# Nutzung der Eisenkorrosion zur Entfernung von Arsen aus Trinkwasser

vorgelegt von

Dipl.-Ing. Karsten Karschunke

aus Berlin

Von der Fakultät III – Prozesswissenschaften

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

- Dr.-Ing. -

genehmigte Dissertation

**Promotionsausschuss:** 

Vorsitzender: Prof. Dr.-Ing. S.-U. Geißen

Berichter: Prof. Dr.-Ing. M. Jekel

Berichter: Prof. Dr.-Ing. K. Wichmann (TU Hamburg-Harburg)

Tag der wissenschaftlichen Aussprache: 8. April 2005

Berlin 2005

# Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit am Fachgebiet Wasserreinhaltung im Institut für Technischen Umweltschutz der Technischen Universität Berlin in den Jahren 1998-2002. Das Thema dieser Arbeit zeichnet sich vor allem durch seine anschauliche Zielsetzung aus: Arsen gehört nicht ins Trinkwasser, das bedarf in der Regel keiner weiteren Erklärung. Gleichzeitig gewann es durch das Auftreten der weitläufigen Trinkwasserverunreinigung in Bangladesch noch einmal enorm an Bedeutung, und bot mir dadurch neben den bereits im Projekt vorgesehenen Arbeitsaufenthalten bei unserem Projektpartner in Chile auch noch die Gelegenheit, bei zwei Reisen nach Bangladesch wichtige Eindrücke und Erfahrungen zu sammeln.

Bei aller Nähe zur Praxis und internationaler Kooperation: Die in dieser Arbeit vorgestellten Ergebnisse wurden im Wesentlichen in experimenteller Routinearbeit im Berliner Labor gewonnen. Diese Arbeit ist auch bei einem so einfachen und anschaulichen Forschungsgegenstand wie rostender Stahlwolle von kleinen und großen Problemen und Anstrengungen, überraschenden Niederlagen und Erfolgen geprägt und wäre ohne die Vielzahl von netten und hilfsbereiten Kolleginnen und Kollegen sowie engagierten Studentinnen und Studenten nicht möglich gewesen.

Danken möchte ich zunächst Herrn Prof. Dr. Martin Jekel für die Überlassung des Themas, die Betreuung der Arbeit und die kritische und anregende Diskussion der Ergebnisse sowie Herrn Prof. Dr. Wichmann für die Begutachtung und Herrn Prof. Dr. Geißen für die Übernahme des Vorsitz im Promotionssauschuss.

Für die zahllosen Arsenanalysen gebührt der Dank vor allem Maren Kolepki, Uta Stindt, Hella Schmeisser und Jutta Friedrich. Eben solcher Dank gebührt auch meinen Studentischen Mitarbeitern Jürgen Dartmann, Jens Doberschütz und Thomas Wollenhaupt für die 66fleißige und sorgfältige Betreuung der Versuche, sowie den Studentinnen und Studenten, die im Rahmen dieser Arbeit ihre Projekt- oder Diplomarbeit anfertigten: Martin Gorny, Ira Schönfeld-Horn und Jorge Torres in Berlin sowie Stefan Meenken, Jürgen Dartmann, Jens Doberschütz, Maria Rieckhoff, Anja Höschel und Petra Schuster in Chile.

Erwähnen möchte ich hier auch noch unsere Projektpartner in Chile: Die Professoren Luis Caceres und Rene Contreras mit ihren Mitarbeitern und Studenten am Instituto del Desierto (INDES) der Universidad de Antofagasta. Ihnen sei für die konstruktive Zusammenarbeit und die herzliche Gastfreundschaft gedankt, die ich bei meinen drei Projektbesuchen erfahren habe, und die auch für die Studenten bei ihren mehrmonatigen Aufenthalten vor Ort eine große Unterstützung darstellten.

Auch allen anderen Kolleginnen und Kollegen aus dem Fachgebiet Wasserreinhaltung möchte ich für konstruktive Diskussionen, aktive Unterstützung und, wenn nötig, auch aufmunternde Worte zur rechten Zeit herzlich danken !

Berlin, im Januar 2005 - Karsten Karschunke

# Zusammenfassung

In dieser Arbeit werden experimentelle Untersuchungen zur Nutzung von Eisenkorrosionsprozessen zur Entfernung von Arsen aus Trinkwasser vorgestellt. Auch in geringen Konzentrationen stellt diese Verunreinigung auf Grund der krebserregenden Wirkung von Arsen langfristig eine Gefahr für die menschliche Gesundheit dar. Verschiedene Entfernungsmethoden sind bekannt und in der Praxis der Trinkwasseraufbereitung bewährt, beispielsweise Flockungsverfahren unter Einsatz von Eisensalzen oder die Adsorption an GEH oder Aktivtonerde im Festbett. Diese Verfahren sind aufgrund ihrer Kosten und technischen Anforderungen für den Einsatz in ländlichen Regionen von Entwicklungsländern nur eingeschränkt geeignet. Hier soll ein neues Entfernungsverfahren, geeignet auch für Entwicklungsländer mit Arsenproblemen wie Chile oder Bangladesch, präsentiert werden.

Grundidee dieses Verfahrens ist die Bildung von Eisenhydroxid durch die Korrosion von metallischem Eisen. Eisenhydroxid zeichnet sich bekanntermaßen durch seine sehr guten Adsorptionseigenschaften für gelöstes Arsen aus. Das Eisenhydroxid bildet als Rost eine Deckschicht auf der Metalloberfläche, fällt aber gleichzeitig auch in Form von Partikeln an, die das Arsen binden und aus dem Wasser mittels Sandfiltration entfernt werden müssen. Die natürliche Sauerstoffkorrosion kann gegebenenfalls durch elektrochemische Effekte wie Kontaktkorrosion oder das Anlegen einer elektrischen Spannung intensiviert werden.

Im Rahmen eines deutsch-chilenischen Kooperationsprojekts wurden kontinuierlich betriebene Laborversuche in Berlin (Deutschland) zur detaillierten Untersuchung und Quantifizierung der Effekte sowie praxisnahe Feldversuche mit natürlicherweise arsenhaltigem Rohwasser in Antofagasta (Chile) durchgeführt. Dabei kamen Materialien wie Stahlwolle oder Frässpäne zum Einsatz.

Es zeigte sich, dass die natürliche Korrosion von Eisen zur Entfernung von Arsen genutzt werden kann. Da Korrosionsrate und Beladung allerdings niedriger als erwartet ausfielen, ist die Verwendung deutlich größerer Reaktorvolumina als erwartet erforderlich. Eine mehrstufige Behandlung mit zusätzlicher Belüftung kann notwendig sein. Mit Hilfe der untersuchten Methoden zur Intensivierung der Korrosion ließ sich eine sehr effektive Arsenentfernung bewirken, allerdings kam es zu unerwünschten Nebeneffekten wie zur Freisetzung von Kupfer aus Kontaktkorrosionselementen oder zur Bildung von Wasserstoff bei Anlegen einer Spannung. Vor der Anwendung dieser Verfahren zur Trinkwasseraufbereitung sind daher weitere Untersuchungen erforderlich.

# Abstract

In the present work, the application of iron hydroxide resulting from the corrosion of iron for the removal of arsenic from drinking water is investigated experimentally. The contamination of water with arsenic even at low concentrations forms a long term risk to human health due to the carcinogenic properties of arsenic. Various removal techniques for arsenic are well known and applied at large scale like flocculation after dosage of iron salts or fixed bed adsorption on Granular Ferric Hydroxide or Activated Alumina. Due to their costs and their technical requirements, these processes are not suitable in rural areas of developing countries. A novel treatment process appropriate for the application in developing countries with arsenic contaminated drinking water like Chile or Bangladesh will be presented.

The basic idea of this process is the formation of iron hydroxide by corrosion of metallic iron. Iron hydroxide is well known for its high adsorptive capacity for arsenic in solution. The iron hydroxides form a protective layer of rust on the metal surface and at the same time arsenic carrying particles in the bulk water. These particles have to be removed by sand filtration. The natural oxygen induced corrosion can be enhanced by electrochemical effects like galvanic corrosion or the application of voltage.

In the framework of a German-Chilean cooperation project, experiments at laboratory scale were made in Berlin for detailed investigation and quantification of the effects. Field tests were made in Antofagasta (Chile) with raw water naturally containing high concentrations of arsenic. The reactor was filled with iron wool, iron filings and similar materials.

The results proved that naturally occurring corrosion of iron can be used for the removal of arsenic from drinking water. As the corrosion rate and the obtained loads lay below the expected values, reactor volumes have to be dimensioned adequately. A multi stage treatment and additional aeration might be necessary. Intensifying the corrosion with the methods mentioned above lead to the desired results with respect to arsenic removal but caused unwanted effects like the release of copper in the case of galvanic corrosion or the formation of hydrogen when voltage was applied. Before this process can be applied for drinking water treatment, additional testing and optimisation is necessary.

# Inhaltsverzeichnis

| V  | orwort  |                                                                 | ii   |
|----|---------|-----------------------------------------------------------------|------|
| Z  | usamm   | enfassung                                                       | iii  |
| A  | bstract |                                                                 | iv   |
| Ir | haltsv  | erzeichnis                                                      | V    |
| A  | bbildu  | ngsverzeichnis                                                  | viii |
| T  | abellen | verzeichnis                                                     | ix   |
| A  | bkürzı  | Ings- und Symbolverzeichnis                                     | X    |
|    |         |                                                                 |      |
| 1  | Eir     | leitung                                                         | 1    |
|    | 1.1     | Arsen im Trinkwasser – ein weltweites Gesundheitsproblem        | 1    |
|    | 1.1.    | 1 Gesundheitsgefahren durch Arsen im Trinkwasser                | 1    |
|    | 1.1.    | 2 Fallstudie Chile                                              | 3    |
|    | 1.1.    | 3 Fallstudie Bangladesch                                        | 5    |
|    | 1.1.    | 4 Weitere Arsenvorkommen in Entwicklungsländern                 | 7    |
|    | 1.2     | Überblick über etablierte Arsenentfernungsverfahren             | 8    |
|    | 1.3     | Bedarfsdefinition – Zielstellung der Arbeit                     | 11   |
| 2  | Тһ      | agratische Grundlagen und Stand von Wissenschaft und Technik    | 15   |
| 4  | 2.1     | Figenschaften von Arsenverhindungen in Wasser                   | 15   |
|    | 2.1     | 1 Grundlagon                                                    | 13   |
|    | 2.1.    | 1 Giundiagen                                                    | 13   |
|    | 2.1.    | Z Adsorptionsverhalten von Alsen an Eisennydroxid               |      |
|    | 2.2     | Lisennydroxidproduktion durch Korrosion von Eisenmateriai       |      |
|    | 2.2.    | Grundlagen der Elsenkorrosion                                   |      |
|    | 2.2.    | 2 Sauerstoffkorrosion und Deckschichtbildung                    |      |
|    | 2.2.    | 3 Methoden der elektrochemischen Intensivierung der Korrosion   |      |
|    | 2.3     | Redox-Reaktionen von Eisen und Arsen in Lösung                  |      |
|    | 2.4     | Existierende Arbeiten zur Arsenentfernung mit elementarem Eisen |      |
|    | 2.5     | Sandfiltration als Trinkwasseraufbereitungsverfahren            |      |

| 3 | Ma   | terial und Methoden                                                    | 39  |
|---|------|------------------------------------------------------------------------|-----|
|   | 3.1  | Versuchsanordnung und Probenahmemethodik                               | 39  |
|   | 3.2  | Eingesetzte Materialen                                                 | 41  |
|   | 3.2. | 1 Stahlmaterialen                                                      | 41  |
|   | 3.2. | 2 Kupfermaterial                                                       | 43  |
|   | 3.2. | 3 Filtersand                                                           | 43  |
|   | 3.2. | 4 Versuchswasser                                                       | 43  |
|   | 3.2. | 5 Reagenzien und Laborgeräte                                           | 44  |
|   | 3.3  | Mess- und Auswertungsmethodik                                          | 44  |
|   | 3.3. | 1 Sauerstoffmessung in Zu- und Ablauf                                  | 45  |
|   | 3.3. | 2 Messung und Auswertung elektrischer Größen                           | 46  |
|   | 3.3. | 3 Probenahme und chemische Analytik                                    | 46  |
|   | 3.3. | 4 Massenbilanzen für Eisen und Arsen                                   | 47  |
|   | 3.4  | Ergänzende Versuchsvarianten                                           | 54  |
|   | 3.4. | 1 Differentialfilterversuche im Kreislaufbetrieb                       | 54  |
|   | 3.4. | 2 Rührversuche im Becherglas                                           | 55  |
|   | 3.5  | Fehlerquellen und Störeinflüsse                                        | 57  |
|   | -    |                                                                        | -0  |
| 4 | Erg  | gebnisse und Diskussion                                                | 59  |
|   | 4.1  | Untersuchung natürlicher und forcierter Korrosionsvorgänge             | 59  |
|   | 4.1. | 1 Versuche zur natürlichen Sauerstoffkorrosion                         | 59  |
|   | 4.1. | 2 Versuche zur galvanischen Korrosion in Eisen-Kupfer-Kontaktelementen | 72  |
|   | 4.1. | 3 Versuche zur elektrochemisch verstärkten Korrosion                   | 81  |
|   | 4.2  | Betrachtung des Adsorptionsverhaltens                                  | 87  |
|   | 4.2. | 1 Adsorption und Rückhalt von Arsen in den Durchflussversuchen         | 87  |
|   | 4.2. | 2 Adsorption von Arsen unter Idealbedingungen im Rührversuch           | 90  |
|   | 4.2. | 3 Verhalten von Arsen(III) in der Aufbereitung                         | 92  |
|   | 4.3  | Betrachtung der Nachreinigung im Sandfilter                            | 94  |
|   | 4.4  | Felderprobung in Chile                                                 | 97  |
|   | 4.4. | 1 Die Versuchsanlage in Chile                                          | 97  |
|   | 4.4. | 2 Darstellung von ausgewählten Ergebnissen aus Chile                   | 98  |
|   | 4.4. | 3 Interpretation der Resultate und Vergleich                           | 100 |

| 5 | Abs   | schätzung der Einsatzmöglichkeiten des Verfahrens103                             |
|---|-------|----------------------------------------------------------------------------------|
|   | 5.1   | Vergleichende Beurteilung der untersuchten Verfahrensvarianten                   |
|   | 5.2   | Analyse der Anwendbarkeit des Verfahrens mit natürlicher Sauerstoffkorrosion 105 |
|   | 5.2.  | Vorgehensweise zur Konzeption einer Aufbereitungsanlage                          |
|   | 5.2.2 | 2 Anwendbarkeit des passiven Korrosionsverfahrens in Chile                       |
|   | 5.2.3 | Anwendbarkeit des passiven Korrosionsverfahrens in Bangladesch und Indien 109    |
|   | 5.3   | Weitere Aspekte zum Praxiseinsatz der verschiedenen Korrosionsverfahren          |
|   | 5.3.  | Verunreinigung des Stahls mit Schwermetallen                                     |
|   | 5.3.2 | 2 Betrieb des Verfahrens bei Stagnation                                          |
|   | 5.3.3 | B Einfluss von Wasserinhaltsstoffen                                              |
|   | 5.3.4 | Entsorgungsproblematik des Schlamms112                                           |
|   | 5.4   | Ausblick und weiterführender Untersuchungsbedarf                                 |
|   |       |                                                                                  |

| 6 I | Literaturverzeichnis1 | 11 | 5 |
|-----|-----------------------|----|---|
|-----|-----------------------|----|---|

| Anhang A | Wasserinhaltsstoffe in Berlin und in Antofagasta                 | .A2  |
|----------|------------------------------------------------------------------|------|
| Anhang B | Zusammensetzung der Eisen- und Kupfermaterialien                 | .A3  |
| Anhang C | Vorgehensweise bei Messung und Probenahme                        | .A4  |
| Anhang D | Atomabsorptionsspektrometrische Messung von Arsen, Eisen, Kupfer | .A5  |
| Anhang E | Messung der Sauerstoffkonzentration                              | . A8 |
| Anhang F | Versuchsdaten                                                    | .A9  |

# Abbildungsverzeichnis

| Abb. 1.1  | Arsenbelastung in Nordchile (2. Region Antofagasta)                                                                                         | 4  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|----|
| Abb. 1.2  | Arsenbelastung in Bangladesch                                                                                                               | 6  |
| Abb. 1.3  | Flockungsanlage zum Einsatz in der ländlichen Trinkwasserversorgung                                                                         | 9  |
| Abb. 1.4  | Low-Cost-Systeme zur Arsenentfernung in Bangladesch a) DANIDA-System<br>b) Traditioneller Kolschi-Filter zur Trinkwasseraufbereitung        | 10 |
| Abb. 2.1  | Stabilitätsdiagramm der anorganischen Arsenverbindungen                                                                                     | 15 |
| Abb. 2.2  | Bildung von inner- und außersphärischen Oberflächenkomplexen                                                                                | 19 |
| Abb. 2.3  | Potenzialverlauf in der Elektrischen Doppelschicht                                                                                          | 23 |
| Abb. 2.4  | Redoxpotential in Abhängigkeit von Sauerstoffkonzentration und pH-Wert                                                                      | 31 |
| Abb. 2.5  | Stabiltätsdiagramm für Eisenverbindungen                                                                                                    | 32 |
| Abb. 2.6  | Schematische Darstellung eines horizontalen Roughing-Filters                                                                                | 37 |
| Abb. 3.1  | Skizze des Versuchsaufbaus                                                                                                                  | 39 |
| Abb. 3.2  | Massenbilanz und Konzentrationsprofil                                                                                                       | 50 |
| Abb. 3.3  | Skizze der Kreislaufversuchsanlage                                                                                                          | 54 |
| Abb. 3.4  | Skizze eines Rührversuchs                                                                                                                   | 56 |
| Abb. 4.1  | Skizze der Korrosionssäule mit Packung aus Stahlwolle                                                                                       | 59 |
| Abb. 4.2  | Sauerstoffkonzentration im Kreislaufversuch mit Stahlwolle und Frässpänen<br>Strömungsabhängigkeit der Sauerstoffverbrauchsrate             | 61 |
| Abb. 4.3  | Ergebnisse eines Durchflussversuchs mit Packung aus Stahlwolle D-III                                                                        | 64 |
| Abb. 4.4  | Ergebnisse eines Durchflussversuchs mit Packung aus Frässpänen II                                                                           | 65 |
| Abb. 4.5  | Vergleich der pH-Werte und Leitfähigkeiten in Durchflussversuchen<br>Einfluss der Strömungsgeschwindigkeit auf die Sauerstoffverbrauchsrate | 69 |
| Abb. 4.6  | Langzeitverhalten von Frässpänen, Druckverlust vor der Korrosionssäule,<br>Korrosion im Vergleich, Beladungsverhalten im Vergleich          | 70 |
| Abb. 4.7  | Schematische Darstellung von Sauerstoffkorrosion und Arsenentfernung                                                                        | 71 |
| Abb. 4.8  | Skizzen der Korrosionssäulen zur Untersuchung der Fe-Cu Kontaktkorrosion                                                                    | 72 |
| Abb. 4.9  | Ergebnisse eines Durchflussversuchs zur Eisen-Kupfer Kontaktkorrosion                                                                       | 75 |
| Abb. 4.10 | Verhalten der Eisen-Kupfer-Kontaktkorrosion (SV 14)                                                                                         | 76 |
| Abb. 4.11 | Verhalten der Fe-Cu-Kontaktkorrosion mit externer Verbindung<br>Verhalten der Fe-Cu-Kontaktkorrosion mit direkter und ext. Verbindung       | 78 |

| Abb. 4.12 | Schematische Darstellung von Fe-Cu-Kontaktkorrosion und Arsenentfernung80                                                          |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|
| Abb. 4.13 | Skizze der Korrosionssäule mit extern angelegter Spannung                                                                          |
| Abb. 4.14 | Ergebnisse eines Durchflussversuchs zur Korrosion mit externer Spannung                                                            |
| Abb. 4.15 | Spannungsabhängigkeit der Korrosionsraten (SV 23)<br>Integrale Massenbilanz für Eisen, Strömungsabhängigkeit der Korrosionsraten84 |
| Abb. 4.16 | Schematische Darstellung von elektrisch forcierter Korrosion                                                                       |
| Abb. 4.17 | Eisen- und Arsenverbleib in ausgewählten Durchflussversuchen                                                                       |
| Abb. 4.18 | Arsenadsorption an Eisenhydroxid aus Stahlwolle bzw. Eisen(II)chlorid91                                                            |
| Abb. 4.19 | Korrosionsraten von zwei Sorten Stahlwolle in Rührversuchen                                                                        |
| Abb. 4.20 | Entfernung von Arsen(III) im Durchflussversuch (SV 25.2)                                                                           |
| Abb. 4.21 | Eisenoxidation und Arsenentfernung in Sedimenter und Sandfilter                                                                    |
| Abb. 4.22 | Schema der Versuchsanlage in Chile                                                                                                 |
| Abb. 4.23 | Ergebnisse eines Durchflussversuchs in Chile mit einer Packung aus Frässpänen99                                                    |
| Abb. 5.1  | Entwurf einer passiven Kaskadenkorrosionsanlage zur Arsenentfernung                                                                |

# Tabellenverzeichnis

| Tab. 1.1 | Grenzwerte für Arsen in Trinkwasser                                   | 2   |
|----------|-----------------------------------------------------------------------|-----|
| Tab. 1.2 | Arsenbelastung in Nordchile (2. Region Antofagasta)                   | 4   |
| Tab. 2.1 | Oberflächenchemische Eigenschaften von Eisenhydroxid                  | 17  |
| Tab. 2.2 | Spannungsreihe der relevanten Redox-Halbreaktionen                    | 27  |
| Tab. 2.3 | Charakteristika von Langsamsand-, Schnell- und Roughing-Filtern       |     |
| Tab. 3.1 | Typische Aufenthaltszeiten in den Anlagenteilen                       | 40  |
| Tab. 3.2 | Eigenschaften der eingesetzten Eisenmaterialien                       | 42  |
| Tab. 4.1 | Technische Daten der Versuchsanlage in Chile im vorgestellten Versuch | 98  |
| Tab. 4.2 | Vergleich der Kenngrößen für Korrosion und Adsorption                 | 101 |
| Tab. 5.1 | Wirkung der Erhöhung verschiedener Wasserparameter                    | 111 |

# Abkürzungs- und Symbolverzeichnis

| Symbol                   | Erläuterung                                                          | Einheit              |
|--------------------------|----------------------------------------------------------------------|----------------------|
| a <sub>M</sub>           | massenspezifische Oberfläche                                         | $[m^2/g]$            |
| a <sub>V</sub>           | volumenspezifische Oberfläche                                        |                      |
| BET                      | ET Spezifische Oberflächenbestimmung nach Brunauer, Emmet und Teller |                      |
| BV                       | Bettvolumina (spezifischer Durchsatz)                                |                      |
| с                        | Massenkonzentration                                                  | [mg/L]               |
| CODELCO                  | Corporación Nacional del Cobre                                       |                      |
| DANIDA                   | Danish International Development Agency                              |                      |
| di                       | Innendurchmesser                                                     | [mm]                 |
| d <sub>M</sub>           | mittlerer Korndurchmesser                                            | [mm]                 |
| E <sub>0</sub>           | Standardpotential                                                    | [V]                  |
| E <sub>H</sub>           | Redoxpotential                                                       | [V]                  |
| EMK                      | Elektromotorische Kraft                                              | [V]                  |
| ESSAN                    | Empresa de Sevicios Sanitarios de Antofagasta S.A.                   |                      |
| 3                        | Porosität                                                            | [%]                  |
| F                        | Faraday-Konstante: 96480                                             | [C/mol]              |
| GEH                      | Granuliertes Eisenhydroxid                                           |                      |
| HG-AAS                   | Hydride Generation - Atomic Absorbtion Spectrometry                  |                      |
| Ι                        | Elektrischer Strom                                                   | [A]                  |
| k                        | Geschwindigkeitskonstante                                            | [min <sup>-1</sup> ] |
| K <sub>F</sub>           | Freundlich-Koeffizient                                               |                      |
| K <sub>L</sub>           | Affinitätsparameter für die Langmuir-Isotherme                       | [L/mg]               |
| М                        | Atomgewicht                                                          | [g/mol]              |
| MMA / DMA                | Mono- / Dimethylarsinsäure                                           |                      |
| n                        | Freundlich-Exponent                                                  |                      |
| р                        | Druck                                                                | [bar]                |
| pH <sub>PZC</sub>        | pH-Wert des Ladungsnullpunkts                                        |                      |
| pK <sub>L</sub>          | Löslichkeitsprodukt                                                  |                      |
| p(O <sub>2</sub> )       | Partialdruck des Sauerstoffs                                         | [Pa]                 |
| Q                        | Volumenstrom                                                         | [mL/min]             |
| Q                        | Ladungsmenge                                                         | [C]                  |
| q <sub>max</sub>         | Maximalbeladung für die Langmuir-Isotherme                           | [µg/mg]              |
| R                        | Allgemeine Gaskonstante: 8,31                                        | [J/molK]             |
| Т                        | Temperatur                                                           | [K]                  |
| TrinkwV                  | Trinkwasserverordnung                                                |                      |
| t                        | Versuchsdauer                                                        | [h]                  |
| t <sub>R</sub>           | Kontaktzeit                                                          | [min]                |
| VF                       | Filtergeschwindigkeit                                                | [m/h]                |
| WHO                      | World Health Organization                                            |                      |
| Z                        | Ladungszahl / Wertigkeit                                             |                      |
|                          |                                                                      |                      |
| $\Delta c(O_2)$          | Differenz der Sauerstoffkonzentration                                | [mg/L]               |
| $\Delta c(O_2)_{Fehler}$ | Differenz der Sauerstoffkonzentration im Bypass                      | [mg/L]               |
| $c(O_2)_{Zu}$            | Sauerstoffkonzentration im Zulauf                                    | [mg/L]               |
| $c(O_2)_{Ab}$            | Sauerstoffkonzentration im Ablauf                                    | [mg/L]               |

| Symbol Erläuterung                                               |                                                                                             | Einheit                |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------|
| CR(Fe) <sub>Ox</sub>                                             | CR(Fe) <sub>Ox</sub> Spezifische Eisenkorrosionsrate, ermittelt aus dem Sauerstoffverbrauch |                        |
| CR(Fe) <sub>I</sub>                                              | R(Fe) <sub>1</sub> Spezifische Eisenkorrosionsrate, ermittelt aus dem Stromfluss            |                        |
| r(O <sub>2</sub> )                                               | Sauerstoffverbrauchsrate                                                                    | [L/m <sup>2</sup> min] |
|                                                                  |                                                                                             |                        |
| c(Fe) <sub>Zu</sub>                                              | Gesamt-Eisenkonzentration im Zulauf                                                         | [mg/L]                 |
| c(Fe) <sub>Ab</sub>                                              | Gesamt-Eisenkonzentration im Ablauf                                                         | [mg/L]                 |
| c(Fe) <sub>Ab,g</sub>                                            | gelöste Eisenkonzentration im Ablauf                                                        | [mg/L]                 |
| c(Fe) <sub>Ab,p</sub>                                            | partikuläre Eisenkonzentration im Ablauf                                                    | [mg/L]                 |
| c(Fe) <sub>I</sub>                                               | Eisenkonzentration, ermittelt aus dem elektrischen Strom                                    | [mg/L]                 |
| c(Fe) <sub>Ox</sub>                                              | Konzentration an Eisen in oxidierter Form, ermittelt aus dem Sauerstoffverbrauch            | [mg/L]                 |
| c(Fe) <sub>SF</sub>                                              | Eisenkonzentration im Ablauf des Sandfilters                                                | [mg/L]                 |
| c(Fe) <sub>SF,g</sub>                                            | gelöste Eisenkonzentration im Ablauf des Sandfilters                                        | [mg/L]                 |
| c(Cu) <sub>Ab</sub>                                              | Gesamt-Kupferkonzentration im Ablauf                                                        | [mg/L]                 |
|                                                                  |                                                                                             |                        |
| c(As) <sub>Zu</sub>                                              | Gesamt-Arsenkonzentration im Zulauf                                                         | [µg/L]                 |
| c(As) <sub>Ab</sub>                                              | Gesamt-Arsenkonzentration im Ablauf                                                         | [µg/L]                 |
| c(As) <sub>Ab,g</sub>                                            | Gelöste Arsenkonzentration im Ablauf                                                        | [µg/L]                 |
| c(As) <sub>Ab,p</sub>                                            | c(As) <sub>Ab,p</sub> Partikelgebundene Arsenkonzentration im Ablauf                        |                        |
| c(As) <sub>SF</sub> Arsenkonzentration im Ablauf des Sandfilters |                                                                                             | [µg/L]                 |
| c(As) <sub>SF,g</sub>                                            | gelöste Arsenkonzentration im Ablauf des Sandfilters                                        | [µg/L]                 |
| c(AsIII) <sub>Zu/Ab</sub>                                        | Arsen(III)-Konzentration im Zu- bzw. Ablauf                                                 | [µg/L]                 |
|                                                                  |                                                                                             |                        |
| m(Fe) <sub>I</sub>                                               | Eisenmassenstrom, ermittelt aus dem elektrischen Strom                                      | [g/d]                  |
| m(Fe) <sub>Met.</sub>                                            | Eisenmasse, in metallischer Form vorliegend                                                 | [g]                    |
| m(Fe) <sub>Rost-Pack.</sub>                                      | Eisenmasse, in Form von Rost in der Packung vorliegend                                      | [g]                    |
| m(Fe) <sub>Rost-Ablauf</sub>                                     | Eisenmasse, in Form von Rost im Ablauf                                                      | [g]                    |
| m(Fe) <sub>Oxal</sub>                                            | Eisenmasse, enthalten in der Oxalsäure-Oxalat-Fraktion                                      | [g]                    |
| m(Fe) <sub>HCl</sub>                                             | Eisenmasse, enthalten in der Salzsäurefraktion                                              | [g]                    |
| m(Fe) <sub>Ox</sub>                                              | Eisenmasse, ermittelt aus dem Sauerstoffverbrauch                                           | [g]                    |
| m(Fe) <sub>I</sub>                                               | Eisenmasse, ermittelt aus dem elektrischen Stromfluss                                       | [g]                    |
|                                                                  |                                                                                             |                        |
| m(As) <sub>Zu</sub>                                              | Arsenmasse, im Zulauf enthalten                                                             | [mg]                   |
| m(As) <sub>Ablauf</sub>                                          | Arsenmasse, im Ablauf enthalten                                                             | [mg]                   |
| m(As) <sub>Packung</sub>                                         | Arsenmasse, in der Packung enthalten                                                        | [mg]                   |
| m(As) <sub>Oxal</sub>                                            | Arsenmasse, in der Oxalsäure-Oxalat-Fraktion enthalten                                      | [mg]                   |
| m(As) <sub>HCl</sub>                                             | Arsenmasse, in der Salzsäurefraktion enthalten                                              | [mg]                   |
|                                                                  |                                                                                             |                        |
| q <sub>P</sub>                                                   | Partikelbeladung (As/Fe)                                                                    | [µg/mg]                |
| q <sub>M</sub>                                                   | Momentanbeladung (As/Fe)                                                                    | [µg/mg]                |
| q <sub>B</sub>                                                   | Bilanzbeladung, ermittelt aus der Massenbilanz über die Versuchslaufzeit                    | [µg/mg]                |
| q <sub>E</sub>                                                   | Endbeladung, ermittelt aus der aufgelösten Packung am Versuchsende                          | [µg/mg]                |
| q <sub>Oxal/HCl</sub>                                            | Arsen-Eisenverhältnis in der Oxalsäure bzw. Salzsäurefraktion am Versuchsende               | [µg/mg]                |

# 1 Einleitung

## 1.1 Arsen im Trinkwasser – ein weltweites Gesundheitsproblem

#### 1.1.1 Gesundheitsgefahren durch Arsen im Trinkwasser

Das Halbmetall Arsen gehört wohl zu den bekanntesten Giftstoffen überhaupt, berühmt geworden auch außerhalb von Fachkreisen aus Chemie und Medizin durch seine häufige Erwähnung in Geschichte und Literatur. Erwähnt sei nur das verfilmte Theaterstück "Arsen und Spitzenhäubchen" von Joseph Kesselring. Diesen zweifelhaften Ruhm verdankt es vor allem der Eigenschaft seiner beiden Oxide, dem dreiwertigen Arsenik (As<sub>2</sub>O<sub>3</sub>) und dem fünfwertigen Arsenpentoxid (As<sub>2</sub>O<sub>5</sub>), sich in hohen Konzentrationen farb-, geruch- und geschmacklos in Wasser zu lösen. Diese Eigenschaften, zusammen mit der leichten Verfügbarkeit als häufiges Begleitmineral beim Erzbergbau, machten das Arsen zum idealen Giftstoff für kriminelle Anwendungen. So wird spekuliert, dass Napoleon Bonaparte, der 1821 im Exil auf der Insel Elba verstarb, Opfer einer Arsenvergiftung geworden sei.

Die für eine akut-toxische Wirkung am Menschen notwendige Dosis wird bei Forth 1992 [Höschel 2000] mit ca. 1-3 mg/kg Körpergewicht beziffert. Nach einer oralen Aufnahme kommt es zu schweren Schädigungen des Magen-Darm-Traktes, Herzfunktionsstörungen, Nierenstörungen, Muskelkrämpfen, Atemlähmung und Gewebsödemen. Durch den damit verbundenen Wasser-, Elektrolyt- und Eiweißverlust kommt es innerhalb von ein bis drei Tagen zum Tod durch Kreislaufzusammenbruch. Die für eine akut-toxische Wirkung notwendige Dosis lässt sich aber durch kontinuierliche Verabreichung geringer Arsendosen heraufsetzten. Diese Art der "Immunisierung" bedrohter Könige und Thronfolger ist geradezu legendär und wird als Mithridatismus bezeichnet [Römpp 1995]. Namensgeber dafür war Mithridates VI., König von Pontus (132-63 v. Chr.). Sogar eine Steigerung des körperlichen Leistungsvermögens durch Aufnahme von Arsen wurde dokumentiert: Im 19. Jahrhundert wurde von österreichischen Bergbauern, die am Schmuggel von Gütern über die Alpen beteiligt waren, Arsen in Dosen von rund 400 mg eingenommen, um Kraft und Ausdauer für die gefährlichen Alpenüberquerungen zu erhöhen [Christen 2001].

Unberücksichtigt bleiben in diesen Berichten allerdings immer die chronischen Folgen einer kontinuierlichen Arsenaufnahme. Dabei werden sowohl nicht kanzerogene als auch kanzerogene Erkrankungen beobachtet. Am auffälligsten sind dabei die Veränderungen der Haut: Änderungen in der Pigmentierung, wie zum Beispiel Melanosen, warzenartige Verhornungen, so genannte Keratosen, oder die Bowen-Krankheit stellen dabei oft die Vorstufen verschiedener Hautkrebsformen dar. Ein Beispiel dafür ist das Plattenepithelkarzinom, auch Bowen–Karzinom genannt. Neben den Hauterkrankungen treten aber auch Lungenerkrankungen, Erkrankungen des Herz-Kreislaufsystems, des Nervensystems sowie Erkrankungen von Leber, Niere und Blase auf, die sich häufig zu den entsprechenden Krebsformen weiterentwickeln [Pschyrembel 2004].

Diese chronische Toxizität mit sehr langen Latenzzeiten kommt auch beim Auftreten von Arsen im Trinkwasser zum Tragen. Von seltenen Extremfällen, wie der Maxquelle bei Bad Dürkheim mit einer Arsenkonzentration von 13,7 mg/L abgesehen, liegen die Konzentrationen im Grundund Oberflächenwasser bei geogener Belastung in der Regel unter 1 mg/L, so dass eine Nutzung des Wasservorkommens durch den Menschen zunächst problemlos möglich ist. Erst bei mehrjährigem Konsum durch eine hinreichend große Population lassen sich die oben beschriebenen Erkrankungen beobachten und durch epidemiologische Studien quantifizieren.

Da es sich bei Arsen im Trinkwasser um einen krebserregenden Schadstoff mit verschiedenen Wirkungsmechanismen handelt, lassen sich keine rein wissenschaftlich begründeten Grenzwerte für eine unbedenkliche Arsenaufnahme festlegen. Die Grenzwerte für krebserregende Stoffe werden üblicherweise anhand des Risikos einer Erkrankung bei lebenslanger täglicher Aufnahme aufgestellt. Dabei wird allgemein von einem gesellschaftlich akzeptablen Risiko von einer zusätzlichen Erkrankung (Inzidenz) unter 100.000 Betroffenen ausgegangen. Aus diesem Wert wird üblicherweise durch lineare Extrapolation von epidemiologisch ermittelten Dosis-Risiko-Beziehungen eine akzeptable tägliche Aufnahmedosis errechnet.

Bei Anwendung dieser Methode (Unit-Risk-Ansatz) auf Risiko-Dosis-Beziehungen, die in den sechziger Jahren aus epidemiologischen Studien in Taiwan gewonnen wurden, ergibt sich unter den üblichen Randbedingungen von 2 L Wasserkonsum pro Tag bei einem 70 kg schweren Menschen mit einer Lebenserwartung von 60 Jahren für ein Krankheitsrisiko von 1:100.000 eine zulässige Arsenkonzentration von 0,04  $\mu$ g/L. Dies ist ein Wert, der weit unter den in Tabelle 1.1 dargestellten etablierten Grenzwerten für Arsen im Trinkwasser liegt [Höschel 2000].

| Land         | Grenzwert<br>[µg/L] | Zeitpunkt            |
|--------------|---------------------|----------------------|
| Deutschland  | 10 / 40             | seit 1996 / vor 1996 |
| EU           | 10                  | seit 1998            |
| USA          | 50 / 10             | seit 1943 / ab 2006  |
| Chile        | 50                  | Stand: 2002          |
| Bangladesch  | 50                  | Stand: 2002          |
| Indien       | 50                  | Stand: 2002          |
| WHO-Leitwert | 10                  | seit 1993            |

#### Tab. 1.1 Grenzwerte für Arsen in Trinkwasser

Es liegen sowohl medizinische als auch pragmatische Gründe für diese Diskrepanz vor: Zum einen liegt dieser niedrige Wert deutlich unterhalb der Nachweisgrenze aller gängigen Analyseverfahren für Arsen, so dass sich eine Überwachung nicht realisieren ließe. Zum anderen werden bei der Grenzwertfestlegung auch die bestehenden Unsicherheiten in der Bewertung der Wirksamkeit niedriger Konzentrationen gegenüber den entstehenden Kosten für notwendig werdende Aufbereitungsverfahren gegeneinander abgewogen. Die skizzierte Vorgehensweise zur Risikoabschätzung berücksichtigt zunächst keine körpereigenen Entgiftungsmechanismen, obwohl gewisse Anzeichen für eine Toleranz für eine tägliche Aufnahme von bis zu 200  $\mu$ g/Person in verschiedenen Studien entdeckt wurden. Der Ableitung des WHO-Leitwertes von 10  $\mu$ g/L aus dem Jahr 1993 wurde eine duldbare maximale tägliche Aufnahme (Preliminary Tolerable Maximum Daily Intake) von 140 µg/Person zu Grunde gelegt [Dieter 1993], Dieter in [Höll 2002].

Die seit 1996 wirksame Absenkung des Grenzwertes der deutschen Trinkwasserverordnung von 50  $\mu$ g/L auf 10  $\mu$ g/L führte hierzulande zu einem erheblichen Investitionsbedarf. In den USA wurde nach intensiver Diskussion über eine Grenzwertabsenkung in den Bereich zwischen 2 und 20  $\mu$ g/L nach Abwägung der gesellschaftlichen Kosten und des zu erwartenden Nutzens ein ab 2006 einzuhaltender Grenzwert von ebenfalls 10  $\mu$ g/L festgelegt [Hering 1996a], [Frey 1998], [USEPA 2002].

Der Kostenaspekt und die Umsetzbarkeit von neuen Trinkwassergrenzwerten hat unter den Bedingungen in Entwicklungsländern noch eine wesentlich stärkere Bedeutung, wie die folgenden Beispiele aus Südamerika und Asien belegen.

## 1.1.2 Fallstudie Chile

Die Belastung des Wassers mit Arsen im Norden von Chile, hauptsächlich in der 2. Region mit der Hafenstadt Antofagasta als Zentrum, gehört seit langem zu den gut untersuchten natürlichen Arsenbelastungen. Diese Region liegt in der Atacama-Wüste, einer der trockensten Wüsten der Welt, und natürliche Wasservorkommen sind ausgesprochen knapp. Einige Flüsse im Einzugsgebiet des Rio Loa, die in den Hochanden entspringen, werden seit den fünfziger Jahren mittels einer Fernwasserleitung von rund 300 km Länge zur Versorgung der wenigen Städte in dieser dünn besiedelten Region genutzt [Caceres 1999]. Durch vulkanische Aktivität und thermale Quellen in dieser geologisch jungen Zone sind einige Zuflüsse stark mit geogenem Arsen belastet, so dass bis 1970 das Trinkwasser der Hafenstadt Antofagasta mit ihren über 100.000 Einwohnern Arsengehalte von rund 800  $\mu$ g/L aufwies. Diese extrem hohe Belastung führte zu deutlichen Auswirkungen auf die Gesundheit der betroffenen Bevölkerung, die sich bis heute im gehäuften Vorkommen bestimmter Krebserkrankungen bei bestimmten Altersgruppen verfolgen lassen [Santolaya 1995].

Im Jahre 1970 wurde in Antofagasta die erste Trinkwasseraufbereitungsanlage zur Arsenentfernung "Salar del Carmen" in Betrieb genommen. Sie wurde 1988 in ihrer Kapazität erweitert. Die im Landesinneren gelegene Bergbaustadt Calama verfügt seit 1978 ebenfalls über ein Wasserwerk zur Arsenentfernung, welches auch die Küstenstädte Tocopilla und Mejillones versorgt. Beide Anlagen werden mit Eisenchlorid zur Fällung und Flockung in Kombination mit Sedimentation und Sandfiltration zur Flockenentfernung erfolgreich betrieben. Die in der Region tätigen Bergbaugesellschaften, allen voran die Kupfermine Chuquicamata der staatlichen Kupfergesellschaft CODELCO, verfügen über eigene Versorgungs- und Aufbereitungssysteme für die Produktionseinrichtungen und die Haushalte der Beschäftigten. Insgesamt ist davon auszugehen, dass heute der weit überwiegende Teil der Einwohner der zweiten Region mit Trinkwasser versorgt wird, welches dem chilenischen Standard von 50 µg/L entspricht.



Abb. 1.1Arsenbelastung in Nordchile (2. Region Antofagasta)[Höschel 2002, Karte entnommen aus Microsoft Encarta]

Neben den urban-industriellen Zentren existieren in der Region jedoch auch einige kleine, meist stark indianisch geprägte Ortschaften, die nicht an diese Aufbereitungsanlagen angeschlossen sind. Dort werden lokale Wasservorkommen, zum Teil aber auch die Fernwasserleitungen vor der Aufbereitung, unbehandelt als Trinkwasserquelle genutzt. Auch heute noch müssen die Bewohner dort stark arsenhaltiges Wasser konsumieren, wie in Tabelle 1.2 dargestellt wird.

| # | Ortschaft            | Einwohner | c(As)<br>[µg/L] | Wasserentnahme |
|---|----------------------|-----------|-----------------|----------------|
| 1 | San Pedro de Atacama | 1463      | 750             | Rio San Pedro  |
| 2 | Chiu-Chiu            | 333       | 800             | Rio Toconce    |
| 3 | Lasana               | 211       | 400             | Rio Linzor     |
| 4 | Toconce              | 83        | 400             | Rio Linzor     |
| 5 | Ayquina              | 48        | 800             | Rio Toconce    |

 Tab. 1.2
 Arsenbelastung in Nordchile (2. Region Antofagasta)

Durch die Abgeschiedenheit der Siedlungen sowie die geringe Anzahl der Einwohner und die schwierigen Lebensumstände der Betroffenen ist die Beurteilung der gesundheitlichen Situation erschwert. Deutliche Auffälligkeiten im Gesundheitszustand, beispielsweise Hauterkrankungen, werden aber immer noch beobachtet [Smith 1998, Smith 2000], so dass Maßnahmen zur Verbesserung der Situation dringend geboten erscheinen.

Schon in den achtziger Jahren untersuchten Wissenschaftler der Universidad de Chile aus Santiago in enger Zusammenarbeit mit der lokalen Bevölkerung einfache Arsenentfernungsmethoden [Sancha 1992], allerdings ohne nachhaltigen Erfolg. Eine Grundidee der damaligen Arbeiten wird in der vorliegenden Arbeit erneut aufgegriffen, näheres dazu in Kapitel 2. Mitte der neunziger Jahre wurde von einem Ingenieurbüro im Auftrag des regionalen Wasserversorgers ESSAN S.A. eine Studie zur Ausstattung der Dörfer mit Arsenentfernungsanlagen erstellt [SCI 1995]. Aufgrund der geringen Nutzeranzahl ergaben sich jedoch prohibitiv hohe Preise bei der geplanten Erhebung von kostendeckenden Gebühren. Vor wenigen Jahren wurde im touristischen Zentrum der Region, in San Pedro de Atacama, eine Umkehrosmoseanlage zur Wasseraufbereitung installiert, da dort neben den hohen Arsengehalten auch der Salzgehalt des Rohwassers die Nutzung einschränkte. Es wird von erheblichen technischen und wirtschaftlichen Problemen im Betrieb und einer notwendigen Erweiterung der Anlage berichtet.

Dabei stehen nicht nur finanzielle und technische Hindernisse einer Problemlösung im Weg, sondern es existieren auch institutionelle Gründe: Die Frage, wer für Verfahrenskonzeption, Bau, Betrieb und Finanzierung verantwortlich ist, scheint unter den beteiligten Institutionen noch nicht eindeutig geklärt zu sein. Auch für die betroffene Bevölkerung scheint die Bedeutung der Arsenbelastung neben der generellen Wasserknappheit sowie den deutlicher wahrnehmbaren Aspekten der Wasserqualität, vor allem Salzgehalt und Trübung, in den Hintergrund zu treten.

#### 1.1.3 Fallstudie Bangladesch

Die Verunreinigung des Grundwassers in Bangladesch und West-Bengalen, dem benachbarten indischen Bundesstaat, ist im Vergleich zu Chile erst seit etwa zehn Jahren bekannt. Anfang der neunziger Jahre gab es erste vereinzelte Berichte über lokale Arsenverunreinigungen des Wassers und Krankheitserscheinungen, doch intensiv untersucht werden die Verhältnisse erst seit ca. 1995. Es zeigte sich, dass das Grundwasser in weiten Teilen der alluvialen Sandflächen im Mündungsgebiet der großen Flüsse Megna (Ganges), Padma und Brahmaputra großflächig und in hohen Konzentrationen, häufig über 1 mg/L, mit Arsen belastet ist [MMD 1999]. Bedingt durch die hohe Bevölkerungsdichte in dieser Region und die intensive Nutzung von unbehandeltem Grundwasser als Trinkwasser sowie zur Bewässerung sind in dieser Region mehrere Millionen von Menschen dauerhaft hohen Arsenkonzentrationen ausgesetzt. In jüngsten Veröffentlichungen wird bereits von weit über einhunderttausend von Hautveränderungen Betroffenen berichtet. Gleichzeitig wird allerdings auch auf die noch sehr unsichere Datenlage verwiesen [Smith 2000].



Abb. 1.2 Arsenbelastung in Bangladesch

Besonders tragisch ist die besondere Situation in Bangladesch, einem Land geprägt von Armut, Überbevölkerung und häufigen Naturkatastrophen: Um das Krankheitsrisiko und die Kindersterblichkeit durch den Gebrauch von bakterienbelastetem Oberflächenwasser als Trinkwasser zu senken, wurde in den vergangenen Jahrzehnten durch die lokalen Wasserbehörden, massiv unterstützt durch internationale Hilfsorganisationen und ausländische Experten, der Bau von einfachen Rohrbrunnen mit Handpumpen erfolgreich vorangetrieben. Diese Brunnen, meist bequem erreichbar direkt am Haus gelegen, dienen derzeit in millionenfacher Ausführung zur Trinkwasserversorgung im ländlichen Raum. Die Bedrohung durch die Arsenbelastung des Wassers blieb dabei lange Zeit unbemerkt.

Als ursprüngliche Quelle des Arsens wurden arsenhaltige Gesteinsformationen im Himalaja ausgemacht. Verwitterungsprodukte wurden über Tausende von Jahren mit den großen Flüssen der Region in das bengalische Schwemmlanddelta transportiert. Dort sedimentierten die mitgetragenen Partikel, darin enthalten auch an Eisenhydroxid gebundenes Arsen sowie organisches Material, und wurden durch Sand überdeckt. Durch den biologischen Abbau der organischen Substanz wurde der gelöste Sauerstoff im Grundwasser verbraucht. Das so entstandene reduzierende Milieu führte zu Reduktion und Auflösung von Eisenhydroxid und damit zur Freisetzung des gelösten Arsens, welches dabei zum Teil ebenfalls zur dreiwertigen Form reduziert wurde. Entsprechend dieser als Hydroxid-Reduktionshypothese bekannten Erklärung ist das Grundwasser in Bangladesch schon seit langer Zeit großflächig durch hohe Gehalte an meist dreiwertigem Arsen verunreinigt. Das Wasser ist durch Sauerstofffreiheit und hohe Eisengehalte in Form von  $Fe^{2+}$  charakterisiert. Derartige Bedingungen haben sowohl positive als auch negative Auswirkungen auf die Möglichkeiten zur Aufbereitung, wie in Kapitel 2 näher erläutert wird.

Diese wasserchemisch plausible Hypothese ist allerdings nicht unumstritten: Einige lokale Wissenschaftler, darunter auch der Entdecker der Arsenproblematik Prof. D. Chakraborti aus Kalkutta, Indien, favorisieren eine Pyrit-Oxidationshypothese. In der zunehmend intensiveren Wassernutzung durch Brunnen, Bewässerung und Dammbau sehen sie die Ursache für das Entstehen der Arsenbelastung. Für diese Erklärung spricht nach Meinung ihrer Verfechter vor allem der Zeitpunkt der Entdeckung des Arsenproblems, der auf eine beginnenden Freisetzung des Arsens vor ca. 25 Jahren hindeutet, während zuvor in der Region keinerlei Anzeichen für durch Arsen verursachte Erkrankungen gefunden wurden. Auch die hohe räumliche Variabilität und die kontinuierliche Zunahme an belasteten Brunnen sprechen gegen eine unbemerkte, aber lange Zeit existente Arsenbelastung [Grohmann et al. in Höll 2002].

Eine vollständige Aufklärung der Prozesse im Grundwasser wird erst im Lauf der Zeit durch eine flächendeckende Erhebung und Auswertung von Wasser- und Bodenproben stattfinden, dringender sind jedoch Maßnahmen, die unmittelbar einer verbesserten Wasserversorgung der Bevölkerung dienen.

Der Einsatz von Wasseraufbereitungsverfahren ist im Fall von Bangladesch noch deutlich schwieriger als in Chile: Die Ausmaße des Problems sind um ein Vielfaches größer, die ökonomische Situation ist weitaus schwieriger und die institutionellen und kulturellen Rahmenbedingungen sind wesentlich komplizierter.

## 1.1.4 Weitere Arsenvorkommen in Entwicklungsländern

Neben diesen umfassend beschriebenen Beispielen gibt es noch Berichte aus weiteren Entwicklungsländern, allerdings scheinen die Ausmaße der Probleme dort deutlich geringer zu sein. Die Datenlage ist dabei wesentlich schlechter, so dass bei vertieften Untersuchungen noch neue Belastungsschwerpunkte entdeckt werden könnten. In Lateinamerika liegen dazu Berichte aus Mexico [Simeonova 1999] und Argentinien [Madiec 1999 sowie Rivero 1999] vor.

Aus Asien kommen weitere Berichte über Arsenbelastungen aus der zu China gehörenden inneren Mongolei [Smith 2000] sowie aus Vietnam [Hug 2001] und Kambodscha [Power 2002]. Im Delta des roten Flusses bei Hanoi scheinen ähnliche hydrogeologische Verhältnisse wie in Bangladesch zu herrschen, die daher zu ähnlichen Freisetzungsmechanismen führen. Aus Taiwan, wo in den sechziger Jahren Massenerkrankungen in Form der "Blackfoot-Desease" beobachtet wurden [Chen 1994], gibt es dagegen kaum aktuelle Berichte, da dort das Problem im Rahmen der zunehmenden wirtschaftlichen Entwicklung erfolgreich angegangen wurde und das Arsen inzwischen aus dem Trinkwasser entfernt wird [Grohmann et al. in Höll 2002].

## 1.2 Überblick über etablierte Arsenentfernungsverfahren

Offensichtlich besteht sowohl für zentrale als auch für dezentrale Formen der Trinkwasseraufbereitung ein Bedarf an geeigneten Arsenentfernungsverfahren. Zumindest für die Durchführung in größeren Wasserwerken stehen erprobte Verfahren zur Verfügung:

Die klassische Verfahrenskombination zur Oberflächenwasseraufbereitung Fällung-Flockung-Sedimentation-Filtration mit der Dosierung von Eisen- oder Aluminiumsalzen hat sich auch zur Entfernung von Arsen bewährt. Wie in Kapitel 2 noch ausführlicher erläutert, werden die Arsenationen an den frisch gebildeten Hydroxidflocken adsorptiv gebunden. Eisensalze, dass heißt vor allem Eisenchlorid, sind dabei wesentlich effektiver als entsprechende Aluminiumsalze. Ein solches Verfahren kommt beispielsweise in den oben genannte Wasserwerken für Antofagasta und Calama in Nordchile zum Einsatz [Karcher 1998].

Auch in Bangladesch sind urbane Wasserversorgungen vom Arsenproblem betroffen. Dort kann der hohe Eisengehalt des Wassers zur Arsenentfernung ausgenutzt werden. Unter günstigen Randbedingungen wird in typischen Aufbereitungsanlagen, die zur Eisenentfernung eine Belüftung und Schnellfiltration einsetzen, ausreichend viel Arsen aus dem Wasser entfernt, um den nationalen Grenzwert einzuhalten [Chowdhury 2001]. Durch die Belüftung wird das gelöste Eisen im Wasser oxidiert und als Eisenhydroxid ausgefällt. Das Arsen wird an die Eisenhydroxidpartikel gebunden und im Sandfilter aus dem Wasser entfernt. Die deutlich schlechteren Adsorptionseigenschaften der reduzierten Arsenform müssen allerdings berücksichtigt werden. Nähere Untersuchungen zu den Aufbereitungsmöglichkeiten dieser Wässer wurden unter anderem von Mamtaz [Mamtaz 2000 und Mamtaz 2001] vorgestellt.

Alternativ zu den Dosierverfahren können auch granulare Adsorptionsmedien in geschütteten Festbettreaktoren zum Einsatz kommen: eine Verfahrenstechnik, die sich durch unkomplizierten Aufbau und Betrieb auszeichnet. Die eingesetzten Adsorbentien basieren in der Regel ebenfalls auf Eisen- oder Aluminiumoxiden, so dass die chemischen Bindungsmechanismen ähnlich denen bei der Flockung sind. Aktivtonerde, eine durch Kalzinieren modifizierte Form von Aluminiumoxid ( $\gamma$ -Al<sub>2</sub>O<sub>3</sub>), ist seit langem für seine Eignung zur Arsenentfernung bekannt [Hildebrandt 1999], während granuliertes Eisenhydroxid, eine synthetisch hergestellte Form von  $\beta$ -Akaganeit, erst vor wenigen Jahren speziell zur Arsenentfernung entwickelt wurde [Driehaus 1998]. Im Vergleich zeigte sich eine Überlegenheit der eisenbasierten Sorbentien in Form einer höheren Beladung des Materials und einer wesentlich längeren Standzeit der Filter. Bei Aktivtonerde kann das Filtermaterial allerdings nach einer Regeneration mit Natronlauge erneut verwendet werden, während die beladenen Eisenmaterialien nicht mit angemessenem Aufwand regenerierbar sind und daher nur deren sichere Ablagerung anzuraten ist.

Neben diesen in der Praxis dominierenden Methoden kommen für besondere Anwendungsfälle weitere Methoden zur Arsenentfernung in Betracht: Zur Aufbereitung im Haushalt (Point of Use) werden verschiedentlich Membransysteme vorgeschlagen [Kartinen 1995], die aber für ungeladen vorliegendes Arsen(III) uneffektiv sind. Auch Ionentauscher können nur Arsen(V)-Ionen binden. Die Ionentauscher müssen anschließend mit Natronlauge regeneriert werden. Aus Kosten- und Handhabungsgründen scheinen diese beiden Optionen aber für eine breite Anwendung ungeeignet.

Grundlegende Überlegungen zur Verwahrensauswahl für die Wasseraufbereitung in ländlichen Gebieten von Entwicklungsländern auf der Grundlage von langjähriger Erfahrung in der Entwicklungszusammenarbeit werden bei [Wegelin 1996] sowie im Sektorkonzept Siedlungswasserwirtschaft [BMZ 1996] angestellt: Als besonders kritisch für einen dauerhaft zufrieden stellenden Betrieb werden dabei folgende Aspekte gesehen:

- Die Versorgung mit Betriebsstoffen, z.B. Flockungsmittel.
- Die Versorgung mit Energie, z.B. Strom für Pumpen und Dosiereinrichtungen.
- Die Versorgung mit Ersatzteilen, z.B. für Pumpen und Dosiereinrichtungen.
- Die Verfügbarkeit von qualifizierten Mitarbeitern, um einen sicheren Betrieb und eine schnelle Beseitigung von Störungen zu gewährleisten.

Vor allem die bewährten Flockungsverfahren stoßen bei Anwendung dieser Kriterien schnell an ihre Grenzen: In Chile ist ein Transfer der in den großen Wasserwerken der Region erprobten Technik auf die in Tabelle 1.2 aufgezählten Dörfer bisher nicht erfolgreich umgesetzt worden [SCI 1998, Caceres 1999]. Auch wenn es, wie in Abbildung 1.3 dargestellt, grundsätzlich möglich erscheint, auch Flockungsanlagen einfach und kostengünstig zu realisieren, so sind die Anforderungen an Qualifikation und Engagement der Betreiber und Nutzer in der Regel zu hoch, um einen reibungslosen Betrieb zu gewährleisten. Die in Bangladesch eingesetzte Technik zur Enteisenung ist im Betrieb wesentlich unkomplizierter, allerdings ist der Anteil der leitungsgebunden versorgten Bevölkerung in den Arsengebieten minimal. In den Vororten und im ländlichen Raum dominiert als Haushaltswasserversorgung der Bohrbrunnen mit Handpumpe.



Figure 19.1 Arsenic removal plants attached to tubewell (designed and constructed in India)

#### Abb. 1.3 Flockungsanlage zum Einsatz in der ländlichen Trinkwasserversorgung (Ahmed 2000)

Der Einsatz von Adsorbermaterialien im Festbett ist technisch betrachtet unkomplizierter, allerdings sind die Materialen meist Produkte kommerzieller Hersteller aus Industrieländern, so dass eine dauerhafte Verfügbarkeit zu stabilen und erschwinglichen Preisen in Frage steht. Außerdem fehlen in der Regel genaue Informationen über Struktur und Bestandteile des Produkts sowie vergleichende Untersuchungen, so dass die Entscheidung für ein konkretes Material am Einsatzort sehr risikobehaftet ist.



Abb. 1.4 Low-Cost-Systeme zur Arsenentfernung in Bangladesch

- a) DANIDA-System
- b) Traditioneller Kolschi-Filter zur Trinkwasseraufbereitung (Ahmed 2000)

Es existieren diverse Ansätze, die beschrieben Arsenentfernungsverfahren zu vereinfachen und auf Haushaltsniveau zur Anwendung zu bringen. Exemplarisch werden in Abbildung 1.4 zwei für Bangladesch vorgeschlagene Methoden präsentiert, um das technologische Niveau der aktuell in der Praxis eingesetzten Methoden zu verdeutlichen. Das von der dänischen Entwicklungshilfeagentur DANIDA entwickelte System realisiert eine diskontinuierliche Aufbereitung mit Flockung, Sedimentation und Sandfiltration in zwei gekoppelten Haushaltseimern. Als Flockungsmittel kommt Aluminiumsulfat zum Einsatz, unterstützt durch Kaliumpermanganat zur Oxidation. Beide Reagenzien werden in vorgefertigt abgepackten Portionen in das Rohwasser im oberen Eimer eingerührt. Nach kurzer Zeit für Flockenbildung und Adsorption wird das Wasser durch die Verbindung in den unteren Eimer geleitet und durchströmt dabei eine Sandschicht am Boden des oberen Eimers, um die arsenbeladenen Flocken abzutrennen. Der untere Eimer dient als Reservoir für gereinigtes Trinkwasser. Der Arsenentfernungsgrad ist ersten Erfahrungen nach sehr hoch, die Kosten sind minimal. Ein gewisses Risiko geht allerdings von möglichen Restgehalten an Aluminium und Mangan im Trinkwasser aus. Der anfallende arsenhaltige Schlamm aus dem Sandfilter muss anschließend gesichert abgelagert werden.

Die zweite vorgestellte Methode ist der so genannte Drei-Kolschi-Filter: Hier wird in drei nacheinander durchflossenen Krügen eine Belüftung, Sedimentation und Filtration realisiert, bei der das Arsen mit Hilfe des im Wasser vorhandenen Eisens entfernt wird. Der Arsenentfernungsgrad kann durch im Sandfilter eingelagerte Eisenstückchen oder den Einsatz eisenhaltiger Mineralien als Filtermedium erhöht werden. Es wird von positiven Betriebserfahrungen berichtet [Wateraid 2001].

Für die Entscheidung über die Eignung eines Aufbereitungsverfahrens in der Praxis spielt das Aufbereitungsziel eine wesentliche Rolle:

- Wird ein national bestehender Grenzwert von 50 µg/L als ausreichend betrachtet, oder ist zukunftsorientiert bereits der schärfere WHO-Leitwert von 10 µg/L anzustreben ?
- Können für Entwicklungsländer zunächst schwächere, aber umsetzbare Maßstäbe gelten, oder ist der von der WHO angestrebte Idealzustand verbindlich umzusetzen ?

Die Beantwortung dieser Frage bleibt in dieser technisch ausgerichteten Arbeit offen und kann nur an die Entscheidungsträger vor Ort weitergereicht werden.

Zum Abschluss dieses knappen Überblicks über mögliche Aufbereitungsmethoden muss noch erwähnt werden, dass eine Aufbereitung von arsenhaltigem Wasser nicht um jeden Preis erfolgen darf. Abhängig von Wasserbelastung und den lokalen Bedingungen sollte immer auch die Nutzung alternativer Wasservorkommen erwogen werden. Situationsabhängig kann die Aufbereitung von Oberflächenwasser oder die Sammlung von Regenwasser eine sinnvollere Alternative zur Gewinnung von Trinkwasser darstellen.

## **1.3 Bedarfsdefinition – Zielstellung der Arbeit**

Aus der bisherigen Darstellung der Arsenproblematik in Entwicklungsländern ergibt sich ein deutlicher Bedarf für ein kostengünstiges und einfach zu betreibendes Verfahren zur Wasseraufbereitung in kleinen Anlagen. Die Entwicklung eines solchen Verfahrens war Gegenstand eines gemeinsamen DFG-GTZ-Forschungsvorhabens der TU Berlin und der Universität von Antofagasta im Norden von Chile. Vorgehensweise und Ergebnisse werden in der vorliegenden Arbeit dokumentiert. Im Rahmen des Forschungsvorhabens wurden folgende Randbedingungen für einen Praxiseinsatz angenommen:

- Das Verfahren soll im kontinuierlichen Betrieb die Versorgung von 10 bis 100 Einwohnern mit <u>Trinkwasser</u> ermöglichen, entsprechend einem täglichen Durchsatz von 200 bis 2000 L.
- Der Einsatz von teuren und komplizierten technischen Geräten, beispielsweise Dosierpumpen, soll weitestgehend vermieden werden. Im Idealfall wird die Aufbereitungsanlage nur durch einen gegebenen Höhenunterschied durchflossen.
- Der Einsatz und die Dosierung von Reagenzien aller Art soll vollständig vermieden werden, denn ein korrekter Umgang mit gefährlichen Stoffen wie Eisenchlorid, Schwefelsäure oder Kalkmilch kann bei Betrieb und Wartung durch die lokale Bevölkerung in der Regel nicht sichergestellt werden.
- Als Betriebsstoffe kommen nur leicht verfügbare und kostengünstige Materialien zum Einsatz, also keine kommerziell angebotenen Adsorbentien.

• Als Kriterium einer erfolgreichen Aufbereitung wird die Einhaltung des aktuellen chilenischen Grenzwertes für Arsen von 50 µg/L angesehen.

Der Ansatz des in dieser Arbeit untersuchten Arsenentfernungsverfahrens basiert auf der bekanntermaßen guten **Adsorption** von Arsen an **Eisenhydroxid**. Im Gegensatz zu den bisher gebräuchlichen Verfahren werden die Eisenhydroxidpartikel hier jedoch erst im System durch **Korrosion** von **metallischem Eisen** gebildet. Als Betriebsstoff kann also gewöhnlicher Stahl in Form von Stahlwolle oder Frässpänen, typischen Reststoffen aus der Metallverarbeitung, zum Einsatz kommen. Um eine einwandfreie Qualität des behandelten Wassers zu gewährleisten, ist außerdem eine **Nachreinigungsstufe** in Form einer **Sandfiltration** in diesem Verfahrenskonzept vorgesehen. Da Korrosionsprozesse in der Regel sehr langsam ablaufen, werden im Rahmen dieser Forschungsarbeit auch elektrochemische Methoden zur Intensivierung der Korrosion untersucht: Durch Eisen-Kupfer-Kontaktkorrosion sowie das Anlegen einer externen Spannung wird eine deutlichen Steigerung der Korrosionsgeschwindigkeit erwartet.

Im Rahmen des deutsch-chilenischen Forschungsprojekts wurden sowohl in Berlin als auch in Antofagasta Versuche durchgeführt. Dabei wurden in Berlin im Labormaßstab die oben bereits erwähnten Korrosionsvarianten mit ihren Einflussfaktoren und Grenzen experimentell untersucht, während durch die Versuche in Antofagasta das Verhalten des Systems unter realen Bedingungen betrachtet wurde. Sowohl in Berlin als auch in Antofagasta wurden die meisten Experimente als kontinuierlich betriebene Durchflussexperimente durchgeführt, bei denen alle drei Teilprozesse des Verfahrens realisiert wurden. In Berlin wurde zusätzlich der Versuch unternommen, die Teilprozesse Korrosion und Adsorption in separaten Versuchsanordnungen detaillierter zu untersuchen. Dabei zeigte sich jedoch, dass sich aussagekräftige Daten nur durch dauerhafte Beobachtungen am vollständigen Modellsystem gewinnen lassen.

Vorgehensweise und Ergebnisse werden in dieser Reihenfolge präsentiert: In Kapitel 2 werden zunächst die chemischen Grundlagen für die exzellenten Adsorptionseigenschaften das Arsens an Eisenhydroxid dargestellt. Es werden die Grundlagen der Korrosionsprozesse, die zur Bildung der Eisenhydroxidpartikel führen, näher erläutert. Ein kurzer Überblick über bisherige Veröffentlichungen mit ähnlichem Forschungsansatz beendet das Grundlagenkapitel. In Kapitel 3 werden die verschiedenen Versuchsvarianten, die eingesetzten Materialien sowie die benutzten Messverfahren und Auswertungsmethoden beschrieben. Den Bilanzen für Eisen, Sauerstoff und elektrischen Strom kommt dabei für die zeitabhängige Beschreibung der ablaufenden Prozesse eine erhebliche Bedeutung zu. In Kapitel 4 werden die Ergebnisse der Versuchsreihen in Berlin präsentiert und interpretiert. Ausgehend von den Versuchen zur natürlichen Sauerstoffkorrosion werden die Methoden zur Korrosionsintensivierung dargestellt und vergleichend bewertet, zunächst in Hinblick auf das Korrosionsverhalten, dann auch bezüglich der Arsenentfernung. Die Resultate aus Berlin werden mit ersten Feldversuchen aus Chile verglichen und auf Gemeinsamkeiten und Unterschiede hin analysiert. In Kapitel 5 erfolgt eine zusammenfassende Beurteilung der bisherigen Erfahrungen, aus der Empfehlungen für einen möglichen Praxiseinsatz abgeleitet werden.

Die für die Realisierung einer Trinkwasseraufbereitung in einem Entwicklungsland essentiellen Überlegungen zur technischen Ausführung, die damit einhergehende Kostenermittlung und schließlich die Untersuchungen zur Akzeptanz des Verfahrens bei potenziellen Betreibern und Nutzern wurden im Rahmen dieser Arbeit nicht durchgeführt, sondern bleiben späteren Vorhaben, die dieses Verfahren zur praktischen Einsatzreife bringen, vorbehalten.

#### 2 Theoretische Grundlagen und Stand von Wissenschaft und Technik

#### 2.1 Eigenschaften von Arsenverbindungen in Wasser

#### 2.1.1 Grundlagen

Die Ursache für natürliche Arsenbelastungen von Grund- und Oberflächenwasser liegt in der Regel in der Verwitterung arsenhaltiger Mineralien. Die wichtigsten arsenhaltigen Mineralien sind dabei Realgar (AsS), Orpiment (As<sub>2</sub>S<sub>3</sub>) und Arsenopyrit (FeAsS). Als Oxidationsprodukte dieser Minerale entstehen dann sekundäre Minerale wie Arsenoxid As<sub>2</sub>O<sub>3</sub> (Arsenolit, Claudetit), oder Scorodit (FeAsO<sub>4</sub>). Arsenoxid ist das Anhydrid zur dreiwertigen arsenigen Säure und damit eine sehr gut wasserlösliche Verbindung. Eine weitere Oxidation, verursacht beispielsweise durch Luftsauerstoff, führt zur fünfwertigen Arsensäure. Die zu diesen beiden Säuren gehörenden Anionen werden dann als Arsenit und als Arsenat bezeichnet. Diese beiden anorganischen Formen, von den Milieubedingungen abhängig im variablen Verhältnis zueinander stehend, treten in natürlichen Wässern auf [Smedley 2002]. Eine Bildung von organischen Arsenverbindungen, beispielsweise von Monomethylarsensäure (MMA) oder Dimethylarsinsäure (DMA) mittels biologischer Umsetzung durch Mikroorganismen ist möglich. Die Konzentrationen von organischen Arsenverbindungen im freien Wasser sind aber allgemein zu vernachlässigen, so dass diese Verbindungen auch in dieser Arbeit nicht weiter berücksichtigt werden.



Abb. 2.1 Stabilitätsdiagramm der anorganischen Arsenverbindungen

Die Redoxpotentiale und das Dissoziationsverhalten dieser beiden Verbindungen sind in Abbildung 2.1 dargestellt. Diese Eigenschaften üben einen erheblichen Einfluss auf Mobilität und Entfernbarkeit des Arsens aus. Die dreiwertige Form liegt im neutralen pH-Bereich von 6 bis 8 als ungeladenes Molekül vor, da die  $pK_S$ -Werte der arsenigen Säure bei 9,2, 12,1 und 13,4 liegen. Die fünfwertige Arsensäure mit ihren drei  $pK_S$ -Werten bei 2,3, 6,8 und 11,6 liegt in diesem Bereich dagegen bereits als ein- oder zweifach geladenes Anion vor und ist damit wesentlich stärker zur Interaktion mit anderen Wasserinhaltsstoffen befähigt. Wie das  $E_H$ -pH-Diagramm ebenfalls zeigt, sollte in sauerstoffhaltigen Wässern stets die fünfwertige Form des Arsens dominieren. Aufgrund einer starken kinetischen Hemmung der Oxidation kann auch die dreiwertige Form lange Zeit nach einer Belüftung erhalten bleiben. Entsprechend können in natürlichen Wasservorkommen beide Formen zu beliebigen Anteilen nebeneinander auftreten.

Der toxischen Wirkung nach ist das dreiwertige Arsen deutlich kritischer zu beurteilen, da es in ungeladener Form die Zellwände passieren kann [Dieter 1993]. Die Trinkwassergrenzwerte sind immer für die gesamte Menge an Arsen, unabhängig von der vorliegenden Spezies, definiert. Die Analyseverfahren, vor allem die instrumentellen Methoden, beziehen sich in der Regel ebenfalls auf den Gesamtgehalt an Arsen. Eine Speziesseparation durch Ionentausch [Ficklin 1983] oder selektive Reduktion [Driehaus 1992] kann aber als Probenvorbereitung durchgeführt werden und auf diese Weise Aussagen über die vorliegende Arsenform ermöglichen.

Im Rahmen dieser Arbeit wurde, von wenigen Ausnahmen abgesehen, Arsen(V) eingesetzt, was den Bedingungen im chilenischen Referenzgebiet entspricht. Als Messverfahren kam im Rahmen dieser Arbeit in der Regel die Bestimmung von Gesamtarsen zum Einsatz. Die Darstellung der Grundlagen des Adsorptionsverhaltens von Arsen im folgenden Abschnitt bezieht sich daher schwerpunktmäßig auf Arsen(V), auf die Oxidations- und Adsorptionseigenschaften von Arsen(III) wird gegebenenfalls gesondert eingegangen.

#### 2.1.2 Adsorptionsverhalten von Arsen an Eisenhydroxid

#### 2.1.2.1 Charakterisierung von Eisenhydroxid

Die bisherigen Ausführungen haben bereits angedeutet, dass das Verhalten von Arsenationen sowohl in der Natur als auch in technischen Systemen häufig durch seine Bindungsfähigkeit an Eisenhydroxid bestimmt wird. Dabei kann das Eisenhydroxid abhängig von seiner Entstehung, den Umgebungsbedingungen und von Alterungsprozessen unterschiedliche Eigenschaften aufweisen. In sauerstoffhaltigen Wässern ist Fe<sup>2+</sup> nicht stabil, sondern wird schnell zu Fe<sup>3+</sup> oxidiert. Dreiwertiges Eisen bildet mit Wasser abhängig vom pH-Wert verschiedene Hydroxo-Komplexe, wobei im neutralen pH-Bereich Fe(OH)<sub>3</sub> dominiert. Diese Verbindung hat entsprechend Gleichung 2.1 ein sehr niedriges Löslichkeitsprodukt, so dass es zum nahezu vollständigen Ausfall von dreiwertigem Eisen als Eisenhydroxid kommt [Borho 1996].

$$Fe(OH)_3 \leftrightarrows Fe^{3+} + 3 OH^ pK_L = 36,6$$
 (Gl. 2.1)

Unter dem Oberbegriff "Eisen(hydr)oxid" und der Summenformel Fe(OH)<sub>3</sub> bzw. FeOOH·H<sub>2</sub>O werden unterschiedliche Modifikationen dieser Verbindung zusammengefasst. Im Zusammenhang mit Untersuchungen zur Arsenadsorption und Arsenentfernung werden die folgenden Formen häufig erwähnt:

- Amorphes Eisenhydroxid ist die Bezeichnung f
  ür das frische Produkt der F
  ällungsreaktion aus Gleichung 2.1. Es liegt in lockerer, unstrukturierter Form vor und ist stark hydratisiert. [Pierce 1982]. Es besitzt eine sehr gro
  ße spezifische Oberfl
  äche, oft werden 600 m<sup>2</sup>/g (BET) angesetzt. [Enders 1996 nach Hayes et al. 1988, und Dzomback und Morel 1987]. H
  äufig wird diese Modifikation auch als Ferrihydrit bezeichnet und mit der Summenformel Fe<sub>2</sub>O<sub>3</sub>·3H<sub>2</sub>O beschrieben.
- Den amorphen Formen gegenüber stehen die wasserärmeren und kristallin strukturierten Modifikationen des Eisenhydroxids mit den wichtigsten Vertretern Goethit (α-FeOOH), Akaganeit (β-FeOOH) und Lepidokrokit (γ-FeOOH). Diese Verbindungen entstehen auf natürliche Weise durch Alterung der amorphen Fällungsprodukte, können aber auch für Forschung und Anwendung gezielt präparativ erzeugt werden, wie beispielsweise das in Abschnitt 1.2 erwähnte granulierte Eisenhydroxid (GEH) zur Arsenentfernung. Besonders bedeutsam ist hier das α-FeOOH - Goethit, da es sehr häufig als Bodenmineral auftritt, vielfach Gegenstand von Adsorptionsuntersuchungen [Sigg 1981] war, und außerdem auch als typisches Korrosionsprodukt von Eisen in Wasser anzusehen ist.

Eine umfassende Übersicht über die Eisenoxide und ihre Eigenschaften wurde 1996 von Cornell und Schwertmann erstellt [Cornell 1996]. Auf die Besonderheiten der durch Korrosionsprozesse entstehenden Eisenhydroxide wird in Abschnitt 2.2.2 dieser Arbeit noch eingegangen.

| Eisenoxid                       | Ladungsnull-<br>punkt                           | Spez. Oberfläche                                  | Oberflächen-<br>gruppen                        | Quelle                   |
|---------------------------------|-------------------------------------------------|---------------------------------------------------|------------------------------------------------|--------------------------|
|                                 | pH <sub>PZC</sub>                               | m²/g                                              | Sites/nm <sup>2</sup>                          |                          |
| Goethit                         | 8,7                                             | 43,7                                              | 2,31                                           | Manning 1996             |
| Goethit                         | 7,5                                             | 52                                                | 7                                              | Enders 1996              |
| Goethit                         | 7,0                                             | 29                                                | 4                                              | Sigg 1980                |
| Goethit                         |                                                 | 20                                                |                                                | Hanshao 2001             |
|                                 |                                                 |                                                   |                                                |                          |
| am. Fe(OH) <sub>3</sub>         | 8,5                                             | 290                                               | 2,31                                           | Goldberg 2001            |
| am. Fe(OH) <sub>3</sub>         |                                                 | 600                                               | 10                                             | Enders 1996 <sup>1</sup> |
|                                 |                                                 |                                                   |                                                | ·                        |
| Akaganeit (GEH)                 | 7,9                                             | 178 (gemahlen)                                    | 2,6                                            | Teermann 2000            |
| Akaganeit                       | 7,5                                             | 280 (ungemahlen)                                  | > 2,7                                          | Driehaus 1994            |
| 1: Zur Anpassur<br>setzt Enders | ng des Modells an erl<br>sogar eine spezifische | nöhte Beladungen bei M<br>e Oberfläche von 1200 n | itfällungsexperimente<br>n <sup>2</sup> /g an. | n                        |

 Tab. 2.1
 Oberflächenchemische Eigenschaften von Eisenhydroxid bei verschiedenen Autoren

Bedeutsam für das chemische Verhalten von Eisenhydroxidpartikeln ist die Eigenschaft ihrer Oberfläche, Wassermoleküle an den koordinativ nicht gesättigten Eisenatomen anzulagern. Diese oberflächenständigen OH-Gruppen verleihen der Oberfläche einen amphoteren Charakter. Abhängig vom pH-Wert ist die Oberfläche in der Lage, Protonen abzugeben oder aus der Lösung aufzunehmen. Damit ändert sich auch die elektrische Ladung der Oberfläche: positiv bei pH-Werten unterhalb und negativ bei pH-Werten oberhalb des Ladungsnullpunkts pH<sub>PZC</sub>. Über charakteristische Werte der Oberflächenparameter bei Goethit und amorphem Eisenhydroxid und die Schwankungsbreite in den Literaturwerten gibt Tabelle 2.1 Auskunft. Die elektrische Ladung der Oxidoberfläche bewirkt eine Anlagerung entgegengesetzt geladener Ionen und führt damit zur Ausbildung einer elektrischen Doppelschicht. Die oberflächenständigen Hydroxylgruppen und die elektrische Doppelschicht spielen bei der Bindung von Ionen die entscheidende Rolle.

#### 2.1.2.2 Bindungsmechanismen für Arsenationen an Eisenhydroxid

Bei Betrachtung der beteiligten Ionen  $\text{Fe}^{3+}$  und  $\text{AsO}_4^{3-}$  liegt es nahe, eine stöchiometrische Ausfällung von Eisenarsenat FeAsO<sub>4</sub> (Scorodit) zu vermuten. Ein niedriges Löslichkeitsprodukt dieser Verbindung entsprechend Gleichung 2.2 spricht zunächst für diese Bindungsform.

$$FeAsO_4 \leftrightarrows Fe^{3+} + AsO_4^{3-}$$
  $pK_L = 23$  (Gl. 2.2)

Die Konkurrenz der in Gleichung 2.1 erwähnten Hydroxidfällung ist allerdings dominierend. Durch Modellrechnungen konnte gezeigt werden, dass diese Reaktion zu wesentlich geringeren Restkonzentrationen an Eisen in der Lösung führt. Es ist daher von einer Auflösung des Eisenarsenats und einer Ausfällung von Eisenhydroxid auszugehen [Borho 1996].

Als weitere Bindungsmechanismen für das Arsen kommen daher in Betracht:

- Adsorption,
- Copräzipitation.

Die Oberfläche von Eisenhydroxid ist bekannt für ihre hervorragende Fähigkeit, die verschiedensten Anionen und Kationen durch Adsorption zu binden. Für die Adsorption von Ionen an ebenfalls geladenen Oberflächen kann zwischen spezifischen und unspezifischen Mechanismen unterschieden werden. Die unspezifische Adsorption von Ionen erfolgt durch elektrostatische Kräfte, die zwischen Oberfläche und Ion aufgrund ihrer entgegengesetzten Ladung wirken. Sie stellt eine Form der Physisorption dar. Dieser Mechanismus kann daher für gelöste Anionen nur zum Tragen kommen, wenn der pH-Wert unter dem pH<sub>PZC</sub> der Oberfläche liegt, welche nur in diesem Fall eine positive Ladung aufweist. Dabei ist der Abstand zwischen hydratisiertem Ion und der Oberfläche groß, so dass sich noch eine Schicht Wassermoleküle im Zwischenraum befindet. Entsprechend dieser räumlichen Anordnung wird dieser Bindungstyp auch als außersphärischer Oberflächenkomplex bezeichnet. Dieser Adsorptionsmechanismus ist sensitiv gegenüber Änderungen der Ionenstärke in der Lösung, da alle Ionen einen Einfluss auf die Reichweite der elektrischen Doppelschicht ausüben. Die unspezifische Adsorption führt aber nicht zu Änderungen in der Oberflächenladung des Partikels. Demgegenüber steht die Bildung von innersphärischen Oberflächenkomplexen als spezifische Bindungsform, eine Form der Chemisorption. Der Charakter dieser Bindung ist kovalent, wobei adsorbierende Anionen gegen die oberflächenständigen Hydroxylgruppen ausgetauscht werden. Es findet also ein Ligandenaustausch statt. Diese Bindungsform verändert messbar den pH<sub>PZC</sub> der Partikeloberfläche. Beide Oberflächenkomplexformen werden in Abbildung 2.2 schematisch dargestellt. Welche Bindungsform im konkreten Fall vorliegt, wird in erster Linie durch das Ion vorgegeben, und kann durch verschiedene spektroskopische Verfahren zur Ermittlung der Bindungspartner und Bindungslängen direkt erfasst werden. Auch durch indirekte Methoden wie Titration, Isothermenaufnahme und Messung der elektrophoretischen Beweglichkeit kann der Adsoptionsmechanismus bestimmt werden [Stumm 1992].



Abb. 2.2 Bildung von inner- und außersphärischen Oberflächenkomplexen [Sigg 1996]

Der Begriff "Copräzipitation" bzw. Mitfällung beschreibt den Einschluss und die damit einhergehende Entfernung einer Spurenverunreinigung bei der Ausfällung einer Mineralphase. Ein konkreter Mechanismus ist damit noch nicht festgelegt [Smedley 2002, Borho 1996]. Sowohl bei Forschungsarbeiten im Labor als auch bei der Auswertung von Messdaten aus Arsenentfernungsanlagen wurde immer eine erhöhte Kapazität des Eisenhydroxids für Arsen festgestellt, wenn das Arsen bei der Ausfällung des Eisenhydroxids in der Lösung bereits präsent war. Dabei werden häufig Beladungen erreicht, die deutlich über der Sättigung der monomolekularen Bedeckung liegen, so dass in solchen Fällen auch von einer mehrschichtigen Bedeckung (multilayer coverage) [Li 2000] oder einer Feststofflösung (solid solution) [Smedley 2002] ausgegangen werden kann.

