relation holds true for all n P p 1
2ZqN , we write it, omitting all arguments

due to their arbitrariness, as
N
ÿ

k“1

∆
1{2F k

i ¨ ∆
1{2F k

j ¨
ź

ℓ‰i,j

F k
ℓ “ 0. (5.4)

Now one sees immediately that the following analogues of Lemmas 3.2, 3.3 hold true in the discrete
context mutatis mutandis.

Lemma 5.3. Equation (5.4) is equivalent to

N
ÿ

k“1

F k
1 pn1 ` 1

4 q ¨ . . . ¨ F k
N pnN ` 1

4 q “ A1pn1q ` . . .`AN pnN q,

with some functions Aipniq.

Lemma 5.4. Assume that all fki ‰ 0 and ∆̄fki ‰ 0. Then, for each i “ 1, . . . , N there exists a function
Fipni ` 1

4 q such that
F k
i pni ` 1

4 q “ αk
i Fipni ` 1

4 q ` βk
i , k “ 1, . . . , N (5.5)

for some constants αk
i ‰ 0 and βk

i .

Proof. Note that the assumption of lemma is equivalent to ∆1{2F k
i ‰ 0. The statement of lemma is

equivalent to
¨

˝

∆1{2F 1
i pniq
. . .

∆1{2FN
i pniq

˛

‚P R

¨

˝

α1
i

. . .
αN
i

˛

‚. (5.6)
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To prove this, take equation (5.4) with all σℓ “ 1 and observe that, for any fixed i, it can be formulated
as the following N ´ 1 orthogonality conditions:

¨

˚

˚

˚

˝

∆1{2F 1
i

. . .

∆1{2FN
i

˛

‹

‹

‹

‚

K

¨

˚

˚

˚

˝

∆1{2F 1
j ¨

ś

ℓ‰i,j F
1
ℓ

. . .

∆1{2FN
j ¨

ś

ℓ‰i,j F
N
ℓ

˛

‹

‹

‹

‚

, j ‰ i. (5.7)

Multiplying the N ´ 1 vectors on the right-hand side from the left by the non-degenerate matrix

diag
´

ź

ℓ‰i

F 1
ℓ , . . . ,

ź

ℓ‰i

FN
ℓ

¯´1

,

we obtain vectors
¨

˚

˚

˚

˝

`

∆1{2F 1
j

˘

{F 1
j

. . .
`

∆1{2FN
j

˘

{FN
j

˛

‹

‹

‹

‚

, j ‰ i.

We have:
∆1{2F 1

j

F 1
j

“
pfkj pnj ` 1

2 q ´ fkj pnj ´ 1
2 qqfkj pnjq

fkj pnj ` 1
2 qfkj pnjq

“
∆̄jf

k
j pnj ` 1

2 q

fkj pnj ` 1
2 q

.

Multiplying the latter vectors from the left by the non-degenerate matrix

diag
´

N
ź

ℓ“1

f1ℓ pnℓ ` 1
2 q, . . . ,

N
ź

ℓ“1

fNℓ pnℓ ` 1
2 q

¯

,

we obtain vectors
∆̄jxpn ` 1

2σq, j ‰ i.

The latter vectors are linearly independent and span an pN ´ 1q-dimensional subspace of RN . Thus,
the vector on the left-hand side of (5.7) lies in the orthogonal complement of an pN ´ 1q-dimensional
subspace which is manifestly independent of ni. This orthogonal complement is a one-dimensional space
which does not depend on ni. This proves (5.6).

As a result, a discrete analogue of Lemma 3.4 holds true:
N
ÿ

k“1

αk
i

ź

ℓ‰i

F k
ℓ pnℓ ` 1

4σℓq “ ρi. (5.8)

Now observe that, according to F k
i pni ` 1

4 q “ fki pniqf
k
i pni ` 1

2 q, to (5.1), and to (5.5), equations (5.8)
can be expressed as follows:

N
ÿ

k“1

xkpnqxkpn ` 1
2σq

ρiFipni ` 1
4σiq ` ρiβk

i {αk
i

“ 1.

The same arguments as after equation (3.10) show that the expressions

ρi

ˆ

βk
i

αk
i

´
βm
i

αm
i

˙

,

which should be equal to ak ´ am, do not depend on i. Thus, we can set

ak “ ρi
βk
i

αk
i

` ci,

with suitable constants ci, and
uipni ` 1

4 q “ ρiFipni ` 1
4 q ´ ci.

Like in the continuous case, we show that ak ‰ am for k ‰ m. Indeed, ak “ am would imply
βk
i {αk

i “ βm
i {αm

i for all i. Due to (5.5) this implies the proportionality F k
i pni ` 1

4 q “ pαk
i {αm

i qFm
i pni ` 1

4 q

for all i. This, in turn, implies that xkpnqxkpn` 1
2σq{xmpnqxmpn` 1

2σq “ const for any σ P t˘1uN . As
a consequence, xkpnq{xmpnq “ const on any sublattice ZN ` 1

2δ with δ P t0, 1uN of the lattice p 1
2ZqN .

This contradicts to x being a discrete coordinate system. This finishes the proof of Theorem 5.2.
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Upon a re-numbering, we can assume that a1 ą a2 ą ¨ ¨ ¨ ą aN ą 0. Formula (5.2) shows that, as long
as the points xpnq and xpn ` 1

2σq stay in one hyperoctant like RN
` , the quantities ui “ uipni ` 1

2σiq lie
in the intervals (2.2). If the points xpnq and xpn ` 1

2σq lie on different sides of a coordinate hyperplane
xi “ 0 of x, the corresponding quantity ui is outside the corresponding interval.

It is convenient to re-scale the functions fkj pnjq in (5.1) by certain constant factors so that it takes
the form

xkpnq “

śN
j“1 f

k
j pnjq

śk´1
i“1

?
ai ´ ak

śN
i“k`1

?
ak ´ ai

, k “ 1, . . . , N. (5.9)

Thus, relations (5.2) give rise to the following theorem.

Theorem 5.5. For given sequences ui : 1
2Z ` 1

4 Ñ R, 1 ď i ď N , consider functions fki pniq as solutions
of the respective difference equations

fki pniqf
k
i pni ` 1

2 q “

$

&

%

uipni ` 1
4 q ` ak, k ď i,

´
`

uipni ` 1
4 q ` ak

˘

, k ą i.
(5.10)

Given a sequence ui, equations (5.10) define the functions fki , k “ 1, . . . , N uniquely by prescribing their
values at one point. Then, x defined by (5.9) constitutes a discrete confocal coordinate system. The
right-hand sides of equations (5.10) are positive as long as xpnq and xpn` 1

2 pe1 ` . . .` eN qq stay in one
hyperoctant of RN .

Formulas (5.10) may be regarded as a discrete parametrization of the variables ui. Another interpre-
tation of equations (5.10) (and the corresponding modus operandi) is as follows.

Theorem 5.6. For i “ 1, . . . , N , consider a system of N ´ 1 functional equations for functions fki pniq,
1 ď k ď N :

$

&

%

f1i pniqf
1
i pni ` 1

2 q ´ fki pniqf
k
i pni ` 1

2 q “ a1 ´ ak, k ď i,

f1i pniqf
1
i pni ` 1

2 q ` fki pniqf
k
i pni ` 1

2 q “ a1 ´ ak, k ą i.
(5.11)

For any solution of these N systems, the function x defined by (5.9) constitutes a discrete confocal
coordinate system. The corresponding values uipni ` 1

4 q are determined by equations (5.10).

Proof. We arrive at equations (5.11) by eliminating ui between equations (5.10). Note that equations
(5.11) do not depend on ui “ uipni ` 1

4 q. The latter can be determined a posteriori from any of equations
(5.10).

It is well known that functional equations (5.11) admit solutions in terms of trigonometric/hyperbolic
functions if N “ 2, and in terms of elliptic functions if N “ 3. We discuss these solutions in Sections 8,
9, respectively.

6 Geometric interpretation

The main formula from Theorem 5.2,

N
ÿ

k“1

xkpnqxkpn ` 1
2σq

ak ` ui
“ 1, ui “ uipni ` 1

4σiq, i “ 1, . . . , N, (6.1)

admits a remarkable geometric interpretation. Recall that the polarity with respect to a non-degenerate
quadric is a projective transformation between the points x P PN and the hyperplanes Π P pPN q˚. In
homogeneous coordinates, if the quadric Q is given by a quadratic form Qpxq “ 0, then the hyperplane Π

polar to a point x “ rx1 : . . . : xN`1s P PN with respect to Q consists of all points y “ ry1 : . . . : yN`1s P

PN satisfying Q̄px,yq “ 0, where Q̄ is the symmetric bilinear form corresponding to the quadratic form
Q. We write x “ PQpΠq and Π “ PQpxq. Returning to affine coordinates (with xN`1 “ 1), formula (6.1)
is equivalent to saying that
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the point xpn` 1
2σq lies in the intersection of the polar hyperplanes of xpnq with respect to the confocal

quadrics Qpuiq, i “ 1, . . . , N :

xpn` 1
2σq “

N
č

i“1

PQpuiqpxpnqq, ui “ uipni `
1
4σiq. (6.2)

Of course, the roles of xpnq and xpn` 1
2σq in this formula are completely symmetric.

This interpretation can be used to give a geometric construction of a discrete confocal coordinate
system x : p 12Zq

N Ą U Ñ RN , or, better, of its restriction to two dual sublattices like ZN and pZ` 1
2 q

N .
Suppose that for each i “ 1, . . . , N a sequence of quadrics of the confocal family (2.1) is chosen, with the
parameters

ui :
`

1
2Z` 1

4

˘

X Ii Ñ R,

indexed by a discrete variable ni `
1
4 P Ii, where ni P 1

2Z. It is convenient to think of uipni `
1
4 q as

being assigned to the interval rni, ni `
1
2 s, for which ni `

1
4 is the midpoint. We denote by V, V˚ the

parts of the respective lattices ZN , pZ ` 1
2 q

N lying in the region
śN

i“1 Ii. We construct a discrete net
x : V YV˚ Ñ RN recurrently, starting with an arbitrary point xpn0q, as long as the components of xpnq
are non-vanishing.

Construction (cf. Figure 6.1). Let n and n˚ be two neighboring points in the two dual sublattices,
in the sense that

n˚ “ n` 1
2σ, σ “ pσ1, . . . , σN q, σi “ ˘1.

Suppose that xpnq “ x is already known. Then xpn˚q “ x˚ is constructed as the intersection point of
the N polar hyperplanes

x˚ “ Cn, 12σ
pxq :“

N
č

i“1

PQpuiqpxq, ui “ uipni `
1
4σiq.

Figure 6.1. Geometric construction of x˚ in the case N “ 2 as the intersection of the polar lines
Π1 and Π2 of x with respect to the confocal conics Q1 and Q2.

In order to show that this construction is well defined, the following statement is required.

Proposition 6.1. The following diagram is commutative for any σ, σ̃ P t˘1uN :

RN

RN

RN

RN

Cn, 12σ

Cn` 1
2σ, 12 σ̃

Cn, 12 σ̃

Cn` 1
2 σ̃, 12σ

Thus, applying the above construction along a path depends only on the initial and the end points of the
path and not on the path itself.



86 CHAPTER 2. DISCRETE CONFOCAL QUADRICS. II.

Proof. Denote the right-hand side of (5.2) by

xkpnqxkpn` 1
2σq “ Bkpn,σq :“

śN
j“1pujpnj `

1
4σjq ` akq

ś

j‰kpak ´ ajq
.

Then the commutativity of the diagram is equivalent to

Bkpn` 1
2σ, σ̃q

Bkpn,σq
“

Bkpn` 1
2 σ̃,σq

Bkpn, σ̃q
, (6.3)

or
śN

j“1pujpnj `
1
2σj `

1
4 σ̃jq ` akq

śN
j“1pujpnj `

1
4σjq ` akq

“

śN
j“1pujpnj `

1
2 σ̃j `

1
4σjq ` akq

śN
j“1pujpnj `

1
4 σ̃jq ` akq

. (6.4)

For each j, we have either σ̃j “ σj , or σ̃j “ ´σj . In the first case, the corresponding factors in the
numerators of both sides of (6.4) are equal, as well as the corresponding factors in the denominators. In
the second case, the corresponding factors in the numerator and in the denominator on the left-hand side
are equal, and the same holds true for the corresponding factors in the numerator and in the denominator
on the right-hand side. This proves (6.3).

The discrete orthogonality property is now a consequence of the following lemma (cf. Figure 6.2).

Figure 6.2. Orthogonality in the case N “ 2: If P2 is related to P1 via polarity in two confocal
conics, that is, Π “ PQ1

pP1q and P2 “ PQ2
pΠq, then the line through P1 and P2 is orthogonal to Π.

Lemma 6.2. Let Π be a hyperplane. Then the poles of Π with respect to all quadrics of the confocal
family (2.1) lie on a line ℓ. This line ℓ is orthogonal to Π.

Proof. Let the equation of the hyperplane Π be
řN

k“1 ckxk “ 1, where c “ pc1, . . . , cN q is a normal vector
for Π. Take two quadrics of the confocal family, Q1 “ Qpuq and Q2 “ Qpvq. Set

P1 “ PQ1
pΠq “ py1, . . . , yN q and P2 “ PQ2

pΠq “ pz1, . . . , zN q.

Then we get the following two forms of the equation of the hyperplane Π:

N
ÿ

i“1

xiyi
ai ` u

“ 1 and
N
ÿ

i“1

xizi
ai ` v

“ 1.

Thus,
ci “

yi
ai ` u

“
zi

ai ` v
,

and, hence,
yi ´ zi “ cipai ` uq ´ cipai ` vq “ cipu´ vq,

so that the vector P2 ´P1 is proportional to c and therefore is orthogonal to Π. Thus, denoting by ℓ the
line which passes through P1 orthogonally to Π, we see that the pole P2 of the hyperplane Π with respect
to the quadric Q2 lies on ℓ. It remains to note that Q2 is an arbitrary quadric of the confocal family of
Q1.
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Theorem 6.3. The nets xpVq and xpV˚q are orthogonal in the sense of Definition 4.1.

Proof. From (6.2) it follows that, for a fixed index k, all points xpn` 1
2σq with σk “ 1 lie in the hyperplane

Π “ PQ1
pxpnqq, where Q1 “ Qpukpnk ` 1

4 qq. These points are exactly the vertices of the facet of xpV˚q

dual to the edge rxpnq,xpn ` ekqs of xpVq. Now, since

xpnq “ PQ1
pΠq, xpn ` ekq “ PQ2

pΠq,

where Q2 “ Qpukpnk ` 3
4 qq, it follows from Lemma 6.2 that the line pxpnq,xpn ` ekqq is orthogonal to

the hyperplane Π.

7 Discrete confocal coordinates in terms of gamma functions

There exists an important particular case when the difference equations (5.10) admit an explicit solution,
namely by the choice

uipni ` 1
4 q “ ni ` εi, i “ 1, . . . , N,

where εi P R are some fixed shifts. This can be considered to correspond to the smooth case (2.6) where
we take the quantities ui as coordinates without further re-parametrization. With this choice, equations
(5.10) turn into

fki pniqf
k
i pni ` 1

2 q “

$

&

%

ni ` ak ` εi, k ď i,

´
`

ni ` ak ` εi
˘

, k ą i.
(7.1)

These equations can be solved in terms of the “discrete square root” function defined as

puq1{2 “
Γpu` 1

2 q

Γpuq
,

which satisfies the identities

puq1{2pu` 1
2 q

1{2
“ u, p´uq1{2p´u´ 1

2 q
1{2

“ ´u´ 1
2 .

We can write solutions of (7.1) as

fki pniq “

$

&

%

pni ` ak ` εiq1{2 for i ě k,

p´ni ´ ak ´ εi ` 1
2 q

1{2
for i ă k.

One can impose boundary conditions

xk|nk“´αk
“ 0 for k “ 1, . . . , N,

xk|nk´1“´αk
“ 0 for k “ 2, . . . , N,

on the integer lattice ZN for certain integers α1 ą ¨ ¨ ¨ ą αN , which imitate the corresponding property
of the continuous confocal coordinates. These boundary conditions are satisfied provided that

ak ´ αk ` εk “ 0, ak ´ αk ` εk´1 “
1

2
,

for which the shifts εk should satisfy εk´1 ´ εk “ 1
2 . Choosing εk “ ´k

2 and ak “ αk ` k
2 , we finally

arrive at the solutions

fki pniq “

$

&

%

pni ` αk ` k´i
2 q

1{2
for i ě k,

p´ni ´ αk ´ k´i
2 ` 1

2 q
1{2

for i ă k.

These are the functions introduced and studied in [BSST1], as solutions of the discrete Euler-Darboux-
Poisson equations (cf. Appendix).
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8 The case N “ 21

8.1 Classical confocal coordinate systems

We have seen that, given the family of confocal conics

x2

a` λ
`

y2

b` λ
“ 1, (8.1)

the defining equations

x2

u` a
`

y2

u` b
“ 1,

x2

v ` a
`

y2

v ` b
“ 1 (8.2)

of confocal coordinates
␣

pu, vq : ´a ă u ă ´b ă v
(

on the plane give rise to the expressions

x2 “
pu` aqpv ` aq

a´ b
, y2 “

pu` bqpv ` bq

b´ a
.

For an arbitrary re-parametrization of the coordinate lines, u “ ups1q, v “ vps2q, we obtain

x “
f1ps1qf2ps2q

?
a´ b

, y “
g1ps1qg2ps2q

?
a´ b

, (8.3)

where
$

&

%

pf1ps1qq2 “ u` a,

pg1ps1qq2 “ ´pu` bq,

$

&

%

pf2ps2qq2 “ v ` a,

pg2ps2qq2 “ v ` b.
(8.4)

Elimination of u and v leads to

pf1ps1qq2 ` pg1ps1qq2 “ a´ b, (8.5)

pf2ps2qq2 ´ pg2ps2qq2 “ a´ b. (8.6)

The probably most obvious parametrization of solutions of these functional equations is by means of
trigonometric/hyperbolic functions:

f1ps1q “
?
a´ b cos s1, g1ps1q “

?
a´ b sin s1,

f2ps2q “
?
a´ b cosh s2 , g2ps2q “

?
a´ b sinh s2.

Accordingly, we obtain the representation

ˆ

x
y

˙

“
?
a´ b

ˆ

cos s1 cosh s2
sin s1 sinh s2

˙

(8.9)

of the confocal system of coordinates on the plane with the relation between pu, vq and ps1, s2q given by
(8.4). This coordinate system is depicted in Figure 8.1.