Als ein solcher Mitfällungsmechanismus kann die Oberflächenpräzipitation betrachtet werden, die bei Li [Li 2000] als wichtiger Bindungsmechanismus für Phosphat an Goethit aufgezeigt wird. An der Eisenhydroxidoberfläche findet durch Anlagerung zusätzlicher Kationen eine kontinuierliche Integration der adsorbierten Anionen in die Festphase statt, während an der Oberfläche unbelegte Adsorptionsplätze neu entstehen. Die erforderlichen Kationen können aus der freien Lösung geliefert werden, durch Oxidation von  $Fe^{2+}$  zu  $Fe^{3+}$  neu entstehen, oder auch durch Lösungsprozesse an energetisch benachteiligten Positionen des Goethit-Kristalls bereitgestellt werden. Charakteristisch für diese Bindungsform sind deutlich über der Sättigung liegende Beladungen bei gleichzeitig geringer Änderung der Oberlächenladung, so dass durch Messung des Zeta-Potentials eine Differenzierung dieser Bindungsform gegenüber der spezifischen Adsorption ermöglicht wird.

Am intensivsten wurde die Bindungsart von Arsenat an Eisenhydroxid bisher von Waychunas und seiner Arbeitsgruppe [Waychunas 1992] mit Hilfe von EXAFS- Messungen (Extended-X-Ray-Absorption-Fine-Structure) untersucht. Mit Hilfe dieses spektroskopischen Verfahrens zur Ermittlung der Bindungslängen zwischen Eisen, Sauerstoff und Arsen konnte er die Adsorption von Arsenat als innersphärische, meist bidentate Oberflächenkomplexe sowohl an Ferrihydrit als auch an gealtertem Goethit beobachten. Bei durch Copräziptation gewonnenen Proben konnte der Einbau des Arsenats in die Polymerketten des Eisenhydroxids und resultierende Störungen der Polymerstruktur beobachtet werden. Generell wurde beobachtet, dass die Arsenattetraeder an mehr als zwei Ecken Bindungen eingehen können, so dass von einer Brückenbildung zwischen den Ferrihydritkristallen auszugehen ist. Nicht beobachtet wurden dagegen Anzeichen für die Präzipitation von Eisenarsenat (Scorodit), die von Fox 1993 angedacht worden war. Trotz Kritik an der Auswertungsmethodik [Manceau 1995] konnten diese Beobachtungen durch vertiefte Auswertung [Waychunas1995] und weitere Untersuchungsmethoden, z.B. WAXS (Wide-Angle-X-ray-Scattering) [Waychunas 1996] oder FTIR und Raman-Spektroskopie [Myneni 1998] im Wesentlichen bestätigt werden.

Diese Thesen werden in einer parallelen Arbeit von Fuller [Fuller 1993] zur Kinetik der Arsenatadsorption und Copräzipitation unterstützt. In Versuchen zur Adsorption beobachtete er einen schnellen Anstieg der Beladung innerhalb von Stunden, gefolgt von einer langsamen Zunahme innerhalb von mehreren Tagen. Dieses Verhalten erklärt und modelliert er mit der Annahme von außen am Aggregat liegenden Adsorptionsplätzen, die für eine sofortige Arsenbindung zur Verfügung stehen, neben innen liegenden Adsorptionsplätzen, zu denen die Arsenationen erst durch Porendiffusion transportiert werden müssen. Er beziffert den Anteil der äußeren Adsorptionsplätze mit rund 63 %. Insgesamt wird eine Beladung von 339  $\mu$ g/mg (0,25 mol/mol) erreicht.

In Versuchen zur Copräzipitation wird ein entgegengesetzter Effekt beobachtet: Innerhalb von Minuten wird eine wesentlich höhere Maximalbeladung als bei der Adsorption erreicht. An-

schließend erfolgt eine über Wochen anhaltende kontinuierliche Desorption, so dass sich die Beladung nach längerer Zeit den Werten der Adsorption annähert. Erklärt wird dieses Verhalten durch eine bei der Entstehung maximale Anzahl an Adsorptionsplätzen, die ungehindert vom Arsenat erreicht werden können. Im Zuge einer langsam fortschreitenden Alterung kommt es durch Kristallisation und Aggregation zu einer Verringerung der Plätze und einer kontinuierlichen Freisetzung von Arsenat. Als Maximalbeladung bei der Copräzipation wurden rund 950  $\mu$ g/mg (0,7 mol As / mol Fe) beobachtet.

Auf der Grundlage dieser Hypothesen wurde von Borho ein Mitfällungsmechanismus postuliert. Die Bildung des Eisenhydroxids betrachtet er als Polymerisation von Eisen-Hydroxo-Komplexen unter Abspaltung von Wasser, die zur Ausbildung von langkettigen Eisenhydroxidpolymeren führt. Bei Anwesenheit von Arsenationen bei der Polymerisation kann das Arsenation brückenartig in die Kettenstruktur eingebaut werden [Borho1996].

Goldberg untersuchte die Bindung von Arsenat und Arsenit mit makroskopischen Methoden [Goldberg2001]: Sie beobachtete eine deutliche Absenkung des pH<sub>PZC</sub> durch die Arsenatadsorption, eine starke Abhängigkeit der Beladung vom pH-Wert und einen geringen Einfluss der Ionenstärke auf die Beladung: alles deutliche Indizien für eine spezifische Adsorption als innersphärischer Oberflächenkomplex. Die mikroskopischen Untersuchungen mittels FTIR- und Raman-Spektroskopie zeigten ebenfalls spezifisch adsorbiertes Arsenat und keinerlei Indizien für eine präzipitierte Festphase.

Fendorf konnte 1997 mit Hilfe von EXAFS-Messungen neben den bekannten monodentat- und bidentat-binuklearen Oberflächenkomplexen auch noch die Existenz eines bidentatmononuklearen Komplexes nachweisen. Die Anteile ihres Vorkommens hängen dabei in erster Linie vom aktuellen Bedeckungsgrad der Oberfläche ab. Grossl konnte durch kinetische Untersuchungen mittels einer "Pressure-Jump-Relaxationstechnik" einen zweistufigen Bildungsmechnismus mit dem monodentat- als Zwischenschritt zum bidentat-binuklearen Oberflächenkomplex aufzeigen [Fendorf 1997 und Grossl 1997].

Ohne einen konkreten Bindungsmechanismus vorauszusetzen, unterscheidet Daus durch eine sequentielle Extraktion zwischen adsorbiertem und copräzipitiertem Arsen an amorphem Eisenhydroxid aus synthetischen und natürlichen Proben: Durch Schütteln mit einmolarer Natronlauge gelingt in synthetischen Proben eine Desorption von rund 82 % des gebundenen Arsenats vom Eisenhydroxid. Ein copräzipitierter Anteil von 13 % lässt sich erst in der Oxalsäure-Oxalatpufferlösung, die zur Auflösung des Eisenhydroxids diente, wieder finden. Die verbleibenden 5 % gelten als Verlust, eine unlösliche Eisenarsenatphase wurde nicht beobachtet. In den natürlichen Proben aus Bergbausickerwasser wurde dagegen nur ein Anteil von weniger als 4 % in der Oxalsäure-Oxalatpuffer-Fraktion als Copräzipitat identifiziert [Daus 1998].

Die klassischen Versuche zur simultanen konkurrierenden Adsorption von Phosphat und Arsenat an Goethit werden von Hongshao [Hongshao 2001] um zusätzliche Versuche zu Desorption und Konkurrenz bei sequentieller Zugabe ergänzt: Er beobachtet, dass sich die Adsorption in eine schnelle und eine langsame Phase aufteilen lässt. Der schnell am Eisenhydroxid gebundene Anteil ist einer späteren Desorption bei Anwesenheit eines konkurrierenden Anions nicht mehr zugänglich, wird also irreversibel gebunden. Dieses Phänomen wird nicht wie bei Fuller mit Diffusionsvorgängen in die Poren erklärt [Fuller 1993], denn dann sollte ja der außen am Aggregat schnell adsorbierte Anteil einem Austausch besonders leicht zugänglich sein, sondern mit Oberflächenpräzipitation, wie sie bei Li [Li 2000] auch für Phosphat festgestellt wurde.

Als Fazit ergibt sich aus dieser großen Anzahl an Untersuchungen ein relativ einheitliches Bild der zu beobachtenden Phänomene, die auch für das in dieser Arbeit vorgestellte Arsenentfernungsverfahren von Bedeutung sind: Frische Eisenhydroxide sind hervorragend in der Lage, fünfwertige Arsenationen zu binden. Wenn die Ausfällung des Eisenhydroxids in der freien arsenhaltigen Lösung stattfindet, können noch deutlich höhere Arsenbeladungen erreicht werden. Über Art und Bezeichnung der wirksamen Mechanismen konnte in der Literatur jedoch kein Konsens gefunden werden, eine Tatsache, die sich auch in der Vielfalt der Ansätze zur Quantifizierung der Arsenatadsorption niederschlägt.

#### 2.1.2.3 Beschreibungs- und Modellierungsansätze für die Arsenadsorption

Die einfachste Form der Quantifizierung von Adsorptionskapazitäten stellt die Aufstellung von Isothermen dar. Messwerte, die im Rührversuch bei Einstellung des Gleichgewichtszustandes ermittelt werden, lassen sich rechnerisch auswerten und grafisch darstellen. Die idealisierte Adsorption lässt sich mit Hilfe des mechanistischen Ansatzes von Langmuir beschreiben: Unter der Annahme einer monomolekularen Bedeckung von gleichberechtigten Adsorptionsstellen bei im Gleichgewichtszustand gleich schnell ablaufender reversibler Adsorption und Desorption lässt sich ein Adsorptionssystem durch die Angabe der Maximalbeladung  $q_{max}$  und des Affinitätsparameters  $K_L$  entsprechend Gleichung 2.3 beschreiben.

$$q = q_{\max} \cdot \frac{K_L \cdot c}{1 + K_L \cdot c} \tag{G1. 2.3}$$

Langumir-Isothermen werden häufig erfolgreich zur Beschreibung der Adsorption von Arsenat an Metalloxiden eingesetzt, beispielsweise bei Pierce für niedrige Beladungen, sowie bei Driehaus und Borho [Pierce 1982], [Driehaus 1996], [Borho 1996].

Eine weitere Methode stellt die Isothermendarstellung nach Freundlich dar. Dieser Methode liegt kein mechanistischer Ansatz zugrunde, sondern es wird empirisch ein einfacher Potenzansatz entsprechend Gleichung 2.4 gewählt, um die Beladung in Abhängigkeit von der Lösungskonzentration durch Freundlich-Koeffizient und Freundlich-Exponent zu beschreiben. Dieser Ansatz ist deutlich besser geeignet, die verschiedenen Abweichungen vom Idealzustand, die bei der Arsenadsorption offensichtlich auftreten können, zu berücksichtigen. Wasserqualität und Konkurrenzionen, Alterungsprozesse des Eisenhydroxids sowie die verschiedenen Mitfällungseffekte schlagen sich in Änderungen der Isothermenparameter bei ähnlichem Kurvenverlauf nieder. Dieser Ansatz wird beispielsweise von Hering und von Hildebrandt gewählt [Hering 1996b], [Hildebrandt 1999].

$$q = K_F \cdot c^n \tag{Gl. 2.4}$$

Wesentlich seltener ist dagegen die Verwendung anderer Isothermenansätze für die Arsenatadsorption. Der Ansatz einer linearen Isotherme für hohe Beladungen wird bei Pierce gewählt [Pierce 1982]. Hildebrandt präsentiert in seiner Arbeit zur Arsenatadsorption an Aktivtonerde die Ansätze für die Berechnung von Mehrstoffisothermen von Butler und Ockrent, Jain und Snoeyink sowie von Sheindorf [Hildebrandt 1999].

Eine an den in Abschnitt 2.1.2.1 vorgestellten oberflächenchemischen Gegebenheiten orientierte Betrachtungsweise stellt dagegen die Aufstellung von Oberflächenkomplexierungsmodellen dar, die von verschiedenen Autoren für die Adsorption von Anionen und Kationen an diversen Metalloxidoberflächen entwickelt wurden. In diesen Modellen wird die Chemisorption, das heißt die spezifische Komplexbildung an der Oberfläche, durch ein der jeweiligen Reaktion entsprechend formuliertes Massenwirkungsgesetz beschrieben. Die ebenfalls wirksame Physisorption, das heißt die unspezifische Adsorption durch elektrostatische Wechselwirkungen, wird mittels einer Beschreibung des Potentialverlaufs in der elektrischen Doppelschicht vor der Oxidoberfläche quantifiziert und als Aktivitätskoeffizient in die Gleichgewichtskonstanten der Reaktionen einbezogen. Insbesondere in der Beschreibung der elektrischen Doppelschicht unterscheiden sich die einzelnen Modelle. In Abbildung 2.3 ist für die bekanntesten drei Modelle der Verlauf des elektrischen Potentials mit zunehmendem Abstand zur Oberfläche skizziert. Über die dabei getroffenen Annahmen und die mathematische Formulierung gibt es bei Dzombak oder bei Enders in seiner Arbeit zur Antimonentfernung eine gute Übersicht [Dzombak 1987 und Enders 1996]. Diese Modelle wurden von verschiedenen Autoren auch zur Beschreibung des Adsorptionspaares Arsen(V) an amorphem oder kristallinem Eisenhydroxid eingesetzt. Sie werden im Folgenden kurz beschrieben.





- a) Diffuse-Double-Layer Modell
- b) Constant Capacitance Modell
- c) Triple-Layer-Modell

#### **Das Diffuse-Layer-Modell**

Das Diffuse-Double-Layer Modell wurde von Dzombak und Morel zur Modellierung der Adsorption von Anionen und Kationen an Metalloxiden aller Art benutzt [Dzombak1987]. Es geht auf die Theorie von Gouy-Chapman zur elektrischen Doppelschicht vor der Oxidoberfläche zurück. In diesem Modell wird auf eine explizite Unterscheidung zwischen spezifischer und unspezifischer Adsorption verzichtet und die Adsorption immer als direkte Reaktion mit den Oberflächengruppen beschrieben. Als Erweiterungsmöglichkeit wird die Definition von starken und schwachen Bindungsplätzen sowie die Integration eines Oberflächenpräzipitationsmodells zur Beschreibung hoher Beladungen [Farley 1985] erwähnt.

## Das Constant-Capacitance-Model (Helmholtz-Modell)

Dieses Modell stellt einen vereinfachten Sonderfall des Diffuse-Layer-Modells dar, bei dem das Potential in der diffusen Schicht linear mit dem Abstand zur Grenzfläche abfällt. Es wurde beispielsweise von Manning und Goldberg zur Modellierung der konkurrierenden Adsorption von Arsenat, Phosphat und Molybdat an Goethit erfolgreich eingesetzt. Dabei wurde das Modell noch um eine zweite Klasse von Adsorptionsplätzen erweitert, um der gleichzeitigen Bindung als mono- und bidentat-Komplex Rechnung zu tragen, ohne die Anpassung des Modells an die Daten dabei aber substanziell zu verbessern [Manning 1996], [Goldberg 2001].

## Das Triple-Layer-Modell

Das von Davis et al. im Jahr 1978 entwickelte Triple-Layer Modell basiert auf der von Stern und Grahame erweiterten Doppelschichttheorie. Sein Vorteil gegenüber den beiden anderen Varianten besteht darin, spezifische und unspezifische Adsorptionsprozesse getrennt zu berücksichtigen und damit auch den Einfluss der Ionenstärke in das Modell zu integrieren. Goldberg benutzt dieses Modell zur Modellierung der Adsorption von Arsenat an amorphem Eisenhydroxid und erreicht damit bei niedrigen Beladungen eine gute Anpassung. Bei höheren Beladungen gelingt die Modellierung mit dem Constant-Capacitance-Modell jedoch besser [Goldberg 2001].

Das Spektrum der existierenden Modelle wurde von Hiemstra noch um das Charge-Distribution-Multi-Site-Complexation Modell (CD-MUSIC) erweitert [Hiemstra 1996]. In diesem Modell wird eine räumliche Ladungsverteilung in der elektrischen Doppelschicht sowie das Auftreten unterschiedlich koordinierter Oberflächengruppen mit eigenen Gleichgewichtskonstanten berücksichtigt, um so die Häufigkeit und Struktur der auftretenden Oberflächenkomplexe besser beschreiben zu können. Eine Unterscheidung zwischen mono- und bidentat gebundenen Oberflächenkomplexen sowie eine zuverlässigere Vorhersage ihrer makroskopischen Eigenschaften wie beispielsweise ihrer Oberflächenladung erscheint möglich. Es gelingt eine gute Modellierung der konkurrierenden Adsorption von Arsenat, Phosphat und Selenat an Goethit [Hiemstra 1998].

Zusammenfassend lässt sich feststellen, dass mit verschiedenen Modellen eine zufrieden stellende Beschreibung von experimentellen Daten gelingt, keines jedoch umfassend für alle Phänomene geeignet erscheint. Unterschiedliche Modelle führen bei in sich guter Anpassung zu unterschiedlichen Datensätzen für die Gleichgewichtskonstanten, die damit nicht mehr zwischen den Modellen übertragbar sind. Außerdem lassen sich experimentelle Daten innerhalb eines Modells oft mit verschiedenen Parametersätzen gleich gut beschreiben.

Auch direkt der Messung zugängliche Eingangsgrößen, wie der pH-Wert im Ladungsnullpunkt oder die spezifische Oberfläche, werden bei verschiedenen Autoren schon sehr unterschiedlich beziffert, siehe dazu auch Tabelle 2.1. Schließlich werden oft zusätzliche Effekte, beispielsweise das Auftreten von Mitfällung, durch plausible Anpassung von Konstanten, wie beispielsweise der spezifischen Oberfläche, in das Modell integriert [Enders 1996]. Das ist zur Interpretation
der eigenen Experimente zunächst ein legitimes Vorgehen, es verletzt aber eindeutig den Gültigkeits- und Anwendungsbereich eines Modells, wenn auf diese Art und Weise zusätzliche, experimentell beobachtete Prozesse in das Modell integriert werden. Korrekterweise sollten bis auf einen Fitting-Parameter alle Eingangsgrößen durch direkte Messungen und verifizierte Literaturwerte festgelegt werden, eine Anforderung die am ehesten bei den einfachen Modellen erfüllt werden kann.

Trotz intensiver Forschung, tiefem mechanistischen Verständnis und viel versprechender Modellierungsstudien ist die Leistungsfähigkeit eines Arsenentfernungsverfahrens in der praktischen Anwendung weiterhin nur im Experiment zu ermitteln. Dies gilt insbesondere, wenn der Adsorptionsprozess wie beim hier vorgestellten Verfahren stark von Transportprozessen und Reaktionen überlagert auftritt.

# 2.2 Eisenhydroxidproduktion durch Korrosion von Eisenmaterial

# 2.2.1 Grundlagen der Eisenkorrosion

Da bei dem in dieser Arbeit vorgestellten Verfahren die zur Arsenentfernung genutzten Eisenhydroxide durch Korrosion von Eisen gebildet werden sollen, werden in diesem Abschnitt die wichtigsten elektrochemischen Vorgänge und Begriffe kurz vorgestellt. Umfassende Definitionen zu den Begriffen, den Kenngrößen und verschiedenen werkstoffwissenschaftlichen Untersuchungsmethoden werden in der DIN50900ff gegeben.

Ein Korrosionssystem besteht aus einem metallischen Werkstoff, in diesem Fall zunächst Eisen, und dem umgebenden ionenleitenden Korrosionsmedium, hier sauerstoffhaltigem Wasser. An der Phasengrenzfläche zwischen Elektrode und Elektrolyt finden Durchtrittsreaktionen von Ionen und Elektronen statt, das heißt es fließt ein elektrischer Strom. An der Anode geschieht eine Freisetzung von Kationen aus dem Metall, und an der Kathode werden Elektronen abgegeben. Im Metall erfolgt ein Ladungsausgleich. An der Anode herrscht dabei das negativere Potential und es findet normalerweise eine Absenkung des pH-Wertes in der Lösung statt. An der Kathode herrscht dagegen das positivere Potential gegenüber der Lokalanode und in der Regel wird der pH-Wert in der angrenzenden Lösung erhöht. Auf diese Weise wird der Stromkreis über den Elektrolyten geschlossen. Räumlich dicht beieinander liegende Anoden- und Kathodenflächen in einem Korrosionselement werden Lokalelemente genannt. Laufen an der gleichen Elektrodenoberfläche verschiedene Elektrodenreaktionen ab, spricht man von einer Mischelektrode, an der sich ein entsprechendes Mischpotential einstellt.

Eine Korrosionsreaktion besteht also immer aus einer anodischen und einer kathodischen Halbreaktion, deren Eigenschaften in geeigneten Testsystemen mit separaten Halbelementen mit Bezug auf eine Standardwasserstoffelektrode auch getrennt voneinander untersucht und beschrieben werden können. Zur Beschreibung der elektrochemischen Aktivität dient die Nernstsche Gleichung, mit der das Redoxpotential eines Halbelements aus dem für diese Halbreaktion charakteristischen Standardpotential und einem konzentrationsabhängigen Term errechnet werden kann (Gleichung 2.5). Die Standardpotentiale unter Normbedingungen sind für viele Halbreaktionen tabelliert und in Form einer Spannungsreihe geordnet, so dass schon an der Position der Halbreaktionen eines Paares leicht erkennbar ist, ob eine Halbreaktion als Reduktion zu Lasten einer anderen Halbreaktion als Oxidation ablaufen kann. Das Potential einer Halbreaktion kann als Lösungsdruck eines Metalls interpretiert werden, und die Potentialdifferenz zwischen Oxidations- und Reduktionsreaktion stellt die elektromotorische Kraft (EMK) eines galvanischen Elements dar. Die in dieser Arbeit relevanten Redoxreaktionen werden in Tabelle 2.2 nach ihren Standardpotentialen geordnet dargestellt.

$$E = E_0 + \frac{RT}{zF} \cdot \ln \frac{c_{Ox.}}{c_{Red.}}$$
(Gl. 2.5)

Von zentraler Bedeutung als anodische Teilreaktion ist hier die Oxidation des relativ unedlen Eisens zu zweiwertigen Eisenionen (2.6). An der Kathode kommt als Reaktion zunächst eine Reduktion von Sauerstoff (2.7 und 2.8) oder von Protonen beziehungsweise Wasser (2.9 und 2.10) in Betracht [Stumm 1998].

| Fe(0)                     | ₽ | $\mathrm{Fe}^{2+} + 2\mathrm{e}^{-}$ | (Gl. 2.6)  |
|---------------------------|---|--------------------------------------|------------|
| $O_2 + 4 H^+ + 4 e^-$     | ⇆ | 2 H <sub>2</sub> O                   | (Gl. 2.7)  |
| $O_2 + 2 H_2O + 4 e^{-1}$ | ⇆ | 4 OH <sup>-</sup>                    | (Gl. 2.8)  |
| $2 H^{+} + 2e^{-}$        | 与 | $H_2$                                | (Gl. 2.9)  |
| $2 H_2O + 2e^{-1}$        | ⇆ | $H_2 + 2 OH^-$                       | (Gl. 2.10) |

Da die Standardpotentiale der Reduktionsreaktionen von Sauerstoff (2.7 und 2.8) wesentlich über denen der Wasser- und Wasserstoffreduktion (2.9 und 2.10) liegen, werden diese Reaktionen in sauerstoffhaltigem Wasser eindeutig bevorzugt. Die Reduktion von Protonen kann nur in saurer Lösung erfolgen (Säurekorrosion), die Reduktion von Wasser kann aufgrund der negativen Potentialdifferenz zunächst nicht freiwillig ablaufen.

| #                               | Oxidierte Form                                                                |    | Reduzierte Form        | E <sub>H</sub> <sup>0</sup> [V] | pe <sup>0</sup> |  | Quelle |
|---------------------------------|-------------------------------------------------------------------------------|----|------------------------|---------------------------------|-----------------|--|--------|
|                                 |                                                                               |    | unedel / al            | ktiv                            |                 |  |        |
| 1                               | $2 H_2O + 2 e^-$                                                              | ⇆  | $H_2 + 2 \text{ OH}^-$ | - 0,828                         | -14,0           |  | а      |
| 2                               | $As(0) + 3 e^{-1}$                                                            | ₽  | AsH <sub>3</sub>       | - 0,540                         | -9,2            |  | b      |
| 3                               | $Fe^{2+} + 2e^{-}$                                                            | ₽  | Fe(0)                  | - 0,409                         | -6,9            |  | а      |
| 4                               | $2 H^+ + 2 e^-$                                                               | ţ  | H <sub>2</sub>         | 0,000                           | 0               |  | а      |
| 5                               | $Cu^{2+} + 2e^{-}$                                                            | ţţ | Cu(0)                  | + 0,340                         | 5,8             |  | а      |
| 6                               | <sup>1</sup> / <sub>2</sub> O <sub>2</sub> +H <sub>2</sub> O+2 e <sup>-</sup> | ţ  | 2 OH-                  | + 0,401                         | 6,8             |  | а      |
| 7                               | $HAsO_4^{2-}$ + 7 H <sup>+</sup> + 5 e <sup>-</sup>                           | ţ  | $As(0) + 4 H_2O$       | + 0,499                         | 8,5             |  | d      |
| 8                               | $H_3AsO_4+2 H^+ 2e^-$                                                         | ţ  | $H_3AsO_3 + H_2O$      | + 0,560                         | 9,5             |  | с      |
| 9                               | $\alpha$ -FeOOH+3 H <sup>+</sup> + e <sup>-</sup>                             | ţ  | $Fe^{2+} + 2 H_2O$     | + 0,667                         | 11,3            |  | с      |
| 10                              | $Fe^{3+} + e^{-}$                                                             | ţ  | Fe <sup>2+</sup>       | + 0,771                         | 13,1            |  | а      |
| 11                              | $Fe(OH)_3 + 3 H^+ + e^-$                                                      | ţ  | $Fe^{2+} + 3 H_2O$     | + 0,932                         | 15,8            |  | с      |
| 12                              | $^{1}/_{2} O_{2}+2 H^{+}+2e^{-}$                                              | ţ  | H <sub>2</sub> O       | + 1,230                         | 20,8            |  | а      |
| edel                            |                                                                               |    |                        |                                 |                 |  |        |
| Quelle                          | a) Hamann 197                                                                 | 5  |                        | b) chem                         | iemaster.de     |  |        |
| c) Driehaus 1994 d) Farrel 2001 |                                                                               |    |                        |                                 |                 |  |        |

Tab. 2.2 Spannungsreihe der relevanten Redox-Halbreaktionen

### 2.2.2 Sauerstoffkorrosion und Deckschichtbildung

Primäre Produkte der vorgestellten Korrosionsreaktionen mit Sauerstoff sind also zweiwertige Eisenionen und Hydroxidionen, die an der Metalloberfläche eng nebeneinander entstehen. Beschleunigt durch die Erhöhung des pH-Wertes (vgl. Abschnitt 2.3) kann durch Sauerstoff aus der Lösung eine weitere Oxidation des Eisens entsprechend Gleichung 2.11 zu Magnetit oder Gleichung 2.12 zu Goethit stattfinden. Je nach Härte und Pufferung des Wassers sind auch die Carbonationen im Wasser an den Reaktionen beteiligt, und es kann neben einer Ausfällung von Calcit (CaCO<sub>3</sub>) nach Gleichung 2.16 auch zu einer Bildung von Siderit (FeCO<sub>3</sub>) kommen (2.13). Siderit wandelt sich im Lauf der Zeit durch Oxidation und Abgabe von CO<sub>2</sub> in Magnetit (2.14) oder Goethit um (2.15). Die von Sontheimer für die Korrosion von Trinkwasserleitungen vorgeschlagenen Folgereaktionen, bekannt als Siderit-Modell, führen zur Ausbildung von stabilen Deckschichten, die die Korrosionsrate erheblich verringern, da der Sauerstofftransport zur Eisenoberfläche stark eingeschränkt wird [Sontheimer 1980].

| $3Fe^{2+} + \frac{1}{2}O_2 + 3H_2O$                                               | ₽ | $\mathrm{Fe_3O_4} + \mathrm{6H^+}$ | (Magnetit) | (Gl. 2.11) |
|-----------------------------------------------------------------------------------|---|------------------------------------|------------|------------|
| $2Fe^{2+} + \frac{1}{2}O_2 + 3H_2O$                                               | 与 | $2FeOOH + 4H^+$                    | (Goethit)  | (Gl. 2.12) |
| $Fe^{2+} + CO_3^{2-}$                                                             | 与 | FeCO <sub>3</sub>                  | (Siderit)  | (Gl. 2.13) |
| $3FeCO_3 + \frac{1}{2}O_2$                                                        | 与 | $Fe_3O_4 + 3CO_2$                  | (Magnetit) | (Gl. 2.14) |
| 2FeCO <sub>3</sub> + <sup>1</sup> / <sub>2</sub> O <sub>2</sub> +H <sub>2</sub> O | 与 | $2 \text{ FeOOH} + 2 \text{CO}_2$  | (Goethit)  | (Gl. 2.15) |
| $Ca^{2+} + CO_3^{2-}$                                                             | ⇆ | CaCO <sub>3</sub>                  | (Calcit)   | (Gl. 2.16) |

Ingesamt ist von einer vollständigen Oxidation des Eisens zum dreiwertigen Eisenion Fe<sup>3+</sup> auszugehen, welche sich zu folgender Brutto-Reaktionsgleichung zusammenfassen lässt:

$$4 \operatorname{Fe}(0) + 3 \operatorname{O}_2 + 2 \operatorname{H}_2 O \qquad \leftrightarrows \qquad 4 \operatorname{FeOOH}$$
 (Gl. 2.17)

Diese stöchiometrische Beziehung bei vollständiger Sauerstoffkorrosion wurde von Kuch zur Untersuchung der wesentlichen Einflussfaktoren auf die Korrosion und Rostwasserbildung in Trinkwasserleitungen genutzt, da sie die Ermittlung der aktuellen Korrosionsraten ohne Eingriff in das Material ermöglicht [Kuch 1984]. Die Meßmethode wird im folgenden Kapitel noch ausführlicher erläutert.

Für die Sauerstoffkorrosion unter in Trinkwasserleitungen üblichen Bedingungen mit Strömungsgeschwindigkeiten von 0,2-1,5 m/s konnte Kuch als wesentliche Einflussfaktoren die Sauerstoffkonzentration im Wasser selbst, das Alter beziehungsweise die daraus resultierende Dicke der Deckschicht, sowie die Strömungsgeschwindigkeit identifizieren. Mit zunehmendem Alter der Deckschicht verringerte sich jedoch der Einfluss der Strömungsgeschwindigkeit, da der Diffusionswiderstand der Flüssigkeitsgrenzschicht gegenüber dem Diffusionswiderstand der Deckschicht an Bedeutung verliert. Besonders bei stagnierendem Wasserfluss kommt der Deckschicht eine erhebliche Bedeutung zu: Sobald der Sauerstoff im Wasser verbraucht ist, erfolgt eine Reduktion des in der Deckschicht vorliegenden Fe(III) unter Oxidation des metallischen Eisens (Komproportionierung). Diese Reaktion bewirkt eine Entstehung und Freisetzung von Fe<sup>2+</sup>. Die zweiwertigen Eisenionen können mit Sauerstoff in der freien Lösung erneut oxidiert werden und ausfallen. So entsteht das unerwünschte Phänomen der Rostwasserbildung bei instationärer Korrosion im Leitungsnetz. [Kuch 1984]

Die Kinetik des Wachstums einer Deckschicht in Trinkwasserleitungen lässt sich nach Sontheimer durch ein empirisch ermitteltes logarithmisches Wachstumsgesetz beschreiben. Nach einer intensiven Korrosion der blanken Metalloberfläche geht die Korrosionsgeschwindigkeit stark zurück und nähert sich nach mehreren Monaten asymptotisch einem Endwert, der für Rohrstücke nach langjährigen Betrieb mit 5-10  $\mu$ m/a angegeben wird [Sontheimer 1980]. Nach der im folgenden Kapitel erläuterten Gleichung 3.16 entspricht dieser Materialverlust einer spezifischen Korrosionsrate von ca. 0,1-0,2 g/m<sup>2</sup>d. Stratmann vertiefte die Untersuchung der Deckschicht in Trinkwasserleitungen mit elektrochemischen Methoden und konnte zeigen, dass nicht nur Diffusionsvorgänge von Sauerstoff zur Metalloberfläche stattfinden, sondern in der elektronenleitenden Rostschicht ebenfalls entsprechende Redox-Reaktionen zwischen Fe(0), Fe(II) und Fe(III) ablaufen. Die Elektronentransferreaktion zum Sauerstoff findet demzufolge weitgehend in der Deckschicht statt, die insgesamt eine Wertigkeit zwischen (II) und (III) aufweist. Daher wird die Korrosionsrate durch den Anteil an zweiwertigem Eisen in der Deckschicht entscheidend beeinflusst. Vollständig oxidierte Deckschichten ermöglichen nur noch minimale Korrosionsraten [Stratmann 1994].

Bei Cornell und Schwertmann wird die Deckschicht ebenfalls als Mischung von Eisenoxiden und anderen Verbindungen wie Siderit und Calcit beschrieben. Häufig weist die Deckschicht intern eine Schichtung auf, mit der ein Potentialgradient einhergeht. An die metallische Oberfläche grenzt eine Fe(II)-haltige Schicht aus Magnetit, an die sich zur sauerstoffhaltigen Lösung hin eine reine Fe(III)Schicht aus Goethit oder Lepidokrokit anschließt [Cornell 1996].

Der Aufbau der Deckschicht ist entscheidend für das langfristige Korrosionsverhalten einer Eisenoberfläche und wird vor allem durch die Inhaltsstoffe des Wassers bestimmt. Einige Wasserinhaltsstoffe, beispielsweise Säuren, Reduktionsmittel oder Komplexbildner führen zur Auflösung der Deckschicht und fördern damit die Korrosion. Andere Verbindungen wirken mit unterschiedlichen Mechanismen korrosionsverhindernd als Inhibitoren. Bekannte Inhibitoren sind beispielsweise Amine, Silane, ortho-Phosphat, Chromat oder auch Arsenoxid [Stumm 1998].

Neben der Zugabe von chemischen Inhibitoren besteht auch die Möglichkeit, auf elektrochemischem Weg Korrosionsschutz zu betreiben. Beide Methoden sind wegen ihrer enormen wirtschaftlichen Bedeutung seit jeher ein Schwerpunkt der ingenieur- und werkstoffwissenschaftlichen Forschung, wie am Umfang der entsprechenden Grundlagenwerke von Kaesche, Baeckmann oder Evans deutlich wird [Kaesche1990], [Baeckmann 1989]. Im Rahmen dieser Arbeit ist jedoch eine besonders intensive Korrosion erwünscht, um ausreichend Rostpartikel als Adsorbens für das Arsen zur Verfügung zu stellen. Da entsprechend den im ersten Kapitel definierten Anforderungen an das Verfahren keine Dosierung von Reagenzien erfolgen soll, werden nur elektrochemische Methoden zur Intensivierung der Korrosion auf ihre Eignung geprüft. Die Grundlagen dafür werden im folgenden Abschnitt näher vorgestellt.

## 2.2.3 Methoden der elektrochemischen Intensivierung der Korrosion

Durch die Kombination zweier geeigneter Halbreaktionen wird ein klassisches galvanisches Element aufgebaut, bei dem sich zwischen den beiden räumlich getrennten Elektroden eine elektrische Spannung aufbaut. Bei Einrichtung einer elektrisch leitenden Verbindung wird das Fließen eines entsprechenden Gleichstroms zwischen den Elektroden bewirkt. Die Höhe der Spannung wird durch die Elektrodenpotentiale, die sich entsprechend der Nernstschen Gleichung (2.5) aus der Position der Reaktion in der Spannungsreihe (Tab. 2.2) und der Zusammensetzung des Elektrolyten ergeben, bestimmt. Das galvanische Element bildet auf diese Weise auch die Grundlage für haushaltsübliche Batterien und Akkumulatoren. Dieser Prozess lässt sich umkehren: Durch Anlegen einer externen Spannung, die über der elektromotorischen Kraft des Elements liegt, lässt sich ein entgegengesetzter Stromfluss sowie ein Ablaufen von anderen Elektrodenreaktionen bewirken. Dieser Vorgang wird als Elektrolyse bezeichnet.

Beide Vorgänge sind mit einem Stromfluss über die Phasengrenzfläche verbunden, das heißt wie bei der natürlichen Sauerstoffkorrosion treten an der Anode Metallionen aus, und an der Kathode werden Elektronen abgegeben. Als wichtigste Grundlage zur Beschreibung dieser Vorgänge dient das Faraday'sche Gesetz (2.18).

| $\Delta m = \frac{M \cdot Q}{z \cdot F}$ |     |                      |               | (Gl. 2.18) |
|------------------------------------------|-----|----------------------|---------------|------------|
| Q:Ladungsmenge                           | [C] | M: Atomgewicht       | [g/mol]       |            |
| z: Elektronenanzahl                      | []  | F: Faraday-Konstante | 96480 [C/mol] |            |

Die dargestellten Vorgänge haben sich seit langem in der Technik als Methode zum kathodischen Korrosionsschutz bewährt: Ein zu schützendes Bauteil aus Metall wird durch Verbindung mit einem unedleren Bauelement oder durch Verbindung mit dem Minuspol einer Spannungsquelle zur Kathode und gibt dementsprechend nur noch Elektronen an den umgebenden Elektrolyten ab, bleibt dabei aber unbeschädigt. Dagegen ist der Materialverlust an der so genannten Opferanode erheblich. Es wird beispielsweise Eisenschrott zum Schutz von im Erdreich verlegten Rohrleitungen vor Korrosionsschäden durch Fremdstrom verwendet. Zum galvanischen Korrosionsschutz von Stahlschiffsrümpfen können gleichmäßig über die Unterwasserfläche verteilt angebrachte Magnesium- oder Zinkanoden eingesetzt werden. Ein umfassender Überblick über Grundlagen und Anwendung dieser Technik einschließlich entsprechender Beispiele wird von Baeckmann gegeben [Baeckmann 1989]. Als wesentliche Einflussfaktoren auf diese Form der Korrosion bzw. diese Art von Korrosionsschutz gelten die vorhandene elektromotorische Kraft, d.h. die Potentialdifferenz des galvanischen Elements oder die angelegte Spannung, sowie das Größenverhältnis der angebotenen Elektrodenflächen.

Aber auch die die forcierte Freisetzung von Metallionen durch elektrischen Strom als Ersatz für die Dosierung von Flockungsmittel wurde bereits untersucht und vereinzelt auch in technischem Maßstab eingesetzt. Beispielsweise belegt Holt diese Methode mit der Bezeichnung "electrocoagulation" und berichtet über Untersuchungen zur Entfernung von Trübstoffen mit Hilfe von Aluminiumelektroden [Holt 2002].

Da bei allen Korrosionssystemen dieser Art im Gegensatz zu den Lokalelementen bei der Flächenkorrosion von reinen Eisenelementen die Elektroden räumlich wesentlich weiter voneinander entfernt liegen, ist hier nicht mit den gleichen Folgereaktionen wie zuvor beschrieben zu rechnen. Freigesetztes  $Fe^{2+}$  kann nicht sofort durch  $O_2$  bzw. OH<sup>-</sup> oxidiert und in der Deckschicht festgelegt werden, sondern unterliegt erst in der freien Lösung den Folgereaktionen.

### 2.3 Redox-Reaktionen von Eisen und Arsen in Lösung

Obwohl im Rahmen dieser Arbeit primär von Arsen(V) in sauerstoffhaltigem Rohwasser ausgegangen wird, soll in diesem Abschnitt kurz auf die zu erwartenden Redox-Reaktionen in der Korrosionssäule sowie im Ablauf eingegangen werden. Abbildung 2.4 zeigt, dass bereits geringste Konzentrationen an gelöstem Sauerstoff ausreichen, ein hohes, positives Redoxpotential aufrecht zu erhalten. Trotzdem können in Totzonen der Packung oder direkt an der metallischen Eisenoberfläche Sauerstoffmangel und damit reduzierende Bedingungen nicht ausgeschlossen werden.



# **Redoxpotential und Sauerstoffkonzentration**

Abb. 2.4 Redoxpotential in Abhängigkeit von Sauerstoffkonzentration und pH-Wert

Im vorhergehenden Abschnitt wurde gezeigt, dass die anodische Oxidation von Eisen im ersten Schritt zur Freisetzung von  $Fe^{2+}$ -Ionen führt, die erst in der Deckschicht oder der Lösung zu  $Fe^{3+}$ oxidiert werden (Gleichung 2.6 in Abschnitt 2.2.1). Entsprechend Abbildung 2.5 ist dieser Schritt bei Anwesenheit von Sauerstoff auf jeden Fall zu erwarten. Für diese Reaktion in der Lösung wird von Sigg in Gleichung 2.19 ein Geschwindigkeitsgesetz 1. Ordnung bezüglich  $Fe^{2+}$ und Sauerstoff sowie 2. Ordnung bezüglich der Hydroxidionen angesetzt [Sigg 1996]. Bei neutralem pH-Wert und einer Sauerstoffkonzentration nahe der Sättigung wird eine Halbwertszeit von sieben bis acht Minuten angegeben, die sich durch geringere Sauerstoffkonzentrationen und in saurer Umgebung jedoch stark verlängern kann. Ein Auftreten von  $Fe^{2+}$  im Ablauf von Korrosionsreaktoren ist daher vor allem zu Versuchsbeginn nicht ausgeschlossen.

$$-\frac{d[Fe(II)]}{dt} = k \cdot [Fe(II)] \cdot [OH^{-}]^{2} \cdot pO_{2}$$
(Gl. 2.19)

Die Oxidation von Fe(II) wird durch kontaktkatalytische Effekte an Eisenhydroxidoberflächen beschleunigt. Oberflächenkatalysierte Oxidationsreaktionen sind nicht mehr vom pH-Wert abhängig, da die OH-Oberflächengruppen die Funktion der Hydroxidionen übernehmen [Sigg 1996]. Bei Existenz von Eisenhydroxidpartikeln oder einer ausgeprägten Deckschicht sollte also nicht mehr mit nennenswerten Konzentrationen an Fe<sup>2+</sup> im Ablauf zu rechnen sein. Die von Kuch und Stratmann untersuchten Redox-Reaktionen des Eisens, die im Inneren der Deckschicht ablaufen, wurden im vorangegangenen Abschnitt bereits vorgestellt.



Abb. 2.5 Stabiltätsdiagramm für Eisenverbindungen

Auf die Möglichkeit einer Reduktion von Arsen (V) durch die metallischen Eisenoberflächen wird noch im Abschnitt 2.4 näher eingegangen. Ausgehend von einem weitgehend oxidierenden Milieu im Reaktorsystem bleibt hier noch zu diskutieren, welchen Prozessen im Rohwasser vorhandenes Arsen(III) unterliegen kann. Sowohl eine Oxidation zum Arsen(V) mit nachfolgender Adsorption, als auch die direkte Adsorption des Arsen(III) an Eisenhydroxid wäre denkbar:

Manning, Fendorf und Goldberg haben die Adsorptionseigenschaften von dreiwertigem Arsen an Tonmineralien, Aluminiumhydroxid und Goethit umfassend untersucht. Sie konnten mit Hilfe von spektroskopischen Methoden (EXAFS, XANES) und makroskopischen Untersuchungen eine hohe Fähigkeit von Arsen(III) zur Bildung von innersphärischen Oberflächenkomplexen an Goethit feststellen. Diese Sorptionseigenschaften konnten mit Hilfe eines Oberflächenkomplexierungsmodells modelliert werden. Eine heterogene Oxidationswirkung durch die Adsorption an Goethit konnte nicht beobachtet werden [Manning 1997 und Manning 1998].

Daus dagegen beobachtete bei Untersuchungen mit Bergbausickerwasser eine deutliche Beschleunigung der an sich sehr langsam von statten gehenden Oxidation von Arsen(III) durch Luftsauerstoff bei Zugabe von  $Fe^{2+}$ . Die Oxidation des Arsens kommt zum Stillstand, sobald das gelöste Eisen vollständig zum  $Fe^{3+}$  oxidiert und als Eisenhydroxid ausgefallen ist [Daus 2000].

Ähnliche Beobachtungen wurden auch von Hug dokumentiert: Bei Untersuchungen zur solaren Desinfektion (SODIS) und zur Arsenentfernung mittels solarer Oxidation von Eisen (SORAS) wurde bereits im Dunklen eine deutliche Oxidationswirkung von zudosiertem Fe(II) beobachtet. Die Oxidationsgeschwindigkeit wird durch Sonnenlicht erhöht und kann durch die katalytische Wirkung von Citrat nochmals deutlich gesteigert werden. Die Anwesenheit von Fe(III) allein bewirkte dagegen keine Oxidation von Arsen(III) [Hug 2001].

Jain und Raven untersuchten in zwei gemeinsamen Arbeiten die Adsorption von Arsenit an Ferrihydrit. Dabei wurden außerordentlich hohe Beladungen von bis zu 0,6 mol/mol erzielt, die sich durch eine reine Adsorption nicht erklären lassen, sondern auf andere Mechanismen wie Oberflächenpräzipitation oder Oberflächenpolymerisation schließen lassen [Raven 1998 und Jain 1999].

# 2.4 Existierende Arbeiten zur Arsenentfernung mit elementarem Eisen

Zu der in dieser Arbeit untersuchten Kombination von Eisenkorrosion und adsorptiver Arsenentfernung wurden bereits von anderen Autoren Untersuchungen vorgenommen. Zur Anwendung in den in Kapitel 1 erwähnten Dörfern im Norden von Chile wurden 1988 von der Arbeitsgruppe von A.M. Sancha aus Santiago de Chile Experimente mit Stahlwolle gefüllten Säulen und Sandfiltern vor Ort durchgeführt, die eine prinzipielle Eignung dieses Verfahrens bewiesen. Da eine stabile Grenzwerteinhaltung nicht erreicht wurde und weder Korrosionsraten noch Beladungen quantifiziert wurden, sind die Arbeiten nach Abschluss des Forschungsprojekts nicht weitergeführt worden [Sancha 1992].

Motiviert durch die Arsenbelastung in Indien und Bangladesh wurde von Ramaswami eine einfache Arsenentfernungsmethode für den Einsatz im Haushalt vorgeschlagen: Eisenspäne können im Rührreaktor-Batch-Versuch bei 30 min Kontaktzeit mit anschließender Dekantierung eine nahezu vollständige Arsenentfernung von rund 2000 µg/L As(III) bewirken. Als günstig wurde dabei Sauerstofffreiheit sowie die Anwesenheit von Sulfat erwähnt, störend wirkte dagegen Phosphat [Ramaswami 2001]. Diese Beobachtung gab zur der zweifelhaften Vermutung einer Ausfällung als Arsenopyrit (FeAsS) Anlass. Die Methode ähnelt den im Rahmen dieser Arbeit durchgeführten Rührversuchen zur Arsenadsorption unter Idealbedingungen, sofern die Rührversuche von Ramaswami mit zumindest zu Beginn sauerstoffhaltigem Wasser durchgeführt wurden.

Lokale Verunreinigungen des Grundwassers mit Arsen werden häufig durch industrielle Altlasten verursacht. Daher lag es nahe, die für die Dehalogenierung von chlororganischen Verunreinigungen oder zur reduktiven Immobilisierung von Chrom(VI) bewährte Technik der reaktiven Barrieren aus metallischem Eisen auch auf ihre Eignung zur Bindung von Arsen zu untersuchen.

In Durchflussversuchen an Säulen, die mit Sand und feinen Eisenspänen gefüllt waren, konnte Lackovic unter anoxischen Bedingungen hohe Entfernungsraten sowohl für Arsen(III) als auch für Arsen(V) feststellen, allerdings bei sehr niedrigen Filtergeschwindigkeiten und sehr geringen Durchsätzen. Der Ansatz, durch Zugabe von Sulfat unter reduzierenden Bedingungen eine Ausfällung von AsS zu bewirken, funktionierte nicht. Als Entfernungsmechanismus wurde durch XPS-Untersuchungen (X-ray-photoelectron spectroscopy) eine Ausfällung bzw. Adsorption an der mit Sauerstoff und Kohlenstoff angereicherten Eisenoberfläche identifiziert, also an den entstandenen Korrosionsprodukten [Lackovic 2000]. Ein erfolgreicher achtmonatiger Feldversuch an einer Altlast mit stark eisen- und sulfathaltigem Grundwasser ließ vermuten, dass möglicherweise sulfatreduzierende Bakterien an den Korrosionsprozessen beteiligt sind [Nikolaidis 2003].

Su führte Batch-Versuche in vollständig gefüllten und verschlossenen Gefäßen zur Entfernung von As(III) und As(V) mit Hilfe von feinen Eisenspänen durch. Er beobachtete ebenfalls eine nahezu vollständige Entfernung für beide Spezies, die sich mit einem empirischen Ansatz 1. Ordnung gut beschreiben ließ. Auch ohne explizite Sauerstoffzufuhr wird ein deutlicher Einfluss von Korrosionsprodukten erwähnt, die Arsenbeladungen werden jedoch auf die Gesamtmasse an Eisen bezogen. Als Störionen für die Arsenadsorption werden Phosphat, Silikat und Molybdat erwähnt. Sulfat und Chlorid zeigten dagegen keine Auswirkungen [Su 2001a und 2001b].

Farrell und Melitas untersuchten in ihren Arbeiten die Entfernung von Arsen(V) mit Fe(0), ebenfalls unter anoxischen Bedingungen in Batch- und Säulenversuchen. Dabei kamen auch klassische korrosionschemische Methoden wie die Messung der Korrosionspotentiale und die Bestimmung der Tafel-Geraden zum Einsatz. Ursprünglicher Ansatz der Arbeit war die angenommene Reduktion von Arsenationen zum elementaren Arsen entsprechend der Gleichung 2.20, die thermodynamisch möglich erscheint.

$$HAsO_4^{2-} + 7 H^+ + 5e^- = As(0) + 4 H_2O$$
  $E_0=0,499 V$  (Gl. 2.20)

Diese Vermutung bestätigte sich in den Experimenten jedoch nicht, da sich das Potential an der Eisenoberfläche durch die Freisetzung von Hydroxidionen deutlich zu Ungunsten der Reduktionsreaktion (2.20) verändert. Als wesentlicher Arsenentfernungsmechanismus wird auch unter anoxischen Bedingungen die Oberflächenkomplexbildung an den Korrrosionsprodukten Magnetit (Fe<sub>3</sub>O<sub>4</sub>) und Maghemit (Fe<sub>2</sub>O<sub>3</sub>) identifiziert. Zur kinetischen Beschreibung der Arsenentfernung im Batch-Versuch dient ein kinetischer Mischansatz, der für hohe Arsenkonzentrationen einem Ansatz 0. Ordnung entspricht, und bei geringen Arsenkonzentrationen in eine Reaktionskinetik 1. Ordnung übergeht. Als Erklärung für das Verhalten bei hohen Arsenkonzentrationen wird eine Limitierung der Arsenadsorption durch die Produktionsrate frischer Adsorptionsplätze, also durch die Korrosionsrate des Eisens, herangezogen. Bei niedrigen Konzentrationen stehen dagegen genug Adsorptionsplätze für alle Arsenationen zur Verfügung, und der konzentrationsabhängige Massentransport des Arsens zur bzw. in der Deckschicht gewinnt an Bedeutung. Die anoxische Korrosionsrate, dominiert durch die kathodische Reduktion von Protonen (Säurekorrosion), wird durch die Anwesenheit von Arsenationen auf ca. 20% deutlich abgesenkt, da die Arsenationen an der Metalloberfläche anscheinend den Elektronenübergang behindern. Sie ist dann aber unabhängig von der Arsenkonzentration im Bereich von 100-20.000  $\mu$ g/L. Die Korrosionsrate in den Versuchen mit Sauerstoffanwesenheit liegt jedoch um den Faktor 40 höher, so dass für hohe Arsenkonzentrationen eine Anreicherung des Wassers mit Sauerstoff empfohlen wird [Melitas 2002 und Farrel 2001].

Auch Manning beschreibt in einer Arbeit über Batch-Versuche mit feinen Eisenmaterialen die hervorragende Adsorptionswirkung der entstehenden Korrosionsprodukte. Mit Hilfe verschiedener röntgenspektroskopischer Techniken kann er die Korrosionsprodukte als Mischung von Lepidokrokit, Magnetit und Maghemit identifizieren. Er beobachtet ferner eine deutliche Oxidationswirkung des Korrosionsprozesses sowie bestimmter Eisenoxide auf vorliegendes Arsen(III) sowie für beide Spezies eine Adsorption in Form von innerspärischen bidentaten Oberflächenkomplexen [Manning 2002].

Die Möglichkeit zur Intensivierung der Korrosion mittels Anlegen einer externen Spannung und Nutzung der Korrosionsprodukte zur Arsenentfernung wurde jüngst von Del Signori untersucht. Es kam dabei zur Elektrolyse der Eisenanode und ein sehr hoher Arsenentfernungsgrad wurde erreicht. Eine genaue Analyse der Teilreaktionen und eine quantitative Beschreibung des Korrosionsverhaltens erfolgte jedoch nicht [Del Signori 2001].

Zusammenfassend lässt sich feststellen, dass die bisherigen Arbeiten zur Arsenentfernung mit metallischem Eisen in der Regel sehr anwendungsorientiert durchgeführt wurden und daher primär auf das Erreichen von niedrigen Ablaufwerten ausgerichtet waren. Eine Entkopplung und getrennte quantitative Betrachtung der Teilprozesse Korrosion und Adsorption wurde in der Literatur bisher nicht beschrieben, so dass ein quantitativer Vergleich mit den Resultaten der vorliegenden Arbeit schwer durchführbar ist.

Bedeutsam und relevant für die in dieser Arbeit vorgenommenen Untersuchungen ist aber die Tatsache, dass in der Literatur keine Reduktion von Arsenationen zum metallischen As(0) beobachtet wurde, sondern, soweit untersucht, nur adsorptive Bindungen an der Oberfläche des Eisenmaterials festgestellt wurden. Während eine Reduktion zum metallischen As(0) ebenfalls als Entfernungserfolg betrachtet werden könnte, ist eine Reduktion zum gasförmigen Arsin (AsH<sub>3</sub>) auf Grund der potentiellen Gesundheitsgefahr auf jeden Fall zu vermeiden.

Eine derartige Reduktion von Arsenationen durch metallisches Eisen konnte Maier im Rahmen seiner Untersuchungen zur Aufbereitung von arsenhaltigen Wasserwerksschlämmen zur Flockungsmittelherstellung erst bei Zugabe von konzentrierter Salzsäure beobachten. Selbst dann wurde nur ein geringer Anteil von rund 10% des eingesetzten Arsens als gasförmiges AsH<sub>3</sub> freigesetzt. Der weit überwiegende Teil des Arsens fiel nach Reduktion zum As(0) in Form von metallischen Partikeln aus [Maier 2001].

## 2.5 Sandfiltration als Trinkwasseraufbereitungsverfahren

Den abschließenden Teilprozess des vorgestellten Aufbereitungsverfahrens bildet eine Sandfiltration zur Nachreinigung des Ablaufs aus dem Korrosions-Adsorptions-Reaktor. Dabei sollen die arsenbeladenen Eisenhydroxidpartikel möglichst vollständig abgetrennt werden. Zusätzlich soll eine Oxidation und Abtrennung von noch in der Lösung vorhandenem Fe<sup>2+</sup> ermöglicht werden. Im realen Betrieb einer Aufbereitungsanlage kommt dem Sandfilter außerdem die Aufgabe zu, alle weiteren partikulären Verunreinigungen, insbesondere auch Mikroorganismen, aus dem Wasser zu entfernen und die Trinkwasserqualität des aufbereiteten Wassers sicherzustellen. Dafür können sowohl Langsam- als auch Schnellsandfilter eingesetzt werden, deren Eigenschaften in Tabelle 2.3 zusammengefasst werden.

| Größe / Einheit           |                   | Langsamsandfilter             | Schnellfilter                 | Roughingfilter (horiz.)            |
|---------------------------|-------------------|-------------------------------|-------------------------------|------------------------------------|
| A <sub>Querschnitt</sub>  | [m <sup>2</sup> ] | 100-10000                     | 100                           | 10                                 |
| Betthöhe/länge            | [m]               | 1,0                           | 0,5-2,5                       | 5-10                               |
| $\mathbf{v}_{\mathrm{F}}$ | [m/h]             | 0,05-0,5                      | 3-20                          | 0,3-1,5                            |
| d <sub>Korn</sub>         | [mm]              | 0,1-0,5                       | 0,5-5                         | 15/10/6 (3 Schichten)              |
| Überstau                  | [m]               | 0,3-1,0                       | 0-3                           | 0-0,3                              |
| Laufzeit                  |                   | 1-12 Monate                   | 10-150 h                      | bis zu 12 Monate                   |
| Reinigung                 |                   | Abschälen der<br>Schmutzdecke | Rückspülung mit<br>Reinwasser | Spülung durch<br>Schnellentleerung |

#### Tab. 2.3 Charakteristika von Langsamsand-, Schnell- und Roughing-Filtern

- Schnellsandfilter stellen ein effizientes Mittel zur Partikelabtrennung und Eisenentfernung dar. Sie sind im Betrieb aber wartungsaufwendig und deshalb den in Kapitel 1 genannten Anforderungen für den Einsatz in Entwicklungsländern in der Regel nicht gewachsen. Außerdem erfordert das häufige Rückspülen auch entsprechende Einrichtungen zur Schlammentwässerung und Trocknung.
- Langsamsandfilter stellen ein einfaches und kostengünstiges Aufbereitungsverfahren dar, welches sich auch in Entwicklungsländern bewährt hat. Nachteilig sind ihr geringer Durchsatz, der einen hohen Flächenbedarf bedingt, sowie ihre Anfälligkeit gegenüber Verstopfung durch Überlastung. Ein manueller Abtrag der Schmutzdecke ist immer mit einem erheblichen Arbeitsaufwand verbunden, so dass eine Überlastung durch hohe Partikelkonzentrationen im Zulauf unbedingt zu vermeiden ist. Eine Vorreinigung, beispielsweise durch Sedimentation oder die nachfolgend beschriebenen Roughing-Filter, sollte in Betracht gezogen werden.
- Als besonders leistungsfähig und technisch hervorragend für Entwicklungsländer geeignet haben sich die von Wegelin intensiv untersuchten Roughing-Filter erwiesen. In einem Fil-

terbett aus grobem Kies, eventuell gestaffelt mit stromabwärts abnehmender Körnung und horizontaler oder vertikaler Durchströmung gelingt eine gute Abtrennung von hohen Partikelfrachten. Die Reinigung erfolgt manuell durch Filterentleerung und Waschen des Materials. [Wegelin 1996]

Vorraussetzung für eine effektive Entfernung von gelöstem Eisen in einem Sandfilter ist entsprechend den zuvor gemachten Ausführungen vor allem eine hohe Sauerstoffkonzentration. Daher empfiehlt sich eine erneute Sauerstoffzufuhr zwischen Ablauf des Korrosionsreaktors und Sandfilter, die sich am einfachsten durch eine Verrieselung oder eine Belüftungskaskade realisieren lässt. Richtwerte zur Auslegung von Filteranlagen zur Eisenentfernung werden in den DVGW-Arbeitsblättern 210, 211 sowie 213 Teil 1-6 gegeben. In der DDR wurden Bemessungsgleichungen für Eisenentfernungsanlagen entwickelt und im Rahmen der WAPRO-Standards veröffentlicht. Der Gültigkeitsbereich dieser Formel ist jedoch sehr eingeschränkt, so dass auf grobe Richtwerte für die chemische und die biologische Oxidation zurückgegriffen werden muss. Im Einzelfall sollten immer konkrete Versuchsergebnisse als Grundlage für eine Bemessung herangezogen werden [Meyerhoff 1995], [Grohmann 1996].



Abb. 2.6 Schematische Darstellung eines horizontalen Roughing-Filters [Wegelin 1996]

# 3 Material und Methoden

### 3.1 Versuchsanordnung und Probenahmemethodik

Im Mittelpunkt dieser Arbeit stehen die Ergebnisse von kontinuierlich betriebenen Durchflussversuchen, die über eine Dauer von bis zu vier Wochen pro Versuch durchgeführt wurden. Sie sollten als Modellsystem den gesamten Aufbereitungsprozess, bestehend aus Korrosions- und Adsorptionsreaktor, gefolgt von einer Nachreinigungsstufe, im Labormaßstab darstellen. Eine Skizze des meist zweifach, teilweise auch vierfach parallel ausgeführten Aufbaus wird in Abbildung 3.1 gezeigt.



Abb. 3.1 Skizze des Versuchsaufbaus

Das arsenhaltige Rohwasser wurde mit Hilfe einer Peristaltikpumpe im Aufstrom durch die Korrosionssäulen gefördert. Über Dreiwegehähne war es möglich, sowohl im Zu- als auch im Ablauf zeitweilig je eine Durchflussmessküvette mit einer Sauerstoffelektrode in den Hauptstrom der einzelnen Korrosionssäulen zu schalten. Die Verbindungen bestanden aus transparenten Kunststoffschläuchen mit einem Innendurchmesser von  $d_i = 5 mm$ . Ein Bypass zur Umgehung der Korrosionssäulen ermöglichte einen direkten Vergleich der Sauerstoffmesswerte in Zu- und Ablauf zur Fehlerkorrektur sowie eine regelmäßigen Reinigung der Messstrecke ohne Störung des laufenden Versuchs. Die Korrosionssäulen wurden aus transparentem Kunststoffrohr mit je einer Kunststoffsiebplatte als oberer und unterer Abgrenzung des Packungsvolumens gefertigt. Der Rohrdurchmesser betrug zunächst  $d_i=16 \text{ mm}$ , bei späteren Versuchen dann  $d_i=50 \text{ mm}$ . Der größere Durchmesser wurde gewählt, um bei gleicher Filtergeschwindigkeit durch einen höheren Volumenstrom die Genauigkeit der Sauerstoffmessung (siehe Anhang E) zu verbessern. Außerdem ließ sich bei der Befüllung der dickeren Säule eine gleichmäßigere Packungsstruktur herstellen, indem die Stahlwolle um einen 8 mm dicken Kunststoffkern gewickelt wurde. Der exakte Aufbau der Korrosionssäulen in den Experimenten zur Eisen-Kupfer-Kontaktkorrosion sowie bei Einsatz externer Spannung wird in den entsprechenden Abschnitten von Kapitel 4 dargestellt.

Die Nachreinigung bestand aus einem Sedimenter, gefolgt von einem Sandfilter. Beide Elemente waren hydraulisch voneinander sowie vom Rest der Anlage getrennt, um eine unabhängige Beprobung sowie Rückspülung zu ermöglichen. Die Trennung erfolgte durch einen freien Auslauf, der auch einen Eintrag von Sauerstoff in den Ablauf der Korrosionssäule bewirkte. Auf diese Weise wurde eine weitere Oxidation von im Wasser gelöstem Eisen ermöglicht. Als Sedimenter dienten aufwärts durchströmte Erlenmeyerkolben mit Stutzen, zumeist mit einem Nennvolumen von 1 L.

Die Sandfilter hatten in der Regel einen Durchmesser von  $d_i=0,14 m$  und eine Betthöhe von ca. 0,2 m. Bedingt durch die Anordnung auf der Laborbank war die Bauhöhe und damit der maximale Überstand auf 0,5 m bzw. 0,3 m beschränkt. Dadurch war ein häufiges manuelles Rückspülen mit Leitungswasser notwendig. Der Ruhewasserspiegel in den Sandfiltern wurde zu Versuchsbeginn auf eine Höhe von wenigen Millimetern oberhalb der Filterbettoberfläche eingestellt. Der Ablauf der Sandfilter wurde in die Kanalisation eingeleitet. Der Rückspülschlamm wurde aufgefangen, sedimentiert und der Sonderabfallentsorgung zugeführt. Bei einigen Versuchen kam in den Filtern statt Sand auch das kommerzielle Arsenadsorbens "GEH" zum Einsatz, welches eine vollständige Nachreinigung des Ablaufs vor Abgabe in die Kanalisation sicherstellen sollte.

| Anlagenteil             | t <sub>R</sub> [min]      |                        |  |  |
|-------------------------|---------------------------|------------------------|--|--|
|                         | $v_{\rm F} = 2 {\rm m/h}$ | $v_F = 10 \text{ m/h}$ |  |  |
| Strecke Zulauf-Ablauf   | 10                        | 2                      |  |  |
| Packung (120 mm)        | 3,4                       | 0,7                    |  |  |
|                         |                           |                        |  |  |
| Sedimenter (1 L)        | 15                        | 3                      |  |  |
| Überstand (SF) (15 cm)  | 35                        | 7                      |  |  |
| Sandfilter (SF) (20 cm) | 19                        | 4                      |  |  |

#### Tab. 3.1 Typische Aufenthaltszeiten in den Anlagenteilen

Die Höhendifferenz zwischen der Oberfläche des vollen Vorratsbehälters und dem Ablauf der Korrosionssäule lag bei rund 1 m. Die Füllhöhendifferenz im Vorratsbehälter lag ebenfalls bei 1 m. Auch die Höhendifferenz in den Nachreinigungseinrichtungen betrug ca. 1 m. Das Anlagenvolumen zwischen dem Zulaufschlauch im Vorratsbehälter und dem Ablauf der Korrosisonssäule lag bei rund 735 mL und setzte sich aus den Meßküvetten (2 x 23 mL), dem Bettvolumen (295 mL) sowie dem Totvolumen (2 x 135mL) der Korrosionssäule ( $d_i$ =50 mm) zusammen. Bei den eingesetzten Volumenströmen zwischen 35 und 350 mL/min führte das zu Gesamtverweilzeiten in den einzelnen Anlagenteilen entsprechend Tabelle 3.1.

Im Betrieb der Durchflussversuchsanlage wurde täglich, in der Regel auch am Wochenende, eine Messung bzw. Probenahme durchgeführt. Die genaue Vorgehensweise bei der täglichen Probenahme wird in Anhang C vorgestellt.

## 3.2 Eingesetzte Materialen

## 3.2.1 Stahlmaterialen

Als Ausgangsmaterial für die Korrosionsversuche wurde meist handelsübliche Stahlwolle verschiedener Feinheitsgrade benutzt. In einigen Versuchen kamen auch Frässpäne aus unlegiertem Baustahl sowie ein Granulat aus Recyclingstahl zum Einsatz. Diese Materialen handelsüblicher Qualität wurden gegenüber reinem Eisen aus dem Laborfachhandel bevorzugt, um ein für den Praxiseinsatz relevantes Korrosionsverhalten normaler Stahlqualitäten beobachten zu können.

Stahl ist definiert als schmiedbares Eisen mit weniger als 2,1% Kohlenstoffgehalt und stellt die wichtigste Form des technischen Eisens dar, in die ca. 90% des in der Welt erzeugten Roheisens überführt werden. Das im Hochofen-Prozess gewonnene Roheisen, beispielsweise Stahleisen mit 3,5–4% C, bis 1% Si, 2–3,5% Mn, bis 0,1% P, bis 0,005% S, ist aufgrund seiner hohen Gehalte an Kohlenstoff, Phosphor u. Schwefel sehr spröde und wird deshalb nur zu einem geringen Teil zu mechanisch gering beanspruchten Gegenständen wie z.B. Herdplatten vergossen. Das durch umschmelzen entstehende Gusseisen enthält 2 bis 4% Kohlenstoff und kann weder kalt noch warm umgeformt werden. Die Umwandlung von Roheisen zu Stahl erfolgt im Wesentlichen durch das so genannte Sauerstoff-Frischen nach dem Sauerstoff-Blasverfahren oder dem Elektrostahlverfahren. Als unlegiert bezeichnet man einen Stahl, wenn sein Gehalt an Eisen-Begleitern folgende Anteile nicht übersteigt: 0,5% Si; 0,8% Mn; 0,1% Al oder Ti; 0,25% Cu; 0,06% S; 0,09% P. Um die mechanischen, physikalischen und chemischen Eigenschaften von Stahl zu verbessern, werden Metalle wie z.B. Cr, Ni, Co, W, Mo, Mn, Al, V, Ti, Ta, Nb, Seltenerdmetalle, Si, B, Cu sowie gegebenenfalls N, P und S einzeln oder zu mehreren hinzulegiert [Römpp 1995]. Die im Rahmen dieser Arbeit eingesetzten Stahlsorten sind im Anhang B nach Herstellerangaben näher charakterisiert. Die Auswahl erfolgte in der Erwartung eines möglichst korrosionsanfälligen Verhaltes, wie es das hier vorgestellte Verfahren erforderte.

Die Bestimmung der spezifischen Oberfläche erfolgte durch mehrfaches Ausmessen der Breite und der Höhe verschiedener Fasern einer Materialprobe unter dem Lichtmikroskop mit anschließender geometrischer Berechnung unter Annahme einer quaderförmigen Fasergestalt und Vernachlässigung der zusätzlichen Stirnflächen. Dieser Weg zur Bestimmung orientiert sich am praxisnahen Vorgehen, um so eine Übertragbarkeit der flächenbezogenen Größen dieser Arbeit auf Feldbedingungen zu ermöglichen. Die auf diese Weise ermittelten spezifischen Metalloberflächen sind nicht mit den in Adsorptionsstudien häufig angegebenen BET-Oberflächen (vgl. Tabelle 2.1) für die Eisenhydroxide vergleichbar. Sie liegen um mehrere Größenordnungen niedriger und dienen hier nur zur Normierung von Eisenfreisetzung bzw. Sauerstoffverbrauch auf die eingesetzte Menge an Material und dessen Oberfläche. Sowohl die massenspezifische Oberfläche  $a_M$  nach Gleichung 3.1 als auch die volumenbezogene Oberfläche nach Gleichung 3.2 sind für die Versuchsauswertung von Interesse.

$$a_{M} = \frac{2}{m} \cdot \left( \frac{m}{\rho \cdot b} + \frac{m}{\rho \cdot h} + (b \cdot h) \right)$$
 [m<sup>2</sup>/kg] (Gl. 3.1)

$$a_V = \frac{a_M \cdot m(Fe)}{V_{Bett}} = a_M \cdot (1 - \varepsilon) \cdot \rho \qquad [m^2/L] \qquad (Gl. 3.2)$$

Die Gesamtmetalloberfläche wird vor Versuchsbeginn aus der eingesetzten Masse ermittelt. Mögliche zeitliche Änderungen wie eine Verkleinerung durch Materialverbrauch oder eine Vergrößerung der reaktiven Fläche durch Bildung einer reaktiven Oxidschicht (vgl. Abschnitt 2.2.2) werden nicht berücksichtigt. Unberücksichtigt bleiben auch die feinen Kanten und Grate der Fasern, die durch den spanabhebenden Herstellungsprozess zu Versuchsbeginn vorhanden sind und die Oberfläche, und damit auch die Reaktivität, zu Versuchsbeginn deutlich erhöhen.

| Sorte                                                                      | a <sub>M</sub> | 3   | a <sub>V</sub> | Schüttdichte | Dichte            | Quelle / Firma  |
|----------------------------------------------------------------------------|----------------|-----|----------------|--------------|-------------------|-----------------|
|                                                                            | m²/g           | %   | m²/L           | g/L          | kg/m <sup>3</sup> |                 |
| Stahlwolle D-I                                                             | 0,0073         | 95% | 2,87           | 393          | 7860              | Fa. Rasko#5     |
| Stahlwolle D-II                                                            | 0,0063         | 95% | 2,48           | 393          | 7860              | Rasko-SpM       |
| Stahlwolle D-III                                                           | 0,00512        | 95% | 2,01           | 393          | 7860              | Fa. Lux #4      |
|                                                                            |                |     |                |              |                   |                 |
| Stahlwolle CL                                                              | 0,0026         | 95% | 1,02           | 393          | 7860              | Fa. Virutex#4   |
|                                                                            |                |     |                |              |                   |                 |
| Granulat I                                                                 | 0,000405       | 52% | 1,53           | 3773         | 7860              | DK Recycling    |
|                                                                            |                |     |                |              |                   |                 |
| Frässpäne I                                                                | 0,000718       | 89% | 0,62           | 860          | 7860              | Werkstatt INDES |
| Frässpäne II <sup>1</sup>                                                  | 0,000809       | 94% | 0,37/0,39      | 453/479      | 7860              | Werkstatt INDES |
| Frässpäne III                                                              | 0,000473       | 86% | 0,52           | 1093         | 7860              | Werkstatt INDES |
|                                                                            |                |     |                |              |                   |                 |
| Cu-Wolle                                                                   | 0,00524        | 95% | 2,34           | 446          | 8920              | Fa. Alsei       |
| 1: Unterschiedliche Schüttdichten bei kleinem und großem Säulendurchmesser |                |     |                |              |                   |                 |

 Tab. 3.2
 Eigenschaften der eingesetzten Eisenmaterialien

Vor Versuchsbeginn wurde die Stahlwolle mit Aceton gründlich gewaschen, um möglicherweise vorhanden Fette, Reste von Kühl-Schmier-Emulsion oder Korrosionsschutzmitteln zu entfernen. Das saubere und im Trockenschrank getrocknete Material wurde gewogen und dann mit wenig Kraft zur Vermeidung von Verstopfungen so gleichmäßig wie möglich durch Wickeln und Stopfen in die Versuchssäule eingebracht. Die groben Frässpäne wurden zunächst durch zehnprozentige Salzsäure von einer ausgeprägten Oxidschicht, verursacht vermutlich durch hohe Bearbeitungstemperaturen, befreit. Dann wurden Sie mit Aceton entfettet und anschließend gleichmäßig in die Säule geschüttet. Für jedes Material zeigte sich dabei eine charakteristische Porosität  $\varepsilon$ , die nur in engen Grenzen variiert werden konnte (Gleichung 3.3).

$$\varepsilon = 1 - \frac{m_{Fe}}{\rho_{Fe} \cdot V_{Bett}}$$
[%] (Gl. 3.3)

### 3.2.2 Kupfermaterial

Für die Versuche zur Eisen-Kupfer-Kontaktkorrosion wurde feine Kupferwolle der Firma Alsei eingesetzt. Feine Kupferwolle zeichnet sich durch eine hohe spezifische Oberfläche aus, die in einem kleinen Reaktorvolumen eine große Kathodenoberfläche im Korrosionssystem bereitstellen soll. Vom Hersteller wurde ein Reinheitsgrad des Materials von mehr als 99% bescheinigt. Vor Versuchsbeginn wurde die Kupferwolle ebenfalls mit Aceton gereinigt, getrocknet, gewogen und so gleichmäßig wie möglich in das Versuchssystem eingebracht. Die Kenngrößen der Kupferwolle sind ebenfalls in Tabelle 3.2 dargestellt.

### 3.2.3 Filtersand

Als Sand im Filter zur Nachreinigung kam Quarzsand mit einem mittleren Korndurchmesser von  $d_M=0,9 mm$  und einem Ungleichförmigkeitsgrad U=1,4 zum Einsatz, also ein für Schnellfilter geeigneter Mittelsand entsprechend DIN EN 12904 (Ersatz für DIN 19623), näheres bei [Assegbede 2001]. Zwischen den Versuchen wurde der Sand mit zehnprozentiger Salzsäure intensiv gewaschen und mit Leitungswasser gespült, so dass alle Eisen- und Arsenablagerungen aus dem vorangegangenen Versuch vollständig entfernt wurden. Alle Eisen- und Arsenakkumulationen im Sandfilter stammten daher immer aus dem jeweiligen Versuch.

#### 3.2.4 Versuchswasser

Als Versuchswasser wurde Berliner Leitungswasser benutzt. Die chemischen Eigenschaften dieses Wassers nach Angabe des Wasserversorgers werden in Anhang A dargestellt. Bei sporadischen Messungen wurden auch geringe Konzentrationen von 1-4  $\mu$ g/L an Arsen festgestellt. Von Tag zu Tag wurden geringfügige Schwankungen in der Wasserqualität im Versorgungsnetz beobachtet.

Das Wasser wurde für die Versuche mit Arsen(V) durch Zugabe einer entsprechenden Menge von zuvor in einem Liter VE-Wasser gelöstem Arsen(V) auf eine angestrebte Zielkonzentration

von meist 500 µg/L angereichert. Die Versuchsanlage wurde aus ca. 120 L fassenden Vorratsbehältern gespeist, die täglich befüllt und erst am Folgetag an die Anlage angeschlossen wurden, so dass eine weitgehende Angleichung des Wassers an die Raumtemperatur von rund 20°C erfolgen konnte. Beim Befüllen der Behälter wurde bewusst der Eintrag von Sauerstoff in das Wasser gefördert, eine zusätzliche Belüftung im Behälter erfolgte jedoch nicht.

Da in den Versuchen zum Verhalten von Arsen(III) im Aufbereitungsprozess nach einiger Zeit bereits im Vorratsbehälter eine schnelle, vermutlich biologisch verursachte Umwandlung zu Arsen(V) auftrat, wurden diese Versuche mit einer kontinuierlichen Dosierung von konzentrierter Arsen(III)-Lösung in den Wasserstrom mit Hilfe einer Peristaltikpumpe durchgeführt.

# 3.2.5 Reagenzien und Laborgeräte

Die in dieser Arbeit zur Versuchsdurchführung und zur chemischen Analytik eingesetzten Reagenzien entsprachen in der Regel der Qualitätsstufe "z.A.". Die konzentrierte Arsen(V)-Lösung wurde durch Einwaage von Arsen(V)-Oxidpulver der Firma Riedel (#11304) und Lösen in VE-Wasser hergestellt. Die konzentrierte Arsen(III)-Lösung wurde durch Verdünnung von Kalibrierlösung der Firma Fluka (#02783) hergestellt, da sich pulverförmiges Arsen(III)-Oxid nur unvollständig in VE-Wasser lösen ließ.

Die täglichen Proben wurden in Kunststoffflaschen bzw. Kunststoffröhrchen gefüllt, verschlossen und bei Raumtemperatur bis zur Messung aufbewahrt, sofern keine Arsen(III)-Bestimmung vorgesehen war. In diesem Fall wurden die Proben bis zur Messung, die maximal vier Tage später durchgeführt wurde, im Kühlschrank gelagert. Die Probenflaschen und Röhrchen, Glasgeräte und die Einzelteile der Versuchsanlage wurden nach Benutzung in zehnprozentiger Salzsäure gewaschen und mit VE-Wasser mehrfach gespült.

Im Labor standen zwei Reinwasserqualitäten zur Verfügung: VE-Wasser (vollentsalzt) mit Leitfähigkeiten zwischen 1 und 5  $\mu$ S/cm aus der Hausanlage sowie Reinstwasser aus einer Ionentauscheranlage der Fa. ELGA mit Leitfähigkeiten zwischen 0,057 und 0,08  $\mu$ S/cm. Letzteres kam vor allem bei Verdünnungen in der Analytik und zur Reinigung der Messröhrchen zum Einsatz. Das VE-Wasser wurde hingegen zum Ansetzen der Vorratslösungen, zum Auffüllen der Materialaufschlüsse sowie zum Spülen der Laborgeräte und Probengefäße eingesetzt.

# 3.3 Mess- und Auswertungsmethodik

Im Rahmen der täglichen Probenahme sollten folgende Informationen gewonnen werden:

- Registrierung des Betriebszustands der Versuchsanlage.
- Sauerstoffkonzentration im Zu- und Ablauf zur Quantifizierung der Korrosion.
- Quantifizierung der Rostabgabe durch Probenahme in Zu- und Ablauf.
- Quantifizierung der Arsenentfernung durch Probenahme in Zu- und Ablauf.

Die Messung des Volumenstroms erfolgte im Rahmen der täglichen Probenahme durch "Auslitern" am Ablaufprobenahmehahn mit Hilfe von Messzylinder und Stoppuhr. Eine tägliche Messung des Drucks vor den Korrosionssäulen diente zur Beobachtung des zunehmenden Druckverlustes in den Korrosionssäulen durch Rostablagerung. Im Sandfilter wurde die Zunahme der Höhe des Überstands als Maß für die Zunahme des Druckverlustes durch zurückgehaltene Rostpartikel registriert. In den frisch gezogenen Ablaufproben von Sandfilter, Sedimenter und der Korrosionssäule wurde unter Benutzung eines Trübungsphotometers, Modell LTP5 der Firma Dr. Lange, die Trübung als Maß für den Gehalt an ausgetragenen Rostpartikeln bestimmt.

### 3.3.1 Sauerstoffmessung in Zu- und Ablauf

Da in dieser Arbeit immer mit sauerstoffhaltigem Wasser im Zulauf zur Anlage gearbeitet wurde, ist die Sauerstoffkorrosion die dominierende Korrosionsart. Entsprechend den in Kapitel 2 dargestellten Grundlagen kommt es bei der Bildung von Rost, also dreiwertigem Eisenoxid, zu einem stöchiometrisch definierten Sauerstoffverbrauch, der sich als einfach und regelmäßig zu messende Größe zur quantitativen Beschreibung der Korrosionsgeschwindigkeit anbietet. Voraussetzung für die Anwendbarkeit dieser Methode ist ein ansonsten abgeschlossenes System, in diesem Fall ein klassischer Rohrreaktor in Form einer gepackten Säule. Ebenfalls vorausgesetzt wird die Abwesenheit von weiteren Sauerstoff zehrenden Prozessen, beispielsweise biologischem Wachstum, oder die Anwesenheit von zusätzlichen Oxidationsmitteln im Wasser, wie z.B. freiem Chlor.

In den Versuchen kamen zwei portable Sauerstoffmessgeräte vom Typ Oxi340 der Firma WTW zum Einsatz, die mit galvanischen Sauerstoffsensoren vom Typ CellOx325 ausgestatten waren. Zur täglichen Messung wurden beide Geräte kalibriert, in die Durchflussmeßküvetten der Versuchsapparatur eingesetzt und mit dem Zu- und Ablauf einer der Korrosionssäulen im Hauptstrom beaufschlagt. Über einen Zeitraum von 10 Minuten wurden 10 Messwerte gespeichert, die anschließend digital zum Rechner übertragen und dort arithmetisch zum Konzentrationswert  $c(O_2)_{Zu}$  bzw.  $c(O_2)_{Ab}$  gemittelt wurden. Nach Messung und Probenahme an einer Säule wurden die Meßküvetten ca. 10 min lang über den Bypass beschickt, um die durch ungenaue Kalibrierung, verunreinigte Elektrodenmembranen, Druckschwankungen, biologisches Wachstum an den Schlauchwänden und ähnliche Störungen verursachte Differenz  $\Delta c(O_2)_{Fehler}$  nach Gleichung 3.4 quantifizieren zu können. Dieser Fehler, der im Idealfall null sein sollte, real aber sowohl positiv als auch negativ auftrat, wird bei der Bestimmung des Sauerstoffverbrauchs nach Gleichung 3.5 korrigiert. Beim Wechsel zwischen den Säulen wurden entsprechende Spülzeiten zum Wasseraustausch bis zur neuen Messwertkonstanz berücksichtigt.

$$\Delta c(O_2)_{Fehler} = c(O_2)_{Zu} - c(O_2)_{Ab}$$
 (Bypass) (Gl. 3.4)

$$\Delta c(O_2) = c(O_2)_{Zu} - c(O_2)_{Ab} - \Delta c(O_2)_{Fehler}$$
 (Säule) (Gl. 3.5)

Ein wichtiger Einflussfaktor auf die Sauerstoffmessung ist die Geschwindigkeit, mit der die Membran während der Messung vom Wasser angeströmt wird. Vom Hersteller wird eine Mindestanströmgeschwindigkeit von 3 cm/sec angegeben, die bei den Säulen mit  $d_i=50 \text{ mm}$  in der Regel gegeben war. Nähere Angaben zur Messgenauigkeit finden sich in Anhang E.

#### 3.3.2 Messung und Auswertung elektrischer Größen

Da an den hier betrachteten Korrosionsprozessen immer elektrische Ströme beteiligt waren, lag es nahe, diese Ströme zu messen und zur Quantifizierung der Korrosionsgeschwindigkeit zu nutzen. Diese Art von Messung war jedoch nur möglich, wenn keine Lokalelemente sondern räumlich getrennte Elektroden vorlagen, zwischen denen ein Messgerät installiert werden konnte. Das war in dieser Arbeit nur bei den Versuchen zur Eisen-Kupfer-Kontaktkorrosion sowie in den Versuchen mit extern angelegter Spannung der Fall.

Zur Messung von Strom und Spannung kamen Digitalmultimeter vom Typ ME-22 der Firma Conrad-Elektronik zum Einsatz, die auch eine digitale Übertragung der Messwerte zum Messrechner ermöglichten. Die Auflösung für Strommessungen im Bereich bis 200 mA lag bei 0,1 mA, für Spannungen im Messbereich bis 2 V bei 1 mV.

Das Faradaysche Gesetz (Gl. 2.18) ermöglichte nach Gleichung 3.6 die Umrechnung eines elektrischen Stroms in einen Massenstrom an korrodierendem  $Fe^{2+}$ , entsprechend dem ersten Oxidationsschritt der Eisenkorrosion nach Gleichung 2.8. Bei Berücksichtigung des Volumenstroms Q wird dadurch auch die Bestimmung einer durch Strom freigesetzten Eisenkonzentration ermöglicht (3.7).

$$\dot{m}(Fe)_I = \frac{I \cdot M}{z \cdot F} \tag{Gl. 3.6}$$

$$c(Fe)_{I} = \frac{I \cdot M}{z \cdot F \cdot Q} = \frac{\dot{m}(Fe)_{I}}{Q}$$
(Gl. 3.7)

| I: Strom | M: Atomgewicht | z: Elektronenanzahl | F: Faraday-Konstante |
|----------|----------------|---------------------|----------------------|
|          | m: Massenstrom | Q: Volumenstrom     |                      |

#### 3.3.3 Probenahme und chemische Analytik

Täglich wurden Proben von Zu- und Ablauf der Korrosionssäulen sowie vom Ablauf der Nachreinigungseinrichtungen genommen. Von den Ablaufproben wurde ein Teil sofort durch Membranfilter aus Cellulosenitrat (Fa. Sartorius) mit einer Porenweite von 0,2 μm filtriert, um eine nahezu vollständige Abtrennung aller zu diesem Zeitpunkt vorliegenden Partikel und Kolloide zu gewährleisten [siehe auch v.d.Kammer 2000]. Vor allem Eisenhydroxidpartikel und die daran adsorbierten Arsenationen werden so von den gelösten Eisenionen, die in dieser Arbeit immer als Fe<sup>2+</sup> betrachtet werden, sowie von den ebenfalls gelöst vorliegenden Arsenationen getrennt.

Alle Proben wurden zum Abschluss des Probenahmevorgangs mit Salzsäure angesäuert (pH < 2), um die Eisenhydroxidpartikel vollständig aufzulösen und das an die Partikel gebundene Arsen freizusetzen. Beide Elemente werden so in eine der Messung per AAS zugängliche Form überführt. Die Messung der Eisenkonzentration in den Proben erfolgte per Flammen-AAS, die Arsenkonzentration wurde entsprechend der von [Driehaus 1992] vorgestellten AAS-Methode mit einer kontinuierlich durchgeführten Hydridgeneration bestimmt. Einzelheiten zu den atomabsorbtionsspektrometrischen Messverfahren sind in Anhang D dargestellt. Aus dem Wert für die unfiltrierte Probe abzüglich des Werts der filtrierten Probe lässt sich sowohl für Arsen als auch für Eisen eine partikulär vorliegende Konzentration bestimmen (Gleichung 3.8 und 3.9).

$$c(As)_{Ab,p} = c(As)_{Ab} - c(As)_{Ab,g}$$
 (Gl. 3.8)

$$c(Fe)_{Ab,p} = c(Fe)_{Ab} - c(Fe)_{Ab,g}$$
 (Gl. 3.9)

Neben den Eisen- und Arsengehalten wurde die Leitfähigkeit und der pH-Wert der Zu- und Ablaufproben bestimmt, um Schwankungen der Rohwasserqualität, die einen Einfluss auf Korrosions- und Adsorptionsverhalten im Versuch haben könnten, zu berücksichtigen. Außerdem können diese Werte auch Anhaltspunkte für eine Veränderung der Wasserzusammensetzung beim Durchlaufen der Aufbereitung anzeigen. Es wurden portable Messgeräte vom Typ pH340 bzw. LF340 der Firma WTW benutzt.

## 3.3.4 Massenbilanzen für Eisen und Arsen

Die zuvor beschriebenen täglichen Messungen und Probenahmen dienten dazu, den aktuellen Zustand des Korrosionssystems und die Leistungsfähigkeit der Arsenentfernung zu beschreiben. Auf der Grundlage von Massenerhaltung und Stöchiometrie wird im Experiment eine zeitlich aufgelöste Betrachtung von Korrosion und Adsorption ermöglicht. Als Bilanzraum wird die Korrosionssäule definiert. Dessen Systemgrenze wird durch den Zulauf und den Ablauf überschritten, die dabei beteiligten Massenströme für Eisen und Arsen werden mittels der Probenahme quantifiziert. Die Ergebnisse der täglichen Beprobung lassen sich in Form von Zeitreihen oder in Abhängigkeit vom durchgesetzten Volumen darstellen.

Zusammen mit den Start- und Endwerten für Eisen und Arsen können diese Werte auch zu einer zeitlich integrierten Bilanz über die gesamte Versuchsdauer genutzt werden. Anhand solcher Bilanzen für Eisen, Arsen, Sauerstoff und elektrischen Stromfluss kann die Plausibilität der Einzelmessungen überprüft werden. Außerdem werden auf diesem Weg auch Rückschlüsse auf die beteiligten Reaktionen ermöglicht, wie im folgenden Kapitel näher erläutert wird.

## 3.3.4.1 Massenbilanz bei der täglichen Messung am Korrosionselement

Ausgehend von einer vollständigen Oxidation des metallischen Eisens zum dreiwertigen Eisenhydroxid nach Gleichung 2.17 lässt sich der Sauerstoffverbrauch  $\Delta c(O_2)$  nach Gleichung 3.11 stöchiometrisch unter Einbeziehung der Molmassen in eine entsprechende Massenkonzentration an gebildetem Rost  $c(Fe)_{Ox}$  umrechnen, die entweder über den Ablauf, also die Systemgrenze, die Säule verlässt, oder in Form einer Deckschicht in der Korrosionssäule verbleibt.

$$c(Fe)_{Ox} = \frac{4}{3}\Delta c(O_2)$$
 [mol/L] (Gl. 3.10)

$$c(Fe)_{Ox} = 2,33 \cdot \Delta c(O_2)$$
 [mg/L] (Gl. 3.11)

Durch Einbeziehung des Volumenstroms ergibt sich ein Eisenmassenstrom  $\dot{m}$  (Gl. 3.12). Dieser Eisenmassenstrom kann auf die vorhandene Metalloberfläche normiert werden, wodurch sich eine spezifische Korrosionsrate (Massenverlustrate)  $CR(Fe)_{Ox}$  ergibt.

$$\dot{m}(Fe)_{Ox} = c(Fe)_{Ox} \cdot Q \qquad [mg/h] \qquad (Gl. 3.12)$$

$$CR(Fe)_{Ox} = \frac{c(Fe)_{Ox} \cdot Q}{A_{Met}}$$
 [g/m<sup>2</sup>d] (Gl. 3.13)

 $CR(Fe)_{Ox}$  ist der Dimension nach eine Eisenmassenstromdichte, ermittelt aus dem Sauerstoffmassenstrom. Als Bezugsfläche wird zweckmäßigerweise die Elektrodenoberfläche gewählt, wobei bei getrennt vorliegender Anode und Kathode jede für sich oder die Summe der Elektrodenflächen betrachtet werden kann. Die Massenstromdichte lässt sich über das Faradaysche Gesetz (Gleichung 2.18) auch in die bei Lokalelementen nicht der Messung zugängliche elektrische Korrosionsstromdichte umrechnen. Entsprechend lassen sich aus den vorhandenen Messwerten für Strom bei den elektrochemisch intensivierten Korrosionsvarianten der entsprechende Eisenmassenstrom und die flächenbezogene Korrosionsrate  $CR(Fe)_I$  ableiten (Gl. 3.14 und 3.15).

$$1 mA \approx 1,042 mg/h (Fe^{2+})$$
 (Gl. 3.14)

$$CR(Fe)_{I} = \frac{c(Fe)_{I} \cdot Q}{A_{Met}} \qquad [g/m^{2}d] \qquad (Gl. 3.15)$$

Die flächenbezogenen Korrosionsraten entsprechen reaktionskinetisch einem Ansatz 0. Ordnung, da die Konzentrationen der beteiligten Reaktionspartner nicht in der Bestimmung dieser Größe berücksichtigt werden. Damit ist diese Größe eigentlich nur für "differenziell" kleine Reaktorelemente zulässig. Diese Größe ist in der Werkstofftechnik aber eine häufig eingesetzte Maßzahl für die Geschwindigkeit der Korrosion. Sie wird dort meist integriert über einen längeren Zeitraum ermittelt. Eine vergleichbare, praxisorientierte Größe ist die jährliche Materialabtragungsrate, die sich nach Gleichung (3.16) direkt aus der flächenbezogenen Korrosionsrate errechnen lässt [siehe auch Baeckmann 1989].

$$1\frac{mm}{a} \approx 21.5\frac{g}{m^2 d}$$
 bzw.  $1\frac{g}{m^2 d} \approx 0.047\frac{mm}{a}$  (Gl. 3.16)

Zur exakteren Beschreibung des Verhaltens des hier untersuchten Korrosionssystems in Form eines Rohrreaktors, in dem eine heterogene sauerstoffverbrauchende Reaktion an der Oberfläche der Packung stattfindet, bietet sich die Bestimmung einer Sauerstoffverbrauchsrate  $r(O_2)$  nach einem Ansatz 1. Ordnung an. Ausgehend von der allgemeinen Transportgleichung mit Reaktionsterm 1. Ordnung in Zylinderkoordinaten ohne Winkelabhängigkeit (Gl. 3.17) ergibt sich für den stationären Fall bei über den Querschnitt konstanter Leerrohrgeschwindigkeit und Vernachlässigung der radialen und axialen Dispersion die Differentialgleichung (3.18) für das Konzentrationsprofil entlang des Rohrreaktors.

$$\varepsilon \frac{\partial c(O_2)}{\partial t} = D_r \left( \frac{1}{r} \cdot \frac{\partial c(O_2)}{\partial r} + \frac{\partial^2 c(O_2)}{\partial r^2} \right) + D_{ax} \cdot \frac{\partial^2 c(O_2)}{\partial z^2} - v_F \cdot \frac{\partial c(O_2)}{\partial z} - r(O_2) \cdot a_V \cdot c(O_2)$$

Allgemeine Transportgleichung in Zylinderkoordinaten [Kraume 2000] (Gl. 3.17)

$$v_F \cdot \frac{\partial c(O_2)}{\partial z} = -r(O_2) \cdot a_V \cdot c(O_2)$$
(Gl. 3.18)

Vereinfachte Differentialgleichung für das Konzentrationsprofil im Rohrreaktor

Als Lösung für die vereinfachte Differentialgleichung ergibt sich eine Exponentialfunktion (3.19), die nach Umformung (3.20) bei Einsetzen der Zu- und Ablaufkonzentrationen von Sauerstoff einen Wert für die Reaktionskonstante  $r(O_2)$  liefert. Diese Sauerstoffverbrauchsrate ist ähnlich wie  $CR(Fe)_{Ox}$  auf die Metalloberfläche und das Wasservolumen normiert. Die Größe hat die Dimension eines Transportkoeffizienten für Sauerstoff [m/s], den Zahlenwerten nach erscheint hier jedoch eine Darstellung in der Einheit [L/m<sup>2</sup>min] als günstiger.

$$c(O_2)(z) = c_0(O_2) \cdot e^{-r(O_2) \cdot a_V \cdot \frac{z}{v_F} \cdot z}$$
 [mg/L] (Gl. 3.19)

$$r(O_2) = \ln\left(\frac{c(O_2)_{Zu}}{c(O_2)_{Ab}}\right) \cdot \frac{1}{a_V} \cdot \frac{v_F}{\varepsilon \cdot L_{Packung}}$$
 [L/m<sup>2</sup>h] (Gl. 3.20)

/

``

Diese Größe ist, wie im folgenden Kapitel noch näher gezeigt wird, besser als  $CR(Fe)_{Ox}$  geeignet, die Korrosionsgeschwindigkeit unter verschiedenen Versuchsbedingungen vergleichbar zu charakterisieren. Außerdem ermöglicht sie auch einen Vergleich mit den unter 3.4.1 beschriebenen Kreislaufversuchen. Der Bilanzraum und die ermittelten Kenngrößen für die Korrosion und die Adsorption werden in Abbildung 3.2 schematisch dargestellt.



Abb. 3.2 Massenbilanz und Konzentrationsprofil

Die Definition des Bilanzraums um die Korrosionssäule in Abbildung 3.2 verdeutlicht auch die Betrachtung des dem Reaktor zugeführten Arsens: Ein Teil verbleibt in der Säule und wird dort an das gebildete Eisenhydroxid gebunden (Gleichung 3.21). Der andere Teil verlässt die Säule in gelöster oder gebundener Form. Ähnlich verhält es sich mit den Zu- und Abflüssen an Eisen: Dem Bilanzraum wird Eisenhydroxid hauptsächlich durch die Korrosion des Eisens zugeführt. Eine geringe Zufuhr erfolgt auch durch den geringen Eisengehalt des Versuchswassers, der zwar regelmäßig gemessen, in den Auswertungen dieser Arbeit aber vernachlässigt wurde. Dieses Eisen kann den Reaktor in gelöster Form als Fe<sup>2+</sup> oder in partikulärer Form als Fe<sup>3+</sup> verlassen, zum Teil verbleibt es aber auch in Form einer Deckschicht in der Säule (Gleichung 3.22).

$$\Delta c(As) = c(As)_{Zu} - c(As)_{Ab} \qquad [mg/L] \qquad (Gl. 3.21)$$

$$\Delta c(Fe) = [c(Fe)_{Zu}] + c(Fe)_{Ox} - c(Fe)_{Ab}$$
 [mg/L] (Gl. 3.22)

Diese zurückgehaltenen Mengen lassen sich für jeden Messzeitpunkt in Bezug zueinander setzen und dienen so als fiktive Kenngröße "Momentanbeladung" für die momentane Arsenbindungskapazität des aktuell durch Korrosion gebildeten Eisenhydroxids in der Korrosionssäule, analog zu einer Beladung.

$$q_M(t) = \frac{\Delta c(As)}{\Delta c(Fe)} \qquad [\mu g/mg] \qquad (Gl. 3.23)$$

Auch die Arsen- und Eisenkonzentrationen, die aus der Analyse der Ablaufprobe ermittelt wurden, lassen sich auf diese Weise in Beziehung zueinander setzen. Es ergibt sich die Partikelbeladung im Ablauf nach Gleichung 3.24.

$$q_{p}(t) = \frac{c(As)_{Ab,p}}{c(Fe)_{Ab,p}}$$
 [µg/mg] (Gl. 3.24)

Sowohl die Momentanbeladung  $q_M$  als auch die Partikelbeladung  $q_P$  stellen Momentaufnahmen des Zustands im Inneren bzw. im Ablauf der Säule dar. An diesen Stellen herrschen höchstwahrscheinlich keine Gleichgewichtsbedingungen, da weder die Oxidation von Fe<sup>2+</sup> noch die Adsorptionsprozesse des Arsens an die Rostpartikel bereits vollständig abgeschlossen sind. Im Sedimenter und im Sandfilter ist noch eine weitere Abnahme der Arsenkonzentration im Wasser zu erwarten, die aber nur noch als Konzentrationswert und nicht mehr in Form einer Massenbilanz erfasst wird.

Da diese Größen für die Sorptionskapazität des Rosts zu jedem Messzeitpunkt ermittelt wurden, lassen sie sich genau wie die Konzentrationsverläufe auch in Form von Zeitreihen darstellen. Alternativ dazu können diese Beladungen auch analog zu einer typischen Isothermendarstellung in Abhängigkeit von der Lösungskonzentration von Arsen  $c(As)_{Ab,g}$  aufgetragen werden.

### 3.3.4.2 Gesamtbilanz über den Versuchszeitraum

Die im vorherigen Abschnitt definierten Größen wurden für jeden Messtag bestimmt und lassen sich dann in Form einer Zeitreihe darstellen. Die Integration dieser Zeitreihen führt zu kumulierten Größen, die zusammen mit den Start- und Endwerten für metallisches Eisen und Rost ein Schließen der Massenbilanz und eine Bewertung des Versuchs und der Messmethoden ermöglichen. Die Plausibilität der einzelnen Messwerte kann so überprüft werden, und Schlussfolgerungen über die beteiligten Reaktionen können gezogen werden, vor allem bei den Versuchen mit angelegter Spannung (siehe Abschnitt 4.1.3). Dazu werden die Korrosionssäulen am Versuchsende geöffnet, ihr Inhalt möglichst vollständig entnommen und einer Trenn- und Aufbereitungsprozedur unterzogen, mit dem Ziel, die vorhandenen Massen an metallischem Eisen, an Eisen-oxid und an gebundenem Arsen zu bestimmen.

Der Inhalt der Korrosionssäule wird mit einer Pufferlösung aus Oxalsäure und Ammoniumoxalat einer Konzentration von je 0,25 mol/L bei einem pH-Wert von 3 versetzt und unter Rühren gründlich gespült. Oxalsäure ist durch die beiden Carboxylgruppen ein sehr stark komplexierendes Agenz für Fe<sup>3+</sup>, welches im molaren Verhältnis von 3:1 gebunden wird [Cotton 1982]. Bereits nach wenigen Minuten können die blanken Metallteile mit Hilfe eines großen Rührmagne-

ten aus der Lösung bzw. Suspension entnommen und abgespült werden. Die verbleibende Pufferlösung mit Rostpartikeln in Suspension wird erhitzt und weitere 24 h lang gerührt. Dabei gehen die suspendierten Partikel trotzdem nicht vollständig in Lösung. Ein deutlicher Partikelanteil bleibt erhalten, der mit Hilfe eines Papierfilters von der Lösung getrennt werden kann. Dieser Rückstand lässt sich weitgehend in einmolarer Salzsäure auflösen. Dabei tritt deutliche Schaumbildung auf, ein Indiz für einen hohe Carbonatanteil in diesem Rückstand. Eine geringe Menge des auch in Salzsäure noch verbleibenden Rückstands wird abfiltriert und verworfen.

Diese Auflösungs- und Trennprozedur wurde in Anlehnung an die bei [Förstner 1982], [Cornell 1996] und [Daus 1998] veröffentlichten Methoden zur sequentiellen Analyse von Eisenoxiden in Boden und Schlämmen entworfen. Genauso wie die dort beschriebenen Methoden erfolgt die Definition und Trennung der Fraktionen nicht eindeutig nach Art des chemischen Vorliegens, sondern operationell durch dieses Aufbereitungsverfahren. Trotz dieser methodischen Unschärfe gelingt eine Bestimmung der Einsenmenge in Form von Metall m(Fe)<sub>Met.</sub>, in Form von Rost, löslich in Oxalsäure/Oxalatpuffer m(Fe)<sub>Oxal</sub> und in Form von Rost, löslich in Salzsäure m(Fe)<sub>HCl</sub>. In den Lösungsfraktionen lassen sich auch die entsprechenden Mengen an Arsen m(As)<sub>Oxal</sub> und m(As)<sub>HCl</sub> bestimmen, so dass sich daraus auch entsprechende Endbeladungsgrößen ableiten lassen.

Als wichtige Vergleichsgröße kann die Menge an verbrauchtem metallischem Eisen  $\Delta m(Fe)_{Met.}$ in der Korrosionssäule entsprechend Gleichung 3.25 ermittelt werden. Die Anfangsmasse ist aus der Einwaage am Versuchsbeginn bekannt, die Restmasse an metallischem Eisen wurde aus den abgetrennten Metallteilen nach Trocknung auf gravimetrischem Weg oder nach Auflösung in konzentrierter Salzsäure und chemischer Analyse mit Hilfe der AAS bestimmt.

$$\Delta m(Fe)_{Met.} = m(Fe)_{Met.}(t_{Start}) - m(Fe)_{Met.}(t_{Ende})$$
[g] (Gl. 3.25)

Mit dieser Masse an verbrauchtem Eisen lassen sich die durch chemische Analyse, Messung des Sauerstoffverbrauchs oder durch Strommessungen ermittelten Massen an korrodiertem Eisen entsprechend Gleichung 3.26 vergleichen. Die Ermittlung des Rosts in der Packung wurde oben bereits beschrieben (3.27). Das im Ablauf enthaltene Eisen kann in eine partikuläre und eine gelöste Fraktion unterteilt werden, welche sich aus der Differenz der Messwerte aus filtrierter und unfiltrierter Probe ergeben (3.28). Auch die aus dem Sauerstoffverbrauch (3.11) und die mit Hilfe des Faradayschen Gesetztes (3.7) ermittelten Eisenkonzentrationen  $c(Fe)_{Ox}$  bzw.  $c(Fe)_I$  können näherungsweise über den Zeitraum zwischen Versuchsbeginn (0) und Versuchsende (T) integriert und zum Vergleich mit dem festgestellten Eisenverbrauch herangezogen werden (3.29) und 3.30).

$$\Delta m(Fe)_{Met.} = m(Fe)_{Rost-Packung} + m(Fe)_{Rost-Ablauf} = m(Fe)_{Ox} = m(Fe)_{I} \quad [g] \quad (Gl. 3.26)$$

$$m(Fe)_{Rost-Packung} = m(Fe)_{Oxal} + m(Fe)_{HCl}$$
[g] (Gl. 3.27)

$$m(Fe)_{Rost-Ablauf} = \int_{0}^{T} Q \cdot c(Fe)_{Ab,p}(t) dt + \int_{0}^{T} Q \cdot c(Fe)_{Ab,g}(t) dt \qquad [g] \qquad (Gl. 3.28)$$

$$m(Fe)_{Ox} = \int_{0}^{T} Q \cdot c(Fe)_{Ox}(t) dt$$
 [g] (Gl. 3.29)

$$m(Fe)_I = \int_{0}^{T} Q \cdot c(Fe)_I(t) dt$$
 [g] (Gl. 3.30)

Analog lässt sich eine Massenbilanz für Arsen aufstellen (3.31), wobei hier alle Größen durch chemische Analyse ermittelt werden müssen. Die eingesetzte Gesamtmasse ergibt sich aus der regelmäßigen Beprobung des Zulaufs (3.32) und für den Verbleib kommt die Säule (3.33) oder der Ablauf (3.34) in Frage. Die Fraktionen in der Säule wurden oben bereits vorgestellt, und die beiden Fraktionen des Ablaufs entsprechen ebenfalls denjenigen der Eisenbilanz.

$$m(As)_{Zu} = m(As)_{Packung} + m(As)_{Ablauf}$$
[mg] (Gl. 3.31)

$$m(As)_{Zu} = \int_{0}^{T} Q \cdot c(As)_{Zu}(t) dt$$
 [mg] (Gl. 3.32)

$$m(As)_{Packung} = m(As)_{Oxal} + m(As)_{HCl}$$
[mg] (Gl. 3.33)

$$m(As)_{Ablauf} = \int_{0}^{T} Q \cdot c(As)_{Ab,p}(t) dt + \int_{0}^{T} Q \cdot c(As)_{Ab,g}(t) dt \qquad [\mu g] \qquad (Gl. 3.34)$$

Aus den auf diese Weise definierten Fraktionen lässt sich das Verhalten des Arsens während der Aufbereitung erkennen:

- Wird es in der Packung selbst oder in der Nachreinigungsstufe zurückgehalten ?
- Verbleibt es in gelöster Form im Wasser ?
- Welches sind die effektiven Entfernungsmechanismen?
- Gibt es unerklärliche Massenverluste, die auf bisher unberücksichtigte Phänomene, wie beispielsweise die Bildung von gasförmigem Arsin hindeuten ?

Ergänzend zu den zeitlich aufgelösten Beladungsgrößen  $q_M(t)$  und  $q_P(t)$ , lassen sich auch in der integralen Versuchsbilanz zwei Kenngrößen für das Verhältnis von gebundenem Arsen zu gebildetem Rost definieren: Zum einen die Endbeladung der Säule  $q_E$  aus der Auflösung und Analyse der Säule, wobei sich auch noch Teilbeladungen für die Oxalsäure- und die HCl-Fraktion ermitteln lassen. Zum anderen lässt sich parallel dazu auch aus der Integration der Einzelwerte für Rostbildung und Arsenentfernung eine Beladung  $q_B$  aus der Bilanz ermitteln und der Messgröße  $q_E$  gegenüberstellen.

$$q_E = \frac{m(As)_{Packung}}{m(Fe)_{Rost-Packung}}$$
[µg/mg] (Gl. 3.35)

$$q_B = \frac{m(As)_{Zu} - m(As)_{Ablauf}}{m(Fe)_{Ox} - m(Fe)_{Rost-Ablauf}}$$
[µg/mg] (Gl. 3.36)

### 3.4 Ergänzende Versuchsvarianten

## 3.4.1 Differentialfilterversuche im Kreislaufbetrieb

Ergänzend zu den Durchflussversuchen, die den gesamten Aufbereitungsprozess repräsentieren sollten, wurde in den Differentialfilterversuchen gezielt der Korrosionsprozess untersucht. Die wichtigste Frage, die durch diese Versuche beantwortet werden sollte, war die Frage nach der vorliegenden Reaktionsordnung. Ist die Korrosionsgeschwindigkeit von der Saustoffkonzentration abhängig, liegt eine zumindest empirisch auf diese Weise beschreibbare Reaktion 1. Ordnung vor. Daraus leitet sich die Rechtfertigung für die bereits im vorhergehenden Abschnitt vorgenommene Einführung der Sauerstoffverbrauchsrate  $r(O_2)$  als alternativer Maßzahl zur spezifischen Korrosionsrate  $CR(Fe)_{Ox}$  ab.

Der Einfluss der Strömungsgeschwindigkeit  $v_F$  auf die Sauerstoffverbrauchsrate kann mit dieser Anordnung ebenfalls gezielt untersucht werden, da die Kontaktzeit des Wassers mit dem Eisenmaterial dank der Kreislaufführung auch bei verschiedenen Strömungsgeschwindigkeiten unverändert bleibt.

Auch das Packungsalter wirkt sich über die Deckschichtdicke auf die Sauerstoffverbrauchsrate  $r(O_2)$  aus. Auch dieser Einfluss kann mit Hilfe dieser Anordnung untersucht werden.



#### Abb. 3.3 Skizze der Kreislaufversuchsanlage

Der Versuchsaufbau und die wichtigsten Anlagenparameter sind in Abbildung 3.3 dargestellt. Vor jedem Einzelversuch wurde der Kreislauf mit frischem, sauerstoffhaltigem Wasser gefüllt. Um die Vergleichbarkeit innerhalb einer Versuchsserie sicherzustellen und Effekte der zunehmenden Deckschichtbildung auszuschließen, wurde jeweils eine Serie am selben Tag durchgeführt. Dabei wurde immer frisches Wasser aus dem gleichen Vorratsbehälter eingesetzt. Der Behälter wurde zur Temperaturanpassung bereits am Tag zuvor befüllt. Die Versuche wurden zum Teil mit frischen, zum Teil auch mit bereits im Durchfluss betriebenen Packungen durchgeführt. In einigen Versuchen wurde die Packung zwischen den periodisch wiederholten Versuchsserien kontinuierlich im offenen Kreislauf durchströmt, um auf diese Weise eine "Alterung" bzw. Deckschichtbildung in der Packung zu erreichen.

Die gepackte Säule wies den gleichen Durchmesser wie im Durchflussversuch auf, die Höhe der Packung war jedoch wesentlich geringer. Die Sauerstoffkonzentration änderte sich beim einmaligen Durchströmen nur wenig, das Bett repräsentierte eine "Scheibe" der Dicke  $\Delta z$  aus der Korrosionssäule im Durchflussversuch. Aufbau und Durchführung orientierten sich an den von Kuch 1984 vorgestellten Versuchen [Kuch 1984] zur Untersuchung des Korrosionsverhaltens von Stahlrohren zur Trinkwasserverteilung. Gemessen wurde der zeitliche Verlauf der Sauerstoffkonzentration im Kreislaufwasser während der ein- bis zweistündigen Versuchsdauer.

Die Auswertung eines Kreislaufversuchs erfolgte durch die Bestimmung der mittleren Steigung der durch Logarithmierung linearisierten Zeitreihe der normierten Sauerstoffkonzentrationen und deren Bezug auf die volumenspezifische Oberfläche  $a_V$  (3.38).

$$c(O_2)(t) = c_0 \cdot e^{-r(O_2) \cdot a_V \cdot t}$$
 [mg/L] (Gl. 3.37)

$$\overline{r(O_2)} = \frac{1}{n} \sum_{i=1}^{n} \ln\left(\frac{c_0}{c(t_i)}\right) \cdot \frac{1}{a_V \cdot t_i}$$
[L/m<sup>2</sup>min] (Gl. 3.38)

$$t_R = \frac{L_{Packung}}{v_F} \cdot \varepsilon$$
 [h] (Gl. 3.39)

$$1 \cdot 10^{-5} \frac{m}{s} = 0.6 \frac{L}{m^2 \cdot \min}$$
(Gl. 3.40)

Die im Kreislaufversuch gewonnenen Werte für die Sauerstoffverbrauchsraten lassen sich auf die Verhältnisse im durchflossenen Rohrreaktor übertragen, wenn man die Kontaktzeit t<sub>R</sub> durch eine entsprechende Beziehung für die zurückgelegte Fließstrecke ersetzt. Von der Dimension [m/s] her entspricht die Sauerstoffverbrauchsrate  $r(O_2)$  dem Transportkoeffizienten für Sauerstoff durch die Filmgrenzschicht zur Metalloberfläche, der sich, wie bei [Kuch 1984] näher ausgeführt, bei Versuchsbeginn im deckschichtfreien Zustand auch durch entsprechende Beziehungen zum Stofftransport in der Filmgrenzschicht berechnen lässt. Die im zweiten Kapitel beschriebenen Phänomene durch die Bildung der Deckschicht führen aber nach kurzer Zeit zu deutlichen Abweichungen, die im folgenden Kapitel auch anhand von Messergebnissen verdeutlicht werden.

### 3.4.2 Rührversuche im Becherglas

Die zuvor dargestellten Versuchsanordnungen dienten als Modellsystem für einen praktischen Einsatz, lassen dabei aber einen deutlichen Einfluss von Transportphänomenen auf das Korrosions- und Adsorptionsverhalten erwarten. In einem idealisierten Versuchssystem, in diesem Fall bestehend aus Bechergläsern im Rührstand, sollte ergänzend das Korrosions- und Adsorptionsverhalten ohne Transport- und Sauerstoffkonzentrationslimitierungen zum Vergleich mit den Ergebnissen der Säulenversuche ermittelt werden.



Abb. 3.4 Skizze eines Rührversuchs

Die Versuche erfolgten in Anlehnung an konventionelle Flockungstests in Bechergläsern mit einem Inhalt von 1 L, gerührt von einem Blattrührer. Am Rührblatt wurde ein mit Teflon ummantelter Rührmagnet befestigt, der die eingewogenen Stahlwollefasern fest hielt und dabei gleichzeitig einer kräftigen Strömung aussetzte. In regelmäßigen Zeitabständen wurde eine Probe entnommen und ein Teil davon filtriert, so dass zu jedem Probenahmezeitpunkt die aktuellen Konzentrationen an gelöstem Arsen, sowie an im Wasser gelöstem und suspendiertem Eisenhydroxid bestimmt werden konnte. Zum Abschluss wurde auch die Masse an verbliebenem metallischem Eisen sowie die Masse an suspendiertem Eisenhydroxid bestimmt, so dass ebenfalls eine Massenbilanz für Eisen und Arsen aufgestellt werden konnte. Die Messwerte für Eisenfreisetzung und Arsenentfernung ermöglichen die Ermittlung von Beladungswerten  $q_P$  für die Partikel nach Gleichung 3.41. Eine Darstellung der ermittelten Beladungswerte über der Konzentration an gelöstem Arsen zum Zeitpunkt t sollte auch die Konstruktion von Isothermen ermöglichen.

$$q_{P}(t) = \frac{c(As)_{g}(Start) - c(As)_{g}(t)}{c(Fe)(t)}$$
 [µg/mg] (Gl. 3.41)

Zum Vergleich mit den für Rostpartikel erreichten Beladungen wurden ebenfalls Rührversuche zur Entfernung von Arsen mit Eisen in Form von zwei oder dreiwertigem Eisenchlorid durchgeführt, zwei bewährten Flockungsmitteln zur Arsenentfernung in der Trinkwasseraufbereitung.

$$CR(Fe) = \frac{m(Fe)_{Ox}}{m(Fe)_{Met.} \cdot a_M \cdot \Delta t}$$
 [g/m<sup>2</sup>d] (Gl. 3.42)

Die Bestimmung der produzierten Masse an Rost aus den unfiltrierten Proben bzw. den aufgelösten Rückständen ermöglicht die Ermittlung der bereits in Abschnitt 3.3.4 definierten Korrosionsrate 0. Ordnung *CR(Fe)* entsprechend Gleichung 3.42.

# 3.5 Fehlerquellen und Störeinflüsse

Die bisher vorgestellten Methoden dieser Arbeit weisen neben den üblichen analytischen Schwankungen einige Annahmen, Vereinfachungen oder Ungenauigkeiten auf, auf die an dieser Stelle näher eingegangen werden soll:

Bei der Bilanzierung von Eisen und Sauerstoff in den Gleichungen 2.17 und 3.10 wird von einer vollständigen Oxidation des Eisens ausgegangen, und auf diese Weise eine rechnerische Bestimmung der oxidierten Eisenmenge ermöglicht. Die chemisch-analytischen Messungen im Ablauf zeigen jedoch, dass ein Teil des Eisens gelöst, also als zweiwertiges Ion vorliegt. Ein Verbrauch von 1mg Sauerstoff entspricht dann nicht mehr 2,33 mg Eisen in Form von Rost, sondern oxidiert 3,5 mg Eisen. Die ermittelte Rostproduktion wird in diesem Fall systematisch unterschätzt. Da gelöstes Eisen nur zeitweilig, vor allem in den Startphasen mit starker Korrosion, auftrat, und immer nur einen geringen Anteil der gesamten Eisenoxidation ausmachte, wurde auf eine rechnerische Korrektur der Rostproduktion verzichtet.

Ähnlich verhält es sich mit der Oxidation von Kupfer, die in den Versuchen zur galvanischen Korrosionsintensivierung beobachtet wurde. Bei einer Oxidation des Kupfers zum zweiwertigen Ion entspricht ein Sauerstoffverbrauch von 1 mg einer Kupferfreisetzung von 3,98 mg Kupfer. Beim Auftreten von korrodiertem Kupfer wird also gleichzeitig die ermittelte Eisenrostproduktion überschätzt, da der durch Kupferoxidation verursachte Sauerstoffverbrauch nicht abgezogen wurde. Da aus den Versuchen mit Kupferfreisetzung in erster Linie qualitative Informationen über die galvanischen Korrosionsprozesse zu gewinnen waren, erscheint auch diese Vereinfachung zulässig.

Hinsichtlich der chemischen Analyseverfahren ist zu beachten, dass die Methode zur Arsenbestimmung mit HG-AAS nur einen Messbereich bis 50 µg/L aufweist. Da bei den hier eingesetzten Zulaufkonzentrationen von 500µg/L der Bereich häufig überschritten wurde, wurden die Proben zur Analyse in der Regel 1:10 oder 1:20 verdünnt, mit den daraus resultierenden Ungenauigkeiten sowie einer entsprechenden Fortpflanzung der Messwertstreuung.

Besonders bei der Bestimmung der Beladungskenngrößen  $q_M$  und  $q_P$  wirken all diese Fehlermöglichkeiten zusammen: Als Quotient von zwei Differenzen kann der normale Fehler der Einzelmessungen dicht an der Nachweisgrenze zu erheblichen Schwankungen bis hin zu völlig unrealistischen Werten führen. Daher sollten bei der Beurteilung besonders dieser zusammengesetzten Größen immer die Randbedingungen der Messung berücksichtigt werden, also z.B. wie hoch der Eisengehalt des Ablaufs zu einen Zeitpunkt insgesamt war.

# 4 Ergebnisse und Diskussion

## 4.1 Untersuchung natürlicher und forcierter Korrosionsvorgänge

4.1.1 Versuche zur natürlichen Sauerstoffkorrosion

## 4.1.1.1 Prinzip und Realisierung dieser Verfahrensvariante

Ausgangspunkt der in dieser Arbeit vorgenommenen Untersuchungen ist die Idee, die Korrosionsprodukte von Eisenmaterialen wie Stahlwolle oder Frässpänen zur Entfernung von Arsen zu nutzen. Die einfachste Möglichkeit zur Realisierung dieser Idee ist der Einbau des Materials in Form einer Packung bzw. Schüttung in einer Säule, skizziert in Abbildung 4.1, die vom Wasser der Länge nach homogen durchströmt wird und damit dem verfahrentechnischen Modell eines Rohrreaktors sehr nahe kommt. Bevor auf das Korrosionsverhalten und die daraus resultierende Arsenentfernung in verschiedenen Durchflussversuchen eingegangen wird, sollten die zwei wichtigsten Einflussgrößen, die Oberfläche des Eisenmaterials und die Sauerstoffkonzentration im Wasser, näher betrachtet werden.



Abb. 4.1 Skizze der Korrosionssäule mit Packung aus Stahlwolle

## 4.1.1.2 Einfluss der Eisenoberfläche

Ohne expliziten experimentellen Nachweis ist davon auszugehen, dass die Produktion von Rost primär durch die Größe der im Reaktor vorhandenen Eisenoberfläche, die in Kontakt mit dem Wasser steht, bestimmt wird. Die angebotene Fläche hängt dabei vom vorhandenen Reaktorvolumen, der spezifischen Oberfläche des Eisenmaterials und der eingesetzten Masse ab, so dass sich zur Auswertung eine Normierung auf die Oberfläche anbietet. Damit sind durch die charakteristischen Materialeigenschaften aus Tabelle 3.2 auch Porosität und volumenspezifische Oberfläche bereits festgelegt, während das Reaktorvolumen später mit Hilfe der in Kapitel 5 vorgestellten Vorgehensweise anhand der Ergebnissen dieser Arbeit entsprechend bemessen werden kann.

## 4.1.1.3 Einfluss der Sauerstoffkonzentration

Die zweite wichtige Einflussgröße auf die Sauerstoffkorrosion von Eisen ist die Konzentration des Sauerstoffs im Wasser, die in den Differentialfilterversuchen näher untersucht wurde. In Abbildung 4.1 (a) und (c) sind die Ergebnisse von Versuchen im Differentialfilter mit Kreislaufführung aus Abbildung 3.3 mit kurzen Packungen von Stahlwolle D-III sowie Frässpänen II dargestellt. Der Rückgang der Sauerstoffkonzentration im Zeitverlauf entspricht einer exponentiellen Abnahme, so dass sich eine entsprechende Auswertung durch Linearisierung und anschließende Mittelung und Normierung der Steigung nach Gleichung 3.38 anbietet, die zur Sauerstoffverbrauchsrate  $r(O_2)$  als Kenngröße für die Intensität der Korrosion führt. Die großen Unterschiede in der Startkonzentration bei verschiedenen Strömungsgeschwindigkeiten sind durch die Position der Sauerstoffsonde hinter der Packung zu erklären. An dieser Stelle hat das Wasser aus dem Vorratsbehälter bereits einmal die Packung durchlaufen. Bei dieser Passage wurde bereits Sauerstoff verbraucht, und zwar bei geringer Fließgeschwindigkeit mehr als bei hoher. Dieser Unterschied übt aber keinen Einfluss auf die Bestimmung der Sauerstoffverbrauchsrate aus, die sich nur aus der relativen Abnahme pro Zeiteinheit im geschlossenen Kreislauf errechnet.

Kuch interpretiert diese Größe der Einheit  $m^3/m^2s$  bzw. m/s als Transportkoeffizienten des Sauerstoffs, der durch die Deckschicht zur Metalloberfläche diffusiv transportiert und dort durch Reaktion verbraucht wird [Kuch 1984]. Dieser Transport ist proportional zum Konzentrationsgradienten, was auch die Konzentrationsabhängigkeit der Sauerstoffverbrauchsrate erklärt. Diese Erklärung ist auch für die bei [Stratmann 1994] postulierte Sauerstoffreduktion in der Deckschicht durch Elektronen leitende Mischoxide des Eisens schlüssig. Auch Merkel macht in seinen Untersuchungen zur Oxidationskinetik an Deckschicht behafteten Trinkwasserleitungen aus Kupfer ähnliche Beobachtungen: eine Sauerstoffabnahme 1. Ordnung lässt sich durch einen analog bestimmten Oxidationsparameter  $\beta$  beschreiben, die Strömungsgeschwindigkeit hat auf dessen Wert keinen Einfluss [Merkel 2003].

Für frisches, also noch weitgehend deckschichtfreies Eisenmaterial, kommt möglicherweise zusätzlich der Transportwiderstand der laminaren Filmgrenzschicht über der Metalloberfläche zum Tragen. Dieser Effekt wird durch die in den beiden in Abbildung 4.2 (b) und (d) dargestellten Versuchen zu beobachtende Abhängigkeit der Sauerstoffverbrauchsrate  $r(O_2)$  von der Filtergeschwindigkeit  $v_F$  verdeutlicht: Eine höhere Strömungsgeschwindigkeit führt zu einer dünneren Filmgrenzschicht, die eine höhere Transportrate für Sauerstoff und damit auch eine intensivere Korrosion ermöglicht. Für eine möglicherweise stattfindende Oxidation von gelöstem Fe<sup>2+</sup> in der freien Lösung entsprechend Gleichung 2.19 aus Abschnitt 2.3 ist ebenfalls eine Proportionalität der Reaktionsgeschwindigkeit zur Sauerstoffkonzentration zu erwarten [Sigg 1996].


Abb. 4.2 (a) und (c): Sauerstoffkonzentration im Kreislaufversuch mit Stahlwolle und Frässpänen (b) und (d): Strömungsabhängigkeit der Sauerstoffverbrauchsrate

Welcher dieser Prozesse in einer konkreten Situation als geschwindigkeitsbestimmender Schritt wirkt, hängt wesentlich von der Laufzeit des Versuchs ab (siehe auch Abschnitt 4.1.1.5 sowie Abbildung 4.5 (c) und (d)), und kann daher mit den durchgeführten Kreislaufversuchen nicht generell erklärt werden. Es lassen sich aber folgende Schlussfolgerungen ziehen:

Als Vergleichsgröße zur Auswertung weiterer Untersuchungen bietet sich auch für die Durchflussversuche die in Gleichung 3.20 definierte Sauerstoffverbrauchsrate nach einem Ansatz 1. Ordnung an, da damit Störeinflüsse durch Unterschiede in der Packungslänge und in der Sauerstoffkonzentration des Zulaufs vermieden werden können. Diese Vorgehensweise wurde bereits in Abbildung 3.2 veranschaulicht. Um Vergleiche mit den zusätzlich untersuchten Verfahrensvarianten zu ermöglichen, wird gegebenenfalls parallel die Korrosionsrate  $CR(Fe)_{Ox}$  aus Gleichung 3.13 nach einem Ansatz 0.Ordnung ermittelt und angegeben.

Für die Anwendung belegen die Ergebnisse der Kreislaufversuche die Notwendigkeit einer hohen Sauerstoffkonzentration im Zulauf für eine hohe Rostproduktion durch eine Reaktion 1. Ordnung. Zusätzlich wird die praktisch nutzbare Sauerstoffmenge deutlich eingeschränkt, da im "hinteren" Teil des Rohrreaktors bei geringen Sauerstoffkonzentrationen nur noch eine geringe Rostproduktion stattfinden kann. Von den bei Sättigung vorhandenen 9 mg/L können also nur ca. 5 mg/L effektiv genutzt werden, entsprechend der ersten Halbwertszeit, während für die Nutzung der verbleibenden 4 mg/L ein überproportional großes Reaktorvolumen notwendig wäre. Wie in Kapitel 5 näher erläutert wird, sollte daher das Konzept des geschlossenen Rohrreaktors für die Verfahrensvariante mit natürlicher Sauerstoffkorrosion insgesamt hinterfragt werden.

## 4.1.1.4 Korrosion und Arsenentfernung im Durchflussversuch

Die Vorgänge bei der Korrosion mit simultaner Arsenentfernung im Durchflussversuch werden an Hand von zwei beispielhaften Versuchen erläutert: In Abbildung 4.3 ist ein 31 Tage lang betriebener Durchflussversuch mit Stahlwolle D-III dargestellt, während beim in Abbildung 4.4 dargestellten Versuch für 23 Tage die Frässpäne II zum Einsatz kamen. Beide Versuche werden auf Gemeinsamkeiten und Unterschiede analysiert. Zunächst wird der zeitliche Verlauf des Versuchs mit Stahlwolle betrachtet (Abb. 4.3).

In Diagramm (a) sind die auftretenden Eisenkonzentrationen aufgetragen. Zunächst fällt auf, dass die aus dem Sauerstoffverbrauch errechnete Konzentration an produziertem Rost  $c(Fe)_{Ox}$ deutlich über der tatsächlich im Ablauf erscheinenden Konzentration  $c(Fe)_{Ab}$  liegt. Das bedeutet, dass die Differenz zwischen den beiden Kurven, also ein wesentlicher Anteil des entstandenen Rosts, in der Korrosionssäule verbleibt. Ein deutlicher Anteil des Eisens im Ablauf tritt in gelöster Form  $c(Fe)_{Ab,g}$  auf. Im Ablauf des nachgeschalteten Sandfilters dagegen ist die Eisenkonzentration den gesamten Versuch über nahe null. Sowohl Partikel als auch gelöstes Eisen werden im Nachreinigungsschritt vollständig entfernt. Während der ersten zehn Betriebstage, bis zu einem Durchsatz von rund 7500 Bettvolumina, fand ein nahezu vollständiger Sauerstoffverbrauch statt. Mit zunehmender Ausbildung einer Deckschicht auf der Metalloberfläche ging der Sauerstoffverbrauch dann kontinuierlich zurück. In Diagramm (b) ist zu erkennen, dass während der Phase der intensiven Korrosion zu Versuchsbeginn kaum Arsen in den Ablauf gelangt. Offensichtlich wird es in dieser Phase mit dem im vorderen Teil der Säule gebildeten Rost nahezu vollständig zurückgehalten. Mit dem Ende der Phase intensiver Korrosion erscheint auch Arsen im Ablauf, kontinuierlich ansteigend sowohl in partikulärer, also an Eisenhydroxidpartikel gebundener, als auch in gelöster Form. Die Relation zwischen beiden Formen wird in diesem Versuchsaufbau auch durch den Ort bzw. den Zeitpunkt der Probenahme und der Membranfiltration beeinflusst, da die Oxidationsreaktion des zweiwertigen gelösten Eisens und der zeitgleiche Adsorptionsprozess des Arsens an die Rostpartikel beim Verlassen der Korrosionssäule noch nicht abgeschlossen sind. Das Fortschreiten dieser Prozesse in der Nachreinigungsstufe bewirkt neben dem reinen Partikelrückhalt eine weitergehende Arsenentfernung, die bis zu einem Durchsatz von 20.000 BV anhält. Die Ablaufkonzentrationen für Arsen liegen in dieser Zeit deutlich unter dem angestrebten Zielwert von 50  $\mu$ g/L. Gegen Ende des Versuchs kommt es aus Mangel an frisch gebildetem Rost zu einem kontinuierlich Anstieg der Arsenkonzentration im Ablauf des Sandfilters.

In Diagramm (c) werden die Kenngrößen für die Korrosionsgeschwindigkeit gegenübergestellt: Man erkennt, dass die Sauerstoffverbrauchsrate  $r(O_2)$  nach einem Ansatz 1. Ordnung etwas gleichmäßiger verläuft, da die Schwankungen der Sauerstoffkonzentration im Zulauf rechnerisch ausgeglichen werden. Während der ersten Tage bleiben beide Kenngrößen auf dem durch die Sauerstoffkonzentration im Zulauf begrenzten Maximalwert, im Fall der Sauerstofftransportrate bei 1,4 L/m<sup>2</sup>min. Anschließend erfolgt ein stetiger Rückgang der Korrosionsgeschwindigkeit durch den Aufbau einer Deckschicht. Auch der Verbrauch des metallischen Eisens selbst trägt zum Rückgang der Korrosionsgeschwindigkeit bei. Am Ende des Versuchs waren nur noch 31 % der Einwaage vorhanden, die Struktur der Packung war deutlich beeinträchtigt. In der Endphase des Versuchs stellte sich eine nahezu stabile Sauerstoffverbrauchsrate im Bereich von 0,06-0,1 L/m<sup>2</sup>min ein, deutlich weniger als 10% des Anfangswerts.

Für jeden Messzeitpunkt, das heißt in der Regel täglich, lassen sich auch Relationen von entferntem Arsen zu gebildetem Eisenhydroxid aufstellen, und zwar zum einen der Wert  $q_M(t)$  innerhalb der Säule und zum anderen der Wert  $q_P(t)$  als Beladung der Partikel im Ablauf. Diagramm (d) zeigt für  $q_M$  einen sehr gleichmäßigen Verlauf, schwankend im Bereich 30-60 µg/mg über die gesamte Versuchsdauer. Die Partikelbeladung beginnt dagegen bei sehr niedrigen Werten, da das Arsen in der Anfangsphase nahezu vollständig in der Korrosionssäule verbleibt und nicht in den Ablauf gelangt. Sie steigt dann aber rapide an. Die Werte am Versuchsende sind vermutlich stark Fehler behaftet, da der Gehalt an Eisenpartikeln im Ablauf, ersichtlich in Diagramm (a), insgesamt sehr niedrig ist. Kleine Messfehler in den Differenzen für Arsen und Eisen können erheblichen Einfluss auf den Beladungsquotienten erlangen.

In Abbildung 4.4 sind die gleichen Größen für einen mit groben Frässpänen II betriebenen Korrosionsversuch dargestellt. Da die volumenspezifische Oberfläche  $a_V$  wesentlich kleiner ist (vergleiche Tabelle 3.2), wurde eine längere Packung eingesetzt. Dies führte bei gleicher Filtergeschwindigkeit (2 m/h) zu deutlich geringeren Durchsätzen von ca. 300 BV/d gegenüber 800 BV/d im Versuch mit Stahlwolle.



Abb. 4.3 Ergebnisse eines Durchflussversuchs mit Packung aus Stahlwolle D-III (SV 18.1)



Abb. 4.4 Ergebnisse eines Durchflussversuchs mit Packung aus Frässpänen II (SV 26.2)

Wie in Diagramm (a) gezeigt, kommt es wenige Tage nach Beginn des Versuchs bereits zu einem deutlichen Rückgang der Rostproduktion. Schon zu Versuchsbeginn wurden im Ablauf Sauerstoffkonzentrationen über 1 mg/L gemessen. Entsprechend stark ist der Rückgang bei den im Ablauf gemessenen Eisenkonzentrationen, die binnen weniger Tage auf nahezu null zurückgehen. Der gebildete Rost verbleibt ab 1.500 BV fast vollständig in Form einer Deckschicht in der Säule.

In den ersten Tagen mit intensiver Korrosion ist in Diagramm (b) noch eine weitgehende Arsenentfernung zu beobachten, die aber nach wenigen Tagen ebenfalls stark zurückgeht. Vor allem in der zweiten Hälfte des Versuchs, in der mit einer auf die Hälfte verringerten Zulaufkonzentration gearbeitet wurde, erfolgt nur noch ein sehr geringer Arsenrückhalt in der Säule. In Ablauf und Nachreinigung findet kaum zusätzliche Arsenentfernung statt, da dort weder gelöstes Eisen noch Eisenhydroxidpartikel anzutreffen sind, welche noch zur weitergehenden Adsorption dienen könnten. Zum Erreichen des Zielwertes von 50  $\mu$ g/L wäre ein wesentlich größeres Reaktorvolumen notwendig.

Die Kenngrößen für die Korrosion liegen dagegen im gleichen Bereich wie im Versuch mit Stahlwolle und weisen von einem Startwert von  $0,9 \text{ L/m}^2$ min für  $r(O_2)$  ausgehend ebenfalls einen kontinuierlichen Rückgang auf, der zu ähnlichen Endwerten wie in Abbildung 4.3 führt: in der zweiten Hälfte des Versuchs stellt sich ein konstanter Verlauf von  $r(O_2)$  bei 0,1-0,15 $\text{L/m}^2$ min ein. Bei Versuchsende sind noch 91% des eingesetzten Fe-Materials vorhanden, so dass mit Frässpänen eine wesentlich längere Versuchsdauer bzw. Standzeit als mit Stahlwolle zu erreichen wäre. Extrapoliert man den Materialverbrauch unter Annahme der niedrigen Korrosionsrate aus der zweiten Versuchshälfte, wäre erst bei rund 60.000 BV die Hälfte des Eisens zu Rost umgewandelt.

Das Verhalten der Beladungswerte ist prinzipiell denen aus dem Versuch mit Stahlwolle sehr ähnlich: Die Werte für  $q_P$  sind hoch, schwankend und stark Fehler behaftet, da die Eisenkonzentrationen im Ablauf sehr niedrig sind. Die Werte für  $q_M$  verlaufen hingegen gleichmäßig, allerdings weit niedriger als im Versuch mit Stahlwolle: Sie liegen hier eher im Bereich von 10-20  $\mu$ g/mg in der ersten Versuchshälfte. Im zweiten Teil, nach Absenkung der Zulaufkonzentration auf 250  $\mu$ g/L, liegen sie mit 4-11  $\mu$ g/mg sogar noch deutlich niedriger, also bei nur 10-50 % der Werte aus dem Versuch mit Stahlwolle.

Eine bedeutende Gemeinsamkeit der beiden Versuche ist das zeitliche Verhalten der Korrosionsraten, das durch das schnelle Wachstum einer Deckschicht aus Korrosionsprodukten geprägt ist. Der Verlauf entspricht annähernd dem bereits von Sontheimer beobachteten logarithmischen Wachstumsgesetz für Hydroxid-Siderit Deckschichten in Trinkwasserleitungen [Sontheimer 1980], das nach einer kurzen Phase intensiver Korrosion zu einem sehr langsamen aber stetigen Abfall der Korrosionsrate führt. Die stabilen Werte, die sich für die Sauerstoffverbrauchsrate nach ca. 20 Tagen einstellen, liegen bei beiden Versuchen deutlich unter 10 % der mit frischem Eisenmaterial erreichten Werte.

Wegen dieser unterschiedlichen Phasen muss frühzeitig festgelegt werden, in welchem Bereich eine Anlage dauerhaft betrieben werden soll, um eine angemessene Bemessung von Korrosionssäule und Nachreinigungsstufe zu ermöglich. Die Phase der intensiven Korrosion kann durch eine deutliche Überbemessung der Packung, die zu einem vollständigen Sauerstoffverbrauch und eine deutlichen Freisetzung von gelöstem Eisen führt, verlängert werden, wie es in der Anfangsphase des Versuchs mit Stahlwolle (Abb. 4.3) der Fall war. Ein wesentlicher Teil der Arsenentfernung findet dann mit der Oxidation des gelösten Eisen(II) in der Nachreinigungsstufe statt.

Demgegenüber kann auch die gleichmäßige Deckschichtphase, wie sie sich am Ende des Versuchs mit den Frässpänen (Abb. 4.4) einstellte, zur Arsenentfernung genutzt werden, wenn die niedrigen Werte für die Sauerstoffverbrauchsrate  $r(O_2)$  und die niedrigen Werte für die Momentanbeladung  $q_M$  berücksichtigt werden. Das Langzeitverhalten von groben Frässpänen wurde in einem separaten Versuch an einer kurzen Korrosionssäule untersucht, dargestellt in Abbildung 4.6 (a): Der Versuch wurde sieben Wochen ohne Arsen im offenen Kreislauf betrieben. Wöchentlich wurde mit der Differentialfilter-Kreislaufmethode die Sauerstoffverbrauchsrate  $r(O_2)$ bestimmt. Abbildung 4.6 (a) zeigt wieder den steilen Abfall zu Beginn und dann die lang anhaltende, gleichmäßige Phase, die am Versuchsende bei 37.500 BV noch zu einer Sauerstoffverbrauchsrate  $r(O_2)$  von 0,04 L/m<sup>2</sup>min führt. Zu diesem Zeitpunkt sind 86% des eingesetzten Materials noch vorhanden.

## 4.1.1.5 Auswirkung auf die Wasserqualität

Mit den in Abbildung 4.5 (a) und (b) dargestellten Verläufen für pH-Wert und Leitfähigkeit in den zuvor vorgestellten Versuchen können die Auswirkungen des Aufbereitungsprozesses auf die Wasserqualität abgeschätzt werden. Insgesamt zeigen sich nur geringfügige Veränderungen dieser beiden Leitparameter. Eine geringe Verringerung der Leitfähigkeit kann durch Adsorption von Ionen wie Calcium und Magnesium sowie von Phosphat und Carbonat an den Eisenhydroxidpartikeln erklärt werden. Da die Sauerstoffkorrosion von Eisen in der Summe pH-Wert neutral verläuft, können pH-Wert Absenkungen im Ablauf der Säule durch noch unvollständige Oxidation von Fe<sup>2+</sup> erklärt werden. Für leichte Anstiege des pH-Werts, vor allem im Ablauf des Sandfilters, kommt dagegen ein Verlust an  $CO_2$  durch die Belüftung in der Nachreinigung sowie bei der Probenahme in Betracht. Alle Effekte lassen aber keine negative Veränderung der Qualität des Wassers im Hinblick auf eine Nutzung als Trinkwasser erwarten.

## 4.1.1.6 Einfluss der Strömungsgeschwindigkeit

In den Diagrammen (c) und (d) der Abbildung 4.5 wird der bereits in Abschnitt 4.1.1.3 erwähnte Einfluss der Strömungsgeschwindigkeit auf die Korrosionsgeschwindigkeit im Durchflussversuch gezeigt. Dabei offenbart sich auch die erhebliche Rolle, die das Alter und die daraus resultierende Dicke der Deckschicht in diesem Zusammenhang spielt. Während in einer frischen Packung eine zunehmende Strömungsgeschwindigkeit zu einer deutlichen Erhöhung der Korrosionsgeschwindigkeit führt, geht dieser positive Einfluss mit zunehmender Dicke der Deckschicht auf null zurück. Zu Beginn wird der Transportwiderstand für Sauerstoff im Wesentlichen durch die laminare Filmgrenzschicht über der Metalloberfläche verursacht, später überwiegt dann der Einfluss der Deckschicht selbst. Der Transportwiderstand der Deckschicht wird von veränderten Strömungsbedingungen nicht beeinflusst. Dieses Phänomen wird in ähnlicher Weise, allerdings unter stark abweichenden hydraulischen Bedingungen, auch bei [Kuch 1984] sowie in der [DIN 50920] zu Korrosionsuntersuchungen in strömenden Flüssigkeiten beschrieben.

Für eine praktische Anwendung, die in der Phase der gleichmäßigen Korrosion mit Deckschicht stattfindet, ist dieser Effekt also weitgehend zu vernachlässigen. Da die Adsorptionskinetik an der sich von innen regenerierenden Deckschicht im Rahmen dieser Arbeit nicht näher quantifiziert werden konnte, lässt sich nur pauschal anmerken, dass eher niedrige Strömungsgeschwindigkeiten und damit lange Kontaktzeiten für einen möglichst hohen Arsenentfernungsgrad anzustreben sind.

# 4.1.1.7 Vergleich unterschiedlicher Eisenmaterialen

In den zuvor vorgestellten Durchflussversuchen mit Stahlwolle und Frässpänen wurde das Verhalten von zwei verschiedenen Materialen unterschiedlicher Feinheit miteinander verglichen. Ergänzend dazu werden in Abbildung 4.6 (b), (c) und (d) für diese beiden sowie zwei weitere Materialien das Korrosionsverhalten, das Durchströmungsverhalten und das Beladungsverhalten zusammenfassend dargestellt. Bei den neuen Materialen handelt es sich zum einen um etwas gröbere Stahlwolle aus chilenischer Produktion, die auch bei den dortigen Versuchen (Kapitel 5) zum Einsatz kam, zum anderen um ein geschüttetes Granulat aus Recyclingstahl.

Der in Diagramm (c) dargestellte zeitliche Verlauf des Überdrucks *p* vor der Korrosionssäule bei der Durchströmung ist ein Maß für die Neigung der Packung zur Verstopfung. Insbesondere die mit Eisengranulat gefüllte Säule aus Versuch 8.6, die nur eine Porosität von 52% aufwies, neigte sehr schnell zu starker Verstopfung. Der entsprechende Druckverlust reduzierte den Volumenstrom und machte den weiteren Betrieb trotz Spülung mit erhöhtem Volumenstrom nach wenigen Tagen unmöglich.

Auch die Stahlwolle D-III offenbarte trotz einer hohen Porosität von 95% eine deutliche Neigung zur Verstopfung. Neben einer geringen Porosität tragen auch die feineren Faserstrukturen sowie eine dank der spezifischen Oberfläche  $a_V$  hohe volumenspezifische Aktivität zur Verstopfungsneigung bei, da ein Großteil der gebildeten Korrosionsprodukte durch eine Filterwirkung in der Packung selbst zurückgehalten wird. Bei der gröberen Stahlwolle CL und den Frässpänen II wurde bei ähnlicher Porosität von 95% kein Druckanstieg beobachtet. Insbesondere an den Stahlspänen mit zusammenhängender ebener Oberfläche wurde eine deutliche Tendenz zur Ausbildung einer stabilen Deckschicht beobachtet, die die Abgabe von Eisenpartikeln im Ablauf gegen null gehen ließ (Abb. 4.4 (a)).



Abb. 4.5(a) und (b) Vergleich der pH-Werte und Leitfähigkeiten in Durchflussversuchen (s. Abb. 4.3 / 4.4)(c) und (d) Einfluss der Strömungsgeschwindigkeit auf die Sauerstoffverbrauchsrate



(n.a. = nicht auswertbar)

In Diagramm (b) wird der zeitliche Verlauf der Sauerstoffverbrauchsraten der einzelnen Versuche als Box-Plot zusammenfassend dargestellt, um die Verteilung und die Minimalwerte vergleichen zu können. Dabei treten zwischen den Materialen keine signifikanten Unterschiede auf. Von ähnlichen Startwerten am frischen Material ausgehend erfolgt der logarithmische Abfall, der in eine nahezu stabile Phase mit ausgebildeter Deckschicht mündet, die in allen Versuchen ungefähr bei  $r(O_2)=0,1$  L/m<sup>2</sup>min liegt. Damit liegt diese Größe im selben Bereich wie die von A. Kuch an Trinkwasserleitungen nach zweiwöchigem Betrieb beobachteten Werte [Kuch 1984].

Eine ähnliche Darstellungsform wird in Diagramm (d) zum Vergleich der Beladungswerte genutzt. Deutlich erkennbar ist die unterschiedliche Verteilung der Werte für  $q_P$  und  $q_M$ . Die Ursache und die Bedeutung dieser Unterschiede werden in Abschnitt 4.2 zum Adsorptionsverhalten näher beschrieben. Insgesamt sind sich auch hier die untersuchten Materialen in ihrem Verhalten sehr ähnlich. Die Werte für  $q_M$  im Versuch mit den Stahlspänen liegen etwas niedriger als die Werte für die beiden Stahlwollesorten, verursacht vermutlich durch den bereits genannten Partikelrückhalt in der Stahlwollepackung. Für das Granulat ließen sich wegen der Verstopfungsprobleme keine aussagefähigen Werte zur Arsenentfernung gewinnen (n.a.).



Abb. 4.7 Schematische Darstellung von Sauerstoffkorrosion und Arsenentfernung

Die zuvor beschriebenen Prozesse und Reaktionen werden in Abbildung 4.7 noch einmal anschaulich zusammengefasst: Im Wasser gelöster Sauerstoff wird an der Metalloberfläche oder in der davor liegenden Deckschicht zu Hydroxidionen reduziert. Quelle der Elektronen ist metallisches Eisen, das oxidiert wird und als  $Fe^{2+}$  in die Deckschicht oder in die Wasserphase abgegeben wird. Durch einen weiteren Oxidationsschritt entsteht Fe<sup>3+</sup>, welches dann als schwer lösliches Eisenhydroxid bereits in der Deckschicht oder erst in der Wasserphase ausfällt und dabei Arsen adsorptiv bindet. Das Eisenhydroxid kann als Deckschicht im Reaktor verbleiben oder als Partikel über den Ablauf ausgetragen werden. Die Partikel werden in der Nachreinigungsstufe einschließlich des gebundenen Arsens aus dem Wasser entfernt.

#### 4.1.2 Versuche zur galvanischen Korrosion in Eisen-Kupfer-Kontaktelementen

#### 4.1.2.1 Prinzip und Realisierung dieser Verfahrensvariante

Der vorhergehende Abschnitt zeigte deutlich, wie sich die Korrosionsgeschwindigkeit von frischen Eisenoberflächen durch die Ausbildung von Deckschichten aus Korrosionsprodukten innerhalb kurzer Zeit auf Werte unter 10% der Anfangsgeschwindigkeit verringerte. In diesem Abschnitt werden Ergebnisse von Versuchen dargestellt, bei denen durch die elektrochemischen Effekte der Kontaktkorrosion zwischen zwei verschiedenen Metallen die Bildung von Rost intensiviert wurde.



Abb. 4.8 Skizzen der Korrosionssäulen I-III zur Untersuchung der Fe-Cu Kontaktkorrosion

Dabei übernimmt das edlere Metall, in diesem Fall Kupfer, die Rolle der Kathode und gibt Elektronen an den im Wasser gelösten Sauerstoff ab. Währenddessen fungiert das unedlere Eisen als Anode, die Elektronen an das benachbarte Kupfer abgibt, und dabei selbst in Form der gewünschten Fe<sup>2+</sup>-Ionen in Lösung geht. Ein Schema in Abbildung 4.12 verdeutlicht diesen Prozess.

Realisiert wurde dieses Prinzip im einfachsten Fall durch eine in Abbildung 4.8 (I) skizzierte Korrosionssäule aus Kunststoff, in der sich ein mit feiner Kupferwolle umwickelter Eisennagel befand. Eisen und Kupfer standen in engem Kontakt miteinander. Um neben dem Sauerstoffverbrauch auch die Korrosionsströme messen zu können, wurde die unter (II) skizzierte Korrosionssäulen eingesetzt, bei der der Kontakt zwischen beiden Metallen nur über einen externen Stromkreis mit einem Amperemeter realisiert wurde, sowie die Variante (III), bei der sowohl ein direkter als auch ein externer Kontakt bestand. Eine Unterbrechung des direkten Kontakts sollte durch einen Anstieg des externen Stromflusses nachgewiesen werden.

Zur Quantifizierung der Korrosionsgeschwindigkeit wird in diesen Versuchen nicht die Sauerstoffverbrauchsrate  $r(O_2)$  herangezogen, da die Korrosionssäulen in ihrem Aufbau vom idealen Rohrreaktor deutlich abweichen. Stattdessen wird die Korrosionsrate  $CR(Fe)_{Ox,A(Met.)}$  benutzt, die sowohl aus dem Sauerstoffverbrauch  $(CR(Fe)_{Ox})$  als auch aus dem Stromfluss  $(CR(Fe)_I)$  ermittelt werden kann. Diese Größe der Einheit g/m<sup>2</sup>d ist auf die angebotene Fläche normiert, wobei zwischen Gesamtmetalloberfläche A(Met.), Eisenoberfläche A(Fe) oder Kupferoberfläche A(Cu)differenziert werden muss. CR(Fe) hat damit die Dimension einer Eisen-Massenstromdichte.

## 4.1.2.2 Korrosion und Arsenentfernung im Durchflussversuch

Analog zu den Versuchen zur reinen Sauerstoffkorrosion des Eisens wird in Abbildung 4.9 das Verhalten eines 22 Tage dauernden Durchflussversuchs mit einem in Kupferwolle gebetteten Eisennagel dargestellt.

Im ersten Diagramm (a) sind die unterschiedlichen Eisenkonzentrationen über die Versuchslaufzeit dargestellt, wobei zwei Erscheinungen auffällig sind: Der zeitliche Verlauf, sowohl der gemessenen als auch der aus dem Sauerstoffverbrauch abgeleiteten Eisenkonzentration, ist sehr gleichmäßig. Der Unterschied zwischen den Werten vom Versuchsbeginn und vom Versuchsende ist sehr gering. Es erfolgt ein starker, zum Versuchsende leicht abnehmender Austrag an Eisen in Form von Rost. Dieses Eisen liegt bereits im Säulenablauf hauptsächlich in Form von Partikeln vor. Im nachgeschalteten Sandfilter gelingt deren vollständige Abtrennung.

Dieses Verhalten spiegelt sich auch in den Werten für die Arsenkonzentrationen in Diagramm (b) wieder: Ein hoher Anteil der Arsenkonzentration im Zulauf erscheint auch im Ablauf, allerdings zu mehr als 75% bereits in partikelgebundener Form. Die Konzentration an gelöstem Arsen ist entsprechend niedrig und liegt bei weniger als 100  $\mu$ g/L. Dank der hohen Eisenkonzentration bewirkt der Sandfilter eine weitgehende Arsenentfernung, die dauerhaft Ablaufwerte unterhalb des Zielwerts von 50  $\mu$ g/L erreicht.

In Diagramm (c) wird die flächenspezifische Eisenkorrosionsrate  $CR(Fe)_{Ox}$  dargestellt. Zum Vergleich wird diese Größe hier auf drei verschiedene Flächen normiert: Auf die Gesamtmetall-

oberfläche sowie jeweils auf die Kupfer- und die Eisenoberflächen für sich allein. Da die Kupferoberfläche rund 98% zur Gesamtoberfläche beiträgt, fallen die Werte für diese beiden Korrosionsraten nahezu zusammen und liegen dabei mit Werten zwischen 1-2 g/m<sup>2</sup>d vergleichsweise niedrig. Wird der Massenstrom des Eisens dagegen auf die reine Eisenoberfläche bezogen, ergeben sich entsprechend des in der Säule vorhandenen Flächenverhältnisses  $A_{Cu}$ : $A_{Fe} = 56:1$  Korrosionsraten zwischen 60 und 100 g/m<sup>2</sup>d, also Werte die weit über denen der natürlichen Sauerstoffkorrosion liegen. Dieses Verhalten kann als deutliches Indiz für eine Limitierung des Korrosionsprozesses durch den kathodischen Teilprozess der Sauerstoffreduktion gewertet werden. Dieser Teilprozess kann durch eine entsprechende Vergrößerung der Kathodenfläche beeinflusst werden, wie im folgenden Abschnitt (4.1.2.3) näher ausgeführt wird.

Diagramm (d) zeigt den Verlauf der beiden Beladungskenngrößen  $q_M$  und  $q_P$ , die in diesem Versuch relativ dicht beieinander liegen, und zwar auf einem relativ hohen Niveau. Die Werte für  $q_P$ sind in diesem Versuch als verlässlich anzusehen, da immer eine ausreichend hohe Konzentration an Rostpartikeln im Ablauf zu finden war. Die Werte für  $q_M$  liegen im Bereich der bei Stahlwolle beobachteten Werte und deutlich über den Werten im Versuch mit den groben Frässpänen.

Charakteristisch für diesen Versuch sind folgende Gegebenheiten: ein gleichmäßiges Korrosionsverhalten und eine hohe Eisenfreisetzung, die im Wesentlichen durch die Trennung der beiden Teilelektroden verursacht werden. Da die Freisetzung von Fe<sup>2+</sup> und die Entstehung von Hydroxid-Ionen an räumlich voneinander getrennten Orten stattfinden, wird die Bildung der typischen Calcit-Hydroxid-Siderit Deckschicht verhindert. Durch die pH-Wert Erhöhung an der Kathode in Folge der Reduktion von Sauerstoff zu Hydroxidionen kommt es hier nur zu einem Ausfall von Calcit, der zu einer gewissen Behinderung des Sauerstofftransports führt. Da die flächenspezifische Umsatzrate an der Kupferoberfläche jedoch gering ist, geht diese Form der Schichtbildung nur sehr langsam von statten. Eisenionen und Hydroxidionen können nicht direkt am Entstehungsort miteinander reagieren, sondern müssen erst in der Wasserphase zueinander finden. Dabei führt vermutlich ein der Flockung sehr ähnlicher Mechanismus zur Bildung von feinen, aber stark mit Arsen beladenen Rostpartikeln in der Wasserphase. Diese Partikel werden größtenteils aus der Korrosionssäule ausgetragen und erst durch den Sandfilter entfernt. Ein Teil wird aber bereits in der Packung zurückgehalten und vergrößert auf diese Weise die Werte für q<sub>M</sub>.

## 4.1.2.3 Einfluss des Eisen-Kupfer-Flächenverhältnisses

Im Diagramm (a) der Abbildung 4.10 wird der Einfluss der Kupferoberfläche verdeutlicht: Neben einem Eisennagel ohne Kupferwolle werden die Korrosionsraten für drei unterschiedliche Packungen mit gleicher Eisenfläche und unterschiedlichen Mengen an Kupferwolle dargestellt. Dabei zeigt sich deutlich, dass die Eisenfreisetzung, bezogen auf die konstante Eisenoberfläche, durch die vergrößerte Kupferoberfläche um ein Vielfaches gesteigert werden kann. Der auf die gesamte angebotene Metalloberfläche normierte Eisen-Massenstrom bleibt dagegen im bekannten Rahmen und nimmt mit zunehmender Kupferoberfläche sogar leicht ab.



Abb. 4.9 Ergebnisse eines Durchflussversuchs zur Eisen-Kupfer Kontaktkorrosion (SV 14.3)



Abb. 4.10 Verhalten der Eisen-Kupfer-Kontaktkorrosion (SV 14) (a und b: n=21)

Zeitlich betrachtet kommt es im Versuchsablauf ebenfalls zu einer Abnahme der Korrosionsrate, allerdings nur um rund 50% des Ausgangswerts. Diese Abnahme kann durch die Bildung einer Deckschicht aus Calciumcarbonat auf der Kupferoberfläche erklärt werden, die durch die pH-Wert-Erhöhung auf Grund der Reduktion von Sauerstoff verursacht wird.

Im Diagramm (b) der Abbildung 4.10 werden die auf die gesamte Metalloberfläche bezogenen Korrosionsraten detaillierter betrachtet. Während der im Versuch 14.1 betrachtete Eisennagel ohne Kupferwollpackung die aus Abschnitt 4.1.1 zur reinen Eisenkorrosion bekannte weite Verteilung von Korrosionsraten zeigt, liegen die Werte für die drei Ansätze zur Kontaktkorrosion eng beieinander auf deutlich niedrigerem Niveau. Dieses Verhalten belegt deutlich die unterschiedlichen Korrosionsmechanismen: Lokalelemente auf der Eisenoberfläche gegenüber räumlich getrennten Flächen für Anode und Kathode. Die Folge ist eine deutlich geringere Stoffstromdichte an der Kathode und damit eine geringere Ausbildung einer Deckschicht. Der extrem hohe Eisen-Massenstrom an der Anode scheint dagegen keine negativen Auswirkungen nach sich zu ziehen.

## 4.1.2.4 Problematik der Freisetzung von Kupfer

Bei allen Versuchen zur Eisen-Kupfer-Kontaktkorrosion ist nach einer gewissen Zeit, oft erst nach einer Woche wie im Diagramm (c) der Abbildung 4.10 gezeigt, ein plötzliches Auftreten von Kupfer im Ablauf festzustellen. Da gelöstes Kupfer aus gesundheitlichen Gründen im Trinkwasser inakzeptabel ist, muss diese Freisetzung in einer möglichen Praxisanwendung auf jeden Fall vermieden werden. Offensichtlich scheint der kathodische Korrosionsschutz, den die als Opferanode fungierende Eisenelektrode auf das Kupfermaterial ausübt [Baeckmann 1989], nach einer gewissen Zeit nachzulassen. Da die Eisenelektroden vor allem an den Kontaktstellen ausgeprägte, für diese Korrosionsform typische Lochfrasskorrosionserscheinungen aufwiesen, wurde zunächst vermutet, dass der leitende Kontakt zwischen den beiden Metallen durch die entstandenen Lücken unterbrochen wurde, und so die Sauerstoffkorrosion des Kupfers ermöglicht wurde.

Zur Untersuchung und Vermeidung dieses Effekts wurde das in Abbildung 4.8 (II) und (III) dargestellte Korrosionssystem eingesetzt, bei dem durch das außen liegende Kupferrohr mit leitender Drahtverbindung zum innen liegenden Eisenstab eine Verbindung zwischen beiden Elektroden dauerhaft sichergestellt wurde. Die mit dem unter (II) skizzierten Korrosionselement beobachteten Werte für Eisenkonzentration und Korrosionsrate sind in Abbildung 4.11 (a) und (b), die Resultate für System (III) in (c) und (d) dargestellt. Der wesentliche Unterschied zwischen beiden Systemen liegt bei ansonsten gleichem Aufbau in der Isolierung zwischen Kupferwolle und Eisenstab bei System (II). Die einzige leitende Verbindung zwischen beiden Metallen erfolgt über den externen Leiter mit Messung des Stromflusses, für den eine Umrechnung in eine Eisenkonzentration  $c(Fe)_I$  oder eine Korrosionsrate  $CR(Fe)_I$  nach Gleichung 3.7 bzw. Gleichung 3.15 möglich ist. Das Korrosionselement (III) dagegen ermöglicht wie bei Element (I) einen direkten Kontakt zwischen Eisen und Kupfermaterial.



Abb. 4.11 (a) und (b): Verhalten der Fe-Cu-Kontaktkorrosion mit externer Verbindung (SV25.1) (c) und (d): Verhalten der Fe-Cu-Kontaktkorrosion mit direkter und ext. Verbindung (SV26.1)

In Diagramm (a) ist ein sehr ähnlicher Verlauf der Eisenwerte aus Ablaufprobe und Strommessung erkennbar, während die aus der Sauerstoffmessung ermittelte Eisenkonzentration  $c(Fe)_{Ox}$ deutlich darüber liegt, vor allem ab einem Durchsatz von mehr als 2.000 BV. Diese Abweichung wird offensichtlich durch die einsetzende Korrosion von Kupfer verursacht, die ebenfalls Sauerstoff verbraucht. Ab 2.000 BV Durchsatz werden Kupfergehalte von rund 2 mg/L beobachtet. Offensichtlich liegt die Ursache der Kupferkorrosion nicht wie vermutet in einer Unterbrechung der leitenden Verbindung, denn es fließt nach wie vor ein deutlicher Kontaktkorrosionsstrom durch den externen Leiter. Die in Diagramm (c) für den Versuch mit direkter leitender Verbindung gezeigte Rostproduktion ist bei gleicher Kupferfläche deutlich höher. Der extern messbare Korrosionsstrom ist dabei erwartungsgemäß vernachlässigbar klein, da eine direkte Verbindung der beiden Metalle besteht. Auch hier kommt es zu einer deutlichen Freisetzung von Kupfer, allerdings in einer niedrigeren Konzentration und deutlich später beginnend. Die beginnende Korrosion von Kupfer führt auch zu einem Sauerstoffverbrauch, der sich inkorrekterweise auch auf die abgeleiteten Größen  $c(Fe)_{Ox}$  und  $CR(Fe)_{Ox}$  auswirkt.

Die Diagramme (b) und (d) zeigen die aus den Sauerstoffkonzentrationen abgeleiteten Korrosionsraten. Während die auf die Eisenoberfläche bezogenen Korrosionsraten dem Flächenverhältnis entsprechend hoch sind, liegen die Werte für die auf die Kupferfläche normierten Korrosionsraten mit ca. 0,5 bzw. 1,0 g/m<sup>2</sup>d relativ niedrig. Der höhere Wert für den Versuch mit direktem Kontakt könnte durch eine um ca. 70% größere Eisenoberfläche verursacht werden, möglicherweise ist dies auch ein deutlicher Hinweis auf den erheblichen Einfluss, den die räumliche Anordnung und die Nähe der Elektroden zueinander auf die Intensität der Korrosion hat. Diese Einflüsse konnten im Rahmen dieser Arbeit nicht detaillierter untersucht werden.

Da auch in dieser Versuchsvariante eine Kupferfreisetzung nicht verhindert wurde, muss es andere Gründe für diesen unerwünschten Effekt geben. Möglicherweise ist Eisen(III)-oxid auch in der Lage, Kupfer zu oxidieren. Wie Tabelle 2.2 mit den Standardpotentialen für die hier relevanten Redox-Prozesse zeigt, ist metallisches Kupfer zwar edler als metallisches Eisen, dreiwertige Eisenionen besitzen nach Gleichung 10 in Tabelle 2.2 jedoch ein deutlich positiveres Standardpotential, so dass eine Oxidation des Kupfers bei gleichzeitiger Reduktion des Fe(III) zu Fe(II) möglich erscheint. Diese Reaktion ähnelt den von Kuch untersuchten Prozessen der instationären Korrosion in Trinkwasserleitungen, bei der Sauerstoffmangel im stagnierenden Wasser zu einer Oxidation des Eisenrohres durch die Reduktion des Eisen(III)-oxids bei Freisetzung von Eisen(II)-Ionen führt [Kuch1984]. Auch Merkel beschreibt in seiner Arbeit zur instationären Kupferkorrosion von Trinkwasserleitungen die Möglichkeit einer Komproportionierung von Cu(0) und Cu(II) zu Cu(I) [Merkel 2003].

Gestützt wird dieser Erklärungsansatz durch die deutliche Verzögerung im Auftreten der Kupferkorrosion, denn erst nach einigen Tagen haben sich ausreichend Rostpartikel in der Kupferwolle festgesetzt, um entsprechende Korrosionselemente auf der Kupferoberfläche auszubilden. Ferner ist nach der Spülung der Korrosionssäulen zur Beseitigung von Verstopfungen ein deutlicher Rückgang der Kupferfreisetzung zu beobachten, dargestellt in Diagramm (c) der Abbildung 4.10. Im Rahmen dieser Arbeit konnten diese Vorgänge nicht vertieft untersucht und eindeutig belegt werden, die oben genannte Hypothese stellt aber eine gute Ausgangsposition für mögliche Verbesserungsansätze dar. Die ablaufenden Prozesse bei der Arsenentfernung mittels Eisen-Kupfer-Kontaktkorrosion sind in Abbildung 4.12 zusammenfassend schematisch dargestellt. Aus dem Vergleich zwischen errechneter Eisenoxidation und tatsächlichem Massenverlust in der integralen Massenbilanz (Diagramm (d) der Abbildung 4.10) wird deutlich, dass trotz zeitweilig vorhandener Kupferkorrosion auch bei der Eisen-Kupfer-Kontaktkorrosion als wesentliche Reaktionen die anodische Eisenoxidation und die kathodische Sauerstoffreduktion wirksam sind.



Abb. 4.12 Schematische Darstellung von Fe-Cu-Kontaktkorrosion und Arsenentfernung

Der Einfluss der Sauerstoffkonzentration und der Strömungsgeschwindigkeit wurde in den Versuchen zur Kontaktkorrosion nicht explizit untersucht. Da es sich aber um Sauerstoffkorrosion handelt und der Sauerstoff aus der Lösung zur Kathodenoberfläche transportiert werden muss, ist von einem ähnlichen Verhalten wie im vorhergehenden Abschnitt auszugehen.