1Two more examples can be found in Appendix B.
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y

x

Figure 8.1. Two-dimensional classical confocal coordinate system (8.9) in terms of trigonometric
functions with a “ 2, b “ 1.

8.2 Discrete confocal coordinate systems

For any discrete set of confocal quadrics (8.1), indexed by upn1` 1
4 q P R and vpn2` 1

4 q P R with n1, n2 P 1
2Z,

we have introduced the discrete confocal quadrics defined by the equations of polarity relating nearest
neighbors xpnq and xpn ` 1

2σq:

xpnqxpn ` 1
2σq

upn1 ` 1
4σ1q ` a

`
ypnqypn ` 1

2σq

upn1 ` 1
4σ1q ` b

“ 1,

xpnqxpn ` 1
2σq

vpn2 ` 1
4σ2q ` a

`
ypnqypn ` 1

2σq

vpn2 ` 1
4σ2q ` b

“ 1.

This is equivalent to

xpnqxpn ` 1
2σq “

`

upn1 ` 1
4σ1q ` a

˘`

vpn2 ` 1
4σ2q ` a

˘

a´ b
,

ypnqypn ` 1
2σq “

`

upn1 ` 1
4σ1q ` b

˘`

vpn2 ` 1
4σ2q ` b

˘

a´ b
.

According to Theorem 5.5, we can resolve this as follows:

xpnq “
f1pn1qf2pn2q

?
a´ b

, ypnq “
g1pn1qg2pn2q

?
a´ b

, (8.11)

where
$

&

%

f1pn1qf1pn1 ` 1
2 q “ upn1 ` 1

4 q ` a,

g1pn1qg1pn1 ` 1
2 q “ ´

`

upn1 ` 1
4 q ` b

˘

,
(8.12)

$

&

%

f2pn2qf2pn2 ` 1
2 q “ vpn2 ` 1

4 q ` a,

g2pn2qg2pn2 ` 1
2 q “ vpn2 ` 1

4 q ` b.
(8.13)
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Parametrization in terms of gamma functions. A solution of equations (8.12), (8.13) found
in [BSST1] is given by a “ α ` 1

2 , b “ β ` 1,

$

&

%

f1pn1q “ pn1 ` αq1{2,

g1pn1q “ p´n1 ´ βq1{2,

$

&

%

f2pn2q “ pn2 ` α ´ 1
2 q1{2,

g2pn2q “ pn2 ` βq1{2,

so that
¨

˝

xpnq

ypnq

˛

‚“
1

b

α ´ β ´ 1
2

¨

˝

pn1 ` αq1{2 pn2 ` α ´ 1
2 q1{2

p´n1 ´ βq1{2 pn2 ` βq1{2

˛

‚.

Parametrization in terms of trigonometric/hyperbolic functions. We obtain functional
equations satisfied by the functions fi, gi by eliminating upn1 ` 1

4 q and vpn2 ` 1
4 q from equations (8.12),

(8.13):

f1pn1qf1pn1 ` 1
2 q ` g1pn1qg1pn1 ` 1

2 q “ a´ b, (8.14)

f2pn2qf2pn2 ` 1
2 q ´ g2pn2qg2pn2 ` 1

2 q “ a´ b. (8.15)

By virtue of the addition theorems for trigonometric and hyperbolic functions, one easily finds solutions
to these functional equations which approximate functions (8.7), (8.8):

f1pn1q “

d

a´ b

cos δ1
2

cospδ1n1 ` c1q, g1pn1q “

d

a´ b

cos δ1
2

sinpδ1n1 ` c1q, (8.16)

and

f2pn2q “

d

a´ b

cosh δ2
2

coshpδ2n2 ` c2q, g2pn2q “

d

a´ b

cosh δ2
2

sinhpδ2n2 ` c2q. (8.17)

Thus,
ˆ

xpnq

ypnq

˙

“

d

a´ b

cos δ1
2 cosh δ2

2

ˆ

cospδ1n1 ` c1q coshpδ2n2 ` c2q

sinpδ1n1 ` c1q sinhpδ2n2 ` c2q

˙

. (8.18)

The discrete coordinate curves n2 “ const are to be interpreted as discrete ellipses. In order that they
be closed curves, it is necessary to choose the lattice parameter δ1 according to

δ1 “
2π

m
, m P N.

One obtains a picture which is symmetric with respect to the coordinate axes if c1 “ c2 “ 0. The
parameters upn1 ` 1

4 q and vpn2 ` 1
4 q of the associated lattice of continuous confocal quadrics (8.2) are

obtained from (8.12), (8.13) and (8.16), (8.17).
Figures 8.2–8.4 display a discrete confocal coordinate system for a “ 2, b “ 1, m “ 2 and δ2 “

δ1. In the continuous case encoded in the parametrisation (8.9), the foci on the x-axis correspond to
ps1, s2q “ p0, 0q and ps1, s2q “ pπ, 0q. Their discrete analogs in the sublattice Z2 in Figure 8.3 (top)
correspond to pn1, n2q “ p0, 0q resp. pn1, n2q “ p4, 0q. The valence of these points is 2, as opposed to
the regular points of valence 4. In the sublattice pZ ` 1

2 q2, the analogs of the foci are the “focal edges”
connecting pairs of neighboring points of valence 3. For instance, the analog of the right focus is the
edge rxp 1

2 ,
1
2 q,xp 1

2 ,´
1
2 qs. In the sublattices Z ˆ pZ ` 1

2 q and pZ ` 1
2 q ˆ Z, the analogs of the foci are

the double points like xp0, 12 q “ xp0,´ 1
2 q and xp 1

2 , 0q “ xp´ 1
2 , 0q, both having valence 3 (see Figure 8.3,

bottom). Figure 8.4 shows the confocal conics participating in the polarity relations of a discrete confocal
coordinate system (8.18).
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y

x

Figure 8.2. Two-dimensional discrete confocal coordinate system (8.18) on
`

1
2Z

˘2 in terms of
trigonometric/hyperbolic functions with a “ 2, b “ 1, m “ 8, δ1 “ δ2 “ 2π

m , c1 “ c2 “ 0.
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y

x

y

x

Figure 8.3. Pairs of dual orthogonal sublattices. Gray points show discrete confocal coordinates
(8.18) on

`

1
2Z

˘2 with a “ 2, b “ 1, m “ 8, δ1 “ δ2 “ 2π
m , c1 “ c2 “ 0. (top) Sublattice on Z2 in blue

and on
`

Z ` 1
2

˘2 in red. (bottom) Sublattice on Z ˆ pZ ` 1
2 q in blue and on pZ ` 1

2 q ˆ Z in pink.
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y

x

y

x

Figure 8.4. Polarity relation for discrete confocal conics. Gray points show discrete confocal
coordinates (8.18) on

`

1
2Z

˘2 with a “ 2, b “ 1, m “ 8, δ1 “ δ2 “ 2π
m . The corresponding classical

confocal conics which give rise to the polarity relation between gray points are shown in orange (for
the values u

`

n1 ` 1
4

˘

) and green (for the values v
`

n2 ` 1
4

˘

). (left) Symmetric case with c1 “ c2 “ 0.
All orange conics are hyperbolas and all green conics are ellipses. Note that near the coordinate
axes those conics become degenerate and the polarity relation is not injective anymore. (right)
Asymmetric case with c1 “ 0.1, c2 “ 0.3. Moving along the n2-direction, the polarity across the
y-axis is established by a conic with value u

`

n1 ` 1
4

˘

ă ´a, which is purely imaginary, while the
polarity across the x-axis is established by a conic with value u

`

n1 ` 1
4

˘

ą ´b, which is an ellipse.

8.3 Parametrization by elliptic functions

The trigonometric/hyperbolic parametrization (8.7), (8.8) is not the only explicit solution to the func-
tional equations (8.5), (8.6). One can find further ones in terms of elliptic functions. For instance,
equation (8.5) admits the solution

f1ps1q “
?
a´ b cnps1, k1q, g1ps1q “

?
a´ b snps1, k1q (8.19)
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with an arbitrary modulus k1 (with (8.7) being the limiting case k1 Ñ 0), or the solution

f1ps1q “
?
a´ b dnps1, k1q, g1ps1q “

?
a´ b k1 snps1, k1q. (8.20)

Similarly, equation (8.6) admits the solution

f2ps2q “
?
a´ b

1

dnps2, k2q
, g2ps2q “

?
a´ b

k2 snps2, k2q

dnps2, k2q
(8.21)

with an arbitrary modulus k2 (with the limiting case (8.8) as k2 Ñ 1). Further examples of solutions of
(8.6) are:

f2ps2q “
?
a´ b

1

snps2, k2q
, g2ps2q “

?
a´ b

cnps2, k2q

snps2, k2q
, (8.22)

or

f2ps2q “
?
a´ b

1

k1
2

dnps2, k2q, g2ps2q “
?
a´ b

k2
k1
2

cnps2, k2q, (8.23)

where k1
2 “

a

1 ´ k22. All such solutions can be seen as based on relations between squares of theta
functions, and are connected by simple transformations in the complex domain, but they have rather
different properties in the real domain. For instance, in (8.21) one of the participating functions is odd
and another is even, while in (8.22) both functions are odd and in (8.23) both functions are odd. On
the other hand, in (8.21) and in (8.22) both participating functions have no singularities on the real axis,
while in (8.23) both have simple poles at s2 “ 2Kpk2q. Thus, the corresponding parametrizations of the
confocal coordinates cover different regions of the plane R2 and have, in principle, different geometric
features.

It turns out that any solution of the quadratic relations (8.5), (8.6) admits a corresponding solution
of the bilinear relations (8.14), (8.15), the latter approximating the former in the continuum limit. These
solutions can be derived with the help of the addition formulas for the theta functions (or for the Jacobi
elliptic functions). As an example, we mention the addition formulas

cnps, kq cnps` η, kq ` snps, kq snps` η, kq dnpη, kq “ cnpη, kq,

dnps, kq dnps` η, kq ` k2 snps, kq snps` η, kq cnpη, kq “ dnpη, kq,

which constitute bilinear analogs of the identities

cn2ps, kq ` sn2ps, kq “ 1,

dn2ps, kq ` k2 sn2ps, kq “ 1.

As a consequence, we find the following two solutions of the functional equation (8.14):

f1pn1q “ α cnpδn1 ` c1, k1q, g1pn1q “ β snpδn1 ` c1, k1q,

where

α “

d

a´ b

cnp δ
2 , k1q

, β “

d

pa´ bq
dnp δ

2 , k1q

cnp δ
2 , k1q

,

and
f1pn1q “ α dnpδn1 ` c1, k1q, g1pn1q “ β snpδn1 ` c1, k1q,

where

α “

d

a´ b

dnp δ
2 , kq

, β “ k1

d

pa´ bq
cnp δ

2 , kq

dnp δ
2 , kq

.

They approximate solutions (8.19), resp. (8.20) in the continuum limit δ Ñ 0.
In the following two sections, we will consider in detail two parametrizations of the continuous and

discrete confocal coordinate systems of this kind with very remarkable geometric properties.
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8.4 Confocal coordinates outside of an ellipse,
diagonally related to a straight line coordinate system

Continuous case

Consider a coordinate system (8.3) with

f1ps1q “ α1 snps1, kq, g1ps1q “ β1 cnps1, kq,

f2ps2q “ α2
dnps2, kq

cnps2, kq
, g2ps2q “ β2

1

cnps2, kq
,

(8.24)

where s1 P r0, 2Kpkqs and s2 P r0,Kpkqq, and the amplitudes α1, β1, α2 and β2 are chosen as follows:

α1 “ β1 “
?
a´ b, α2 “

1

k

?
a´ b, β2 “

k1

k

?
a´ b,

where k1 “
?
1 ´ k2. Observe that the modulus k in both pairs pf1, g1q and pf2, g2q is chosen to be the

same. The remarkable geometric property mentioned above is this (cf. Figure 8.5):

Proposition 8.1. In the coordinate system (8.3), (8.24), the points px, yq with s1 ` s2 “ ξ “ const lie
on straight lines. The same is true for points px, yq with s2 ´ s1 “ η “ const. Moreover, all these lines
are tangent to the ellipse

E0 :
x2

a0
`
y2

b0
“ 1,

where

a0 “
1

k2
pa´ bq, b0 “

pk1q2

k2
pa´ bq.

This ellipse belongs to the confocal family (8.1).

Proof. Due to the fact that the functions f2, g2 are even with respect to s2, it is enough to demonstrate
the second statement. We set s2 “ s1 ` η and use addition theorems for elliptic functions to derive:

xps1, s1 ` ηq “

?
a´ b

k

snps1q dnps1q dnpηq ´ k2 sn2ps1q cnps1q snpηq cnpηq

cnps1q cnpηq ´ snps1q dnps1q snpηq dnpηq
,

yps1, s1 ` ηq “
k1

?
a´ b

k

cnps1q ´ k2 sn2ps1q cnps1q sn2pηq

cnps1q cnpηq ´ snps1q dnps1q snpηq dnpηq
.

For these points, equation Ax`By “ C is satisfied with

?
a´ b

k
A “ ´C snpηq,

k1
?
a´ b

k
B “ C cnpηq.

Obviously, for any η the coefficients A,B,C satisfy

a0

ˆ

A

C

˙2

` b0

ˆ

B

C

˙2

“ 1

and the quantities a0, b0 obey a0 ´ b0 “ a´ b.
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y

x

Figure 8.5. Two-dimensional continuous confocal coordinate system (8.3), (8.24) with a “ 2, b “ 1,
k “ 0.9. Points with s1 `s2 “ const as well as points with s1 ´s2 “ const lie on straight lines which
are tangent to an ellipse E0. The parametrization is only defined outside E0.

Discrete case and “elliptic” IC-nets

A solution of the functional equations (8.14) and (8.15) which approximates (8.24) in the continuum limit
δ Ñ 0, is given by

f1pn1q “ α̂1 snpδn1 ` c1, kq, g1pn1q “ β̂1 cnpδn1 ` c1, kq,

f2pn2q “ α̂2
dnpδn2 ` c2, kq

cnpδn2 ` c2, kq
, g2pn2q “ β̂2

1

cnpδn2 ` c2, kq
.

(8.25)

Using addition theorems for elliptic functions, we easily see that this is a solution if

α̂1 “

d

pa´ bq
dnp δ

2 , kq

cnp δ
2 , kq

, β̂1 “

d

a´ b

cnp δ
2 , kq

,

and
α̂2 “

1

k
α̂1, β̂2 “

k1

k
β̂1.

Here, the constants δ, k, c1, c2 are arbitrary except that 0 ă k2 ă 1 and cnp δ
2 , kq ą 0. However, for reasons

of symmetry and closure, one should choose c1 “ c2 “ 0 and

δ “
Kpkq

m
, m P 1

2N,

so that the parameters ni may be restricted to n1 P r´2m, 2ms and n2 P r0,m´ 1
2 s. The same computation

as in the previous section allows us to show (cf. Figure 8.6):

Proposition 8.2. The points px, yq with n1 ` n2 “ ξ “ const lie on straight lines. The same is true for
points px, yq with n1 ´ n2 “ η “ const. Moreover, all these lines are tangent to the ellipse

Ê0 :
x2

â0
`
y2

b̂0
“ 1,
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where

â0 “ pa´ bq
1

k2
dn2p δ

2 , kq

cn2p δ
2 , kq

, b̂0 “ pa´ bq
pk1q2

k2
1

cn2p δ
2 , kq

.

This ellipse belongs to the confocal family (8.1), since â0 ´ b̂0 “ a´ b.

y

x

Figure 8.6. Two-dimensional discrete confocal coordinate system (8.11), (8.25) on
`

1
2Z

˘2 with
a “ 2, b “ 1, k “ 0.9, m “ 3, c1 “ c2 “ 0. Points with n1 ` n2 “ const as well as points with
n1 ´ n2 “ const lie on straight lines which are tangent to an ellipse. The parametrization is only
defined outside this ellipse.

Consider the case c2 “ 0. Then a short computation shows that the vertices of the innermost
discrete ellipse xpn1, 0q lie on the ellipse Ê0. The tangent line to Ê0 at the point xpn1, 0q contains the
vertices xpn1 ` m,mq and xpn1 ´ m,mq, m P 1

2Zě0. In particular, this tangent line contains the edge
rxpn1 ` 1

2 ,
1
2 q,xpn1 ´ 1

2 ,
1
2 qs. In other words, the innermost discrete ellipse n2 “ 0 is inscribed in Ê0, while

the neighboring discrete ellipse n2 “ 1
2 is circumscribed about Ê0, with the points of contact being the

vertices of the discrete ellipse n2 “ 0 (cf. Figure 8.7).
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y
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Figure 8.7. Gray points show discrete confocal coordinates (8.11), (8.25) on
`

1
2Z

˘2 with a “ 2,
b “ 1, k “ 0.9, m “ 2, c1 “ c2 “ 0. The two dual sublattices on Z2 and on

`

Z ` 1
2

˘2 are shown
in blue and in red, respectively. The innermost blue discrete ellipse, corresponding to n2 “ 0, is
inscribed in Ê0, while the neighboring red discrete ellipse, corresponding to n2 “ 1

2 , is circumscribed
about Ê0.

A further important observation is that the points (8.11) with f1, f2, g1, g2 given by (8.25) upon an
affine transformation

px, yq ÞÑ pαx, βyq with α “
cnp δ

2 , kq

dnp δ
2 , kq

, β “ cnp δ
2 , kq (8.26)

lie on continuous conics given by the parametrization (8.24), i.e., on conics of the original confocal familiy
(8.1). By the Theorem of Graves-Chasles (see [AB]), all elementary quadrilaterals of the diagonal net upon
this affine transformation become circumscribed around circles. This means that the discrete confocal
quadrics with the parametrization (8.11), (8.25) constitute affine images of “incircular nets” (IC-nets)
studied in [AB]. An additional computation sketched in [BSST2] shows that, amazingly, the centers of
all incircles coincide with the original points of the discrete confocal coordinate system.

Remark 8.1. As mentioned in [BSST1, Appendix A], the nets comprised by discrete quadrics, xpZ ˆ Zq,
xppZ` 1

2 q ˆ pZ` 1
2 qq, as well as xpZˆ pZ` 1

2 qq, xppZ` 1
2 q ˆZq (all of them being subnets of the incircle

centers of an IC-net), are circular conical Koenigs nets. Note that the statement from [BSST1, Appendix
A] that these nets are not separable, made on the basis of numerical experiments, was not correct.
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y

x

Figure 8.8. Grey points show discrete confocal coordinates (8.11), (8.25) on
`

1
2Z

˘2 with a “ 2,
b “ 1, k “ 0.9, m “ 3, c1 “ c2 “ 0. Green points show the net after the affine transformation (8.26).
The straight lines through the transformed net constitute two incircular nets. The grey points are
the centers of the incircles.