# 4.1.3 Versuche zur elektrochemisch verstärkten Korrosion durch Anlegen einer externen Spannung

## 4.1.3.1 Prinzip und Realisierung dieser Verfahrensvariante

Während im vorhergehenden Abschnitt die Korrosion durch eine Spannung, die sich aus der unterschiedlichen Position von unedlem Eisen und edlerem Kupfer in der elektrochemischen Spannungsreihe ergibt, intensiviert wurde, werden in diesem Abschnitt die Ergebnisse von Versuchen mit einer extern angelegten Spannung vorgestellt. Da sowohl Spannung als auch Strom gut zu messende und gut einzustellende physikalische Größen sind, ergeben sich in diesen Versuchen zusätzliche Möglichkeiten, die ablaufenden Prozesse zu beobachten und steuernd einzugreifen.



Abb. 4.13 Skizze der Korrosionssäule mit extern angelegter Spannung

Realisiert wurde dieses Prinzip durch eine in Abbildung 4.13 skizzierte Korrosionssäule, bei der das Wasser durch den 5 mm breiten Ringspalt zwischen einem inneren, verschlossenen Hohlzylinder und einem äußeren Rohr größeren Durchmessers strömte. Durch Anlegen einer elektrischen Spannung im Bereich zwischen 0 und 1,5 V aus einem handelsüblichen Labornetzgerät wurden der Hohlzylinder aus Eisen zur Anode und das äußere Rohr zur Kathode. Das äußere Rohr bestand aus Kupfer oder als alternative Variante dazu aus Eisen.

# 4.1.3.2 Korrosion und Arsenentfernung im Durchflussversuch

In Abbildung 4.14 sind in den vier bekannten Diagrammen die Ergebnisse eines über 30 Tage laufenden Durchflussversuchs mit extern angelegter Spannung zwischen einer Eisenanode und einer Kupferkathode dargestellt.

In Diagramm (a) erscheint neben den chemisch und den aus der Sauerstoffmessung ermittelten Eisenkonzentrationen zusätzlich noch die aus dem elektrischen Strom ermittelte Eisenkonzentration, die hier deutlich über den beiden erstgenannten liegt. Auch die chemischen Messwerte liegen über den aus dem Sauerstoffverbrauch errechneten Werten, so dass zu vermuten ist, dass neben der Sauerstoffkorrosion zusätzliche Reaktionen ablaufen. Da bei konstanter Spannung der Stromfluss mit der Zeit zurückging, wurde in vier Stufen die Spannung geringfügig erhöht, so dass immer eine hohe Eisenfreisetzung  $c(Fe)_I$  von rund 10 mg/L gewährleistet war.

Die freigesetzte Eisenmenge konnte das Arsen des Zulaufs weitgehend binden. Es wurde sowohl gelöst als auch in partikulärer Form aus dem Korrosionselement ausgetragen und anschließend im Sandfilter entfernt, so dass der Zielwert von 50  $\mu$ g/L dauerhaft unterschritten werden konnte.

Auch die Korrosionsraten können in dieser Versuchsvariante sowohl aus dem Sauerstoffverbrauch als auch aus dem Stromfluss ermittelt werden und wie bei der Eisen-Kupfer-Kontaktkorrosion wahlweise auf die Fläche der Eisenanode oder auf die gesamte Metallfläche normiert werden. Es zeigt sich in Diagramm (c) die gleiche Diskrepanz zwischen der aus dem Stromfluss und der aus dem Sauerstoffverbrauch berechneten Größe wie in Diagramm (a). Die aus dem Stromfluss berechnete und auf die Eisenoberfläche bezogene Korrosionsrate liegt mit mehr als 15 g/m<sup>2</sup>d ausgesprochen hoch. Bezogen auf die Gesamtoberfläche und ermittelt aus dem Sauerstoffverbrauch sind die Werte aber mit denen der natürlichen Sauerstoffkorrosion vergleichbar.

Die auftretenden "Alterungserscheinungen" können zwar durch die regelmäßige Spannungsanpassung ausgeglichen werden, allerdings ist der tägliche Rückgang des Stroms bei konstanter Spannung durch den zunehmenden Transportwiderstand bei Bildung einer Deckschicht auf der Kathode deutlich erkennbar. Der schnelle Rückgang kann mit dem relativ hohen flächenspezifischen Stromfluss bzw. Stoffumsatz erklärt werden, der um mehr als den Faktor 5 über den Werten der Fe-Cu-Kontaktkorrosion liegt. Die pH-Wert Erhöhung durch Hydroxidionenproduktion fällt daher wesentlich stärker aus und führt dementsprechend zur verstärkten Ablagerung von Calcit an der Kathode (vgl. 4.1.2.2).

Die Beladungen der Partikel  $q_P$  sind mit um 87 µg/mg streuenden Werten ähnlich hoch wie im Versuch zur Kontaktkorrosion, ebenfalls gleichmäßig und wegen der hohen Eisenwerte im Ablauf auch als verlässlich anzusehen. Wesentlich geringer sind dagegen die Werte für die Momentanbeladung  $q_M$  in der Säule, die im Mittel nur 16 µg/mg betragen und damit den mit Frässpänen erzielten Werten ähnlich sind.



Abb. 4.14 Ergebnisse eines Durchflussversuchs zur Korrosion mit externer Spannung (SV 23.1)



Abb. 4.15 (a) und (b)Spannungsabhängigkeit der Korrosionsraten (SV 23)(c)Integrale Massenbilanz für Eisen(d)Strömungsabhängigkeit der Korrosionsraten

## 4.1.3.3 Einfluss der angelegten Spannung

Da mit zunehmender Spannung ein zunehmender Strom und damit auch eine höhere Eisenfreisetzung zu erwarten ist, wurde der Einfluss einer Spannungserhöhung auf die Korrosionsrate an einem Cu-Fe-Korrosionselement in Diagramm (a) der Abbildung 4.15 und an einem Fe-Fe-Korrosionselement in Diagramm (b) der Abbildung 4.15 zu vier Zeitpunkten im Abstand von je einer Woche während eines Versuchslaufs untersucht.

Insgesamt zeigten beide Korrosionselemente ein ähnliches Verhalten, sowohl bezüglich der erforderlichen Spannung, als auch im Zeitverhalten. Der Rückgang des Stroms von Zeitpunkt zu Zeitpunkt erscheint beim Fe-Cu System ausgeprägter, während das Fe-Fe System bereits auf niedrigem Niveau beginnt und dann kaum noch abfällt. Am Fe-Fe-System fand allerdings während der ersten, hier nicht dargestellten Tage, bereits ein starker Rückgang der Korrosionsrate statt, der durch Spannungserhöhung ausgeglichen wurde. Möglicherweise wurde dieser schnelle Rückgang durch die Sauerstoffkorrosion des Eisens mit Deckschichtbildung an der Kathode verursacht.

Der Vergleich von  $CR(Fe)_I$  und  $CR(Fe)_{Ox}$  ermöglicht interessante Rückschlüsse auf die ablaufenden Reaktionen. Bei geringen Spannungen fließt erwartungsgemäß kein Strom, es wird aber Sauerstoff verbraucht, was mit der parallel stattfindenden normalen Sauerstoffkorrosion des Eisens erklärt werden kann. Bei ca. 0,45 V angelegter Spannung stimmen die Korrosionsraten  $CR(Fe)_I$  und  $CR(Fe)_{Ox}$  überein und durch eine weitere Spannungserhöhung lässt sich die Eisenfreisetzung offensichtlich beliebig steigern. Dabei kommt es aber nicht zu einer entsprechenden Erhöhung des Sauerstoffverbrauchs.

#### 4.1.3.4 Problematik der Wasserstoffbildung

In den Versuchen mit Variation der Spannung wurde im Bereich höherer Spannung eine deutliche Blasenbildung beobachtet. Durch Auffangen der Blasen am Ablauf und Durchführung einer Knallgasprobe wurde das Gas als Wasserstoff identifiziert, so dass die Vermutung nahe liegt, dass es statt zu einer Reduktion des Sauerstoffs zu einer Reduktion des Wassers zu Wasserstoff und Hydroxidionen nach Gleichung 1 aus Tabelle 2.2 kommt. Die Addition der Standardpotentiale der beteiligten Halbreaktionen führt in Gleichung 4.1 zu einem negativen Wert für die elektromotorische Kraft:

$$EMK = -E_{Ox} + E_{Red} = -(-0,409) + (-0,828) = -0,419 V$$
(Gl. 4.1)

Diese Reaktion läuft also nicht freiwillig ab, sondern erst durch Anlegen einer entsprechenden Spannung. Diese Gegebenheit spiegelt sich in den Versuchsergebnissen eindeutig wider.

In Diagramm (c) der Abbildung 4.15 verdeutlicht die integrale Massenbilanz die ablaufenden Reaktionen. In zwei Durchflussversuchen stimmt die Massendifferenz der Eisenanode mit der Masse an gefundenem Rost gut überein und deckt sich mit der aus dem Stromfluss ermittelten Masse an korrodiertem Eisen. Als Anodenreaktion findet also eindeutig die Oxidation von Fe(0) zu  $Fe^{2+}$  statt. Demgegenüber führt die Sauerstoffbilanz zu deutlich geringeren Eisenmassen, so dass erkennbar wird, dass die Sauerstoffreduktion nur eine untergeordnete Rolle spielt und weitere Kathodenreaktionen ablaufen müssen.

Da die Sauerstoffreduktion hier offensichtlich nicht die Korrosion limitiert, hat eine Veränderung der Strömungsgeschwindigkeit zur Verkleinerung der Filmgrenzschicht auch keinen Einfluss auf die Korrosionsströme. Wie Diagramm (d) der Abbildung 4.15 eindeutig zeigt, ändert sich der Korrosionsstrom nicht mit der Veränderung der Filtergeschwindigkeit. Der Reaktionspartner an der Kathode ist offensichtlich Wasser und dafür besteht keine Transportlimitierung.

Die Bildung von Wasserstoff stellt für die Anwendung dieser Versuchsvariante leider ein erhebliches Problem dar: Wasserstoff könnte sich im Anlagengebäude anreichern und stellt potentiell ein Explosionsrisiko dar. Da die Produktion von 1 mol  $Fe^{2+}$  auch zur Bildung von 1 mol H<sub>2</sub> führt, hat ein Massenstrom von 1 g/h  $Fe^{2+}$  eine Wasserstoffbildung von 0,0357 g/h bzw. 0,4 L/h zur Folge. Zusätzlich bewirkt die Bildung von Wasserstoff im Wasser auch ein reduzierendes Milieu, so dass die Bildung von gasförmigem, hochgiftigem Arsin nicht ausgeschlossen erscheint. Diese Arsinbildung könnte eine Gesundheitsgefahr für Personal und Nutzer der Anlage darstellen und muss dementsprechend vermieden werden. Im Rahmen dieser Arbeit wurde die Bildung von Arsin nicht tiefer gehend untersucht, den in Abschnitt 4.2.1 vorgestellten Arsenbilanzen zufolge kann sie aber nicht ausgeschlossen werden.

In Abbildung 4.16 werden die wesentlichen Vorgänge bei der durch eine externe Spannung forcierten Korrosion noch einmal zusammenfassend dargestellt.



Abb. 4.16 Schematische Darstellung von elektrisch forcierter Korrosion und Arsenentfernung

## 4.2 Betrachtung des Adsorptionsverhaltens

## 4.2.1 Adsorption und Rückhalt von Arsen in den Durchflussversuchen

Nachdem die drei in dieser Arbeit untersuchten Korrosionsvarianten in den vorhergehenden Abschnitten detailliert dargestellt worden sind, soll in diesem Abschnitt näher auf die Fähigkeit der Korrosionsprodukte zur Bindung von Arsen eingegangen werden. Im dritten Kapitel wurde bereits die getrennte Bilanzierung der Arsenentfernung in der Säule und der Partikel im Ablauf vorgestellt, wobei die zwei unterschiedlich definierten Größen für die Beladung auch unterschiedliche Formen von Arsenbindung an durch Korrosion gebildetem Eisenhydroxid beschreiben sollen:

Das in der Säule verbleibende Eisenhydroxid ist, idealisiert dargestellt, Rost in einer Deckschicht, die von der Metallseite her durch Oxidation und Elektronentransport in der Deckschicht wächst. Es kommt von der Wasserseite her mit Arsen in Kontakt, so das ein Transport von Arsenationen aus dem Wasser zu den frischen Adsorptionsplätzen erforderlich wird. Das Eisenhydroxid ist immobilisiert, so dass das Wasser nur während der Aufenthaltszeit in der Packung mit ihm in Kontakt kommt. Die Relation zwischen der Bildung dieses Eisenoxids und daran gebundenem Arsen wird durch  $q_M$  beschrieben.

Das im Ablauf auftretende Eisenhydroxid entsteht dagegen erst in der Lösung durch die Oxidation von Fe<sup>2+</sup> und fällt in Form sehr feiner Partikel aus, vermutlich als Ferrihydrit. Dadurch besitzt es eine sehr große Oberfläche und die in Kapitel 2 vorgestellten Mitfällungsmechanismen können zur Bindung der im Wasser präsenten Arsenationen wirksam werden. Dank der geringen Anfangsgröße der Partikel spielen Transporteffekte im Partikel keine Rolle. Außerdem ist die Kontaktzeit länger, da die Partikel im Ablauf mitschwimmen und die Aufenthaltszeit des Wassers in den Nachreinigungseinrichtungen hinzukommt. Die erreichbare Beladung kommt damit dem Gleichgewichtszustand wesentlich näher als die Beladung in der Säule und wird deutlich durch die Konzentration von Arsen in der Lösung beeinflusst. Die Arsenbeladung dieses Rosttyps wird durch die Werte von  $q_P$  quantifiziert und liegt in der Regel deutlich über den Werten für die Säule ( $q_M$ ).

Bei der Darstellung der Versuchsergebnisse in Abschnitt 4.1 wurden die Zeitreihen dieser beiden Größen bereits erläutert.

Neben den erzielten Beladungen ist der Verbleib des Rosts von Bedeutung für die Arsenentfernung. Das Diagramm (a) der Abbildung 4.17 zeigt den Verbleib des oxidierten Eisens in den vorgestellten Versuchen: In den Versuchen zur natürlichen Sauerstoffkorrosion zeigt sich, dass der überwiegende Anteil an Rost in der Säule verbleibt, während er in den Versuchen zur elektrochemisch forcierten Korrosion überwiegend in Form von Partikeln ausgetragen wird. Entsprechend verteilt ist auch der Verbleib des gebundenen Arsens, ersichtlich in Diagramm (b): Bei natürlicher Sauerstoffkorrosion überwiegt der Rückhalt in der Säule bei relativ niedriger Beladung, während bei den elektrochemisch forcierten Varianten der Austrag von hoch beladenen Arsenpartikeln dominiert und damit eine wesentlich effektivere Arsenbindung durch die entstehende Rostmenge bewirkt wird.



Abb. 4.17 Eisen- und Arsenverbleib in ausgewählten Durchflussversuchen

Eine exakte Trennung von Deckschicht- und Partikeladsorption gelingt in den Durchflussversuchen leider nur unvollständig, da auch bei natürlicher Sauerstoffkorrosion nicht nur Deckschichtadsorption, sondern vor allem in der Anfangsphase auch ein starker Austrag an Partikeln sowie an gelöstem Eisen erfolgt. Andererseits wird ein Teil der frisch in der Lösung gebildeten Rostpartikel bereits im hinteren Teil der Säule durch die Filterwirkung der Stahlwolle zurückgehalten und damit inkorrekterweise als Deckschicht gewertet. Auch in den Versuchen zur elektrochemisch forcierten Korrosion wurde ein deutlicher Rückhalt von feinen Partikel in der Säule durch Sedimentation in der Säule oder Filtrationseffekte in der Kupferwolle beobachtet. Durch Überlagerung dieser Effekte nähern sich die Kenngrößen für die Beladung des Rosts in beiden Varianten aneinander an.

Diagramm (c) zeigt die durch die integrale Bilanz ( $q_B$ ) und, sofern verfügbar, durch Messung ermittelten Beladungswerte ( $q_E$ ) für die Säule nach Abschluss des Versuchs. Dabei sind die Werte in den Versuchen mit Stahlwolle und bei der Kontaktkorrosion mit Kupferwolle deutlich erhöht. Das ist vermutlich auf die Filtrationseffekte der feinen Materialen zurückzuführen, die einen Rückhalt von hochbeladenen, in der Lösung entstandenen Partikeln bewirken. Die Versuche mit groben Frässpänen und mit der Korrosionssäule als "Hohlzylinder-im-Rohr" zur elektrisch forcierten Korrosion weisen dagegen wesentlich geringere Beladungswerte auf, da es dank der größeren Fließquerschnitte zwischen den Metallflächen nicht zu Filtrationseffekten kommt. Vor allem bei der elektrisch forcierten Korrosion können die hochbeladenen Partikel den Reaktor verlassen. Nur die gering beladene immobile Deckschicht befindet sich zum Versuchsende noch in der Säule. Ein höherer Anteil an Arsen in der salzsäurelöslichen Fraktion als in der Oxalsäurefraktion spricht für die These einer vor allem aus Calcit bestehenden Deckschicht an der Kathode (vgl. 4.1.3.2). Das Arsen in der Deckschicht der Frässpäne ist dagegen weitgehend in der oxalsäurelöslichen Fraktion zu finden, wie es für eine durch normale Sauerstoffkorrosion entstandene Deckschicht nach Abschnitt 2.2.2 zu erwarten ist.

Das Diagramm (d) zeigt für die bisher beschriebenen Versuche die integrale Massenbilanz für Eisen und Arsen und ermöglicht zumindest für die Versuche mit Frässpänen sowie mit angelegter Spannung auch Aussagen über einen eventuellen Massenverlust. Insgesamt wird eine zufrieden stellende Wiederfindung erzielt, auffällig ist allerdings ein Arsendefizit von rund 12% beim Versuch der elektrisch forcierten Korrosion (SV 23.1). Gerade bei dieser Methode ist am ehesten eine Entstehung von gasförmigem Arsin, eventuell auch elementarem As<sup>0</sup> möglich, welches das Reaktorsystem unbilanziert verlassen kann. Insbesondere bei den während des laufenden Versuchs (Abb. 4.14) durchgeführten Sondermessungen zum Einfluss der angelegten Spannung (Abb. 4.15 a/b) kam es, wenn auch nur kurzzeitig, zu erheblicher Wasserstoffentstehung, die einen solchen Arsenverlust bewirken könnte.

Ansonsten zeigt das Diagramm (b) für den Versuch mit angelegter Spannung (SV 23.1) und den Versuch mit Kupferwolle (14.3) nochmals deutlich die Effektivität der Arsenbindung durch die freien Partikel im Ablauf. Bei den Frässpänen hingegen wird deutlich, dass die Rostbildung in der Deckschicht nur eine sehr begrenzte Kapazität zur Bindung von Arsen aufweist. Die Ähnlichkeit in der Verteilung von Eisen und Arsen im Versuch mit Stahlwolle deutet auf die Überlagerung von Deckschichtbildung und Partikelrückhalt durch die Filterwirkung des Stahlwollgewebes hin, die eine getrennte Betrachtung beider Phänomene verhindert.

#### 4.2.2 Adsorption von Arsen unter Idealbedingungen im Rührversuch

Zur genaueren Betrachtung des Adsorptionsverhaltens wurden mit der in Abschnitt 3.4.2 vorgestellten Methodik Rührversuche mit Stahlwolle durchgeführt. In Abbildung 4.18 ist die Beladung von Rostpartikeln aus mehreren, unter sehr ähnlichen Bedingungen durchgeführten Rührversuchen in Abhängigkeit von der Konzentration an gelöstem Arsen dargestellt (Gleichung 3.41). In diesem Diagramm sind zusätzlich auch die Beladungswerte von Eisenhydroxidflocken dargestellt, die durch Dosierung von Eisen(II)-chlorid in einem offenen Rührversuch entstanden sind. Aus letzteren Messwerten wurde eine Freundlich-Isotherme ermittelt (entsprechend Gleichung 2.4), die ebenfalls im Diagramm dargestellt wird. Auch wenn die mit Stahlwolle ermittelten Beladungen eine erhebliche Streuung aufweisen, ist eine typische Konzentrationsabhängigkeit, vor allem bei geringen Lösungskonzentrationen, gut zu erkennen. Die eigentlich angestrebte Konstruktion einer Freundlich-Isotherme aus den Zeitreihen der Werte für die Arsen-Lösungskonzentration, die partikulärer Eisenkonzentration und die Beladung in einem Rührversuch zur quantitativen Bewertung der Adsorption gelang aufgrund dieser Schwankungen allerdings nicht. Die bereits in Abschnitt 3.5 erläuterte Fehleranfälligkeit des Quotienten bei kleinen Konzentrationsdifferenzen wirkt sich hier erheblich aus.

Es zeigt sich im Überblick ein weitgehend ähnlicher Verlauf der Beladungswerte für Stahlwolle und Eisen(II)-chlorid. Die Beladung bei der Zielkonzentration von 50  $\mu$ g/L ist mit rund 100  $\mu$ g/mg als hoch einzuschätzen, sie ist vergleichbar mit den Werten für  $q_P$  aus den Durchflussversuchen, insbesondere mit denen der elektrochemisch intensivierten Korrosion. Eine ähnlich hohe Effektivität bei der Dosierung von Fe<sup>2+</sup> gibt Anlass zu der These, dass Flockenbildung und Adsorption in beiden Fällen nach ähnlichen Mechanismen ablaufen. Das Arsen wird durch Copräzipitation aus der Lösung entfernt und in die Eisenhydroxidstruktur eingebunden.

Im Rührversuch führt die intensive Bewegung der Stahlwollefasern nicht nur zu hohen Sauerstoffkonzentrationen und Turbulenzen, die einen verbesserten Stofftransport und eine schnellere Gleichgewichtseinstellung bewirken, sondern auch zu mechanischer Reibung der Stahlwollefasern untereinander sowie am Rührblatt. Das bewirkt einen deutlichen Abrieb an der Deckschicht. Die in Abb. 4.19 dargestellten Werte für die Korrosionsrate 0.Ordnung  $CR(Fe)_{A(Fe)}$  wurden nach Gleichung 3.42 ermittelt. Sie lagen in diesen Versuchen mit Werten zwischen 13 und 41 g/m<sup>2</sup>d deutlich über den Werten aus den Durchflussversuchen, die in der Regel zwischen 1 g/m<sup>2</sup>d und 15 g/m<sup>2</sup>d lagen. Die Werte streuten stark, da dieser Abrieb anscheinend nicht reproduzierbar erfolgte. In der Abbildung sind die im Rührversuch unter sonst gleichen Bedingungen ermittelten Korrosionsraten für deutsche und chilenische Stahlwolle im Vergleich dargestellt. Dabei sind keine Unterschiede erkennbar.



Rostpartikelbeladung für Stahlwolle im Rührversuch

Abb. 4.18 Arsenadsorption an Eisenhydroxid aus Stahlwolle bzw. Eisen(II)chlorid in Rührversuchen



#### Korrosionsraten von Stahlwolle im Rührversuch

Abb. 4.19 Korrosionsraten von zwei Sorten Stahlwolle in Rührversuchen

Rührreaktoren lassen sich gegenüber den elektrochemisch intensivierten Korrosionsformen in gewisser Weise als eine Form der mechanisch forcierten Korrosion betrachten und möglicherweise zur intensivierten Korrosion und Arsenentfernung nutzen, näheres dazu in Abschnitt 4.4. Das ursprüngliche Ziel dieser Versuchsvariante, ein einfaches Testsystem für die Adsorptionseigenschaften der Eisenmaterialen im Durchflussversuch zu gewinnen, wurde allerdings nicht erreicht, denn sowohl das Korrosionsverhalten als auch die Adsorptionseigenschaften sind mit den Gegebenheiten im Durchflussversuch nicht vergleichbar.

## 4.2.3 Verhalten von Arsen(III) in der Aufbereitung

Da bei natürlicher Grundwasserbelastung häufig mit gewissen Anteilen des Arsens in der dreiwertigen Form zu rechnen ist, wurde auch ein erster Versuch zum Verhalten dieser Spezies während des Aufbereitungsprozesses durchgeführt. In Abbildung 4.20 sind die Resultate eines Durchflussversuchs in Form der vier aus Abschnitt 4.1 bekannten Diagrammtypen dargestellt.

Die Eisenkonzentrationen in Diagramm (a) zeigen den typischen Verlauf einer intensiven Korrosion innerhalb der ersten Tage, gefolgt von einer langen, gleichmäßigen aber schwachen Korrosionsphase. Im Diagramm (b) werden neben den bisher betrachteten vier Arsenkonzentrationen auch die Werte für Arsen(III) im Zulauf der Säule und im Ablauf des Sandfilters dargestellt. Da ausschließlich Arsen(III) aus einer Stammlösung zugesetzt wurde, sind die hier erkennbaren Abweichungen zum Wert für das gesamte Arsen im Zulauf nur durch eine bereits im Vorlagebehälter stattfindende biologische Oxidation zu erklären, die nach rund einer Woche Betrieb erhebliche Ausmaße annahm. Erst durch eine direkte Dosierung des Arsens in den Zulaufstrom ab ca. 11.000 BV konnte diese unerwünschte Oxidation gemindert werden. Unabhängig vom Anteil an As(III) im Zulauf ist eine dauerhaft wirksame Entfernung des Arsens in der Säule und in der Nachreinigung zu beobachten. Die Konzentration an Arsen im Ablauf des Sandfilters liegt mit knapp 100 µg/L relativ hoch. Bemerkenswert ist aber die Beobachtung, dass dabei der Anteil an dreiwertigem Arsen nach einer Anlaufphase von ca. 10 Tagen auf nahezu null abnimmt. Im Aufbereitungsprozess, also in der Korrosionssäule und der Nachreinigung, erfolgt eine fast vollständige Oxidation des dreiwertigen Arsens.



Abb. 4.20 Entfernung von Arsen(III) im Durchflussversuch (SV 25.2)

Die Korrosionsrate und die Sauerstoffverbrauchsrate zeigen einen sehr gleichmäßigen, typischen Verlauf mit einer schnellen Abnahme zu Werten in den erwarteten Bereich für natürliche Sauerstoffkorrosion. Ein Einfluss der im Zulauf vorliegenden Arsenspezies auf die Korrosionsrate lässt sich nicht erkennen, genauso wenig wie auf das Verhalten der Beladungskenngrößen  $q_M$  und  $q_P$ . Während  $q_M$  dauerhaft bei hohen Werten von rund 40 µg/mg liegt, zeigt  $q_P$  im Zeitverlauf einen gewissen Anstieg auf ebenfalls hohe 130 µg/mg bei 10.000 BV und bleibt dann stabil. Dabei kommt es zu deutlicher Eisenabgabe im Ablauf (Diagramm (a)), was zur Genauigkeit der Beladungswerte ( $q_P$ ) beiträgt.

Offensichtlich ist der Aufbereitungsprozess mit Korrosion von metallischem Eisen unter Anwesenheit von Sauerstoff prinzipiell auch zur Behandlung von As(III) belasteten Wässern geeignet. Diese Beobachtung lässt sich durch die in Abschnitt 2.3 erwähnten Adsorptionseigenschaften von As(III) an Ferrihydrit sowie die oxidierende Wirkung von Fe(II)/Fe(III) auf Arsen(III) begründen und deckt sich mit den jüngst in [Manning 2002] veröffentlichten Ergebnissen zur Arsenentfernung durch die Oxidation von metallischem Eisen.

Neben einer katalytisch-chemischen Reaktion kann auch ein Einfluss von Mikroorganismen bei der Oxidation von Arsen(III) zur Erklärung herangezogen werden, da sich nach einigen Tagen Versuchsdauer bereits im Zulaufbehälter entsprechende Organismen etabliert hatten. Möglicherweise wurde auch die Korrosionssäule selbst schnell besiedelt. Seith beobachtete in seinen Untersuchungen eine leistungsfähige biologische Oxidation von Arsen(III) nach einer gewissen Einarbeitungszeit im Sandfilter [Seith 1997]. Festzuhalten bleibt an dieser Stelle auch, dass eine befürchtete Reduktion von As(V) zu As(III) durch die metallische Eisenoberfläche sowie die ablaufenden Korrosionsprozesse offensichtlich nicht stattfindet.

## 4.3 Betrachtung der Nachreinigung im Sandfilter

Die Aufgabe von Nachreinigungsstufen besteht in der Sicherstellung einer einwandfreien Wasserqualität beim Verlassen der Anlage. Das bedeutet bei dem hier untersuchten Verfahren in erster Linie eine Abtrennung der aus der Korrosionssäule ausgetragenen Eisenhydroxidpartikel und damit auch des daran gebundenen Arsens. Zusätzlich kann auch gelöstes Eisen im Ablauf auftreten, welches nach Oxidation mit neu eingetragenem Luftsauerstoff ebenfalls ausfällt und in Partikelform entfernt werden kann. Bei dieser Oxidations- und Fällungsreaktion kann noch gelöst vorliegendes Arsen an das gebildete Eisenhydroxid adsorbieren, so dass eine zusätzliche Arsenentfernung realisiert wird. Mit Blick auf einen Praxiseinsatz sollte eine vollständige Partikelentfernung, die auch in der Korrosionssäule möglicherweise angesiedelte Mikroorganismen einschließt, angestrebt werden. Als einfacher Indikator für die Effektivität bietet sich dafür die Messung der Trübung des Anlagenablaufs an.

Erreicht wird das Ziel der Partikelentfernung im Rahmen der durchgeführten Versuche mittels einer Filtration über Mittelsand unter Bedingungen, die näherungsweise einem gering belasteten Schnellfilter entsprechen (siehe Abschnitt 3.2.3). Dem Filter vorgeschaltet ist ein im Aufstrom betriebener Sedimentationsbehälter, der ein Absetzen von großen Eisenhydroxidflocken ermöglichen soll und zusätzlich eine gewisse Aufenthaltszeit zur Oxidation von zweiwertigem Eisen bietet. Die Zuläufe zum Sedimentationsbehälter und von dort zum Sandfilter erfolgen im freien Auslauf, so dass das Wasser an diesen Stellen mit Sauerstoff aus der Luft angereichert wird. Damit wird eine Oxidation des gelösten, zweiwertigen Eisens (siehe Abschnitt 2.3) ermöglicht.

Typische Zeitreihen für die Eisen- und Arsenkonzentrationen sowie die Trübung in den Stufen der Nachreinigung aus dem bereits in Abschnitt 4.1 in Abbildung 4.3 gezeigten Versuch (SV18.1) werden in Abbildung 4.21 dargestellt. Zusätzlich wird im Diagramm (d) der Überstand des Wassers im Sandfilter als Maß für den zunehmenden Druckverlust während des Betriebs gezeigt.

In Diagramm (a) ist zu erkennen, wie der Gehalt des Wassers an gelöstem Eisen in der Nachreinigung von Stufe zu Stufe abnimmt. Sauerstoff gelangt in das Wasser und ermöglicht sowohl im Sedimenter als auch im Sandfilter eine Oxidation. Im Ablauf des Sandfilters sind nur minimale Konzentrationen an gelöstem Eisen zu finden: Mit Ausnahme von zwei Werten liegt die Konzentration immer unter 0,1 mg/L. Auch die Konzentration an gelöstem Arsen nimmt von Stufe zu Stufe ab, ersichtlich in Diagramm (b). In der Anfangsphase verlässt das Arsen die Korrosionssäule nur in bereits gebundener Form. Erst ab einem Durchsatz von 10.000 BV ist gelöstes Arsen im Ablauf der Korrosionssäule messbar. Dieses Arsen wird aber in den beiden Nachreinigungsschritten vom vorhandenen bzw. dort noch entstehenden Eisenhydroxid gebunden. Ab 20.000 BV herrscht in Säule und Nachreinigung ein Mangel an frischen Korrosionsprodukten, so dass stetig zunehmend gelöstes Arsen in den Ablauf gelangt.

Ein Durchbruch von arsenbeladenen Eisenhydroxidpartikeln im Ablauf des Sandfilters wurde nicht beobachtet. Auch die in Diagramm (c) gezeigten Werte für die Trübung an dieser Stelle liegen im Bereich der Werte des Anlagenzulaufs. Die Werte im Säulenablauf und vor allem im Ablauf des Sedimenters liegen dagegen wesentlich höher und schwanken stark, da sowohl Partikel aus der Korrosionssäule ausgetragen werden, als auch eine kontinuierliche Bildung von neuen Eisenhydroxidpartikeln aus gelöstem Eisen im Sedimenter stattfindet.

Der Sandfilter wurde in diesem Versuch stark mit Partikeln belastet und erfüllte seine Reinigungsaufgabe dabei sehr gut. Diagramm (d) zeigt, wie schnell der Druckverlust und der daraus resultierende Überstand im Sandfilter zunehmen. Im Abstand von wenigen Tagen ist jeweils eine manuelle Rückspülung des Sandfilters erforderlich.

Auch in allen anderen Versuchen im Rahmen dieser Arbeit wurden ähnlich positive Erfahrungen mit der Nachreinigung gemacht. Unter den vorliegenden Bedingungen gelang immer eine nahezu vollständige Entfernung von Partikeln sowie von gelöstem Eisen. Gebundenes Arsen wurde ebenso entfernt. Gelöstes Arsen wird dagegen nur bei ausreichender Bereitstellung von gelöstem Eisen oder frischen Rostpartikeln entfernt. Durch die verlängerte Kontaktzeit kann noch Kapazität zur Adsorption von zusätzlichem Arsen genutzt werden. Der Sandfilter alleine führt erwartungsgemäß zu keiner Entfernung von gelöstem Arsen.



Abb. 4.21 Eisenoxidation und Arsenentfernung in Sedimenter und Sandfilter
#### 4.4 Felderprobung in Chile

### 4.4.1 Die Versuchsanlage in Chile

Parallel zu den Arbeiten in Berlin wurden in Nordchile ähnliche Versuche mit Rohwasser des Wasserwerks "Salar del Carmen" der Stadt Antofagasta durchgeführt. Dabei kam eine Versuchsanlage zum Einsatz, die weitgehend dem Aufbau in Berlin entsprach. Mit einem Durchsatz von rund 500 L/d reichte sie allerdings in den Größenbereich einer Trinkwasseraufbereitungsanlage für ein kleines Dorf hinein. Ein Schema der Versuchsanlage ist in Abbildung 4.22 dargestellt, und die technischen Daten sind in Tabelle 4.1 verzeichnet.



Abb. 4.22 Schema der Versuchsanlage in Chile [Höschel 2002]

Die Versuche in Chile wurden im Wesentlichen von Studentengruppen aus Deutschland in enger Kooperation mit dem chilenischen Projektpartner durchgeführt. Eine vollständige Beschreibung aller Versuche sowie eine genaue Dokumentation der Versuchsdurchführung finden sich in den entsprechenden Diplom- und Projektarbeiten ([Meenken 2001], [Dartmann 2001], [Rieckhoff 2002], [Höschel 2002]).

| Parameter       |        | Wert | Parameter                   |                   | Wert     | Parameter              | r                   | Wert |
|-----------------|--------|------|-----------------------------|-------------------|----------|------------------------|---------------------|------|
| Q               | [L/h]  | 9,1  | d <sub>i</sub> (Säule)      | [m]               | 0,1      | V (Sed.)               | [L]                 | 50   |
| Q               | [L/d]  | 218  | h (Packung)                 | [m]               | 0,6      | t <sub>R</sub> (Sed.)  | [h]                 | 5,5  |
| Durchsatz       | [BV/d] | 46   | V <sub>Bett</sub> (Packung) | [L]               | 4,71     | V <sub>Bett</sub> (SF) | [L]                 | 7,85 |
| V <sub>F</sub>  | [m/h]  | 1,2  | t <sub>R</sub> (Packung)    | [h]               | 0,52     | $t_{R}$ (SF)           | [h]                 | 0,9  |
| m <sub>Fe</sub> | [g]    | 2258 | a <sub>M</sub>              | $[m^2/g]$         | 0,000809 | h <sub>Bett</sub> (SF) | [m]                 | 1,0  |
| 3               | [%]    | 93,9 | A <sub>Fe</sub>             | [m <sup>2</sup> ] | 1,82     | a <sub>V</sub>         | [m <sup>2</sup> /L] | 0,39 |

 Tab. 4.1
 Technische Daten der Versuchsanlage in Chile im vorgestellten Versuch

## 4.4.2 Darstellung von ausgewählten Ergebnissen aus Chile

Exemplarisch wird im Folgenden ein 32 Tage dauernder Versuch mit einer Packung aus Frässpänen II (siehe Tabelle 3.2) vorgestellt. Die Ergebnisse des Versuchs werden wie in Abschnitt 4.1.1.4 anhand von vier Diagrammen in Abbildung 4.23 dargestellt und näher erläutert.

Auffällig an den im Diagramm (a) gezeigten Eisenkonzentrationen ist der zu Versuchsbeginn außerordentlich hohe Sauerstoffverbrauch, der eine entsprechend hohe Rostbildung widerspiegelt. Ermöglicht wurde dieser hohe Sauerstoffverbrauch durch eine starke Übersättigung des Rohwassers mit Sauerstoff, dessen Konzentration meist deutlich über 10 mg/L lag. Vermutlich wurde diese hohe Konzentration durch die besondere geografische Situation des Wasserwerks am Ende einer Fernwasserleitung aus den Hochanden verursacht. Der Austrag an Eisen bzw. Rost aus der Säule ist im Vergleich zur Rostentstehung sehr gering. Der Rost wird überwiegend in Form einer stabilen Deckschicht auf den Frässpänen gebildet. Die geringe Filtergeschwindigkeit von 1,2 m/h ermöglicht zusätzlich eine sofortige Sedimentation von entstandenen Partikeln in der Säule.

In der Anfangsphase des Versuchs ist in Diagramm (b) deutlich eine Entfernung des Arsens aus dem Wasser zu beobachten, die dann mit dem Rückgang der Korrosion stark zurückgeht. Der Großteil des Arsens verlässt die Anlage in gelöster Form, immer oberhalb des Zielwerts von 50  $\mu$ g/L.



Abb. 4.23 Ergebnisse eines Durchflussversuchs in Chile mit einer Packung aus Frässpänen

Die Korrosionsraten in Diagramm (c) verdeutlichen den Rückgang der Korrosion im Zuge der Ausbildung einer stabilen Deckschicht auf den Frässpänen. Es zeigt sich für die Sauerstoffverbrauchsrate ein typischer, gleichmäßiger Verlauf, während  $CR(Fe)_{Ox}$  starke Schwankungen aufweist. Die Schwankungen werden durch die unterschiedlichen Zulaufkonzentrationen des Sauerstoffs verursacht, die den Wert der Korrosionsrate 0.Ordnung deutlich beeinflussen. In der Sauerstoffverbrauchsrate sind sie bereits einbezogen, auf diese Weise wird eine genauere Bestimmung des Werts ermöglicht.

Hinsichtlich der Beladungskenngrößen zeigt sich in Diagramm (d) die aus den Laborversuchen bekannte Diskrepanz zwischen der relativ hohen Beladung der Partikel und der niedrigen Momentanbeladung des Rosts in der Deckschicht. Angesichts der insgesamt sehr geringen Eisenabgabe und der geringen Differenz zwischen  $c(As)_{Ab}$  und  $c(As)_{Ab,g}$  im Ablauf in diesem Versuch sind allerdings die Fehler bei der Bestimmung der Partikelbeladung als hoch einzuschätzen. Unrealistische Werte wurden nicht in die Darstellung einbezogen.

Eine Massenbilanz über den Versuchszeitraum für Arsen zeigt, dass rund 20% des Arsens aus dem Zulauf in der Säule zurückgehalten werden, während 80% die Säule fast vollständig in gelöster Form verlassen. Die aus der Bilanz ermittelte mittlere Beladung des Rosts in der Säule  $q_B$  liegt bei 7,6 µg/mg.

Prinzipiell zeigt der Versuch in Chile gegenüber den Versuchen aus Deutschland ein sehr ähnliches Verhalten, allerdings weist er etwas niedrigere Kennwerte für Korrosion und Adsorption als in Deutschland auf. Zu beachten ist beim Vergleich, dass der Versuch mit dem gleichen Einsatzmaterial in Deutschland bei einem wesentlich höheren Durchsatz, nämlich 332 BV/d gegenüber 46 BV/d betrieben wurde. Nach kürzerer Laufzeit liegen die Werte des Versuchs in Chile bereits deutlich niedriger.

Neben diesem Versuch wurden weitere Versuche zur natürlichen Sauerstoffkorrosion vorgenommen, die ein weitgehend übereinstimmendes Verhalten zeigten und daher nur mit ihren Kenngrößen im folgenden Abschnitt erwähnt werden. Es wurden auch Versuche zur galvanischen und zur elektrisch forcierten Korrosion vorgenommen, die in dieser Arbeit aber keine Berücksichtigung finden.

# 4.4.3 Interpretation der Resultate und Vergleich mit den Ergebnissen aus Deutschland

Die Kenngrößen für Korrosion und Adsorption nach der Startphase aus verschiedenen Versuchen zur natürlichen Sauerstoffkorrosion in Deutschland und in Chile werden in Tabelle 5.2 gegenübergestellt. Insgesamt zeigt sich ein sehr ähnliches Verhalten für Korrosion und Adsorption. Es scheint, als ob die Kennwerte dafür in Chile etwas niedriger ausfallen als in Deutschland, allerdings ist der konkrete Vergleich auf Grund von Unterschieden in den Betriebsbedingungen wie Filtergeschwindigkeit, Versuchslaufzeit sowie den zum Teil erheblichen Streuungen der Messwerte in Chile schwierig zu ziehen. Insgesamt ist es in den Versuchen in Chile nicht gelungen, das Aufbereitungsziel von 50  $\mu$ g/L im Trinkwasser zu erreichen. Die plausibelste Erklärung für das ungünstigere Verhalten in Chile ist der Einfluss der Wasserqualität. Da das Wasser ein Mischwasser ist, das aus verschiedenen Wasserfassungen in einer geologisch aktiven Zone der Hochanden stammt, ist neben dem hohen Arsengehalt auch mit anderen mineralischen Bestandteilen zu rechnen. Die mit 1200  $\mu$ S/cm deutlich über dem Berliner Wert von 800  $\mu$ S/cm liegende Leitfähigkeit weist schon deutlich darauf hin. Vor allem der mit rund 8,2 deutlich im alkalischen Bereich liegende pH-Wert trägt sowohl zur geringeren Korrosionsrate als auch zur geringeren Beladung bei. Ein Vergleich der wasserchemischen Daten der Versuchswässer findet sich in Anhang A.

Zu den als besonders relevant erachteten Wasserinhaltsstoffen Phosphat und Silikat liegen aus Antofagasta leider nur unvollständig Messwerte vor, es wurde aber ein sehr hoher Wert von 70 mg/L Silikat im Trinkwasser gegenüber 12,4 mg/L in Berlin berichtet [Dartmann 2001].

| Nr. | Versuch                     | r(O <sub>2</sub> )<br>[L/m <sup>2</sup> min] | CR(Fe)<br>[g/m <sup>2</sup> d] | qM<br>[μg/mg] | qP<br>[µg/mg] | Durchsatz<br>[BV] |
|-----|-----------------------------|----------------------------------------------|--------------------------------|---------------|---------------|-------------------|
| 1   | Stahlwolle in Deutschland   | 0,06-0,1                                     | 1-2                            | 30-60         | 50-300        | 24.000            |
| 2   | Frässpäne II in Deutschland | 0,1-0,15                                     | 2-3                            | 4-11          | 100-200       | 7.000             |
| 3   | Frässpäne II in Chile       | 0,06                                         | 0,5-1,5                        | 7,6           | 20-60         | 1.500             |
| 4   | Frässpäne III in Chile      | 0,07                                         | 0,5-1,5                        | 1-6           | 20-60         | 1.100             |
| 5   | Frässpäne I in Chile        | 0,06                                         | 1-2                            | 12            | 71            | 9.000             |

 Tab. 4.2
 Vergleich der Kenngrößen für Korrosion und Adsorption

#### Erläuterungen:

4. [Höschel 2002]: Exp. Nr. 11, nicht dargestellt, zwei Säulen hintereinander.

5. [Rieckhoff 2002]: Exp. Nr. 1, nicht dargestellt, mit Trinkwasser in Antofagasta, starke Schwankungen.

Als Fazit lässt sich festhalten, dass das Anlagenkonzept in der vorhandenen Form keine ausreichende Reinigung des Trinkwassers ermöglicht. Eine Steigerung der Reinigungsleistung lässt sich nur durch eine Intensivierung der Korrosion oder eine starke Vergrößerung des Reaktorvolumens erreichen. Die Alternativen zur Intensivierung der Korrosion werden in Abschnitt 5.1 zusammenfassend dargestellt und bewertet. Für einen zukünftigen Praxiseinsatz soll im Abschnitt 5.2 die Variante der natürlichen Sauerstoffkorrosion, die den Ausgangspunkt dieser Arbeit darstellt, näher betrachtet werden. Um die bisher begrenzte Arsenentfernung zu steigern, wird dort eine Anlage in Form von mehreren hintereinander geschalteten Korrosionsreaktoren mit Zwischenbelüftung konzipiert.

<sup>1.</sup> SV 18.1, dargestellt in Abbildung 4.3.

<sup>2.</sup> SV 26.2, dargestellt in Abbildung 4.4.

<sup>3. [</sup>Höschel 2002]: Exp. Nr. 10, dargestellt in Abbildung 4.22.

# 5 Abschätzung der Einsatzmöglichkeiten des Verfahrens

## 5.1 Vergleichende Beurteilung der untersuchten Verfahrensvarianten

Im Rahmen dieser Arbeit wurden drei Varianten der Korrosion untersucht: natürliche Sauerstoffkorrosion, galvanisch induzierte Kontaktkorrosion und elektrisch forcierte Korrosion. Zu den Hauptvarianten wurden die wesentlichen Einflussfaktoren näher analysiert:

Von den zur **natürlichen Sauerstoffkorrosion** untersuchten Materialen erscheinen nur die groben Frässpäne zur Anwendung in der Praxis als geeignet. **Granulat** in Form einer Schüttung hat sich aufgrund der geringen Porosität als sehr verstopfungsanfällig und damit ungeeignet erwiesen.

Feine Stahlwolle zeichnet sich durch hohe Aktivität bei hoher Porosität aus, ist aber in der Handhabung schwierig, beispielsweise beim Einbringen in die Säule, und führt auf Grund der hohen Aktivität trotz hoher spezifischer Durchsätze in BV zu kurzen Standzeiten in Tagen. Ferner sind die Kosten bei einem Einzelhandelspreis von rund 10 Euro pro kg ausgesprochen hoch. Auch unter Ansatz niedrigerer Großhandelspreise läge der Preis immer noch in einer mit kommerziellem Eisenchlorid vergleichbaren Größenordnung. Als Modellsystem für das Korrosionsverhalten und das Adsorptionsverhalten von anderen Eisenmaterialen ist Stahlwolle nur bedingt geeignet, da sie durch ihre feine Faserstruktur eine sehr hohe Aktivität pro Volumeneinheit, eine geringere Neigung zur Deckschichtbildung als ebene Eisenflächen und einen hohen Partikelrückhalt im Gewebe der Packung aufweist. Diese Eigenschaften führen zu deutlichen Abweichungen gegenüber dem Verhalten von gröberen Materialien wie den Frässpänen.

**Grobe Frässpäne** dagegen fallen als Abfallprodukt in der Metallverarbeitung an. Sie lassen sich von geeigneten Werkstätten sortenrein beziehen und mit relativ einfachen Verfahren wie einer gründlichen Salzsäurespülung zum Einsatz vorbereiten. Sie lassen sich problemlos als homogene Packung in einen Reaktor einbringen und lassen dank ihrer groben Struktur Verstopfungen nicht befürchten. Die relativ geringe Aktivität pro Volumeneinheit des Filterbetts muss aber bei der Bemessung der Reaktoren berücksichtigt werden. Ein entsprechender Entwurf für eine Pilotanlage wird in Abschnitt 5.2 vorgestellt.

Schlüsselfaktor zur Intensivierung der **Sauerstoffkorrosion** ist das Angebot an Sauerstoff an der Metalloberfläche. Die in dieser Arbeit verwendeten geschlossenen Rohrrektoren weisen diesbezüglich eher ungünstige Eigenschaften auf: Ein zusätzlicher Eintrag im Reaktor kann nicht erfolgen. Eine offene Reaktorgestaltung, beispielsweise in Form einer Kaskade aus Belüftungsstufen im Überfall und Korrosionspackungen würde eine gleichmäßig hohe Sauerstoffkonzentration entlang des Reaktors aufrechterhalten und eine intensivere Korrosion ermöglichen.

Sowohl die **galvanisch** als auch die **elektrisch forcierten Korrosionsformen** führen im Gegensatz zu der zuvor beschriebenen natürlichen Sauerstoffkorrosion nicht zur Ausbildung von stabilen Deckschichten, sondern sie ermöglichen eine intensive Freisetzung von Fe<sup>2+</sup> Ionen, die erst in der Lösung oxidiert werden und als Eisenhydroxid ausfallen. Die in der Lösung gebildeten Eisenhydroxidpartikel entfernen Arsen sehr effektiv und sind in der Beladung mit den Fällungsprodukten von dosierten Eisensalzlösungen vergleichbar. Unter diesem Gesichtspunkt sind die Arsenentfernungsverfahren mit intensivierter Korrosion der Anwendung der natürlichen Sauerstoffkorrosion deutlich überlegen.

Eine weitere Variante, die **mechanisch unterstützte Korrosion** von Eisen durch Bewegung und Reibung zur Deckschichtzerstörung im Rührreaktor, wurde vom chilenischen Projektpartner vertieft untersucht und lieferte zunächst viel versprechende Ergebnisse hinsichtlich der Arsenentfernung. Der Betrieb eines solchen Reaktors wäre jedoch mit erheblichem Aufwand hinsichtlich Energie, Wartung und Verschleiß verbunden, so dass diese Technik nicht die in Kapitel 1 definierten Anforderungen an ein einfaches und sicheres Verfahren erfüllt. Daher wird diese Technik im Rahmen dieser Arbeit nicht weiter berücksichtigt. Zur näheren Bewertung sei auf die in Antofagasta angefertigten Arbeiten von Rogelio Alvarez Canelo [Alvarez 2001] und Claudio Ledesma Rojas [Ledesma 2001] verwiesen.

Die in Abschnitt 4.1.2 vorgestellte **galvanisch induzierte Korrosion** in Eisen-Kupfer-Kontaktelementen zeigte ein sehr gleichmäßiges Korrosionsverhalten und führte zu anhaltend hohen Arsenentfernungsgraden bei einfachem Aufbau der Korrosionssäulen. Allerdings ist vor jeder weiteren praktischen Anwendung das Problem der Kupferfreisetzung zu beachten. Wichtigster Ansatz zur Lösung des Problems ist vermutlich eine verbesserte Gestaltung der geometrischen Struktur des Korrosionselements. Eine dauerhaft leitende Verbindung zwischen möglichst dicht beieinander liegenden Metalloberflächen bei ungehindertem Abtransport der Eisenhydroxidpartikel muss sichergestellt werden. Hier besteht noch experimenteller und theoretischer Untersuchungsbedarf um diese korrosionschemisch elegante Verfahrensvariante voranzubringen. Auch nach einer möglichen Lösung des Kupferfreisetzungsproblems bleibt im Einsatz ein deutlicher Wartungsbedarf hinsichtlich der Partikelabtrennung im Sandfilter sowie zur Deckschichtentfernung an der Kupferkathode mit Hilfe von Carbonat lösenden Säuren bestehen.

Auch die in Abschnitt 4.1.3 vorgestellte **Korrosion mit extern angelegter Spannung** führt hinsichtlich der Arsenentfernung zu hervorragenden Ergebnissen. Das Eisenhydroxid fällt in Form von feinen, stark mit Arsen beladenen Partikeln an, die sich im Sandfilter sehr gut abscheiden lassen. Die Eisenfreisetzung lässt sich über die angelegte Spannung sehr gut steuern und so auch an schwankende Volumenströme anpassen. Als Stromquelle könnte ein geeignetes Solarmodul dienen, da die erforderlichen Spannungen mit weniger als einem Volt gering sind. Einem Massenstrom an Fe<sup>2+</sup> von 1 g/h entspricht nach Gleichung 3.14 ein Strom von 0,96 A. Bei einer Spannung von 0,8 V ergibt sich daraus eine notwendige Leistung von 0,77 W. Mit Hilfe dieses Stroms ließen sich 100 L/h mit 10 mg/L Fe<sup>2+</sup> versetzen. Die deutlich vorhandene Neigung zur Kalkablagerung an der Kathode und die damit verbundene Widerstandszunahme könnte bei Einsatz von Fe-Fe-Korrosionssystemen durch ein regelmäßiges Umpolen der Elektroden vermieden werden, da so jede Elektrode zeitweise als Fe<sup>2+</sup> abgebende Anode eine Reinigungsphase durchläuft. Aufgrund der Bildung von Gasblasen wäre auch für diese Korrosionsvariante eine offene Reaktorgestaltung angemessener, um eine Anreicherung von Wasserstoff und die Blockade von Strömungskanälen durch Gasblasen zu vermeiden.

Ob die Wasserstoffbildung ein sicherheitstechnisches Problem darstellt hängt im Wesentlichen von den lokalen Gegebenheiten ab und muss sorgfältig geprüft werden. Explosionsgefahr besteht bei Wasserstoffgehalten in der Luft von 4-75% [Roempp 1995]. Kleine Anlagen, die offen und

belüftet aufgestellt werden, sollten kein Explosionsrisiko darstellen. Auch eine mögliche Arsingasentstehung stellt unter diesen Bedingungen kaum eine gesundheitliche Gefahr dar. Größere Anlagen in geschlossenen Räumen sollten dagegen genauer auf Risiken untersucht werden. Die WHO gibt für Arsin am Arbeitsplatz eine Richtkonzentration von 0,05  $\mu$ g/m<sup>3</sup> an [WHO 2002]. Hinsichtlich des Gasaustrags und der Belüftung wären offene Reaktoren mit Plattenelektroden möglicherweise eine sinnvolle Alternative. Auch ein diskontinuierlicher Betrieb wäre möglich: Das Wasser könnte in einem Vorlagebehälter aufbereitet werden, indem man das Elektrodenpaar eines mobilen Geräts kurzzeitig einsetzt und eine entsprechende Eisendosis freisetzt, die anschließend als Flocken sedimentiert und abfiltriert werden kann.

Die **Sandfiltration** stellt einen essentiellen Bestandteil des Aufbereitungsprozesses dar, um eine gute Ablaufqualität sicherzustellen. Das eingesetzte Filtermaterial und die Betriebsbedingungen haben sich zur Reinigung des Wassers als sehr geeignet erwiesen, allerdings ist der Wartungsaufwand durch die notwendigen Rückspülungen bei hoher Belastung des Filters sehr groß. Insbesondere bei den galvanisch und elektrisch forcierten Korrosionsvarianten wird der überwiegende Teil des Rosts aus der Korrosionssäule ausgetragen und muss in den Nachreinigungseinrichtungen vom Wasser abgetrennt werden. Für einen Praxiseinsatz sollte daher auf jeden Fall eine Bauform und Bemessung gewählt werden, die einen dauerhaften Betrieb mit seltenen Rückspülungen ermöglicht. Der Einsatz von großzügig bemessenen Roughing-Filtern nach Abschnitt 2.5 bietet sich zur Vorreinigung an.

Zum Einsatz in der Trinkwasseraufbereitung erscheint derzeit die elektrisch forcierte Korrosion am ehesten realisierbar. Unter Beachtung der zuvor genannten Sicherheitsaspekte lassen sich mit einfachen Mitteln effektive Eisendosiereinrichtungen fertigen, die in Kombination mit einfachen Enteisenungsanlagen und Sandfiltern eine effektive Arsenentfernung bewirken können.

Eine interessante Variante für eine neue Versuchsanlage wäre ein passives System zur Arsenentfernung in einem als Trinkwasserquelle oder zur Bewässerung dienendem Fließgewässer. Eine Kombination aus Belüftungskaskade und sehr großen Korrosionspackungen könnte eine anhaltende und unkomplizierte Arsenentfernung bzw. Arsenbindung bewirken. Insbesondere die lokalen Gegebenheiten in Nordchile würden sich für eine solche Reinigungsanlage anbieten, da dort sowohl die Fläche als auch das notwendige Gefälle zum Betrieb einer solchen Anlage zur Verfügung stehen.

#### 5.2 Analyse der Anwendbarkeit des Verfahrens mit natürlicher Sauerstoffkorrosion

#### 5.2.1 Vorgehensweise zur Konzeption einer Aufbereitungsanlage

Auf der Grundlage der bisher vorgestellten Ergebnisse und Erfahrungen soll nun der Weg skizziert werden, wie bei der Konzeption einer neuen, praxisorientierten Arsenentfernungsanlage auf der Grundlage der natürlichen Sauerstoffkorrosion vorzugehen ist.

Dabei sind folgende Randbedingungen zu beachten:

- Ziel ist die Verringerung des Arsengehalts von 500 µg/L auf 50 µg/L bei einem Volumenstrom von 1200 L/d, entsprechend 50 L/h. Diese Menge dient entsprechen Abschnitt 1.3 zur Versorgung von rund 60 Menschen.
- Es werden konservative Kenngrößen für Korrosion und Adsorption angenommen:  $r(O_2) = 0,05 L/m^2 min$   $q_M = 5 \mu g/mg$  in der Deckschicht. Als Material kommen Frässpäne II zum Einsatz.
- Es wird von einer Sauerstoffkonzentration von 8 mg/L im Zulauf ausgegangen, von denen maximal 4 mg/L verbraucht werden sollen, um innerhalb der 1. Halbwertszeit eine hohe Reaktionsgeschwindigkeit und damit kleine Reaktorvolumina zu erhalten.
- Die Filtergeschwindigkeit ist bei gegebener Grundfläche des Reaktors durch den Volumenstrom festgelegt. Hier wird eine quadratische Grundfläche eines Reaktorelements von 0,3 m x 0,3 m (b<sub>1</sub> und b<sub>2</sub> in Gl. 5.3) gewählt.

Als erster Schritt muss die Anzahl der erforderlichen Kaskadenstufen ermittelt werden. Die Anzahl hängt nur von der zu entfernenden Arsenkonzentration ab und ist vom Volumenstrom unabhängig:

$$n = \frac{c(As)_{Zu} - c(As)_{Ab}}{q_M \cdot (c(O_2)_{Zu} - c(O_2)_{Ab}) \cdot 2.33} = 9,66 \approx 10$$
(Gl. 5.1)

Für eine einzelne Stufe muss nun die notwendige Betthöhe der Korrosionspackung aus ermitteltet werden. Dazu dient Gleichung 3.20 nach einer Umformung:

$$L_{Packung} = \ln\left(\frac{c(O_2)_{Zu}}{c(O_2)_{Ab}}\right) \cdot \frac{Q}{r(O_2) \cdot a_V \cdot \varepsilon \cdot A_{Filter}} = 0,36m$$
(Gl. 5.2)

Jedes Reaktorelement benötigt eine Packung von 15,2 kg Eisenspänen:

$$m(Fe)_{Met.} = \frac{L_{Packung} \cdot b_1 \cdot b_2 \cdot a_V}{a_M} = 15,2kg$$
 (Gl. 5.3)

Insgesamt werden in der Anlage mit 10 Stufen also 152 kg Eisen eingesetzt.

Unter der Annahme, dass vom eingesetzten Material rund 50% verbraucht werden können, bevor ein Ersatz des Korrosionsmaterials notwendig wird, ergibt sich bis dahin ein Durchsatz von 815.450 L bzw. 25.285 BV.

$$Durchsatz(50\%) = \frac{1}{2} \cdot \frac{m(Fe)_{Met.}}{V_{Bett} \cdot c(Fe)_{Ox}} = 25285BV$$
(Gl. 5.4)

Das entspricht einer Standzeit von rund 680 Tagen im kontinuierlichen Betrieb. Die Standzeit ist unabhängig von der Anzahl der Stufen, da ja in allen Stufen gleichzeitig eine gleich starke Korrosion erzielt werden soll.

Vor Aufbau einer vollständigen Kaskadenanlage bietet sich eine Verifikation der hier kalkulierten Werte an, die auch an einem einzelnen Prototypen einer Stufe erfolgen kann. Trotz des offenen Reaktorkonzepts sollte eine Sauerstoffmessung im Überstand über dem Eisen sowie über dem Kies möglich sein und Auskunft über den Sauerstoffverbrauch geben können. Wie eine einzelne Stufe sowie die gesamte Kaskade aufgebaut werden könnten zeigt Abbildung 5.1.

- Als Nachreinigungseinrichtung könnte zum Abschluss ein weiteres Element, jedoch gefüllt mit je einem Bett aus grobem sowie mittlerem Sand zum Einsatz kommen. Die Reinigung könnte dann wie bei einem Roughing-Filter durch schnelles Entleeren erfolgen.
- Derartige Reaktorelemente könnten entweder gemauert oder aus Beton gegossen werden. Alternativ ließe sich eine solche Kaskade auch in einer Reihenschaltung von Fässern oder ähnlichen Kunststoffbehältern realisieren.
- Die vorgestellte Kaskade aus zehn Elementen erfordert einen Höhenunterschied von mehr als 5m. Es bietet sich der Aufbau einer solchen Kaskade am Hang an, möglicherweise ist dieses Höhenniveau bereits vorhanden. Alternativ könnte die Kaskade auch auf einem gestaffelten Gerüst aufgebaut werden. Das Wasser müsste dann zuerst in einen Hochbehälter auf der obersten Plattform gepumpt werden.
- Die beschriebene Anlage wäre für den kontinuierlichen Betrieb unter den eingangs genannten Bedingungen ausgelegt. Nicht benötigtes Reinwasser kann gespeichert oder abgeleitet werden. Ein Stillstand der Anlage mit stagnierendem Wasser sollte vermieden werden oder erfordert besondere Maßnahmen. Weiteres dazu in Abschnitt 5.3.2.





# 5.2.2 Anwendbarkeit des passiven Korrosionsverfahrens in Chile

Insgesamt muss an dieser Stelle angesichts der bisher gewonnenen Erfahrungen und des für einen Praxiseinsatz im Abschnitt zuvor dargestellten Aufwands angemerkt werden, dass das hier konzipierte Verfahren die in Kapitel 1 aufgestellten Anforderungen an eine einfache und sichere Trinkwasseraufbereitung nur eingeschränkt erfüllt. Im direkten Vergleich zu anderen Aufbereitungsverfahren sind die Vorteile derzeit nicht so dominierend, dass eine Verdrängung der Konkurrenzverfahren vom Markt zu erwarten wäre.

Neben der direkten Bedrohung der menschlichen Gesundheit durch die Aufnahme von arsenhaltigem Trinkwasser besteht auch das Risiko einer Arsenaufnahme über belastete Nahrungsmittel. Vereinzelte Veröffentlichungen zeigen, dass auch dieser Belastungspfad relevant werden kann [Meharg 2002]. Welches Ausmaß die Belastung annehmen kann und welche Pflanzen besonders anfällig für eine Arsenaufnahme sind, ist allerdings noch weitgehend ungeklärt. Ein passives Verfahren auf der Basis von korrodierendem Eisen wäre grundsätzlich geeignet, eine Verringerung des Arsengehalts in Bewässerungswasser zu bewirken.

Eine Konzeption für ein solches Verfahren zur Aufbereitung von Bewässerungswasser wurde von L. Cáceres skizziert [Caceres 2000]. Zu beachten ist dabei allerdings, dass die benötigten Schüttungsvolumina sehr groß zu bemessen sind und auch entsprechende Partikelrückhalteinrichtungen in Ablauf vorzusehen sind.

# 5.2.3 Anwendbarkeit des passiven Korrosionsverfahrens in Bangladesch und Indien

Die Rahmenbedingungen in Indien und Bangladesch sprechen nicht für den Einsatz dieses Verfahrens: Die Fläche für den Aufbau von großvolumigen Reaktorkaskaden ist häufig nicht vorhanden, ebenso wenig wie natürliche Höhenunterschiede. Das stark arsenhaltige Grundwasser wird in der Regel diskontinuierlich per Handpumpe aus dem Brunnen zur Oberfläche gefördert und ist sauerstoffarm und stark eisenhaltig.

Vor dem Einsatz dieses Verfahrens müsste also eine Belüftung und Eisenentfernung erfolgen. Das dann noch enthaltene Arsen könnte mit einem Korrosionsverfahren weiter reduziert werden. Bei den in dieser Region auftretenden hohen Arsenkonzentrationen wäre möglicherweise auch eine starke Aufeisenung unter vollständigem Sauerstoffverbrauch durch eine lange Kontaktzeit bis hin zur Stagnation angemessen. Die Aufeisenung erfordert dann als zweiten Schritt eine gewöhnliche Enteisenung, bei der dann das restliche Arsen aus dem Wasser entfernt wird.

# 5.3 Weitere Aspekte zum Praxiseinsatz der verschiedenen Korrosionsverfahren

Neben den im Rahmen dieser Arbeit gewonnenen Erfahrungen und ermittelten Kenngrößen zur Leistungsfähigkeit der Verfahren sind noch weitere Aspekte zu berücksichtigen, wenn ein Einsatz eines der hier untersuchten Verfahren in der Praxis erwogen wird. Diese Aspekte wurden in dieser Arbeit nicht näher untersucht, aus den vorhandenen Erfahrungen und aus der Literatur lassen sich jedoch plausible Antworten auf diese Fragen ableiten.

## 5.3.1 Verunreinigung des Stahls mit Schwermetallen

Wie in Abschnitt 3.2.1 erläutert, kommt in diesem Verfahren unlegierter Baustahl als Korrosionsmaterial zum Einsatz. Aus Kostengründen attraktiv erscheint dabei die Verwendung von Abfällen aus der Metallverarbeitung wie beispielsweise Frässpänen. Ähnlich wie bei der kommerziellen Herstellung von Flockungsmitteln ist bei der Auswahl des Materials streng auf die Vermeidung von Verunreinigungen, insbesondere durch Schwermetalle, zu achten.

Ein Anteil von 0,1% Blei im Eisenmaterial führt bei einer Eisen-Zielkonzentration von 10 mg/L zu einer Blei-Freisetzung von 0,01 mg/L und erreicht damit theoretisch den Grenzwert der TrinkwV. Andere Schwermetallgrenzwerte liegen etwas höher (Ni: 0,02 mg/L; Cr: 0,05 mg/L, Mn: 0,05 mg/L). Verunreinigungen durch die besonders gefährlichen Schwermetalle Cadmium (0,005 mg/L) oder Quecksilber (0,001 mg/L) sind im Bereich der Metallverarbeitung normalerweise nicht zu erwarten. Das Risiko wird allerdings durch zwei Aspekte verringert:

- 1. Legierter Stahl ist in der Regel weniger korrosionsanfällig als normaler Baustahl und daher wird im Korrosionsreaktor auch weniger davon freigesetzt.
- 2. Die Eisenfreisetzung und anschließende Flockenbildung bewirkt auch eine Adsorption von gelösten Schwermetallionen, die auf diese Weise zwar zunächst freigesetzt, aber auch wieder aus dem Wasser entfernt werden.

Trotz dieser Überlegungen ist vor einem realen Einsatz zur Trinkwasserversorgung aus Sicherheitsgründen eine Analyse des vorgesehenen Eisenmaterials und des aufbereiteten Trinkwassers anzuraten.

#### 5.3.2 Betrieb des Verfahrens bei Stagnation

Die in dieser Arbeit vorgenommenen Untersuchungen wurden alle an kontinuierlich betriebenen Aufbereitungsstrecken durchgeführt. Gerade bei kleinen, dezentralen Aufbereitungsanlagen ist aber auch mit Stillstandszeiten zu rechen, beispielsweise nachts, wenn der Vorratsbehälter für das Reinwasser gefüllt ist oder die Hand- bzw. Solarpumpe für das Rohwasser nicht betrieben wird. In einem solchen Stagnationsfall wird der im Wasser vorhandene Sauerstoff im inneren des Korrosionsreaktors in wenigen Stunden verbraucht und es kommt dann zu der bereits in Abschnitt 2.2.2 beschriebenen Komproportionierungsreaktion des Eisenhydroxids der Deckschicht mit dem metallischen Eisen. Als Ergebnis gehen sowohl Fe<sup>2+</sup> als auch das in der Deckschicht gebundene Arsenat in Lösung. Für eine weitergehende Reduktion des As(V) zu As(III) gibt es in den Untersuchungen dieser Arbeit keine Anzeichen, sie kann aber grundsätzlich nicht ausgeschlossen werden. Das stark mit Eisen und Arsen belastete Wasser darf in dieser Form auf keinen Fall an die Nutzer abgegeben werden.

Hier zeigt sich die Bedeutung einer leistungsfähigen Nachreinigung in Form einer Filtration für Erfolg und Sicherheit des gesamten Verfahrens. Vom Verhältnis Arsen zu Eisen her sollte eine erneute Adsorption des Arsens an das wieder oxidierte und ausgefallene Eisen(III) möglich sein. Allerdings müssen für diesen stark belasteten Reaktorinhalt eine gründliche Belüftung und eine weitgehende Partikelentfernung erfolgen, um eine akzeptable Wasserqualität sicher zu stellen. Alternativ könnte die gesamte Anlage bei Betriebsunterbrechungen auch über die Spülabläufe vollständig entleert werden. So ließe sich eine Rücklösung des Eisenhydroxids ebenfalls vermeiden.

## 5.3.3 Einfluss von Wasserinhaltsstoffen

Im Rahmen dieser Arbeit wurde der Einfluss der Wasserqualität nur vergleichend zwischen den Experimenten in Deutschland und den verschiedenen Standorten in Chile untersucht. Systematische Parameterstudien gestalten sich sehr schwierig, da eine Beurteilung der Reinigungsleistung nur anhand einer vollständigen Aufbereitungstrecke vorgenommen werden kann. Sowohl zur Korrosion als auch zur Arsenadsorption gibt es aber bereits umfangreiche Erkenntnisse und Erfahrungen über die Auswirkung einzelner Parameter auf den Prozess. Die wichtigsten Tendenzen einer Parametererhöhung werden in Tabelle 5.1 dargestellt.

| #                                                                                                                                                                                                     | Parameter                           | Wirku       | ng auf: | Erläuterung:                                                                                                                                     |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                       | Zunahme von:                        | Korr.       | Ads.    |                                                                                                                                                  |  |  |
| 1                                                                                                                                                                                                     | рН                                  | -           | -       | Stabilisierung der Deckschicht, negative Oberflächenladung.                                                                                      |  |  |
| 2                                                                                                                                                                                                     | O <sub>2</sub>                      | +           | 0       | Sauerstoffkorrosion ist Reaktion 1. Ordnung.                                                                                                     |  |  |
| 3                                                                                                                                                                                                     | NaCl                                | +           | 0       | Erhöhte Leitfähigkeit ermöglicht höhere Korrosionsströme.                                                                                        |  |  |
| 4                                                                                                                                                                                                     | Ca <sup>2+</sup> , Mg <sup>2+</sup> | -           | 0       | Härtebildner fördern die stabile Deckschichtbildung.                                                                                             |  |  |
| 5                                                                                                                                                                                                     | Fe <sup>2+</sup>                    | 0           | +       | Gelöstes Eisen adsorbiert bei Oxidation auch Arsen.                                                                                              |  |  |
| 6                                                                                                                                                                                                     | HCO <sub>3</sub> -                  | -           | 0       | Pufferung fördert Deckschichtbildung.                                                                                                            |  |  |
| 7                                                                                                                                                                                                     | PO <sub>4</sub> <sup>3-</sup>       | -           | -       | Korrosionsinhibitor und Adsorptionskonkurrent.                                                                                                   |  |  |
| 8                                                                                                                                                                                                     | SO4 <sup>2-</sup>                   | +           | 0       | Erhöhte Leitfähigkeit, keine Adsorptionskonkurrenz                                                                                               |  |  |
| 9                                                                                                                                                                                                     | SiO <sub>4</sub> <sup>4-</sup>      | -           | -       | Korrosionsinhibitor und Adsorptionskonkurrent.                                                                                                   |  |  |
| Erl                                                                                                                                                                                                   | <b>äuterung:</b> + positiv          | er Einfluss | O ne    | utrales Verhalten - negativer Einfluss                                                                                                           |  |  |
| <ol> <li>siehe Abschnitt 2.2.2 und 2.1.2.2, [Stumm 1998]</li> <li>siehe Abschnitt 4.1.1.3, [Kuch 1984]</li> <li>[Stumm 1998]</li> <li>[Kuch 1984], [Sontheimer 1980]</li> <li>[Borho 1996]</li> </ol> |                                     |             |         | 998]       6. [Kuch 1984], [Klinger 2004]         7. [Klinger 2004], [Driehaus 1994]         8. [Su 2001a], [Su 2001b]         9. [Klinger 2004] |  |  |

Tab. 5.1 Wirkung der Erhöhung verschiedener Wasserparameter auf Korrosion und Adsorption

## 5.3.4 Entsorgungsproblematik des Schlamms

Genau wie bei allen anderen adsorptionsbasierten Arsenentfernungsmethoden (siehe Kapitel 1) entsteht bei diesem Verfahren arsenhaltiger Schlamm als Abfallprodukt. Der Schlamm fällt dabei in zwei Formen an: Als Schlamm in der Nachreinigung und als Rost in Form einer Deckschicht.

In den Verfahrensvarianten mit einer hohen Eisenpartikelfreisetzung wird dieser Schlamm vor allem in den Nacheinigungseinrichtungen zurückgehalten und dann bei den Spülvorgängen freigesetzt. Damit ist er mit dem Eisenschlamm aus konventionellen Wasseraufbereitungsanlagen vergleichbar und bedarf einer ähnlichen Behandlung wie beispielsweise Sedimentation, Trocknung und anschließend einer sicheren Ablagerung. Im günstigen Fall findet die Ablagerung in der Nähe der Aufbereitungsanlage statt.

In den Varianten der natürlichen Sauerstoffkorrosion ist auch das Korrosionselement bzw. die Schüttung selbst stark mit Arsen in der Deckschicht belastet und muss sachgerecht entsorgt werden. Auch hier ist eine Trocknung und sichere Ablagerung erforderlich. Zu beachten ist allerdings, dass das Packungsmaterial unter der Deckschicht noch metallisches Eisen enthält, welches zu weiteren Redoxreaktionen befähigt ist und damit bei ungünstigen Bedingungen das größere Risiko einer Rücklösung aufweist.

Eine sichere Ablagerung erfordert in erster Linie eine räumliche Abtrennung von anderen menschlichen Nutzungen, eine Abdichtung gegenüber Grundwasser und Regenwasser sowie die Vermeidung des Kontakts mit organischem Material wie z.B. Hausmüll, da damit die Gefahr des Entstehens eines sauren und anaeroben Milieus einhergeht. Unter sauren und anaeroben Bedingungen ist am ehesten mit Reduktionsprozessen und einer Rücklösung zu rechnen, siehe auch die Ausführungen zur Eisenhydroxid-Reduktionshypothese in Abschnitt 1.1.3.

Diese Anforderungen lassen sich unter den Bedingungen der Atacama-Wüste in Chile relativ einfach sicherstellen. In Bangladesch dagegen sind Flächen grundsätzlich knapp und Monsunregenfälle sowie Überschwemmungen stellen ein permanentes Risiko einer erneuten Freisetzung dar. Dieses Risiko sollte trotzdem nicht überbewertet werden und den schnellen Einsatz von Trinkwasseraufbereitungstechniken verhindern. Es bleibt festzuhalten, dass es sich um eine persistente, aber natürliche Belastung handelt, die zum Schutz der menschlichen Gesundheit aus dem Trinkwasser sowie aus dem Bewässerungswasser entfernt werden muss, und anschließend in möglichst risikoarmer Form zu entsorgen ist.

Eine Trennung von Eisen, Eisenoxid und Arsen durch Desorption mit Natronlauge oder Auflösen in Salzsäure erscheint weder technisch machbar noch sinnvoll. Weder aus finanziellen noch aus Umweltschutzgründen würden sich dadurch Vorteile gegenüber einer direkten Ablagerung ergeben. Eine sichere Immobilisierung könnte möglicherweise durch die Einbindung des Eisenschlamms bei der Zement- oder Ziegelherstellung erfolgen, die verschiedentlich vorgeschlagen wurde [Ruhland 2003b].

Bei der Aufbereitung von Eisenabfällen als Einsatzstoff für das Aufbereitungsverfahren kann gegebenenfalls noch stark eisenhalthaltige Salzsäure aus dem Waschprozess anfallen. Diese saure Eisenchloridlösung könnte unter Umständen, d.h. wenn keine zusätzlichen Verunreinigungen vorhanden sind, in konventionellen Flockungsanlagen oder in der Abwasserreinigung Verwendung finden.

# 5.4 Ausblick und weiterführender Untersuchungsbedarf

Unter Nutzung der bisher gewonnenen Erkenntnisse bietet sich ein erneuter Feldversuch zur natürlichen Sauerstoffkorrosion in Chile an. Dabei sollte der Schwerpunkt auf der Nähe zur Praxisanwendung liegen, bei der reales Wasser aufbereitet wird, ein reales Eisenmaterial zum Einsatz kommt und eine Kombination mit Belüftungseinrichtungen nach dem in Abschnitt 5.2.1 skizziertem Schema realisiert wird. Auf großzügig bemessene Reaktorvolumina mit effektiven Partikelrückhalteeinrichtungen ist besonderer Wert zu legen. Um die dauerhafte Wirkung beurteilen zu können ist eine lange Versuchdauer, mindestens drei Monate, erforderlich. Auch die Auswirkungen von Stagnationszeiten sind zu untersuchen.

Als aussichtsreiche Produktentwicklung ist die Arsenentfernung mittels elektrisch forcierter Korrosion zu betrachten. Unter der Vorraussetzung einer Klärung des Problems der Arsingasbildung wäre diese Methode sicherlich geeignet, beispielsweise auch in Kombination mit Solarzellen als Energiequelle, als technisches Aufbereitungsverfahren auch in Ländern wie Chile und Bangladesch zum Einsatz zu kommen.

Die Nutzung der Kontaktkorrosion zur Freisetzung von Eisenionen zur Arsenentfernung stellt noch eine deutliche wissenschaftliche Herausforderung dar. Hier besteht noch Bedarf an theoretischen Überlegungen zur Elektrochemie aber auch an handwerklich-praktischen Experimenten zur optimalen Gestaltung eines Eisen-Kupfer-Kontaktelements welches die Akkumulation von Eisenhydroxid vermeidet und auf diese Weise die Freisetzung von Kupfer verhindert.

# 6 Literaturverzeichnis

- Ahmed, F.; Rahman, Md. M. (2000): Water Supply and Sanitation. Rural and Low-Income Urban Communities. ITN-Bangladesh-Centre for Water Supply and Waste Management, Dhaka (Bangladesh).
- Alvarez Canelo, R. (2001): Adsorción de arsenico sobre productos de corrosión de hierro metálico. Abschlußarbeit an der Universidad de Antofagasta (Chile).
- Assegbede, P.; Ferber, E.; Gruber, E.; Koch, K.; Kunz, D. (2001): Methoden zurTrinkwasseraufbereitung in Entwicklungsländern. Umwelttechnische Seminararbeit am Fachgebiet Wasserreinhaltung der TU Berlin.
- Baeckmann, W.v. (Herausgeber) (1989): Handbuch des kathodischen Korrosionsschutzes. VCH-Verlag, Weinheim.
- **Bockelmann, B. (1997):** Optimierung der Entfernung von Arsen aus Trinkwasser in Calama (im Norden Chiles) bei unterschiedlichen Rohwasserqualitäten. Diplomarbeit am Fachgebiet Wasserreinhaltung der TU Berlin.
- Borho, M. (1996): Arsenentfernung in Grundwasserwerken durch optimierte Kopplung von Oxidations- und Fällungs-, / Flockungsverfahren. Berichte aus Wassergüte-und Abfallwirtschaft Nr. 127, Technische Universität München.
- Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ) (1996): Sektorkonzept Siedlungswasserwirtschaft, Bonn.
- Caceres, A. (1999): Arsenico, Normativas y Effectos en las Salud. Congreso de Ingenieria Samitaria Y Ambiental (Aidis), Chile.
- Caceres, L., Caceres, L.; Jekel, M.; Karschunke, K.: (2000): Low-Cost Irrigation Water Treatment for Arsenic Removal in the North of Chile - A Proposal. 26<sup>th</sup> WEDC Conference 2000, Dhaka (Bangladesh).
- Chen, S.L.; Dzeng, S.R.; Yang, et al. (1994): Arsenic species in groundwaters of the blackfoot disease area, Taiwan. Environ. Sci. Technol. (28), 877-881.
- Chowdhury, M.A.I.; Ahmed, M.F.; Quadiruzzaman, M.; Mannaf, M.A. (2001): Experience in improving piped water supply to the 18 medium-sized towns of Bangladesh. Journal of Water SRT – Aqua (50), 287-299.
- Cornell, R.M.; Schwertmann, U. (1996): The Iron Oxides. VCH-Verlag, Weinheim.
- Cotton, A.; Wilkinson, G. (1982): Anorganische Chemie, Verlag Chemie, Weinheim.
- **Dartmann, J.; Doberschütz, J.(2001):** Experimental study of a pilot plant for arsenic removal from drinking water by corrosion induced adsorption in Antofagasta, Chile. Projektarbeit am FG Wasserreinhaltung der TU Berlin.

- Daus, B.; Weiß, H.; Wennrich, R. (1998): Arsenic speciation in iron hydroxide precipitates. Talanta (46), 867-873.
- Daus,B.; Mattusch, J.; Paschke, A.; Wennrich, R.; Weiss, H. (2000): Kinetics of the Arsenite Oxidation in Seepage water from a tin mill tailings pond. Talanta (51), 1087-1095.
- **Del Signori, G. (2001):** New Process for Arsenic Remeditation in Drinking Water. Abstract for Poster submission to IWA-Conference, Berlin.
- **Dieter, H. (1993):** Gesundheitliche und toxikologische Eckdaten zur Bewertung von Arsen im Trinkwasser. DVWG Schriftenreihe Wasser Nr. 82: Arsen in der Trinkwasserversorgung (Hrsg. M. Jekel), 11-29.
- **DIN 50900 (1982):** Korrosion der Metalle Begriffe Allgemeine Begriffe. Beuth-Verlag, Berlin.
- **DIN 50920 (1985):** Korrosion der Metalle Korrosionsuntersuchungen in strömenden Flüssigkeiten – Allgemeines. Beuth-Verlag, Berlin.
- **Driehaus, W.; Jekel, M. (1992):** Determination of As(III) and total inorganic arsenic by on-line pretreatment in hydride generation atomic absorption spectrometry. Fresenius J. Anal Chem (343), 352-356.
- **Driehaus, W. (1994):** Arsenentfernung mit Manganoxid und Eisenhydroxid in der Trinkwasseraufbereitung. VDI Reihe 15 Nr.133, VDI-Verlag.
- Driehaus, W.; Jekel, M. ; Hildebrandt, U. (1998): Granular ferric hydroxide a new adsorbent for the removal of arsenic from natural water. J. Water SRT-Aqua (47), 30-35.
- **Dzombak, D.A.; Morel,F.M., (1987):** Adsorption of inorganic pollutants in aquatic systems. Journal of Hydraulic Engineering (113), 430-466.
- Enders, R. (1996): Untersuchungen und Modellierung der Antimonentfernung aus wässrigen Lösungen durch Fällung, Mitfällung und Adsorption. Dissertation am FG Wasserreinhaltung der TU Berlin.
- Farley, K.J.; Dzombak, D.A.; Morel, F.M.M. (1985): A surface precipitation model for the sorption of cations on metal oxides. Journal of Colloid and Interface Science (106), 226-242.
- Farrell, J.; Wang, Jianping; O'Day P.; Conklin, M. (2001): Electrochemical and Spectroscopic Study of Arsenate Removal from Water Using Zero-Valent Iron Media. Environ. Sci. Technol. (35), 2026-2032.
- Fendorf, S.; Eick, M.; Grossl, P.; Sparks, D. (1997): Arsenate and chromate retention mechanisms on goethite.1. Surface structure. Environ. Sci. Technol. (31), 315-320.
- Ficklin, W. (1983): Separation of arsenic (III) and arsenic (V) in ground waters by ionexchange. Talanta (30), 371-373.
- Förstner, U.; Calmano, W. (1982): Bindungsformen von Schwermetallen in Baggerschlämmen. Vom Wasser (59), 83-92.

- Fuller, C.; Davis, J.; Waychunas, G. (1993): Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochimica et Cosmochimica Acta (57), 2271-2282.
- **Goldberg, S.; Johnston, C.T. (2001):** Mechanisms of Arsenic Adsorption on Amorphous Oxides Evaluated Using Macroscopic Measurements, Vibrational Spectroscopy, and Surface Complexation Modeling. Journal of Colloid and Interface Science (234), 204-216.
- **Gorny, M. (2000):** Untersuchungen zum Korrosionsverhalten von Roheisenmaterialen und zur simultanen Adsorption von Arsen in Kleinfiltersystemen. Diplomarbeit am FG Wasserreinhaltung der TU Berlin.
- Grohmann, A. (1996): Sanierung von Enteisenungsanlagen. gwf Wasser Abwasser (137), 665-671.
- Grossl, P.R.; Eick, M.; Sparks, D.; Goldberg, S.; Ainsworth, C. (1997): Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol. (31), 321-326.
- Hamann, C.H.; Vielstich, W. (1975): Elektrochemie I und II. Taschentexte Nr. 41 und 42. Verlag Chemie, Weinheim.
- Hering, J.G. (1996a): Risk assessment for arsenic in drinking water: limits of achievable risk levels. Journal of Hazardous materials (45), 175-184.
- Hering, J.G.; Chen, P.Y.; Wilkie, J.A.; Elimelech, M.; Liang, S. (1996b): Arsenic removal by ferric chloride. Journal AWWA (88), 155-167.
- Hiemstra, T.; Van Riemsdijk, W.H. (1996): A surface structural approach to ion adsorption: the charge distribution (CD) model. Journal of Colloid and Interface Science (179), 488-502.
- Hiemstra, T.; Van Riemsdijk, W.H. (1998): Surface structural ion adsorption modeling of competitive Binding of oxyanions by metal (hydr)oxides. Journal of Colloid and Interface Science (210), 182-193.
- **Hildebrandt, Uwe (1999):** Untersuchungen zur Adsorption von Arsenat (V) an aktiviertem Aluminiumoxid. Dissertation am FG Wasserreinhaltung der TU Berlin.
- **Höll, K. (2002):** Wasser-Nutzung im Kreislauf-Hygiene, Analyse und Bewertung. 8. Auflage Hrsg. von A. Grohmann, Verlag Walter de Gryter.
- Höschel, A. ; Schuster, P. (2000): Weltweites vorkommen von Arsen im Trinkwasser und seine gesundheitliche Bedeutung. Umwelttechnische Seminararbeit am FG Wasserreinhaltung der TU Berlin.
- Höschel, A. ; Schuster, P. (2002): Pilot plant experiments for arsenic removal from drinking water by different kinds of iron corrosion in Northern Chile. Projektarbeit am FG Wasserreinhaltung der TU Berlin.

- Holt, P.; Barton, G.; Wark, M.; Mitchell, C. (2002): A quantitative comparison between chemacal dosing and electrocoagulation. Colloids and Surfaces A: Physicochem. Eng. Aspects (211), 233-248.
- Hongshao, Z.; Stanforth, R. (2001): Competitive Adsorption of Phosphate and Arsenate on Goethite. Environ. Sci. Technol. (35), 4753-4757.
- Hug, S.; Canonica, L.; Wegelin, M.; Gechter, D.; von Gunten, U. (2001): Solar Oxidation and Removal of Arsenic at Circumneutral pH in Iron Containing Waters. Environ. Sci. Technol. (35), 2114-2121.
- Kaesche, H. (1990): Die Korrosion der Metalle. 3. Auflage, Springer-Verlag.
- Karcher, S.; Jekel, M.; Cáceres, L.; Contreras, R. (1998): Removal of arsenic from raw waters by coagulation with iron salts and alternative methods. J. CIWEM (13), 164-169.
- Kartinen, E.O.; Martin, C.J. (1995): An overview of arsenic removal processes. Desalination (103), 79-88.
- Klinger, J.; Wagner, I.; Lambertzs, R.; Konradt, N.; Irmscher, R. (2004): Die Wasserversorgung von Düsseldorf. gwf Wasser Abwasser (145), 351-358.
- **Kraume, M. (2000):** Skript zur Vorlesung Verfahrenstechnik I + II. Institut für Verfahrenstechnik der Technischen Universität Berlin.
- Kuch, Alfred (1984): Untersuchungen zum Mechanismus der Aufeisenung in Trinkwasserverteilungssystemen. Dissertation an der Fakultät für Chemieingenieurwesen der TH Karlsruhe.
- Lackovic J.A.; Nikolaidis N.P.; Dobbs G.M. (2000): Inorganic Arsenic Removal by Zero-Valent Iron. Environ Eng Sci (17), 29-39.
- Ledesma Rojas, C. (2001): Adsorción de arsénico sobre productos de corrosión de hierro metálico en reactores agitados continuos. Abschlußarbeit an der Universidad de Antofagasta (Chile).
- Li, Li; Stanforth, R. (2000): Distinguishing Adsorption and Surface Precipitation of Phosphate on Goethite (a-FeOOH). J. of Colloid and Interface Science (230), 12-21.
- Madiec, H.; Cepero, E.; Mozziconacci, D. (1999): Treatment of arsenic by filter coagulation: a South American advanced technology. IWSA World Water Congress 1999, SS13/1-5.
- Maier, M., Maier, D. Oberacker, F. (2001): New application of a traditional analytical method

   arsenic removal from water works sludge during iron(III) chloride coagulant production. Fresenius J. Anal. Chem. (371), 629-636.
- Mamtaz, R.; Bache, D.H. (2000): Low-Cost Separation of Arsenic from Water: With Special Reference to Bangladesh. J. CIWEM (14), 260-269.
- Mamtaz, R.; Bache, D.H. (2001): Reduction of arsenic in groundwater by coprecipitation with iron. Journal of Water SRT Aqua (50), 313-324.

- Manceau, A. (1995): The mechanism of anion adsorption on iron oxides: Evidence for the bonding of arsenate tetrahedra on free Fe(O, OH)6 edges. Geochimica et Cosmochimica Acta (59), 3647-3653.
- Mandal, B.; Suzuki, K. (2002): Arsenic round the world: a review. Talanta (58), 201-235.
- Manning, B.A.; Goldberg, S. (1996): Modeling Competitive Adsorption of Arsenate with Phosphate and Molybdate on Oxide Minerals. Soil Sci. Soc. Am. J. (60), 121-131.
- Manning, B.A.; Goldberg, S. (1997): Adsorption and stability of arsenic(III) at the clay mineral water interface. Environ. Sci. Technol. (31), 2005-2011.
- Manning, B.A.; Fendorf, S.E.; Goldberg, S. (1998): Surface Structures and Stability of Arsenic (III) on Geothite: Spectroscopic Evidence for Inner-Sphere Complexes. Environ. Sci. Technol. (32), 2383-2388.
- Manning, B.A.; Hunt, M.L.; Amreihn, Ch., Yarmoff, J.A. (2002): Arsenic(III) and Arsenic(V) Reactions with Zerovalent Iron Corrosion Products. Environ. Sci. Technol. (36), 5455-5461.
- Meenken, Stefan (2001): Iron corrosion and simultaneous arsenic removal in a pilot plant for drinking water treatment in Antofagasta, Chile. Diplomarbeit am FG Wasserreinhaltung der TU Berlin.
- Meharg, A.; Rahman, Md.M. (2002): Arsenic Contamination of Bangladesh Paddy Field Soils: Implications for Rice Contribution to Arsenic Consumption. Environ. Sci. & Technol. (37), 229-234.
- Melitas, N.; Wang, J.; Conklin, M.; O'Day, P.; Farrell, J. (2002): Understanding Soluble Arsenate Removal Kinetics by Zerovalent Iron Media. Environ. Sci. Technol.(36), 2074-2081.
- Merkel, T. (2003): Untersuchungen zu den chemischen Reaktionen bei der Flächenkorrosion des Kupfers in Trinkwasserinstallationen. Dissertation an der TH Karlsruhe.
- Meyerhoff, R.; Rott, U.; Wiegleb, K. (1995): Praktische Überprüfung von WAPRO-Standards zur Bemessung von Enteisenungsfiltern. gwf Wasser-Abwasser (136), 154-160.
- MMD MottMacDonald Ltd. (1999): Groundwater studies for arsenic contamination in Bangladesh (Phase I: Rapid investigation phase). Final Report prepared for the Government of the People's Republic of Bangladesh and the British Department for International Development.
- Myneni, S.C.B.; Traina, S.J.; Waychunas, G.A.; Logan, T.J. (1998): Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral water interfaces. Geochimica et Cosmochimica Acta (62), 3285-3300.
- Nikolaidis, N.; Dobbs, G.; Lackovic, J. (2003): Arsenic removal by zero-valent iron: field, laboratory and modeling studies. Water Research (37), 1417-1425.

- **Oberacker, F.; Maier, D.; Maier, M. (2002):** Arsen und Trinkwasser, Teil 1 Ein Überblick über Vorkommen, Verteilung und Verhalten von Arsen in der Umwelt. Vom Wasser (99), 79-110.
- **Oberacker, F.; Maier, D.; Maier, M. (2003):** Arsen und Trinkwasser, Teil 2 Ein Überblick über Arsenentfernungsverfahren zur Trinkwasseraufbereitung und umweltverträgliche Entsorgungsmöglichkeiten der entstehenden arsenbelasteten Wasserwerksschlämme. Vom Wasser (100), 9-48.
- Pierce, M.; Moore, C. (1982): Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research (16), 1247-1253.
- **Power, D.J. (2002):** Persönliche Mitteilung per E-Mail aus Kambodscha (djpower@melbpc.org.au)
- Pschyrembel (2004): Klinisches Wörterbuch. 260. Auflage. Verlag Walter de Gryter.
- Ramaswami, A.; Tawachsupa, S.; Isleyen, M. (2001): Batch-mixed iron treatment of high arsenic waters. Water Research (35), 4474-4479.
- Reichwald, F.; Pastewski, N.; Kügler, J. (2002): Analysemethoden für Arsenverbindungen im Trinkwasser. Umwelttechnische Seminararbeit am Fachgebiet Wasserreinhaltung der TU Berlin.
- **Rieckhoff, Maria (2002):** Pilotversuche zur Entfernung von Arsen aus Trinkwasser mit Hilfe korrodierender Eisenmaterialien in Chile. Diplomarbeit am Fachgebiet Wasserreinhaltung der TU Berlin.
- Rivero, S.; Alvarez, J.A.; Libral, V.; Esparza, M.L. (1999): Community participation in reducing risks by exposure to arsenic in drinking water. IWSA World Water Congress 1999; SS13/6-8:
- Römpp (1995): Chemie-Lexikon, CD ROM-Ausgabe, Thieme-Verlag.
- Ruhland, A.; Karschunke, K.; Jekel, M. (2003a): Arseneliminierung aus Trinkwasser, Teil 1. bbr-Fachmagazin für Wasser und Leitungstiefbau (54), 53-61.
- Ruhland, A.; Karschunke, K.; Jekel, M. (2003b): Arseneliminierung aus Trinkwasser, Teil 2. bbr- Fachmagazin für Wasser und Leitungstiefbau (54), 37-46.
- Sancha, A.M.; Rodriguez, D.; Vega, F.; Fuentes, S.; Lecaros, L. (1992): Arsenic removal by direkt filtration. An example of appropriate technology. Arsenic in the Environment and its Incidence on Health. International Seminar, 165-172.
- Santolaya Bondi, R.; Salazar Carco, L.; Sandoval Martinez, M.; Santolaya Cohen, R.; Alfaro Torrico, R. (1995): Arsenico: Impacto sobre el hombre y su entorno; Centro de investigaciones ecológicas y medicina de altura – CODELCO-Chile.
- Schönfeld-Horn, Ira (2001): Untersuchungen zur Korrosion und zur Arsenadsorption in Eisen-Kupfer-Kontaktelementen. Diplomarbeit am FG Wasserreinhaltung der TU Berlin.

- **SCI (1995):** Catastro General de las Comunidades Rurales de la II. Region. Sociedad Consultores de Ingeniería, Santiago de Chile.
- Seith, R.; Jekel, M. (1997): Biologische Oxidation von Arsenat (III) in Festbettreaktoren. Vom Wasser (89), 283-296.
- Sigg, L.; Stumm, W. (1981): The interaction of anions and weak acids with the hydrous goethite (a-FeOOH) surface. Colloids and Surfaces (2), 101-117.
- Sigg, L.; Stumm, W. (1996): Aquatische Chemie. Teubner-Verlag, Stuttgart.
- Simeonova, V.P. (1999): Pilot study for arsenic removal.
- Smedley, P.L.; Kinniburgh, D.G. (2002): A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry (17), 517-568.
- Smith, A.H.; Goycolea, M.; Haque, R.; Biggs, M.L. (1998): Marked increase in bladder and lung cancer mortality in a region in northern Chile due to arsenic in drinking water. American Journal of Epidemiology (147), 660-669.
- Smith, A.H.; Arroyo, A.P.; Mazumder, D.N.; Kosnett, M.J.; Hernandez, A.L.; Beeris, M.; Smith, Meera M.; Moore, Lee E. (2000): Arsenic-Induced Skin Lesions among Atacameno People in Northern Chile Despite Good Nutrition and Centuries of Exposure. Environmental Health Perspectives (108), 617-620.
- Smith, A.H.; Lingas, E.O.; Rahman, M. (2000): Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the WHO (78), 1093-1103.
- Smith, A.H.; Hira Smith, Meera M. (2004): Arsenic drinking water regulations in developing countries with extensive exposure. Toxicology (198), 39-44.
- Sontheimer, H.; Spindler, P.; Rohmann, U. (1980): Wasserchemie für Ingenieure. ZfGW-Verlag, Frankfurt / Main.
- Sontheimer, H. (1988): Der "Kalk-Kohlensäure-Mythos" und die instationäre Korrosion. Z. Wasser Abwasser Forschung (21), 219-227.
- Stratmann, M.; Müller, J. (1994): The mechanism of the oxygen reduction on rust-covered metal substrates. Corrosion Science (36), 327-359.
- Stumm, W. (1992): Chemistry of the solid-water interface. Wiley Interscience.
- Stumm, W. (1998): Corrosion of Metals in Aquatic Systems; an Indroduction. Schriftenreihe der EAWAG Nr. 12, Swiss Federal Institute for Environmental Science and Technology EAWAG, Zürich.
- Su, Chunming; Puls, R.W. (2001a): Arsenate and Arsenite Removal by Zerovalent Iron: Kinetics, Redox Transformation, and Implications for in Situ Groundwater Remediation. Environ. Sci. Technol. (35), 1487-1492.
- Su, Chunming; Puls, R.W. (2001b): Arsenate and Arsenite Removal by Zerovalent Iron: Effects of Phosphate, Silicate, Carbonate, Borate, Sulfate, Chromate, Molybdate, and Nitrate, Relative to Chloride. Envirion. Sci. Technol. (35), 4562-4568.

- **Torres, J. (2001):** Remoción de arsénico den productos de corrosión de hierro metálico mediante lana de hierro. Diplomarbeit an der Universidad de Concepcion (Chile).
- US-EPA (2002): Background information on arsenic regulation, US-Environmental Protection Agency. Internet: http://www.epa.gov/safewater/arsenic.html
- v.d.Kammer, F. (2000): Verifizierung von Laborfiltrationen von Wasserproben mit Hilfe der Fluß-Feld Fluß Fraktionierung. Jahrestagung der Wasserchemischen Gesellschaft in der GdCh 2000, Weimar.
- Wateraid (2001): Rapid Assessment of household level arsenic removal technologies. Final Report by WS/Atkins. BAMWSP, DFID, Wateraid Bangladesh.
- Waychunas, G.A.; Rea, B.A.; Fuller, C.C.; Davis, J.A. (1993): Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochimica et Cosmochimica Acta (57), 2251-2269.
- Waychunas, G.A.; Davis, J.A.; Fuller, C.C. (1995): Geometry of sorbed arsenate on ferrihydrite and crystalline FeOOH: Re-evaluation of EXAFS results and topological factors in predicting sorbate geometry, and evidence for monodentate complexes. Geochimica et Cosmochimica Acta (59), 3655-3661.
- Waychunas, G.A.; Fuller, C.C.; Rea, B.A.; Davis, J.A. (1996): Wide angle X-ray scattering (WAXS) study of "two line" ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results. Geochimica et Cosmochimica Acta (60), 1765-1781.
- Wegelin, M. (1986): Horizontal-Flow Roughing Filtration (HRF): a design, construction and operation manual. IRCWD Report No 06/86, Dübendorf (CH).
- Wegelin, M.: (1996): Surface Water Treatment by Roughing Filters. SANDEC Report No 2/96; Swiss Centre for Development Cooperation in Technology and Management (SKAT). St. Gallen (CH).
- Westerhoff, P.; James, J. (2003): Nitrate removal in zero-valent iron packed columns. Water Research (37), 1818-1830.
- WHO (2002): Arsine: Human health aspects. Concise International Chemical Assessment Document 47, Geneva.

# Anhänge

| Anhang A | Wasserinhaltsstoffe in Berlin und in Antofagasta                 | .A2 |
|----------|------------------------------------------------------------------|-----|
| Anhang B | Zusammensetzung der Eisen- und Kupfermaterialien                 | .A3 |
| Anhang C | Vorgehensweise bei Messung und Probenahme                        | .A4 |
| Anhang D | Atomabsorptionsspektrometrische Messung von Arsen, Eisen, Kupfer | .A5 |
| Anhang E | Messung der Sauerstoffkonzentration                              | .A8 |
| Anhang F | Versuchsdaten                                                    | .A9 |

| Entire2001DefinitAntongastaAntongastaSauerstoffOxygen $O_2$ 7,6Fr. KohlensäureFree $CO_2$ $CO_2$ 10,3CalciumCalcium $Ca^{2^+}$ 4001027271 (2)MagnesiumMagnesiumMg <sup>2+</sup> 5010,038,419,8NatriumSodiumNa*15038147 (2)KaliumPotassiumK*127,915 (2)Eisen (gesamt)Total IronFe0,2<0,030,110,2 (2)MarganMarganeseMn0,05<0,02<0,01<0,05ArsenicAs0,01<0,004<0,005<0,01<0,05ArsenicAs0,01<0,005<0,005<0,01<0,05CadmiumCadmiumCd0,005<0,005<0,01<0,05CadmiumCadmiumCr0,05<0,005<0,01<0,05CyanideCyanideNickelNi0,5<0,005<0,01MuscalNitratNitratNH $4^+$ 0,5<0,005<0,005<0,01MuscalNitratNitratNO $5^-$ 0,01<0,005<0,01 (N)<0,01 (N)NitratNitratNO $5^-$ 25052332210SulfatSulfatSulfatSulfatSulfatSulfat0,01<0,0005<0,005PhosphatePhosphateF'-1,50,160,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stoff / Größe     |                      | Symbol /<br>Finhoit           | TrinkwV<br>2001 | Trinkwasser | Trinkwasser   | Rohwasser         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|-------------------------------|-----------------|-------------|---------------|-------------------|--|
| Statistics         Description         Description         Description           Fr. Kohlensäure         Free Co.         CO.          10.3         Term           Calcium         Calcium         Ca <sup>2+</sup> 400         102         72         71           Magnesium         Magnesium         Mg <sup>2+</sup> 50         10.0         38.4         19.8           Natrium         Sodium         Na*         150         38         147         72           Kalium         Potassium         K*         12         7.9         15         (2)           Eisen (gesamt)         Total Iron         Fe         0.2         <0.03         0.1         10.2 (?)           Mangan         Manganese         Mn         0.05         <0.02         <0.01         <0.05           Arsen         Arsenic         As         0.01         <0.004         <0.03         0.45           Blei         Lead         Pb         0.04         <0.005         <0.005         <0.01         Cr(V1)         <0.05         <0.005         <0.01         Cr(V1)         <0.05         <0.01         Cr(V1)         <0.05         <0.01         <0.005         <0.01         <0.01         Na                                                                                                                                                                                                                              | Sauerstoff        | Oxygen               |                               | 2001            | 7.6         | Antolagasta   | Antolagasta       |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fr. Kohlensäure   | Free CO <sub>2</sub> |                               |                 | 10.3        |               |                   |  |
| Carkania         Carkania         Carkania         Carkania         Formation         F               | Calcium           | Calcium              | $Ca^{2+}$                     | 400             | 10,3        | 72            | 71 (2)            |  |
| Magnetian         Nagional         Ng         150         16,0         16,0         16,0           Natrium         Sodium         Na*         150         38         147 ( <sup>2</sup> )           Kalium         Potassium         K*         12         7,9         15 ( <sup>3</sup> )           Eisen (gesamt)         Total Iron         Fe         0,2         <0,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Magnesium         | Magnesium            | Mo <sup>2+</sup>              | 50              | 10.0        | 38.4          | 19.8              |  |
| Nation         Note         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         10                                                                                                                                                                                                            | Natrium           | Sodium               | Na <sup>+</sup>               | 150             | 38          | 50,1          | 147 (2)           |  |
| RammFocusionR $12^{-}$ $7,9^{-}$ $15^{-}$ Eisen (gesamt)Total IronFe $0,2$ $< 0,03$ $0,1$ $10,2$ (?)ManganMaganeseMn $0,05$ $< 0,02$ $< 0,01$ $< 0,03$ $0,45$ ArsenArsenicAs $0,01$ $< 0,004$ $0,03$ $0,45$ BleiLeadPb $0,04$ $< 0,005$ $< 0,004$ $< 0,05$ CadmiumCadmiumCd $0,005$ $< 0,005$ $< 0,005$ $< 0,005$ ChromChromiumCr $0,05$ $< 0,005$ $< 0,005$ $< 0,005$ CyanidCyanideCN* $0,05$ $< 0,005$ $< 0,005$ $< 0,01$ NickelNickelNi $0,05$ $< 0,005$ $< 0,005$ $< 0,001$ QuecksilberMercuryHg $0,001$ $< 0,0002$ $< 0,0005$ $< 0,001$ AmmoniumAmmoniumNH4+ $0,5$ $< 0,05$ $< 0,07$ (N) $< 0,11$ (N)NitratNitrateNO <sup>3-</sup> $50$ $4,5$ $0,07$ (N) $< 0,004$ (N)ChloridChlorideCl $250$ $52$ $332$ $210$ SulfatSulfateSO/2- $240$ $127$ $143$ $162$ PhosphatPhosphatePO4 <sup>3-</sup> $6,7$ $0,23$ $0,012$ (M) $0,33^{(2)}$ FluoridFluorideF* $1,5$ $0,16$ $0,69$ $0,37$ SilkatSilicateSiO2 $12,4^{(1)}$ $70/66,1$ (M)PAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Kalium            | Potassium            | K <sup>+</sup>                | 12              | 79          |               | 15 <sup>(2)</sup> |  |
| Diskriggentiny         Four field         Point         Point </td <td>Fisen (gesamt)</td> <td>Total Iron</td> <td>Fe</td> <td>0.2</td> <td>&lt; 0.03</td> <td>0.1</td> <td>10 2 (2)</td> | Fisen (gesamt)    | Total Iron           | Fe                            | 0.2             | < 0.03      | 0.1           | 10 2 (2)          |  |
| MarganMarganeseMarganeseMarganeseMarganeseMarganeseMarganeseMarganeseMarganeseMarganeseArsenArsenArsenicAs0,01< 0,004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mangan            | Manganese            | Mn                            | 0,05            | < 0.02      | < 0.01        | < 0.05            |  |
| InsentInsentIns $0,01$ $0,001$ $0,005$ $0,005$ $0,005$ BleiLeadPb $0,04$ $< 0,005$ $< 0,005$ $< 0,005$ $< 0,005$ CadmiumCadmiumCd $0,005$ $< 0,005$ $< 0,005$ $< 0,005$ $< 0,005$ ChromChromiumCr $0,055$ $< 0,005$ $< 0,005$ $< 0,005$ $< 0,01$ CyanidCyaideCN $0,055$ $< 0,003$ $< 0,005$ $< 0,005$ $< 0,01$ NickelNickelNi $0,055$ $< 0,005$ $< 0,005$ $< 0,001$ QuecksilberMercuryHg $0,001$ $< 0,0002$ $< 0,0055$ $< 0,001$ AmmoniumAmmoniumNH4" $0,55$ $< 0,055$ $< 0,05$ (N) $0,28$ (N)NitratNitrateNO3" $50$ $4,55$ $0,07$ (N) $< 0,11$ (N)NitritNitriteNO2" $0,11$ $< 0,033$ $< 0,001$ (N) $< 0,004$ (N)ChlorideCli250 $52$ $332$ $210$ SulfatSulfate $S0_4^2$ 240 $127$ $143$ $162$ PhosphatPhosphate $P0_4^3$ $6,7$ $0,23$ $0,012$ (M) $0,33$ (2)FluoridFluorideF" $1,5$ $0,16$ $0,69$ $0,37$ SilikatSilicate $SiO_2$ $$ $12,4^{(1)}$ $70/66,1$ (M)PAKPAH $mg/L$ $0,0005$ $< 0,0005$ $-$ TetachlormethanTCMCCl4 $0,003$ $< 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arsen             | Arsenic              | As                            | 0.01            | < 0.004     | 0.03          | 0.45              |  |
| DriveDriveDriveDriveDriveDriveDriveDriveCadmiumCadmiumCd0,005<0,0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Blei              | Lead                 | Ph                            | 0.04            | < 0.005     | < 0.04        | < 0.05            |  |
| StatisticExaminingCurrent of $0,005$ $0,005$ $0,005$ $0,005$ $0,005$ $0,001$ $0,01$ $0,01$ $0,05$ $0,003$ $0,001$ $0,005$ $0,003$ $0,005$ $0,005$ $0,01$ NickelNickelNi $0,05$ $0,003$ $0,0005$ $0,005$ $0,001$ QuecksilberMercuryHg $0,001$ $0,0002$ $0,0005$ $0,001$ AmmoniumAmmoniumNH4+ $0,5$ $0,05$ $0,05$ (N) $0,28$ (N)NitratNitrateNO <sup>3+</sup> $50$ $4,5$ $0,07$ (N) $<0,004$ (N)NitritNitriteNO <sup>2+</sup> $0,1$ $<0,003$ $<0,01$ (N) $<0,004$ (N)ChloridChlorideCl <sup>-</sup> $250$ $52$ $332$ $210$ SulfatSulfateSO4 <sup>2+2</sup> $240$ $127$ $143$ $162$ PhosphatPhosphatePO4 <sup>3+3</sup> $6,7$ $0,23$ $0,012$ (M) $0,33^{(2)}$ FluoridFluorideF* $1,5$ $0,16$ $0,69$ $0,37$ SilikatSilicateSiO2 $12,4^{(1)}$ $70/66,1$ (M)PAKPAH $mg/L$ $0,0002$ $<0,0005$ Org. Cl-Verb.AOX $mg/L$ $0,003$ $<0,0005$ PBSMPesticides $mg/L$ $0,0005$ $<0,0005$ PBSMPesticides $mg/L$ $0,0005$ $<0,00005$ PBSMPesticides $mg/L$ $0,000$ $750$ $900-1000$ (M) $1200$ T                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cadmium           | Cadmium              | Cd                            | 0.005           | < 0.0005    | < 0.005       | < 0.01            |  |
| ChronicChronicChronicColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColorColor </td <td>Chrom</td> <td>Chromium</td> <td>Cr</td> <td>0.05</td> <td>&lt; 0.005</td> <td>&lt; 0.01 Cr(VI)</td> <td>&lt; 0.05 Cr(VI)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chrom             | Chromium             | Cr                            | 0.05            | < 0.005     | < 0.01 Cr(VI) | < 0.05 Cr(VI)     |  |
| SynthSynthSynthSynthSynthSynthSynthSynthNickelNickelNi $0,05$ $< 0,005$ $< 0,005$ $< 0,000$ QuecksilberMercuryHg $0,001$ $< 0,0002$ $< 0,0005$ $< 0,001$ AmmoniumAmmoniumNH4 <sup>+</sup> $0,5$ $< 0,05$ $< 0,005$ $< 0,0005$ $< 0,001$ AmmoniumAmmoniumNH4 <sup>+</sup> $0,5$ $< 0,05$ $< 0,005$ $< 0,001$ $< 0,0005$ $< 0,001$ NitratNitrateNO <sup>3-</sup> $50$ $4,5$ $0,07$ (N) $< 0,1$ (N)NitritNitriteNO <sup>2-</sup> $0,11$ $< 0,03$ $< 0,01$ (N) $< 0,004$ (N)ChloridChlorideCl' $250$ $52$ $332$ $210$ SulfatSulfate $SO_4^{2-}$ $240$ $127$ $143$ $162$ PhosphatPhosphate $PO_4^{3-}$ $6,7$ $0,23$ $0,012$ (M) $0,33^{(2)}$ FluoridFluorideF <sup>-</sup> $1,5$ $0,16$ $0,69$ $0,37$ SilikatSilicate $SiO_2$ $$ $12,4^{(1)}$ $70/66,1$ (M)PAKPAH $mg/L$ $0,0002$ $< 0,0005$ $<$ Org. ClVerb.AOX $mg/L$ $0,0005$ $< 0,0005$ TetrachlormethanTCMCCl <sub>4</sub> $0,003$ $< 0,0005$ $<$ PBSMPesticides $mg/L$ $0,0005$ $< 0,21$ $144$ TemperatureTemperature°C $25$ $12,2$ $<$ El. Leitfähig                                                                                                                                                                                                                                                                                                                                                                                                            | Cvanid            | Cyanide              | CN <sup>-</sup>               | 0.05            | < 0.003     | < 0.005       | < 0.1             |  |
| NumberNumberNumberNumberSystemSystemSystemQuecksilberMercuryHg $0,001$ $< 0,0002$ $< 0,0005$ $< 0,001$ AmmoniumAmmoniumNH4+ $0,5$ $< 0,05$ $< 0,05$ (N) $0,28$ (N)NitratNitrateNO3- $50$ $4,5$ $0,07$ (N) $< 0,1$ (N)NitritNitriteNO2- $0,11$ $< 0,03$ $< 0,01$ (N) $< 0,004$ (N)ChloridChlorideCl $250$ $52$ $332$ $210$ SulfatSulfateSO42- $240$ $127$ $143$ $162$ PhosphatPhosphatePO43- $6,7$ $0,23$ $0,012$ (M) $0,33^{(2)}$ FluoridFluorideF* $1,5$ $0,16$ $0,69$ $0,37$ SilikatSilicateSiO2 $12,4^{(1)}$ $70/66,1$ (M)PAKPAHmg/L $0,0002$ $< 0,0005$ $$ Org. ClVerb.AOXmg/L $0,01$ $< 0,0005$ $$ TetrachlormethanTCMCCl <sub>4</sub> $0,003$ $< 0,0005$ $$ PBSMPesticidesmg/L $0,0005$ $< 0,21$ $144$ TemperatureCmperature $^{$ $12,2$ $$ El. Leitfähigkeitconductivity $\mu$ S/cm $2000$ $750$ $900-1000$ (M) $1200$ TrockenrückstandDiss. Resid.mg/L $$ $10,70$ $800$ pH-WertpH-Value $$ $6,5-9,5$ $7,5$ $7,65$ <td>Nickel</td> <td>Nickel</td> <td>Ni</td> <td>0.05</td> <td>&lt; 0.005</td> <td>. 0,005</td> <td>. 0,1</td>                                                                                                                                                                                                                                                                                                                                                                           | Nickel            | Nickel               | Ni                            | 0.05            | < 0.005     | . 0,005       | . 0,1             |  |
| AmmoniumAmmoniumNH4+0,5 $< 0,001$ $< 0,002$ $< 0,0501$ $< 0,001$ NitratNitrateNO3* $50$ $4,5$ $0,07$ (N) $< 0,1$ (N)NitratNitriteNO2* $0,1$ $< 0,03$ $< 0,01$ (N) $< 0,004$ (N)ChloridChlorideCl* $250$ $52$ $332$ $210$ SulfatSulfateSO4** $240$ $127$ $143$ $162$ PhosphatPhosphatePO4** $6,7$ $0,23$ $0,012$ (M) $0,33$ (2)FluoridFluorideF* $1,5$ $0,16$ $0,69$ $0,37$ SilkatSilicateSiO2 $12,4^{(1)}$ $70/66,1$ (M)PAKPAHmg/L $0,0002$ $< 0,0005$ Org. ClVerb.AOXmg/L $0,01$ $< 0,0005$ PBSMPesticidesmg/L $0,0005$ $< 0,0005$ PBSMPesticidesmg/L $0,0005$ $< 0,21$ $144$ TemperaturTemperature°C $25$ $12,2$ $< 0,21$ El. Leitfähigkeitconductivity $\mu$ S/cm $2000$ $750$ $900-1000$ (M) $1200$ TrockenrückstandDiss. Resid. $mg/L$ $$ $16,6$ $< 0,755$ $8,17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quecksilber       | Mercury              | Нg                            | 0.001           | < 0.0002    | < 0.0005      | < 0.001           |  |
| NitratNitrateNO3504,50,07 (N)<0,1 (N)NitratNitrateNO20,1<0,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ammonium          | Ammonium             | NH4 <sup>+</sup>              | 0.5             | < 0.05      | < 0.05 (N)    | 0.28 (N)          |  |
| NitritNitriteNO2-0,1<0.03<0,01 (N)<0,004 (N)ChloridChlorideCl25052332210SulfatSulfateSO42-240127143162PhosphatPhosphatePO43-6,70,230,012 (M)0,33 (2)FluoridFluorideF1,50,160,690,37SilikatSilicateSiO212,4 (1)70 / 66,1 (M)PAKPAHmg/L0,0002<0,00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nitrat            | Nitrate              | NO <sup>3-</sup>              | 50              | 4.5         | 0.07 (N)      | < 0.1 (N)         |  |
| ChloridChlorideCl250511911 (C)911 (C)SulfatSulfateSO $_4^{2-}$ 240127143162PhosphatPhosphatePO $_4^{3-}$ 6,70,230,012 (M)0,33 (2)FluoridFluorideF"1,50,160,690,37SilikatSilicateSiO $_2$ 12,4 (1)70 / 66,1 (M)PAKPAHmg/L0,0002<0,0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nitrit            | Nitrite              | NO <sup>2-</sup>              | 0.1             | < 0.03      | < 0.01 (N)    | < 0.004 (N)       |  |
| SulfatSulfate $SO_4^{2-}$ 240127143162PhosphatPhosphate $PO_4^{3-}$ $6,7$ $0,23$ $0,012$ (M) $0,33$ $^{(2)}$ FluoridFluorideF <sup>-</sup> $1,5$ $0,16$ $0,69$ $0,37$ SilikatSilicate $SiO_2$ $12,4$ $^{(1)}$ $70 / 66,1$ (M)PAKPAHmg/L $0,0002$ $<0,0001$ $<0,005$ Org. ClVerb.AOXmg/L $0,01$ $<0,0005$ $<$ TetrachlormethanTCMCCl_4 $0,003$ $<0,0005$ $<$ PBSMPesticidesmg/L $0,0005$ $<$ $<$ TrübungTurbidityNTU $0,21$ $144$ TemperaturTemperature°C $25$ $12,2$ $<$ El. Leitfähigkeitconductivity $\mu$ S/cm $2000$ $750$ $900-1000$ (M) $1200$ TrockenrückstandDiss. Resid. $mg/L$ $1070$ $800$ pH-WertpH-Value $6,5-9,5$ $7,5$ $7,65$ $8,17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chlorid           | Chloride             | Cl <sup>-</sup>               | 250             | 52          | 332           | 210               |  |
| PhosphatPhosphate $PO_4^{3-}$ $6,7$ $0,23$ $0,012$ (M) $0,33^{(2)}$ FluoridFluorideF° $1,5$ $0,16$ $0,69$ $0,37$ SilikatSilicateSiO2 $12,4^{(1)}$ $70/66,1$ (M)PAKPAHmg/L $0,0002$ $<0,0001$ $<0,005$ Org. ClVerb.AOXmg/L $0,01$ $<0,0005$ $<$ TetrachlormethanTCMCCl4 $0,003$ $<0,0005$ $<$ PBSMPesticidesmg/L $0,0005$ $<$ $<$ TrübungTurbidityNTU $0,21$ $144$ TemperaturTemperature°C $25$ $12,2$ $<$ El. Leitfähigkeitconductivity $\mu$ S/cm $2000$ $750$ $900-1000$ (M) $1200$ TrockenrückstandDiss. Resid.mg/L $1070$ $800$ pH-WertpH-Value $6,5-9,5$ $7,5$ $7,65$ $8,17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sulfat            | Sulfate              | SO4 <sup>2-</sup>             | 240             | 127         | 143           | 162               |  |
| FluoridFluorideF1,50,160,690,37SilikatSilicateSiO2 $12,4^{(1)}$ $70/66,1$ (M)PAKPAHmg/L0,0002 $<0,0001$ $<0,005$ Org. ClVerb.AOXmg/L0,01 $<0,0005$ TetrachlormethanTCMCCl40,003 $<0,0005$ PBSMPesticidesmg/L0,0005 $<0,0005$ TrübungTurbidityNTU $0,21$ $144$ TemperaturTemperature°C $25$ $12,2$ $<$ El. Leitfähigkeitconductivity $\mu$ S/cm $2000$ $750$ $900-1000$ (M) $1200$ TrockenrückstandDiss. Resid.mg/L $1070$ $800$ pH-WertpH-Value $6,5-9,5$ $7,5$ $7,65$ $8,17$ GesamthärteHardness°dH°dH $16,6$ $<$ $<$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phosphat          | Phosphate            | PO <sub>4</sub> <sup>3-</sup> | 6,7             | 0,23        | 0,012 (M)     | 0,33 (2)          |  |
| SilikatSilicateSiO2 $12,4^{(1)}$ $70/66,1 (M)$ PAKPAHmg/L $0,0002$ $< 0,0001$ $< 0,005$ Org. ClVerb.AOXmg/L $0,01$ $< 0,0005$ $< 0,0005$ TetrachlormethanTCMCCl4 $0,003$ $< 0,0005$ $< 0,0005$ PBSMPesticidesmg/L $0,0005$ $< 0,0005$ $< 0,211$ TrübungTurbidityNTU $0,211$ $144$ TemperaturTemperature°C $25$ $12,2$ $< 1200$ El. Leitfähigkeitconductivity $\mu$ S/cm $2000$ $750$ $900-1000 (M)$ $1200$ TrockenrückstandDiss. Resid.mg/L $1070$ $800$ pH-WertpH-Value $6,5-9,5$ $7,5$ $7,65$ $8,17$ GesamthärteHardness°dH°dH $16,6$ $< 12,4^{(1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fluorid           | Fluoride             | F                             | 1,5             | 0,16        | 0,69          | 0,37              |  |
| PAKPAHmg/L $0,0002$ $< 0,0001$ $< 0,005$ Org. ClVerb.AOXmg/L $0,01$ $< 0,0005$ $< 0,0005$ TetrachlormethanTCMCCl <sub>4</sub> $0,003$ $< 0,0005$ $< 0,0005$ PBSMPesticidesmg/L $0,0005$ $< 0,0005$ $< 0,21$ 144TemperaturTemperature°C2512,2 $< 0,000 (M)$ 1200TrockenrückstandDiss. Resid.mg/L $$ $1070$ $800$ pH-WertpH-Value $$ $6,5-9,5$ $7,5$ $7,65$ $8,17$ GesamthärteHardness°dH°dH $$ $16,6$ $< 0,005$ $< 0,005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Silikat           | Silicate             | SiO <sub>2</sub>              |                 | 12,4 (1)    | 70 / 66,1 (M) |                   |  |
| Org. ClVerb.         AOX         mg/L $0,01$ $< 0,0005$ $<$ Tetrachlormethan         TCM         CCl <sub>4</sub> $0,003$ $< 0,0005$ $<$ PBSM         Pesticides         mg/L $0,0005$ $< 0,0005$ $<$ Trübung         Turbidity         NTU $0,21$ $144$ Temperatur         Temperature         °C $25$ $12,2$ $<$ El. Leitfähigkeit         conductivity $\mu$ S/cm $2000$ $750$ $900-1000$ (M) $1200$ Trockenrückstand         Diss. Resid.         mg/L $1070$ $800$ pH-Wert         pH-Value $6,5-9,5$ $7,5$ $7,65$ $8,17$ Gesamthärte         Hardness°dH         °dH $16,6$ $<$ $<$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | РАК               | РАН                  | mg/L                          | 0,0002          | < 0,00001   | < 0,005       |                   |  |
| TetrachlormethanTCMCCl4 $0,003$ $< 0,0005$ $< 0,0005$ PBSMPesticidesmg/L $0,0005$ $< 0,0005$ $< 0,21$ TrübungTurbidityNTU $0,21$ 144TemperaturTemperature°C2512,2 $< 0.0000$ El. Leitfähigkeitconductivity $\mu$ S/cm2000750900-1000 (M)1200TrockenrückstandDiss. Resid.mg/L1070800pH-WertpH-Value6,5-9,57,57,658,17GesamthärteHardness°dH°dH16,6 $< 0.0005$ $< 0.0005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Org. ClVerb.      | AOX                  | mg/L                          | 0,01            | < 0,0005    |               |                   |  |
| PBSM         Pesticides         mg/L $0,0005$ $< 0,0005$ $< 0,0005$ Trübung         Turbidity         NTU $0,21$ $144$ Temperatur         Temperature         °C $25$ $12,2$ $1200$ El. Leitfähigkeit         conductivity $\mu$ S/cm $2000$ $750$ $900-1000$ (M) $1200$ Trockenrückstand         Diss. Resid.         mg/L $1070$ $800$ pH-Wert         pH-Value $6,5-9,5$ $7,5$ $7,65$ $8,17$ Gesamthärte         Hardness°dH         °dH $16,6$ $$ $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tetrachlormethan  | ТСМ                  | CCl <sub>4</sub>              | 0,003           | < 0,0005    |               |                   |  |
| Trübung         Turbidity         NTU          0,21         144           Temperatur         Temperature         °C         25         12,2             El. Leitfähigkeit         conductivity $\mu$ S/cm         2000         750         900-1000 (M)         1200           Trockenrückstand         Diss. Resid.         mg/L          1070         800           pH-Wert         pH-Value          6,5-9,5         7,5         7,65         8,17           Gesamthärte         Hardness°dH         °dH          16,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PBSM              | Pesticides           | mg/L                          | 0,0005          | < 0,00005   |               |                   |  |
| Temperatur         Temperature         °C         25         12,2            El. Leitfähigkeit         conductivity $\mu$ S/cm         2000         750         900-1000 (M)         1200           Trockenrückstand         Diss. Resid.         mg/L          1070         800           pH-Wert         pH-Value          6,5-9,5         7,5         7,65         8,17           Gesamthärte         Hardness°dH         °dH          16,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Trübung           | Turbidity            | NTU                           |                 |             | 0,21          | 144               |  |
| El. Leitfähigkeit         conductivity         μS/cm         2000         750         900-1000 (M)         1200           Trockenrückstand         Diss. Resid.         mg/L          1070         800           pH-Wert         pH-Value          6,5-9,5         7,5         7,65         8,17           Gesamthärte         Hardness°dH         °dH          16,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Temperatur        | Temperature          | °C                            | 25              | 12,2        |               |                   |  |
| Trockenrückstand         Diss. Resid.         mg/L          1070         800           pH-Wert         pH-Value          6,5-9,5         7,5         7,65         8,17           Gesamthärte         Hardness°dH         °dH          16,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | El. Leitfähigkeit | conductivity         | µS/cm                         | 2000            | 750         | 900-1000 (M)  | 1200              |  |
| pH-Wert         pH-Value          6,5-9,5         7,5         7,65         8,17           Gesamthärte         Hardness°dH         °dH          16,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trockenrückstand  | Diss. Resid.         | mg/L                          |                 |             | 1070          | 800               |  |
| Gesamthärte Hardness°dH °dH 16,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pH-Wert           | pH-Value             |                               | 6,5-9,5         | 7,5         | 7,65          | 8,17              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gesamthärte       | Hardness°dH          | °dH                           |                 | 16,6        |               |                   |  |

# Anhang A Wasserinhaltsstoffe in Berlin und in Antofagasta

Quellen:

• Berlin: Web-Site der Berliner Wasserbetriebe, Messwerte vom WW Tegel von 2002, Infotelefon 2005 (1)

• Chilenische Daten aus [Dartmann 2001] und [Höschel 2002] sowie [Bockelmann 1997] (2).

• Werte aus eigenen Messungen sind mit "M" gekennzeichnet.

• TW-Antofagasta: Information von ESSAN, Messwerte vom 20.12.2000.

• RW-Antofagasta: Information von ESSAN, Messwerte vom 1.10.1996.

# Anhang B Zusammensetzung der Eisen- und Kupfermaterialien

Für die Versuche wurde handelsübliches Material ohne genaue Produktspezifikationen gewählt. Die chemische Zusammensetzung wurde nur durch Nachfrage beim Hersteller ermittelt, es handelte sich dabei immer um unlegierten Grundstahl.

| Fa. Oskar Weil (Rasko); Lahr, Deutschland |          |         |          |           |       |  |  |  |  |  |  |
|-------------------------------------------|----------|---------|----------|-----------|-------|--|--|--|--|--|--|
| С                                         | Si       | Mn      | Р        | S         | Ν     |  |  |  |  |  |  |
| < 0,1 %                                   | < 0,13 % | < 0,1 % | < 0,09 % | < 0,025 % | k. A. |  |  |  |  |  |  |
| Weitere Informationen: www.stahlwolle.de  |          |         |          |           |       |  |  |  |  |  |  |

| Fa. Virutex-Ilko S.A.; Santiago, Chile |                                                                      |  |  |  |  |  |  |  |  |  |
|----------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| С                                      | C Si Mn P S                                                          |  |  |  |  |  |  |  |  |  |
| < 0,13 %                               | <0,13 % k.A. <0,6 % <0,04 % <0,05 % k. A.                            |  |  |  |  |  |  |  |  |  |
| Stahlsorten: SA                        | Stahlsorten: SAE 1005 und 1010 Weitere Informationen: www.virutex.cl |  |  |  |  |  |  |  |  |  |

| Fa. Lux; Obi-Baumärkte, Deutschland |                        |              |        |                                |                        |  |  |  |  |
|-------------------------------------|------------------------|--------------|--------|--------------------------------|------------------------|--|--|--|--|
| С                                   | Si                     | Mn           | Р      | S                              | Ν                      |  |  |  |  |
| < 0,6 %                             | k.A.                   | k.A.         | k.A.   | k.A.                           | k.A.                   |  |  |  |  |
| . 0,0 /0                            | <b>K.</b> 7 <b>I</b> . | <b>K.7 L</b> | K.7 I. | <b>K.</b> <i>1</i> <b> K</b> . | <b>K</b> .7 <b>K</b> . |  |  |  |  |

Weitere Informationen: <u>www.obi.de</u>

| Frässpäne aus Grundstahl (Baustahl) der Sorte St-37 entsprechend DIN EN 10025 |      |         |           |           |         |  |  |  |  |  |
|-------------------------------------------------------------------------------|------|---------|-----------|-----------|---------|--|--|--|--|--|
| С                                                                             | Si   | Mn      | Р         | S         | Ν       |  |  |  |  |  |
| < 0,23 %                                                                      | k.A. | < 1,5 % | < 0,055 % | < 0,055 % | 0,011 % |  |  |  |  |  |

Als zusätzliche Anforderung kann für diese Stahlsorte ein Kupfergehalt von 0,25% bis 0,4 % festgelegt werden. Für weitere Verunreinigungen, insbesondere Schwermetalle, sind keine exakten Grenzwerte definiert, allerdings kann ein Höchstwert von 0,4 % für das aus den Verunreinigungen bestimmbare Kohlenstoffäquivalent entsprechend folgender Formel festgelegt werden:  $CEV = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$  [%].

Die Kupferwolle der Fa. Alsei Metallfaser GmbH, Friesenheim, bestand zu mehr als 99% aus reinem Kupfer. Weitere Informationen: <u>www.alsei.de</u>.

# Anhang C Vorgehensweise bei Messung und Probenahme

Die Vorgehensweise bei der täglichen Beprobung der Durchflussversuche wurde im Verlauf der Forschungsarbeit variiert und an den Versuchsaufbau angepasst. Insgesamt wurde jedoch folgender Ablauf eingehalten, um eine Störung des Betriebs der anderen Säulen durch die Messungen einer Säule weitgehend auszuschließen.

- Ablesen der Überstauhöhe am Sandfilter und Probenahme an den Nachreinigungseinrichtungen (Sandfilter und Sedimenter) einschließlich sofortiger Membranfiltration und Messung der Trübung.
- Ablesen von Spannung und Strom bei Versuchen mit getrennten Elektroden.
- Einbau der Sauerstoffelektroden in die Durchflussküvetten und separate Befüllung der Messstrecke und des Bypass mit Rohwasser bis zur Einstellung konstanter und möglichst übereinstimmende Messwerte in der Zu- und Ablaufposition.
- Schaltung der Messküvetten in Zu- und Ablauf der ersten Korrosionssäule, Abwarten bis zur Einstellung konstanter Messwerte (ca. 5 min), Bestimmung des Volumenstroms durch "Auslitern" am Ablaufprobenahmehahn.
- Durchführung der zehnminütigen Sauerstoffmessung mit automatischer Messwertaufnahme.
- Probenahme im Ablauf mit sofortiger Membranfiltration und Trübungsmessung, anschließend Messung von Leitfähigkeit und pH-Wert in der Probe.
- Messung des Drucks vor der Korrosionssäule durch Zuschaltung des Manometers.
- Schaltung der Messküvetten auf den Bypass und Registrierung der Abweichung  $\Delta c(O_2)_{Fehler}$  nach Einstellung konstanter Messwerte (> 5 min).
- Analoges Vorgehen bei den weiteren Korrosionssäulen im Versuchs entsprechend Punkt 4.
- Beprobung des bzw. der Zulaufbehälter und Bestimmung von pH-Wert und Leitfähigkeit.
- Auffüllen bzw. Ersetzen des / der Zulaufbehälter sowie Befüllung eines neuen Behälters mit Leitungswasser zur Temperaturanpassung für 24h.
- Ausbau und Reinigung der Sensoren, Spülung der Messstrecke mit Leitungswasser.
- Übertragung der Messwerte vom Gerät in den Laborrechner zur weiteren Auswertung.

# Anhang D Atomabsorptionsspektrometrische Messung von Arsen, Eisen, Kupfer

#### Atomabsorptionsspektrometrische Messung von Arsen(III)

- Wellenlänge: 193,7 nm Spaltbreite: 0,2 nm
- Reduktionsmittel: Essigssäure und Natrimborhydrid

Bsp.: Kalibrierung der As(III)-Messung vom 22.11.2001



#### Atomabsorptionsspektrometrische Messung von Arsen(tot.)

• Wellenlänge: 193,7 nm Spaltbreite: 0,2 nm

• Reduktionsmittel: Salzsäure, Kaliumiodid, Ascorbinsäure und Natriumborhydrid

Bsp.: Kalibrierung der As(tot.)-Messung vom19.12.2001



#### Atomabsorptionsspektrometrische Messung von Eisen(tot.) im Bereich 0-60 mg/L

- Wellenlänge: 386,0 nm Spaltbreite: 0,2 nm
- Atomisierung in der Luft-Acetylen-Flamme

Bsp.: Kalibrierung der Fe-Messung vom 28.09.2001 (0-60 mg/L)



Atomabsorptionsspektrometrische Messung von Eisen(tot.) im Bereich 0-2 mg/L

- Wellenlänge: 248,3 nm Spaltbreite: 0,2 nm
- Atomisierung in der Luft-Acetylen-Flamme

Bsp.: Kalibrierung der Fe-Messung vom 28.09.2001 (0-2 mg/L)



#### Atomabsorptionsspektrometrische Messung von Kupfer (tot.) im Bereich 0-2 mg/L

- Wellenlänge: 324,8 nm Spaltbreite: 0,5 nm
- Atomisierung in der Luft-Acetylen-Flamme

Bsp.: Kalibrierung der Cu-Messung vom 17.01.2002 (0-2 mg/L)



Gerätetyp: Varian SpectrAA 400 mit automatischem Probengeber PSC 56.

Weitere Informationen zum den Messverfahren finden sich in der Gerätedokumentation "Flame Atomic Absorption Spectrometry – Analytical Methods" der Firma Varian sowie in der Veröffentlichung von Driehaus zur speziesselektiven Arsenbestimmung [Driehaus 1992].

Im Rahmen einer Arbeit zum Umwelttechnischen Seminar wurden für die Arsenmessmethode folgende Verfahrenskenngrößen nach DIN 32645 ermittelt [Reichwald 2002]:

- Nachweisgrenze: 0,46 µg/L
- Erfassungsgrenze: 0,92 µg/L
- Bestimmungsgrenze: 1,28 µg/L

### Anhang E Messung der Sauerstoffkonzentration

Die Messung der Sauerstoffkonzentration in Zu- und Ablauf der Korrosionssäule erfolgte mit Hilfe von zwei portablen Sauerstoffmessgeräten vom Typ Oxi340 der Firma WTW, die mit galvanischen Sauerstoffsensoren vom Typ CellOx325 ausgestattet waren. Die beiden Sensoren wurden in identischer Position in zwei Durchflussküvetten im Hauptstrom angeordnet, um auf diese Weise eine hohe, gleichmäßige und vergleichbare Anströmung der Elektrodenmembran zu gewährleisten. Der Einfluss der Strömungsgeschwindigkeit auf den Messwert wird in Abbildung E1 in einer Vergleichsmessung ohne eingebaute Korrosionssäule verdeutlicht. Nach Herstellerangaben beträgt die Messgenauigkeit

- 10% bei  $v_F > 3$  cm/s,
- 5% bei  $v_F > 10$  cm/s,
- 1% bei  $v_F > 18$  cm/s.

Der Eigenverbrauch eines Sensors bei der Messung ist mit  $0,008 \ \mu gh^{-1} (mg/L)^{-1}$  minimal, die Ansprechzeit bis zum Erreichen von 99% des Messwerts liegt bei weniger als 60 s.

Die Abbildung zeigt, dass die Mindestanströmung in der 50 mm Säule bis zu einer Filtergeschwindigkeit von 1 m/h erreicht wurde und damit eine sehr gute Übereinstimmung zwischen beiden Messelektroden erzielt wurde. Bei Unterschreitung kommt es zu einer deutlichen Unterschätzung der Sauerstoffkonzentration. Durch die gleichartige Anordnung der Elektroden können trotzdem noch ähnliche Werte für die Differenz ermittelt werden.



#### Abb. E1: Strömungsabhängigkeit der Sauerstoffmessung

# Anhang F Versuchsdaten

| Versuchsart       | Kreislaufvers                | Kreislaufversuche                                         |                      |                                              |  |  |  |
|-------------------|------------------------------|-----------------------------------------------------------|----------------------|----------------------------------------------|--|--|--|
| Versuchsnummer    | KV 4                         | KV 4                                                      |                      |                                              |  |  |  |
|                   | KV 5 (Langze                 | KV 5 (Langzeitversuch, Messung 1 ausführlich dargestellt) |                      |                                              |  |  |  |
| Abbildung im Text | 4.2 a) und                   | l c)                                                      | 4.2                  | b) und d)                                    |  |  |  |
|                   | 4.5 d)                       |                                                           | 4.6                  | a)                                           |  |  |  |
| Laufzeit          | 1 Tag, je ca. 3              | 30 min j                                                  | pro Me               | ssung                                        |  |  |  |
|                   | 6 Messungen<br>56 Tage offer | pro Me<br>1er Krei                                        | esstag, j<br>slauf n | je ca. 60 min pro Messung<br>nit 9 Messtagen |  |  |  |
| Material          | Stahlwolle D-                | -III                                                      |                      |                                              |  |  |  |
|                   | Frässpäne II                 |                                                           |                      |                                              |  |  |  |
| Säulendurchmesser | 0,05                         | m                                                         |                      |                                              |  |  |  |
|                   | 0,05                         | m                                                         |                      |                                              |  |  |  |
| Säulenquerschnitt | 0,00196                      | $m^2$                                                     |                      |                                              |  |  |  |
|                   | 0,00196                      | $m^2$                                                     |                      |                                              |  |  |  |
| Betthöhe          | 0,01                         | m                                                         |                      |                                              |  |  |  |
|                   | 0,067                        | m                                                         |                      |                                              |  |  |  |
| Bettvolumen       | 0,0196                       | L                                                         |                      |                                              |  |  |  |
|                   | 0,132                        | L                                                         |                      |                                              |  |  |  |
| Masse Fe          | 7                            | g                                                         |                      |                                              |  |  |  |
|                   | 60,32                        | g                                                         |                      |                                              |  |  |  |
| Oberfläche Fe     | 0,0364                       | m <sup>2</sup>                                            |                      |                                              |  |  |  |
|                   | 0,0488                       | $m^2$                                                     |                      |                                              |  |  |  |
| Kreislaufvolumen  | 0,38                         | L                                                         |                      |                                              |  |  |  |
|                   | 1,15 / 0,55                  | L                                                         | (und o               | ca. 75 L im offenen Kreislauf)               |  |  |  |

|       | KV 4     |          |          | KV 5 – Messung 1 |          |   |          |          |              |
|-------|----------|----------|----------|------------------|----------|---|----------|----------|--------------|
| vF    | 1,55 m/h | 2,62 m/h | 5,27 m/h | 8,20 m/h         | 9,95 m/h |   | 1,83 m/h | 4,50 m/h | 10,0 m/h     |
| Zeit  | c(O2)    | c(O2)    | c(O2)    | c(O2)            | c(O2)    |   | c(O2)    | c(O2)    | c(O2)        |
| min   | mg/L     | mg/L     | mg/L     | mg/L             | mg/L     |   | mg/L     | mg/L     | mg/L         |
|       |          |          |          |                  |          |   |          |          |              |
| -1,5  | 6,44     | 6,90     | 7,38     | 7,61             | 7,66     |   | 3,25     | 4,99     | 6,83         |
| -1,0  | 6,42     | 6,88     | 7,37     | 7,65             | 7,67     |   | 3,25     | 5,03     | 6,83         |
| -0,5  | 6,36     | 5,79     | 6,85     | 7,55             | 7,75     |   | 3,28     | 5,03     | 6,82         |
| 0,0   | 5,53     | 5,53     | 6,16     | 7,65             | 6,73     |   | 3,28     | 5,10     | 6,88         |
| 0,5   | 4,74     | 5,39     | 5,91     | 6,79             | 6,18     |   | 3,28     | 5,10     | 6,87         |
| 1,0   | 4,55     | 5,41     | 5,52     | 6,19             | 5,53     |   | 3,27     | 5,10     | 6,77         |
| 1,5   | 4,45     | 5,11     | 5,14     | 5,75             | 5,00     |   | 3,27     | 5,10     | 6,56         |
| 2,0   | 4,53     | 4,94     | 4,74     | 5,16             | 4,52     |   | 3,26     | 5,05     | 6,33         |
| 2,5   | 4,43     | 4,61     | 4,41     | 4,71             | 4,07     |   | 3,25     | 4,92     | 6,12         |
| 3,0   | 4,27     | 4,39     | 4,09     | 4,30             | 3,68     |   | 3,24     | 4,77     | 5,91         |
| 3,5   | 4,29     | 4,15     | 3,82     | 3,91             | 3,28     |   | 3,22     | 4,62     | 5,72         |
| 4,0   | 4,00     | 3,90     | 3,37     | 3,00             | 2,90     |   | 3,21     | 4,47     | 5,55         |
| 4,5   | 3,60     | 3,70     | 3,34     | 3,20             | 2,70     |   | 3,10     | 4,33     | 5,34         |
| 5,0   | 3.44     | 3,02     | 2.95     | 2 74             | 2,42     |   | 3,14     | 4,19     | 3,17<br>4 99 |
| 5,5   | 3 3/     | 3.43     | 2,93     | 2,74             | 1.96     |   | 3,05     | 4,00     | 4,99         |
| 6.5   | 3 21     | 3.09     | 2,60     | 2,40             | 1,30     |   | 2 99     | 3.80     | 4,66         |
| 7.0   | 3 11     | 2.95     | 2,00     | 2,27             | 1,73     |   | 2,00     | 3.67     | 4,00         |
| 7,5   | 3.01     | 2,85     | 2.28     | 1.86             | 1,60     |   | 2,88     | 3 56     | 4 36         |
| 8.0   | 2.88     | 2 70     | 2 13     | 1,33             | 1.34     |   | 2 82     | 3 44     | 4 21         |
| 8.5   | 2.82     | 2.58     | 2.01     | 1,58             | 1.20     |   | 2.76     | 3.33     | 4.07         |
| 9,0   | 2,73     | 2,46     | 1,87     | 1,43             | 1,10     |   | 2,70     | 3,22     | 3,93         |
| 9,5   | 2,59     | 2,38     | 1,77     | 1,33             | 0,99     |   | 2,64     | 3,12     | 3,81         |
| 10,0  | 2,53     | 2,26     | 1,66     | 1,25             | 0,91     |   | 2,58     | 3,02     | 3,68         |
| 10,5  | 2,47     | 2,15     | 1,52     | 1,08             | 0,84     |   | 2,53     | 2,92     | 3,56         |
| 11,0  | 2,38     | 2,06     | 1,45     | 1,02             | 0,76     |   | 2,47     | 2,83     | 3,43         |
| 11,5  | 2,29     | 1,98     | 1,37     | 0,92             | 0,71     |   | 2,42     | 2,74     | 3,33         |
| 12,0  | 2,22     | 1,92     | 1,27     |                  | 0,64     |   | 2,36     | 2,64     | 3,22         |
| 12,5  | 2,13     | 1,82     | 1,20     |                  | 0,59     |   | 2,31     | 2,56     | 3,11         |
| 13,0  | 2,08     | 1,75     | 1,12     |                  | 0,53     |   | 2,25     | 2,48     | 3,01         |
| 13,5  | 2,04     | 1,68     | 1,07     |                  | 0,49     |   | 2,20     | 2,41     | 2,91         |
| 14,0  | 1,96     | 1,61     | 1,01     |                  | 0,45     |   | 2,15     | 2,34     | 2,81         |
| 14,5  | 1,86     | 1,57     | 0,93     |                  | 0,41     |   | 2,10     | 2,26     | 2,72         |
| 15,0  | 1,84     | 1,50     | 0,89     |                  | 0,38     |   | 2,06     | 2,19     | 2,63         |
| 15,5  | 1,77     | 1,43     | 0,85     |                  | 0,36     |   | 2,01     | 2,12     | 2,55         |
| 16,0  | 1,72     | 1,39     | 0,78     |                  | 0,33     |   | 1,97     | 2,06     | 2,47         |
| 16,5  | 1,69     | 1,33     | 0,75     |                  | 0,31     |   | 1,92     | 1,99     | 2,38         |
| 17,0  | 1,65     | 1,29     | 0,71     |                  | 0,28     |   | 1,88     | 1,93     | 2,31         |
| 17,5  | 1,59     | 1,24     | 0,66     |                  | 0,27     |   | 1,83     | 1,88     | 2,23         |
| 18,0  | 1,54     | 1,18     | 0,63     |                  | 0,25     |   | 1,79     | 1,82     | 2,16         |
| 10,0  | 1,49     | 1,14     | 0,60     |                  | 0,23     |   | 1,73     | 1,77     | 2,09         |
| 19,0  | 1,47     | 1,10     | 0,57     |                  | 0,22     |   | 1,71     | 1,71     | 2,03         |
| 20.0  | 1,41     | 1,03     | 0,54     |                  | 0,20     |   | 1,07     | 1,00     | 1,90         |
| 20,0  | 1,30     | 0.97     | 0,30     |                  | 0,19     |   | 1,04     | 1,01     | 1,30         |
| 21.0  | 1,32     | 0.93     | 0.45     |                  | 0,10     |   | 1,50     | 1,57     | 1,04         |
| 21.5  | 1 25     | 0.90     | 0.43     |                  | 0.16     |   | 1.53     | 1 48     | 1,70         |
| 22.0  | 1,20     | 0.87     | 0.41     | 1                | 0,15     |   | 1,50     | 1,44     | 1,67         |
| 22.5  | 1.17     | 0.84     | 0,38     | 1                | 0,15     |   | 1.46     | 1,40     | 1,62         |
| 23.0  | 1,15     | 0,81     | 0,37     |                  | 0,14     | 1 | 1,43     | 1,36     | 1,57         |
| 23.5  | 1.11     | 0.77     | 0.34     |                  | 0.13     | 1 | 1.40     | 1.32     | 1.52         |
| 24.0  | 1,07     | 0,74     | 0,33     |                  | 0,12     | 1 | 1,37     | 1,28     | 1,47         |
| 24,5  | 1,06     | 0,72     | .,       |                  | 0,12     | 1 | 1,34     | 1,25     | 1,43         |
| 25,0  | 1,01     | 0,69     |          |                  | 0,11     | 1 | 1,31     | 1,22     | 1,38         |
|       |          |          |          |                  |          | 1 | -        |          | 1            |
| r(O2) | 0,77     | 0,90     | 1,37     | 1,95             | 2,10     |   | 1,00     | 1,35     | 1,49         |
|       |          |          |          |                  |          |   |          |          |              |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      | KV 5                                                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                 | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Durchsatz                                                                                                                                                                                                                                                                                                                                                       | t                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                      |                                                                                                                                                                                                       | Q [ml                                                                                                                                                                                             | L/min]                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| #                                                                                                                                                                                               | [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BV                                                                                                                                                                                                                                                                                                                                                              | d                                                                                                                                                                                                                                                                                                                                                                   | vF - 1                                                                                                                                                                               | vF - 2                                                                                                                                                                                                | vF - 3                                                                                                                                                                                            | vF - 4                                                                                                                                                                                  | vF - 5                                                                                                                                                                     | Blind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                       |                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                      | 60                                                                                                                                                                                                    | 147                                                                                                                                                                                               |                                                                                                                                                                                         | 327                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                                                                                                                                                                               | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1500                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                   | 31                                                                                                                                                                                   | 67                                                                                                                                                                                                    | 120                                                                                                                                                                                               | 194                                                                                                                                                                                     | 324                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                                                                                                                                                                               | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4800                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                   | 33                                                                                                                                                                                   | 76                                                                                                                                                                                                    | 158                                                                                                                                                                                               | 235                                                                                                                                                                                     | 330                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                                                                                                                                                                               | 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9500                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                  | 30                                                                                                                                                                                   | 73                                                                                                                                                                                                    | 153                                                                                                                                                                                               | 227                                                                                                                                                                                     | 335                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                                                                                                                                                                               | 530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15200                                                                                                                                                                                                                                                                                                                                                           | 22                                                                                                                                                                                                                                                                                                                                                                  | 32                                                                                                                                                                                   | 70                                                                                                                                                                                                    | 152                                                                                                                                                                                               | 224                                                                                                                                                                                     | 350                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                                                                                                                                                                                               | 671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19300                                                                                                                                                                                                                                                                                                                                                           | 28                                                                                                                                                                                                                                                                                                                                                                  | 32                                                                                                                                                                                   | 67                                                                                                                                                                                                    | 146                                                                                                                                                                                               | 229                                                                                                                                                                                     | 323                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                                                                                                                                                                               | 863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24600                                                                                                                                                                                                                                                                                                                                                           | 36                                                                                                                                                                                                                                                                                                                                                                  | 33                                                                                                                                                                                   | 69                                                                                                                                                                                                    | 146                                                                                                                                                                                               | 229                                                                                                                                                                                     | 345                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                                                                                                                                                                               | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33000                                                                                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                                                                                                                                  | 29                                                                                                                                                                                   | 62                                                                                                                                                                                                    | 147                                                                                                                                                                                               | 228                                                                                                                                                                                     | 349                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                                                                                                                                                                                               | 1350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37500                                                                                                                                                                                                                                                                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                  | 29                                                                                                                                                                                   | 62                                                                                                                                                                                                    |                                                                                                                                                                                                   | 220                                                                                                                                                                                     | 345                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                       |                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Duncheste                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                       |                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                 | t<br>(h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Durchsatz                                                                                                                                                                                                                                                                                                                                                       | t<br>a                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                                       | VF[r                                                                                                                                                                                              | n/nj                                                                                                                                                                                    |                                                                                                                                                                            | Dlind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| #                                                                                                                                                                                               | լոյ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BV                                                                                                                                                                                                                                                                                                                                                              | a                                                                                                                                                                                                                                                                                                                                                                   | VF - 1                                                                                                                                                                               | VF - 2                                                                                                                                                                                                | VF - 3                                                                                                                                                                                            | VF - 4                                                                                                                                                                                  | VF - 5                                                                                                                                                                     | Biind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                      | 1.83                                                                                                                                                                                                  | 4.50                                                                                                                                                                                              |                                                                                                                                                                                         | 10.00                                                                                                                                                                      | ca 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2                                                                                                                                                                                               | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1500                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                   | 0.95                                                                                                                                                                                 | 2.05                                                                                                                                                                                                  | 3.67                                                                                                                                                                                              | 5.03                                                                                                                                                                                    | 9.90                                                                                                                                                                       | ca. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3                                                                                                                                                                                               | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4800                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                   | 1.01                                                                                                                                                                                 | 2,00                                                                                                                                                                                                  | 4.83                                                                                                                                                                                              | 7 18                                                                                                                                                                                    | 10.08                                                                                                                                                                      | ca.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4                                                                                                                                                                                               | 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9500                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                  | 0.92                                                                                                                                                                                 | 2,02                                                                                                                                                                                                  | 4,68                                                                                                                                                                                              | 6.94                                                                                                                                                                                    | 10,00                                                                                                                                                                      | ca 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5                                                                                                                                                                                               | 530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15200                                                                                                                                                                                                                                                                                                                                                           | 22                                                                                                                                                                                                                                                                                                                                                                  | 0,92                                                                                                                                                                                 | 2,20                                                                                                                                                                                                  | 4,00                                                                                                                                                                                              | 6.84                                                                                                                                                                                    | 10,24                                                                                                                                                                      | ca.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6                                                                                                                                                                                               | 671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19300                                                                                                                                                                                                                                                                                                                                                           | 28                                                                                                                                                                                                                                                                                                                                                                  | 0,00                                                                                                                                                                                 | 2,14                                                                                                                                                                                                  | 4 4 5                                                                                                                                                                                             | 6.98                                                                                                                                                                                    | 9.85                                                                                                                                                                       | ca.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7                                                                                                                                                                                               | 863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24600                                                                                                                                                                                                                                                                                                                                                           | 36                                                                                                                                                                                                                                                                                                                                                                  | 1.01                                                                                                                                                                                 | 2,00                                                                                                                                                                                                  | 4 46                                                                                                                                                                                              | 7.00                                                                                                                                                                                    | 10 54                                                                                                                                                                      | ca.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8                                                                                                                                                                                               | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33000                                                                                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                                                                                                                                  | 0.89                                                                                                                                                                                 | 1.89                                                                                                                                                                                                  | 4 49                                                                                                                                                                                              | 6.97                                                                                                                                                                                    | 10,64                                                                                                                                                                      | ca.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9                                                                                                                                                                                               | 1350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37500                                                                                                                                                                                                                                                                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                  | 0.89                                                                                                                                                                                 | 1,89                                                                                                                                                                                                  | 1,10                                                                                                                                                                                              | 6.72                                                                                                                                                                                    | 10,00                                                                                                                                                                      | ca.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                     | 0,00                                                                                                                                                                                 | 1,00                                                                                                                                                                                                  |                                                                                                                                                                                                   | 0,. =                                                                                                                                                                                   |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Durchsatz                                                                                                                                                                                                                                                                                                                                                       | +                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                      |                                                                                                                                                                                                       | k [1/                                                                                                                                                                                             | /min]                                                                                                                                                                                   |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Durchsatz                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                       |                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| #                                                                                                                                                                                               | [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BV                                                                                                                                                                                                                                                                                                                                                              | d                                                                                                                                                                                                                                                                                                                                                                   | vF - 1                                                                                                                                                                               | vF - 2                                                                                                                                                                                                | vF - 3                                                                                                                                                                                            | vF - 4                                                                                                                                                                                  | vF - 5                                                                                                                                                                     | Blind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| #                                                                                                                                                                                               | [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BV                                                                                                                                                                                                                                                                                                                                                              | d                                                                                                                                                                                                                                                                                                                                                                   | vF - 1                                                                                                                                                                               | vF - 2                                                                                                                                                                                                | vF - 3                                                                                                                                                                                            | vF - 4                                                                                                                                                                                  | vF - 5                                                                                                                                                                     | Blind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| #                                                                                                                                                                                               | [h]<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>BV</b><br>100                                                                                                                                                                                                                                                                                                                                                | <b>d</b>                                                                                                                                                                                                                                                                                                                                                            | vF - 1                                                                                                                                                                               | <b>vF - 2</b><br>0,0425                                                                                                                                                                               | vF - 3<br>0,0574                                                                                                                                                                                  | vF - 4                                                                                                                                                                                  | <b>vF - 5</b>                                                                                                                                                              | Blind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| #<br>1<br>2                                                                                                                                                                                     | [h]<br>4<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BV<br>8V<br>100<br>1500                                                                                                                                                                                                                                                                                                                                         | 0<br>2                                                                                                                                                                                                                                                                                                                                                              | <b>vF - 1</b><br>0,0213                                                                                                                                                              | <b>vF - 2</b><br>0,0425<br>0,0271                                                                                                                                                                     | vF - 3<br>0,0574<br>0,0294                                                                                                                                                                        | vF - 4                                                                                                                                                                                  | vF - 5<br>0,0632<br>0,0358                                                                                                                                                 | Blind<br>0,0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| #<br>1<br>2<br>3                                                                                                                                                                                | [h]<br>4<br>48<br>170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BV<br>100<br>1500<br>4800                                                                                                                                                                                                                                                                                                                                       | 0<br>2<br>7                                                                                                                                                                                                                                                                                                                                                         | vF - 1<br>0,0213<br>0,0288                                                                                                                                                           | <b>vF - 2</b><br>0,0425<br>0,0271<br>0,0304                                                                                                                                                           | vF - 3<br>0,0574<br>0,0294<br>0,0287                                                                                                                                                              | vF - 4<br>0,0333<br>0,0121                                                                                                                                                              | vF - 5<br>0,0632<br>0,0358<br>0,0125                                                                                                                                       | Blind<br>0,0016<br>0,0053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| #<br>1<br>2<br>3<br>4                                                                                                                                                                           | [h]<br>4<br>48<br>170<br>335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BV<br>100<br>1500<br>4800<br>9500                                                                                                                                                                                                                                                                                                                               | 0<br>2<br>7<br>14                                                                                                                                                                                                                                                                                                                                                   | vF - 1<br>0,0213<br>0,0288<br>0,0175                                                                                                                                                 | <b>vF - 2</b><br>0,0425<br>0,0271<br>0,0304<br>0,0168                                                                                                                                                 | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164                                                                                                                                                    | vF - 4<br>0,0333<br>0,0121<br>0,0150                                                                                                                                                    | <b>vF - 5</b><br>0,0632<br>0,0358<br>0,0125<br>0,0157                                                                                                                      | Blind<br>0,0016<br>0,0053<br>0,0064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| #<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                      | [h]<br>4<br>48<br>170<br>335<br>530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BV           100           1500           4800           9500           15200                                                                                                                                                                                                                                                                                   | d<br>0<br>2<br>7<br>14<br>22                                                                                                                                                                                                                                                                                                                                        | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187                                                                                                                                       | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178                                                                                                                                              | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145                                                                                                                                          | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110                                                                                                                                          | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125                                                                                                                   | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| #<br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                 | [h]<br>4<br>48<br>170<br>335<br>530<br>671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BV           100           1500           4800           9500           15200           19300                                                                                                                                                                                                                                                                   | d<br>0<br>2<br>7<br>14<br>22<br>28                                                                                                                                                                                                                                                                                                                                  | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060                                                                                                                             | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059                                                                                                                                    | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0056                                                                                                                                | <b>vF - 4</b><br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056                                                                                                                         | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056                                                                                                         | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                            | Inj           4           48           170           335           530           671           863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BV           100           1500           4800           9500           15200           19300           24600                                                                                                                                                                                                                                                   | d<br>0<br>2<br>7<br>14<br>22<br>28<br>36                                                                                                                                                                                                                                                                                                                            | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062                                                                                                                   | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057                                                                                                                          | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0056<br>0,0059                                                                                                                      | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058                                                                                                                      | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0157<br>0,0125<br>0,0056<br>0,0052                                                                                     | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0021<br>0,0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                       | Image: constraint of the second sec | BV           100           1500           4800           9500           15200           19300           24600           33000                                                                                                                                                                                                                                   | d<br>0<br>2<br>7<br>14<br>22<br>28<br>36<br>50                                                                                                                                                                                                                                                                                                                      | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041                                                                                                         | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046                                                                                                                | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0056<br>0,0059<br>0,0052                                                                                                            | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048                                                                                                            | <b>vF - 5</b><br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046                                                                              | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0021<br>0,0012<br>0,0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                  | Image: constraint of the second sec | BV           100           1500           4800           9500           15200           19300           24600           33000           37500                                                                                                                                                                                                                   | d<br>0<br>2<br>7<br>14<br>22<br>28<br>36<br>50<br>56                                                                                                                                                                                                                                                                                                                | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050                                                                                               | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047                                                                                                      | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0056<br>0,0059<br>0,0052                                                                                                            | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038                                                                                                  | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041                                                                           | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0021<br>0,0012<br>0,0011<br>0,0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>8<br>9                                                                                                                                             | Inj           4           48           170           335           530           671           863           1200           1350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BV           100           1500           4800           9500           15200           19300           24600           33000           37500                                                                                                                                                                                                                   | d<br>0<br>2<br>7<br>14<br>22<br>28<br>36<br>50<br>56                                                                                                                                                                                                                                                                                                                | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050                                                                                               | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047                                                                                                      | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0056<br>0,0059<br>0,0052                                                                                                            | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038                                                                                                  | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041                                                                           | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0021<br>0,0012<br>0,0011<br>0,0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                  | Image: constraint of the second sec | BV           100           1500           4800           9500           15200           19300           24600           33000           37500                                                                                                                                                                                                                   | d<br>0<br>2<br>7<br>14<br>22<br>28<br>36<br>50<br>56<br>(erte wurden mi                                                                                                                                                                                                                                                                                             | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050<br>t einem Kreislau                                                                           | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047<br>ifvolumen von 1                                                                                   | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0056<br>0,0059<br>0,0052                                                                                                            | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038<br>55 L ermittelt.                                                                               | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041                                                                           | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0021<br>0,0012<br>0,0011<br>0,0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9                                                                                                                                             | Image: constraint of the second sec | BV           100           1500           4800           9500           15200           19300           24600           33000           37500                                                                                                                                                                                                                   | d<br>0<br>2<br>7<br>14<br>22<br>28<br>36<br>50<br>56<br>(erte wurden mi                                                                                                                                                                                                                                                                                             | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050<br>t einem Kreislau                                                                           | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047<br>ifvolumen von 1                                                                                   | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0056<br>0,0059<br>0,0052                                                                                                            | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038<br>55 L ermittelt.                                                                               | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041                                                                           | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0021<br>0,0012<br>0,0011<br>0,0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9                                                                                                                                             | Image: constraint of the second sec | BV           100           1500           4800           9500           15200           19300           24600           33000           37500           u unterlegten W           Durchsatz                                                                                                                                                                     | d<br>0<br>2<br>7<br>14<br>22<br>28<br>36<br>50<br>56<br>(erte wurden mi                                                                                                                                                                                                                                                                                             | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050<br>t einem Kreislau                                                                           | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047<br>ifvolumen von 1                                                                                   | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0056<br>0,0059<br>0,0052<br>,15 L anstatt 0,<br>r(O2) [L                                                                            | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038<br>55 L ermittelt.<br>/m2min]                                                                    | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041                                                                           | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0021<br>0,0012<br>0,0011<br>0,0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>7<br>8<br>9<br>9<br>9                                                                                                                              | t           [h]           4           48           170           335           530           671           863           1200           1350           Bem.: Die gra           t           [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BV           100           1500           4800           9500           15200           19300           24600           33000           37500           uu unterlegten W           Durchsatz           BV                                                                                                                                                       | d<br>0<br>2<br>7<br>14<br>22<br>28<br>36<br>50<br>56<br>/erte wurden mi<br>t<br>d                                                                                                                                                                                                                                                                                   | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050<br>t einem Kreislau<br>vF - 1                                                                 | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047<br>ifvolumen von 1<br>vF - 2                                                                         | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0056<br>0,0059<br>0,0052<br>15 L anstatt 0,<br>r(O2) [L<br>vF - 3                                                                   | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038<br>55 L ermittelt.<br>/m2min]<br>vF - 4                                                          | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041                                                                           | Blind 0,0016 0,0053 0,0064 0,0101 0,0021 0,0012 0,0011 0,0011 0,0011 Blind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9<br>9<br>                                                                                                                                    | t<br>[h]<br>4<br>48<br>170<br>335<br>530<br>671<br>863<br>1200<br>1350<br>Bem.: Die gra<br>t<br>[h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BV           100           1500           4800           9500           15200           19300           24600           33000           37500           uu unterlegten W           Durchsatz           BV                                                                                                                                                       | d<br>0<br>2<br>7<br>14<br>22<br>28<br>36<br>50<br>56<br>/erte wurden mi<br>t<br>d                                                                                                                                                                                                                                                                                   | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050<br>t einem Kreislau<br>vF - 1                                                                 | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047<br>Ifvolumen von 1<br>vF - 2<br>1.00                                                                 | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0056<br>0,0059<br>0,0052<br>.15 L anstatt 0,<br>r(O2) [L<br>vF - 3<br>1.25                                                          | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038<br>55 L ermittelt.<br>/m2min]<br>vF - 4                                                          | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041                                                                           | Blind 0,0016 0,0053 0,0064 0,0101 0,0021 0,0012 0,0011 0,0011 0,0011 Blind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9<br>9<br>9<br>1<br>1<br>2                                                                                                                    | Inj         4         48         170         335         530         671         863         1200         1350         Bem.: Die grad         t         [h]         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BV           100           1500           4800           9500           15200           19300           24600           33000           37500           u unterlegten W           Durchsatz           BV           100                                                                                                                                          | d<br>0<br>2<br>7<br>14<br>22<br>28<br>36<br>50<br>56<br>56<br>(erte wurden mi<br>t<br>d<br>0<br>2                                                                                                                                                                                                                                                                   | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050<br>t einem Kreislau<br>vF - 1                                                                 | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047<br>ifvolumen von 1<br>vF - 2<br>1,00<br>0,64                                                         | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0059<br>0,0059<br>0,0052<br>,15 L anstatt 0,<br>r(O2) [L<br>vF - 3<br>1,35<br>0,60                                                  | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038<br>55 L ermittelt.<br>vF - 4<br>0,78                                                             | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041<br>vF - 5<br>1,49<br>0,84                                                 | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0021<br>0,0012<br>0,0011<br>0,0011<br>Blind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                            | t           [h]           4           48           170           335           530           671           863           1200           1350           Bem.: Die grad           t           [h]           4           48           170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BV           100           1500           4800           9500           15200           19300           24600           33000           37500           uu unterlegten W           Durchsatz           BV           100           1500                                                                                                                          | c           0           2           7           14           22           28           36           50           56           //erte wurden mi           t           d           0           2           7                                                                                                                                                          | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050<br>t einem Kreislau<br>vF - 1<br>0,50<br>0,32                                                 | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047<br>ifvolumen von 1<br>vF - 2<br>1,00<br>0,64<br>0,34                                                 | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0059<br>0,0059<br>0,0052                                                                                                            | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038<br>55 L ermittelt.<br>/m2min]<br>vF - 4<br>0,78<br>0,29                                          | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041<br>vF - 5<br>1,49<br>0,84<br>0,20                                         | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0021<br>0,0012<br>0,0011<br>0,0011<br>Blind<br>0,037<br>0,060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                            | t           [h]           4           48           170           335           530           671           863           1200           1350           Bem.: Die grad           t           [h]           4           48           170           335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BV           100           1500           4800           9500           15200           19300           24600           33000           37500           uu unterlegten W           Durchsatz           BV           100           1500           4800           9500                                                                                            | d           0           2           7           14           22           28           36           50           56           /erte wurden mi           t           d           0           2           7                                                                                                                                                           | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050<br>t einem Kreislau<br>vF - 1<br>0,50<br>0,32<br>0,20                                         | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047<br>ifvolumen von 1<br>vF - 2<br>1,00<br>0,64<br>0,34<br>0,10                                         | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0059<br>0,0059<br>0,0052                                                                                                            | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038<br>55 L ermittelt.<br>/m2min]<br>vF - 4<br>0,78<br>0,28<br>0,17                                  | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041<br>vF - 5<br>1,49<br>0,84<br>0,30                                         | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0021<br>0,0012<br>0,0011<br>0,0011<br>Blind<br>0,037<br>0,060<br>0,072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| #         1         2         3         4         5         6         7         8         9         #         1         2         3         4         5         4         5         4         5 | t           [h]           4           48           170           335           530           671           863           1200           1350           Bem.: Die grad           t           [h]           4           48           170           335           530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BV           100           1500           4800           9500           15200           19300           24600           33000           37500           uunterlegten W           Durchsatz           BV           100           1500           4800           9500           15200                                                                              | d           0           2           7           14           22           28           36           50           56           /erte wurden mi           t           0           2           7                                                                                                                                                                       | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050<br>t einem Kreislau<br>vF - 1<br>0,50<br>0,32<br>0,20<br>0,21                                 | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047<br>ifvolumen von 1<br>vF - 2<br>1,00<br>0,64<br>0,34<br>0,19<br>0,20                                 | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0059<br>0,0059<br>0,0052<br><br>r(O2) [L<br>vF - 3<br>1,35<br>0,69<br>0,32<br>0,18<br>0,16                                          | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038<br>55 L ermittelt.<br>/m2min]<br>vF - 4<br>0,78<br>0,28<br>0,17<br>0,12                          | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041<br>vF - 5<br>1,49<br>0,84<br>0,30<br>0,18<br>0,14                         | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0012<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0012<br>0,005<br>0,0064<br>0,0053<br>0,0064<br>0,0053<br>0,0064<br>0,0053<br>0,0064<br>0,0053<br>0,0064<br>0,0053<br>0,0064<br>0,0053<br>0,0064<br>0,0053<br>0,0064<br>0,0053<br>0,0064<br>0,0053<br>0,0064<br>0,0053<br>0,0064<br>0,0012<br>0,0012<br>0,0011<br>0,0012<br>0,0011<br>0,0012<br>0,0011<br>0,0012<br>0,0011<br>0,0012<br>0,0011<br>0,0011<br>0,0012<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,007<br>0,0060<br>0,072<br>0,072<br>0,0113<br>0,072<br>0,0113<br>0,0072<br>0,0113<br>0,0072<br>0,0113<br>0,0072<br>0,0113<br>0,0072<br>0,0113<br>0,0072<br>0,0113<br>0,0072<br>0,0113<br>0,0072<br>0,0113<br>0,0072<br>0,0113<br>0,0072<br>0,0113<br>0,0072<br>0,0113<br>0,0072<br>0,0113<br>0,0072<br>0,0113<br>0,0072<br>0,0113<br>0,0072<br>0,0113<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,0072<br>0,00 |
| #         1         2         3         4         5         6         7         8         9         #         1         2         3         4         5         6         7         8         9 | t<br>[h]<br>4<br>48<br>170<br>335<br>530<br>671<br>863<br>1200<br>1350<br>Bem.: Die gra<br>t<br>[h]<br>4<br>48<br>170<br>335<br>530<br>671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BV           100           1500           4800           9500           15200           19300           24600           33000           37500           uunterlegten W           Durchsatz           BV           100           1500           4800           9500           1200           1200           1200           1200                                  | d           0           2           7           14           22           28           36           50           56           /erte wurden mi           t           0           2           7           14           22           36           50           56           /erte wurden mi           0           2           7           14           22           28 | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050<br>t einem Kreislau<br>vF - 1<br>0,50<br>0,32<br>0,20<br>0,21<br>0,07                         | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047<br>ifvolumen von 1<br>vF - 2<br>1,00<br>0,64<br>0,34<br>0,19<br>0,20<br>0,07                         | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0059<br>0,0059<br>0,0052<br>15 L anstatt 0,<br>r(O2) [L<br>vF - 3<br>1,35<br>0,69<br>0,32<br>0,18<br>0,16<br>0,06                   | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038<br>55 L ermittelt.<br>/m2min]<br>vF - 4<br>0,78<br>0,28<br>0,17<br>0,12<br>0,06                  | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041<br>vF - 5<br>1,49<br>0,84<br>0,30<br>0,18<br>0,14<br>0,06                 | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0012<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| #         1         2         3         4         5         6         7         8         9         #         1         2         3         4         5         6         7         6         7 | t<br>[h]<br>4<br>48<br>170<br>335<br>530<br>671<br>863<br>1200<br>1350<br>Bem.: Die gra<br>t<br>[h]<br>4<br>48<br>170<br>335<br>530<br>671<br>863<br>671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BV           100           1500           4800           9500           15200           19300           24600           33000           37500           uunterlegten W           Durchsatz           BV           100           1500           4800           9500           1500           4800           9500           15200           19300           24600 | d           0           2           7           14           22           28           36           50           56           /erte wurden mi           t           0           2           7           14           22           36           7           14           22           7           14           22           28           36                          | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050<br>t einem Kreislau<br>vF - 1<br>0,50<br>0,32<br>0,20<br>0,21<br>0,07                         | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047<br>ifvolumen von 1<br>vF - 2<br>1,00<br>0,64<br>0,34<br>0,19<br>0,20<br>0,06                         | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0059<br>0,0059<br>0,0052<br>,15 L anstatt 0,<br>r(O2) [L<br>vF - 3<br>1,35<br>0,69<br>0,32<br>0,18<br>0,16<br>0,06<br>0,07          | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038<br>55 L ermittelt.<br>/m2min]<br>vF - 4<br>0,78<br>0,28<br>0,17<br>0,12<br>0,06                  | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041<br>vF - 5<br>1,49<br>0,84<br>0,30<br>0,18<br>0,14<br>0,06                 | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0012<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,007<br>0,060<br>0,072<br>0,113<br>0,024<br>0,013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| #         1         2         3         4         5         6         7         8         9         #         1         2         3         4         5         6         7         8         9 | t<br>[h]<br>4<br>48<br>170<br>335<br>530<br>671<br>863<br>1200<br>1350<br>Bem.: Die gra<br>t<br>[h]<br>4<br>48<br>170<br>335<br>530<br>671<br>863<br>1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BV           100           1500           4800           9500           15200           19300           24600           33000           37500           uunterlegten W           Durchsatz           BV           100           1500           4800           9500           12500           19300           24600           33000                              | d           0           2           7           14           22           28           36           50           56           /erte wurden mi           t           0           2           7           14           22           28           36           7           14           22           28           36           50                                      | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050<br>t einem Kreislau<br>vF - 1<br>0,50<br>0,32<br>0,20<br>0,21<br>0,07<br>0,07<br>0,05         | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047<br>ifvolumen von 1<br>vF - 2<br>1,00<br>0,64<br>0,34<br>0,19<br>0,20<br>0,07<br>0,06<br>0,05         | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0059<br>0,0052<br>0,0052<br>1,15 L anstatt 0,<br>r(O2) [L<br>vF - 3<br>1,35<br>0,69<br>0,32<br>0,18<br>0,16<br>0,06<br>0,07<br>0,06 | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038<br>55 L ermittelt.<br>/m2min]<br>vF - 4<br>0,78<br>0,28<br>0,17<br>0,12<br>0,06<br>0,05          | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041<br>vF - 5<br>1,49<br>0,84<br>0,30<br>0,18<br>0,14<br>0,06<br>0,05         | Blind<br>0,0016<br>0,0053<br>0,0064<br>0,0101<br>0,0012<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,037<br>0,060<br>0,072<br>0,113<br>0,024<br>0,013<br>0,012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                            | t<br>[h]<br>4<br>48<br>170<br>335<br>530<br>671<br>863<br>1200<br>1350<br>Bem.: Die gra<br>t<br>[h]<br>4<br>48<br>170<br>335<br>530<br>671<br>863<br>1200<br>1355<br>530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BV           100           1500           4800           9500           15200           19300           24600           33000           37500           uu unterlegten W           Durchsatz           BV           100           1500           4800           9500           15200           19300           24600           33000                            | t           0           2           7           14           22           28           36           50           56           /erte wurden mi           t           0           2           7           14           22           28           36           50           56           36           50           56                                                  | vF - 1<br>0,0213<br>0,0288<br>0,0175<br>0,0187<br>0,0060<br>0,0062<br>0,0041<br>0,0050<br>t einem Kreislau<br>vF - 1<br>0,50<br>0,32<br>0,20<br>0,21<br>0,07<br>0,07<br>0,05<br>0,06 | vF - 2<br>0,0425<br>0,0271<br>0,0304<br>0,0168<br>0,0178<br>0,0059<br>0,0057<br>0,0046<br>0,0047<br>ifvolumen von 1<br>vF - 2<br>1,00<br>0,64<br>0,34<br>0,19<br>0,20<br>0,07<br>0,06<br>0,05<br>0,05 | vF - 3<br>0,0574<br>0,0294<br>0,0287<br>0,0164<br>0,0145<br>0,0059<br>0,0059<br>0,0052<br>,15 L anstatt 0,<br>r(O2) [L<br>vF - 3<br>1,35<br>0,69<br>0,32<br>0,18<br>0,16<br>0,06<br>0,07<br>0,06  | vF - 4<br>0,0333<br>0,0121<br>0,0150<br>0,0110<br>0,0056<br>0,0058<br>0,0048<br>0,0038<br>55 L ermittelt.<br>/m2min]<br>vF - 4<br>0,78<br>0,28<br>0,17<br>0,12<br>0,06<br>0,005<br>0,04 | vF - 5<br>0,0632<br>0,0358<br>0,0125<br>0,0157<br>0,0125<br>0,0056<br>0,0052<br>0,0046<br>0,0041<br>vF - 5<br>1,49<br>0,84<br>0,30<br>0,18<br>0,14<br>0,06<br>0,05<br>0,05 | Blind 0,0016 0,0053 0,0064 0,0101 0,0021 0,0012 0,0011 0,0011 0,0011 0,0011 0,0011 0,0011 0,0011 0,0011 0,0011 0,0011 0,0011 0,001 0,007 0,060 0,072 0,113 0,024 0,013 0,012 0,013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Versuchsart           | Säulenversuch zur Sauerstoffkorrosion                           |                                                             |                                                |                           |                    |  |
|-----------------------|-----------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|---------------------------|--------------------|--|
| Versuchsnummer        | SV 18.1                                                         |                                                             |                                                |                           |                    |  |
| Abbildung im Text     | 4.3                                                             | 4.5 a)                                                      |                                                |                           |                    |  |
|                       | 4.6                                                             | 4.20                                                        |                                                |                           |                    |  |
| Laufzeit              | 722 h / 31 d                                                    |                                                             |                                                |                           |                    |  |
| Material              | Stahlwolle D                                                    | -III                                                        |                                                |                           |                    |  |
| Säulendurchmesser     | 0,05                                                            | m                                                           |                                                |                           |                    |  |
| Säulenquerschnitt     | 0,00196                                                         | m <sup>2</sup>                                              |                                                |                           |                    |  |
| Betthöhe              | 0,06                                                            | m                                                           |                                                |                           |                    |  |
| Bettvolumen           | 0,118                                                           | L                                                           |                                                |                           |                    |  |
| Masse Fe              | 46                                                              | g                                                           |                                                |                           |                    |  |
| Oberfläche Fe         | 0,235                                                           | m <sup>2</sup>                                              |                                                |                           |                    |  |
| Porosität             | 95                                                              | %                                                           |                                                |                           |                    |  |
| Filtergeschwindigkeit | 2                                                               | m/h                                                         |                                                |                           |                    |  |
| Volumenstrom          | 95                                                              | L/d                                                         |                                                |                           |                    |  |
| Massenbilanz SV 18.1  | Fe-EW<br>Fe-Ab-gel.<br>Fe-Ab-part.<br>Fe-Ox-Säule<br>Fe-MetSäul | 45,83 g<br>5,952 g<br>4,406 g<br>21,062 g<br>e 14,410 g (*) | As-Zu<br>As-Ab-gel.<br>As-Ab-part.<br>As-Säule | 1327<br>263<br>224<br>840 | mg<br>mg<br>mg (*) |  |
|                       | (*): Rechneri                                                   | sch ermittelt -                                             | <ul> <li>keine geschlos</li> </ul>             | sene Bi                   | lanz.              |  |