8.5 Confocal coordinates outside of a hyperbola,
diagonally related to a straight line coordinate system

Continuous case

Similar properties to those mentioned above has the following coordinate system:

f1ps1q “ α1 snps1, kq, g1ps1q “ β1 dnps1, kq,

f2ps2q “ α2
1

snps2, kq
, g2ps2q “ β2

cnps2, kq

snps2, kq
,

(8.27)

where

α1 “ k
?
a´ b, α2 “ β1 “ β2 “

?
a´ b.

Proposition 8.3. In the coordinate system (8.3), (8.27), the points px, yq with s1 ` s2 “ ξ “ const lie
on straight lines. The same is true for points px, yq with s2 ´ s1 “ η “ const. Moreover, all these lines
are tangent to the hyperbola (cf. Figure 8.9)

H0 :
x2

a0
´
y2

c0
“ 1,

where

a0 “ k2pa´ bq, c0 “ p1 ´ k2qpa´ bq.

This hyperbola belongs to the confocal family (8.1).

Proof. Due to the fact that the functions f2, g2 are odd with respect to s2, it is enough to demonstrate
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the second statement. We set s2 “ s1 ` η and use addition theorems for elliptic functions to derive:

xps1, s1 ` ηq “ k
?
a´ b

snps1q
`

1 ´ k2 sn2ps1q sn2pηq
˘

snps1q cnpηq dnpηq ` cnps1q dnps1q snpηq
,

yps1, s1 ` ηq “
?
a´ b

dnps1q
`

cnps1q cnpηq ´ snps1q dnps1q snpηq dnpηq
˘

snps1q cnpηq dnpηq ` cnps1q dnps1q snpηq
.

For these points, equation Ax`By “ C is satisfied with

Ak
?
a´ b cnpηq “ C dnpηq, B

?
a´ b cnpηq “ C snpηq.

Obviously, for any η the coefficients A,B,C satisfy

a0

ˆ

A

C

˙2

´ c0

ˆ

B

C

˙2

“
dn2pηq

cn2pηq
´

p1 ´ k2q sn2pηq

cn2pηq
“ 1

and the quantities a0, c0 obey a0 ` c0 “ a´ b.

y

x

Figure 8.9. Two-dimensional continuous confocal coordinate system (8.3), (8.27) with a “ 2, b “ 1,
k “ 0.9. Points with s1 `s2 “ const as well as points with s1 ´s2 “ const lie on straight lines which
are tangent to a hyperbola H0. The parametrization is only defined outside H0.

Discrete case and “hyperbolic” IC-nets

A solution of (8.14), (8.15) which approximates (8.27) in the continuum limit δ Ñ 0 reads:

f1pn1q “ α̂1 snpδn1 ` c1, kq, g1pn1q “ β̂1 dnpδn1 ` c1, kq,

f2pn2q “ α̂2
1

snpδn2 ` c2, kq
, g2pn2q “ β̂2

cnpδn2 ` c2, kq

snpδn2 ` c2, kq
,

(8.28)

where

α̂2 “
1

k
α̂1 “

d

pa´ bq
cnp δ

2 , kq

dnp δ
2 , kq

, β̂2 “ β̂1 “

d

a´ b

dnp δ
2 , kq

.



8. THE CASE N “ 2 101

Proposition 8.4. The points px, yq with n1 ` n2 “ ξ “ const lie on straight lines. The same is true for
points px, yq with n2 ´ n1 “ η “ const. Moreover, all these lines are tangent to the hyperbola (cf. Figure
8.10)

Ĥ0 :
x2

â0
´
y2

ĉ0
“ 1,

where

â0 “ pa´ bqk2
cn2p δ

2 , kq

dn2p δ
2 , kq

, ĉ0 “ pa´ bqp1 ´ k2q
1

dn2p δ
2 , kq

.

This hyperbola belongs to the confocal family (8.1), since â0 ` ĉ0 “ a´ b.

y

x

Figure 8.10. Two-dimensional discrete confocal coordinate system (8.11), (8.25) on
`

1
2Z

˘2 with
a “ 2, b “ 1, k “ 0.9, m “ 3, c1 “ c2 “ 0. Points with n1 ` n2 “ const as well as points with
n1 ´ n2 “ const lie on straight lines which are tangent to a hyperbola. The parametrization is only
defined outside this hyperbola.

An affine transformation converting the discrete confocal system (8.11) with (8.28) into “hyperbolic”
IC-nets is characterized by

px, yq ÞÑ pαx, βyq with α “
dnp δ

2 , kq

cnp δ
2 , kq

, β “ dnp δ
2 , kq.
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9 The case N “ 3

9.1 Classical confocal coordinate systems

The defining equations

x2

u` a
`

y2

u` b
`

z2

u` c
“ 1,

x2

v ` a
`

y2

v ` b
`

z2

v ` c
“ 1,

x2

w ` a
`

y2

w ` b
`

z2

w ` c
“ 1

(9.1)

of confocal coordinates
␣

pu, v, wq : ´a ă u ă ´b ă v ă ´c ă w
(

in three dimensions give rise to the
expressions

x2 “
pu` aqpv ` aqpw ` aq

pa´ bqpa´ cq
,

y2 “
pu` bqpv ` bqpw ` bq

pb´ aqpb´ cq
,

z2 “
pu` cqpv ` cqpw ` cq

pc´ aqpc´ bq
.

For an arbitrary re-parametrization of the coordinate lines we obtain:

x “
f1ps1qf2ps2qf3ps3q
a

pa´ bqpa´ cq
, y “

g1ps1qg2ps2qg3ps3q
a

pa´ bqpb´ cq
, z “

h1ps1qh2ps2qh3ps3q
a

pa´ cqpb´ cq
,

where
$

’

’

&

’

’

%

pf1ps1qq2 “ u` a,

pg1ps1qq2 “ ´pu` bq,

ph1ps1qq2 “ ´pu` cq,

$

’

’

&

’

’

%

pf2ps2qq2 “ v ` a,

pg2ps2qq2 “ v ` b,

ph2ps2qq2 “ ´pv ` cq,

$

’

’

&

’

’

%

pf3ps3qq2 “ w ` a,

pg3ps3qq2 “ w ` b,

ph3ps3qq2 “ w ` c.

Elimination of u, v and w leads to functional equations
$

&

%

pf1ps1qq2 ` pg1ps1qq2 “ a´ b,

pf1ps1qq2 ` ph1ps1qq2 “ a´ c,

$

&

%

pf2ps2qq2 ´ pg2ps2qq2 “ a´ b,

pf2ps2qq2 ` ph2ps2qq2 “ a´ c,
$

&

%

pf3ps3qq2 ´ pg3ps3qq2 “ a´ b,

pf3ps3qq2 ´ ph3ps3qq2 “ a´ c.

There exists a solution parametrized in terms of Jacobi elliptic functions:

f1ps1q “
?
a´ b snps1, k1q, g1ps1q “

?
a´ b cnps1, k1q, h1ps1q “

?
a´ b

dnps1, k1q

k1
,

f2ps2q “
?
b´ c

dnps2, k2q

k2
, g2ps2q “

?
b´ c cnps2, k2q, h2ps2q “

?
b´ c snps2, k2q,

f3ps3q “
?
a´ c

1

snps3, k3q
, g3ps3q “

?
a´ c

dnps3, k3q

snps3, k3q
, h3ps3q “

?
a´ c

cnps3, k3q

snps3, k3q
,

where the moduli of the elliptic functions are defined by

k21 “
a´ b

a´ c
, k22 “

b´ c

a´ c
“ 1 ´ k21, k3 “ k1.

Hence, we obtain the representation
¨

˝

x
y
z

˛

‚“
?
a´ c

¨

˝

snps1, k1q dnps2, k2q nsps3, k3q

cnps1, k1q cnps2, k2q dsps3, k3q

dnps1, k1q snps2, k2q csps3, k3q

˛

‚ (9.3)
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of confocal coordinate systems in 3-space. If Kpkq denotes the complete elliptic integral of the first kind,
which constitutes the quarter-period of snps, kq, then the parameters may be restricted to s1 P r0, 4Kpk1qs,
s2 P r0, 4Kpk2qs and s3 P p0, 2Kpk3qq. Three corresponding coordinate surfaces are depicted in Figure 9.1.

Figure 9.1. Three-dimensional classical confocal coordinate system (9.3) in terms of Jacobi elliptic
functions with a “ 8, b “ 4, c “ 0. One quadric of each signature is shown.

9.2 Discrete confocal coordinate systems

For any discrete set of confocal quadrics (9.1), indexed by upn1 ` 1
4 q, vpn2 ` 1

4 q, and wpn3 ` 1
4 q, we have

introduced the discrete confocal quadrics defined by the equations of polarity relating nearest neighbors
xpnq and xpn ` 1

2σq:

xpnqxpn ` 1
2σq

upn1 ` 1
4σ1q ` a

`
ypnqypn ` 1

2σq

upn1 ` 1
4σ1q ` b

`
zpnqzpn ` 1

2σq

upn1 ` 1
4σ1q ` c

“ 1,

xpnqxpn ` 1
2σq

vpn2 ` 1
4σ2q ` a

`
ypnqypn ` 1

2σq

vpn2 ` 1
4σ2q ` b

`
zpnqzpn ` 1

2σq

vpn2 ` 1
4σ2q ` c

“ 1,

xpnqxpn ` 1
2σq

wpn3 ` 1
4σ3q ` a

`
ypnqypn ` 1

2σq

wpn3 ` 1
4σ3q ` b

`
zpnqzpn ` 1

2σq

wpn3 ` 1
4σ3q ` c

“ 1.

This is equivalent to

xpnqxpn ` 1
2σq “

`

upn1 ` 1
4σ1q ` a

˘`

vpn2 ` 1
4σ2q ` a

˘`

wpn3 ` 1
4σ3q ` a

˘

pa´ bqpa´ cq
,

ypnqypn ` 1
2σq “

`

upn1 ` 1
4σ1q ` b

˘`

vpn2 ` 1
4σ2q ` b

˘`

wpn3 ` 1
4σ3q ` b

˘

pb´ aqpb´ cq
,

zpnqzpn ` 1
2σq “

`

upn1 ` 1
4σ1q ` c

˘`

vpn2 ` 1
4σ2q ` c

˘`

wpn3 ` 1
4σ3q ` c

˘

pc´ aqpc´ bq
.
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According to Theorem 5.5, these equations can be resolved as follows:

xpnq “
f1pn1qf2pn2qf3pn3q
a

pa´ bqpa´ cq
, ypnq “

g1pn1qg2pn2qg3pn3q
a

pa´ bqpb´ cq
, zpnq “

h1pn1qh2pn2qh3pn3q
a

pa´ cqpb´ cq
, (9.4)

where
$

’

’

’

&

’

’

’

%

f1pn1qf1pn1 ` 1
2 q “ upn1 ` 1

4 q ` a,

g1pn1qg1pn1 ` 1
2 q “ ´pupn1 ` 1

4 q ` bq,

h1pn1qh1pn1 ` 1
2 q “ ´pupn1 ` 1

4 q ` cq,

$

’

’

’

&

’

’

’

%

f2pn2qf2pn2 ` 1
2 q “ vpn2 ` 1

4 q ` a,

g2pn2qg2pn2 ` 1
2 q “ vpn2 ` 1

4 q ` b,

h2pn2qh2pn2 ` 1
2 q “ ´pvpn2 ` 1

4 q ` cq,

$

’

’

’

&

’

’

’

%

f3pn3qf3pn3 ` 1
2 q “ wpn3 ` 1

4 q ` a,

g3pn3qg3pn3 ` 1
2 q “ wpn3 ` 1

4 q ` b,

h3pn3qh3pn3 ` 1
2 q “ wpn3 ` 1

4 q ` c.

(9.5)

The solution of equations (9.5) in terms of gamma functions found in [BSST1] and reproduced for general
N in Section 7, is given (in the first octant) by

$

’

’

&

’

’

%

f1pn1q “ pn1 ` αq1{2,

g1pn1q “ p´n1 ´ βq1{2,

h1pn1q “ p´n1 ´ γ ´ 1
2 q

1{2
,

$

’

’

&

’

’

%

f2pn2q “ pn2 ` α ´ 1
2 q

1{2
,

g2pn2q “ pn2 ` βq1{2,

h2pn2q “ p´n2 ´ γq1{2,

$

’

’

&

’

’

%

f3pn3 “ pn3 ` α ´ 1q1{2,

g3pn3q “ pn3 ` β ´ 1
2 q

1{2
,

h3pn3q “ pn3 ` γq1{2,

with α ą β ą γ being three integers, and with the identification

a “ α ` 1
2 , b “ β ` 1, c “ γ ` 3

2 .

On the other hand, the construction in Theorem 5.6 can be specialized in the case N “ 3 as follows:
the nine functions fipniq, gipniq, hipniq satisfy the functional equations

$

&

%

f1pn1qf1pn1 ` 1
2 q ` g1pn1qg1pn1 ` 1

2 q “ a´ b,

f1pn1qf1pn1 ` 1
2 q ` h1pn1qh1pn1 ` 1

2 q “ a´ c,

$

&

%

f2pn2qf2pn2 ` 1
2 q ´ g2pn2qg2pn2 ` 1

2 q “ a´ b,

f2pn2qf2pn2 ` 1
2 q ` h2pn2qh2pn2 ` 1

2 q “ a´ c,
$

&

%

f3pn3qf3pn3 ` 1
2 q ´ g3pn3qg3pn3 ` 1

2 q “ a´ b,

f3pn3qf3pn3 ` 1
2 q ´ h3pn3qh3pn3 ` 1

2 q “ a´ c.

A solution of system (9.2) in terms of Jacobi elliptic functions reads:

f1pn1q “ α1 snpδ1n1, k1q, g1pn1q “ β1 cnpδ1n1, k1q h1pn1q “ γ1 dnpδ1n1, k1q,

f2pn2q “ α2 dnpδ2n2, k2q, g2pn2q “ β2 cnpδ2n2, k2q, h2pn2q “ γ2 snpδ2n2, k2q,

f3pn3q “ α3
1

snpδ3n3, k3q
, g3pn3q “ β3

dnpδ3n3, k3q

snpδ3n3, k3q
, h3pn3q “ γ3

cnpδ3n3, k3q

snpδ3n3, k3q
,

(9.6)

where the moduli k1, k2, k3 are defined as solutions of the following transcendental equations:

k21 “
a´ b

a´ c
¨
dn2p δ1

2 , k1q

cn2p δ1
2 , k1q

, k22 “
b´ c

a´ c
¨
dn2p δ2

2 , k2q

cn2p δ2
2 , k2q

, k23 “
a´ b

a´ c
¨
dn2p δ3

2 , k3q

cn2p δ3
2 , k3q

,



9. THE CASE N “ 3 105

and the amplitudes α1, . . . , γ3 are given by

α1 “

d

pa´ bq
dnp δ1

2 , k1q

cnp δ1
2 , k1q

, β1 “
α1

b

dnp δ1
2 , k1q

, γ1 “
α1

k1

b

cnp δ1
2 , k1q

,

γ2 “

d

pb´ cq
dnp δ2

2 , k2q

cnp δ2
2 , k2q

, α2 “
γ2

k2

b

cnp δ2
2 , k2q

, β2 “
γ2

b

dnp δ2
2 , k2q

,

α3 “

d

pa´ cq
cnp δ3

2 , k3q

dnp δ3
2 , k3q

, β3 “
α3

b

dnp δ3
2 , k3q

, γ3 “
α3

b

cnp δ3
2 , k3q

.

In order for the discrete confocal quadrics to respect the symmetries of their classical counterparts, we
set

δ1 “
Kpk1q

m1
, δ2 “

Kpk2q

m2
, δ3 “

Kpk3q

m3
, mi P N.

The parameters ni may then be restricted to n1 P r0, 4m1s, n2 P r0, 4m2s and n3 P p0, 2m3q.

As in the 2-dimensional case, for arbitrary mi, there exist special vertices of valence ‰ 4 (cf. Figures
9.2 and 9.3) which are discrete analogs of the umbilic points on smooth confocal ellipsoids and two-sheeted
hyperboloids. In the parametrization (9.3), these umbilic points are seen to be

xpε1Kpk1q, ε2Kpk2q, s3q, xps1, ε
˚
2Kpk2q,Kpk3qq

ε1, ε2 P t1, 3u, ε˚
2 P t0, 2u

respectively. Their discrete analogues are given by the vertices

xpε1m1, ε2m2, n3q, xpn1, ε
˚
2m2,m3q

ε1, ε2 P t1, 3u, ε˚
2 P t0, 2u

which have valence 2 (cf. Figure 9.2) as may be inferred from the parametrization (9.6).
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Figure 9.2. Three-dimensional discrete confocal coordinate system (9.4), (9.6) in terms of Jacobi
elliptic functions on the sublattice Z2 with a “ 8, b “ 4, c “ 0, m “ 4. Three discrete quadrics
are shown: a discrete two-sheeted hyperboloid for n1 “ 2, a discrete one-sheeted hyperboloid for
n2 “ 2, and a discrete ellipsoid for n3 “ 2. A point of valence 2 on a discrete ellipsoid is a discrete
analog of an umbilic point.
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Figure 9.3. Discrete confocal coordinates with a “ 8, b “ 4, c “ 0, m “ 4. Discrete quadrics
from the pair of dual orthogonal sublattices Z3 and

`

Z ` 1
2

˘3 are shown in blue and red respectively:
two-sheeted hyperboloids n1 “ 1, 2, n2, n3 P Z, one-sheeted hyperboloids n2 “ 1, 2, n1, n3 P Z,
ellipse n3 “ 1.5, n1, n2 P Z ` 1

2 ,

A Euler-Poisson-Darboux equation

A.1 Classical Euler-Poisson-Darboux equation

The discretization of confocal quadrics in [BSST1] was based on an integrable discretization of the Euler-
Poisson-Darboux equation. We adapt the characterization of confocal coordinates in terms of the Euler-
Poisson-Darboux equation to our present approach by arbitrary re-parametrization of the coordinate
lines.