| Nr.                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q                                                                                                                                                                                                                                                                                         | Durchsatz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c(O2)Zu                                                                                                                                                                                                                                                                                                                                    | c(O2)Ab                                                                                                                                                                                                                                                                                                                                                                                                  | ∆c(O2)F.                                                                                                                                                                                                                                                                                                                                                               | c(Fe)Ox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c(Fe)Ab                                                                                                                                                                                                                                                                                                                                                                                                                           | c(Fe)Ab,g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #                                                                                                                                                                                                                                                                                                                                                                                                                                     | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mL/min                                                                                                                                                                                                                                                                                    | BV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                                                                                                                                                                                                                                                                                                                                       | mg/L                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69                                                                                                                                                                                                                                                                                        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6,85                                                                                                                                                                                                                                                                                                                                       | 0,07                                                                                                                                                                                                                                                                                                                                                                                                     | -0,18                                                                                                                                                                                                                                                                                                                                                                  | 16,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,92                                                                                                                                                                                                                                                                                                                                                                                                                              | 5,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67                                                                                                                                                                                                                                                                                        | 901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8,42                                                                                                                                                                                                                                                                                                                                       | 0,07                                                                                                                                                                                                                                                                                                                                                                                                     | 0,06                                                                                                                                                                                                                                                                                                                                                                   | 19,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,51                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67                                                                                                                                                                                                                                                                                        | 1720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8,77                                                                                                                                                                                                                                                                                                                                       | 0,09                                                                                                                                                                                                                                                                                                                                                                                                     | 0,04                                                                                                                                                                                                                                                                                                                                                                   | 20,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,96                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65                                                                                                                                                                                                                                                                                        | 2527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8,15                                                                                                                                                                                                                                                                                                                                       | 0,08                                                                                                                                                                                                                                                                                                                                                                                                     | 0,01                                                                                                                                                                                                                                                                                                                                                                   | 18,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,80                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                                                        | 3407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8,11                                                                                                                                                                                                                                                                                                                                       | 0,04                                                                                                                                                                                                                                                                                                                                                                                                     | 0,06                                                                                                                                                                                                                                                                                                                                                                   | 18,63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,69                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                                                        | 4113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8,38                                                                                                                                                                                                                                                                                                                                       | 0,42                                                                                                                                                                                                                                                                                                                                                                                                     | 0,05                                                                                                                                                                                                                                                                                                                                                                   | 18,39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,54                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62                                                                                                                                                                                                                                                                                        | 4973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8,15                                                                                                                                                                                                                                                                                                                                       | 0,27                                                                                                                                                                                                                                                                                                                                                                                                     | -0,08                                                                                                                                                                                                                                                                                                                                                                  | 18,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,97                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                                                                                                                                                                                                                                                                                        | 5594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8,67                                                                                                                                                                                                                                                                                                                                       | 0,34                                                                                                                                                                                                                                                                                                                                                                                                     | -0,09                                                                                                                                                                                                                                                                                                                                                                  | 19,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5,69                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                     | 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                                                                                                                                                                                                                                                                                        | 6327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,53                                                                                                                                                                                                                                                                                                                                       | 0,47                                                                                                                                                                                                                                                                                                                                                                                                     | 0,02                                                                                                                                                                                                                                                                                                                                                                   | 16,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5,42                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                    | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67                                                                                                                                                                                                                                                                                        | 7103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8,24                                                                                                                                                                                                                                                                                                                                       | 0,61                                                                                                                                                                                                                                                                                                                                                                                                     | 0,19                                                                                                                                                                                                                                                                                                                                                                   | 17,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5,28                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                    | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                                                                                                                                                                                                                                                        | 7916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,91                                                                                                                                                                                                                                                                                                                                       | 0,72                                                                                                                                                                                                                                                                                                                                                                                                     | 0,01                                                                                                                                                                                                                                                                                                                                                                   | 16,71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5,50                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                    | 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65                                                                                                                                                                                                                                                                                        | 8717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8,58                                                                                                                                                                                                                                                                                                                                       | 1,29                                                                                                                                                                                                                                                                                                                                                                                                     | 0,26                                                                                                                                                                                                                                                                                                                                                                   | 16,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,86                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                    | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                                                                                                                                                                                                                                                        | 9517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6,02                                                                                                                                                                                                                                                                                                                                       | 1,73                                                                                                                                                                                                                                                                                                                                                                                                     | 0,17                                                                                                                                                                                                                                                                                                                                                                   | 9,58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,97                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                    | 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                                                        | 10306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,10                                                                                                                                                                                                                                                                                                                                       | 2,34                                                                                                                                                                                                                                                                                                                                                                                                     | 0,08                                                                                                                                                                                                                                                                                                                                                                   | 10,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,36                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                    | 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                                                                                                                                                                                                                                                        | 11094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8,39                                                                                                                                                                                                                                                                                                                                       | 2,98                                                                                                                                                                                                                                                                                                                                                                                                     | 0,13                                                                                                                                                                                                                                                                                                                                                                   | 12,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,23                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                    | 362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68                                                                                                                                                                                                                                                                                        | 11913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8,31                                                                                                                                                                                                                                                                                                                                       | 3,33                                                                                                                                                                                                                                                                                                                                                                                                     | -0,02                                                                                                                                                                                                                                                                                                                                                                  | 11,63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,87                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                    | 386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67                                                                                                                                                                                                                                                                                        | 12738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,92                                                                                                                                                                                                                                                                                                                                       | 4,53                                                                                                                                                                                                                                                                                                                                                                                                     | -0,18                                                                                                                                                                                                                                                                                                                                                                  | 8,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,92                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                    | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69                                                                                                                                                                                                                                                                                        | 13569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8,10                                                                                                                                                                                                                                                                                                                                       | 4,67                                                                                                                                                                                                                                                                                                                                                                                                     | 0,18                                                                                                                                                                                                                                                                                                                                                                   | 7,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,02                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                    | 434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69                                                                                                                                                                                                                                                                                        | 14413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,60                                                                                                                                                                                                                                                                                                                                       | 4,10                                                                                                                                                                                                                                                                                                                                                                                                     | 0,36                                                                                                                                                                                                                                                                                                                                                                   | 7,31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,57                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                    | 458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67                                                                                                                                                                                                                                                                                        | 15244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,19                                                                                                                                                                                                                                                                                                                                       | 3,29                                                                                                                                                                                                                                                                                                                                                                                                     | 0,23                                                                                                                                                                                                                                                                                                                                                                   | 6,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,68                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                    | 482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67                                                                                                                                                                                                                                                                                        | 16060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,09                                                                                                                                                                                                                                                                                                                                       | 3,52                                                                                                                                                                                                                                                                                                                                                                                                     | 0,16                                                                                                                                                                                                                                                                                                                                                                   | 7,94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,44                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                    | 506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68                                                                                                                                                                                                                                                                                        | 16882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,34                                                                                                                                                                                                                                                                                                                                       | 4,05                                                                                                                                                                                                                                                                                                                                                                                                     | 0,38                                                                                                                                                                                                                                                                                                                                                                   | 6,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,35                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                    | 530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67                                                                                                                                                                                                                                                                                        | 17707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,39                                                                                                                                                                                                                                                                                                                                       | 5,11                                                                                                                                                                                                                                                                                                                                                                                                     | 0,03                                                                                                                                                                                                                                                                                                                                                                   | 5,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,02                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                    | 554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67                                                                                                                                                                                                                                                                                        | 18526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,89                                                                                                                                                                                                                                                                                                                                       | 5,29                                                                                                                                                                                                                                                                                                                                                                                                     | 0,14                                                                                                                                                                                                                                                                                                                                                                   | 5,72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,69                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                    | 578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67                                                                                                                                                                                                                                                                                        | 19345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,64                                                                                                                                                                                                                                                                                                                                       | 5,37                                                                                                                                                                                                                                                                                                                                                                                                     | 0,09                                                                                                                                                                                                                                                                                                                                                                   | 5,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,57                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                    | 602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                                                                                                                                                                                                                                                        | 20158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,36                                                                                                                                                                                                                                                                                                                                       | 4,93                                                                                                                                                                                                                                                                                                                                                                                                     | 0,16                                                                                                                                                                                                                                                                                                                                                                   | 5,26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,59                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                    | 626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                                                                                                                                                                                                                                                        | 20964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,39                                                                                                                                                                                                                                                                                                                                       | 4,64                                                                                                                                                                                                                                                                                                                                                                                                     | 0,07                                                                                                                                                                                                                                                                                                                                                                   | 3,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,17                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                    | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                                                                                                                                                                                                                                                        | 21771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,62                                                                                                                                                                                                                                                                                                                                       | 5,10                                                                                                                                                                                                                                                                                                                                                                                                     | 0,06                                                                                                                                                                                                                                                                                                                                                                   | 3,39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,07                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                    | 674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                                                                                                                                                                                                                                                        | 22578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,78                                                                                                                                                                                                                                                                                                                                       | 5,93                                                                                                                                                                                                                                                                                                                                                                                                     | 0,17                                                                                                                                                                                                                                                                                                                                                                   | 3,91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,84                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                    | 698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                                                                                                                                                                                                                                                        | 23385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,33                                                                                                                                                                                                                                                                                                                                       | 5,95                                                                                                                                                                                                                                                                                                                                                                                                     | -0,02                                                                                                                                                                                                                                                                                                                                                                  | 3,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,73                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                    | 722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                                                                                                                                                                                                                                                        | 24191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.55                                                                                                                                                                                                                                                                                                                                       | 5.93                                                                                                                                                                                                                                                                                                                                                                                                     | 0.13                                                                                                                                                                                                                                                                                                                                                                   | 3.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                                                                                                                                                                                                                                                                                                                          | - ,                                                                                                                                                                                                                                                                                                                                                                                                      | -,                                                                                                                                                                                                                                                                                                                                                                     | - ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                   | -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Nr.                                                                                                                                                                                                                                                                                                                                                                                                                                   | r(O2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CR(Fe)Ox                                                                                                                                                                                                                                                                                  | c(As)Zu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c(As)Ab                                                                                                                                                                                                                                                                                                                                    | c(As)Ab,g                                                                                                                                                                                                                                                                                                                                                                                                | c(As)SF                                                                                                                                                                                                                                                                                                                                                                | qM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | qP                                                                                                                                                                                                                                                                                                                                                                                                                                | c(Fe)SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nr.<br>#                                                                                                                                                                                                                                                                                                                                                                                                                              | r(O2)<br>L/m2min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d                                                                                                                                                                                                                                                                         | c(As)Zu<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c(As)Ab<br>µg/L                                                                                                                                                                                                                                                                                                                            | c(As)Ab,g<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                        | c(As)SF<br>µg/L                                                                                                                                                                                                                                                                                                                                                        | qM<br>μg/mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | qΡ<br>μg/mg                                                                                                                                                                                                                                                                                                                                                                                                                       | c(Fe)SF<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nr.<br>#<br>0                                                                                                                                                                                                                                                                                                                                                                                                                         | r(O2)<br>L/m2min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d                                                                                                                                                                                                                                                                         | c(As)Zu<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c(As)Ab<br>μg/L                                                                                                                                                                                                                                                                                                                            | c(As)Ab,g<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                        | c(As)SF<br>μg/L                                                                                                                                                                                                                                                                                                                                                        | qM<br>μg/mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | qΡ<br>μg/mg                                                                                                                                                                                                                                                                                                                                                                                                                       | c(Fe)SF<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nr.<br>#<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                    | r(O2)<br>L/m2min<br>1,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>6,54                                                                                                                                                                                                                                                                 | c(As)Zu<br>μg/L<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c(As)Ab<br>µg/L                                                                                                                                                                                                                                                                                                                            | c(As)Ab,g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                        | c(As)SF<br>µg/L                                                                                                                                                                                                                                                                                                                                                        | qM<br>µg/mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | qP<br>μg/mg                                                                                                                                                                                                                                                                                                                                                                                                                       | c(Fe)SF<br>mg/L<br>0,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nr.<br>#<br>0<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                               | r(O2)<br>L/m2min<br>1,40<br>1,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,00                                                                                                                                                                                                                                                 | c(As)Zu<br>µg/L<br>8<br>592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c(As)Ab<br>µg/L<br>2<br>25                                                                                                                                                                                                                                                                                                                 | с(As)Ab,g<br>µg/L<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                              | c(As)SF<br>μg/L<br>2<br>1                                                                                                                                                                                                                                                                                                                                              | <b>qM</b><br>μg/mg<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | qP<br>μg/mg                                                                                                                                                                                                                                                                                                                                                                                                                       | c(Fe)SF<br>mg/L<br>0,65<br>0,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nr.<br>#<br>0<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                          | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14                                                                                                                                                                                                                                         | c(As)Zu<br>µg/L<br>8<br>592<br>480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c(As)Ab<br>µg/L<br>2<br>25<br>12                                                                                                                                                                                                                                                                                                           | c(As)Ab,g<br>µg/L<br>1<br>1<br>2<br>0                                                                                                                                                                                                                                                                                                                                                                    | c(As)SF<br>μg/L<br>2<br>1<br>1                                                                                                                                                                                                                                                                                                                                         | <b>qM</b><br>μg/mg<br>65<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>qP</b><br>μg/mg<br>3<br>8                                                                                                                                                                                                                                                                                                                                                                                                      | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                     | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14                                                                                                                                                                                                                                         | c(As)Zu<br>μg/L<br>8<br>592<br>480<br>457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c(As)Ab<br>μg/L<br>2<br>25<br>12<br>7                                                                                                                                                                                                                                                                                                      | c(As)Ab,g<br>μg/L<br>1<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                         | c(As)SF<br>μg/L<br>2<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                    | qM<br>μg/mg<br>65<br>31<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | qР<br>µg/mg<br>3<br>8<br>6                                                                                                                                                                                                                                                                                                                                                                                                        | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>0,70                                                                                                                                                                                                                         | c(As)Zu<br>μg/L<br>8<br>592<br>480<br>457<br>491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c(As)Ab<br>μg/L<br>2<br>25<br>12<br>7<br>12<br>12                                                                                                                                                                                                                                                                                          | c(As)Ab,g<br>μg/L<br>1<br>2<br>2<br>4                                                                                                                                                                                                                                                                                                                                                                    | c(As)SF<br>μg/L<br>2<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                               | qM<br>μg/mg<br>65<br>31<br>32<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | qP<br>μg/mg<br>3<br>8<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                   | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,08<br>0,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                           | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,72                                                                                                                                                                                                                 | c(As)Zu<br>μg/L<br>8<br>592<br>480<br>457<br>491<br>533<br>492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c(As)Ab<br>μg/L<br>2<br>25<br>12<br>7<br>12<br>13                                                                                                                                                                                                                                                                                          | c(As)Ab,g<br>μg/L<br>1<br>1<br>2<br>2<br>4<br>3<br>3                                                                                                                                                                                                                                                                                                                                                     | c(As)SF<br>μg/L<br>2<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                          | qM<br>μg/mg<br>65<br>31<br>32<br>34<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | qP<br>μg/mg<br>3<br>8<br>6<br>6<br>4                                                                                                                                                                                                                                                                                                                                                                                              | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,08<br>0,09<br>0,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                      | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73                                                                                                                                                                                                                 | c(As)Zu<br>μg/L<br>8<br>592<br>480<br>457<br>491<br>533<br>433<br>433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(As)Ab<br>μg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20                                                                                                                                                                                                                                                                              | c(As)Ab,g<br>μg/L<br>1<br>1<br>2<br>2<br>4<br>3<br>2<br>2                                                                                                                                                                                                                                                                                                                                                | c(As)SF<br>μg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>0                                                                                                                                                                                                                                                                                                                | qM<br>μg/mg<br>65<br>31<br>32<br>34<br>44<br>31<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                               | qР<br>µg/mg<br>3<br>8<br>6<br>6<br>4<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                            | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>6,88                                                                                                                                                                                                 | c(As)Zu<br>µg/L<br>8<br>592<br>480<br>457<br>491<br>533<br>433<br>459<br>430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c(As)Ab<br>μg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40                                                                                                                                                                                                                                                                        | c(As)Ab,g<br>μg/L<br>1<br>2<br>2<br>4<br>3<br>2<br>6<br>6                                                                                                                                                                                                                                                                                                                                                | c(As)SF<br>μg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>0<br>2<br>2                                                                                                                                                                                                                                                                                                           | qM<br>μg/mg<br>65<br>31<br>32<br>34<br>44<br>31<br>32<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                         | qР<br>µg/mg<br>3<br>8<br>6<br>6<br>4<br>7<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                               | c(Fe)SF           mg/L           0,65           0,08           0,08           0,09           0,15           0,05           0,06                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                       | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76                                                                                                                                                                                                 | c(As)Zu<br>µg/L<br>8<br>592<br>480<br>457<br>491<br>533<br>433<br>459<br>439<br>550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c(As)Ab<br>μg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>07                                                                                                                                                                                                                                                                  | c(As)Ab,g<br>μg/L<br>1<br>2<br>2<br>4<br>3<br>2<br>6<br>5<br>5                                                                                                                                                                                                                                                                                                                                           | c(As)SF<br>μg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                            | qM<br>μg/mg<br>65<br>31<br>32<br>34<br>44<br>31<br>32<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>qP</b><br>μg/mg<br>3<br>8<br>6<br>6<br>4<br>7<br>6<br>4<br>7<br>6<br>15                                                                                                                                                                                                                                                                                                                                                        | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,04                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                                                                                                                                                                                                                                                      | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,79<br>6,79                                                                                                                                                                         | c(As)Zu           μg/L           8           592           480           457           491           533           433           459           439           556           461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c(As)Ab<br>μg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>62                                                                                                                                                                                                                                                            | c(As)Ab,g<br>μg/L<br>1<br>2<br>2<br>4<br>3<br>2<br>6<br>5<br>5<br>5<br>10                                                                                                                                                                                                                                                                                                                                | c(As)SF<br>μg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                             | qM<br>μg/mg<br>65<br>31<br>32<br>34<br>44<br>31<br>32<br>36<br>39<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>qP</b><br>μg/mg<br>3<br>8<br>6<br>6<br>4<br>7<br>6<br>4<br>7<br>6<br>15<br>33<br>20                                                                                                                                                                                                                                                                                                                                            | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,07                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9<br>10<br>11                                                                                                                                                                                                                                                                                                                                                           | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,79<br>6,47                                                                                                                                                                         | c(As)Zu<br>µg/L<br>8<br>592<br>480<br>457<br>491<br>533<br>433<br>459<br>439<br>556<br>494<br>475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c(As)Ab<br>μg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>22                                                                                                                                                                                                                                                      | c(As)Ab,g<br>μg/L<br>1<br>2<br>2<br>4<br>3<br>2<br>6<br>5<br>5<br>10<br>3<br>7                                                                                                                                                                                                                                                                                                                           | c(As)SF<br>μg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                         | qM<br>μg/mg<br>65<br>31<br>32<br>34<br>44<br>31<br>32<br>36<br>39<br>38<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>qP</b><br>μg/mg<br>3<br>8<br>6<br>6<br>6<br>4<br>7<br>6<br>15<br>33<br>20<br>20                                                                                                                                                                                                                                                                                                                                                | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,07<br>0,18                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12                                                                                                                                                                                                                                                                                                                                                    | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>2,74                                                                                                                                                                 | c(As)Zu<br>µg/L<br>8<br>592<br>480<br>457<br>491<br>533<br>433<br>459<br>433<br>459<br>439<br>556<br>494<br>475<br>464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c(As)Ab<br>μg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>120                                                                                                                                                                                                                                               | c(As)Ab,g<br>μg/L<br>1<br>2<br>2<br>4<br>3<br>2<br>6<br>5<br>5<br>10<br>3<br>7<br>7                                                                                                                                                                                                                                                                                                                      | c(As)SF<br>μg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                         | qM<br>μg/mg<br>65<br>31<br>32<br>34<br>44<br>31<br>32<br>36<br>39<br>38<br>38<br>34<br>60                                                                                                                                                                                                                                                                                                                                                                                                                           | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           42                                                                                                                                                                                                                                                                       | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,07<br>0,18<br>0,09<br>0,21                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14                                                                                                                                                                                                                              | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02                                                                                                                                                         | c(As)Zu           μg/L           8           592           480           457           491           533           433           459           439           556           494           475           464                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c(As)Ab<br>μg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147                                                                                                                                                                                                                                        | c(As)Ab,g<br>μg/L<br>1<br>1<br>2<br>2<br>4<br>3<br>2<br>4<br>3<br>2<br>6<br>5<br>5<br>10<br>3<br>7<br>7<br>4<br>20                                                                                                                                                                                                                                                                                       | c(As)SF<br>μg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                         | qM<br>μg/mg<br>65<br>31<br>32<br>34<br>44<br>31<br>32<br>36<br>39<br>38<br>38<br>34<br>60<br>44                                                                                                                                                                                                                                                                                                                                                                                                                     | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75                                                                                                                                                                                                                                                          | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,07<br>0,18<br>0,09<br>0,21                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14                                                                                                                                                                                                                              | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75                                                                                                                                                 | c(As)Zu<br>µg/L<br>8<br>592<br>480<br>457<br>491<br>533<br>433<br>459<br>439<br>556<br>494<br>475<br>464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c(As)Ab<br>μg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164                                                                                                                                                                                                                                 | c(As)Ab,g<br>μg/L<br>1<br>1<br>2<br>2<br>4<br>3<br>2<br>4<br>3<br>2<br>6<br>5<br>5<br>10<br>3<br>7<br>4<br>20<br>80                                                                                                                                                                                                                                                                                      | c(As)SF<br>μg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                         | qM<br>μg/mg<br>65<br>31<br>32<br>34<br>44<br>31<br>32<br>36<br>39<br>38<br>38<br>34<br>60<br>44<br>22                                                                                                                                                                                                                                                                                                                                                                                                               | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75                                                                                                                                                                                                                                                          | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,07<br>0,18<br>0,09<br>0,21<br>0,08                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15                                                                                                                                                                                                                 | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75                                                                                                                                                 | c(As)Zu<br>µg/L<br>8<br>592<br>480<br>457<br>491<br>533<br>433<br>459<br>439<br>556<br>439<br>556<br>494<br>475<br>464<br>475<br>461<br>487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c(As)Ab<br>μg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>160                                                                                                                                                                                                                          | c(As)Ab,g<br>μg/L<br>1<br>1<br>2<br>2<br>4<br>3<br>2<br>6<br>5<br>10<br>3<br>7<br>4<br>20<br>89<br>10                                                                                                                                                                                                                                                                                                    | c(As)SF<br>μg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                         | qM<br>μg/mg<br>65<br>31<br>32<br>34<br>44<br>31<br>32<br>36<br>39<br>38<br>34<br>60<br>44<br>41                                                                                                                                                                                                                                                                                                                                                                                                                     | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           72                                                                                                                                                                                                                                | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,07<br>0,07<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,09                                                                                                                                                                                                                                                                                                                                                                                               |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17                                                                                                                                                                                       | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>2,26                                                                                                                                 | c(As)Zu           μg/L           8           592           480           457           491           533           433           459           439           556           494           475           464           475           461           487           456                                                                                                                                                                                                                                                                                                                                                                                                                       | с(As)Ab<br>µg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>169<br>231                                                                                                                                                                                                                   | c(As)Ab,g           μg/L           1           1           2           4           3           2           6           5           10           3           7           4           20           89           19           00                                                                                                                                                                            | c(As)SF           μg/L           2           1           1           1           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           3           2                         | qM<br>μg/mg<br>65<br>31<br>32<br>34<br>44<br>31<br>32<br>36<br>39<br>38<br>34<br>60<br>44<br>41<br>42                                                                                                                                                                                                                                                                                                                                                                                                               | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122                                                                                                                                                                                                                  | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,07<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,05<br>0,07                                                                                                                                                                                                                                                                                                                                                                                               |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           12                                                                                                                                                                          | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17<br>0,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26                                                                                                                                 | c(As)Zu           μg/L           8           592           480           457           491           533           433           459           439           556           494           475           464           475           461           487           456           467                                                                                                                                                                                                                                                                                                                                                                                                         | c(As)Ab<br>μg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>169<br>231<br>255                                                                                                                                                                                                            | c(As)Ab,g<br>μg/L<br>1<br>1<br>2<br>2<br>4<br>3<br>2<br>6<br>5<br>10<br>3<br>7<br>4<br>20<br>89<br>19<br>99<br>100                                                                                                                                                                                                                                                                                       | c(As)SF<br>μg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                         | qM<br>μg/mg<br>65<br>31<br>32<br>34<br>44<br>31<br>32<br>36<br>39<br>38<br>34<br>60<br>44<br>43<br>33<br>41<br>42<br>42                                                                                                                                                                                                                                                                                                                                                                                             | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122                                                                                                                                                                                                                  | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,07<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,05<br>0,07                                                                                                                                                                                                                                                                                                                                                                       |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18                                                                                                                                                                          | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17<br>0,17<br>0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26<br>3,06<br>2,06                                                                                                                 | c(As)Zu           μg/L           8           592           480           457           491           533           433           459           439           556           494           475           464           475           461           487           456           467                                                                                                                                                                                                                                                                                                                                                                                                         | с(As)Ab<br>µg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>169<br>231<br>250<br>307                                                                                                                                                                                                     | c(As)Ab,g           μg/L           1           1           2           4           3           2           6           5           10           3           7           4           20           89           19           99           120                                                                                                                                                              | c(As)SF           μg/L           2           1           1           1           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           3           4                         | qM<br>μg/mg<br>65<br>31<br>32<br>34<br>44<br>31<br>32<br>36<br>39<br>38<br>34<br>60<br>44<br>43<br>33<br>41<br>42<br>48<br>40                                                                                                                                                                                                                                                                                                                                                                                       | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122           107           164                                                                                                                                                                                      | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,07<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,05<br>0,07<br>0,02                                                                                                                                                                                                                                                                                                                                                               |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20                                                                                                                                                | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17<br>0,19<br>0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26<br>3,06<br>2,96                                                                                                                 | c(As)Zu           μg/L           8           592           480           457           491           533           433           459           439           556           494           475           464           475           461           487           456           467           490                                                                                                                                                                                                                                                                                                                                                                                           | с(As)Ab<br>µg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>169<br>231<br>250<br>307<br>242                                                                                                                                                                                              | c(As)Ab,g           μg/L           1           1           2           4           3           2           6           5           10           3           7           4           20           89           19           99           120           111                                                                                                                                                | c(As)SF           μg/L           2           1           1           1           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           3           4                         | qM           μg/mg           65           31           32           34           44           31           32           36           39           38           34           60           44           33           44           31           32           36           39           38           34           60           44           33           41           42           48           49           65                                                                                                         | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122           107           161                                                                                                                                                                                      | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,07<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,09<br>0,21<br>0,08<br>0,07<br>0,02<br>0,07<br>0,02<br>0,02<br>0,20                                                                                                                                                                                                                                                                                                                                               |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21                                                                                                                                   | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17<br>0,17<br>0,19<br>0,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26<br>3,06<br>2,96<br>2,43<br>3,00                                                                                                 | c(As)Zu           μg/L           8           592           480           457           491           533           433           459           439           556           494           475           464           475           461           487           456           467           490           442                                                                                                                                                                                                                                                                                                                                                                             | с(As)Ab<br>µg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>169<br>231<br>250<br>307<br>213<br>220                                                                                                                                                                                       | c(As)Ab,g           μg/L           1           1           2           4           3           2           6           5           10           3           7           4           20           89           19           99           120           111           126                                                                                                                                  | c(As)SF           μg/L           2           1           1           1           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           3           4           5             | qM           μg/mg           65           31           32           34           44           31           32           36           39           38           34           60           44           33           44           33           44           33           44           33           41           42           48           49           65           32                                                                                                                                                | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122           107           161           139           142                                                                                                                                                          | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,07<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,05<br>0,07<br>0,02<br>0,02<br>0,20                                                                                                                                                                                                                                                                                                                                       |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22                                                                                                                      | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17<br>0,17<br>0,19<br>0,21<br>0,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26<br>3,06<br>2,96<br>2,43<br>3,09<br>2,60                                                                                         | c(As)Zu           μg/L           8           592           480           457           491           533           433           459           439           556           494           475           461           487           456           467           490           409                                                                                                                                                                                                                                                                                                                                                                                                         | с(As)Ab<br>µg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>169<br>231<br>250<br>307<br>213<br>230<br>250                                                                                                                                                                                | c(As)Ab,g           μg/L           1           1           2           4           3           2           6           5           10           3           7           4           20           89           19           99           120           111           126           130                                                                                                                    | c(As)SF           μg/L           2           1           1           1           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           3           4           5           6 | qM           μg/mg           65           31           32           34           44           31           32           36           39           38           34           60           44           33           44           33           34           60           44           33           41           42           48           49           65           33           58                                                                                                                                   | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122           107           161           139           142           168                                                                                                                                            | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,07<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,05<br>0,07<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02                                                                                                                                                                                                                                                                                                                               |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           22                                                                                                         | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17<br>0,17<br>0,19<br>0,21<br>0,18<br>0,41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26<br>3,06<br>2,96<br>2,43<br>3,09<br>2,69                                                                                         | c(As)Zu           μg/L           8           592           480           457           491           533           433           459           439           556           494           475           464           475           461           487           456           467           490           504                                                                                                                                                                                                                                                                                                                                                                             | c(As)Ab           μg/L           2           25           12           7           12           13           17           20           40           87           66           82           130           147           164           169           231           250           307           213           230           250           282 | c(As)Ab,g           μg/L           1           1           2           4           3           2           6           5           10           3           7           4           20           89           19           99           120           111           126           130           100                                                                                                      | c(As)SF           μg/L           2           1           1           1           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           3           4           5           6           8             | qM           μg/mg           65           31           32           34           44           31           32           36           39           38           34           60           44           33           41           42           48           49           65           33           58           54                                                                                                                                                                                                    | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122           107           161           139           142           168           97                                                                                                                               | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,07<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,05<br>0,07<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,08                                                                                                                                                                                                                                                                                                                       |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24                                                                                            | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17<br>0,17<br>0,19<br>0,21<br>0,18<br>0,11<br>0,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26<br>3,06<br>2,96<br>2,43<br>3,09<br>2,69<br>2,06<br>2,25                                                                         | c(As)Zu           μg/L           8           592           480           457           491           533           433           459           439           556           494           475           464           475           461           487           456           467           490           504           457                                                                                                                                                                                                                                                                                                                                                               | с(As)Ab<br>µg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>169<br>231<br>250<br>307<br>213<br>230<br>250<br>283<br>202                                                                                                                                                                  | c(As)Ab,g           μg/L           1           1           2           4           3           2           6           5           10           3           7           4           20           89           19           99           120           111           126           130           100           231                                                                                        | c(As)SF           μg/L           2           1           1           1           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           3           4           5           6           8           0 | qM           μg/mg           65           31           32           34           44           31           32           36           39           38           34           60           44           33           41           42           48           49           65           33           58           54           48                                                                                                                                                                                       | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122           107           161           139           142           168           97           165                                                                                                                 | c(Fe)SF<br>mg/L<br>0,65<br>0,08<br>0,08<br>0,08<br>0,09<br>0,15<br>0,05<br>0,06<br>0,04<br>0,07<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,09<br>0,21<br>0,08<br>0,18<br>0,05<br>0,07<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,03<br>0,03<br>0,04                                                                                                                                                                                                                                                                                               |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24                                                                                            | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17<br>0,17<br>0,19<br>0,21<br>0,18<br>0,11<br>0,12<br>0,41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26<br>3,06<br>2,96<br>2,43<br>3,09<br>2,69<br>2,06<br>2,25                                                                         | c(As)Zu           μg/L           8           592           480           457           491           533           433           459           439           556           494           475           464           475           461           487           456           467           490           504           457           484                                                                                                                                                                                                                                                                                                                                                 | с(As)Ab<br>µg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>169<br>231<br>250<br>307<br>213<br>230<br>250<br>283<br>292<br>205                                                                                                                                                           | c(As)Ab,g           μg/L           1           1           2           4           3           2           6           5           10           3           7           4           20           89           19           99           120           111           126           130           100           231           59                                                                           | с(As)SF<br>µg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                         | qM           μg/mg           65           31           32           34           44           31           32           36           39           38           34           60           44           33           44           33           58           54           48           52                                                                                                                                                                                                                              | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122           107           161           139           142           168           97           165                                                                                                                 | c(Fe)SF           mg/L           0,65           0,08           0,09           0,15           0,05           0,00           0,15           0,05           0,06           0,07           0,18           0,05           0,07           0,21           0,08           0,18           0,05           0,07           0,02           0,02           0,02           0,03           0,01                                                                                                                                                                       |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26                                                                  | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17<br>0,17<br>0,19<br>0,19<br>0,21<br>0,18<br>0,11<br>0,12<br>0,11<br>0,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26<br>3,06<br>2,96<br>2,43<br>3,09<br>2,69<br>2,06<br>2,25<br>1,99<br>2,04                                                         | c(As)Zu           μg/L           8           592           480           457           491           533           433           459           439           556           494           475           464           475           461           487           456           467           490           504           457           484           479           484           479           462                                                                                                                                                                                                                                                                                         | с(As)Ab<br>µg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>169<br>231<br>250<br>307<br>213<br>230<br>250<br>283<br>292<br>295<br>307                                                                                                                                                    | c(As)Ab,g           μg/L           1           1           2           4           3           2           6           5           10           3           7           4           20           89           19           99           120           111           126           130           100           231           59           220           203                                               | с(As)SF<br>µg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                         | qM           μg/mg           65           31           32           34           44           31           32           36           39           38           34           60           44           33           41           42           48           49           65           33           58           54           48           53           40                                                                                                                                                             | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122           107           161           139           142           168           97           165           258           223                                                                                     | c(Fe)SF           mg/L           0,65           0,08           0,09           0,15           0,06           0,07           0,18           0,09           0,21           0,08           0,02           0,02           0,02           0,03           0,01                                                                                                                                                                                                                                                                                               |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26           27                                                     | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17<br>0,17<br>0,19<br>0,19<br>0,21<br>0,18<br>0,11<br>0,12<br>0,11<br>0,12<br>0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26<br>3,06<br>2,96<br>2,43<br>3,09<br>2,69<br>2,06<br>2,25<br>1,99<br>2,04                                                         | c(As)Zu           μg/L           8           592           480           457           491           533           433           459           439           556           494           475           461           487           456           467           490           442           409           504           457           484           479           453                                                                                                                                                                                                                                                                                                                     | с(As)Ab<br>µg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>169<br>231<br>250<br>307<br>213<br>230<br>250<br>283<br>292<br>295<br>307<br>284                                                                                                                                             | c(As)Ab,g           μg/L           1           1           2           4           3           2           6           5           10           3           7           4           20           89           19           99           120           111           126           130           100           231           59           220           203                                               | с(As)SF<br>µg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                         | qM           μg/mg           65           31           32           34           44           31           32           36           39           38           34           60           44           33           44           33           58           54           48           53           40           50                                                                                                                                                                                                    | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122           107           161           139           142           168           97           165           258           223           79¢                                                                       | c(Fe)SF           mg/L           0,65           0,08           0,09           0,15           0,05           0,06           0,07           0,18           0,09           0,21           0,08           0,07           0,08           0,07           0,08           0,07           0,08           0,01           0,02           0,02           0,03           0,01           0,02           0,01           0,02                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26           27           28                                        | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,75<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17<br>0,17<br>0,17<br>0,19<br>0,21<br>0,18<br>0,11<br>0,12<br>0,09<br>0,09<br>0,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26<br>3,06<br>2,96<br>2,43<br>3,09<br>2,69<br>2,06<br>2,25<br>1,99<br>2,04<br>1,51<br>4,21                                         | с(As)Zu<br>µg/L<br>8<br>592<br>480<br>457<br>491<br>533<br>433<br>459<br>439<br>556<br>494<br>475<br>464<br>475<br>464<br>475<br>464<br>475<br>461<br>487<br>467<br>490<br>442<br>409<br>504<br>457<br>484<br>479<br>453<br>417<br>467                                                                                                                                                                                                                                                                                                                                                                                                                                                   | с(As)Ab<br>µg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>169<br>231<br>250<br>307<br>213<br>230<br>250<br>283<br>292<br>295<br>307<br>281<br>249                                                                                                                                      | c(As)Ab,g           μg/L           1           1           2           4           3           2           6           5           10           3           7           4           20           89           19           99           120           1111           126           130           100           231           59           220           203           249           233                  | с(As)SF<br>µg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                         | qM           μg/mg           65           31           32           34           44           31           32           36           39           38           34           60           44           33           44           31           32           36           39           38           34           60           44           33           41           42           48           49           65           33           58           54           48           53           40           50           64 | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122           107           161           139           142           168           97           165           258           223           785           240                                                         | c(Fe)SF           mg/L           0,65           0,08           0,09           0,15           0,05           0,00           0,015           0,05           0,06           0,07           0,18           0,09           0,21           0,08           0,07           0,02           0,02           0,02           0,02           0,03           0,01           0,02           0,01           0,02           0,03           0,01           0,02           0,01                                                                                           |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26           27           28           20                           | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17<br>0,17<br>0,19<br>0,19<br>0,21<br>0,18<br>0,11<br>0,12<br>0,09<br>0,08<br>0,09<br>0,08<br>0,09<br>0,08<br>0,09<br>0,08<br>0,09<br>0,08<br>0,09<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0, | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26<br>3,06<br>2,96<br>2,43<br>3,09<br>2,69<br>2,06<br>2,25<br>1,99<br>2,04<br>1,51<br>1,51 | c(As)Zu           µg/L           8           592           480           457           491           533           433           459           439           556           494           475           464           475           461           487           456           467           490           442           409           504           457           484           479           453           417           467           497                                                                                                                                                                                                                                               | с(As)Ab<br>µg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>169<br>231<br>250<br>307<br>213<br>230<br>250<br>283<br>292<br>295<br>307<br>281<br>318<br>320                                                                                                                               | с(As)Ab,g<br>µg/L<br>1<br>1<br>2<br>2<br>4<br>3<br>2<br>6<br>5<br>10<br>3<br>7<br>4<br>20<br>89<br>19<br>99<br>120<br>111<br>126<br>130<br>100<br>231<br>59<br>220<br>203<br>249<br>233<br>271                                                                                                                                                                                                           | с(As)SF<br>µg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                         | qM           μg/mg           65           31           32           34           44           31           32           34           44           31           32           36           39           38           34           60           44           33           44           33           41           42           48           49           65           33           58           54           48           53           40           50           64                                                     | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122           107           161           139           142           168           97           165           258           223           785           249           6525                                          | c(Fe)SF           mg/L           0,65           0,08           0,09           0,15           0,05           0,06           0,07           0,18           0,08           0,09           0,15           0,06           0,07           0,18           0,09           0,21           0,08           0,010           0,02           0,02           0,02           0,02           0,03           0,01           0,02           0,03           0,01           0,02           0,04                                                                            |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26           27           28           29           20              | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17<br>0,17<br>0,19<br>0,19<br>0,19<br>0,21<br>0,11<br>0,12<br>0,11<br>0,12<br>0,09<br>0,08<br>0,08<br>0,08<br>0,08<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,008<br>0,0                                                                                         | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26<br>3,06<br>2,96<br>2,43<br>3,09<br>2,69<br>2,06<br>2,25<br>1,99<br>2,04<br>1,51<br>1,31<br>1,51<br>1,51<br>1,51                 | c(As)Zu<br>µg/L<br>8<br>592<br>480<br>457<br>491<br>533<br>433<br>459<br>439<br>556<br>494<br>475<br>464<br>475<br>464<br>475<br>464<br>475<br>461<br>487<br>456<br>467<br>490<br>442<br>409<br>504<br>457<br>484<br>479<br>453<br>417<br>467<br>487<br>487                                                                                                                                                                                                                                                                                                                                                                                                                              | с(As)Ab<br>µg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>169<br>231<br>250<br>307<br>213<br>230<br>250<br>283<br>292<br>295<br>307<br>281<br>318<br>339<br>226                                                                                                                        | с(As)Ab,g<br>µg/L<br>1<br>1<br>2<br>2<br>4<br>3<br>2<br>6<br>5<br>10<br>3<br>7<br>4<br>20<br>89<br>19<br>99<br>120<br>111<br>126<br>130<br>100<br>231<br>59<br>220<br>203<br>249<br>233<br>271<br>266                                                                                                                                                                                                    | с(As)SF<br>µg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                         | qM           μg/mg           65           31           32           34           44           31           32           34           44           31           32           36           39           38           34           60           44           33           41           42           48           49           65           33           58           54           48           53           40           50           64           48                                                                  | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122           107           161           139           142           168           97           165           258           223           785           249           525           249           525           203 | c(Fe)SF           mg/L           0,65           0,08           0,09           0,15           0,06           0,07           0,18           0,09           0,21           0,08           0,09           0,21           0,08           0,09           0,21           0,08           0,010           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,03           0,01           0,02           0,01           0,02           0,03           0,01           0,02           0,01           0,02 |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26           27           28           29           30           30 | r(O2)<br>L/m2min<br>1,40<br>1,44<br>1,36<br>1,36<br>1,50<br>0,84<br>0,95<br>0,86<br>0,74<br>0,78<br>0,71<br>0,55<br>0,37<br>0,31<br>0,30<br>0,28<br>0,17<br>0,17<br>0,19<br>0,19<br>0,21<br>0,19<br>0,21<br>0,11<br>0,12<br>0,11<br>0,12<br>0,09<br>0,08<br>0,08<br>0,08<br>0,08<br>0,08<br>0,08<br>0,08<br>0,08<br>0,08<br>0,09<br>0,08<br>0,09<br>0,08<br>0,09<br>0,08<br>0,09<br>0,08<br>0,09<br>0,00<br>0,00<br>0,08<br>0,00<br>0,08<br>0,00<br>0,08<br>0,09<br>0,08<br>0,09<br>0,02<br>0,02<br>0,09<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0, | CR(Fe)Ox<br>g/m2d<br>6,54<br>7,58<br>7,89<br>7,14<br>6,88<br>6,79<br>6,73<br>6,88<br>5,76<br>6,79<br>6,47<br>6,23<br>3,71<br>4,02<br>4,75<br>4,64<br>3,26<br>3,06<br>2,96<br>2,43<br>3,09<br>2,69<br>2,06<br>2,25<br>1,99<br>2,04<br>1,51<br>1,31<br>1,51<br>1,25<br>1,25                 | c(As)Zu           µg/L           8           592           480           457           491           533           433           459           439           556           494           475           461           487           456           467           490           442           409           504           457           484           479           453           417           467           487           457           484           479           453           417           467           487           457           487           457           467           467           467           467           467           467           467           467           467 | с(As)Ab<br>µg/L<br>2<br>25<br>12<br>7<br>12<br>13<br>17<br>20<br>40<br>87<br>66<br>82<br>130<br>147<br>164<br>169<br>231<br>250<br>307<br>213<br>230<br>250<br>283<br>292<br>295<br>307<br>281<br>318<br>339<br>326                                                                                                                        | c(As)Ab,g           μg/L           1           1           2           4           3           2           4           3           7           4           20           89           19           99           120           111           126           130           100           231           59           220           203           249           233           271           266           2020 | с(As)SF<br>µg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                         | qM           μg/mg           65           31           32           34           44           31           32           34           44           31           32           36           39           38           34           60           44           33           41           42           48           49           65           33           58           54           48           53           40           50           64           48           52           54                                        | qP           μg/mg           3           8           6           4           7           6           15           33           20           29           48           75           42           73           122           107           161           139           142           168           97           165           258           223           785           249           525           303           2002              | c(Fe)SF           mg/L           0,65           0,08           0,09           0,15           0,05           0,06           0,07           0,18           0,09           0,21           0,08           0,09           0,21           0,08           0,09           0,21           0,08           0,01           0,02           0,02           0,02           0,02           0,02           0,03           0,01           0,02           0,01           0,02           0,01           0,02                                                              |

| Nr.                                                                                                                                                                                                                                                                                                                                                                                                                      | pH-Zu                                                                                                                                                                                                                                                                                                                                                                                                           | pH-Ab                                                                                                                                                                                                                                                                                                                                                                                                                       | LeitfZu                                                                                                                                                                                                                                                                                           | LeitfAb                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Δр                                                                                                                                                                                                                                                                                                                            | ∆p-SF                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                             | µS/cm                                                                                                                                                                                                                                                                                             | μS/cm                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bar                                                                                                                                                                                                                                                                                                                           | mmWS                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,07                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,45                                                                                                                                                                                                                                                                                                                                                                                                            | 7,33                                                                                                                                                                                                                                                                                                                                                                                                                        | 737                                                                                                                                                                                                                                                                                               | 736                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,07                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,50                                                                                                                                                                                                                                                                                                                                                                                                            | 7,31                                                                                                                                                                                                                                                                                                                                                                                                                        | 692                                                                                                                                                                                                                                                                                               | 677                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,08                                                                                                                                                                                                                                                                                                                          | 89/123/10                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,49                                                                                                                                                                                                                                                                                                                                                                                                            | 7,32                                                                                                                                                                                                                                                                                                                                                                                                                        | 735                                                                                                                                                                                                                                                                                               | 712                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,08                                                                                                                                                                                                                                                                                                                          | 18                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,56                                                                                                                                                                                                                                                                                                                                                                                                            | 7,40                                                                                                                                                                                                                                                                                                                                                                                                                        | 703                                                                                                                                                                                                                                                                                               | 692                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,08                                                                                                                                                                                                                                                                                                                          | 38                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,59                                                                                                                                                                                                                                                                                                                                                                                                            | 7,46                                                                                                                                                                                                                                                                                                                                                                                                                        | 722                                                                                                                                                                                                                                                                                               | 718                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,08                                                                                                                                                                                                                                                                                                                          | 59                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,48                                                                                                                                                                                                                                                                                                                                                                                                            | 7,39                                                                                                                                                                                                                                                                                                                                                                                                                        | 720                                                                                                                                                                                                                                                                                               | 737                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,08                                                                                                                                                                                                                                                                                                                          | 65                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,72                                                                                                                                                                                                                                                                                                                                                                                                            | 7,46                                                                                                                                                                                                                                                                                                                                                                                                                        | 729                                                                                                                                                                                                                                                                                               | 717                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,09                                                                                                                                                                                                                                                                                                                          | 148                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,32                                                                                                                                                                                                                                                                                                                                                                                                            | 7,57                                                                                                                                                                                                                                                                                                                                                                                                                        | 735                                                                                                                                                                                                                                                                                               | 718                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,10                                                                                                                                                                                                                                                                                                                          | 161                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,62                                                                                                                                                                                                                                                                                                                                                                                                            | 7,60                                                                                                                                                                                                                                                                                                                                                                                                                        | 733                                                                                                                                                                                                                                                                                               | 727                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,10                                                                                                                                                                                                                                                                                                                          | 201/5                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,36                                                                                                                                                                                                                                                                                                                                                                                                            | 7,68                                                                                                                                                                                                                                                                                                                                                                                                                        | 744                                                                                                                                                                                                                                                                                               | 728                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,12                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,70                                                                                                                                                                                                                                                                                                                                                                                                            | 7,67                                                                                                                                                                                                                                                                                                                                                                                                                        | 742                                                                                                                                                                                                                                                                                               | 734                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,11                                                                                                                                                                                                                                                                                                                          | 70                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,52                                                                                                                                                                                                                                                                                                                                                                                                            | 7,74                                                                                                                                                                                                                                                                                                                                                                                                                        | 730                                                                                                                                                                                                                                                                                               | 737                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,15                                                                                                                                                                                                                                                                                                                          | 123                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,65                                                                                                                                                                                                                                                                                                                                                                                                            | 7,61                                                                                                                                                                                                                                                                                                                                                                                                                        | 724                                                                                                                                                                                                                                                                                               | 756                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,14                                                                                                                                                                                                                                                                                                                          | 162/5                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,62                                                                                                                                                                                                                                                                                                                                                                                                            | 7,57                                                                                                                                                                                                                                                                                                                                                                                                                        | 692                                                                                                                                                                                                                                                                                               | 719                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,17                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,38                                                                                                                                                                                                                                                                                                                                                                                                            | 7,33                                                                                                                                                                                                                                                                                                                                                                                                                        | 727                                                                                                                                                                                                                                                                                               | 728                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,20                                                                                                                                                                                                                                                                                                                          | 27                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,34                                                                                                                                                                                                                                                                                                                                                                                                            | 7,47                                                                                                                                                                                                                                                                                                                                                                                                                        | 745                                                                                                                                                                                                                                                                                               | 736                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,22                                                                                                                                                                                                                                                                                                                          | 29                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,47                                                                                                                                                                                                                                                                                                                                                                                                            | 7,40                                                                                                                                                                                                                                                                                                                                                                                                                        | 739                                                                                                                                                                                                                                                                                               | 731                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,19                                                                                                                                                                                                                                                                                                                          | 43                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,31                                                                                                                                                                                                                                                                                                                                                                                                            | 7,35                                                                                                                                                                                                                                                                                                                                                                                                                        | 774                                                                                                                                                                                                                                                                                               | 748                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,22                                                                                                                                                                                                                                                                                                                          | 90                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,14                                                                                                                                                                                                                                                                                                                                                                                                            | 7,40                                                                                                                                                                                                                                                                                                                                                                                                                        | 732                                                                                                                                                                                                                                                                                               | 726                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,23                                                                                                                                                                                                                                                                                                                          | 70                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,47                                                                                                                                                                                                                                                                                                                                                                                                            | 7,50                                                                                                                                                                                                                                                                                                                                                                                                                        | 740                                                                                                                                                                                                                                                                                               | 734                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,29                                                                                                                                                                                                                                                                                                                          | 90                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,41                                                                                                                                                                                                                                                                                                                                                                                                            | 7,41                                                                                                                                                                                                                                                                                                                                                                                                                        | 754                                                                                                                                                                                                                                                                                               | 746                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,31                                                                                                                                                                                                                                                                                                                          | 105                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,36                                                                                                                                                                                                                                                                                                                                                                                                            | 7,01                                                                                                                                                                                                                                                                                                                                                                                                                        | 727                                                                                                                                                                                                                                                                                               | 720                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,38                                                                                                                                                                                                                                                                                                                          | 120                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,53                                                                                                                                                                                                                                                                                                                                                                                                            | 7,51                                                                                                                                                                                                                                                                                                                                                                                                                        | 732                                                                                                                                                                                                                                                                                               | 731                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,35                                                                                                                                                                                                                                                                                                                          | 133                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,44                                                                                                                                                                                                                                                                                                                                                                                                            | 7,41                                                                                                                                                                                                                                                                                                                                                                                                                        | 708                                                                                                                                                                                                                                                                                               | 707                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,39                                                                                                                                                                                                                                                                                                                          | 147                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,51                                                                                                                                                                                                                                                                                                                                                                                                            | 7,45                                                                                                                                                                                                                                                                                                                                                                                                                        | 688                                                                                                                                                                                                                                                                                               | 686                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,42                                                                                                                                                                                                                                                                                                                          | 163/0                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,41                                                                                                                                                                                                                                                                                                                                                                                                            | 7,50                                                                                                                                                                                                                                                                                                                                                                                                                        | 725                                                                                                                                                                                                                                                                                               | 703                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,41                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,23                                                                                                                                                                                                                                                                                                                                                                                                            | 7,53                                                                                                                                                                                                                                                                                                                                                                                                                        | 744                                                                                                                                                                                                                                                                                               | 725                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,42                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,37                                                                                                                                                                                                                                                                                                                                                                                                            | 7,50                                                                                                                                                                                                                                                                                                                                                                                                                        | 718                                                                                                                                                                                                                                                                                               | 725                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,46                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,30                                                                                                                                                                                                                                                                                                                                                                                                            | 7,29                                                                                                                                                                                                                                                                                                                                                                                                                        | 712                                                                                                                                                                                                                                                                                               | 709                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,46                                                                                                                                                                                                                                                                                                                          | 43                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,46                                                                                                                                                                                                                                                                                                                                                                                                            | 7,39                                                                                                                                                                                                                                                                                                                                                                                                                        | 708                                                                                                                                                                                                                                                                                               | 709                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,5                                                                                                                                                                                                                                                                                                                           | 55                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - 31                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,23                                                                                                                                                                                                                                                                                                                                                                                                            | 7,44                                                                                                                                                                                                                                                                                                                                                                                                                        | /15                                                                                                                                                                                                                                                                                               | 703                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.55                                                                                                                                                                                                                                                                                                                          | 67                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                               | T.".L. OL                                                                                                                                                                                                                                                                                                                                                                                                                     | T."L 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T."L 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Nr.                                                                                                                                                                                                                                                                                                                                                                                                                      | c(Fe)SL,g                                                                                                                                                                                                                                                                                                                                                                                                       | c(Fe)SE,g                                                                                                                                                                                                                                                                                                                                                                                                                   | c(Fe)SF,g                                                                                                                                                                                                                                                                                         | c(As)SL,g                                                                                                                                                                                                             | c(As)SE,g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c(As)SF,g                                                                                                                                                                                                                                                                                                                     | TrübSL                                                                                                                                                                                                                                                                                                                                                                                                                        | TrübSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TrübSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nr.<br>#                                                                                                                                                                                                                                                                                                                                                                                                                 | c(Fe)SL,g<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                               | c(Fe)SE,g<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L                                                                                                                                                                                                                                                                                 | c(As)SL,g<br>µg/L                                                                                                                                                                                                     | c(As)SE,g<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(As)SF,g<br>µg/L                                                                                                                                                                                                                                                                                                             | TrübSL<br>TE/F                                                                                                                                                                                                                                                                                                                                                                                                                | TrübSE<br>TE/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TrübSF<br>TE/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nr.<br>#<br>0                                                                                                                                                                                                                                                                                                                                                                                                            | c(Fe)SL,g<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                               | c(Fe)SE,g<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L                                                                                                                                                                                                                                                                                 | c(As)SL,g<br>μg/L                                                                                                                                                                                                     | c(As)SE,g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(As)SF,g<br>μg/L                                                                                                                                                                                                                                                                                                             | TrübSL<br>TE/F                                                                                                                                                                                                                                                                                                                                                                                                                | TrübSE<br>TE/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TrübSF<br>TE/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nr.<br>#<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                       | c(Fe)SL,g<br>mg/L<br>4,78                                                                                                                                                                                                                                                                                                                                                                                       | c(Fe)SE,g<br>mg/L<br>3,54                                                                                                                                                                                                                                                                                                                                                                                                   | c(Fe)SF,g<br>mg/L<br>0,09                                                                                                                                                                                                                                                                         | c(As)SL,g<br>μg/L                                                                                                                                                                                                     | c(As)SE,g<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(As)SF,g<br>μg/L<br>2                                                                                                                                                                                                                                                                                                        | TrübSL<br>TE/F<br>27,0                                                                                                                                                                                                                                                                                                                                                                                                        | TrübSE<br>TE/F<br>35,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TrübSF<br>TE/F<br>3,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nr.<br>#<br>0<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                  | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34                                                                                                                                                                                                                                                                                                                                                                       | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34                                                                                                                                                                                                                                                                                                                                                                                   | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06                                                                                                                                                                                                                                                                 | c(As)SL,g<br>μg/L<br>1<br>4                                                                                                                                                                                           | c(As)SE,g<br>μg/L<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c(As)SF,g<br>μg/L<br>2<br>1                                                                                                                                                                                                                                                                                                   | TrübSL<br>TE/F<br>27,0<br>6,0                                                                                                                                                                                                                                                                                                                                                                                                 | TrübSE<br>TE/F<br>35,0<br>20,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nr.<br>#<br>0<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                             | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67                                                                                                                                                                                                                                                                                                                                                               | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35                                                                                                                                                                                                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,06<br>0,08                                                                                                                                                                                                                                                 | c(As)SL,g<br>μg/L<br>1<br>4<br>4                                                                                                                                                                                      | c(As)SE,g<br>μg/L<br>2<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c(As)SF,g<br>μg/L<br>2<br>1<br>1                                                                                                                                                                                                                                                                                              | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5.8                                                                                                                                                                                                                                                                                                                                                                                   | TrübSE<br>TE/F<br>35,0<br>20,0<br>25,0<br>13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                        | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,00                                                                                                                                                                                                                                                                                                                                                       | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80                                                                                                                                                                                                                                                                                                                                                                   | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,06<br>0,08                                                                                                                                                                                                                                                 | c(As)SL,g<br>μg/L<br>1<br>4<br>4<br>1                                                                                                                                                                                 | c(As)SE,g<br>μg/L<br>2<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0                                                                                                                                                                                                                                                                                         | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,8                                                                                                                                                                                                                                                                                                                                                                            | TrübSE<br>TE/F<br>35,0<br>20,0<br>25,0<br>13,3<br>16,0                                                                                                                                                                                                                                                                                                                                                                                                                                          | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33<br>0,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                              | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09                                                                                                                                                                                                                                                                                                                                                       | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80                                                                                                                                                                                                                                                                                                                                                                   | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,06<br>0,08<br>0,07                                                                                                                                                                                                                                         | c(As)SL,g<br>μg/L<br>1<br>4<br>4<br>1<br>9<br>2                                                                                                                                                                       | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2                                                                                                                                                                                                                                                                                    | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2                                                                                                                                                                                                                                                                                                                                                                     | TrübSE<br>TE/F<br>35,0<br>20,0<br>25,0<br>13,3<br>16,9<br>1117                                                                                                                                                                                                                                                                                                                                                                                                                                  | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33<br>0,36<br>1,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                         | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16                                                                                                                                                                                                                                                                                                                                               | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63                                                                                                                                                                                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,06<br>0,08<br>0,07                                                                                                                                                                                                                                         | c(As)SL,g<br>μg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3                                                                                                                                                                  | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1                                                                                                                                                                                                                                                                          | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2<br>5,2<br>111 2                                                                                                                                                                                                                                                                                                                                                     | TrübSE<br>TE/F<br>35,0<br>20,0<br>25,0<br>13,3<br>16,9<br>11,7<br>40,0                                                                                                                                                                                                                                                                                                                                                                                                                          | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33<br>0,36<br>1,70<br>0,30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19                                                                                                                                                                                                                                                                                                                                       | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10                                                                                                                                                                                                                                                                                                                                                   | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,06<br>0,08<br>0,07<br>0,07<br>0,07                                                                                                                                                                                                                         | c(As)SL,g<br>μg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6                                                                                                                                                             | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2<br>5,2<br>11,2<br>10,1                                                                                                                                                                                                                                                                                                                                              | TrübSE<br>TE/F<br>35,0<br>20,0<br>25,0<br>13,3<br>16,9<br>11,7<br>40,0<br>69,0                                                                                                                                                                                                                                                                                                                                                                                                                  | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33<br>0,36<br>1,70<br>0,30<br>0,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nr.           #           0           1           2           3           4           5           6           7           8           9                                                                                                                                                                                                                                                                                  | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28                                                                                                                                                                                                                                                                                                                               | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91                                                                                                                                                                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,06<br>0,08<br>0,07<br>0,07<br>0,24<br>0,05                                                                                                                                                                                                                 | c(As)SL,g<br>μg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>6                                                                                                                                                        | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                           | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2<br>11,2<br>10,1<br>20,0                                                                                                                                                                                                                                                                                                                                             | TrübSE<br>TE/F<br>35,0<br>20,0<br>25,0<br>13,3<br>16,9<br>11,7<br>40,0<br>69,0<br>88,0                                                                                                                                                                                                                                                                                                                                                                                                          | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33<br>0,36<br>1,70<br>0,30<br>0,25<br>0,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10                                                                                                                                                                                                                                                                     | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82                                                                                                                                                                                                                                                                                                                       | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34                                                                                                                                                                                                                                                                                                                                   | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,06<br>0,08<br>0,07<br>0,07<br>0,24<br>0,05<br>0,06                                                                                                                                                                                                         | c(As)SL,g<br>μg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>3<br>6<br>2<br>4                                                                                                                                    | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                      | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2<br>5,2<br>11,2<br>10,1<br>20,0<br>9,8                                                                                                                                                                                                                                                                                                                               | TrübSE<br>TE/F<br>35,0<br>20,0<br>25,0<br>13,3<br>16,9<br>11,7<br>40,0<br>69,0<br>88,0<br>25,0                                                                                                                                                                                                                                                                                                                                                                                                  | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33<br>0,36<br>1,70<br>0,30<br>0,25<br>0,20<br>0,41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11                                                                                                                                                                                                                                                        | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16                                                                                                                                                                                                                                                                                                               | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28                                                                                                                                                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,06<br>0,08<br>0,07<br>0,07<br>0,24<br>0,05<br>0,06<br>0,07                                                                                                                                                                                                 | c(As)SL,g<br>μg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>2                                                                                                                                              | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3                                                                                                                                                                                                                                            | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2<br>5,2<br>11,2<br>10,1<br>20,0<br>9,8<br>32,0                                                                                                                                                                                                                                                                                                                       | TrübSE<br>TE/F<br>35,0<br>20,0<br>25,0<br>13,3<br>16,9<br>11,7<br>40,0<br>69,0<br>88,0<br>25,0<br>25,0                                                                                                                                                                                                                                                                                                                                                                                          | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33<br>0,36<br>1,70<br>0,30<br>0,25<br>0,20<br>0,41<br>0,41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12                                                                                                                                                                                                                                           | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16                                                                                                                                                                                                                                                                                                               | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28                                                                                                                                                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,06<br>0,08<br>0,07<br>0,07<br>0,07<br>0,24<br>0,05<br>0,06<br>0,07<br>0,06                                                                                                                                                                                 | c(As)SL,g<br>μg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>2<br>1                                                                                                                                         | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>2<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3<br>2                                                                                                                                                                                                                                       | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2<br>11,2<br>10,1<br>20,0<br>9,8<br>32,0<br>30,0                                                                                                                                                                                                                                                                                                                      | TrübSE<br>TE/F<br>35,0<br>20,0<br>25,0<br>13,3<br>16,9<br>11,7<br>40,0<br>69,0<br>88,0<br>25,0<br>25,0<br>35,0                                                                                                                                                                                                                                                                                                                                                                                  | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33<br>0,36<br>1,70<br>0,30<br>0,25<br>0,20<br>0,41<br>0,41<br>3,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13                                                                                                                                                                                                                              | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16<br>2,61                                                                                                                                                                                                                                                                                                       | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53                                                                                                                                                                                                                                                                                                                   | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,06<br>0,08<br>0,07<br>0,07<br>0,07<br>0,24<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07                                                                                                                                                                         | c(As)SL,g<br>μg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>2<br>4<br>2<br>1<br>6                                                                                                                          | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>2<br>1<br>3<br>4<br>2<br>2<br>1<br>3<br>3<br>4<br>2<br>2<br>3<br>4<br>2<br>3<br>4<br>2<br>3<br>3<br>4<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>4<br>3<br>3<br>4<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3<br>2<br>3                                                                                                                                                                                                                                  | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2<br>11,2<br>10,1<br>20,0<br>9,8<br>32,0<br>30,0<br>33,0                                                                                                                                                                                                                                                                                                              | TrübSE<br>TE/F<br>35,0<br>20,0<br>25,0<br>13,3<br>16,9<br>11,7<br>40,0<br>69,0<br>88,0<br>25,0<br>25,0<br>25,0<br>35,0<br>27,0                                                                                                                                                                                                                                                                                                                                                                  | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33<br>0,36<br>1,70<br>0,30<br>0,25<br>0,20<br>0,41<br>0,41<br>3,40<br>0,69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14                                                                                                                                                                                                                 | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16<br>2,61<br>1,67                                                                                                                                                                                                                                                                                               | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53<br>0,55                                                                                                                                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,06<br>0,08<br>0,07<br>0,07<br>0,07<br>0,024<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,10<br>0,07                                                                                                                                                | c(As)SL,g<br>μg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>2<br>1<br>6<br>23                                                                                                                              | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>2<br>3<br>4<br>2<br>2<br>1<br>2<br>1<br>3<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3<br>2<br>3<br>3<br>3                                                                                                                                                                                                                        | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2<br>11,2<br>10,1<br>20,0<br>9,8<br>32,0<br>30,0<br>33,0<br>12,2                                                                                                                                                                                                                                                                                                      | TrübSE<br>TE/F<br>35,0<br>20,0<br>25,0<br>13,3<br>16,9<br>11,7<br>40,0<br>69,0<br>88,0<br>25,0<br>25,0<br>25,0<br>35,0<br>27,0<br>23,0                                                                                                                                                                                                                                                                                                                                                          | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33<br>0,36<br>1,70<br>0,30<br>0,25<br>0,20<br>0,41<br>0,41<br>3,40<br>0,69<br>0,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15                                                                                                                                                                                                    | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16<br>2,61<br>1,67<br>2,02                                                                                                                                                                                                                                                                                       | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53<br>0,55<br>1,06                                                                                                                                                                                                                                                                                                   | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,07<br>0,024<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,10<br>0,07<br>0,08                                                                                                                                                | c(As)SL,g<br>μg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>2<br>1<br>6<br>23<br>45                                                                                                                        | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>2<br>3<br>4<br>2<br>2<br>1<br>3<br>6<br>6<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3<br>2<br>3<br>3<br>6                                                                                                                                                                                                                        | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2<br>11,2<br>10,1<br>20,0<br>9,8<br>32,0<br>30,0<br>33,0<br>12,2<br>12,5                                                                                                                                                                                                                                                                                              | TrübSE<br>TE/F<br>35,0<br>20,0<br>25,0<br>13,3<br>16,9<br>11,7<br>40,0<br>69,0<br>88,0<br>25,0<br>25,0<br>25,0<br>35,0<br>27,0<br>23,0<br>53,0                                                                                                                                                                                                                                                                                                                                                  | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33<br>0,36<br>1,70<br>0,30<br>0,25<br>0,20<br>0,41<br>0,41<br>3,40<br>0,69<br>0,27<br>0,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16                                                                                                                                                                                       | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16<br>2,61<br>1,67<br>2,02<br>2,09                                                                                                                                                                                                                                                                               | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53<br>0,55<br>1,06<br>0,80                                                                                                                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,24<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,10<br>0,07<br>0,08<br>0,02                                                                                                                                                 | c(As)SL,g<br>μg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>6<br>2<br>2<br>4<br>2<br>2<br>4<br>5<br>75                                                                                                               | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>2<br>3<br>4<br>2<br>2<br>1<br>3<br>6<br>11<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3<br>2<br>3<br>3<br>6<br>3                                                                                                                                                                                                                   | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2<br>5,2<br>11,2<br>10,1<br>20,0<br>9,8<br>32,0<br>30,0<br>33,0<br>12,2<br>12,5<br>55,0                                                                                                                                                                                                                                                                               | TrübSE<br>TE/F<br>35,0<br>20,0<br>25,0<br>13,3<br>16,9<br>11,7<br>40,0<br>69,0<br>88,0<br>25,0<br>25,0<br>25,0<br>35,0<br>27,0<br>23,0<br>53,0<br>66,0                                                                                                                                                                                                                                                                                                                                          | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33<br>0,36<br>1,70<br>0,30<br>0,25<br>0,20<br>0,41<br>0,41<br>3,40<br>0,69<br>0,27<br>0,85<br>0,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17                                                                                                                                                                          | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16<br>2,61<br>1,67<br>2,02<br>2,09<br>1,71                                                                                                                                                                                                                                                                       | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53<br>0,55<br>1,06<br>0,80                                                                                                                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,24<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,10<br>0,07<br>0,08<br>0,02<br>0,02                                                                                                                                         | c(As)SL,g<br>μg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>2<br>4<br>2<br>1<br>6<br>23<br>45<br>75<br>99                                                                                                  | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>2<br>1<br>3<br>6<br>6<br>11<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3<br>2<br>3<br>6<br>3<br>2                                                                                                                                                                                                                   | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2<br>11,2<br>10,1<br>20,0<br>9,8<br>32,0<br>30,0<br>33,0<br>12,2<br>12,5<br>55,0<br>8,9                                                                                                                                                                                                                                                                               | TrübSE           TE/F           35,0           20,0           25,0           13,3           16,9           11,7           40,0           69,0           88,0           25,0           35,0           25,0           35,0           25,0           35,0           27,0           23,0           53,0           66,0           126,0                                                                                                                                                              | TrübSF           TE/F           3,40           0,25           0,55           0,33           0,36           1,70           0,30           0,25           0,20           0,41           3,40           0,69           0,27           0,85           0,44           0,26                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18                                                                                                                                                             | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16<br>2,61<br>1,67<br>2,02<br>2,09<br>1,71<br>1,61                                                                                                                                                                                                                                                               | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53<br>0,55<br>1,06<br>0,80<br>0,51                                                                                                                                                                                                                                                                                   | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,07<br>0,07<br>0,04<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,08<br>0,07<br>0,08<br>0,02<br>0,02<br>0,02<br>0,01                                                                                                 | c(As)SL,g<br>µg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>2<br>4<br>2<br>1<br>6<br>23<br>45<br>75<br>99<br>99<br>99                                                                                      | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>2<br>1<br>3<br>6<br>11<br>10<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3<br>2<br>3<br>3<br>6<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>6<br>3<br>2<br>3<br>3<br>6<br>3<br>3<br>2<br>3<br>3<br>3<br>6<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                   | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2<br>11,2<br>10,1<br>20,0<br>9,8<br>32,0<br>30,0<br>33,0<br>12,2<br>12,5<br>55,0<br>8,9<br>9,3                                                                                                                                                                                                                                                                        | TrübSE           TE/F           35,0           20,0           25,0           13,3           16,9           11,7           40,0           69,0           88,0           25,0           35,0           25,0           35,0           25,0           35,0           25,0           35,0           27,0           23,0           53,0           66,0           126,0           49,0                                                                                                                 | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33<br>0,36<br>1,70<br>0,30<br>0,25<br>0,20<br>0,41<br>0,41<br>3,40<br>0,69<br>0,27<br>0,85<br>0,44<br>0,26<br>0,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19                                                                                                                                                | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16<br>2,61<br>1,67<br>2,02<br>2,09<br>1,71<br>1,61<br>1,09                                                                                                                                                                                                                                                       | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53<br>0,55<br>1,06<br>0,80<br>0,51<br>0,14                                                                                                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,24<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,08<br>0,07<br>0,08<br>0,02<br>0,02<br>0,02<br>0,01<br>0,02                                                                                                         | c(As)SL,g<br>µg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>2<br>1<br>6<br>23<br>45<br>75<br>99<br>99<br>99<br>39                                                                                          | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>2<br>1<br>3<br>6<br>11<br>10<br>22<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3<br>2<br>3<br>3<br>6<br>3<br>2<br>3<br>4                                                                                                                                                                                                    | TrübSL           TE/F           27,0           6,0           3,9           5,8           5,2           11,2           10,1           20,0           9,8           32,0           30,0           12,2           12,5           55,0           8,9           9,3           17,2                                                                                                                                                 | TrübSE           TE/F           35,0           20,0           25,0           13,3           16,9           11,7           40,0           69,0           88,0           25,0           35,0           25,0           35,0           25,0           35,0           27,0           23,0           53,0           66,0           126,0           49,0           55,0                                                                                                                                | TrübSF           TE/F           3,40           0,25           0,55           0,33           0,36           1,70           0,30           0,25           0,20           0,41           0,41           0,69           0,27           0,85           0,26           0,22           0,34                                                                                                                                                                                                                                                                                                                                                                                        |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20                                                                                                                                   | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16<br>2,61<br>1,67<br>2,02<br>2,09<br>1,71<br>1,61<br>1,09<br>0,87                                                                                                                                                                                                                                               | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53<br>0,55<br>1,06<br>0,80<br>0,51<br>0,14<br>0,36                                                                                                                                                                                                                                                                   | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,08<br>0,07<br>0,08<br>0,02<br>0,02<br>0,02<br>0,01<br>0,02<br>0,03                                                                                         | c(As)SL,g<br>µg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>3<br>6<br>2<br>4<br>2<br>1<br>6<br>23<br>45<br>75<br>99<br>99<br>99<br>99<br>39<br>59                                                               | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>2<br>1<br>3<br>6<br>11<br>10<br>22<br>16<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>3<br>3<br>6<br>3<br>2<br>3<br>4<br>4<br>4                                                                                                                                                                                               | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2<br>11,2<br>10,1<br>20,0<br>9,8<br>32,0<br>30,0<br>33,0<br>12,2<br>12,5<br>55,0<br>8,9<br>9,3<br>17,2<br>60,0                                                                                                                                                                                                                                                        | TrübSE           TE/F           35,0           20,0           25,0           13,3           16,9           11,7           40,0           69,0           88,0           25,0           35,0           25,0           35,0           25,0           35,0           25,0           35,0           66,0           126,0           49,0           55,0           14,4                                                                                                                                | TrübSF<br>TE/F<br>3,40<br>0,25<br>0,55<br>0,33<br>0,36<br>1,70<br>0,30<br>0,25<br>0,20<br>0,41<br>0,41<br>3,40<br>0,69<br>0,27<br>0,85<br>0,44<br>0,69<br>0,27<br>0,85<br>0,44<br>0,26<br>0,22<br>0,34<br>0,99                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21                                                                                                                      | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16<br>2,61<br>1,67<br>2,02<br>2,09<br>1,71<br>1,61<br>1,09<br>0,87<br>0,76                                                                                                                                                                                                                                       | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53<br>0,55<br>1,06<br>0,80<br>0,51<br>0,14<br>0,36<br>0,09                                                                                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,07<br>0,07<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,08<br>0,07<br>0,08<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,03<br>0,01                                                                                 | c(As)SL,g<br>µg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>2<br>1<br>6<br>23<br>45<br>75<br>99<br>99<br>99<br>99<br>39<br>59<br>51                                                                        | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>2<br>1<br>3<br>6<br>11<br>10<br>22<br>16<br>31<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3<br>2<br>3<br>3<br>6<br>3<br>2<br>3<br>4<br>4<br>4                                                                                                                                                                                     | TrübSL           TE/F           27,0           6,0           3,9           5,8           5,2           11,2           10,1           20,0           9,8           32,0           30,0           12,2           12,5           55,0           8,9           9,3           17,2           60,0                                                                                                                                  | TrübSE           TE/F           35,0           20,0           25,0           13,3           16,9           11,7           40,0           69,0           88,0           25,0           35,0           25,0           35,0           25,0           35,0           27,0           23,0           53,0           66,0           126,0           49,0           55,0           14,4                                                                                                                 | TrübSF           TE/F           3,40           0,25           0,55           0,33           0,36           1,70           0,30           0,25           0,20           0,41           0,41           0,69           0,27           0,85           0,44           0,26           0,22           0,34           0,99           0,44                                                                                                                                                                                                                                                                                                                                           |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22                                                                                                         | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16<br>2,61<br>1,67<br>2,02<br>2,09<br>1,71<br>1,61<br>1,09<br>0,87<br>0,76<br>0,36                                                                                                                                                                                                                               | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53<br>0,55<br>1,06<br>0,80<br>0,55<br>1,06<br>0,80<br>0,51<br>0,14<br>0,36<br>0,09<br>0,04                                                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,07<br>0,07<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,08<br>0,07<br>0,08<br>0,02<br>0,02<br>0,02<br>0,02<br>0,01<br>0,02<br>0,03<br>0,01<br>0,03                                                 | c(As)SL,g<br>µg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>3<br>6<br>2<br>4<br>1<br>6<br>23<br>45<br>75<br>99<br>99<br>99<br>99<br>99<br>59<br>51<br>28                                                        | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>2<br>1<br>3<br>6<br>11<br>10<br>22<br>16<br>31<br>19<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>0<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3<br>2<br>3<br>3<br>6<br>3<br>2<br>3<br>4<br>4<br>4<br>4                                                                                                                                                                                | TrübSL<br>TE/F<br>27,0<br>6,0<br>3,9<br>5,8<br>5,2<br>5,2<br>11,2<br>10,1<br>20,0<br>9,8<br>32,0<br>30,0<br>33,0<br>12,2<br>12,5<br>55,0<br>8,9<br>9,3<br>17,2<br>60,0                                                                                                                                                                                                                                                        | TrübSE           TE/F           35,0           20,0           25,0           13,3           16,9           11,7           40,0           69,0           88,0           25,0           35,0           25,0           35,0           25,0           35,0           25,0           35,0           66,0           126,0           49,0           55,0           14,4           45,0                                                                                                                 | TrübSF           TE/F           3,40           0,25           0,55           0,33           0,36           1,70           0,30           0,25           0,20           0,41           0,41           0,69           0,27           0,85           0,44           0,26           0,22           0,34           0,99           0,44           0,20                                                                                                                                                                                                                                                                                                                            |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23                                                                                            | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16<br>2,61<br>1,67<br>2,02<br>2,09<br>1,71<br>1,61<br>1,67<br>2,02<br>2,09<br>1,71<br>1,61<br>1,09<br>0,87<br>0,76<br>0,36<br>0,99                                                                                                                                                                               | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53<br>0,55<br>1,06<br>0,80<br>0,55<br>1,06<br>0,80<br>0,55<br>1,06<br>0,80<br>0,55<br>1,06<br>0,80<br>0,09<br>0,04<br>0,35                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,07<br>0,07<br>0,024<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,08<br>0,02<br>0,02<br>0,02<br>0,02<br>0,01<br>0,02<br>0,03<br>0,01<br>0,03<br>0,06                                                                | c(As)SL,g<br>µg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>3<br>6<br>2<br>4<br>2<br>1<br>6<br>23<br>45<br>75<br>99<br>99<br>99<br>99<br>39<br>59<br>51<br>28<br>162                                            | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>3<br>4<br>2<br>2<br>1<br>3<br>6<br>11<br>10<br>22<br>16<br>31<br>19<br>20<br>86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>3<br>3<br>6<br>3<br>2<br>3<br>4<br>4<br>4<br>6                                                                                                                                                                                     | TrübSL           TE/F           27,0           6,0           3,9           5,8           5,2           11,2           10,1           20,0           9,8           32,0           30,0           12,2           12,5           55,0           8,9           9,3           17,2           60,0           11,2           1,4                                                                                                     | TrübSE           TE/F           35,0           20,0           25,0           13,3           16,9           11,7           40,0           69,0           88,0           25,0           35,0           25,0           35,0           25,0           35,0           26,0           35,0           66,0           126,0           49,0           55,0           14,4           45,0           8,6                                                                                                   | TrübSF           TE/F           3,40           0,25           0,55           0,33           0,36           1,70           0,30           0,25           0,20           0,41           0,41           0,69           0,27           0,85           0,44           0,26           0,22           0,34           0,99           0,44           0,20           0,21                                                                                                                                                                                                                                                                                                             |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24                                                                               | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16<br>2,61<br>1,67<br>2,02<br>2,09<br>1,71<br>1,61<br>1,07<br>2,09<br>1,71<br>1,61<br>1,09<br>0,87<br>0,76<br>0,36<br>0,99<br>1,31                                                                                                                                                                               | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53<br>0,55<br>1,06<br>0,55<br>1,06<br>0,80<br>0,51<br>0,14<br>0,36<br>0,09<br>0,04<br>0,35<br>0,50                                                                                                                                                                                                                   | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,24<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,08<br>0,02<br>0,02<br>0,02<br>0,02<br>0,01<br>0,02<br>0,03<br>0,01<br>0,03<br>0,06<br>0,03                                                                         | c(As)SL,g<br>µg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>1<br>6<br>23<br>45<br>75<br>99<br>99<br>99<br>39<br>59<br>51<br>28<br>162<br>228                                                               | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>2<br>3<br>4<br>2<br>2<br>1<br>3<br>6<br>11<br>10<br>22<br>16<br>31<br>19<br>20<br>86<br>124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c(As)SF,g           μg/L           2           1           0           2           1           0           2           3           6           3           6           3           4           4           6           8                                                                                                      | TrübSL           TE/F           27,0           6,0           3,9           5,8           5,2           11,2           10,1           20,0           9,8           32,0           30,0           12,2           12,5           55,0           8,9           9,3           17,2           60,0           11,2           1,4           11,5                                                                                      | TrübSE           TE/F           35,0           20,0           25,0           13,3           16,9           11,7           40,0           69,0           88,0           25,0           35,0           25,0           35,0           25,0           35,0           26,0           35,0           66,0           126,0           49,0           55,0           14,4           45,0           8,6           7,2                                                                                     | TrübSF           TE/F           3,40           0,25           0,55           0,33           0,36           1,70           0,30           0,25           0,20           0,41           0,41           0,41           0,43           0,69           0,27           0,85           0,44           0,26           0,22           0,34           0,99           0,44           0,20           0,21           0,23                                                                                                                                                                                                                                                                |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25                                                                  | c(Fe)SL,g<br>mg/L<br>4,78<br>5,19<br>4,34<br>3,67<br>4,09<br>3,16<br>3,19<br>2,28<br>2,82<br>1,16<br>2,61<br>1,67<br>2,02<br>2,09<br>1,71<br>1,61<br>1,07<br>2,02<br>2,09<br>1,71<br>1,61<br>1,09<br>0,87<br>0,76<br>0,36<br>0,99<br>1,31<br>1,06                                                                                                                                                               | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53<br>0,55<br>1,06<br>0,55<br>1,06<br>0,55<br>1,06<br>0,80<br>0,51<br>0,14<br>0,36<br>0,09<br>0,04<br>0,35<br>0,50<br>0,32                                                                                                                                                                                           | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,24<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,08<br>0,02<br>0,02<br>0,02<br>0,01<br>0,02<br>0,03<br>0,03<br>0,03<br>0,03                                                                         | c(As)SL,g<br>µg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>3<br>6<br>2<br>4<br>1<br>6<br>23<br>45<br>75<br>99<br>99<br>99<br>39<br>59<br>51<br>28<br>162<br>228<br>199                                         | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>3<br>4<br>2<br>3<br>6<br>11<br>10<br>22<br>16<br>31<br>19<br>20<br>86<br>124<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c(As)SF,g           μg/L           2           1           0           2           1           0           2           1           0           2           3           6           3           6           3           4           4           6           8           12                                                     | TrübSL           TE/F           27,0           6,0           3,9           5,8           5,2           11,2           10,1           20,0           9,8           32,0           30,0           12,2           12,5           55,0           8,9           9,3           17,2           60,0           11,2           1,4           11,5           5,9                                                                        | TrübSE           TE/F           35,0           20,0           25,0           13,3           16,9           11,7           40,0           69,0           88,0           25,0           35,0           25,0           35,0           25,0           35,0           25,0           35,0           66,0           126,0           49,0           55,0           14,4           45,0           8,6           7,2           8,4                                                                       | TrübSF           TE/F           3,40           0,25           0,55           0,33           0,36           1,70           0,30           0,25           0,20           0,41           0,41           0,40           0,69           0,27           0,85           0,44           0,26           0,34           0,99           0,44           0,20           0,21           0,23           0,26                                                                                                                                                                                                                                                                               |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26                                                     | c(Fe)SL,g           mg/L           4,78           5,19           4,34           3,67           4,09           3,16           3,19           2,28           2,82           1,16           2,09           1,71           1,61           1,09           0,87           0,76           0,36           0,99           1,31           1,06           0,52                                                             | c(Fe)SE,g           mg/L           3,54           3,96           3,34           3,35           2,80           1,63           2,10           0,91           1,34           0,28           1,53           0,55           1,06           0,80           0           0,51           0,14           0,36           0,09           0,04           0,35           0,50           0,32           0,16                               | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,24<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,08<br>0,02<br>0,02<br>0,02<br>0,02<br>0,01<br>0,02<br>0,03<br>0,03<br>0,03<br>0,03<br>0,03<br>0,04                                                 | c(As)SL,g<br>µg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>1<br>6<br>23<br>45<br>75<br>99<br>99<br>99<br>39<br>59<br>51<br>28<br>162<br>228<br>199<br>153                                                 | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>3<br>4<br>2<br>1<br>3<br>6<br>11<br>10<br>22<br>16<br>31<br>19<br>20<br>86<br>124<br>104<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | с(As)SF,g<br><u>µg/L</u><br>2<br>1<br>1<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>3<br>3<br>6<br>3<br>2<br>3<br>6<br>3<br>2<br>3<br>4<br>4<br>4<br>4<br>6<br>8<br>12<br>39                                                                                                                                         | TrübSL           TE/F           27,0           6,0           3,9           5,8           5,2           11,2           10,1           20,0           9,8           32,0           30,0           12,2           12,5           55,0           8,9           9,3           17,2           60,0           11,2           1,4           11,5           5,9           7,0                                                          | TrübSE           TE/F           35,0           20,0           25,0           13,3           16,9           11,7           40,0           69,0           88,0           25,0           35,0           25,0           35,0           25,0           35,0           25,0           35,0           66,0           126,0           49,0           55,0           14,4           45,0           8,6           7,2           8,4           6,6                                                         | TrübSF           TE/F           3,40           0,25           0,55           0,33           0,36           1,70           0,30           0,25           0,20           0,41           0,41           0,69           0,27           0,85           0,24           0,27           0,85           0,44           0,26           0,21           0,23           0,26           0,23                                                                                                                                                                                                                                                                                              |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26           27                                        | c(Fe)SL,g           mg/L           4,78           5,19           4,34           3,67           4,09           3,16           3,19           2,28           2,82           1,16           2,09           1,71           1,61           1,09           0,87           0,76           0,36           0,99           1,31           1,06           0,52           0,84                                              | c(Fe)SE,g           mg/L           3,54           3,96           3,34           3,35           2,80           1,63           2,10           0,91           1,34           0,28           1,53           0,55           1,06           0,80           0           0,51           0,14           0,36           0,09           0,04           0,35           0,50           0,32           0,16                               | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,24<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,08<br>0,02<br>0,02<br>0,02<br>0,02<br>0,01<br>0,02<br>0,02<br>0,01<br>0,02<br>0,03<br>0,03<br>0,03<br>0,03<br>0,04<br>0,04                         | c(As)SL,g<br>µg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>1<br>6<br>23<br>45<br>75<br>99<br>99<br>99<br>39<br>59<br>51<br>28<br>162<br>228<br>199<br>153<br>249                                          | c(As)SE,g           μg/L           2           1           4           3           2           3           4           2           3           4           2           1           4           3           6           11           10           22           16           31           19           20           86           124           104           88           146                                                                                                                                                                                                                                                                                                                                                                                                                          | с(As)SF,g<br>µg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                       | TrübSL           TE/F           27,0           6,0           3,9           5,8           5,2           11,2           10,1           20,0           9,8           32,0           30,0           12,2           12,5           55,0           8,9           9,3           17,2           60,0           11,2           1,4           11,5           5,9           7,0           3,5                                            | TrübSE           TE/F           35,0           20,0           25,0           13,3           16,9           11,7           40,0           69,0           88,0           25,0           35,0           25,0           35,0           25,0           35,0           66,0           126,0           49,0           55,0           14,4           45,0           8,6           7,2           8,4           6,6           4,1                                                                         | TrübSF           TE/F           3,40           0,25           0,55           0,33           0,36           1,70           0,30           0,25           0,20           0,41           0,41           0,43           0,69           0,27           0,85           0,24           0,25           0,27           0,85           0,44           0,26           0,21           0,23           0,26           0,23           0,26                                                                                                                                                                                                                                                 |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26           27           28                           | c(Fe)SL,g           mg/L           4,78           5,19           4,34           3,67           4,09           3,16           3,19           2,28           2,82           1,16           2,09           1,71           1,61           1,09           0,87           0,76           0,36           0,99           1,31           1,06           0,52           0,84                                              | c(Fe)SE,g           mg/L           3,54           3,96           3,34           3,35           2,80           1,63           2,10           0,91           1,34           0,28           1,53           0,55           1,06           0,80           0           0,51           0,14           0,36           0,09           0,04           0,35           0,50           0,32           0,16           0,41           0,18 | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,24<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,08<br>0,02<br>0,02<br>0,02<br>0,01<br>0,02<br>0,03<br>0,03<br>0,03<br>0,03<br>0,04<br>0,04<br>0,02                                                 | c(As)SL,g<br>µg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>1<br>6<br>23<br>45<br>75<br>99<br>99<br>99<br>39<br>59<br>51<br>28<br>162<br>228<br>199<br>153<br>249<br>228                                   | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>2<br>3<br>4<br>2<br>2<br>1<br>3<br>6<br>11<br>10<br>22<br>16<br>31<br>19<br>20<br>86<br>124<br>104<br>88<br>146<br>134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | с(As)SF,g<br>µg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                       | TrübSL           TE/F           27,0           6,0           3,9           5,8           5,2           11,2           10,1           20,0           9,8           32,0           30,0           12,2           12,5           55,0           8,9           9,3           17,2           60,0           11,2           1,4           11,5           5,9           7,0           3,5           0,7                              | TrübSE           TE/F           35,0           20,0           25,0           13,3           16,9           11,7           40,0           69,0           88,0           25,0           35,0           25,0           35,0           25,0           35,0           26,0           35,0           66,0           126,0           49,0           55,0           14,4           45,0           8,6           7,2           8,4           6,6           4,1           2,8                             | TrübSF           TE/F           3,40           0,25           0,55           0,33           0,36           1,70           0,30           0,25           0,20           0,41           0,41           0,43           0,69           0,27           0,85           0,24           0,27           0,85           0,44           0,26           0,21           0,23           0,26           0,23           0,26           0,23           0,25                                                                                                                                                                                                                                  |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26           27           28           29              | c(Fe)SL,g           mg/L           4,78           5,19           4,34           3,67           4,09           3,16           3,19           2,28           2,82           1,16           2,09           1,71           1,61           1,09           0,87           0,76           0,36           0,99           1,31           1,06           0,52           0,84           0,56           0,60                | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53<br>0,55<br>1,06<br>0,55<br>1,06<br>0,55<br>1,06<br>0,80<br>0,51<br>0,14<br>0,36<br>0,09<br>0,04<br>0,35<br>0,50<br>0,32<br>0,16<br>0,41<br>0,18<br>0,38                                                                                                                                                           | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,24<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,08<br>0,02<br>0,02<br>0,01<br>0,02<br>0,03<br>0,03<br>0,03<br>0,03<br>0,04<br>0,02<br>0,02<br>0,02                                                 | c(As)SL,g<br>µg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>1<br>6<br>23<br>45<br>75<br>99<br>99<br>99<br>39<br>59<br>51<br>28<br>162<br>228<br>199<br>153<br>249<br>228<br>271                            | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>2<br>3<br>4<br>2<br>2<br>1<br>3<br>6<br>11<br>10<br>22<br>16<br>31<br>19<br>20<br>86<br>124<br>104<br>88<br>146<br>134<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c(As)SF,g           μg/L           2           1           0           2           1           0           2           1           1           1           2           3           6           3           6           3           4           6           8           12           39           48           75           90 | TrübSL           TE/F           27,0           6,0           3,9           5,8           5,2           11,2           10,1           20,0           9,8           32,0           30,0           12,2           12,5           55,0           8,9           9,3           17,2           60,0           11,2           1,4           11,5           5,9           7,0           3,5           0,7           1,1                | TrübSE           TE/F           35,0           20,0           25,0           13,3           16,9           11,7           40,0           69,0           88,0           25,0           35,0           25,0           35,0           25,0           35,0           26,0           35,0           66,0           126,0           49,0           55,0           14,4           45,0           8,6           7,2           8,4           6,6           4,1           2,8           2,8               | TrübSF           TE/F           3,40           0,25           0,55           0,33           0,36           1,70           0,30           0,25           0,20           0,41           0,41           0,41           0,43           0,26           0,27           0,85           0,44           0,26           0,21           0,23           0,26           0,23           0,26           0,23           0,26           0,23           0,26           0,22           0,22                                                                                                                                                                                                    |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26           27           28           29           30 | c(Fe)SL,g           mg/L           4,78           5,19           4,34           3,67           4,09           3,16           3,19           2,28           2,82           1,16           2,09           1,71           1,61           1,09           0,87           0,76           0,36           0,99           1,31           1,06           0,52           0,84           0,56           0,60           0,52 | c(Fe)SE,g<br>mg/L<br>3,54<br>3,96<br>3,34<br>3,35<br>2,80<br>1,63<br>2,10<br>0,91<br>1,34<br>0,28<br>1,53<br>0,55<br>1,06<br>0,55<br>1,06<br>0,55<br>1,06<br>0,80<br>0,51<br>0,14<br>0,36<br>0,09<br>0,04<br>0,35<br>0,50<br>0,32<br>0,16<br>0,41<br>0,18<br>0,38<br>0,29                                                                                                                                                   | c(Fe)SF,g<br>mg/L<br>0,09<br>0,06<br>0,08<br>0,07<br>0,07<br>0,24<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,08<br>0,02<br>0,02<br>0,02<br>0,01<br>0,02<br>0,03<br>0,03<br>0,03<br>0,03<br>0,04<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,03 | c(As)SL,g<br>µg/L<br>1<br>4<br>4<br>1<br>9<br>2<br>3<br>6<br>2<br>4<br>1<br>6<br>23<br>45<br>75<br>99<br>99<br>99<br>99<br>39<br>59<br>51<br>28<br>162<br>228<br>199<br>153<br>249<br>228<br>271<br>277<br>277<br>277 | c(As)SE,g<br>μg/L<br>2<br>2<br>1<br>1<br>4<br>3<br>2<br>3<br>4<br>2<br>2<br>3<br>4<br>2<br>2<br>1<br>3<br>6<br>11<br>10<br>22<br>16<br>31<br>19<br>20<br>86<br>124<br>104<br>88<br>146<br>134<br>199<br>223<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c(As)SF,g<br>μg/L<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                       | TrübSL           TE/F           27,0           6,0           3,9           5,8           5,2           11,2           10,1           20,0           9,8           32,0           30,0           12,2           12,5           55,0           8,9           9,3           17,2           60,0           11,2           1,4           11,5           5,9           7,0           3,5           0,7           1,1           33,0 | TrübSE           TE/F           35,0           20,0           25,0           13,3           16,9           11,7           40,0           69,0           88,0           25,0           35,0           25,0           35,0           25,0           35,0           25,0           35,0           66,0           126,0           49,0           55,0           14,4           45,0           8,6           7,2           8,4           6,6           4,1           2,8           2,8           4,5 | TrübSF           TE/F           3,40           0,25           0,55           0,33           0,36           1,70           0,30           0,25           0,20           0,41           0,41           0,41           0,43           0,69           0,27           0,85           0,44           0,26           0,21           0,23           0,26           0,23           0,26           0,23           0,25           0,22           0,22           0,22           0,22           0,23           0,25           0,22           0,20           0,22           0,20           0,22           0,20           0,22           0,20           0,22           0,20           0,22 |