Consider the classical Euler-Poisson-Darboux system

Bui
Buj

x “
γ

ui ´ uj
pBuj

x ´ Bui
xq, i, j P t1, . . . , Nu

with some constant γ P R. Under re-parametrization ui “ uipsiq this becomes

BsiBsjx “
γ

uipsiq ´ ujpsjq

`

u1
ipsiqBsjx ´ u1

jpsjqBsix
˘

. (EPDγ)

Confocal coordinates are given by certain factorizable solutions of this equation, and can be characterized
as such.

Theorem A.1. Let x “ px1, . . . , xN q be N independent factorizable solutions

xkps1, . . . , sN q “

N
ź

i“1

fki psiq

of the Euler-Poisson-Darboux system (EPDγ) with γ “ 1
2 defined on a suitable domain

U “ tps1, . . . , sN q P RN | ´ a1 ă u1ps1q ă ´a2 ă u2ps2q ă ¨ ¨ ¨ ă ´aN ă uN psN qu.

Then the net x : U Ñ RN coincides with confocal coordinates (3.13), up to independent scaling along the
coordinate axes px1, . . . , xN q Ñ pC1x1, . . . , CNxN q with some C1, . . . , CN ą 0.
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Proof. A factorizable function
xps1, . . . , sN q “ f1ps1q ¨ ¨ ¨ fN psN q

is a solution of (EPDγ), if and only if (compare [BSST1])

f 1
i

fi
“

u1
i

2pui ` aq
, i “ 1, . . . , N,

with some integration constant a P R. The general solution is, up to constant factors, given by

fipsiq “

$

&

%

a

uipsiq ` a, if uipsiq ą ´a,
a

´puipsiq ` aq, if uipsiq ă ´a.

Now N independent separable solutions xkps1, . . . , sN q, 1 ď k ď N with constants of integration a1 ą

. . . ą aN are, on the domain U , given by

xkps1, . . . , sN q “ Dk

ź

iăk

a

´puipsiq ` akq
ź

iěk

a

uipsiq ` ak

with some constants Dk ‰ 0. The choice

D´1
k “

ź

iăk

?
ai ´ ak

ź

iąk

?
ak ´ ai

is the unique scaling (up to a common factor) for which the parameter curves are pairwise orthogonal
(see [BSST1]).

A.2 Discrete Euler-Poisson-Darboux equation

It turns out that discrete confocal coordinate systems may also be characterized in terms of a discrete
Euler-Poisson-Darbox equation.

Theorem A.2. Discrete confocal coordinate systems given by (5.9) satisfy the discrete Euler-Poisson-
Darboux system with γ “ 1

2 :

∆i∆jxk “
1

ui ´ uj

´

∆
1{2ui∆jxk ´ ∆

1{2uj∆ixk

¯

, (dEPDγ“ 1
2
)

where xk “ xkpnq and ui “ uipni ` 1
4 q. Here, the difference operator ∆ acts according to ∆ifpnq “

fpn ` eiq ´ fpnq, and
∆

1{2ui “ uipni ` 3
4 q ´ uipni ` 1

4 q.

Conversely, let x “ px1, . . . , xN q be N independent factorized solutions

xkpn1, . . . , nN q “

N
ź

i“1

f
pkq

i pniq

of (dEPDγ“ 1
2
) with positive “discrete squares”

f
pkq

i pniqf
pkq

i pni ` 1
2 q ą 0

defined on a suitable domain

U “
␣

pn1, . . . , nN q P
`

1
2Z

˘N
:

´a1 ă u1pn1 ` 1
4 q ă ´a2 ă u2pn2 ` 1

4 q ă ¨ ¨ ¨ ă ´aN ă uN pnN ` 1
4 q
(

.

Then the net x : U Ñ RN coincides with discrete confocal coordinates (5.9), (5.10) in the first hyperoc-
tant, up to independent scaling along the coordinate axes px1, . . . , xN q Ñ pC1x1, . . . , CNxN q with some
constants C1, . . . , CN ą 0.



A. EULER-POISSON-DARBOUX EQUATION 109

Proof. First, we derive the discrete Euler-Poisson-Darboux equations satisfied by the discrete confocal
coordinates given by (5.9). From equation (5.10) we obtain

f
pkq

i pni ` 1q

f
pkq

i pniq
“
uipni ` 3

4 q ` ak

uipni ` 1
4 q ` ak

,

which is equivalent to
∆f

pkq

i

f
pkq

i

“
∆1{2ui
ui ` ak

.

So, for xkpnq “
śN

i“1 f
pkq

i pniq we obtain:

∆i∆jxk “
∆1{2ui
ui ` ak

∆1{2uj
uj ` ak

xk

“
1

ui ´ uj

ˆ

∆1{2ui∆
1{2uj

uj ` ak
´

∆1{2ui∆
1{2uj

ui ` ak

˙

xk

“
1

ui ´ uj

´

∆
1{2ui∆jxk ´ ∆

1{2uj∆ixk

¯

.

Conversely, a simple computation shows that a factorizable function

xpn1, . . . , nN q “ f1pn1q ¨ ¨ ¨ fN pnN q

is a solution of (dEPDγ“ 1
2
) if and only if

∆
1{2ui

fi
∆fi

´ ui “ ∆
1{2uj

fj
∆fj

´ uj “ a,

with some constant of integration a P R. Equivalently,

∆fi
fi

“
∆1{2ui
ui ` a

ô
fipni ` 1q

fipniq
“
uipni ` 3

4 q ` a

uipni ` 1
4 q ` a

, i “ 1, . . . , N.

Here the left-hand sides can be written as

fipni ` 1q

fipniq
“
Fipni ` 3

4 q

Fipni ` 1
4 q
,

where Fipni ` 1
4 q “ fipniqfipni ` 1

2 q. Assuming that the discrete squares Fipni ` 1
4 q are positive, the

general solution is, up to constant factors, given by

Fipni ` 1
4 q “

$

&

%

uipni ` 1
4 q ` a, if uipni ` 1

4 q ą ´a,

´puipni ` 1
4 q ` aq, if uipni ` 1

4 q ă ´a.

Now, take N independent factorizable solutions xkpn1, . . . , nN q, 1 ď k ď N , with the constants of
integration a1 ą ¨ ¨ ¨ ą aN . Define U as in (A.1) with these a1, . . . , aN . Then, we find that

xkpnqxkpn ` 1
2σq “ D2

k

ź

iăk

´puipni ` 1
4σiq ` akq

ź

iěk

puipni ` 1
4σiq ` akq, (A.2)

where Dk ‰ 0 are constants. With the choice

D´2
k “

ź

iăk

pai ´ akq
ź

iąk

pak ´ aiq,

expressions (A.2) coincide with (5.2).

In the particular case uipni ` 1
4 q “ ni ` εi we have ∆1{2ui “ 1

2 , and we recover the version of the
discrete Euler-Poisson-Darboux equation from [BSST1]. An important integrability property of that
equation holds true also for the more general version (dEPDγ“ 1

2
).

Proposition A.3. Equation (dEPDγ“ 1
2
) is 3D-consistent.
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B More examples for the case N “ 2

This appendix is not part of the original publication. It adds two more examples to Section 8.

B.1 Confocal coordinates, diagonally related to vertical lines and a hyper-
bolic pencil of circles

Continuous case

Consider a coordinate system (8.3) with

f1ps1q “
?
a´ b es1 , g1ps1q “

?
a´ b

?
1 ´ e2s1 ,

f2ps2q “
?
a´ b es2 , g2ps2q “

?
a´ b

?
e2s2 ´ 1,

(B.1)

where s1 ă 0 and s2 ą 0. The image is the first quadrant where the y-axis is approached in the limit
s1 Ñ ´8. This parametrization is diagonally related to a hyperbolic pencil of circles which has the two
foci of the confocal conics as limiting points. The following statement from [Ak] shows that the confocal
ellipses, confocal hyperbolas, the pencil of circles, and the family of vertical lines constitute a 4-web (see
also [Ag]).

Proposition B.1. The points px, yq with s1 `s2 “ const lie on vertical lines. The points px, yq with s2 ´

s1 “ η “ const lie on circles with centers pcpηq, 0q “ p
?
a´ b coshpηq, 0q and radii rpηq “

?
a´ b sinhpηq

(cf. Figure B.1).

Proof. The first statement is equivalent to

f 1
1f2 ´ f1f

1
2 “ 0.

For the second statement one computes that points px, yq with s1 ´ s2 “ η “ const satisfy

x2 ` y2 ´ 2cpηqy ` cpηq2 ´ rpηq2 “ 0.



B. MORE EXAMPLES FOR THE CASE N “ 2 111

y

x

Figure B.1. Two-dimensional continuous confocal coordinate system (8.3), (B.1) with a “ 2, b “ 1.
Points with s1 ` s2 “ const lie on vertical lines, while points with s2 ´ s1 “ const lie on circles of a
hyperbolic pencil which has as limiting points the two foci of the confocal conics.

Discrete case

A solution of the functional equations (8.14) and (8.15) which approximates (B.1) in the continuum limit
δ Ñ 0, is given by

f1pn1q “ α1 e
δpn1`c1q, g1pn1q “ β1

Γe´2δp´n1 ´ c1 ` 3
4 q

Γe´2δp´n1 ´ c1 ` 1
4 q
,

f2pn2q “ α2 e
δpn2`c2q, g2pn2q “ β2

Γe2δpn2 ` c2 ` 3
4 q

Γe2δpn2 ` c2 ` 1
4 q
,

(B.2)

where
α1 “ α2 “

?
a´ b,

β1 “
?
a´ b

a

1 ´ e´2δ, β2 “
?
a´ b

a

e2δ ´ 1,

and Γq denotes the q-gamma function, which satisfies

Γqpz ` 1q “
1 ´ qz

1 ´ q
Γqpzq.

Boundary conditions y|n1“0 “ 0, y|n2“0 “ 0 may be achieved by setting c1 “ 1
4 , c2 “ ´ 1

4 .

Proposition B.2. The points px, yq with n1 ` n2 “ const lie on vertical lines. Pairs of points

px, yq “
`

xpn1 ` 1
2 , n2q, ypn1 ` 1

2 , n2q
˘

and
px̃, ỹq “

`

xpn1, n2 ` 1
2 q, ypn1, n2 ` 1

2 q
˘

,

which are adjacent to the diagonal n2 ´ n1 “ η “ const, are related by the polarity

xx̃` yỹ ´ cpηq px` x̃q ` cpηq2 ´ rpηq2 “ 0
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with respect to the circle with the center pcpηq, 0q and the radius rpηq, where

cpηq “
?
a´ b coshpδpη ` c1 ´ c2qq, rpηq “

?
a´ b sinhpδpη ` c1 ´ c2qq

(cf. Figure B.2).
The two classical confocal conics corresponding to the parameter values upn1 ` 1

4 q and vpn2 ` 1
4 q, and

the circle with center pcpηq, 0q and radius rpηq, η “ n2 ´ n1, intersect at a point.

This can be checked by a direct computation. There exists an analogous parametrization diagonally
related to horizontal lines and an elliptic pencil of circles, both in the continuous case (see [Ak]) and in
the discrete case.

y

x

Figure B.2. Two-dimensional discrete confocal coordinate system (8.11), (B.2) with a “ 2, b “ 1,
c1 “ 1

4 , c2 “ ´ 1
4 . Points with n1 ` n2 “ const lie on vertical lines. In addition to the polarity

relation given by the corresponding classical confocal ellipses (green) and hyperbolas (orange) two
points adjacent to a diagonal n2 ´ n1 “ const also satisfy a polarity relation with respect to circles
of a hyperbolic pencil.

B.2 Confocal coordinates, diagonally related to two families of concentric
circles

Continuous case

Consider a coordinate system (8.3) with

f1ps1q “
?
a´ b s1, g1ps1q “

?
a´ b

a

1 ´ s21,

f2ps2q “
?
a´ b s2, g2ps2q “

?
a´ b

a

s22 ´ 1,
(B.3)

where ´1 ă s1 ă 1 and s2 ą 1. This parametrization is diagonally related to concentric circles with
centers at the two foci of the confocal conics.

Proposition B.3. The points px, yq with s1 ` s2 “ ξ “ const lie on concentric circles with the center
`

´
?
a´ b, 0

˘

and with the radii rpξq “
?
a´ b ξ. The points px, yq with s2 ´ s1 “ η “ const lie on

concentric circles with the center
`?
a´ b, 0

˘

and with the radii rpηq “
?
a´ b η (cf. Figure B.3).
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y

x

Figure B.3. Two-dimensional continuous confocal coordinate system (8.3), (B.3) with a “ 2, b “ 1.
Points with s1 ` s2 “ const and points with s2 ´ s1 “ const lie on concetric circles with centers at
the two foci of the confocal family.

Discrete case

A solution of the functional equations (8.14) and (8.15) which approximates (B.3) in the continuum limit
δ Ñ 0, is given by

f1pn1q “ αδpn1 ` c1q, g1pn1q “ αpn1 ` c`
1 q1{2p´pn1 ` c´

1 q ` 1
2 q

1{2
,

f2pn2q “ αδpn1 ` c1q, g2pn2q “ αpn2 ` c`
2 q1{2pn2 ` c´

2 q1{2,
(B.4)

where δ ą 0, α “
?
a´ b, c1, c2 P R, and

c˘
1 “ c1 `

1

4
˘

?
16 ` δ2

4δ
, c˘

2 “ c2 `
1

4
˘

?
16 ` δ2

4δ
.

If we set c1 “ c2 “ 0, and

δ “
4

a

p2l ` 1q2 ´ 1
ô

?
16 ` δ2

4δ
“ l `

1

2

with some l P N, we may let n1 P
“

´ l`1
2 , l`1

2

‰

, n2 ě l
2 and achieve boundary conditions

y|n1“´
l`1
2

“ y|n1“
l`1
2

“ 0, y|n2“ l
2

“ 0.

Proposition B.4. Pairs of points

px, yq “
`

xpn1, n2 ´ 1
2 q, ypn1, n2 ´ 1

2 q
˘

and
px̃, ỹq “

`

xpn1 ` 1
2 , n2q, ypn1 ` 1

2 , n2q
˘

,

which are adjacent to the diagonal n1 ` n2 “ ξ “ const, are related by polarity with respect to the circle
with the center pc, 0q “ p

?
a´ b, 0q and the radius rpξq “

?
a´ b δpξ ` c1 ` c2q:

xx̃` yỹ ´ c px` x̃q ` c2 ´ rpξq2 “ 0.

Similarly, pairs of points

px, yq “
`

xpn1 ` 1
2 , n2q, ypn1 ` 1

2 , n2q
˘
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and
px̃, ỹq “

`

xpn1, n2 ` 1
2 q, ypn1, n2 ` 1

2 q
˘

,

which are adjacent to the diagonal n2 ´ n1 “ η “ const, are related by polarity with respect to the circle
with the center p´c, 0q and with the radius r̂pηq “

?
a´ b δpη ` c2 ´ c1q:

xx̃` yỹ ` c px` x̃q ` c2 ´ r̂pηq2 “ 0

(cf. Figure B.4).

We remark that in this case the corresponding classical ellipses, hyperbolas, and circles participating
in the polarity relations are not incident. The proof of all these statements is by direct computation.

y

x

Figure B.4. Two-dimensional discrete confocal coordinate system (8.11), (B.4) with a “ 2, b “ 1,
c1 “ c2 “ 0, 2l ` 1 “ 7. Points adjacent to a diagonal n2 ´ n1 “ const are related by polarity with
respect to concentric circles with centers in the right focal point. Similarly, points adjacent to a
diagonal n1 ` n2 “ const are related by polarity with respect to concentric circles with centers in
the left focal point.

References

[AVK] [AB] [Ar] [Bo] [BSST1] [BSST2] [BS] [CDS] [Da2] [DR] [EMOT] [FT] [IT] [Ja] [KS1] [KS2] [Kr]
[LPWYW] [MT] [Mo] [PW] [Ve] [WW] [Za]



Chapter 3

Checkerboard incircular nets.
Laguerre geometry and parametrisation

Alexander I. Bobenko1, Wolfgang K. Schief2, Jan Techter1

1Institut für Mathematik, TU Berlin,
Str. des 17. Juni 136, 10623 Berlin, Germany

2School of Mathematics and Statistics,
The University of New South Wales, Sydney, NSW 2052, Australia
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which are also present in the case of checkerboard IC-nets. The parametrisation obtained in this manner
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in this paper is based on the existence of underlying pencils of conics and quadrics which is exploited in
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Figure 1.1. Left: An example of an IC-net. Right: An example of a checkerboard IC-net.

1 Introduction

The construction and geometry of incircular nets (IC-nets) and their generalisation to checkerboard IC-
nets have recently been discussed in great detail in [AB]. IC-nets were introduced by Böhm [Bö] and are
defined as congruences of straight lines in the plane with the combinatorics of the square grid such that
each elementary quadrilateral admits an incircle as depicted in Figure 1.1 (left). IC-nets have a wealth
of geometric properties, including the distinctive feature that any IC-net comes with a conic to which
its lines are tangent. Another important aspect is that IC-nets discretise confocal quadrics. In fact, it
has been observed in [BSST2] that IC-nets constitute particular instances of discrete confocal coordinate
systems in the plane, which provides a first indication that IC-nets should be examined in the context of
integrable discrete differential geometry [BS]. In this connection, it is noted that an integrable systems
approach to the discretisation of confocal quadrics has been taken in [BSST1]. IC-nets are closely related
to Poncelet(-Darboux) grids originally introduced by Darboux [Da1] and further studied in [LT] and
[Sch].

Due to the combinatorial structure of IC-nets, their lines and circles may not be consistently oriented
in such manner that these are in oriented contact. However, IC-nets are intimately related to checker-
board IC-nets which do exhibit this feature. Once again, the lines of checkerboard IC-nets have the
combinatorics of the square grid but it is only required that every second quadrilateral admits an incircle,
namely the “black” (or “white”) quadrilaterals if the quadrilaterals of the net are combinatorially coloured
like those of a checkerboard. An example of a checkerboard IC-net is displayed in Figure 1.1 (right).

Confocal checkerboard IC-nets constitute an important subclass of checkerboard IC nets and are
characterised by their lines being tangent to a conic as in the case of IC-nets. This terminology is due
to the remarkable fact that the points of intersection of the lines of a confocal checkerboard IC-net lie on
conics which are confocal to the underlying conic.

In general, checkerboard IC-nets may be constructed in the following manner. One starts with a circle
ω1,1 and four tangents ℓ1, ℓ2, m1 and m2. Subsequently, as indicated in Figure 1.2, one chooses four
circles ω0,0, ω0,2, ω2,2 and ω2,0 which touch the pairs of lines forming the “corners” of the configuration
of given lines. The four lines ℓ0, ℓ3, m0, and m3 being tangent to the respective pairs of circles are then
fixed so that, in turn, the circles ω1,3 and ω3,1 are uniquely determined. An additional degree of freedom
is obtained by choosing the circle ω3,3 Now, the entire checkerboard net is predetermined. Indeed, we first
construct the lines ℓ4 and m4, then the circles ω4,0, ω4,2, ω0,4, ω2,4 and, finally, the lines ℓ5 and m5. The
existence of the circle ω4,4 is non-trivial and follows from an incidence theorem [AB]. In Section 3, we
present a simpler proof of this theorem, using the formalism developed in this paper. Iterative application
of this theorem now generates a checkerboard IC-net of arbitrary size. In summary, a checkerboard IC-net
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Figure 1.2. An elementary construction of a checkerboard IC-net

is uniquely determined by five neighbouring circles ω0,0, ω2,0, ω0,2, ω2,2, ω1,1 and the circle ω3,3. Thus,
up to Euclidean motions and homotheties, checkerboard IC-nets form a real eight-dimensional family of
nets.

The main objective of this paper is the explicit integration of (generic) checkerboard IC-nets in terms
of Jacobi elliptic functions [NIST] similar to that of elliptic billiards [DR]. As a result, we establish
explicit connections with, for instance, the discrete confocal coordinate systems mentioned above and the
celebrated (symmetric) QRT mappings [QRT] which play a fundamental role in the theory of discrete
integrable systems (see, e.g., [IR] and references therein). We also prove constructively the existence
and provide examples of confocal checkerboard IC-nets which are closed (embedded) in the “azimuthal”
direction. In order to achieve these results, we adopt a Laguerre geometric point of view which is natural
due to the above-mentioned orientability of the lines and circles of checkerboard IC-nets. The necessary
theoretical background of Laguerre geometry [BT, BS] is provided in the Appendix. Thus, we first
determine the class of checkerboard IC-nets which may be mapped to confocal checkerboard IC-nets by
means of real Laguerre transformations. Here, it is noted that, in the complex setting, all checkerboard
IC-nets are Laguerre-equivalent to confocal checkerboard IC-nets. The classification of checkerboard IC-
nets in the real setting is based on the standard classification of pencils of conics [Le] which emerges due
to the important observation that any checkerboard IC-net admits an underlying pencil of quadrics. It
should be noted that Laguerre geometry is indispensable in the investigation of IC-nets. Recently, this
classical (but lesser-known) geometry has been applied to solve problems not only in geometry [SPG] but
also in free-form architecture [PGB].

The second step in the procedure is to parametrise confocal checkerboard IC-nets. This is done via the
base curve which is shared by the pencil of quadrics associated with any given checkerboard IC-net. These
base curves are known to be just another avatar of so-called hypercycles [Bl] which constitute particular
curves in the plane of degree 8. In fact, it is demonstrated that the lines of a checkerboard IC-net are
tangent to a hypercycle. In the case of a confocal checkerboard IC-net, the hypercycle degenerates to the
union of two identical conics with different orientations. The above-mentioned (hypercycle) base curves
are of degree 4 and may be parametrised in terms of Jacobi elliptic functions. This will then lead to an
explicit parametrisation of confocal checkerboard IC-nets and their Laguerre transforms. Furthermore,
this parametrisation also applies to the generalised checkerboard IC-nets introduced at the end of the
paper. Their geometric construction is very natural within the Laguerre-geometric framework established
here and gives rise to a connection with “non-autonomous” QRT maps (see, e.g., [RJ] and references
therein).
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Figure 2.1. Graves–Chasles theorem

2 Checkerboard IC-nets. Definition and elementary properties

Checkerboard IC-nets have the combinatorics of a checkerboard, where all “black” quadrilaterals have
inscribed circles (see Fig. 1.2). These were introduced in [AB].

Definition 2.1. A checkerboard IC-net is comprised of oriented lines ℓi,mj in the plane with i, j P Z
such that for any k and n the lines ℓ2k, ℓ2k`1, m2n,m2n`1 as well as the lines ℓ2k´1, ℓ2k, m2n´1,m2n

have a circle in oriented contact. The points of intersection ℓi X mj are vertices of the corresponding
quadrilateral lattice Z2 Ñ R2.

Remark 2.1. We interpret the lines ℓi as combinatorially vertical and mj as combinatorially horizontal.
Checkerboard IC-nets become IC-nets when every second combinatorially horizontal strip and every
second vertical strip degenerates in the sense that the two lines of such a strip coincide up to their
orientation. Then, all remaining quadrilaterals admit inscribed circles, and all lines are non-oriented. An
important property of IC-nets is that all their lines are tangent to a conic [AB]. The proof of this fact is
based on the Graves-Chasles theorem [Da3, §174] (see also [IT]).

Theorem 2.2 (Graves–Chasles theorem). Suppose that all sides of a complete quadrilateral touch a conic
α. Denote pairs of its opposite vertices by ta, cu, tb,du, and te,fu (see Figure 2.1). Then, the following
four properties are equivalent:

(i) pabcdq circumscribes a circle,

(ii) Points a and c lie on a conic confocal with α,

(iii) Points b and d lie on a conic confocal with α,

(iv) Points e and f lie on a conic confocal with α.

IC-nets are intimately related to a subclass of checkerboard IC-nets, namely confocal checkerboard
IC-nets.

Definition 2.3. [AB]. A checkerboard IC-net is called confocal if all lines of it are tangent to a conic.

In fact, this class of checkerboard IC-nets constitutes a natural generalisation of IC-nets. However,
in contrast to IC-nets, here, all circles and lines can be oriented so that the corresponding circles and
lines are in oriented contact. Moreover, confocal checkerboard IC-nets can be regarded as subdivisions
of IC-nets. This follows from the following lemma.

Lemma 2.4. Let the six lines ℓ0, ℓ1, ℓ2,m0,m1,m2 in Figure 2.2 (left) touch a conic. Then, any two of
the incidences

(i) ℓ0, ℓ1,m0,m1 are tangent to a circle,

(ii) ℓ1, ℓ2,m1,m2 are tangent to a circle,
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Figure 2.2. Confocal checkerboard IC-nets as subdivisions of IC-nets. Left: Illustration of the
incidence Lemma 2.4. The initial configuration of six lines and two circles is such that the centres
of the two circles and the point of intersection of the two common tangent lines are collinear. This
is equivalent to demanding that the two initial circles and the two common tangent lines may be
oriented in such manner that they are in oriented contact. Right: On the proof of Theorem 2.5.

(iii) ℓ0, ℓ2,m0,m2 are tangent to a circle,

imply the third one.

Proof. Let the lines ℓ0, ℓ1, ℓ2,m0,m1,m2 be tangent to a conic α. Consider the three points of intersection
ℓ0 X m0, ℓ1 X m1, ℓ2 X m2. If, for instance, the two circles in (i) and (ii) exist then the Graves–Chasles
theorem implies that the pairs of points pℓ0 Xm0, ℓ1 Xm1q and pℓ1 Xm1, ℓ2 Xm2q lie on conics confocal
to α and, hence, on a common conic confocal to α. Application of the Graves–Chasles theorem to the
third pair of points of intersection pℓ0 Xm0, ℓ2 Xm2q now implies that the circle in (iii) exists.

It is now evident that replacing pairs of diagonally neighbouring circles of a checkerboard IC-net by
“large” circles inscribed in combinatorial 2 ˆ 2 quadrilaterals as in Lemma 2.4 leads to four associated
IC-nets. The converse is also true.

Theorem 2.5. For every IC-net there exist one-parameter families of subdivisions into confocal checker-
board IC-nets with the same tangent conic α.

Proof. In order to describe a subdivision of an IC-net into a checkerboard IC-net, one should consider a
larger part of the net as shown in Figure 2.2 (right). Thus, let ℓ2n,m2n be the lines of an IC-net with
tangent conic α as labelled in Figure 2.2 (right). Let us orient all lines ℓ2n “down” and the lines m2n

“right”. This choice of the orientation can be made precise, for example, as follows. Orient the circle C˚
1

and choose the same orientation for the tangents ℓ0,m0, and the opposite orientation for ℓ2,m2. Orient
C˚

2 to have the same orientation as ℓ2,m0 and the opposite orientation to m2. Let ℓ4 have the opposite
orientation to C˚

2 . Proceed in this manner to specify the orientation of all circles and lines of the IC-net.
For a subdivision, choose an oriented line 1 which touches (the non-oriented conic) α and denote by

C1 the circle which is in oriented contact with ℓ0,m0 and ℓ1. Let m1 be the remaining line which is in
oriented contact with C1 and touches α. The circle C2 is the unique circle which is in oriented contact
with ℓ2,m0 and m1, and C3 is in oriented contact with ℓ0,m2 and ℓ1. Define the lines ℓ3 and m3 by the
requirement that they touch α and are in oriented contact with C2 and C3 respectively. By applying
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the Graves–Chasles theorem and the above lemma, one can now show that the lines ℓ2, ℓ3,m2,m3 have
a common tangent circle C4. Indeed, according to Lemma 2.4, the existence of the circles C1 and the
(original) circle C˚

1 which touches the lines ℓ0, ℓ2,m0,m2 gives rise to a circle C5 which is circumscribed
by the lines ℓ1, ℓ2,m1,m2. The existence of the circles C2, C3, C5 implies, in turn, that the points of
intersection ℓ0 X m3, ℓ1 X m2, ℓ2 X m1, ℓ3 X m0 lie on a conic confocal to α. Accordingly, the lines
ℓ0,m0, ℓ3,m3 circumscribe a circle C6. A second application of Lemma 2.4 to the circles C˚

1 , C6 leads to
the existence of the circle C4.

Iterative application of the above procedure generates a checkerboard IC-net subdivision by adding
oriented lines with odd indices ℓ2n`1,m2n`1 and associated circles which are in oriented contact. The only
free parameter of this subdivision is encoded in the line l1. More precisely, due to the arbitrary choice of
orientation of l1, one obtains two one-parameter families of subdivisions. Another pair of one-parameter
families of subdivisions is obtained by orienting all lines ℓ2n “down” and the lines m2n “left”, prescribing
the oriented line l1, constructing the circle which is in oriented contact with ℓ2,m0 and l1 and proceeding
in a manner analogous to that described in the preceding.

3 Laguerre geometric description of checkerboard IC-nets

It is natural to study checkerboard IC-nets in terms of Laguerre geometry. Such a description will allow
us to prove fundamental properties of these nets and will finally lead to an explicit description of them.
Here, we present a brief description of checkerboard IC-nets using the Blaschke cylinder model, consigning
more details of Laguerre geometry to the Appendix.

Laguerre geometry in the plane deals with oriented circles and oriented straight lines. Lines

tx P R2 : pv,xqR2 “ du,

with unit normals v P S1 and d P R, can be put into correspondence with 3-tuples pv, dq. Opposite
3-tuples pv, dq and p´v,´dq correspond to two different orientations of the same line. Thus, oriented
lines are points of the Blaschke cylinder

Z “ tℓ “ pv, dq P R3 : |v| “ 1u “ S1 ˆ R Ă R3.

Oriented circles
tx P R2 : |x ´ c|2 “ r2u

with centres c P R2 and signed radii r P R are in one-to-one correspondence with planes in R3 non-parallel
to the axis of the Blaschke cylinder Z:

S “ tpv, dq P R3 : pc,vqR2 ´ d´ r “ 0u.

Pairs of signed radii r and ´r correspond to two different orientations of the same circle. The intersection
of such a plane S with Z consists of points of Z which represent lines in oriented contact with the corre-
sponding circle, i.e., oriented lines which are tangent to the circle and exhibit corresponding orientation.
Accordingly, the set of planes in R3 passing through a given point ℓ “ pv, dq P Z may be identified with
the set of oriented circles in oriented contact with the oriented line ℓ. Finally, the set of planes in R3

passing through two points ℓ1, ℓ2 P Z, i.e., the set of planes containing the line L “ pℓ1, ℓ2q Ă R3, is
identified with the set of oriented circles in oriented contact with the lines ℓ1 and ℓ2 (see Figure 3.1).
The latter identification, together with the fact that four oriented lines are in contact with a common
oriented circle if and only if the four corresponding points of the Blaschke cylinder are coplanar, will be
crucial for the description of checkerboard IC-nets.

3.1 The Laguerre geometry of checkerboard IC-nets

As we have seen in Section 2, the following incidence theorem is of crucial importance for the elementary
construction of checkerboard IC-nets.
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Figure 3.1. Blaschke cylinder model: Oriented lines are points ℓ P Z and oriented circles are planes
S which do not intersect Z along its generators. Circles in oriented contact with two lines ℓ1 and ℓ2
are planes containing the line L “ pℓ1, ℓ2q.

Theorem 3.1. (Checkerboard incircles incidence theorem) Let ℓ1, . . . ℓ6, m1, . . . ,m6 be 12 oriented lines
which are in oriented contact with 12 oriented circles S1, . . . , S12 as shown in Figure 3.2 (top), corre-
sponding to “black” quadrilaterals of a 5ˆ 5 checkerboard IC-net. In particular, the lines ℓ1, ℓ2, m1, m2

are in oriented contact with the circle S1, the lines ℓ3, ℓ4, m1, m2 are in oriented contact with the circle
S2 etc. Then, the 13th “black” checkerboard quadrilateral also has an inscribed circle, i.e., the lines ℓ5,
ℓ6, m5, m6 have a common circle S13 in oriented contact.

This theorem was originally proven in [AB]. Here, we give a slightly simpler proof which is also
instrumental in the explicit integration of the nets. We assume that, modulo the existence of the 12
oriented circles, the 12 oriented lines are in general position. We begin with a simple lemma used in the
proof.

Lemma 3.2. Let p1, p2 be two points which belong to all members of a pencil of quadrics Qt. Then,
there exists a unique quadric Qt12 from the pencil which contains the whole line L12 “ pp1, p2q. If the line
L34 “ pp3, p4q associated with another pair of common points p3, p4 intersects the line L12 then the two
quadrics Qt12 and Qt34 coincide.

Proof. Even though we will apply this lemma to quadrics in R3, we will prove it in its natural projective
setting. Thus, let q1, q2 be two quadratic forms generating the pencil with the quadratic form qt “ q1`tq2.
The points p1 “ rv1s, p2 “ rv2s with v1 and v2 being homogeneous coordinates belong to all quadrics
of the pencil iff q1pv1q “ q1pv2q “ q2pv1q “ q2pv2q “ 0. The line L12 “ pp1, p2q belongs to the quadric
determined by qt12 iff qt12pv1, v2q “ 0 so that t12 “ ´

q1pv1,v2q

q2pv1,v2q
. Vanishing of the denominator is the case

when the line lies on the quadric determined by q2. Moreover, if the line L34 “ pp3, p4q passing through
another pair of common points p3, p4 intersects the line L12 then the point of intersection and p3, p4
belong to the quadric Qt12 . Accordingly, the line L34 is contained in Qt12 so that Qt12 “ Qt34 .

Proof of Theorem 3.1. Here, it is convenient to interpret the statement of the theorem in terms of the
Blaschke cylinder model. Thus, as explained above the lines Li intersecting the Blaschke cylinder Z in
the points ℓi and ℓi`1 describe one-parameter sets of circles in oriented contact with the lines ℓi and ℓi`1.
Some of the lines Li and Mk intersect. For instance, the one-parameter families of circles corresponding
to L1 and M1 contain the common circle S1, corresponding to the plane determined by L1 and M1.
We obtain the incidence picture shown in Figure 3.2 (bottom), wherein the points of intersection of
the relevant pairs Li,Mk are indicated by small circles. Moreover the lines Li and Li`1 intersect since
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Figure 3.2. Checkerboard incircles incidence theorem. Top: Existence of the last circle S13.
Bottom: The Blaschke cylinder description. Pairs of intersecting lines Li,Mk correspond to circles,
whereas the points of intersection of the lines Li, Li`1 and Mk,Mk`1 encapsulate the common
oriented lines ℓi`1 and mk`1 respectively.
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Figure 3.3. The lines of a checkerboard IC-net are tangent to a hypercycle. The hypercycle on the
right consists of two coinciding ellipses of different orientations, encapsulating the tangent conic of
a confocal checkerboard IC-net.

they pass through the same points in Z and so do the lines Mk and Mk`1. The points of intersection
correspond to the lines ℓi`1 and mk`1 respectively. For example ℓ2 “ L1 X L2.

In order to prove the existence of the circle S13, we have to show that the lines L5 and M5 intersect.
We first note that the three lines L1, L3, L5 determine a hyperboloid H Ă R3 and recall that a line which
intersects a quadric in three points is contained in the quadric. Accordingly, since M1 and M3 intersect
the lines L1, L3, L5, these are contained in H. The intersection of the lines L5 and M5 is equivalent to
the inclusion M5 Ă H. The latter property may be proven as follows.

Since ℓ2, ℓ3 belong to both quadrics Z,H, Lemma 3.2 implies that there exists a unique quadric H̃
in the pencil of quadrics generated by H and Z which contains the whole line L2. We now consider the
three points m2,m3, L2 X M2 of M2. Since m2 and m3 are common to H and Z, these are contained in
H̃. Hence, m2,m3, L2 X M2 P H̃ so that M2 Ă H̃. This implies, in turn, that ℓ4, ℓ5, L4 X M2 P H̃ and,
hence, L4 Ă H̃. Consequently, m4, L2 X M4, L4 X M4 P H̃ so that M4 Ă H̃. In particular, m5 lies in
H̃ (and Z) and, therefore, in H. Moreover, L1 X M5 and L3 X M5 lie in H which finally implies that
M5 Ă H.

It is observed that iterative application of Theorem 3.1 leads to the unique construction of an arbi-
trarily large checkerboard IC-net with lines Ln and Mn, n P Z. The hyperboloids H and H̃ as constructed
above then contain all lines L2k`1,M2k`1 and L2k,M2k respectively. Thus, we have come to the impor-
tant conclusion that a checkerboard IC-net encodes two quadrics which belong to a pencil containing the
Blaschke cylinder Z.

Corollary 3.3. In the Blaschke cylinder model, the lines L2k`1 “ pℓ2k`1, ℓ2k`2q, M2k`1 “ pm2k`1,m2k`2q

and L2k “ pℓ2k, ℓ2k`1q, M2k “ pm2k,m2k`1q associated with a checkerboard IC-net “in general position”
are generators of hyperboloids H and H̃ respectively which belong to a pencil of quadrics containing the
Blaschke cylinder Z.