| Versuchsart            | Säulenversuc<br>Variation der                                                    | he zur Sauersto<br>Filtergeschwin                          | ffkorrosion /<br>digkeit (SV 24.2)                          |                               |
|------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-------------------------------|
| Versuchsnummer         | SV 26.2                                                                          |                                                            | SV 24.2                                                     |                               |
| Abbildung im Text      | 4.4 4.5<br>4.6                                                                   | b)                                                         | 4.5 c)                                                      |                               |
| Laufzeit               | 722 h / 31 d                                                                     |                                                            | 711 h / 30 d                                                |                               |
| Material               | Frässpäne II                                                                     |                                                            | Stahlwolle C                                                | L                             |
| Säulendurchmesser      | 0,05                                                                             | m                                                          | 0,05                                                        | m                             |
| Säulenquerschnitt      | 0,00196                                                                          | m <sup>2</sup>                                             | 0,00196                                                     | m <sup>2</sup>                |
| Betthöhe               | 0,15                                                                             | m                                                          | 0,1                                                         | m                             |
| Bettvolumen            | 0,295                                                                            | L                                                          | 0,196                                                       | L                             |
| Masse Fe               | 133,5                                                                            | g                                                          | 77,0                                                        | g                             |
| Oberfläche Fe          | 0,108                                                                            | m <sup>2</sup>                                             | 0,2                                                         | m <sup>2</sup>                |
| Porosität              | 94,2                                                                             | %                                                          | 95                                                          | %                             |
| Filtergeschwindigkeit  | 2                                                                                | m/h                                                        | 2<br>(Variation 1-                                          | m/h<br>12 m/h)                |
| Volumenstrom           | 91                                                                               | L/d                                                        | 94,3                                                        | L/d                           |
| Massenbilanz (SV 26.2) | Fe-EW<br>Fe-Ab-gel.<br>Fe-Ab-part.<br>Fe-Ox-Säule<br>Fe-Differenz<br>Fe-MetSäule | 133,5 g<br>1,0 g<br>0,6 g<br>10,8 g<br>-0,4 g<br>e 121,5 g | As-Zu744As-Ab-gel.496As-Ab-part.60As-Säule136As-Differenz52 | mg<br>mg<br>mg<br>mg<br>mg    |
|                        | Die Differenz<br>gestellten An<br>gen.                                           | zen werden zur I<br>teile dem Säuler                       | Berechnung der in Ab<br>ninhalt (Fe-Ox-Säule)               | ob. 4.17 dar-<br>) zugeschla- |

| Nr.                                                                                                                                                                                                                                                                                                                           | Zeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q                                                                                                                                                                                                                                                    | Durchsatz                                                                                                                                                                                                                                                                                                      | c(O2)Zu                                                                                                                                                                                                                                                                                                                                    | c(O2)Ab                                                                                                                                                                                                                                                                                                                                                   | ∆c(O2)F.                                                                                                                                                                                                                                                                                                                                             | c(Fe)Ox                                                                                                                                                                                                                                                  | c(Fe)Ab                                                                                                                                                                                                                                                              | c(Fe)Ab,g                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #                                                                                                                                                                                                                                                                                                                             | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mL/min                                                                                                                                                                                                                                               | BV                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                       | mg/L                                                                                                                                                                                                                                                                                                                                                      | mg/L                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66                                                                                                                                                                                                                                                   | 81                                                                                                                                                                                                                                                                                                             | 7,57                                                                                                                                                                                                                                                                                                                                       | 1,91                                                                                                                                                                                                                                                                                                                                                      | 0,05                                                                                                                                                                                                                                                                                                                                                 | 13,07                                                                                                                                                                                                                                                    | 10,70                                                                                                                                                                                                                                                                | 7,10                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65                                                                                                                                                                                                                                                   | 374                                                                                                                                                                                                                                                                                                            | 8,43                                                                                                                                                                                                                                                                                                                                       | 3,08                                                                                                                                                                                                                                                                                                                                                      | -0,11                                                                                                                                                                                                                                                                                                                                                | 12,73                                                                                                                                                                                                                                                    | 4,55                                                                                                                                                                                                                                                                 | 3,50                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3                                                                                                                                                                                                                                                                                                                             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61                                                                                                                                                                                                                                                   | 682                                                                                                                                                                                                                                                                                                            | 8,85                                                                                                                                                                                                                                                                                                                                       | 3,54                                                                                                                                                                                                                                                                                                                                                      | -0,24                                                                                                                                                                                                                                                                                                                                                | 12,94                                                                                                                                                                                                                                                    | 2,82                                                                                                                                                                                                                                                                 | 1,89                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4                                                                                                                                                                                                                                                                                                                             | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60                                                                                                                                                                                                                                                   | 941                                                                                                                                                                                                                                                                                                            | 8,56                                                                                                                                                                                                                                                                                                                                       | 3,95                                                                                                                                                                                                                                                                                                                                                      | -0,11                                                                                                                                                                                                                                                                                                                                                | 10,98                                                                                                                                                                                                                                                    | 1,23                                                                                                                                                                                                                                                                 | 0,96                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5                                                                                                                                                                                                                                                                                                                             | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59                                                                                                                                                                                                                                                   | 1232                                                                                                                                                                                                                                                                                                           | 7,75                                                                                                                                                                                                                                                                                                                                       | 4,15                                                                                                                                                                                                                                                                                                                                                      | -0,23                                                                                                                                                                                                                                                                                                                                                | 8,93                                                                                                                                                                                                                                                     | 1,09                                                                                                                                                                                                                                                                 | 0,06                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6                                                                                                                                                                                                                                                                                                                             | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                   | 1518                                                                                                                                                                                                                                                                                                           | 7,82                                                                                                                                                                                                                                                                                                                                       | 4,70                                                                                                                                                                                                                                                                                                                                                      | -0,08                                                                                                                                                                                                                                                                                                                                                | 7,46                                                                                                                                                                                                                                                     | 0,14                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7                                                                                                                                                                                                                                                                                                                             | 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                   | 1839                                                                                                                                                                                                                                                                                                           | 8,39                                                                                                                                                                                                                                                                                                                                       | 5,17                                                                                                                                                                                                                                                                                                                                                      | 0,09                                                                                                                                                                                                                                                                                                                                                 | 7,29                                                                                                                                                                                                                                                     | 0,20                                                                                                                                                                                                                                                                 | 0,03                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8                                                                                                                                                                                                                                                                                                                             | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                   | 2185                                                                                                                                                                                                                                                                                                           | 8,23                                                                                                                                                                                                                                                                                                                                       | 5,38                                                                                                                                                                                                                                                                                                                                                      | -0,16                                                                                                                                                                                                                                                                                                                                                | 7,02                                                                                                                                                                                                                                                     | 0,09                                                                                                                                                                                                                                                                 | 0,02                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9                                                                                                                                                                                                                                                                                                                             | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64                                                                                                                                                                                                                                                   | 2457                                                                                                                                                                                                                                                                                                           | 8,07                                                                                                                                                                                                                                                                                                                                       | 5,24                                                                                                                                                                                                                                                                                                                                                      | 0,16                                                                                                                                                                                                                                                                                                                                                 | 6,21                                                                                                                                                                                                                                                     | 0,08                                                                                                                                                                                                                                                                 | 0,03                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10                                                                                                                                                                                                                                                                                                                            | 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62                                                                                                                                                                                                                                                   | 2765                                                                                                                                                                                                                                                                                                           | 8,53                                                                                                                                                                                                                                                                                                                                       | 5,84                                                                                                                                                                                                                                                                                                                                                      | 0,09                                                                                                                                                                                                                                                                                                                                                 | 6,06                                                                                                                                                                                                                                                     | 0,14                                                                                                                                                                                                                                                                 | 0,08                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11                                                                                                                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                   | 3058                                                                                                                                                                                                                                                                                                           | 8,57                                                                                                                                                                                                                                                                                                                                       | 6,09                                                                                                                                                                                                                                                                                                                                                      | 0,12                                                                                                                                                                                                                                                                                                                                                 | 5,50                                                                                                                                                                                                                                                     | 0,13                                                                                                                                                                                                                                                                 | 0,05                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12                                                                                                                                                                                                                                                                                                                            | 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                   | 3379                                                                                                                                                                                                                                                                                                           | 8,67                                                                                                                                                                                                                                                                                                                                       | 6,48                                                                                                                                                                                                                                                                                                                                                      | 0,1                                                                                                                                                                                                                                                                                                                                                  | 4,86                                                                                                                                                                                                                                                     | 0,09                                                                                                                                                                                                                                                                 | 0,06                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13                                                                                                                                                                                                                                                                                                                            | 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62                                                                                                                                                                                                                                                   | 3671                                                                                                                                                                                                                                                                                                           | 8,50                                                                                                                                                                                                                                                                                                                                       | 6,57                                                                                                                                                                                                                                                                                                                                                      | -0,02                                                                                                                                                                                                                                                                                                                                                | 4,56                                                                                                                                                                                                                                                     | 0,19                                                                                                                                                                                                                                                                 | 0,04                                                                                                                                                                                                                                                                                                                                                                                                            |
| 14                                                                                                                                                                                                                                                                                                                            | 316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                   | 4028                                                                                                                                                                                                                                                                                                           | 8,55                                                                                                                                                                                                                                                                                                                                       | 6,56                                                                                                                                                                                                                                                                                                                                                      | 0,12                                                                                                                                                                                                                                                                                                                                                 | 4,37                                                                                                                                                                                                                                                     | 0,10                                                                                                                                                                                                                                                                 | 0,04                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15                                                                                                                                                                                                                                                                                                                            | 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                   | 4259                                                                                                                                                                                                                                                                                                           | 8,23                                                                                                                                                                                                                                                                                                                                       | 6,56                                                                                                                                                                                                                                                                                                                                                      | 0,03                                                                                                                                                                                                                                                                                                                                                 | 3,82                                                                                                                                                                                                                                                     | 0,10                                                                                                                                                                                                                                                                 | 0,04                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16                                                                                                                                                                                                                                                                                                                            | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62                                                                                                                                                                                                                                                   | 4590                                                                                                                                                                                                                                                                                                           | 8,83                                                                                                                                                                                                                                                                                                                                       | 7,11                                                                                                                                                                                                                                                                                                                                                      | 0,08                                                                                                                                                                                                                                                                                                                                                 | 3,82                                                                                                                                                                                                                                                     | 0,07                                                                                                                                                                                                                                                                 | 0,04                                                                                                                                                                                                                                                                                                                                                                                                            |
| 17                                                                                                                                                                                                                                                                                                                            | 387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61                                                                                                                                                                                                                                                   | 4928                                                                                                                                                                                                                                                                                                           | 8,09                                                                                                                                                                                                                                                                                                                                       | 6,57                                                                                                                                                                                                                                                                                                                                                      | 0,03                                                                                                                                                                                                                                                                                                                                                 | 3,47                                                                                                                                                                                                                                                     | 0,09                                                                                                                                                                                                                                                                 | 0,03                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18                                                                                                                                                                                                                                                                                                                            | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62                                                                                                                                                                                                                                                   | 5216                                                                                                                                                                                                                                                                                                           | 8,40                                                                                                                                                                                                                                                                                                                                       | 6,85                                                                                                                                                                                                                                                                                                                                                      | 0,02                                                                                                                                                                                                                                                                                                                                                 | 3,55                                                                                                                                                                                                                                                     | 0,12                                                                                                                                                                                                                                                                 | 0,03                                                                                                                                                                                                                                                                                                                                                                                                            |
| 19                                                                                                                                                                                                                                                                                                                            | 435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61                                                                                                                                                                                                                                                   | 5530                                                                                                                                                                                                                                                                                                           | 8,54                                                                                                                                                                                                                                                                                                                                       | 6,87                                                                                                                                                                                                                                                                                                                                                      | 0,22                                                                                                                                                                                                                                                                                                                                                 | 3,39                                                                                                                                                                                                                                                     | 0,31                                                                                                                                                                                                                                                                 | 0,04                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20                                                                                                                                                                                                                                                                                                                            | 456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64                                                                                                                                                                                                                                                   | 5797                                                                                                                                                                                                                                                                                                           | 7,96                                                                                                                                                                                                                                                                                                                                       | 6,59                                                                                                                                                                                                                                                                                                                                                      | -0,05                                                                                                                                                                                                                                                                                                                                                | 3,31                                                                                                                                                                                                                                                     | 0,12                                                                                                                                                                                                                                                                 | 0,04                                                                                                                                                                                                                                                                                                                                                                                                            |
| 21                                                                                                                                                                                                                                                                                                                            | 481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64                                                                                                                                                                                                                                                   | 6123                                                                                                                                                                                                                                                                                                           | 8,64                                                                                                                                                                                                                                                                                                                                       | 7,13                                                                                                                                                                                                                                                                                                                                                      | 0,05                                                                                                                                                                                                                                                                                                                                                 | 3,41                                                                                                                                                                                                                                                     | 0,10                                                                                                                                                                                                                                                                 | 0,03                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22                                                                                                                                                                                                                                                                                                                            | 507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64                                                                                                                                                                                                                                                   | 6462                                                                                                                                                                                                                                                                                                           | 8,23                                                                                                                                                                                                                                                                                                                                       | 6,74                                                                                                                                                                                                                                                                                                                                                      | 0,15                                                                                                                                                                                                                                                                                                                                                 | 3,11                                                                                                                                                                                                                                                     | 0,07                                                                                                                                                                                                                                                                 | 0,03                                                                                                                                                                                                                                                                                                                                                                                                            |
| 23                                                                                                                                                                                                                                                                                                                            | 527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65                                                                                                                                                                                                                                                   | 6725                                                                                                                                                                                                                                                                                                           | 8,77                                                                                                                                                                                                                                                                                                                                       | 7,33                                                                                                                                                                                                                                                                                                                                                      | 0,06                                                                                                                                                                                                                                                                                                                                                 | 3,21                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      | 0,03                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Nr.                                                                                                                                                                                                                                                                                                                           | r(O2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CR(Fe)Ox                                                                                                                                                                                                                                             | c(As)Zu                                                                                                                                                                                                                                                                                                        | c(As)Ab                                                                                                                                                                                                                                                                                                                                    | c(As)Ab,g                                                                                                                                                                                                                                                                                                                                                 | c(As)SF                                                                                                                                                                                                                                                                                                                                              | qM                                                                                                                                                                                                                                                       | qP                                                                                                                                                                                                                                                                   | c(Fe)SF                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nr.<br>#                                                                                                                                                                                                                                                                                                                      | r(O2)<br>L/m2min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d                                                                                                                                                                                                                                    | c(As)Zu<br>µg/L                                                                                                                                                                                                                                                                                                | c(As)Ab<br>µg/L                                                                                                                                                                                                                                                                                                                            | c(As)Ab,g<br>µg/L                                                                                                                                                                                                                                                                                                                                         | c(As)SF<br>µg/L                                                                                                                                                                                                                                                                                                                                      | qM<br>µg/mg                                                                                                                                                                                                                                              | qP<br>µg/mg                                                                                                                                                                                                                                                          | c(Fe)SF<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                 |
| Nr.<br>#<br>0                                                                                                                                                                                                                                                                                                                 | r(O2)<br>L/m2min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d                                                                                                                                                                                                                                    | c(As)Zu<br>µg/L                                                                                                                                                                                                                                                                                                | c(As)Ab<br>µg/L                                                                                                                                                                                                                                                                                                                            | c(As)Ab,g<br>µg/L                                                                                                                                                                                                                                                                                                                                         | c(As)SF<br>µg/L                                                                                                                                                                                                                                                                                                                                      | qM<br>µg/mg                                                                                                                                                                                                                                              | qP<br>µg/mg                                                                                                                                                                                                                                                          | c(Fe)SF<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                 |
| Nr.<br>#<br>0<br>1                                                                                                                                                                                                                                                                                                            | r(O2)<br>L/m2min<br>0,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d                                                                                                                                                                                                                                    | c(As)Zu<br>μg/L<br>472                                                                                                                                                                                                                                                                                         | c(As)Ab<br>μg/L<br>299                                                                                                                                                                                                                                                                                                                     | c(As)Ab,g<br>μg/L<br>39                                                                                                                                                                                                                                                                                                                                   | c(As)SF<br>μg/L<br>14                                                                                                                                                                                                                                                                                                                                | qM<br>μg/mg<br>72                                                                                                                                                                                                                                        | qΡ<br>μg/mg<br>73                                                                                                                                                                                                                                                    | c(Fe)SF<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                 |
| Nr.<br>#<br>0<br>1<br>2                                                                                                                                                                                                                                                                                                       | r(O2)<br>L/m2min<br>0,89<br>0,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04                                                                                                                                                                                                                  | c(As)Zu<br>µg/L<br>472<br>475                                                                                                                                                                                                                                                                                  | c(As)Ab<br>μg/L<br>299<br>257                                                                                                                                                                                                                                                                                                              | c(As)Ab,g<br>µg/L<br>39<br>118                                                                                                                                                                                                                                                                                                                            | с(As)SF<br>µg/L<br>14<br>11                                                                                                                                                                                                                                                                                                                          | <b>qM</b><br>μg/mg<br>72<br>133                                                                                                                                                                                                                          | <b>qP</b><br>μg/mg<br>73<br>27                                                                                                                                                                                                                                       | c(Fe)SF<br>mg/L<br>0,03<br>0,03                                                                                                                                                                                                                                                                                                                                                                                 |
| Nr.<br>#<br>0<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                  | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53                                                                                                                                                                                                         | c(As)Zu<br>µg/L<br>472<br>475<br>467                                                                                                                                                                                                                                                                           | c(As)Ab<br>µg/L<br>299<br>257<br>234                                                                                                                                                                                                                                                                                                       | c(As)Ab,g<br>µg/L<br>39<br>118<br>106                                                                                                                                                                                                                                                                                                                     | c(As)SF<br>µg/L<br>14<br>11<br>13                                                                                                                                                                                                                                                                                                                    | qM<br>μg/mg<br>72<br>133<br>138                                                                                                                                                                                                                          | <b>qP</b><br>μg/mg<br>73<br>27<br>23                                                                                                                                                                                                                                 | c(Fe)SF<br>mg/L<br>0,03<br>0,03<br>0,02                                                                                                                                                                                                                                                                                                                                                                         |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                             | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79                                                                                                                                                                                                 | c(As)Zu<br>μg/L<br>472<br>475<br>467<br>485                                                                                                                                                                                                                                                                    | c(As)Ab<br>μg/L<br>299<br>257<br>234<br>245                                                                                                                                                                                                                                                                                                | c(As)Ab,g<br>μg/L<br>39<br>118<br>106<br>169                                                                                                                                                                                                                                                                                                              | c(As)SF<br>μg/L<br>14<br>11<br>13<br>20                                                                                                                                                                                                                                                                                                              | <b>qM</b><br>μg/mg<br>72<br>133<br>138<br>279                                                                                                                                                                                                            | <b>qP</b><br>μg/mg<br>73<br>27<br>23<br>25<br><b>5</b>                                                                                                                                                                                                               | c(Fe)SF<br>mg/L<br>0,03<br>0,03<br>0,02<br>0,02                                                                                                                                                                                                                                                                                                                                                                 |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                        | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>0,07                                                                                                                                                                                 | c(As)Zu<br>μg/L<br>472<br>475<br>467<br>485<br>458<br>458                                                                                                                                                                                                                                                      | c(As)Ab<br>µg/L<br>299<br>257<br>234<br>245                                                                                                                                                                                                                                                                                                | c(As)Ab,g<br>μg/L<br>39<br>118<br>106<br>169                                                                                                                                                                                                                                                                                                              | c(As)SF<br>μg/L<br>14<br>11<br>13<br>20<br>183                                                                                                                                                                                                                                                                                                       | <b>qM</b><br>μg/mg<br>72<br>133<br>138<br>279                                                                                                                                                                                                            | <b>qP</b><br>μg/mg<br>73<br>27<br>23<br>25<br>58<br>40                                                                                                                                                                                                               | c(Fe)SF<br>mg/L<br>0,03<br>0,03<br>0,02<br>0,02<br>0,03                                                                                                                                                                                                                                                                                                                                                         |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                   | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>0,10                                                                                                                                                                         | c(As)Zu<br>μg/L<br>472<br>475<br>467<br>485<br>458<br>458<br>458                                                                                                                                                                                                                                               | c(As)Ab<br>µg/L<br>299<br>257<br>234<br>245<br>361                                                                                                                                                                                                                                                                                         | c(As)Ab,g<br>μg/L<br>39<br>118<br>106<br>169<br>319                                                                                                                                                                                                                                                                                                       | c(As)SF<br>μg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>289                                                                                                                                                                                                                                                                                         | qM<br>μg/mg<br>72<br>133<br>138<br>279                                                                                                                                                                                                                   | <b>qP</b><br>μg/mg<br>73<br>27<br>23<br>25<br>58<br>13                                                                                                                                                                                                               | c(Fe)SF<br>mg/L<br>0,03<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02                                                                                                                                                                                                                                                                                                                                         |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>7                                                                                                                                                                                                                                                                         | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,20                                                                                                                                                                 | c(As)Zu<br>μg/L<br>472<br>475<br>467<br>485<br>458<br>458<br>458<br>458<br>452                                                                                                                                                                                                                                 | c(As)Ab<br>μg/L<br>299<br>257<br>234<br>245<br>361<br>385<br>892                                                                                                                                                                                                                                                                           | c(As)Ab,g<br>μg/L<br>39<br>118<br>106<br>169<br>319<br>339<br>339                                                                                                                                                                                                                                                                                         | c(As)SF<br>μg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>85                                                                                                                                                                                                                                                                                   | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274                                                                                                                                                                                                            | <b>qP</b><br>μg/mg<br>73<br>27<br>23<br>25<br>58<br>13<br>9<br>44                                                                                                                                                                                                    | c(Fe)SF<br>mg/L<br>0,03<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,01<br>0,01                                                                                                                                                                                                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8                                                                                                                                                                                                   | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,00                                                                                                                                                         | c(As)Zu<br>μg/L<br>472<br>475<br>467<br>485<br>458<br>458<br>458<br>458<br>452<br>462<br>462                                                                                                                                                                                                                   | c(As)Ab<br>μg/L<br>299<br>257<br>234<br>245<br>361<br>385<br>388<br>232                                                                                                                                                                                                                                                                    | c(As)Ab,g<br>μg/L<br>39<br>118<br>106<br>169<br>319<br>339<br>3377<br>272                                                                                                                                                                                                                                                                                 | c(As)SF<br>μg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>249                                                                                                                                                                                                                                                                           | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157                                                                                                                                                                                                     | <b>qP</b><br>μg/mg<br>73<br>27<br>23<br>25<br>58<br>13<br>9<br>11                                                                                                                                                                                                    | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,01<br>0,03<br>0,03                                                                                                                                                                                                                                                                                                                         |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9                                                                                                                                                                                                                                                               | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30                                                                                                                                                         | c(As)Zu<br>μg/L<br>472<br>475<br>467<br>485<br>458<br>458<br>458<br>458<br>452<br>462<br>462<br>462                                                                                                                                                                                                            | c(As)Ab<br>μg/L<br>299<br>257<br>234<br>245<br>361<br>385<br>388<br>372<br>242                                                                                                                                                                                                                                                             | c(As)Ab,g<br>μg/L<br>39<br>118<br>106<br>169<br>319<br>339<br>377<br>376<br>201                                                                                                                                                                                                                                                                           | c(As)SF<br>μg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>349<br>200                                                                                                                                                                                                                                                                    | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157                                                                                                                                                                                                     | <b>qP</b><br>μg/mg<br>73<br>27<br>23<br>25<br>58<br>13<br>9<br>11<br>15<br>22                                                                                                                                                                                        | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,01<br>0,03<br>0,02<br>0,02                                                                                                                                                                                                                                                                                                                 |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10                                                                                                                                                                          | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,20                                                                                                                                         | c(As)Zu<br>μg/L<br>472<br>475<br>467<br>485<br>458<br>458<br>458<br>458<br>452<br>462<br>462<br>462<br>462<br>471                                                                                                                                                                                              | c(As)Ab<br>μg/L<br>299<br>257<br>234<br>245<br>361<br>385<br>388<br>372<br>342<br>291                                                                                                                                                                                                                                                      | c(As)Ab,g<br>μg/L<br>39<br>118<br>106<br>169<br>319<br>339<br>377<br>376<br>334<br>272                                                                                                                                                                                                                                                                    | c(As)SF<br>μg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>349<br>328<br>328<br>249                                                                                                                                                                                                                                                      | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157<br>135                                                                                                                                                                                              | qP           μg/mg           73           27           23           25           58           13           9           11           15           22                                                                                                                  | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,01<br>0,03<br>0,02<br>0,02<br>0,02                                                                                                                                                                                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11                                                                                                                                                             | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,62                                                                                                                                 | c(As)Zu<br>μg/L<br>472<br>475<br>467<br>485<br>458<br>458<br>458<br>458<br>452<br>462<br>462<br>462<br>462<br>471<br>463                                                                                                                                                                                       | c(As)Ab<br>μg/L<br>299<br>257<br>234<br>245<br>361<br>385<br>388<br>372<br>342<br>384<br>460                                                                                                                                                                                                                                               | c(As)Ab,g<br>μg/L<br>39<br>118<br>106<br>169<br>319<br>339<br>377<br>376<br>334<br>334<br>372<br>460                                                                                                                                                                                                                                                      | c(As)SF<br>μg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>334<br>358<br>349<br>328<br>328<br>349                                                                                                                                                                                                                                        | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157<br>135<br>150                                                                                                                                                                                       | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           41                                                                                        | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,01<br>0,03<br>0,02<br>0,02<br>0,02<br>0,02<br>0,03                                                                                                                                                                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           12                                                                                                                                   | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>0,77                                                                                                                         | c(As)Zu<br>μg/L<br>472<br>475<br>467<br>485<br>458<br>458<br>458<br>458<br>452<br>462<br>462<br>462<br>462<br>471<br>463<br>469                                                                                                                                                                                | c(As)Ab           μg/L           299           257           234           245           361           385           388           372           342           384           400                                                                                                                                                           | c(As)Ab,g<br>μg/L<br>39<br>118<br>106<br>169<br>319<br>339<br>377<br>376<br>334<br>372<br>400<br>102                                                                                                                                                                                                                                                      | c(As)SF<br>μg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>334<br>358<br>349<br>328<br>349<br>328<br>349<br>327                                                                                                                                                                                                                          | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157<br>135<br>150<br>3                                                                                                                                                                                  | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14                                                                                        | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,01<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,05                                                                                                                                                                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14                                                                                                                      | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>2,67                                                                                                                 | c(As)Zu           μg/L           472           475           467           485           458           458           452           462           462           463           469           477                                                                                                                 | c(As)Ab           μg/L           299           257           234           245           361           385           388           372           342           384           400           404                                                                                                                                             | c(As)Ab,g<br>μg/L<br>39<br>118<br>106<br>169<br>319<br>339<br>377<br>376<br>334<br>372<br>400<br>406<br>412                                                                                                                                                                                                                                               | c(As)SF<br>µg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>349<br>328<br>349<br>328<br>349<br>3271<br>376<br>445                                                                                                                                                                                                                         | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157<br>274<br>157<br>135<br>150<br>3<br>3                                                                                                                                                               | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           42                                                              | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,01<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,05<br>0,02<br>0,02                                                                                                                                                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14                                                                                                                      | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67                                                                                                                 | c(As)Zu           μg/L           472           475           467           485           458           458           452           462           471           463           469           477           201                                                                                                   | c(As)Ab           μg/L           299           257           234           245           361           385           388           372           342           384           400           404           426                                                                                                                               | c(As)Ab,g<br>μg/L<br>39<br>118<br>106<br>169<br>319<br>339<br>377<br>376<br>334<br>372<br>400<br>406<br>412<br>402                                                                                                                                                                                                                                        | c(As)SF<br>μg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>349<br>328<br>349<br>328<br>349<br>371<br>376<br>415<br>400                                                                                                                                                                                                                   | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157<br>135<br>150<br>3<br>240<br>447                                                                                                                                                                    | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12                                                              | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02                                                                                                                                                                                                                                                                                                                                 |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           12                                                                                            | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67<br>3,21                                                                                                         | c(As)Zu           μg/L           472           475           467           485           458           458           452           462           462           463           469           477           221           220                                                                                     | c(As)Ab           μg/L           299           257           234           245           361           385           388           372           342           384           400           404           426           199           201                                                                                                   | c(As)Ab,g           μg/L           39           118           106           169           339           319           339           377           376           334           372           400           406           412           192           242                                                                                                   | c(As)SF<br>µg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>349<br>328<br>349<br>328<br>349<br>3271<br>376<br>415<br>198<br>200                                                                                                                                                                                                           | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157<br>274<br>157<br>135<br>150<br>3<br>3<br>240<br>117<br>107                                                                                                                                          | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12           6                                                  | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02                                                                                                                                                                                                                                                                                                                                 |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17                                                                               | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,14<br>0,13<br>0,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67<br>3,21<br>3,16<br>0,22                                                                                         | c(As)Zu           μg/L           472           475           467           485           458           458           452           462           462           463           469           477           221           239           207                                                                       | c(As)Ab           μg/L           299           257           234           245           361           385           388           372           342           384           400           404           426           199           221                                                                                                   | c(As)Ab,g           μg/L           39           118           106           169           319           339           377           376           334           372           400           406           412           192           218                                                                                                                 | c(As)SF<br>µg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>349<br>328<br>349<br>328<br>349<br>328<br>349<br>3271<br>376<br>415<br>198<br>226<br>102                                                                                                                                                                                      | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157<br>135<br>150<br>3<br>240<br>117<br>107<br>22                                                                                                                                                       | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12           6           5                                      | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,02                                                                                                                                                                                                                                                                                                                                 |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           12                                                                  | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,16<br>0,14<br>0,13<br>0,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67<br>3,21<br>3,16<br>2,82<br>2,04                                                                                 | c(As)Zu           μg/L           472           475           467           485           458           458           452           462           462           463           469           477           221           239           207                                                                       | c(As)Ab           μg/L           299           257           234           245           361           385           388           372           342           384           400           404           426           199           221           193           242                                                                       | c(As)Ab,g           µg/L           39           118           106           169           319           339           377           376           334           372           400           406           412           192           218           187           202                                                                                     | c(As)SF<br>µg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>349<br>328<br>349<br>328<br>349<br>328<br>349<br>3271<br>376<br>415<br>198<br>226<br>166<br>244                                                                                                                                                                               | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157<br>135<br>150<br>3<br>240<br>117<br>107<br>92<br>27                                                                                                                                                 | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12           6           5           4                          | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,01<br>0,03<br>0,02<br>0,02<br>0,03<br>0,02<br>0,03<br>0,05<br>0,02<br>0,04<br>0,02<br>0,03<br>0,04<br>0,03<br>0,04                                                                                                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           10                                                     | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,14<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67<br>3,21<br>3,16<br>2,82<br>2,94<br>2,76                                                                         | c(As)Zu           μg/L           472           475           467           485           458           458           452           462           462           463           469           477           239           207           230                                                                       | c(As)Ab           μg/L           299           257           234           245           361           385           388           372           342           384           400           404           426           199           221           193           212           210                                                         | c(As)Ab,g           µg/L           39           118           106           169           319           339           377           376           334           372           400           406           412           192           218           187           209           204                                                                       | c(As)SF<br>µg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>349<br>328<br>349<br>328<br>349<br>328<br>349<br>3271<br>376<br>415<br>198<br>226<br>166<br>211<br>214                                                                                                                                                                        | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157<br>135<br>150<br>3<br>240<br>117<br>107<br>92<br>27<br>24                                                                                                                                           | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12           6           5           4           5              | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,01<br>0,03<br>0,02<br>0,02<br>0,03<br>0,02<br>0,02<br>0,03<br>0,05<br>0,02<br>0,04<br>0,02<br>0,03<br>0,04<br>0,02<br>0,03                                                                                                                                                                                                                 |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           22                                        | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,16<br>0,14<br>0,13<br>0,12<br>0,12<br>0,13<br>0,42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67<br>3,21<br>3,16<br>2,82<br>2,94<br>2,76<br>0,22                                                                 | c(As)Zu           μg/L           472           475           467           485           458           452           462           462           463           469           477           221           239           207           230           225                                                         | c(As)Ab           μg/L           299           257           234           245           361           385           388           372           342           384           400           404           426           199           221           193           212           210                                                         | c(As)Ab,g           µg/L           39           118           106           169           339           319           339           377           376           334           372           400           406           412           192           218           187           209           204                                                         | c(As)SF<br>µg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>349<br>328<br>349<br>328<br>349<br>371<br>376<br>415<br>198<br>226<br>166<br>211<br>214<br>212                                                                                                                                                                                | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157<br>135<br>150<br>3<br>240<br>117<br>107<br>92<br>27<br>24<br>6                                                                                                                                      | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12           6           5           4           5           6  | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,05<br>0,02<br>0,03<br>0,05<br>0,02<br>0,04<br>0,02<br>0,03<br>0,04<br>0,02<br>0,03<br>0,04<br>0,02<br>0,03                                                                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21                           | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,16<br>0,14<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0, | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67<br>3,21<br>3,16<br>2,82<br>2,94<br>2,76<br>2,82                                                                 | c(As)Zu           μg/L           472           475           467           485           458           452           462           462           463           469           477           239           207           230           225           270           242                                           | c(As)Ab           μg/L           299           257           234           245           361           385           388           372           342           384           400           404           426           199           221           193           212           210           243                                           | c(As)Ab,g           µg/L           39           118           106           169           339           319           339           377           376           334           372           400           406           412           192           218           187           209           204           242           205                             | c(As)SF<br>µg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>349<br>328<br>349<br>328<br>349<br>328<br>349<br>371<br>376<br>415<br>198<br>226<br>166<br>211<br>214<br>240<br>240                                                                                                                                                           | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157<br>135<br>150<br>3<br>240<br>117<br>107<br>92<br>27<br>24<br>9<br>100                                                                                                                               | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12           6           5           9           0              | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,05<br>0,02<br>0,03<br>0,02<br>0,04<br>0,02<br>0,03<br>0,04<br>0,02<br>0,00<br>0,00<br>0,03                                                                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22              | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,16<br>0,16<br>0,14<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0, | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67<br>3,21<br>3,16<br>2,82<br>2,94<br>2,76<br>2,82<br>2,91<br>0,22                                                 | c(As)Zu           μg/L           472           475           467           485           458           458           452           462           462           463           469           477           239           207           230           225           270           243           25                | c(As)Ab<br>µg/L<br>299<br>257<br>234<br>245<br>361<br>385<br>388<br>372<br>342<br>384<br>400<br>404<br>426<br>199<br>221<br>193<br>212<br>210<br>243<br>212<br>245                                                                                                                                                                         | c(As)Ab,g           µg/L           39           118           106           169           339           319           339           377           376           334           372           400           406           412           192           218           187           209           204           242           205           212               | c(As)SF<br>µg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>349<br>328<br>349<br>328<br>349<br>371<br>376<br>415<br>198<br>226<br>166<br>211<br>214<br>240<br>219<br>212                                                                                                                                                                  | qM           μg/mg           72           133           138           279           274           157           135           150           3           240           117           107           92           27           24           9           100 | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12           6           5           9           9           9  | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,02                                                                                                                                                                                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           22 | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,32<br>0,32<br>0,20<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,16<br>0,14<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,13<br>0,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67<br>3,21<br>3,16<br>2,82<br>2,94<br>2,76<br>2,82<br>2,91<br>2,66<br>2,72                                         | c(As)Zu           μg/L           472           475           467           485           458           458           452           462           462           463           469           477           239           207           230           225           270           243           251           252 | c(As)Ab<br>µg/L<br>299<br>257<br>234<br>245<br>361<br>385<br>388<br>372<br>342<br>384<br>400<br>404<br>426<br>199<br>221<br>193<br>212<br>210<br>243<br>217<br>217<br>222                                                                                                                                                                  | c(As)Ab,g           µg/L           39           118           106           169           319           339           377           376           334           372           400           406           412           192           218           187           209           204           242           205           218           402               | c(As)SF<br>µg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>349<br>328<br>349<br>328<br>349<br>328<br>349<br>371<br>376<br>415<br>198<br>226<br>166<br>211<br>214<br>240<br>213<br>204                                                                                                                                                    | qM           μg/mg           72           133           138           279           274           157           135           150           3           240           117           107           92           27           24           9           100 | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12           6           5           9           9           11 | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,05<br>0,02<br>0,03<br>0,05<br>0,02<br>0,04<br>0,02<br>0,03<br>0,04<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,02 |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23 | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,16<br>0,16<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,13<br>0,11<br>0,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,30<br>5,30<br>5,30<br>5,30<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67<br>3,21<br>3,16<br>2,82<br>2,94<br>2,76<br>2,82<br>2,91<br>2,66<br>2,78 | c(As)Zu           μg/L           472           475           467           485           458           458           452           462           462           463           469           477           239           207           230           225           270           243           251           235 | c(As)Ab<br>µg/L<br>299<br>257<br>234<br>245<br>361<br>385<br>388<br>372<br>342<br>384<br>400<br>404<br>426<br>199<br>221<br>193<br>212<br>210<br>243<br>212<br>217<br>233                                                                                                                                                                  | c(As)Ab,g           µg/L           39           118           106           169           339           319           339           377           376           334           372           400           406           412           192           218           187           209           204           242           205           218           198 | c(As)SF<br>µg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>349<br>328<br>349<br>328<br>349<br>328<br>349<br>371<br>376<br>415<br>198<br>226<br>166<br>211<br>214<br>240<br>219<br>213<br>204                                                                                                                                             | qM           μg/mg           72           133           138           279           274           157           135           150           3           240           117           107           92           27           24           9           100 | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12           6           5           9           9           11 | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,02                                                                                                                                                                                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23 | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,16<br>0,16<br>0,12<br>0,12<br>0,12<br>0,13<br>0,12<br>0,13<br>0,11<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67<br>3,21<br>3,16<br>2,82<br>2,94<br>2,76<br>2,82<br>2,91<br>2,66<br>2,78                                 | c(As)Zu<br>µg/L<br>472<br>475<br>467<br>485<br>458<br>458<br>458<br>452<br>462<br>462<br>462<br>462<br>462<br>471<br>463<br>469<br>477<br>479<br>221<br>239<br>207<br>230<br>225<br>270<br>243<br>251<br>235<br>                                                                                               | c(As)Ab           μg/L           299           257           234           245           361           385           388           372           342           384           400           404           426           199           221           193           212           210           243           212           217           233 | c(As)Ab,g           µg/L           39           118           106           169           319           339           377           376           334           372           400           406           412           192           218           187           209           204           242           205           218           198               | c(As)SF<br>µg/L<br>14<br>11<br>13<br>20<br>183<br>289<br>334<br>358<br>349<br>328<br>349<br>328<br>349<br>328<br>349<br>371<br>376<br>415<br>198<br>226<br>166<br>211<br>214<br>240<br>219<br>213<br>204                                                                                                                                             | qM           μg/mg           72           133           138           279           274           157           135           150           3           240           117           107           92           27           24           9           100 | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12           6           5           9           9           11 | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,05<br>0,02<br>0,03<br>0,05<br>0,02<br>0,04<br>0,02<br>0,03<br>0,04<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02                                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23 | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,16<br>0,16<br>0,12<br>0,12<br>0,12<br>0,12<br>0,13<br>0,12<br>0,13<br>0,11<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67<br>3,21<br>3,16<br>2,82<br>2,94<br>2,76<br>2,82<br>2,91<br>2,66<br>2,78                                         | c(As)Zu           µg/L           472           475           467           485           458           452           462           462           463           469           477           239           207           230           225           270           243           251           235               | c(As)Ab           μg/L           299           257           234           245           361           385           388           372           342           384           400           404           426           199           221           193           212           210           243           212           217           233 | c(As)Ab,g           µg/L           39           118           106           169           319           339           377           376           334           372           400           406           412           192           218           187           209           204           242           205           218           198               | c(As)SF           μg/L           14           11           13           20           183           289           334           358           349           371           376           415           198           226           166           211           214           240           219           213           204                             | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157<br>135<br>150<br>3<br>240<br>117<br>107<br>92<br>27<br>24<br>9<br>100                                                                                                                               | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12           6           5           9           9           11 | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,01<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,05<br>0,02<br>0,04<br>0,02<br>0,04<br>0,02<br>0,04<br>0,02<br>0,03<br>0,04<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02                                                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23 | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,16<br>0,16<br>0,16<br>0,12<br>0,12<br>0,12<br>0,12<br>0,13<br>0,12<br>0,13<br>0,12<br>0,13<br>0,11<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67<br>3,21<br>3,16<br>2,82<br>2,94<br>2,76<br>2,82<br>2,94<br>2,76<br>2,82<br>2,91<br>2,66<br>2,78                 | c(As)Zu           µg/L           472           475           467           485           458           452           462           462           463           469           477           239           207           230           225           270           243           251           235               | c(As)Ab           μg/L           299           257           234           245           361           385           388           372           342           384           400           404           426           199           221           193           212           210           243           212           217           233 | c(As)Ab,g           µg/L           39           118           106           169           319           339           377           376           334           372           400           406           412           192           218           187           209           204           242           205           218           198               | c(As)SF           μg/L           14           11           13           20           183           289           334           358           349           328           349           371           376           415           198           226           166           211           214           240           219           213           204 | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157<br>135<br>150<br>3<br>240<br>117<br>107<br>92<br>27<br>24<br>9<br>100                                                                                                                               | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12           6           5           9           9           11 | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,05<br>0,02<br>0,04<br>0,02<br>0,03<br>0,04<br>0,02<br>0,03<br>0,00<br>0,01<br>0,02<br>0,03<br>0,00<br>0,01                                                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23 | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,16<br>0,16<br>0,16<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,12<br>0,13<br>0,12<br>0,12<br>0,13<br>0,11<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67<br>3,21<br>3,16<br>2,82<br>2,94<br>2,76<br>2,82<br>2,94<br>2,76<br>2,82<br>2,91<br>2,66<br>2,78                 | c(As)Zu           µg/L           472           475           467           485           458           452           462           462           463           469           477           239           207           230           225           270           243           251           235               | c(As)Ab           μg/L           299           257           234           245           361           385           388           372           342           384           400           404           426           199           221           193           212           210           243           212           217           233 | c(As)Ab,g           µg/L           39           118           106           169           319           339           377           376           334           372           400           406           412           192           218           187           209           204           242           205           218           198               | c(As)SF           μg/L           14           11           13           20           183           289           334           358           349           328           349           371           376           415           198           226           166           211           214           240           219           213           204 | qM<br>μg/mg<br>72<br>133<br>138<br>279<br>274<br>157<br>135<br>150<br>3<br>240<br>117<br>107<br>92<br>27<br>24<br>9<br>100                                                                                                                               | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12           6           5           9           9           11 | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,02                                                                                                                                                                                                                                                                                         |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23 | r(O2)<br>L/m2min<br>0,89<br>0,64<br>0,55<br>0,46<br>0,36<br>0,32<br>0,30<br>0,26<br>0,27<br>0,23<br>0,21<br>0,18<br>0,16<br>0,16<br>0,14<br>0,13<br>0,12<br>0,12<br>0,12<br>0,12<br>0,13<br>0,12<br>0,12<br>0,13<br>0,12<br>0,12<br>0,13<br>0,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR(Fe)Ox<br>g/m2d<br>11,50<br>11,04<br>10,53<br>8,79<br>7,03<br>6,27<br>6,13<br>5,90<br>5,30<br>5,01<br>4,62<br>4,08<br>3,77<br>3,67<br>3,21<br>3,16<br>2,82<br>2,94<br>2,76<br>2,82<br>2,94<br>2,76<br>2,82<br>2,91<br>2,66<br>2,78                 | c(As)Zu           µg/L           472           475           467           485           458           452           462           462           463           469           477           230           225           270           243           251           235                                           | c(As)Ab           μg/L           299           257           234           245           361           385           388           372           342           384           400           404           426           199           221           193           212           210           243           212           217           233 | c(As)Ab,g           µg/L           39           118           106           169           319           339           377           376           334           372           400           406           412           192           218           187           209           204           242           205           218           198               | c(As)SF           μg/L           14           11           13           20           183           289           334           358           349           328           349           371           376           415           198           226           166           211           214           240           219           213           204 | qM           μg/mg           72           133           138           279           274           157           135           150           3           240           117           107           92           27           24           9           100 | qP           μg/mg           73           27           23           25           58           13           9           11           15           22           15           14           17           12           6           5           9           9           11 | c(Fe)SF<br>mg/L<br>0,03<br>0,02<br>0,02<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,02<br>0,03<br>0,04<br>0,02<br>0,03<br>0,04<br>0,02<br>0,03<br>0,00<br>0,01<br>0,02<br>0,03<br>0,00<br>0,01<br>0,02                                                                                                                                                 |

| Nr.  | pH-Zu     | pH-Ab  | pH-SF | LeitfZu | LeitfAb      | LeitfSF | Р    | p(SV21.1) | p(SV8.6) |
|------|-----------|--------|-------|---------|--------------|---------|------|-----------|----------|
| #    |           |        |       | μS/cm   | μS/cm        | μS/cm   | bar  | Bar       | bar      |
| 0    |           |        |       |         |              |         | 0,07 | 0,07      | 0,08     |
| 1    | 7,40      | 7,49   | 7,66  | 685     | 684          | 680     | 0,07 | 0,07      | 0,15     |
| 2    | 7,38      | 7,57   | 7,60  | 686     | 681          | 681     | 0,07 | 0,07      | 0,60     |
| 3    | 7,44      | 7,34   | 7,52  | 680     | 675          | 669     | 0,06 | 0,07      | 0,25     |
| 4    | 7,53      | 7,43   | 7,56  | 681     | 670          | 671     | 0,06 | 0,07      | 0,50     |
| 5    | 7,48      | 7,46   | 7,47  | 688     | 680          | 681     | 0,06 | 0,07      | 1,30     |
| 6    | 7,50      | 7,52   | 7,60  | 691     | 686          | 684     | 0,06 | 0,07      | 1,40     |
| 7    | 7,50      | 7,62   | 7,55  | 673     | 671          | 665     | 0,06 | 0,07      | 1,25     |
| 8    | 7,54      | 7,56   | 7,59  | 674     | 673          | 672     | 0,07 | 0,07      | 1,27     |
| 9    | 7,48      | 7,49   | 7,55  | 683     | 680          | 681     | 0,07 | 0,07      |          |
| 10   | 7,54      | 7,73   | 7,65  | 681     | 676          | 677     | 0,07 | 0,07      |          |
| 11   | 7,60      | 7,75   | 7,81  | 683     | 680          | 680     | 0,07 | 0,07      |          |
| 12   | 7,53      | 7,56   | 7,79  | 671     | 665          | 668     | 0,07 | 0,07      |          |
| 13   | 7,53      | 7,58   | 7,51  | 678     | 673          | 673     | 0,07 | 0,07      |          |
| 14   | 7,60      | 7,79   | 7,81  | 685     | 679          | 678     | 0,07 | 0,07      |          |
| 15   | 7,48      | 7,47   | 7,51  | 672     | 668          | 669     | 0,07 | 0,07      |          |
| 16   | 7,53      | 7,52   | 7,59  | 652     | 646          | 646     | 0,07 | 0,07      |          |
| 17   | 7,52      | 7,49   | 7,65  | 689     | 680          | 681     | 0,07 | 0,07      |          |
| 18   | 7,53      | 7,51   | 7,61  | 682     | 675          | 674     | 0,07 | 0,07      |          |
| 19   | 7,60      | 7,69   | 7,72  | 672     | 663          | 661     | 0,07 | 0,07      |          |
| 20   | 7,52      | 7,55   | 7,54  | 687     | 677          | 678     | 0,07 | 0,07      |          |
| 21   | 7,58      | 7,70   | 7,69  | 640     | 633          | 632     | 0,07 | 0,07      |          |
| 22   | 7,53      | 7,68   | 7,63  | 667     | 656          | 658     | 0,07 |           |          |
| 23   | 7,48      | 7,66   | 7,75  | 676     | 668          | 668     | 0,07 |           |          |
|      |           |        |       |         |              |         |      |           |          |
|      |           |        |       |         |              |         |      |           |          |
|      |           |        |       |         |              |         |      |           |          |
| 24.2 | Durchsatz | Q      | vF    | c(O2)Zu | c(O2)Ab      | r(O2)   |      |           |          |
|      | BV        | mL/min | m/h   | mg/L    | mg/L         | L/m2min |      |           |          |
|      |           |        |       |         |              |         |      |           |          |
| A    | 800       | 382    | 11,7  | 7,92    | 2,57         | 2,26    |      |           |          |
| В    | 800       | 280    | 8,6   | 7,91    | 2,23         | 1,87    |      |           |          |
| С    | 800       | 195    | 6,0   | 7,84    | 1,86         | 1,47    |      |           |          |
| D    | 800       | 152    | 4,6   | 7,73    | 1,74         | 1,19    |      |           |          |
| E    | 800       | 110    | 3,4   | 7,71    | 1,59         | 0,91    |      |           |          |
| F    | 800       | 74     | 2,3   | 7,65    | 1,51         | 0,63    |      |           |          |
| G    | 800       | 36     | 1,1   | 7,35    | 1,58         | 0,29    |      |           |          |
|      |           |        |       |         |              |         |      |           |          |
| A    | 4200      | 348    | 10,6  | 7,81    | 5,14         | 0,76    |      |           |          |
| В    | 4200      | 275    | 8,4   | 7,73    | 5,29         | 0,55    |      |           |          |
| С    | 4200      | 214    | 6,5   | 7,66    | 5,20         | 0,43    |      |           |          |
| D    | 4200      | 144    | 4,4   | 7,54    | 5,25         | 0,27    |      |           |          |
| E    | 4200      | 102    | 3,1   | 7,43    | 5,30         | 0,18    |      |           |          |
|      | 4200      | 70     | 2,1   | 7,18    | 5,11         | 0,13    |      | l         |          |
| G    | 4200      | 34     | 1,0   | 6,47    | 4,55         | 0,06    |      |           |          |
| L    | 7700      | 007    |       | 0.10    | 0.00         | 0.54    |      | l         |          |
| A    | //00      | 325    | 9,9   | 8,16    | 6,06         | 0,51    |      |           |          |
| В    | 7700      | 260    | 7,9   | 8,15    | 6,15         | 0,38    |      |           |          |
| C    | //00      | 206    | 6,3   | 8,20    | 6,23         | 0,30    |      |           |          |
|      | 7700      | 137    | 4,2   | 8,01    | 6,06         | 0,20    |      | l         |          |
|      | //00      | 98     | 3,0   | 7,91    | 6,13         | 0,13    |      |           |          |
|      | //00      | 69     | 2,1   | 7,78    | 5,75         | 0,11    |      | l         |          |
| G    | //00      | 33     | 1,0   | 7,17    | 5,25         | 0,05    |      |           |          |
| L    | 44000     | 0.10   | 0.7   | 7 =0    | <b>F</b> 0.1 | 0.17    |      |           |          |
| A    | 11000     | 318    | 9,7   | 7,72    | 5,81         | 0,47    |      |           |          |
| В    | 11000     | 250    | 7,6   | 7,67    | 5,92         | 0,34    |      | l         |          |
| C    | 11000     | 197    | 6,0   | 7,63    | 5,98         | 0,25    |      |           |          |
|      | 11000     | 129    | 3,9   | 7,42    | 5,97         | 0,15    |      |           |          |
|      | 11000     | 92     | 2,8   | 7,27    | 5,91         | 0,10    |      |           |          |
| F    | 11000     | 63     | 1,9   | 7,08    | 5,69         | 0,07    |      |           |          |
| G    | 11000     | 31     | 0,9   | 6,49    | 4,90         | 0,05    |      | l         |          |
| 1    |           | 1      | 1     | 1       |              | 1       | 1    | 1         | 1        |

| Versuchsart           | Säulenversuch zur Fe-Cu-Kontaktkorrosion                                                                                                                                                                                                                                                                          |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Versuchsnummer        | SV 14 ( 1 / 2 / 3 / 4 )                                                                                                                                                                                                                                                                                           |
| Abbildung im Text     | 4.9 4.10                                                                                                                                                                                                                                                                                                          |
| Laufzeit              | 520 h / 22 d                                                                                                                                                                                                                                                                                                      |
| Material              | Cu-Wolle und Eisennagel                                                                                                                                                                                                                                                                                           |
| Säulendurchmesser     | 0,016 m                                                                                                                                                                                                                                                                                                           |
| Säulenquerschnitt     | 0,0002 m <sup>2</sup>                                                                                                                                                                                                                                                                                             |
| Betthöhe              | / 55 / 85 / 110 m (Länge des Nagels 0,13 m)                                                                                                                                                                                                                                                                       |
| Bettvolumen           | / 0,011 / 0,017 / 0,022 L                                                                                                                                                                                                                                                                                         |
| Masse Cu – Masse Fe   | 0/10,262/20,133/30,624 - 16,65 g                                                                                                                                                                                                                                                                                  |
| Oberfläche Cu – Fe    | 0 / 0,0538 / 0,106 / 0,161 - 0,00189 m <sup>2</sup>                                                                                                                                                                                                                                                               |
| Porosität             | 100 / 89,6 / 86,8 / 84,5 %                                                                                                                                                                                                                                                                                        |
| Filtergeschwindigkeit | 4,7 - 5,3 m/h                                                                                                                                                                                                                                                                                                     |
| Volumenstrom          | 23 - 26 L/d                                                                                                                                                                                                                                                                                                       |
| Massenbilanz SV 14.3  | Fe-EW       16,661 g       As-Zu       275 mg         Fe-Ab-gel.       0,089 g       As-Ab-gel.       17 mg         Fe-Ab-part.       1,694 g       As-Ab-part.       174 mg         Fe-Ox-Säule       1,475 g       As-Säule       84 mg (*)         Fe-Differenz       0,153 g       Fe-MetNagel       13,250 g |
|                       | (*): Rechnerisch ermittelt – keine geschlossene Bilanz.                                                                                                                                                                                                                                                           |

| Nr.      | Zeit       | Q      | Durchsatz | c(O2)Zu | c(O2)Ab | ∆c(O2)F.  | c(Fe)Ox | c(Fe)Ab  | c(Fe)Ab,g |
|----------|------------|--------|-----------|---------|---------|-----------|---------|----------|-----------|
| #        | h          | mL/min | BV        | mg/L    | mg/L    | mg/L      | mg/L    | mg/L     | mg/L      |
| 0        | 0          | 19     | 0         |         |         |           |         |          |           |
| 1        | 16         | 19     | 1039      | 7,60    | 4,63    | 0,39      | 7,59    | 4,65     | 0,65      |
| 2        | 40         | 18     | 2566      | 7,63    | 4,35    | 0         | 7,27    | 5,25     | 0,36      |
| 3        | 64         | 18     | 4072      | 7,17    | 4,22    | 0,29      | 6,81    | 5,65     | 0,98      |
| 4        | 95         | 18     | 6045      | 6,41    | 3,79    | 0,21      | 6,04    | 4,80     | 0,74      |
| 5        | 117        | 18     | 7430      | 7,00    | 4,78    | 0,21      | 4,97    | 3,70     | 0,16      |
| 6        | 136        | 18     | 8600      | 7,58    | 5,03    | -0,14     | 4,70    | 3,60     | 0,18      |
| 7        | 160        | 18     | 10075     | 7.29    | 4.89    | -0.06     | 4.80    | 3.95     | 0.05      |
| 8        | 184        | 18     | 11570     | 7.26    | 4.86    | -0.26     | 4.98    | 3.50     | 0.05      |
| 9        | 208        | 17     | 13062     | 7.47    | 5.14    | 0.03      | 5.30    | 3.85     | 0.02      |
| 10       | 232        | 18     | 14553     | 7.30    | 5.39    | 0         | 4.42    | 3.25     | 0.11      |
| 11       | 256        | 18     | 16070     | 6,91    | 4.63    | 0.15      | 5.66    | 3.85     | 0.01      |
| 12       | 280        | 18     | 17586     | 7,99    | 5.39    | -0.33     | 5,34    | 3.15     | 0.01      |
| 13       | 304        | 18     | 19082     | 7 19    | 5.02    | 0.06      | 5.07    | 3 10     | 0.00      |
| 14       | 328        | 18     | 20578     | 7 49    | 5 19    | 0.22      | 5 69    | 3 25     | 0.00      |
| 15       | 376        | 18     | 23611     | 6.71    | 4 05    | 0,11      | 6.34    | 3.80     | 0.00      |
| 16       | 400        | 18     | 25111     | 6.23    | 3 78    | 0.41      | 5.66    | 2 40     | 0.00      |
| 17       | 400        | 18     | 26594     | 6.97    | 4 75    | 0,41      | 6.42    | 1.80     | 0,00      |
| 18       | 4/8        | 18     | 28085     | 6.52    | 3 70    | 0,10      | 6.82    | 2.00     | 0,00      |
| 10       | 472        | 10     | 20000     | 6 35    | 3.64    | 0,21      | 6 39    | 2,00     | 0,00      |
| 20       | 406        | 10     | 31047     | 6.80    | 3,04    | 0,30      | 5.80    | 2,10     | 0,02      |
| 20       | 490<br>520 | 10     | 31047     | 6.76    | 4,44    | 0,21      | 5.09    | 2,20     | 0,01      |
| 21       | 520        | 10     | 32342     | 0,70    | 4,32    | 0,40      | 5,97    | 2,30     | 0,01      |
|          |            |        |           |         |         |           |         |          |           |
| Nr.      |            |        |           | c(As)Zu | c(As)Ab | c(As)Ab,g | c(As)SF | qM       | qP        |
| #        | A(Fe)      | A(Cu)  | A(wet.)   | ug/l    |         | ug/l      | ug/l    | ua/ma    | ualma     |
| <i>#</i> | g/iiizu    | g/mzu  | g/mzu     | µg/⊏    | µg/⊏    | μg/L      | µg/L    | µg/ing   | pg/ing    |
| 1        | 106 77     | 1.01   | 1.99      | 108     | 312     | 6         | 6       | 63       | 77        |
| 2        | 08.10      | 1,91   | 1,00      | 490     | 312     | 5         | 8       | 00       | 63        |
| 2        | 90,19      | 1,70   | 1,73      | 495     | 399     | 9         | 7       | 90       | 91        |
| 3        | 93,20      | 1,07   | 1,04      | 400     | 279     | 0         | 12      | 157      | 69        |
| 4        | 65,65      | 1,50   | 1,40      | 473     | 270     | 3         | 12      | 157      | 100       |
| 5        | 60,00      | 1,19   | 1,17      | 470     | 309     | 15        | 10      | 00<br>70 | 100       |
| 0        | 62,60      | 1,12   | 1,10      | 475     | 391     | 10        | 10      | 70       | 102       |
| /        | 69,93      | 1,15   | 1,13      | 495     | 415     | 12        | 14      | 94       | 103       |
| 0        | 70,10      | 1,22   | 1,20      | 403     | 371     | 15        | 10      | 70       | 103       |
| 9        | 70,10      | 1,26   | 1,23      | 484     | 394     | 15        | 17      | 62       | 99        |
| 10       | 60,59      | 1,09   | 1,07      | 422     | 309     | 24        | 17      | 44       | 110       |
| 11       | 77,47      | 1,39   | 1,36      | 487     | 378     | 23        | 24      | 60       | 92        |
| 12       | 73,10      | 1,31   | 1,29      | 487     | 407     | 37        | 30      | 37       | 118       |
| 13       | 67,47      | 1,21   | 1,19      | 496     | 401     | 40        | 30      | 48       | 11/       |
| 14       | //,85      | 1,40   | 1,37      | 534     | 329     | 43        | 31      | 84       | 88        |
| 15       | 86,75      | 1,56   | 1,53      | 524     | 276     | 17        | 34      | 98       | 68        |
| 16       | 75,75      | 1,36   | 1,33      | 527     | 371     | 58        | 27      | 48       | 130       |
| 17       | 85,95      | 1,54   | 1,51      | 478     | 285     | 51        | 30      | 42       | 130       |
| 18       | 92,35      | 1,66   | 1,63      | 496     | 327     | 79        | 43      | 35       | 124       |
| 19       | 85,05      | 1,52   | 1,50      | 530     | 364     | 103       | 44      | 39       | 126       |
| 20       | 78,48      | 1,41   | 1,38      | 511     | 341     | 66        | 37      | 46       | 125       |
| 21       | 81,77      | 1,47   | 1,44      | 505     | 310     | 52        | 43      | 53       | 113       |
| 1        |            |        | 1         | 1       |         |           |         |          | 1         |