For future reference we denote the common curve of intersection of the above-mentioned quadrics by

C “ H X Z “ H̃ X Z “ H X H̃ X Z.

Definition 3.4. A (non-empty) curve of intersection of the Blaschke cylinder with a quadric is called a
hypercycle base curve.

The straight lines corresponding to the points of a hypercycle base curve are tangent to a curve in
the plane which is generically of degree 8. This planar curve is called a hypercycle [Bl]. It is noted that
a hypercycle base curve and the corresponding hypercycle are merely two different incarnations of the
same object C. In terms of this terminology, we have proven the following theorem (see Figure 3.3).

Theorem 3.5. The lines of a checkerboard IC-net are tangent to a hypercycle.

In the following, it is convenient to adopt a notion of genericity.
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Figure 3.4. Construction of checkerboard IC-nets in the Blaschke cylinder model. The lines
L2k`1,M2k`1 (red) and L2k,M2k (blue) are generators of the quadrics H and H̃ respectively.

Definition 3.6. A quadric in R3 is termed generic if it does not contain the “point at infinity” on the axis
of the Blaschke cylinder. A generic hypercycle base curve is the intersection of a generic quadric with the
Blaschke cylinder. A pencil of quadrics containing the Blaschke cylinder is generic if one and, therefore,
all quadrics of the pencil other than the Blaschke cylinder are generic. A checkerboard IC-net is generic
if it is associated with a generic hypercycle base curve or, equivalently, a generic pencil of quadrics.

We note that the standard square grid (appropriately oriented) does not constitute a generic checker-
board IC-net. Moreover, the above definition implies that the hypercycle base curve C Ă Z associated
with a generic quadric has bounded d-coordinate.

Corollary 3.7. The lines of a generic checkerboard IC-net lie in bounded distance to the origin.

3.2 Construction of checkerboard IC-nets

We are now in a position to formulate the construction of checkerboard IC-nets in the Blaschke cylinder
model. One starts with two one-sheeted hyperboloids H, H̃ of a pencil of quadrics containing Z and
two points ℓ1,m1 of the hypercycle base curve C “ H X Z. Let us make a choice and refer to one of
the families of straight lines (generators) of the hyperboloid H as the L-family and the other one as
the M -family. Make the choice of the L- and M -families on H̃ as well. Now, the checkerboard IC-net
is uniquely determined in the following sense. Label by L1 the line from the L-family of H passing
through ℓ1 and denote by ℓ2 its second point of intersection with C. Similarly, the point m2 P C is the
second point of intersection with Z of the M -line of H labelled by M1 passing through m1. Proceed
further with the generators of the hyperboloid H̃, where L2 and M2 are the L-line and M -line of H̃
passing through ℓ2 and m2 respectively. The additional points of intersection with C are denoted by ℓ3
and m3 respectively. By alternating in this manner between the hyperboloids H and H̃, the lines of a
checkerboard IC-net ℓn and mn represented as points of the hypercycle base curve which are connected
by generators Ln “ pℓn, ℓn`1q and Mn “ pmn,mn`1q may be constructed (see Figure 3.4). Thus, we
conclude with the following theorem.

Theorem 3.8. (Construction of checkerboard IC-nets in the Blaschke model) A checkerboard
IC-net is uniquely determined by hyperboloids H, H̃ (with marked L- and M -families of generators on
each hyperboloid) of a pencil of quadrics containing Z and two points ℓ1,m1 of the hypercycle base curve
C “ H X Z.

We now briefly discuss some illustrative classes of checkerboard IC-nets.
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Figure 3.5. The elliptic and hyperbolic cones (3.3) and the hypercycle base curves of confocal
checkerboard IC-nets in the Blaschke cylinder model.

(Confocal checkerboard) IC-nets

In [AB], confocal checkerboard IC-nets are characterised by the property that their lines are tangent to
a conic. In this paper, we make the assumption that the conic is either an ellipse or a hyperbola so that,
by means of a rotation and a translation (which constitute special Laguerre transformations, this conic
may be brought into the form

x2

a
`
y2

b
“ 1. (3.1)

Tangent lines to the conic are given by
xx0
a

`
yy0
b

“ 1

with
x20
a

`
y20
b

“ 1. (3.2)

If we set v “ pv, wq in the pv, dq description employed at the beginning of Section 3, this leads to v “ x0d{a

and w “ y0d{b so that (3.2) may be expressed in terms of the cone

av2 ` bw2 “ d2. (3.3)

We refer to the latter as “elliptic” if a ą 0, b ą 0 and “hyperbolic” if ab ă 0. The hypercycle base curve
C is the intersection of the cone (3.3) with the Blaschke cylinder v2 ` w2 “ 1. It has two connected
components and is symmetric with respect to the change of orientation pv, w, dq Ñ p´v,´w,´dq. In the
plane, the two components of the hypercycle are the conic (3.1) equipped with two different orientations.
Confocal checkerboard IC-nets are parametrised explicitly in Section 5.

As observed in Remark 2.1, any IC-net may be regarded as a (confocal) checkerboard IC-net by
interpreting each line of the IC-net as a “double line”, that is, two identical lines of opposite orientation
represented by ˘pv, w, dq. Accordingly, one of the hyperboloids of the corresponding checkerboard IC-net
constitutes a cone of the form (3.3). Indeed, the latter may be regarded as a characterisation of IC-nets
in the context of checkerboard IC-nets.

Degeneration to rhombic checkerboard IC-nets

Hyperbolic confocal checkerboard IC-nets may be regarded as deformations of “rhombic” checkerboard
IC-nets, that is, checkerboard IC-nets composed of identical rhombi. In order to show this, let H and H̃ be
the two hyperboloids underlying a hyperbolic checkerboard IC-net N . Since the two hyperboloids belong
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to a pencil of quadrics, H̃ may be regarded as a deformation of H with the parameter of the pencil playing
the role of the deformation parameter. This implies, in turn, that we may interpret N as a deformation
of a confocal checkerboard IC-net Nc for which H̃ “ H “ Hc coincide. According to the construction
of checkerboard IC-nets summarised in Theorem 3.8, Nc can only be non-trivial if the L-family on H
coincides with the M -family on H̃ (and vice versa), thereby representing the same family of generators
on Hc. Hence, we here assume that the choice of the L-and M -families on the hyperboloids associated
with N has been made in such a manner that, in the limit H̃ Ñ H, this non-triviality requirement is met.

The next step (see Figure 3.6) is to consider a one-parameter family of confocal checkerboard IC-nets
Ncpεq with underlying hyperboloids Hcpεq given by

w2
0v

2 ´ v20w
2 “ ε2p∆2 ´ d2q, ε ě 0, ∆ ą 0

with v20 ` w2
0 “ 1, v0w0 ‰ 0 and

w2
0 ´ ε2∆2 ą 0

for hyperbolicity of N pεq. In the limit ε Ñ 0, the hyperboloid Hcp0q degenerates to the union of the two
planes

P˘ : w0v ˘ v0w “ 0

passing through the axis of the Blaschke cylinder Z, equipped with two special points on the axis given
by

P˘ “ p0, 0,˘∆q.

In fact, it is easy to show that the generators of the hyperboloid Hcpεq become straight lines passing
through either P` or P´ as ε Ñ 0. Specifically, all lines Ln associated with the degenerate checkerboard
IC-net Ncp0q in the Blaschke cylinder model lie in the plane P´, whereby all L2k pass through P´, while
all L2k`1 pass through P`. Similarly, all lines Mn lie in the plane P` and all M2k pass through P´, while
all M2k`1 pass through P`. Moreover, without loss of generality, the lines of Ncp0q are given by ℓ2n “

pv0, w0, 4n∆q, ℓ2n`1 “ p´v0,´w0,´2p2n`1q∆q, m2n “ pv0,´w0, 4n∆q, m2n`1 “ p´v0, w0,´2p2n`1q∆q

so that Ncp0q is indeed of rhombic type.
It is observed that rhombic checkerboard IC-nets are non-generic since the corresponding hypercycle

base curve C consists of four straight lines parallel to the axis of Z. The simplest generic checkerboard
IC-nets are obtained by “switching on” the parameter ε. The conics obtained by intersecting the quadric
Hcpεq with the d “ 0 plane for some “small” ε are displayed in Figure 3.6 (left). It is important to
note that the number of real base points of the pencil of conics in the d “ 0 plane associated with
the checkerboard IC-nets Ncpεq, that is, the number of points common to the conics of the pencil in
the d “ 0 plane is 4. This distinguishes hyperbolic confocal checkerboard IC-nets from elliptic confocal
checkerboard IC-nets as discussed in detail in Section 5.

4 Checkerboard IC-nets as Laguerre transforms of confocal
checkerboard IC-nets

We will now examine under what circumstances checkerboard IC-nets may be regarded as Laguerre
transforms of confocal checkerboard IC-nets. The associated analysis may naturally be split into two
parts.

4.1 Pre-normalisation

In homogeneous coordinates „ pv, w, 1, dq, the quadratic forms of the pencil of quadrics associated with
a confocal checkerboard IC-net with normalised conics (3.1) are diagonal. Indeed, the cone (3.3) and the
Blaschke cylinder v2 ` w2 “ 1 generate the whole pencil. It is easy to see that the converse statement
is also true if we include in our definition of confocal checkerboard IC-nets the case of the lines being
“tangent” to a degenerate ellipse or hyperbola corresponding to a ą 0, b Ñ 0 or b ą 0, a Ñ 0. In this
case, all lines pass through the two focal points. The cases a ă 0, b Ñ 0 or b ă 0, a Ñ 0 may be excluded
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Figure 3.6. Deformation of a rhombic checkerboard IC-net. Top to bottom: A rhombic checker-
board IC-net. A slightly deformed “almost rhombic” checkerboard IC-net with equal hyperboloids
H “ H̃. A hyperbolic checkerboard IC-net from a larger deformation with equal hyperboloids
H “ H̃. Left to right: Conics in the d “ 0 plane (The corresponding pencil has 4 base points). The
checkerboard IC-net in the Blaschke cylinder model. The checkerboard IC-net in the plane.
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since the hypercycle base curve consists of only two points corresponding to two lines which only differ
in their orientation and which may not be used to construct a proper checkerboard IC-net.

Theorem 4.1. A generic checkerboard IC-net is confocal with its lines being tangent to a normalised
conic of the form (3.1) if and only if the quadratic forms of the associated pencil of quadrics are diagonal
in homogeneous coordinates „ pv, w, 1, dq.

The above theorem implies that a pencil of quadrics associated with a general (that is, non-normalised)
confocal checkerboard IC-net is diagonalisable by Laguerre transformations of the form (A.6) (Appendix)
since Euclidean motions constitute particular Laguerre transformations. On the other hand, since the
lines of confocal checkerboard IC-nets are tangent to two copies of the same conic which have two different
orientations, a Laguerre transformation separates those two copies and one obtains a hypercycle which
consists of two possibly intersecting pieces (see Figure 3.3). It is therefore natural to investigate the
question of the diagonalisability of generic pencils of quadrics which are not necessarily associated with
confocal checkerboard IC-nets. Thus, we now consider a generic checkerboard IC-net with H being one
of its corresponding generic hyperboloids so that the diagonalisability of the associated pencil of quadrics
is equivalent to the diagonalisability of H. Let pQ̃i,jqi,j“1,...,4 be the symmetric matrix of its quadratic
form in coordinates pv, w, 1, dq. Our genericity assumption is equivalent to Q̃4,4 ‰ 0. The normalisation
Q̃4,4 “ ´1 therefore leads to

Q̃ “

˜

S̃ a

aT ´1

¸

,

where S̃ is a symmetric matrix, and a P R3. By means of a Laguerre transformation (A.5) (Appendix)
with the matrix

A “

˜

1 0

aT 1

¸

,

Q̃ is brought into the block diagonal form

Q “ AT Q̃A “

˜

S 0

0 ´1

¸

, (4.1)

where S is symmetric. Furthermore, the matrix Q may be diagonalised by a Laguerre transformation A1

only if it is of the form

A1 “

˜

B 0

0 1

¸

with B P Op2, 1q. Hence, we conclude that the pencil of quadrics associated with a generic checkerboard
IC-net is diagonalisable by a Laguerre transformation if and only if there exists a B P Op2, 1q such that

BTSB

is diagonal, where S is defined by (4.1).

4.2 Diagonalisation

In the preceding, it has been demonstrated that the question of whether or not a checkerboard IC-net
may be Laguerre-transformed into a confocal checkerboard IC-net may be answered by determining the
class of symmetric 3 ˆ 3 matrices S which may be diagonalised according to

S Ñ BTSB, B P Op2, 1q.

It is important to note that S represents the conic intersection of the quadric

pv w 1qS

¨

˝

v
w
1

˛

‚“ d2 (4.2)
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Type Type and
multiplic-
ity of base
points

# of
real
base
points

Type and
multiplicity
of degener-
ate conics

Type
and mul-
tiplicity
of roots

Ia 1, 1, 1, 1 4 ˆ,ˆ,ˆ 1, 1, 1
Ib 1, 1, p1, 1̄q 2 ˆ, ˝, ¯̋ 1, p1, 1̄q

Ic p1, 1̄q, p1, 1̄q 0 ˆ, ‚, ‚ 1, 1, 1

IIa 2, 1, 1 3 2ˆ,ˆ 2, 1
IIb 2, p1, 1̄q 1 2‚,ˆ 2, 1

IIIa 2, 2 2 2 “,ˆ 2, 1
IIIb p2, 2̄q 0 2 “, ‚ 2, 1

IV 3, 1 2 3ˆ 3

V 4 1 3 “ 3

Figure 4.1. The classification of real pencils of conics. There exist four different types of degenerate
conics. (ˆ) Two real intersecting lines. (˝) Two non-intersecting complex lines. (‚) Two complex
conjugate lines which intersect in a real point. (}) A real double line.

and the plane d “ 0. Since the matrix Z “ diagp1, 1,´1q representing the “Blaschke circle” v2 ` w2 “ 1

is invariant under the action of the group Op2, 1q, the matrix S is diagonalisable if and only if the
one-parameter family of matrices

Sλ “ S ` λZ

encoding the pencil of conics P spanned by the conic associated with S and the Blaschke circle is
diagonalisable. It is noted that the roots of the characteristic cubic polynomial

P pλq “ detSλ

correspond to the degenerate conics of P. Furthermore, it is evident that S is diagonal if and only if one
conic in P different from the Blaschke circle (and therefore any conic) is symmetric with respect to the
v- and w-axes.

We will now demonstrate that diagonalisability may be characterised in terms of the real base points
of the pencil P, that is, the points (on the Blaschke circle) common to all conics of P (or, equivalently, any
particular pair of conics of P). The proof of the following theorem is based on the standard classification
of pencils of conics [Le] in terms of the number and nature of the base points which are determined by
the roots of the quartic equation, representing the common solutions of v2 ` w2 “ 1 and (4.2)d“0. This
classification is in one-to-one correspondence with the number and nature of roots of the characteristic
polynomial P pλq associated with any pencil. The present theorem is a variant of a theorem [Le] which
states that a symmetric matrix S is diagonalisable by means of a projective transformation if and only if
the corresponding pencil is of type Ia, Ic, IIIa or IIIb in the classification tabled in Figure 4.1. Normal
forms of degenerate conics associated with this classification are depicted in Figure 4.2.

Theorem 4.2. The matrix S may be diagonalised if and only if the associated pencil of conics P has
four, two double or no real base points, that is, if P is of type Ia, Ic, IIIa or IIIb.

Proof. If S is diagonal then the associated pencil P is symmetric with respect to the v- and w-axes. This
symmetry cannot be present in types other than Ia, Ic, IIIa or IIIb. Conversely, it is necessary to show
that if the pencil is of any of those four types then P can be made symmetric or, equivalently, Sλ is
diagonalisable for one λ ‰ 8.

Ia) Four real base points. In this case, we may apply a projective transformation which transforms
the Blaschke circle into an ellipse and maps the four base points to the four vertices of a rectangle which
is symmetric with respect to the v- and w-axes. An appropriate subsequent affine transformation then
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Ù

Ù

Ia
Ù

˝, ¯̋

Ib

Ù

Ù

8
Ò

Ic

2ˆ

IIa
8

2‚

IIb

2 “

IIIa
8 2 “

IIIb

3ˆ

IV

3 “

V
Figure 4.2. Degenerate conics of real pencils of conics containing the Blaschke circle. For each
type, a normal form is shown with respect to projective transformations which preserve the Blaschke
circle. For types I, the normal form still depends on one parameter, which is indicated by Ù. The
8 symbol indicates that the line (point) is chosen to be the line at infinity (the point at infinity in
the designated direction).

maps the ellipse to the Blaschke circle without affecting the symmetry of the rectangle. The composition
of these two transformations constitutes an Op2, 1q transformations since it leaves the Blaschke circle
invariant. This compound transformation results in a symmetric distribution of the base points and,
hence, the transformed pencil is symmetric.

IIIa) Two real double base points. In this case, there exists a degenerate conic consisting of two real
lines which touch the Blaschke circle. A suitable combination of a projective and an affine transformation
sends the vertex of this degenerate conic to infinity and maps the intermediate ellipse back to the Blaschke
circle. The degenerate conic may therefore be transformed into w2 “ 1 which is symmetric.

Ic) Four complex base points. In this case, there exists a degenerate conic consisting of two in-
tersecting real lines which do not intersect the Blaschke circle. A suitable combination of a projective
and an affine transformation sends the vertex of this degenerate conic to infinity and maps the inter-
mediate ellipse back to the Blaschke circle. The degenerate conic may therefore be transformed into
pw ´ aqpw ` bq “ 0, where a, b ą 1. It is not difficult to show that a suitable hyperbolic rotation in the
pw̃, z̃q-plane (with pw̃, z̃q „ pw, 1q) leads to a “ b so that the degenerate conic simplifies to w2 “ a2 which
is symmetric.

IIIb) Two complex double base points. In this case, there exists a degenerate conic consisting of
two coinciding real lines which do not intersect the Blaschke circle. A suitable combination of a projective
and an affine transformation sends this double line to infinity and maps the intermediate ellipse back to
the Blaschke circle. The transformed double line is therefore given by z̃2 “ 0 which is symmetric.

In summary, it has been established that the matrix S may be diagonalised if and only if the associated
pencil of conics P has four, two double or no real base points. This leads to the following characterisation.

Theorem 4.3. A generic checkerboard IC-net is Laguerre-equivalent to a confocal checkerboard IC-net if
and only if the hypercycle base curve of the associated pencil of quadrics consists of two non-degenerate
loops on the Blaschke cylinder which are either disjoint or transversal.

Proof. Since the statement to be proven is invariant under Laguerre transformations, it suffices to examine
the nature of the base curves of “normal forms” of generic pencils of quadrics. These are determined by the
normal forms of the associated pencils of conics. The normal forms of degenerate conics which together
with the Blaschke circle span pencils of conics of types Ia, Ic and IIIa, IIIb have been derived in the
proof of the preceding theorem. In a similar manner, the remaining types of pencils may be treated.
Accordingly, one obtains the classification of pencils of quadrics displayed in Figure 4.3. The associated
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base curves are also depicted in Figure 4.3. It is noted that the base curves of types Ic` and IIIb´ are
empty and, therefore, do not correspond to a hypercycle. The types Ia and Ic´ are associated with a
double hyperbola and a double ellipse respectively, while the types IIIa`, IIIa´ and IIIb` correspond to
the special cases of the hypercycle consisting of two points, a double line and a double circle respectively.
As pointed out in connection with Theorem 4.1, the case of a double line does not give rise to a proper
checkerboard IC-net. Accordingly, we find that confocal checkerboard IC-nets are captured by the types
Ia, Ic´, IIIa` and IIIb` which confirms the assertion of the theorem.

Remark 4.1. A stronger notion of genericity is obtained by considering only those checkerboard IC-nets
which are generically generated by means of the iterative geometric construction of checkerboard IC-nets
described in Section 4. In this case, generic checkerboard IC-nets are of types Ia, Ib˘ and Ic´ so that
the case of two transversal components of the hypercycle base curve cannot occur and must be removed
from the above theorem.
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Type Normal form of a degenerate quadric Type and multiplicity of degenerate quadrics
‹

Ia w2 ´ a2 “ `
p´qd2, 0 ă a ă 1

Ib˘ wpbw ´ 1q “ ˘d2, |b| ă 1

complex
cone

complex
cone

c.c.

‹

p`q

complex
cone

complex
cone

c.c.

‹

p´q

Ic˘ w2 ´ a2 “ ˘d2, a ą 1

imag.
cone

imag.
cylinder

‹

p`q

‹

p´q

IIa˘ wpw ´ 1q “ ˘d2
(2)

‹

p`q

(2)

‹

p´q

IIb˘ pw ´ 1q “ ˘d2
(2)

‹

p`q

imag.
cone (2)

‹

p´q
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IIIa˘ w2 “ ˘d2
(2)

‹

p`q

c.c.
planes

(2)

‹

p´q

IIIb˘ 1 “ ˘d2
(2)

‹

p`q

c.c.
parallel planes

imag.
cone

(2)

‹

p´q

(3)

‹
IV pw ´ 1qv “ `

p´qd2

V˘ pw ´ 1q2 “ ˘d2
(3)

‹

p`q

c.c.
planes

(3)

‹

p´q

double plane
(3)

‹
O 0 “ `

p´qd2

Figure 4.3. Normal forms of degenerate quadrics of generic pencils, corresponding to the clas-
sification of different types of planar pencils of conics listed and illustrated in Figures 4.1 and 4.2.
These are obtained by “adding” a ˘d2 term to the algebraic representation of the degenerate conics
depicted in Figure 4.2. However, type O corresponds to the case S “ 0 which does not encode a
pencil of conics in the pv, wq-plane. Note that types Ia, IV, and O each generate only one class,
that is, different signs in ˘d2 lead to equivalent pencils. Types Ic` and IIIb´ correspond to empty
hypercycles. For each type, a normal form of one degenerate quadric is given which spans the generic
pencil together with the Blaschke cylinder. Furthermore, for each type, all degenerate quadrics are
shown together with the hypercycle base curve. The multiplicity is given if greater than 1, and a ‹

indicates that the degenerate quadric corresponds to the normal form recorded in the second column
of the table.
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5 An elliptic function representation of confocal checkerboard IC-
nets

Explicit parametrisations of confocal checkerboard IC-nets and their Laguerre transforms may now be
obtained by parametrising the hypercycle base curves associated with a pencil of quadrics in terms of
elliptic functions.

5.1 Elliptic confocal checkerboard IC-nets

It is recalled that “elliptic” confocal checkerboard IC-nets, that is checkerboard IC-nets the lines of which
are tangent to an ellipse

x2

α2
`
y2

β2
“ 1, (5.1)

correspond to a pencil of quadrics

pα2 ` λqv2 ` pβ2 ` λqw2 “ d2 ` λ (5.2)

generated by an elliptic cone and the Blaschke cylinder, namely

α2v2 ` β2w2 “ d2, v2 ` w2 “ 1. (5.3)

In the following, we assume that α2 ě β2 without loss of generality. The associated base curve is the set
of all points pv, w, dq obeying the pair (5.3). This corresponds to types Ic´ or IIIb` of the classification of
pencils of quadrics with the two components of the base curve being mapped into each other by d Ñ ´d.
The nature of any quadric H in the pencil (5.2) depends on the value of the associated parameter λ.
Accordingly, there exist two cases.

The case λ ě 0

In this case, the quadric H constitutes a one-sheeted hyperboloid (or a cone for λ “ 0) which is aligned
with the Blaschke cylinder. If we now parametrise v and w in terms of Jacobi elliptic functions [NIST]
cn and sn respectively then the general solution of (5.3) is given by

v˘pψq “

¨

˝

vpψq

wpψq

d˘pψq

˛

‚“

¨

˝

cnpψ, kq

snpψ, kq

˘α dnpψ, kq

˛

‚, k “

c

1 ´
β2

α2
, (5.4)

where ψ constitutes the parameter along the (two components of the) base curve. Any pair of points on
the two components of the base curve may be represented by

v˘pψ0q, v¯pψ1q, ψ1 “ s` ψ0 (5.5)

for any fixed choice of the above signs. If we demand that, for fixed s, the one-parameter family of lines

lpψ0, tq “ v˘pψ0q ` trv¯pψ1q ´ v˘pψ0qs, t P R (5.6)

consist of generators of the quadric H then we obtain a relationship between the parameters s and λ

which is to be independent of ψ0. Indeed, insertion of l into (5.2) produces

vpψ0qvpψ1qpα2 ` λq ` wpψ0qwpψ1qpβ2 ` λq “ d˘pψ0qd¯pψ1q ` λ.

It is observed that, geometrically, the latter merely represents the fact that the points v˘pψ0q and v¯pψ1q

are required to lie in the tangent planes to the hyperboloid (5.2) at those two points. Now, comparison
with the general identity [NIST]

cs snpψ0, kq snpψ1, kq ` cc cnpψ0, kq cnpψ1, kq “ cd dnpψ0, kq dnpψ1, kq ` 1 (5.7)

cs “ dcps, kq ` cdp1 ´ k2q ncps, kq, cc “ ncps, kq ` cd dcps, kq
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for elliptic functions with ψ1 “ ψ0 ` s shows that it is required that

α2 ` λ “ λ ncps, kq ´ α2 dcps, kq

β2 ` λ “ λ dcps, kq ´ α2p1 ´ k2q ncps, kq.

Since the latter two conditions coincide, we conclude that

λ “ α2 dcps, kq ` 1

ncps, kq ´ 1
“ α2 cs2

´s

2
, k
¯

ě 0 (5.8)

so that any family of generators of the quadric (5.2) for λ ě 0 is encoded via the parametrisation (5.4)-
(5.6) in an appropriately chosen parameter s. In other words, a translation of the argument ψ in the
parametrisation (5.4) by some fixed quantity s together with a change of the component of the base curve
gives rise to a family of generators of a unique quadric H of the pencil. The second family of generators
is obtained by letting s Ñ ´s.

The case ´α2 ď λ ď ´β2

This case corresponds to the remaining one-sheeted hyperboloids (and an elliptic and hyperbolic cylinder
for λ “ ´α2 and λ “ ´β2 respectively) of the pencil (5.2) which are aligned with the v-axis. It is now
convenient to introduce an additional parameter ε in the parametrisation (5.4) according to

vε
˘pψq “

¨

˝

cnpψ, kq

ε snpψ, kq

˘α dnpψ, kq

˛

‚, ε2 “ 1

and consider two points
vε

˘pψ0q, v´ε
˘ pψ1q, ψ1 “ s` ψ0 (5.9)

on any fixed component of the base curve. Then, the lines

lpψ0, tq “ vε
˘pψ0q ` trv´ε

˘ pψ1q ´ vε
˘pψ0qs, t P R (5.10)

turn out to be generators on any hyperboloid H given by (5.2) for

λ “ ´β2 nd2
´s

2
, k
¯

.

Once again, for any fixed λ in the current range, there exists an |s| such that the generators of the
associated quadric H which pass through the base curve are parametrised by (5.10). The two signs of s
correspond to the two families of generators of H.

Construction of elliptic confocal checkerboard IC-nets

In order to illustrate the construction of checkerboard IC-nets from pencils of quadrics presented in
Section 3, we consider two quadrics H and H̃ of the pencil (5.2) corresponding to a pair of parameters s
and s̃ which are related to λ, λ̃ ą 0 by (5.8). It is recalled that any point pv, w, dq of the base curve is in
one-to-one correspondence with a line

vx` wy “ d.

In this sense, we refer to pv, w, dq as a point on the Blaschke cylinder or a line in the px, yq-plane. The
first (“vertical”) family of lines of the elliptic confocal checkerboard is then given by

vv
2n “ v`pψv

0 ` nps` s̃qq,

vv
2n`1 “ v´pψv

0 ` nps` s̃q ` sq,
n P Z,

where ψv
0 is arbitrary and corresponds to one of the “initial conditions” of the construction. The second

(“horizontal”) family of lines is associated with the two other families of generators of H and H̃ encoded in
the parameters ´s and ´s̃ respectively. Accordingly, the construction of confocal checkerboard IC-nets
in this case may be summarised as follows.
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Theorem 5.1. For any pairs of parameters α ě β ą 0 and ψv
0 , ψ

h
0 and s, s̃, the lines

vv
2n “ v`pψv

0 ` nps` s̃qq,

vv
2n`1 “ v´pψv

0 ` nps` s̃q ` sq,

vh
2n “ v`pψh

0 ´ nps` s̃qq,

vh
2n`1 “ v´pψh

0 ´ nps` s̃q ´ sq,

v˘pψq “

¨

˝

cnpψ, kq

snpψ, kq

˘α dnpψ, kq

˛

‚

k “

c

1 ´
β2

α2
.

(5.11)

form a (confocal) checkerboard IC-net and are tangent to the ellipse

x2

α2
`
y2

β2
“ 1.

The parameters s, s̃ determine the associated hyperboloids H, H̃ of the pencil

pα2 ` λqv2 ` pβ2 ` λqw2 “ d2 ` λ

according to
λ “ α2 cs2

´s

2
, k
¯

.

“Embedded” elliptic confocal checkerboard IC-nets are obtained by requiring periodicity, that is,

s` s̃ “ 4K `
4K

N
, N P N, (5.12)

where the quarter-period Kpkq of the Jacobi elliptic functions is given by the complete elliptic integral of
the first kind, and demanding that the two families of lines vv and vh coincide up to their orientation.
The latter may be achieved by relating the parameters ψv

0 and ψh
0 according to

ψv
0 “ 2K ` ψh

0 ´ s

so that
vv
2n “ ´vh

´2n`1, vv
2n`1 “ ´vh

´2n.

If we now parametrise the constraint (5.12) by

s “ 2K `
4K

N
´ κ, s̃ “ 2K ` κ,

where κ is the arbitrary parameter, then

ψh
0 “ ψv

0 `
4K

N
´ κ. (5.13)

For κ “ 0, the lines vv
2n and vv

2n´1 coincide up to their orientation and the quadric H̃ becomes the cone
(5.3)1 since s̃ “ 2K so that λ̃ “ 0. Hence, as discussed in Section 3, an elliptic IC-net is obtained as
depicted in Figure 5.1 (left) for N “ 32 and ψv

0 “ 0.2. Here, α “ 2 and β “ 1. As κ increases, the
coinciding lines separate and the circles of zero radius between the coinciding lines enlarge so that a
non-degenerate confocal checkerboard emerges with H̃ being a proper hyperboloid. An elliptic confocal
checkerboard IC-net for κ “ 0.1 is displayed in Figure 5.1 (right).

5.2 Hyperbolic confocal checkerboard IC-nets

The lines of “hyperbolic” confocal checkerboard IC-nets are tangent to a hyperbola given by, without loss
of generality,

x2

α2
´
y2

β2
“ 1.

In terms of the Blaschke model, the associated pencil of quadrics

pα2 ` λqv2 ´ pβ2 ´ λqw2 “ d2 ` λ (5.14)
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Figure 5.1. Periodic elliptic confocal checkerboard IC-nets for α “ 2, β “ 1, N “ 32. Left: κ “ 0,
corresponding to the degenerate case of an IC-net. Right: κ “ 0.1.

is generated by the pair of quadrics

α2v2 ´ β2w2 “ d2, v2 ` w2 “ 1.

The base curve is the intersection of these two quadrics (and all members of the pencil), corresponding
to type Ia´ of the classification of pencils of quadrics. The two components of the base curve are mapped
into each other via v Ñ ´v. As in the elliptic case, the base curve may be parametrised in terms of
elliptic functions and one has to distinguish between two cases.

The case ´α2 ď λ ď 0

In this case, any quadric H constitutes a one-sheeted hyperboloid (or a cone for λ “ 0 and an elliptic
cylinder for λ “ ´α2) which is aligned with the v-axis. It is then readily verified that

v˘pψq “

¨

˝

v˘pψq

wpψq

dpψq

˛

‚“

¨

˝

˘ dnpψ, kq

k snpψ, kq

α cnpψ, kq

˛

‚, k “

d

α2

α2 ` β2
(5.15)

covers all points of these two components. Given any two points of the form (5.5) on the two components
of the base curve, one may now determine the corresponding quadric H of the pencil which contains the
lines (5.6) as generators for fixed s and all ψ0. A calculation along the lines of the previous subsection
reveals that the pencil parameter λ linked to the parameter s is given by

λ “ ´α2 cn2
´s

2
, k
¯

. (5.16)

The case λ ě β2

This case corresponds to the remaining two-sheeted hyperboloids H (or a hyperbolic cylinder for λ “ β2)
of the pencil (5.14) which are aligned with the Blaschke cylinder. In analogy with the elliptic case, it is
convenient to introduce a parameter ε in the parametrisation

vε
˘pψq “

¨

˝

˘ dnpψ, kq

k snpψ, kq

εα cnpψ, kq

˛

‚, ε2 “ 1

of the base curve. Then, any pair of points of the type (5.9) on any fixed component of the base curve
may be connected by a line (5.10) which constitutes a generator of the quadric (5.14) for

λ “ pα2 ` β2q ds2
´s

2
, k
¯

independently of the value of ψ.
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Figure 5.2. Periodic hyperbolic confocal checkerboard IC-nets for α “ β “ 1, N “ 32. Left: κ “ 0,
corresponding to the degenerate case of an IC-net. Right: κ “ 0.1.

Construction of hyperbolic confocal checkerboard IC-nets

Once again, as an illustration, we now consider two quadrics H and H̃ of the pencil (5.14) defined via
the relation (5.16) by given parameters s and s̃. The formulae (5.11) for the two families of lines of the
corresponding confocal checkerboard IC-nets remain valid in the current hyperbolic case but v˘ and k

are now defined by (5.15). In fact, the conditions (5.12)-(5.13) for embeddedness are likewise applicable.
Thus, for κ “ 0, one obtains hyperbolic IC-nets as illustrated in Figure 5.2 (left) for N “ 32, ψv

0 “ 0.2

and α “ β “ 1. Furthermore, a hyperbolic confocal checkerboard IC-net for κ “ 0.1 is depicted in Figure
5.2 (right).

5.3 IC-nets and discrete confocal conics

We conclude this section by relating IC-nets to the discrete confocal conics proposed in [BSST1, BSST2].
For brevity, we focus on the class of IC-nets which is subsumed by the class of elliptic checkerboard
IC-nets captured by Theorem 5.1. These IC-nets are associated with the choice s̃ “ 2K, corresponding
to a cone as the corresponding quadric H̃. Thus, if we set s “ 2K ` δ and ψv{h

0 “ δn
v{h
0 then the explicit

parametrisation (5.11) leads to the following corollary.

Corollary 5.2. The (coinciding pairs of non-oriented) lines of an elliptic IC-net of the type captured by
Theorem 5.1 may be represented by the lines

vv
n1

“ vpδpnv0 ` n1qq, vh
n2

“ vpδpnh0 ´ n2qq, ni P Z, (5.17)

where

vpψq “

¨

˝

vpψq

wpψq

dpψq

˛

‚“

¨

˝

cnpψ, kq

snpψ, kq

α dnpψ, kq

˛

‚, k “

c

1 ´
β2

α2
. (5.18)

In the sense of Laguerre geometry, the quadruples of oriented lines

vv
n1
, vh

n2
, ´vv

n1`1, ´vh
n2`1

are tangent to circles so that, by construction,∣∣∣∣∣∣∣∣∣∣
1 vvn1

wv
n1

dvn1

1 vhn2
wh

n2
dhn2

1 ´vvn1`1 ´wv
n1`1 ´dvn1`1

1 ´vhn2`1 ´wh
n2`1 ´dhn2`1

∣∣∣∣∣∣∣∣∣∣
“ 0 (5.19)
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which coincides with the known identity [NIST]∣∣∣∣∣∣∣∣
1 snpz1, kq cnpz1, kq dnpz1, kq

1 snpz2, kq cnpz2, kq dnpz2, kq

1 snpz3, kq cnpz3, kq dnpz3, kq

1 snpz4, kq cnpz4, kq dnpz4, kq

∣∣∣∣∣∣∣∣ “ 0, z1 ` z2 ` z3 ` z4 “ 0 (5.20)

for Jacobi elliptic functions if one identifies the arguments in (5.19) and (5.20) appropriately. The point
of intersection pxˆ, yˆq of two lines vv

n1
and vh

n2
is given by the solution of the two linear equations

vvn1
xˆ ` wv

n1
yˆ “ dvn1

, vhn2
xˆ ` wh

n2
yˆ “ dhn2

. (5.21)

If we now make the change of variables

n1 “ m2 `m1, ξ1 “ δ

„

m1 `
1

2
pnv0 ` nh0 q

ȷ

n2 “ m2 ´m1, ξ2 “ δ

„

m2 `
1

2
pnv0 ´ nh0 q

ȷ

,

leading to
vv “ vpξ1 ` ξ2q, vh “ vpξ1 ´ ξ2q,

where we have suppressed the dependence on mi P 1
2Z, then consideration of the sum and the difference of

the linear equations (5.21) and application of the addition theorems for Jacobi elliptic functions produces
the following result.

Theorem 5.3. The points of intersection of the pairs of lines pvv
m2`m1

, vh
m2´m1

q of the elliptic IC-nets
(5.17), (5.18) are given by the compact formulae

xˆ “ α cdpξ1, kq dcpξ2, kq, yˆ “ αp1 ´ k2q sdpξ1, kq ncpξ2, kq (5.22)

with
ξ1 “ δ

„

m1 `
1

2
pnv0 ` nh0 q

ȷ

, ξ2 “ δ

„

m2 `
1

2
pnv0 ´ nh0 q

ȷ

. (5.23)

These lie on the conics
x2ˆ

λepξ2q
`

y2ˆ
µepξ2q

“ 1,
x2ˆ

λhpξ1q
`

y2ˆ
µhpξ1q

“ 1, (5.24)

where

λe “ α2 dc2pξ2, kq, µe “ α2p1 ´ k2q nc2pξ2, kq

λh “ α2k2 cd2pξ1, kq, µh “ ´α2k2p1 ´ k2q sd2pξ1, kq,

which are confocal to the ellipse of contact (5.1).

Proof. It is straightforward to verify that ξ1 and ξ2 as given by (5.23) obey the quadratic relations (5.24).
Moreover, since

λe ´ µe “ λh ´ µh “ α2k2 “ α2 ´ β2,

the conics (5.24) are indeed in the set of confocal conics defined by the ellipse (5.1).

As proven in [AB], the centres of the circles of IC-nets lie on affine transforms of confocal conics.
Hence, the algebraic structure of their coordinates should coincide with that of the points of intersection
of pairs of lines as given by (5.22). In order to confirm this assertion, it is observed that the centre
pxd, ydq and the radius rd of any particular circle are determined by solving any three equations of the
linear system

vxd ` wyd ´ rd “ d, v P tvv
n1
,vh

n2
,´vv

n1`1,´vh
n2`1u.

Elimination of rd leads to the pair of equations

pvvn1
´ vhn2

qxd ` pwv
n1

´ wh
n2

qyd “ pdvn1
´ dhn2

q

pvvn1`1 ´ vhn2`1qxd ` pwv
n1`1 ´ wh

n2`1qyd “ pdvn1`1 ´ dhn2`1q.
(5.25)
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Once again, the addition theorems for Jacobi elliptic functions and the double- and half-“angle” formulae
[NIST]

snp2z, kq “
2 snpz, kq cnpz, kq dnpz, kq

1 ´ k2 sn4pz, kq

sn2p 1
2z, kq “

1 ´ cnpz, kq

1 ` dnpz, kq

give rise to a compact form of its solution.

Theorem 5.4. The centres of the circles of the elliptic IC-nets (5.17), (5.18) are given by

xd “ α dcp δ
2 , kq cdpξ1, kq dcpξ2 ` δ

2 , kq

yd “ αp1 ´ k2q ncp δ
2 , kq sdpξ1, kq ncpξ2 ` δ

2 , kq.
(5.26)

These constitute the vertices of a discrete confocal coordinate system on the plane, that is, there exist
functions fpm1q, gpm1q and f̃pm2q, g̃pm2q such that

ˆ

xd

yd

˙

“
1

?
a´ b

ˆ

fpm1qf̃pm2q

gpm1qg̃pm2q

˙

(5.27)

and

fpm1qfpm1 ` 1
2 q ` gpm1qgpm1 ` 1

2 q “ a´ b

f̃pm2qf̃pm2 ` 1
2 q ´ g̃pm2qg̃pm2 ` 1

2 q “ a´ b,
(5.28)

where a´ b “ α2k2.

Proof. The structure of the solution (5.26) of the linear system (5.25) shows that it factorises according
(5.27). If we choose the scaling of the functions f, g and f̃, g̃ in such a manner that

f “ |αk|

b

dcp δ
2 , kq cdpξ1, kq

f̃ “ α
b

dcp δ
2 , kq dcpξ2 ` δ

2 q

g “ |αk|
a

1 ´ k2
b

ncp δ
2 , kq sdpξ1, kq

g̃ “ α
a

1 ´ k2
b

ncp δ
2 , kq ncpξ2 ` δ

2 q

(5.29)

then it may be verified that the difference equations (5.28) are indeed satisfied. Here, we have assumed
that cnp δ

2 , kq ą 0, which is compatible with the continuum limit δ Ñ 0. The other case may be dealt
with in a similar manner but requires the introduction of factors of the type p´1qm1 and p´1qm2 in the
definitions of f, g and f̃, g̃ respectively. This corresponds to “superdiscrete” IC-nets which do not admit a
continuum limit. Finally, since the pair (5.27), (5.28) characterises discrete confocal coordinate systems
on the plane [BSST2], the proof is complete.

Remark 5.1. Up to the shift of the argument ξ2 Ñ ξ2 ` δ
2 and the affine transformation

pxd, ydq Ñ pAxd, Bydq, A “ cdp δ
2 , kq, B “ cnp δ

2 , kq.

the formulae (5.22) and (5.26) coincide. This confirms that the centres pxd, ydq lie on affine transforms
of the confocal conics associated with the ellipse (5.1). Equivalently, this implies that the affine trans-
forms pA´1xˆ, B

´1yˆq are likewise vertices of a discrete confocal coordinate system. In fact, the points
pxd, ydq and pA´1xˆ, B

´1yˆq are part of the same (extended) discrete confocal coordinate system of
p 1
2Zq

2 combinatorics. Another implication of this connection is that the functions f, g and f̃, g̃ as given
by (5.29) satisfy the algebraic identities

Af2 `Bg2 “ a´ b, Af̃2 ´Bg̃2 “ a´ b. (5.30)

The latter constitute the algebraic constraints on discrete confocal coordinate systems as defined by (5.27),
(5.28) which give rise to the privileged IC-net-related discrete confocal coordinate systems touched upon
in the preceding. These have been discussed in detail in [BSST2].
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Remark 5.2. If we eliminate, for instance, g between (5.28)1 and (5.30)1 then we obtain a first-order
difference equation for f , namely

pA2 ´B2qf21
2
f2 ` 2pa´ bqB2f 1

2
f ´ pa´ bqApf21

2
` f2q ` pa´ bq2p1 ´B2q “ 0,

where f “ fpm1q, f 1
2

“ fpm1 ` 1
2 q. The latter may be regarded as a first integral of a difference equation

of second order. Indeed, if we regard B2 as the associated constant of integration then elimination of B
leads to

f1 “
F 1pf 1

2
q ´ fF 2pf 1

2
q

F 2pf 1
2

q ´ fF 3pf 1
2

q
(5.31)

with
F 1pf 1

2
q “ 2pa´ bqf 1

2
, F 2pf 1

2
q “ f21

2
` pa´ bqA, F 3pf 1

2
q “ 2Af 1

2
(5.32)

and f1 “ fpm1 ` 1q. Remarkably, (5.31), (5.32) constitutes a particular symmetric case of an 18-
parameter family of integrable reversible mappings of the plane known as QRT maps [QRT]. These play
a fundamental role in the theory of discrete integrable systems and are known to be parametrisable in
terms of elliptic functions, which is in agreement with the parametrisation of IC-nets presented in the
preceding.

6 Generalised checkerboard IC-nets

The construction of checkerboard IC-nets in terms of the Blaschke cylinder model as described in Section
3 may immediately be generalised in a natural manner. Thus, for any given pencil of quadrics which
contains the Blaschke cylinder Z, we first select two (“horizontal” and “vertical”) sequences of hyperboloids
Hh

n and Hv
n belonging to this pencil. We then choose two points ℓ1 and m1 of the associated hypercycle

base curve and iteratively construct two sequences of points ℓn and mn on the hypercycle base curve by
“moving along” generators Ln and Mn of the corresponding hyperboloids Hh

n and Hv
n respectively, that

is,
Ln “ pℓn, ℓn`1q Ă Hh

n, Mn “ pmn,mn`1q Ă Hv
n.

If, for any i, k, the two hyperboloids Hh
i and Hv

k coincide and the corresponding generators Li and Mk

have been chosen in such a manner that they are not in the same family of generators of the common
hyperboloid then the lines ℓi, ℓi`1 and mk,mk`1 circumscribe an oriented circle. In particular, if Hn :“

Hh
n “ Hv

n and Hn`2 “ Hn then standard checkerboard IC-nets are retrieved. An example of a generalised
checkerboard IC-net in the case of period 4, that is, Hn`4 “ Hn is displayed in Figure 6.1 (left). Another
example of period 4 which involves only three hyperboloids with H4n`1 “ H1, H2n`2 “ H2, H4n`3 “ H3

is also depicted in Figure 6.1 (right).
In algebraic terms, the construction of generalised checkerboard IC-nets may be implemented as

follows. Here, we focus on a pencil of quadrics which has already been normalised so that

pa` λqv2 ` pb` λqw2 “ d2 ` λ

with underlying normalised cone and Blaschke cylinder

av2 ` bw2 “ d2, v2 ` w2 “ 1.

Any prescribed sequence of (suitably constrained) pencil parameters λn then corresponds to a sequence
of hyperboloids Hn which, in the following, represents one of Hh

n or Hv
n. The procedure described below

may then also be applied to the other sequence of hyperboloids. Now, given a point vn “ pvn, wn, dnq

(that is, either ℓn or mn) on the hypercycle base curve, the two choices for the point vn`1 corresponding
to the pair of generators of the hyperboloid Hn passing through vn are obtained by intersecting the
hypercycle base curve with the tangent plane of Hn at vn. Algebraically, this is expressed by

pa` λqvnvn`1 ` pb` λqwnwn`1 “ dndn`1 ` λ. (6.1)
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Figure 6.1. Examples of generalised checkerboard IC nets involving three (right) and four (left)
different hyperboloids.

If we eliminate vn`1 and wn`1 between this tangency condition and the hypercycle base curve constraints

av2n`1 ` bw2
n`1 “ d2n`1, v2n`1 ` w2

n`1 “ 1 (6.2)

then we obtain a quartic in dn`1 which, by construction, contains the factor pdn`1 ´ dnq2. Accordingly,
we are left with a symmetric and biquadratic relation between dn`1 and dn which reads

κdpd2nd
2
n`1 ` abq ` d2n ` d2n`1 ` 2κvκwdndn`1 “ 0, (6.3)

where

κv “
λ2 ` 2aλ` ab

λ2 ´ ab
, κw “

λ2 ` 2bλ` ab

λ2 ´ ab
, κd “ 4

λpλ` aqpλ` bq

pλ2 ´ abq2
.

For a given point vn, the two choices for the point vn`1 therefore correspond to the two roots of the
quadratic (6.3). In order to verify algebraically the uniqueness of the components vn`1 and wn`1 once
dn`1 has been fixed, it is convenient to be aware of the pair of linear equations (in vn`1 and wn`1)

κwavnvn`1 ` κvbwnwn`1 ` dndn`1 “ 0, κvvnvn`1 ` κwwnwn`1 “ 1 (6.4)

which may be extracted from the compatible system (6.1), (6.2). One may directly verify that the pair
(6.4) may be combined to reproduce the tangency condition (6.1).

We observe in passing that for any given sequence λn, the biquadratic equation (6.3) may be regarded
as a non-autonomous extension of the first integral of a particular member of the symmetric class of QRT
maps alluded to at the end of the previous section. In the case of standard confocal checkerboard IC-nets,
the coefficients of the biquadratic are of period 2. Non-autonomous QRT maps with periodic coefficients
and their relation to discrete Painlevé equations have been discussed in detail in [RGW].

As an illustration of the above formalism, we consider the “elliptic” case analogous to that discussed
in Section 5.1, that is,

a “ α2, b “ β2, λ ě 0.

Then, any given sequence sn determines both the hyperboloids Hn according to

λn “ α2 cs2
´sn
2
, k
¯

, k “

c

1 ´
β2

α2
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and, via sgnpsnq, to which families the generators (Ln or Mn) belong. The solution of the system (6.3),
(6.4) is given by

vn “

¨

˝

cnpψn, kq

snpψn, kq

p´1qnα dnpψn, kq

˛

‚, ψn`1 “ ψn ` sn

and the coefficients κv, κw and κd read

κv “ ncpsn, kq, κw “ dcpsn, kq, κd “ α´2 sc2psn, kq

so that the relations (6.4) are seen to encode the classical “pencil” of addition theorems (5.7) for Jacobi
elliptic functions.

We conclude by translating the construction of “periodic” generalised checkerboard IC-nets in terms
of the Blaschke model into a direct geometric construction in the plane with suitably prescribed Cauchy
data. Here, we consider the case Hh

n “ Hv
n “ Hn. We first observe that if we prescribe the line m1

and the lines ℓn which are in oriented contact with a given hypercycle then a corresponding generalised
checkerboard IC-net for which each quadruplet of lines ℓn, ℓn`1, mn,mn`1 is in oriented contact with a
circle is uniquely determined. Indeed, there exists a unique line m2 which is in oriented contact with the
hypercycle and the unique circle in oriented contact with the lines ℓ1, ℓ2 and m1. In this manner, all lines
mn may be constructed iteratively. In the periodic case Hn`N “ Hn, N ě 2 for which the circles inscribed
in the quadruples of lines ℓn, ℓn`1, mn`kN ,mn`kN`1 are required to exist (cf. Figure 6.1 (left) for N “ 4),
it is sufficient to prescribe the lines m1 and ℓ1, . . . , ℓN`1. In order to make good this assertion, we first
construct the lines m2, . . . ,mN`1 in the manner described above. The triples of lines m1,m2, ℓN`1 and
ℓ1, ℓ2,mN`1 then give rise to associated circles in oriented contact which, in turn, determine the lines
ℓN`2 and mN`2 via oriented contact with the respective circle and the hypercycle. By virtue of Lemma
3.2, the existence of these two circles and the circle circumscribed by the lines ℓ1, ℓ2,m1,m2 now implies
that the lines L1 “ pℓ1, ℓ2q,M1 “ pm1,m2q and LN`1 “ pℓN`1, ℓN`2q,MN`1 “ pmN`1,mN`2q are
generators of the same hyperboloid which one may denote by H1 “ HN`1 and, moreover, that LN`1 and
MN`1 are not in the same family of generators of H1. This guarantees the existence of a circle which
is in oriented contact with the quadruple of lines ℓN`1, ℓN`2,mN`1,mN`2. Iterative application of this
procedure now generates the entire generalised checkerboard IC-net of period N . Finally, we merely
mention that generalised checkerboard IC-nets of the type displayed in Figure 6.1 (right) are determined
by lines m1 and ℓ1, ℓ2, ℓ3, ℓ4 which are in oriented contact with a hypercycle.

A Laguerre geometry

Here, we present the basic facts about Laguerre geometry, focussing on the Blaschke cylinder model
employed in this paper for studying checkerboard IC-nets. We begin with the more fundamental Lie
sphere geometry. Lie sphere geometry in the plane is the geometry of oriented circles and lines. These
are described as elements of the Lie quadric

L “ P pL3,2q, L3,2 “ tx P R3,2| ă x, x ąR3,2“ 0u.

Let e1, e2, e3, e4, e5 be an orthonormal basis with signature p` ` ` ´ ´q. For our purposes, another basis
e1, e2, e5, e8, e0 defined by

e0 “
1

2
pe4 ´ e3q, e8 “

1

2
pe4 ` e3q, ă e0, e8 ą“ ´

1

2

turns out to be more convenient. Elements of L with non-vanishing e0-component are identified with
oriented circles |x ´ c|2 “ r2, centred at c P R2 and of radius r P R:

s “ c ` re5 ` p|c|2 ´ r2qe8 ` e0. (A.1)

Points are circles of radius r “ 0, and oriented lines pv,xqR2 “ d are elements of L with vanishing
e0-component:

p “ v ` e5 ` 2de8. (A.2)
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The incidence ă p, s ą“ 0 is the condition

pc,vq ´ r “ d (A.3)

of oriented contact of a circle and a line.
The Lie sphere transformation group POp3, 2q acting on P pR3,2q preserves the Lie quadric L and

maps oriented circles and lines to oriented circles and lines, preserving oriented contact. Its subgroup of
Laguerre transformations preserves the set of straight lines or, equivalently, the hyperplane

P “ spante1, e2, e5, e8u “ tw P R3,2| ă w, e8 ą“ 0u.

Direct computation shows that the elements of POp3, 2q preserving the hyperplane P are of the form
¨

˚

˝

λB 0 α

bT 1 ν

0 0 λ´2

˛

‹

‚

in the basis e1, e2, e5, e8, e0, where

B P Op2, 1q, b P R2,1, α “
λ

2
Bb, ν “

λ

4
pb, bqR2,1 , λ P R.

In order to pass to the Blaschke cylinder model of Laguerre geometry, we confine ourselves to the
subspace P “ spante1, e2, e5, e8u. Elements of this space can be identified with straight lines, described
(projectively) by

p̃ “ ṽ ` s̃e5 ` 2d̃e8

as points of the Blaschke cylinder

Z “ trp̃s P P pR2,1,1q||ṽ|2 “ s̃2u. (A.4)

Identification with (A.2) is made via the normalisation of the e0-component: v “ ṽ{s̃, d “ d̃{s̃. It is noted
that the symmetry with the description of circles (A.1) in Lie sphere geometry is no longer present in
the Blaschke cylinder model, and oriented circles are described as the sets of all straight lines in oriented
contact, i.e., the sets of lines satisfying the condition (A.3), that is

S “ tpv, dq P R3|pc,vqR2 ´ r “ du.

Furthermore, Laguerre transformations restricted to the subspace of lines P “ spante1, e2, e5, e8u are of
the form

A “

˜

λB 0

bT 1

¸

. (A.5)

Theorem A.1. The group of Laguerre transformations in the Blaschke (projective) cylinder model (in
the basis e1, e2, e5, e8) is represented by matrices of the form (A.5), where B P Op2, 1q, b P R2,1, λ P R.
These transformations preserve the Blaschke cylinder (A.4).

We conclude by observing that Euclidean motions

x Ñ x̃ “ Rx ` ∆, R P Op2q, ∆ P R2

are particular Laguerre transformations, the corresponding matrix of which is given by (A.5) with

B “

˜

RT 0

0 1

¸

, b “

˜

2R∆

0

¸

(A.6)

and λ “ 1.
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