|                 | A         | (Cu) / A(Fe) = 5 | 56      | A(Cu) / / | A(Fe) = 0            | A(Cu) / A | (Fe) = 28 | A(Cu) / A       | (Fe) = 85 |
|-----------------|-----------|------------------|---------|-----------|----------------------|-----------|-----------|-----------------|-----------|
| Nr.             | Durchsatz | c(Fe)SF          | c(Cu)Ab | Durchsatz | c(Cu)Ab              | Durchsatz | c(Cu)Ab   | Durchsatz       | c(Cu)Ab   |
| #               | BV        | mg/L             | mg/L    | BV        | mg/L                 | BV        | mg/L      | BV              | mg/L      |
| 0               | 0         |                  |         | 0         |                      | 0         |           | 0               |           |
| 1               | 1039      | 0,01             | 0,02    | 661       | 0,03                 | 1537      | 0,01      | 781             | 0,08      |
| 2               | 2566      | 0,01             | 0,02    | 1633      | 0,02                 | 3809      | 0,02      | 1940            | 0,03      |
| 3               | 4072      | 0,00             | 0,02    | 2606      | 0,08                 | 6088      | 0,04      | 3099            | 0,03      |
| 4               | 6045      | 0,09             | 0,02    | 3887      | 0,02                 | 8947      | 0,50      | 4634            | 0,02      |
| 5               | 7430      | 0,02             | 0,03    | 4796      | 0,04                 | 10917     | 0,03      | 5701            | 0,05      |
| 6               | 8600      | 0,01             | 0,03    | 5581      | 0,02                 | 12612     | 0,03      | 6596            | 0,06      |
| 7               | 10075     | 0,02             | 0,02    | 6572      | 0,01                 | 14820     | 0,12      | 7729            | 0,01      |
| 8               | 11570     | 0,00             | 0,05    | 7564      | 0,02                 | 17027     | 0,03      | 8862            | 0,03      |
| 9               | 13062     | 0,02             | 0,05    | 8549      | 0,12                 | 19234     | 0,04      | 9993            | 0,07      |
| 10              | 14553     | 0,02             | 0,05    | 9547      | 0,01                 | 21448     | 0,05      | 11141           | 0,08      |
| 11              | 16070     | 0,01             | 0,07    | 10567     | 0,01                 | 23596     | 0,03      | 12280           | 0,21      |
| 12              | 17586     | 0,00             | 0,17    | 11586     | 0,01                 | 25745     | 0,03      | 13404           | 0,58      |
| 13              | 19082     | 0,00             | 0,26    | 12591     | 0,03                 | 27861     | 0,11      | 14543           | 0,61      |
| 14              | 20578     | 0,03             | 0,36    | 13580     | 0,00                 | 29951     | 0,06      | 15699           | 0,95      |
| 15              | 23611     | 0,05             | 0,13    | 15530     | 0,01                 | 34144     | 0,02      | 18030           | 0,15      |
| 16              | 25111     | 0,01             | 0,68    | 16517     | 0,01                 | 36266     | 0,06      | 19179           | 0,36      |
| 17              | 26594     | 0,00             | 0,53    | 17503     | 0,13                 | 38415     | 0,22      | 20331           | 1,42      |
| 18              | 28085     | 0,02             | 0,61    | 18464     | 0,02                 | 40629     | 0,21      | 21493           | 1,95      |
| 19              | 29572     | 0,03             | 0,64    | 19425     | 0,03                 | 42816     | 0,26      | 22642           | 1,71      |
| 20              | 31047     | 0,02             | 0,71    | 20381     | 0,02                 | 44906     | 0,37      | 23792           | 1,52      |
| 21              | 32542     | 0,03             | 0,85    | 21351     | 0,05                 | 45948     | 0,40      | 24957           | 1,61      |
|                 |           |                  |         |           |                      |           |           |                 |           |
|                 |           |                  |         |           |                      |           |           |                 |           |
|                 |           |                  |         |           |                      |           |           |                 |           |
| Wert            | Zeit      | Durchsatz        | 0       | c(02)7u   | c(O2)Ab              | c(02)F    | c(Fe)Ox   | CR(Fe)Ox        | CR(Fe)Ox  |
|                 |           |                  | _       |           | 0(02)/ 00            | •(•=)     | 0(1.0)01  | A(Fe)           | A(Met.)   |
|                 | h         | BV               | mL/min  | mg/L      | mg/L                 | mg/L      | mg/L      | g/m2d           | g/m2d     |
|                 |           |                  |         |           |                      |           |           |                 |           |
|                 |           |                  |         | A(Cu      | ) / A(Fe) = 0        |           |           |                 |           |
| min.            | 328       | 13580            | 17,9    | 7,5       | 7,66                 | -0,22     | 0,14      | 1,94            | 1,94      |
| mw.             |           |                  |         |           |                      |           |           | 5,05            | 5,05      |
| max.            | 64        | 2606             | 18      | 7,23      | 7,09                 | -0,29     | 1         | 13,66           | 13,66     |
|                 |           |                  |         | L         |                      |           |           |                 |           |
|                 | 400       | 00000            | 10.1    | A(Cu)     | / A(Fe) = 28         | 0.00      | 0.07      | 40.04           | 1.00      |
| min.            | 400       | 36266            | 16,1    | 6,14      | 4,8                  | -0,06     | 3,27      | 40,01           | 1,36      |
| mw.             | 10        | 1507             | 10      | 7.00      | E 50                 | 0.07      | E CC      | 53,/4           | 1,83      |
| max.            | 10        | 1537             | 18      | 7,69      | 5,53                 | -0,27     | 5,66      | 77,50           | 2,63      |
|                 |           |                  |         | A(Q)      | $(A(E_{2}) - E_{2})$ |           |           |                 |           |
| min             | 222       | 14652            | 10      |           | 5 20                 | 0.01      | 1 4 2     | 60.50           | 1.07      |
| min.            | 232       | 14000            | 10      | 7,3       | 5,39                 | 0,01      | 4,42      | 60,59<br>70.00  | 1,07      |
| mey             | 16        | 1020             | 10 5    | 7.6       | 4.62                 | 0.00      | 7.50      | 10,00           | 1,39      |
| max.            | 01        | 1039             | 10,5    | ٥, ١      | 4,03                 | -0,28     | 7,59      | 100,77          | 1,88      |
|                 |           |                  |         | A(0)      | $(A(E_0) = 95)$      | <u> </u>  |           |                 |           |
| min             | 520       | 24057            | 10      | A(CU)     | 5 46                 | 0.16      | 1 1 1     | 56 70           | 0.66      |
| 111111.<br>mitt | 520       | 24901            | 10      | 0,77      | 5,10                 | -0,10     | 4,14      | 02.12           | 0,00      |
| max             | 376       | 18030            | 17      | 6.76      | 2 47                 | -0.07     | 10.17     | 92,10<br>137.70 | 1,07      |
| IIIdX.          | 370       | 10030            | 17      | 0,70      | 2,41                 | -0,07     | 10,17     | 131,12          | 1,00      |
| 1               | 1         |                  | 1       | 1         | 1                    | 1         | 1         | 1               | 1         |

| Versuchsart           | Säulenversuch zur Kontaktkorrosion mit externer Verbindung                                                                                                                                                   |                                                                                                            |                                                                                    |                                      |                            |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------|----------------------------|--|
| Versuchsnummer        | SV 25.1                                                                                                                                                                                                      |                                                                                                            |                                                                                    |                                      |                            |  |
| Abbildung im Text     | 4.11 a) und b)                                                                                                                                                                                               |                                                                                                            |                                                                                    |                                      |                            |  |
| Laufzeit              | 671 h / 28 d                                                                                                                                                                                                 |                                                                                                            |                                                                                    |                                      |                            |  |
| Material              | Cu-Wolle im                                                                                                                                                                                                  | Ringspalt zwis                                                                                             | chen Fe-Kern u                                                                     | und Cu-                              | -Rohr                      |  |
| Säulendurchmesser     | Kern: 0,01                                                                                                                                                                                                   | m                                                                                                          | Außenrohr: 0,                                                                      | 05 m                                 |                            |  |
| Säulenquerschnitt     | 0,00189                                                                                                                                                                                                      | m <sup>2</sup>                                                                                             |                                                                                    |                                      |                            |  |
| Betthöhe              | 0,15                                                                                                                                                                                                         | m                                                                                                          |                                                                                    |                                      |                            |  |
| Bettvolumen           | 0,283                                                                                                                                                                                                        | L                                                                                                          |                                                                                    |                                      |                            |  |
| Masse Cu-Wolle        | 111,45                                                                                                                                                                                                       | g                                                                                                          |                                                                                    |                                      |                            |  |
| Oberfläche Cu / Fe    | 0,658                                                                                                                                                                                                        | m <sup>2</sup> /                                                                                           | 0,0088 m <sup>2</sup>                                                              |                                      |                            |  |
| Porosität             | 95,6                                                                                                                                                                                                         | %                                                                                                          |                                                                                    |                                      |                            |  |
| Filtergeschwindigkeit | 1,97                                                                                                                                                                                                         | m/h                                                                                                        |                                                                                    |                                      |                            |  |
| Volumenstrom          | 89                                                                                                                                                                                                           | L/d                                                                                                        |                                                                                    |                                      |                            |  |
| Massenbilanz          | <ul> <li>m Fe-EW:</li> <li>m Fe-RW:</li> <li>Δm Fe-RW:</li> <li>Δm Fe-I:</li> <li>Δm Fe-Ox:</li> <li>Δm Fe-Rost:</li> <li>m Fe-Ab-g.:</li> <li>m Fe-Ab-p.:</li> <li>m Fe-Oxal:</li> <li>m Fe-HCI:</li> </ul> | 311,18 g<br>307,48 g<br>3,7 g<br>3,435 g<br>8,979 g<br>3,264 g<br>0,024 g<br>2,774 g<br>0,342 g<br>0,124 g | m As-Zu:<br>m As-Ab-g.:<br>m As-Ab-p.:<br>m As-Oxal:<br>m As-HCl:<br>As-Differenz: | 1127<br>635<br>257<br>195<br>4<br>36 | mg<br>mg<br>mg<br>mg<br>mg |  |

| Nr.                                                                                                                                                                                                                                                                                                                                                                                                         | Zeit                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q                                                                                                                                                                                                                                                              | Durchsatz                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c(O2)Zu                                                                                                   | c(O2)Ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ∆c(O2)F. | CR(Fe)Ox | CR(Fe)I      | CR(Fe)Ox |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------------|----------|
| #                                                                                                                                                                                                                                                                                                                                                                                                           | h                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ml (min                                                                                                                                                                                                                                                        | PV.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ma/l     | A(Fe)    | A(Fe)        | A(Cu)    |
| #<br>0                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ilig/L                                                                                                    | ing/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ing/L    | g/mzu    | g/mzu        | g/mzu    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76                                                                                                                                                                                                                                                             | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8,02                                                                                                      | 6,97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0        | 30,58    | 17,79        | 0,41     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                           | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64                                                                                                                                                                                                                                                             | 362                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,97                                                                                                      | 6,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,13     | 26,97    | 23,00        | 0,36     |
| 3                                                                                                                                                                                                                                                                                                                                                                                                           | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61                                                                                                                                                                                                                                                             | 733                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,43                                                                                                      | 5,97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,19     | 29,62    | 22,83        | 0,40     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                           | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                                                                                                                                                                                                             | 1067                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8,08                                                                                                      | 6,63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,36     | 24,92    | 20,29        | 0,33     |
| 5                                                                                                                                                                                                                                                                                                                                                                                                           | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60                                                                                                                                                                                                                                                             | 1360                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8,13                                                                                                      | 7,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,2      | 19,84    | 13,80        | 0,27     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                           | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58                                                                                                                                                                                                                                                             | 1660                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8,41                                                                                                      | 7,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,17     | 15,84    | 7,64         | 0,21     |
| /                                                                                                                                                                                                                                                                                                                                                                                                           | 147                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57                                                                                                                                                                                                                                                             | 1929                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8,14                                                                                                      | 7,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,11     | 17,63    | 7,10         | 0,24     |
| 0                                                                                                                                                                                                                                                                                                                                                                                                           | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63                                                                                                                                                                                                                                                             | 2221                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,97                                                                                                      | 6,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,02     | 24,50    | 8,01<br>0,41 | 0,33     |
| 9<br>10                                                                                                                                                                                                                                                                                                                                                                                                     | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64                                                                                                                                                                                                                                                             | 2906                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,03                                                                                                      | 5.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,03     | 33.39    | 10.23        | 0,50     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                          | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                                                                                                                                                                                                                                                             | 3237                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.20                                                                                                      | 5.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01     | 36.62    | 10,20        | 0.49     |
| 12                                                                                                                                                                                                                                                                                                                                                                                                          | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62                                                                                                                                                                                                                                                             | 3551                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,37                                                                                                      | 5,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,1      | 42,59    | 10,92        | 0,57     |
| 13                                                                                                                                                                                                                                                                                                                                                                                                          | 294                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62                                                                                                                                                                                                                                                             | 3866                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,76                                                                                                      | 5,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,06     | 42,73    | 10,80        | 0,57     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                          | 316                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62                                                                                                                                                                                                                                                             | 4156                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8,32                                                                                                      | 6,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,22     | 47,68    | 12,40        | 0,64     |
| 15                                                                                                                                                                                                                                                                                                                                                                                                          | 344                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62                                                                                                                                                                                                                                                             | 4524                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,88                                                                                                      | 6,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,02     | 43,54    | 11,74        | 0,58     |
| 16                                                                                                                                                                                                                                                                                                                                                                                                          | 365                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63                                                                                                                                                                                                                                                             | 4803                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,61                                                                                                      | 5,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,08     | 43,18    | 11,52        | 0,58     |
| 17                                                                                                                                                                                                                                                                                                                                                                                                          | 391                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62                                                                                                                                                                                                                                                             | 5147                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,79                                                                                                      | 5,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,04     | 46,04    | 13,00        | 0,62     |
| 18                                                                                                                                                                                                                                                                                                                                                                                                          | 414                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                                                                                                                                                                                                                                                             | 5448                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,38                                                                                                      | 5,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,1      | 48,00    | 13,43        | 0,64     |
| 19                                                                                                                                                                                                                                                                                                                                                                                                          | 437                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                                                                                                                                                                                                                                                             | 5745                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,60                                                                                                      | 5,42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,05     | 49,68    | 14,31        | 0,66     |
| 20                                                                                                                                                                                                                                                                                                                                                                                                          | 401                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                                                                                                                                                                                                                                                             | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,84<br>8.06                                                                                              | 5,05<br>6 1 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,07     | 49,42    | 10,42        | 0,00     |
| ∠ I<br>22                                                                                                                                                                                                                                                                                                                                                                                                   | 400<br>507                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61                                                                                                                                                                                                                                                             | 6652                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,00<br>7,52                                                                                              | 5 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,05     | 39.65    | 15 79        | 0,56     |
| 23                                                                                                                                                                                                                                                                                                                                                                                                          | 534                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                                                                                                                                                                                                                                                             | 7001                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,49                                                                                                      | 5,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.06     | 40.92    | 16.56        | 0.55     |
| 24                                                                                                                                                                                                                                                                                                                                                                                                          | 554                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                                                                                                                                                                                                                                                             | 7260                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.55                                                                                                      | 5.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.03     | 45.29    | 17.44        | 0.61     |
| 25                                                                                                                                                                                                                                                                                                                                                                                                          | 581                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                                                                                                                                                                                                                                                             | 7609                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,91                                                                                                      | 6,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,09     | 37,48    | 17,16        | 0,50     |
| 26                                                                                                                                                                                                                                                                                                                                                                                                          | 604                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                                                                                                                                                                                                                                                             | 7907                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,87                                                                                                      | 5,97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,01     | 44,00    | 17,39        | 0,59     |
| 27                                                                                                                                                                                                                                                                                                                                                                                                          | 626                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62                                                                                                                                                                                                                                                             | 8194                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,92                                                                                                      | 5,84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,12     | 46,40    | 17,04        | 0,62     |
| 28                                                                                                                                                                                                                                                                                                                                                                                                          | 652                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60                                                                                                                                                                                                                                                             | 8531                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,69                                                                                                      | 5,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0,09    | 41,58    | 17,93        | 0,56     |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |              |          |
| Nr                                                                                                                                                                                                                                                                                                                                                                                                          | c(Ee)Ox                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(Ee)l                                                                                                                                                                                                                                                         | c(Ee)Ab                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)Ab a                                                                                                 | c(Cu)Ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |              |          |
| Nr.<br>#                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)Ox<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                            | c(Fe)l<br>mg/L                                                                                                                                                                                                                                                 | c(Fe)Ab<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                            | c(Fe)Ab,g<br>mg/L                                                                                         | c(Cu)Ab<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |              |          |
| <b>Nr.</b><br>#                                                                                                                                                                                                                                                                                                                                                                                             | c(Fe)Ox<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                            | c(Fe)l<br>mg/L                                                                                                                                                                                                                                                 | c(Fe)Ab<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                            | c(Fe)Ab,g<br>mg/L                                                                                         | c(Cu)Ab<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |              |          |
| <b>Nr.</b><br>#<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                   | c(Fe)Ox<br>mg/L<br>2,46                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)l<br>mg/L<br>1,43                                                                                                                                                                                                                                         | c(Fe)Ab<br>mg/L<br>0,86                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)Ab,g<br>mg/L<br>0,02                                                                                 | c(Cu)Ab<br>mg/L<br>0,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |              |          |
| Nr.<br>#<br>0<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                     | c(Fe)Ox<br>mg/L<br>2,46<br>2,57                                                                                                                                                                                                                                                                                                                                                                                                                            | c(Fe)l<br>mg/L<br>1,43<br>2,20                                                                                                                                                                                                                                 | c(Fe)Ab<br>mg/L<br>0,86<br>1,34                                                                                                                                                                                                                                                                                                                                                                                                                            | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01                                                                         | c(Cu)Ab<br>mg/L<br>0,57<br>0,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |              |          |
| Nr.<br>#<br>0<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97                                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)l<br>mg/L<br>1,43<br>2,20<br>2,29                                                                                                                                                                                                                         | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>c(Fe)Ab,g</b><br><b>mg/L</b><br>0,02<br>0,01<br>0,01                                                   | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |              |          |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                           | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54                                                                                                                                                                                                                                                                                                                                                                                                            | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07                                                                                                                                                                                                                 | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45                                                                                                                                                                                                                                                                                                                                                                                                            | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01                                                         | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |              |          |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                      | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40                                                                                                                                                                                                         | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02                                                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,32<br>0,33                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |              |          |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                 | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67                                                                                                                                                                                                                                                                                                                                                                                            | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80                                                                                                                                                                                                 | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24                                                                                                                                                                                                                                                                                                                                                                                            | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01                                         | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,33<br>0,33<br>0,35                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |              |          |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                            | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,28                                                                                                                                                                                                                                                                                                                                                                            | c(Fe)l<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76                                                                                                                                                                                         | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,01                                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |              |          |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>8<br>9                                                                                                                                                                                                                                                                                                                                             | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91                                                                                                                                                                         | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44<br>0,32<br>0,28                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,01<br>0,01<br>0,01<br>0,02<br>0,00                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |              |          |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                                                                                                                                                                                                                            | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19                                                                                                                                                                                                                                                                                                                                                            | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98                                                                                                                                                                 | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44<br>0,44<br>0,32<br>0,28<br>0,60                                                                                                                                                                                                                                                                                                                                                    | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00         | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79<br>2,10                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |              |          |
| Nr.<br>#<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                                                                                                                                                                                                                                                                                      | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67                                                                                                                                                                                                                                                                                                                                                    | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04                                                                                                                                                         | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44<br>0,32<br>0,28<br>0,60<br>0,92                                                                                                                                                                                                                                                                                                                                                    | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,01<br>0,01<br>0,01<br>0,02<br>0,00<br>0,00         | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79<br>2,10<br>2,20                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12                                                                                                                                                                                                                              | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67<br>4,20                                                                                                                                                                                                                                                                                                                                            | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08                                                                                                                                                 | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44<br>0,32<br>0,28<br>0,60<br>0,92<br>0,87                                                                                                                                                                                                                                                                                                                                            | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79<br>2,10<br>2,20<br>2,15                                                                                                                                                                                                                                                                                                                                                                                 |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13                                                                                                                                                                                                                 | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67<br>4,20<br>4,21                                                                                                                                                                                                                                                                                                                                    | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,06                                                                                                                                         | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44<br>0,32<br>0,28<br>0,60<br>0,92<br>0,87<br>0,84                                                                                                                                                                                                                                                                                                                                    | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79<br>2,10<br>2,20<br>2,15<br>2,30                                                                                                                                                                                                                                                                                                                                                                                 |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14                                                                                                                                                                                                    | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67<br>4,20<br>4,21<br>4,70                                                                                                                                                                                                                                                                                                                            | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,06<br>1,22                                                                                                                                 | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44<br>0,32<br>0,28<br>0,60<br>0,92<br>0,87<br>0,84<br>0,90                                                                                                                                                                                                                                                                                                                            | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79<br>2,10<br>2,20<br>2,15<br>2,30<br>2,10                                                                                                                                                                                                                                                                                                                                                                         |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15                                                                                                                                                                                       | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67<br>4,20<br>4,21<br>4,70<br>4,29                                                                                                                                                                                                                                                                                                                    | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,06<br>1,22<br>1,16                                                                                                                         | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44<br>0,32<br>0,28<br>0,60<br>0,92<br>0,87<br>0,87<br>0,84<br>0,90<br>0,69                                                                                                                                                                                                                                                                                                            | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79<br>2,10<br>2,20<br>2,15<br>2,30<br>2,10<br>2,15                                                                                                                                                                                                                                                                                                                                                                 |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17                                                                                                                                                             | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67<br>4,20<br>4,21<br>4,70<br>4,29<br>4,19<br>4,19                                                                                                                                                                                                                                                                                                    | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,06<br>1,22<br>1,16<br>1,12                                                                                                                 | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44<br>0,32<br>0,28<br>0,60<br>0,92<br>0,87<br>0,84<br>0,90<br>0,69<br>1,03                                                                                                                                                                                                                                                                                                            | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79<br>2,10<br>2,20<br>2,15<br>2,30<br>2,10<br>2,15<br>2,30<br>2,15<br>2,5<br>2,15<br>2,15<br>2,15                                                                                                                                                                                                                                                                                                                  |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           1%                                                                                                                                                | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67<br>4,20<br>4,21<br>4,70<br>4,29<br>4,19<br>4,54                                                                                                                                                                                                                                                                                                    | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,06<br>1,22<br>1,16<br>1,12<br>1,28                                                                                                         | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44<br>0,32<br>0,28<br>0,60<br>0,92<br>0,87<br>0,84<br>0,90<br>0,69<br>1,03<br>0,93<br>1,20                                                                                                                                                                                                                                                                                            | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79<br>2,10<br>2,20<br>2,15<br>2,30<br>2,10<br>2,15<br>2,15<br>2,15<br>2,15<br>2,40                                                                                                                                                                                                                                                                                                                                 |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19                                                                                                                                   | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67<br>4,20<br>4,21<br>4,70<br>4,29<br>4,19<br>4,54<br>4,81<br>4,97                                                                                                                                                                                                                                                                                    | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,06<br>1,22<br>1,16<br>1,12<br>1,28<br>1,34                                                                                                 | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44<br>0,32<br>0,28<br>0,60<br>0,92<br>0,87<br>0,84<br>0,90<br>0,69<br>1,03<br>0,93<br>1,20<br>1,09                                                                                                                                                                                                                                                                                    | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79<br>2,10<br>2,20<br>2,15<br>2,30<br>2,10<br>2,15<br>2,15<br>2,15<br>2,15<br>2,15<br>2,40<br>2,85<br>2,25                                                                                                                                                                                                                                                                                                         |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20                                                                                                                      | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67<br>4,20<br>4,21<br>4,70<br>4,21<br>4,70<br>4,29<br>4,19<br>4,54<br>4,81<br>4,97<br>4,95                                                                                                                                                                                                                                                            | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,06<br>1,22<br>1,16<br>1,12<br>1,28<br>1,34<br>1,43<br>1,64                                                                                 | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44<br>0,32<br>0,28<br>0,60<br>0,92<br>0,87<br>0,84<br>0,90<br>0,69<br>1,03<br>0,93<br>1,20<br>1,09<br>0,83                                                                                                                                                                                                                                                                            | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79<br>2,10<br>2,10<br>2,10<br>2,15<br>2,30<br>2,10<br>2,15<br>2,30<br>2,10<br>2,15<br>2,15<br>2,15<br>2,15<br>2,40<br>2,85<br>2,25<br>2,05                                                                                                                                                                                                                                                                         |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21                                                                                                         | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67<br>4,20<br>4,21<br>4,70<br>4,21<br>4,70<br>4,29<br>4,19<br>4,54<br>4,81<br>4,97<br>4,95<br>4,34                                                                                                                                                                                                                                                    | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,06<br>1,22<br>1,16<br>1,12<br>1,28<br>1,34<br>1,43<br>1,64<br>1,72                                                                         | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44<br>0,32<br>0,28<br>0,60<br>0,92<br>0,87<br>0,84<br>0,90<br>0,69<br>1,03<br>0,93<br>1,20<br>1,09<br>0,83<br>1,17                                                                                                                                                                                                                                                                    | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79<br>2,10<br>2,10<br>2,10<br>2,15<br>2,30<br>2,10<br>2,15<br>2,30<br>2,10<br>2,15<br>2,15<br>2,15<br>2,15<br>2,15<br>2,40<br>2,85<br>2,25<br>2,05<br>1,96                                                                                                                                                                                                                                                         |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22                                                                                            | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67<br>4,20<br>4,21<br>4,70<br>4,21<br>4,70<br>4,29<br>4,19<br>4,54<br>4,81<br>4,97<br>4,95<br>4,34<br>3,97                                                                                                                                                                                                                                            | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,06<br>1,22<br>1,16<br>1,12<br>1,28<br>1,34<br>1,43<br>1,64<br>1,72<br>1,58                                                                 | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44<br>0,32<br>0,28<br>0,60<br>0,92<br>0,87<br>0,84<br>0,90<br>0,69<br>1,03<br>0,93<br>1,20<br>1,09<br>0,83<br>1,17<br>1,38                                                                                                                                                                                                                                                            | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79<br>2,10<br>2,20<br>2,15<br>2,30<br>2,10<br>2,15<br>2,30<br>2,10<br>2,15<br>2,15<br>2,40<br>2,15<br>2,40<br>2,85<br>2,25<br>2,05<br>1,96<br>1,89                                                                                                                                                                                                                                                                 |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23                                                                               | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67<br>4,20<br>4,21<br>4,70<br>4,21<br>4,70<br>4,29<br>4,19<br>4,54<br>4,81<br>4,97<br>4,95<br>4,34<br>3,97<br>4,10                                                                                                                                                                                                                                    | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,04<br>1,08<br>1,04<br>1,22<br>1,16<br>1,12<br>1,12<br>1,12<br>1,12<br>1,34<br>1,43<br>1,64<br>1,72<br>1,58<br>1,66                         | c(Fe)Ab<br>mg/L<br>0,86<br>1,34<br>2,30<br>2,45<br>0,81<br>1,24<br>0,44<br>0,32<br>0,28<br>0,60<br>0,92<br>0,87<br>0,84<br>0,90<br>0,69<br>1,03<br>0,93<br>1,20<br>1,09<br>0,83<br>1,17<br>1,38<br>1,15                                                                                                                                                                                                                                                    | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79<br>2,10<br>2,20<br>2,15<br>2,30<br>2,10<br>2,15<br>2,30<br>2,10<br>2,15<br>2,40<br>2,15<br>2,40<br>2,15<br>2,40<br>2,15<br>2,25<br>2,05<br>1,96<br>1,89<br>1,77                                                                                                                                                                                                                                                 |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24                                                                  | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67<br>4,20<br>4,21<br>4,70<br>4,21<br>4,70<br>4,29<br>4,19<br>4,54<br>4,81<br>4,97<br>4,95<br>4,34<br>3,97<br>4,10<br>4,54                                                                                                                                                                                                                            | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,04<br>1,08<br>1,04<br>1,22<br>1,16<br>1,12<br>1,12<br>1,12<br>1,28<br>1,34<br>1,43<br>1,64<br>1,72<br>1,58<br>1,66<br>1,75                 | c(Fe)Ab           mg/L           0,86           1,34           2,30           2,45           0,81           1,24           0,44           0,32           0,60           0,92           0,87           0,84           0,90           0,69           1,03           0,93           1,20           1,09           0,83           1,17           1,38           1,15           1,79                                                                            | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00                 | c(Cu)Ab<br>mg/L<br>0,57<br>0,35<br>0,32<br>0,32<br>0,33<br>0,35<br>0,49<br>1,06<br>1,79<br>2,10<br>2,20<br>2,15<br>2,30<br>2,10<br>2,15<br>2,30<br>2,10<br>2,15<br>2,15<br>2,30<br>2,15<br>2,15<br>2,40<br>2,15<br>2,40<br>2,85<br>2,25<br>2,05<br>1,96<br>1,89<br>1,77<br>1,92                                                                                                                                                                                                                         |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25                                                     | c(Fe)Ox           mg/L           2,46           2,57           2,97           2,54           2,02           1,67           1,89           2,38           3,62           3,19           3,67           4,20           4,70           4,29           4,19           4,54           4,81           4,97           4,95           4,34           3,97           4,10           4,54           3,75                                                             | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,04<br>1,08<br>1,04<br>1,22<br>1,16<br>1,12<br>1,12<br>1,28<br>1,34<br>1,43<br>1,64<br>1,72<br>1,58<br>1,66<br>1,75<br>1,72                 | c(Fe)Ab           mg/L           0,86           1,34           2,30           2,45           0,81           1,24           0,44           0,32           0,60           0,92           0,87           0,84           0,90           0,69           1,03           0,93           1,20           1,09           0,83           1,17           1,38           1,15           1,79           1,07                                                             | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00                 | c(Cu)Ab           mg/L           0,57           0,35           0,32           0,33           0,35           0,32           0,33           0,35           0,49           1,06           1,79           2,10           2,20           2,15           2,30           2,15           2,30           2,15           2,40           2,85           2,25           2,05           1,96           1,89           1,77           1,92           1,61                                                             |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26                                        | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67<br>4,20<br>4,21<br>4,20<br>4,21<br>4,70<br>4,29<br>4,19<br>4,54<br>4,81<br>4,97<br>4,95<br>4,34<br>3,97<br>4,10<br>4,54<br>3,75<br>4,41                                                                                                                                                                                                            | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,04<br>1,08<br>1,04<br>1,22<br>1,16<br>1,12<br>1,28<br>1,34<br>1,43<br>1,64<br>1,72<br>1,58<br>1,66<br>1,75<br>1,72<br>1,74                 | c(Fe)Ab           mg/L           0,86           1,34           2,30           2,45           0,81           1,24           0,44           0,32           0,60           0,92           0,87           0,69           1,03           0,90           0,69           1,03           0,93           1,20           1,09           0,83           1,17           1,38           1,15           1,79           1,07           2,20                               | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00                 | c(Cu)Ab           mg/L           0,57           0,35           0,32           0,33           0,35           0,32           0,33           0,35           0,49           1,06           1,79           2,10           2,20           2,15           2,30           2,15           2,30           2,15           2,30           2,15           2,40           2,85           2,25           2,05           1,96           1,89           1,77           1,92           1,61           1,78                |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26           27           27           27 | c(Fe)Ox           mg/L           2,46           2,57           2,97           2,54           2,02           1,67           1,89           2,38           3,62           3,19           3,67           4,20           4,70           4,29           4,19           4,54           4,97           4,95           4,34           3,97           4,10           4,54           3,75           4,41           4,57                                              | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,04<br>1,08<br>1,04<br>1,22<br>1,16<br>1,12<br>1,28<br>1,34<br>1,43<br>1,64<br>1,72<br>1,58<br>1,66<br>1,75<br>1,72<br>1,74<br>1,68         | c(Fe)Ab           mg/L           0,86           1,34           2,30           2,45           0,81           1,24           0,44           0,32           0,60           0,92           0,87           0,69           1,03           0,90           0,69           1,03           0,93           1,20           1,09           0,83           1,17           1,38           1,15           1,79           1,07           2,20           1,73           0,12 | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00 | c(Cu)Ab           mg/L           0,57           0,35           0,32           0,33           0,35           0,32           0,33           0,35           0,49           1,06           1,79           2,10           2,20           2,15           2,30           2,15           2,30           2,15           2,30           2,15           2,40           2,85           2,25           2,05           1,96           1,89           1,77           1,92           1,61           1,78           1,67 |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26           27           28              | c(Fe)Ox<br>mg/L<br>2,46<br>2,57<br>2,97<br>2,54<br>2,02<br>1,67<br>1,89<br>2,38<br>3,62<br>3,19<br>3,67<br>4,20<br>4,21<br>4,21<br>4,21<br>4,21<br>4,20<br>4,21<br>4,20<br>4,21<br>4,29<br>4,19<br>4,54<br>4,81<br>4,97<br>4,95<br>4,34<br>3,97<br>4,10<br>4,54<br>3,75<br>4,41<br>4,57<br>4,23                                                                                                                                                            | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,04<br>1,08<br>1,04<br>1,22<br>1,16<br>1,12<br>1,28<br>1,34<br>1,43<br>1,64<br>1,72<br>1,58<br>1,66<br>1,75<br>1,72<br>1,74<br>1,68<br>1,83 | c(Fe)Ab           mg/L           0,86           1,34           2,30           2,45           0,81           1,24           0,44           0,32           0,28           0,60           0,92           0,87           0,84           0,90           0,69           1,03           0,93           1,20           1,09           0,83           1,17           1,38           1,15           1,79           1,07           2,20           1,73           2,40 | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00 | c(Cu)Ab           mg/L           0,57           0,35           0,32           0,33           0,35           0,32           0,33           0,35           0,49           1,06           1,79           2,10           2,20           2,15           2,30           2,15           2,40           2,85           2,25           2,05           1,96           1,89           1,77           1,92           1,61           1,73                                                                            |          |          |              |          |
| Nr.           #           0           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26           27           28              | c(Fe)Ox           mg/L           2,46           2,57           2,97           2,54           2,02           1,67           1,89           2,38           3,62           3,19           3,67           4,20           4,21           4,70           4,29           4,19           4,54           4,81           4,97           4,95           4,34           3,97           4,10           4,54           3,75           4,41           4,57           4,23 | c(Fe)I<br>mg/L<br>1,43<br>2,20<br>2,29<br>2,07<br>1,40<br>0,80<br>0,76<br>0,78<br>0,91<br>0,98<br>1,04<br>1,08<br>1,06<br>1,22<br>1,16<br>1,12<br>1,28<br>1,34<br>1,43<br>1,64<br>1,72<br>1,58<br>1,66<br>1,75<br>1,72<br>1,74<br>1,68<br>1,83                 | c(Fe)Ab           mg/L           0,86           1,34           2,30           2,45           0,81           1,24           0,44           0,32           0,28           0,60           0,92           0,87           0,69           1,03           0,93           1,20           1,09           0,83           1,17           1,38           1,17           1,73           2,40                                                                            | c(Fe)Ab,g<br>mg/L<br>0,02<br>0,01<br>0,01<br>0,01<br>0,02<br>0,01<br>0,02<br>0,01<br>0,02<br>0,00<br>0,00 | c(Cu)Ab           mg/L           0,57           0,35           0,32           0,33           0,35           0,32           0,33           0,35           0,49           1,06           1,79           2,10           2,20           2,15           2,30           2,15           2,40           2,85           2,25           2,05           1,96           1,89           1,77           1,92           1,61           1,78           1,67           1,73                                              |          |          |              |          |

| Versuchsart           | Säulenversuch zur Kontaktkorrosion<br>mit externer und direkter Verbindung                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Versuchsnummer        | SV 26.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Abbildung im Text     | 4.11 c) und d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Laufzeit              | 527 h / 23 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Material              | Cu-Wolle im Ringspalt zwischen Fe-Kern und Cu-Rohr                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Säulendurchmesser     | Kern: 0,01 m Außenrohr: 0,05 m                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Säulenquerschnitt     | 0,00189 m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Betthöhe              | 0,15 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bettvolumen           | 0,283 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Masse Cu-Wolle        | 111 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Oberfläche Cu / Fe    | 0,656 m <sup>2</sup> / $0,0135$ m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Porosität             | 95,6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Filtergeschwindigkeit | 2,09 m/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volumenstrom          | 94 L/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Massenbilanz          | m Fe-EW:       304,92 g       m As-Zu:       925 mg         m Fe-RW:       292,0 g       m As-Ab-g.:       175 mg         Δm Fe-RW:       12,92 g       m As-Ab-p.:       588 mg         Δm Fe-I:       0,53 g       m As-Oxal:       174 mg         Δm Fe-Ox:       14,614 g       m As-HCl:       6 mg         Δm Fe-Rost:       13,521 g       As-Differenz:       -18 mg         m Fe-Ab-g.:       0,513 g       m Fe-Ab-g.:       1,856 g         m Fe-HCl:       1,745 g       9 |

| Nr.    | Zeit    | Q             | Durchsatz    | c(O2)Zu   | c(O2)Ab      | ∆c(O2)F. | CR(Fe)Ox | CR(Fe)I | CR(Fe)Ox |
|--------|---------|---------------|--------------|-----------|--------------|----------|----------|---------|----------|
| #      | h       | ml /min       | BV           | ma/l      | ma/l         | ma/l     | A(re)    | A(re)   | A(Cu)    |
| #<br>0 | 0       | 70            | <b>BV</b>    | iiig/L    | iiig/L       | iiig/L   | g/mzu    | g/mzu   | g/mzu    |
| 1      | 6       | 70            | 89           | 7 97      | 4 44         | 0        | 61 32    | 0.72    | 1.26     |
| 2      | 28      | 71            | 418          | 8.42      | 5.67         | -0.14    | 50.96    | 1 47    | 1,20     |
| 3      | 52      | 72            | 782          | 8.52      | 5.92         | -0,14    | 51 29    | 0.13    | 1,05     |
| 4      | 73      | 69            | 1097         | 8.54      | 5.66         | -0.24    | 53.43    | 0,10    | 1,00     |
| -      | 97      | 68            | 1445         | 8.09      | 5,00         | -0,24    | 44.06    | 1.26    | 0.91     |
| 6      | 120     | 65            | 1770         | 8 34      | 5.97         | -0,23    | 41,00    | 1,20    | 0,91     |
| 7      | 145     | 65            | 2115         | 8 50      | 5,97         | -0,22    | 38.26    | 1,55    | 0,00     |
| 8      | 143     | 64            | 2113         | 8.26      | 5,95<br>6 14 | -0.09    | 35.20    | 1,41    | 0,79     |
| 0      | 102     | 65            | 2404         | 0,20      | 5 90         | -0,09    | 33,21    | 1,50    | 0,73     |
| 9      | 193     | 64            | 2112         | 0,04      | 5,60         | 0,08     | 34,97    | 1,30    | 0,72     |
| 10     | 217     | 64            | 3/13         | 8.34      | 5.81         | 0,10     | 30.21    | 1,07    | 0,70     |
| 10     | 240     | 62            | 3413         | 0,34      | 5,01         | 0,00     | 39,21    | 1,09    | 0,01     |
| 12     | 200     | 63            | 3750         | 0,40      | 5,20         | 0,21     | 40,09    | 2,00    | 0,96     |
| 13     | 200     | 63            | 4057         | 0,13      | 4,57         | 0,08     | 54,45    | 2,06    | 1,12     |
| 14     | 316     | 64            | 4434         | 8,29      | 4,69         | 0,09     | 55,81    | 2,21    | 1,15     |
| 15     | 334     | 64            | 4679         | 7,80      | 4,01         | 0,08     | 58,93    | 2,28    | 1,21     |
| 16     | 360     | 64            | 5032         | 8,56      | 5,12         | 0,09     | 53,16    | 2,23    | 1,10     |
| 17     | 387     | 64            | 5399         | 8,17      | 4,56         | 0,07     | 56,21    | 2,25    | 1,16     |
| 18     | 410     | 64            | 5711         | 8,43      | 4,88         | 0,06     | 55,54    | 2,32    | 1,14     |
| 19     | 435     | 64            | 6051         | 8,35      | 4,69         | 0,12     | 56,29    | 2,28    | 1,16     |
| 20     | 456     | 64            | 6336         | 7,71      | 3,90         | -0,03    | 61,07    | 2,39    | 1,26     |
| 21     | 481     | 65            | 6678         | 8,66      | 4,95         | 0,20     | 56,60    | 2,28    | 1,17     |
| 22     | 507     | 63            | 7031         | 8,20      | 4,54         | 0,17     | 54,58    | 2,32    | 1,12     |
| 23     | 527     | 64            | 7301         | 8,71      | 5,27         | 0,08     | 53,36    | 2,38    | 1,10     |
|        |         |               |              |           |              |          |          |         |          |
|        |         |               |              |           |              |          |          |         |          |
|        |         |               |              |           |              |          |          |         |          |
|        |         | ( <b>-</b> ); | / <b>-</b> \ | /= \      |              |          |          |         |          |
| Nr.    | c(Fe)Ox | c(⊦e)l        | C(Fe)Ab      | c(Fe)Ab,g | c(Cu)Ab      |          |          |         |          |
| #      | mg/L    | mg/L          | mg/L         | mg/L      | mg/L         |          |          |         |          |
| 0      |         | 0.10          |              |           | 0.00         |          |          |         |          |
| 1      | 8,22    | 0,10          | 6,27         | 0,69      | 0,03         |          |          |         |          |
| 2      | 6,73    | 0,19          | 4,90         | 1,23      | 0,00         |          |          |         |          |
| 3      | 6,68    | 0,02          | 5,81         | 1,83      | 0,00         |          |          |         |          |
| 4      | 7,26    | 0,13          | 5,51         | 0,53      | 0,00         |          |          |         |          |
| 5      | 6,08    | 0,17          | 5,31         | 0,70      | 0,00         |          |          |         |          |
| 6      | 6,03    | 0,20          | 3,49         | 0,05      | 0,00         |          |          |         |          |
| 7      | 5,52    | 0,20          | 4,21         | 0,17      | 0,04         |          |          |         |          |
| 8      | 5,16    | 0,23          | 3,99         | 0,06      | 0,06         | ļ        |          |         |          |
| 9      | 5,05    | 0,23          | 3,68         | 0,21      | 0,03         |          |          |         |          |
| 10     | 5,00    | 0,24          | 3,48         | 0,03      | 0,04         |          |          |         |          |
| 11     | 5,75    | 0,28          | 4,41         | 0,02      | 0,23         | ļ        |          |         |          |
| 12     | 6,95    | 0,30          | 6,54         | 0,00      | 0,75         |          |          |         |          |
| 13     | 8,11    | 0,31          | 5,87         | 0,00      | 1,14         |          |          |         |          |
| 14     | 8,18    | 0,32          | 4,31         | 0,00      | 1,18         |          |          |         |          |
| 15     | 8,64    | 0,33          | 4,58         | 0,00      | 1,49         |          |          |         |          |
| 16     | 7,79    | 0,33          | 4,53         | 0,01      | 1,40         |          |          |         |          |
| 17     | 8,24    | 0,33          | 6,14         | 0,00      | 1,30         |          |          |         |          |
| 18     | 8,14    | 0,34          | 5,29         | 0,00      | 1,51         |          |          |         |          |
| 19     | 8,25    | 0,33          | 4,58         | 0,10      | 1,39         | ļ        | ļ        |         |          |
| 20     | 8,95    | 0,35          | 4,96         | 0,00      | 1,32         | ļ        | ļ        |         |          |
| 21     | 8,17    | 0,33          | 4,19         | 0,00      | 1,46         | ļ        | ļ        |         |          |
| 22     | 8,13    | 0,35          | 4,51         | 0,00      | 1,14         |          |          |         |          |
| 23     | 7,82    | 0,35          | 5,31         | 0,00      | 1,36         |          |          |         |          |
|        |         |               |              |           |              |          |          |         |          |

| Versuchsart           | Säulenversuch zur Korrosion mit Spannung                                                                                                                                                                     |                                                                                                                |                                                                                    |                                       |                            |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------|----------------------------|
| Versuchsnummer        | SV 23.1                                                                                                                                                                                                      | (23.2 analog n                                                                                                 | nit äußerem Fe                                                                     | -Rohr)                                |                            |
| Abbildung im Text     | 4.14 4.15                                                                                                                                                                                                    |                                                                                                                |                                                                                    |                                       |                            |
| Laufzeit              | 713 h / 30 d                                                                                                                                                                                                 |                                                                                                                |                                                                                    |                                       |                            |
| Material              | Elektrische Sj                                                                                                                                                                                               | bannung zwisch                                                                                                 | en Fe-Kern un                                                                      | d Cu-R                                | lohr                       |
| Säulendurchmesser     | Kern: 0,04                                                                                                                                                                                                   | m Außen                                                                                                        | rohr: 0,05                                                                         | m                                     |                            |
| Säulenquerschnitt     | 0,00071                                                                                                                                                                                                      | m <sup>2</sup>                                                                                                 |                                                                                    |                                       |                            |
| Betthöhe              | 0,5                                                                                                                                                                                                          | m                                                                                                              |                                                                                    |                                       |                            |
| Bettvolumen           | 0,353                                                                                                                                                                                                        | L                                                                                                              |                                                                                    |                                       |                            |
| Oberfläche Cu / Fe    | 0,0785                                                                                                                                                                                                       | m <sup>2</sup> /                                                                                               | 0,0628                                                                             |                                       | m <sup>2</sup>             |
| Porosität             | 100                                                                                                                                                                                                          | %                                                                                                              |                                                                                    |                                       |                            |
| Filtergeschwindigkeit | 5,3                                                                                                                                                                                                          | m/h                                                                                                            |                                                                                    |                                       |                            |
| Volumenstrom          | 90                                                                                                                                                                                                           | L/d                                                                                                            |                                                                                    |                                       |                            |
| Massenbilanz          | <ul> <li>m Fe-EW:</li> <li>m Fe-RW:</li> <li>Δm Fe-RW:</li> <li>Δm Fe-I:</li> <li>Δm Fe-Ox:</li> <li>Δm Fe-Rost:</li> <li>m Fe-Ab-g.:</li> <li>m Fe-Ab-p.:</li> <li>m Fe-Oxal:</li> <li>m Fe-HCl:</li> </ul> | 919,28 g<br>887,17 g<br>32,11 g<br>29,54 g<br>12,41 g<br>29,025 g<br>5,575 g<br>10,661 g<br>8,808 g<br>3,981 g | m As-Zu:<br>m As-Ab-g.:<br>m As-Ab-p.:<br>m As-Oxal:<br>m As-HCl:<br>As-Differenz: | 1212<br>167<br>791<br>69<br>45<br>140 | mg<br>mg<br>mg<br>mg<br>mg |

| Nr. | Zeit    | Q              | Durchsatz | c(O2)Zu  | c(O2)Ab  | ∆c(O2)F. | c(Fe)Ox | c(Fe)Ab | c(Fe)Ab,g |
|-----|---------|----------------|-----------|----------|----------|----------|---------|---------|-----------|
| #   | h       | mL/min         | BV        | mg/L     | mg/L     | mg/L     | mg/L    | mg/L    | mg/L      |
| 0   | 0       | 62             | 0         | 8,16     | 5,23     | 0,16     |         |         |           |
| 1   | 24      | 65             | 91        | 7,99     | 5,30     | 0,16     | 5,90    | 7,63    | 1,06      |
| 2   | 48      | 64             | 184       | 7,34     | 4,74     | 0,05     | 5,94    | 10,20   | 2,16      |
| 3   | 72      | 64             | 276       | 7,30     | 4,93     | 0,02     | 5,48    | 7,96    | 4,09      |
| 4   | 96      | 62             | 367       | 6,86     | 4,25     | 0,02     | 6,03    | 6,38    | 2,09      |
| 5   | 120     | 60             | 455       | 7,08     | 4,74     | 0        | 5,47    | 7,11    | 1,89      |
| 6   | 144     | 61             | 542       | 7,59     | 5,41     | 0,06     | 4,94    | 5,92    | 2,88      |
| 7   | 168     | 61             | 630       | 7,30     | 4,86     | -0,02    | 5,73    | 7,84    | 2,15      |
| 8   | 192     | 60             | 717       | 7,13     | 4,70     | 0,09     | 5,45    | 7,37    | 3,33      |
| 9   | 216     | 60             | 804       | 7,27     | 5,39     | 0,16     | 4,01    | 10,85   |           |
| 10  | 240     | 59             | 889       | 6,84     | 4,75     | 0,02     | 4,82    | 6,54    | 3,93      |
| 11  | 264     | 62             | 976       | 6,80     | 4,70     | -0,12    | 5,17    | 5,75    | 2,04      |
| 12  | 288     | 63             | 1066      | 6,83     | 5,08     | 0,06     | 3,93    | 4,66    | 2,24      |
| 13  | 312     | 63,5           | 1157      | 7,26     | 5,59     | 0,01     | 3,87    | 3,62    | 1,78      |
| 14  | 336     | 64             | 1249      | 7,36     | 5,34     | 0,12     | 4,44    | 5,71    | 2,50      |
| 15  | 360     | 65             | 1342      | 6,97     | 5,09     | -0,01    | 4,40    | 7,14    | 2,14      |
| 10  | 384     | 64             | 1435      | 7,01     | 4,96     | 0,090    | 4,56    | 6,04    | 2,32      |
| 17  | 408     | 64             | 1527      | 7,01     | 4,93     | 0,2      | 4,37    | 5,23    | 2,31      |
| 10  | 432     | 64             | 1019      | 0,41     | 4,00     | -0,14    | 3,90    | 4,91    | 2,47      |
| 19  | 430     | 64             | 1711      | 7,03     | 3,10     | -0,05    | 4,01    | 4,33    | 2.05      |
| 20  | 480     | 63             | 1805      | 7 10     | 4,75     | -0,03    | 4,39    | 6,7 I   | 2,03      |
| 21  | 528     | 63             | 1095      | 6.82     | 3,20     | 0,00     | 4,49    | 5,74    | 2,02      |
| 22  | 552     | 63             | 2076      | 6.89     | 4,95     | 0,03     | 4,30    | 5,65    | 2,39      |
| 23  | 576     | 62             | 2070      | 6.29     | 4 61     | 0,03     | 3.89    | 5,00    | 1 96      |
| 25  | 600     | 62             | 2256      | 6.00     | 4.01     | 0,07     | 3 52    | 3 91    | 1,30      |
| 26  | 624     | 62             | 2345      | 6.45     | 4 83     | -0.01    | 3.80    | 4 54    | 1,52      |
| 27  | 648     | 61             | 2434      | 5.80     | 4 29     | -0.06    | 3.65    | 4.82    | 1,00      |
| 28  | 672     | 61             | 2521      | 6,99     | 4 75     | 0.28     | 4 57    | 5.68    | 2 24      |
| 29  | 696     | 63             | 2611      | 7.08     | 5.05     | 0.2      | 4.27    | 6.37    | 2.25      |
| 30  | 720     | 63             | 2701      | 7 53     | 5.28     | 0.5      | 4.06    | 8 47    | 1.88      |
|     | •       |                |           | .,       | -,       | -,-      | .,      | -,      | .,        |
| N   |         | a( <b>F</b> a) |           | CR(Fe)Ox | CR(Fe)Ox | CR(Fe)I  | CR(Fe)I |         |           |
| Nr. | C(Fe)SF | C(Fe)I         |           | A(Fe)    | A(Met.)  | A(Fe)    | A(Met.) |         |           |
| #   | mg/L    | mg/L           |           | g/m2d    | g/m2d    | g/m2d    | g/m2d   |         |           |
| 0   |         |                |           |          |          |          |         |         |           |
| 1   | 0,03    | 10,30          |           | 8,79     | 3,91     | 15,34    | 6,82    |         |           |
| 2   | 0,09    | 12,53          |           | 8,71     | 3,87     | 18,38    | 8,17    |         |           |
| 3   | 0,03    | 11,45          |           | 8,04     | 3,58     | 16,79    | 7,46    |         |           |
| 4   | 0,02    | 12,48          |           | 8,56     | 3,81     | 17,74    | 7,88    |         |           |
| 5   | 0,01    | 11,96          |           | 7,53     | 3,34     | 16,45    | 7,31    |         |           |
| 6   | 0,00    | 11,09          |           | 6,91     | 3,07     | 15,50    | 6,89    |         |           |
| 7   | 0,00    | 12,67          |           | 8,01     | 3,56     | 17,72    | 7,87    |         |           |
| 8   | 0,06    | 12,07          |           | 7,50     | 3,33     | 16,60    | 7,38    |         |           |
| 9   | 0,07    | 11,29          |           | 5,51     | 2,45     | 15,52    | 6,90    |         |           |
| 10  | 0,03    | 11,24          |           | 6,52     | 2,90     | 15,20    | 6,76    |         |           |
| 11  | 0,05    | 10,33          |           | 7,35     | 3,27     | 14,68    | 6,53    |         |           |
| 12  | 0,02    | 9,73           |           | 5,67     | 2,52     | 14,05    | 6,24    |         |           |
| 13  | 0,00    | 8,72           |           | 5,64     | 2,50     | 12,69    | 5,64    |         |           |
| 14  | 0,05    | 11,94          |           | 6,51     | 2,89     | 17,51    | 7,78    |         |           |
| 15  | 0,17    | 11,49          |           | 6,55     | 2,91     | 17,11    | 7,61    |         |           |
| 10  | 0,02    | 11,34          |           | 0,09     | 2,97     | 10,03    | 7,39    |         |           |
| 10  | 0,27    | 10,70          |           | 0,41     | 2,85     | 10,30    | 1,21    |         |           |
| 10  | 0,03    | 10,72          |           | 5,01     | 2,00     | 15,72    | 0,99    |         |           |
| 19  | 0,02    | 10,00          |           | 6.72     | 3,01     | 15,04    | 0,90    |         |           |
| 20  | 0,01    | 11 7/          |           | 6.48     | 2,33     | 16.95    | 7 53    |         |           |
| 22  | 0.09    | 11 33          |           | 6.21     | 2,00     | 16 36    | 7 27    |         |           |
| 23  | 0.10    | 10.89          |           | 5.81     | 2.58     | 15 72    | 6 99    |         |           |
| 24  | 0.09    | 10.87          |           | 5.52     | 2,00     | 15 44    | 6.86    |         |           |
| 25  | 0,03    | 10,56          |           | 5.00     | 2,73     | 15.00    | 6.67    |         |           |
| 26  | 0.05    | 9,69           |           | 5,40     | 2,40     | 13 77    | 6,12    |         |           |
| 27  | 0.03    | 9,56           |           | 5,10     | 2.27     | 13 37    | 5,94    |         | 1         |
| 28  | 0.06    | 11.39          |           | 6.38     | 2.84     | 15.92    | 7.07    |         |           |
| 29  | 0.04    | 10.56          |           | 6.16     | 2.74     | 15.24    | 6.77    |         |           |
| 30  | 0.07    | 10.39          | 1         | 5.86     | 2,60     | 15,00    | 6,67    |         |           |
| 50  | 0,01    | ,              |           | - /      |          |          | ,       |         |           |

| Nr. | c(As)Zu | c(As)Ab | c(As)Ab,g | c(As)SF | qM     | qP    |       |       |
|-----|---------|---------|-----------|---------|--------|-------|-------|-------|
| #   | mg/L    | mg/L    | mg/L      | mg/L    | µg/mg  | µg/mg |       |       |
| 0   |         |         |           |         |        |       |       |       |
| 1   | 462     | 439     | 8         | 12      | 9      | 66    |       |       |
| 2   | 448     | 478     | 8         | 10      |        | 58    |       |       |
| 3   | 449     | 385     | 20        | 8       | 18     | 94    |       |       |
| 4   | 460     | 349     | 12        | 7       | 18     | 79    |       |       |
| 5   | 446     | 370     | 6         | 8       | 16     | 70    |       |       |
| 6   | 415     | 386     | 21        | 9       | 6      | 120   |       |       |
| 7   | 466     | 406     | 8         | 10      | 12     | 70    |       |       |
| 8   | 438     | 378     | 24        | 10      | 13     | 88    |       |       |
| 9   | 452     |         |           | 9       |        |       |       |       |
| 10  | 461     | 296     | 140       | 8       | 35     | 60    |       |       |
| 11  | 464     | 336     | 53        | 8       | 28     | 76    |       |       |
| 12  | 456     | 344     | 72        | 7       | 22     | 112   |       |       |
| 13  | 429     | 301     | 68        | 11      | 25     | 127   |       |       |
| 14  | 432     | 347     | 22        | 19      | 14     | 101   |       |       |
| 15  | 450     | 398     | 19        | 17      | 12     | 76    |       |       |
| 16  | 481     | 414     | 46        | 12      | 13     | 99    |       |       |
| 17  | 480     | 391     | 42        | 15      | 15     | 120   |       |       |
| 18  | 461     | 382     | 132       | 12      | 13     | 103   |       |       |
| 19  | 467     | 370     | 73        | 15      | 15     | 111   |       |       |
| 20  | 486     |         | 99        | 17      | 2      | 58    |       |       |
| 21  | 474     | 365     | 80        | 26      | 18     | 76    |       |       |
| 22  | 480     |         | 133       | 24      |        |       |       |       |
| 23  | 471     | 391     | 143       | 25      | 15     | 71    |       |       |
| 24  | 486     | 363     | 142       | 28      | 21     | 73    |       |       |
| 25  | 446     | 375     | 126       | 24      | 11     | 119   |       |       |
| 26  | 468     | 390     | 118       | 26      | 15     | 92    |       |       |
| 27  | 461     | 358     |           | 47      |        |       |       |       |
| 28  | 472     | 437     | 107       | 34      | 6      | 96    |       |       |
| 29  | 498     | 456     | 91        | 30      | 10     | 89    |       |       |
| 30  | 477     | 409     | 139       | 24      | 35     | 41    |       |       |
|     |         |         |           |         |        |       |       |       |
|     |         | SV      | 23.1      |         |        | SV2   | 23.2  |       |
|     | Q       | vF      | U         | I       | Q      | vF    | U     | I     |
|     | mL/min  | m/h     | V         | mA      | mL/min | m/h   | V     | mA    |
|     |         |         |           |         |        |       |       |       |
| Α   | 202     | 17,1    | 0,806     | 36,85   | 166    | 14,1  | 0,804 | 40,15 |
| В   | 130     | 11,0    | 0,806     | 36,50   | 107    | 9,1   | 0,804 | 39,70 |
| С   | 98      | 8,3     | 0,806     | 36,80   | 82     | 7,0   | 0,805 | 40,00 |
| D   | 66      | 5,6     | 0,806     | 37,15   | 55     | 4,7   | 0,804 | 40,25 |
| E   | 32      | 2,7     | 0,806     | 37,45   | 27     | 2,3   | 0,804 | 40,75 |
|     | -       | ,       |           | - / -   |        | ,-    | - /   | -, -  |
|     |         |         |           |         |        |       |       |       |

| 23.1             |                                              | Messung                                    | bei 1200 BV                                      | Messung I                                  | oei 3200 BV                                      | Messung b                                  | oei 5000 BV                                                       | Messung b                                  | oei 6800 BV                                    |
|------------------|----------------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|
|                  | U                                            | I                                          | CR(Fe)I                                          | I                                          | CR(Fe)I                                          | I                                          | CR(Fe)I                                                           | I                                          | CR(Fe)I                                        |
|                  | V                                            | mA                                         | g/m2d                                            | mA                                         | g/m2d                                            | mA                                         | g/m2d                                                             | mA                                         | g/m2d                                          |
|                  |                                              |                                            |                                                  |                                            |                                                  |                                            |                                                                   |                                            |                                                |
| Α                | 0,00                                         | 7                                          | 2,61                                             | 2                                          | 0,86                                             | 0                                          | 0,04                                                              | -0,3                                       | -0,12                                          |
| В                | 0,20                                         | 8                                          | 3,00                                             | 2                                          | 0,86                                             | 1                                          | 0,20                                                              | 0,1                                        | 0,04                                           |
| С                | 0,40                                         | 16                                         | 6,16                                             | 8                                          | 3,02                                             | 6                                          | 2,27                                                              | 4,3                                        | 1,70                                           |
| D                | 0,60                                         | 38                                         | 15,35                                            | 25                                         | 9,99                                             | 21                                         | 8,47                                                              | 16,4                                       | 6,50                                           |
| E                | 0,80                                         | 116                                        | 46,25                                            | 57                                         | 22,76                                            | 49                                         | 19,50                                                             | 39,4                                       | 15,85                                          |
| F                | 1,00                                         | 209                                        | 84,66                                            | 102                                        | 41,03                                            | 88                                         | 35,36                                                             | 73,4                                       | 29,53                                          |
| G                | 1,20                                         | 321                                        | 130,02                                           | 153                                        | 61,75                                            | 133                                        | 53,20                                                             | 111,4                                      | 44,13                                          |
|                  |                                              |                                            |                                                  |                                            |                                                  |                                            |                                                                   |                                            |                                                |
|                  |                                              |                                            |                                                  |                                            |                                                  |                                            |                                                                   |                                            |                                                |
| 23.1             |                                              | Messung                                    | bei 1200 BV                                      | Messung I                                  | oei 3200 BV                                      | Messung b                                  | oei 5000 BV                                                       | Messung b                                  | oei 6800 BV                                    |
|                  | U                                            | ∆c(O2)                                     | CR(Fe)Ox                                         | ∆c(O2)                                     | CR(Fe)Ox                                         | ∆c(O2)                                     | CR(Fe)Ox                                                          | ∆c(O2)                                     | CR(Fe)Ox                                       |
|                  | V                                            | mg/L                                       | g/m2d                                            | mg/L                                       | g/m2d                                            | mg/L                                       | g/m2d                                                             | mg/L                                       | g/m2d                                          |
|                  |                                              |                                            |                                                  |                                            |                                                  |                                            |                                                                   |                                            |                                                |
| Α                | 0,00                                         | 1,51                                       | 5,01                                             | 1,25                                       | 4,42                                             | 1,03                                       | 3,63                                                              | 0,93                                       | 3,19                                           |
| В                | 0,20                                         | 1,49                                       | 4,93                                             | 1,28                                       | 4,50                                             | 1,07                                       | 3,77                                                              | 0,92                                       | 3,15                                           |
| С                | 0,40                                         | 1,60                                       | 5,31                                             | 1,43                                       | 5,11                                             | 1,26                                       | 4,49                                                              | 1,03                                       | 3,51                                           |
| D                | 0,60                                         | 2,30                                       | 7,74                                             | 1,78                                       | 6,38                                             | 1,65                                       | 5,82                                                              | 1,31                                       | 4,48                                           |
| E                | 0,80                                         | 4,76                                       | 16,02                                            | 2,67                                       | 9,56                                             | 2,20                                       | 7,82                                                              | 1,91                                       | 6,62                                           |
| F                | 1,00                                         | 6,36                                       | 21,75                                            | 4,07                                       | 14,76                                            | 3,44                                       | 12,31                                                             | 2,95                                       | 10,25                                          |
| G                | 1,20                                         | 6,74                                       | 23,02                                            | 4,34                                       | 15,76                                            | 4,51                                       | 16,00                                                             | 3,91                                       | 13,35                                          |
|                  |                                              |                                            |                                                  |                                            |                                                  |                                            |                                                                   |                                            |                                                |
| Q                |                                              | 63                                         | mL/min                                           | 67                                         | mL/min                                           | 66                                         | mL/min                                                            | 64                                         | mL/min                                         |
|                  |                                              |                                            |                                                  |                                            |                                                  |                                            |                                                                   |                                            |                                                |
|                  |                                              |                                            |                                                  |                                            |                                                  |                                            |                                                                   |                                            |                                                |
|                  |                                              |                                            |                                                  |                                            |                                                  |                                            |                                                                   |                                            |                                                |
|                  |                                              |                                            |                                                  |                                            |                                                  |                                            |                                                                   |                                            |                                                |
| 23.2             |                                              | Messung                                    | bei 1200 BV                                      | Messung I                                  | bei 3200 BV                                      | Messung b                                  | bei 5000 BV                                                       | Messung k                                  | bei 6800 BV                                    |
|                  | U                                            |                                            | CR(Fe)I                                          | -                                          | CR(Fe)I                                          | <u> </u>                                   | CR(Fe)I                                                           |                                            | CR(Fe)I                                        |
|                  | v                                            | mA                                         | g/m2d                                            | mA                                         | g/m2d                                            | mA                                         | g/m2d                                                             | mA                                         | g/m2d                                          |
|                  |                                              |                                            |                                                  |                                            | 0.54                                             |                                            |                                                                   |                                            | 0.70                                           |
| A                | 0,00                                         | -0,7                                       | -0,28                                            | -1,3                                       | -0,51                                            | -1,6                                       | -0,63                                                             | -1,8                                       | -0,70                                          |
| В                | 0,20                                         | 1,4                                        | 0,56                                             | 0,7                                        | 0,27                                             | 0,6                                        | 0,24                                                              | -0,1                                       | -0,04                                          |
| C                | 0,40                                         | 8,3                                        | 3,24                                             | 8,2                                        | 3,20                                             | 8,1                                        | 3,22                                                              | 6,8                                        | 2,68                                           |
| D                | 0,60                                         | 25,3                                       | 10,05                                            | 24,5                                       | 9,73                                             | 24,8                                       | 9,87                                                              | 21,7                                       | 8,54                                           |
| E                | 0,80                                         | 51,8                                       | 20,94                                            | 49,1                                       | 19,49                                            | 52,8                                       | 21,01                                                             | 43,4                                       | 17,41                                          |
| F                | 1,00                                         | 84,2                                       | 32,82                                            | 79,1                                       | 32,48                                            | 80,6                                       | 32,07                                                             | 70,6                                       | 28,83                                          |
| G                | 1,20                                         | 116,8                                      | 48,06                                            | 111,1                                      | 45,62                                            | 112,2                                      | 45,43                                                             | 97,9                                       | 39,98                                          |
|                  |                                              | <b> </b>                                   |                                                  |                                            |                                                  |                                            |                                                                   |                                            |                                                |
| 22.2             |                                              | Maggung                                    | hai 4200 BV                                      | Maaauma                                    | ai 2200 BV                                       | Maaauma                                    | ai 5000 BV                                                        | Maggung                                    | ci 6900 BV                                     |
| 23.2             |                                              | Messung I                                  |                                                  | Messung r                                  |                                                  | Messung r                                  |                                                                   | wiessung L                                 |                                                |
|                  | U<br>V                                       |                                            |                                                  | ΔC(U2)                                     |                                                  |                                            |                                                                   |                                            |                                                |
|                  |                                              | ing/∟                                      | g/mzu                                            | ing/L                                      | g/mzu                                            | ing/L                                      | g/mzu                                                             | ing/L                                      | g/mzu                                          |
| ٨                | 0.00                                         | 1.00                                       | 2.05                                             | 1 00                                       | 3 70                                             | 1.26                                       | 3 70                                                              | 1.01                                       | 2 07                                           |
| P                | 0,00                                         | 1,00                                       | 2,90                                             | 1,20                                       | 3,73                                             | 1.20                                       | 3,70                                                              | 1.01                                       | 2,01                                           |
| 0                |                                              | 1.00                                       | 3,11                                             | 1,33                                       | 4,00                                             | 1,00                                       | 4,00                                                              | 1,21                                       | 3,49                                           |
|                  | 0,20                                         | 1.99                                       | 3 0 3                                            | 1 60                                       |                                                  |                                            |                                                                   | 1 / / / /                                  |                                                |
|                  | 0,20                                         | 1,33                                       | 3,83                                             | 1,60                                       | 4,00                                             | 1,01                                       | 4,90                                                              | 1,40                                       | 4,05                                           |
| D                | 0,20<br>0,40<br>0,60                         | 1,33<br>1,81                               | 3,83<br>5,31                                     | 1,60<br>1,98                               | 4,00<br>6,13                                     | 1,92                                       | 5,83                                                              | 1,40<br>1,61                               | 4,63                                           |
| D<br>E           | 0,20<br>0,40<br>0,60<br>0,80                 | 1,33<br>1,81<br>2,84                       | 3,83<br>5,31<br>8,49                             | 1,60<br>1,98<br>2,66                       | 4,00<br>6,13<br>8,24                             | 1,01<br>1,92<br>2,58                       | 4,90<br>5,83<br>7,84                                              | 1,40<br>1,61<br>2,18                       | 4,63<br>4,63<br>6,39                           |
| D<br>E<br>F      | 0,20<br>0,40<br>0,60<br>0,80<br>1,00         | 1,33<br>1,81<br>2,84<br>3,89               | 3,83<br>5,31<br>8,49<br>11,23                    | 1,60<br>1,98<br>2,66<br>3,44               | 4,80<br>6,13<br>8,24<br>11,02                    | 1,61<br>1,92<br>2,58<br>3,23               | 4,90<br>5,83<br>7,84<br>9,84                                      | 1,40<br>1,61<br>2,18<br>2,77               | 4,03<br>4,63<br>6,39<br>8,27                   |
| D<br>E<br>F<br>G | 0,20<br>0,40<br>0,60<br>0,80<br>1,00<br>1,20 | 1,33<br>1,81<br>2,84<br>3,89<br>4,86       | 3,83<br>5,31<br>8,49<br>11,23<br>14,80           | 1,60<br>1,98<br>2,66<br>3,44<br>4,24       | 4,86<br>6,13<br>8,24<br>11,02<br>13,59           | 1,61<br>1,92<br>2,58<br>3,23<br>3,95       | 4,90           5,83           7,84           9,84           12,22 | 1,40<br>1,61<br>2,18<br>2,77<br>3,31       | 4,63<br>4,63<br>6,39<br>8,27<br>9,89           |
| E<br>F<br>G      | 0,20<br>0,40<br>0,60<br>0,80<br>1,00<br>1,20 | 1,33<br>1,81<br>2,84<br>3,89<br>4,86       | 3,83<br>5,31<br>8,49<br>11,23<br>14,80           | 1,60<br>1,98<br>2,66<br>3,44<br>4,24       | 4,00<br>6,13<br>8,24<br>11,02<br>13,59           | 1,61<br>1,92<br>2,58<br>3,23<br>3,95       | 4,30           5,83           7,84           9,84           12,22 | 1,40<br>1,61<br>2,18<br>2,77<br>3,31       | 4,63<br>4,63<br>6,39<br>8,27<br>9,89           |
| E<br>F<br>G<br>Q | 0,20<br>0,40<br>0,60<br>0,80<br>1,00<br>1,20 | 1,33<br>1,81<br>2,84<br>3,89<br>4,86<br>55 | 3,83<br>5,31<br>8,49<br>11,23<br>14,80<br>mL/min | 1,60<br>1,98<br>2,66<br>3,44<br>4,24<br>58 | 4,80<br>6,13<br>8,24<br>11,02<br>13,59<br>mL/min | 1,61<br>1,92<br>2,58<br>3,23<br>3,95<br>57 | 4,30<br>5,83<br>7,84<br>9,84<br>12,22<br>mL/min                   | 1,40<br>1,61<br>2,18<br>2,77<br>3,31<br>55 | 4,63<br>4,63<br>6,39<br>8,27<br>9,89<br>mL/min |

| Versuchsart           | Säulenversuch mit Sauerstoffkorrosion<br>zur Entfernung von As(III)                                                                                                                          |                                                                                                    |                                                                                                               |                                             |                                  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------|--|
| Versuchsnummer        | SV 25.2                                                                                                                                                                                      |                                                                                                    |                                                                                                               |                                             |                                  |  |
| Abbildung im Text     | 4.19                                                                                                                                                                                         |                                                                                                    |                                                                                                               |                                             |                                  |  |
| Laufzeit              | 792 h / 34 d                                                                                                                                                                                 |                                                                                                    |                                                                                                               |                                             |                                  |  |
| Material              | Stahlwolle CI                                                                                                                                                                                |                                                                                                    |                                                                                                               |                                             |                                  |  |
| Säulendurchmesser     | 0,05                                                                                                                                                                                         | m                                                                                                  |                                                                                                               |                                             |                                  |  |
| Säulenquerschnitt     | 0,00196                                                                                                                                                                                      | m <sup>2</sup>                                                                                     |                                                                                                               |                                             |                                  |  |
| Betthöhe              | 0,1                                                                                                                                                                                          | m                                                                                                  |                                                                                                               |                                             |                                  |  |
| Bettvolumen           | 0,196                                                                                                                                                                                        | L                                                                                                  |                                                                                                               |                                             |                                  |  |
| Masse Fe              | 68,87                                                                                                                                                                                        | g                                                                                                  |                                                                                                               |                                             |                                  |  |
| Oberfläche Fe         | 0,179                                                                                                                                                                                        | m <sup>2</sup>                                                                                     |                                                                                                               |                                             |                                  |  |
| Porosität             | 95,5                                                                                                                                                                                         | %                                                                                                  |                                                                                                               |                                             |                                  |  |
| Filtergeschwindigkeit | 1,99                                                                                                                                                                                         | m/h                                                                                                |                                                                                                               |                                             |                                  |  |
| Volumenstrom          | 94                                                                                                                                                                                           | L/d                                                                                                |                                                                                                               |                                             |                                  |  |
| Massenbilanz          | <ul> <li>m Fe-EW:</li> <li>m Fe-Met:</li> <li>Δm Fe-Met:</li> <li>Δm Fe-Ox:</li> <li>Δm Fe-Rost:</li> <li>m Fe-Ab-g.:</li> <li>m Fe-Ab-p.:</li> <li>m Fe-Oxal:</li> <li>m Fe-HC1:</li> </ul> | 68,87 g<br>42,98 g<br>25,89 g<br>20,129 g<br>23,075 g<br>2,206 g<br>4,206 g<br>11,775 g<br>4,888 g | m As-Zu:<br>m As-Ab-g.:<br>m As-Ab-p.:<br>m As-Oxal:<br>m As-Oxal:<br>m As-HCl:<br>m As-Met:<br>As-Differenz: | 1318<br>482<br>399<br>317<br>32<br>46<br>42 | mg<br>mg<br>mg<br>mg<br>mg<br>mg |  |

| Nr. | Zeit | Q      | Durchsatz | c(Fe)Ox | c(Fe)Ab | c(Fe)Ab,g | c(Fe)SF | r(O2)   | CR(Fe)Ox |
|-----|------|--------|-----------|---------|---------|-----------|---------|---------|----------|
| #   | h    | mL/min | BV        | mg/L    | mg/L    | mg/L      | mg/L    | L/m2min | g/m2d    |
| 0   | 0    | 60     | 0         |         |         |           |         |         |          |
| 1   | 5    | 61     | 92        | 18,88   | 7,84    | 5,05      | 1,20    | 1,29    | 9,26     |
| 2   | 24   | 64     | 455       | 18,81   | 4,76    | 1,40      | 0,38    | 1,10    | 9,68     |
| 3   | 49   | 66     | 952       | 17,81   | 3,28    | 2,30      | 0,07    | 1,04    | 9,45     |
| 4   | 73   | 65     | 1432      | 15,12   | 2,29    | 0,77      | 0,02    | 0,61    | 7,90     |
| 5   | 97   | 66     | 1913      | 9,94    | 3,25    | 1,05      | 0,01    | 0,32    | 5,28     |
| 6   | 121  | 66     | 2397      | 8,66    | 3,19    | 1,40      | 0,04    | 0,24    | 4,60     |
| 7   | 144  | 67     | 2864      | 8,16    | 1,97    | 1,27      | 0,01    | 0,21    | 4,40     |
| 8   | 164  | 69     | 3280      | 6,33    | 2,18    | 0,86      | 0,00    | 0,17    | 3,51     |
| 9   | 192  | 64     | 3849      | 6,80    | 2,99    | 1,35      | 0,01    | 0,20    | 3,50     |
| 10  | 218  | 67     | 4369      | 6,03    | 2,34    | 1,17      | 0,01    | 0,17    | 3,25     |
| 11  | 241  | 67     | 4840      | 5,38    | 1,78    | 1,23      | 0,02    | 0,15    | 2,90     |
| 12  | 265  | 67     | 5331      | 3,96    | 1,35    | 0,43      | 0,01    | 0,10    | 2,13     |
| 13  | 287  | 67     | 5782      | 4,12    | 1,58    | 0,35      | 0,01    | 0,11    | 2,22     |
| 14  | 310  | 67     | 6253      | 4,16    | 1,73    | 0,32      | 0,01    | 0,10    | 2,24     |
| 15  | 337  | 66     | 6801      | 3,77    | 1,40    | 0,11      | 0,01    | 0,10    | 2,00     |
| 16  | 361  | 67     | 7289      | 3,84    | 1,48    | 0,15      | 0,00    | 0,10    | 2,07     |
| 17  | 386  | 66     | 7797      | 3,76    | 1,65    | 0,37      | 0,02    | 0,10    | 2,00     |
| 18  | 410  | 65     | 8277      | 4,03    | 1,51    | 0,43      | 0,02    | 0,10    | 2,11     |
| 19  | 434  | 65     | 8754      | 4,74    | 1,49    | 0,97      | 0,02    | 0,12    | 2,48     |
| 20  | 456  | 66     | 9194      | 5,29    | 1,96    | 0,11      | 0,01    | 0,13    | 2,81     |
| 21  | 484  | 64     | 9751      | 4,67    | 1,63    | 0,40      | 0,01    | 0,10    | 2,40     |
| 22  | 505  | 65     | 10164     | 4,02    | 1,71    | 0,06      | 0,01    | 0,09    | 2,10     |
| 23  | 531  | 63     | 10673     | 4,74    | 1,79    | 0,68      | 0,01    | 0,11    | 2,40     |
| 24  | 554  | 63     | 11116     | 5,02    | 1,78    | 0,67      | 0,02    | 0,12    | 2,54     |
| 25  | 577  | 63     | 11558     | 4,79    | 1,84    | 0,23      | 0,03    | 0,11    | 2,43     |
| 26  | 601  | 64     | 12024     | 4,33    | 1,61    | 0,22      | 0,00    | 0,10    | 2,23     |
| 27  | 623  | 68     | 12468     | 6,18    | 1,85    | 0,38      | 0,02    | 0,15    | 3,38     |
| 28  | 647  | 67     | 12963     | 4,19    | 1,30    | 0,19      | 0,02    | 0,10    | 2,26     |
| 29  | 674  | 65     | 13507     | 3,75    | 1,47    | 0,43      | 0,01    | 0,09    | 1,96     |
| 30  | 694  | 66     | 13908     | 4,95    | 1,56    | 0,56      | 0,01    | 0,12    | 2,63     |
| 31  | 721  | 65     | 14448     | 4,60    | 1,82    | 0,70      | 0,01    | 0,11    | 2,41     |
| 32  | 744  | 64     | 14901     | 4,87    | 1,69    | 0,03      | 0,01    | 0,11    | 2,50     |
| 33  | 766  | 65     | 15335     | 5,04    | 1,53    | 0,29      | 0,01    | 0,12    | 2,64     |
| 34  | 792  | 64     | 15848     | 4,87    | 1,53    | 0,34      | 0,00    | 0,11    | 2,51     |
|     |      |        |           |         |         |           |         |         |          |
|     |      |        |           |         |         |           |         |         |          |

| Nr. | c(As)Zu | c(As)Ab | c(As)Ab,g | c(As)SF | c(AsIII)Zu | c(AsIII)SF | qM    | qP    |  |
|-----|---------|---------|-----------|---------|------------|------------|-------|-------|--|
| #   | μg/L    | μg/L    | μg/L      | µg/L    | μg/L       | μg/L       | µg/mg | µg/mg |  |
| 0   |         |         |           |         |            |            |       |       |  |
| 1   | 533     | 145     | 103       | 29      | 489        | 22         | 35    | 15    |  |
| 2   | 522     | 106     | 69        | 37      | 490        | 27         | 30    | 11    |  |
| 3   | 507     | 110     | 91        | 37      | 460        | 30         | 27    | 19    |  |
| 4   | 514     | 130     | 98        | 37      | 480        | 27         | 30    | 21    |  |
| 5   | 498     | 257     | 176       | 65      | 446        | 26         | 36    | 37    |  |
| 6   | 535     | 335     | 250       | 129     | 455        | 27         | 36    | 48    |  |
| 7   | 515     | 291     | 250       | 118     | 451        | 33         | 36    | 58    |  |
| 8   | 507     | 335     | 249       | 135     | 486        | 34         | 41    | 66    |  |
| 9   | 422     | 320     | 212       | 104     | 340        | 19         | 27    | 66    |  |
| 10  | 422     | 294     | 202       | 101     | 314        | 17         | 35    | 79    |  |
| 11  | 389     | 264     | 213       | 120     | 334        | 11         | 35    | 94    |  |
| 12  | 405     | 323     | 233       | 101     | 331        | 5          | 32    | 98    |  |
| 13  | 397     | 286     | 181       | 110     | 336        | 4          | 44    | 86    |  |
| 14  | 371     | 333     | 182       | 114     | 322        | 4          | 16    | 107   |  |
| 15  | 397     | 314     | 160       | 109     | 272        | 4          | 35    | 119   |  |
| 16  | 401     | 324     | 149       | 105     | 265        | 4          | 33    | 132   |  |
| 17  | 388     | 294     | 147       | 101     | 154        | 6          | 44    | 115   |  |
| 18  | 392     | 323     | 150       | 99      | 93         | 7          | 27    | 161   |  |
| 19  | 393     | 272     | 175       | 88      | 54         | 7          | 37    | 186   |  |
| 20  | 405     | 304     | 79        | 79      | 86         | 2          | 31    | 122   |  |
| 21  | 395     | 290     | 110       | 73      | 32         | 4          | 35    | 146   |  |
| 22  | 429     | 370     | 90        | 81      | 44         | 3          | 26    | 169   |  |
| 23  | 412     | 294     | 121       | 73      | 49         | 4          | 40    | 155   |  |
| 24  | 411     | 318     | 170       | 78      | 374        | 5          | 29    | 133   |  |
| 25  | 450     | 279     | 87        | 76      | 182        | 4          | 58    | 119   |  |
| 26  | 415     | 302     | 114       | 73      | 344        | 2          | 41    | 136   |  |
| 27  | 407     | 270     | 109       | 73      | 306        | 2          | 32    | 110   |  |
| 28  | 409     | 309     | 149       | 72      | 260        | 2          | 35    | 144   |  |
| 29  | 365     | 318     | 190       | 90      | 342        | 3          | 20    | 123   |  |
| 30  | 378     | 302     | 187       | 76      | 281        | 3          | 23    | 114   |  |
| 31  | 379     | 280     | 163       | 69      | 222        | 4          | 35    | 104   |  |
| 32  | 367     | 308     | 105       | 78      | 231        | 2          | 19    | 122   |  |
| 33  | 377     | 278     | 132       | 70      | 224        | 2          | 28    | 117   |  |
| 34  | 383     | 281     | 128       | 70      | 252        | 9          | 31    | 128   |  |
|     |         |         |           |         |            |            |       |       |  |
|     |         |         |           |         |            |            |       |       |  |

| Versuchsart           | Feldversuch (Durchflussversuch) im Wasserwerk<br>"Salar del Carmen" in Antofagasta, Chile |       |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------|-------|--|--|--|--|
| Versuchnummer         | Experiment #10<br>Ausführliche Dokumentation der Versuche in [Höschel 2002]               |       |  |  |  |  |
| Abbildung im Text     | 4.22                                                                                      |       |  |  |  |  |
| Laufzeit              | 776 h / 32 d                                                                              |       |  |  |  |  |
| Material              | Frässpäne II                                                                              |       |  |  |  |  |
| Säulendurchmesser     | 0,1                                                                                       | m     |  |  |  |  |
| Säulenquerschnitt     | 0,00785                                                                                   | $m^2$ |  |  |  |  |
| Betthöhe              | 0,6                                                                                       | m     |  |  |  |  |
| Bettvolumen           | 4,71                                                                                      | L     |  |  |  |  |
| Masse Fe              | 2258                                                                                      | g     |  |  |  |  |
| Oberfläche Fe         | 1,82                                                                                      | $m^2$ |  |  |  |  |
| Porosität             | 93,9                                                                                      | %     |  |  |  |  |
| Filtergeschwindigkeit | 1,2                                                                                       | m/h   |  |  |  |  |
| Volumenstrom          | 218                                                                                       | L/d   |  |  |  |  |

| INT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q                                                                                                                                                                                  | Durchsatz                                                                                                                                                                                                                                                                                   | c(O2)Zu                                                                                                                                                                                                                                                                                                                | c(O2)Ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c(Fe)Ox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c(Fe)Ab                                                                                                                                                                                                                                                                                                | c(Fe)Ab,g                                                                                                                                                   | c(Fe)SF |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mL/min                                                                                                                                                                             | BV                                                                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                        | mg/L    |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 158                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                           | 12,05                                                                                                                                                                                                                                                                                                                  | 0,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                             |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 156                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                           | 14,10                                                                                                                                                                                                                                                                                                                  | 1,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,58                                                                                                                                                                                                                                                                                                   | 0,46                                                                                                                                                        | 0,30    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 154                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                           | 12,15                                                                                                                                                                                                                                                                                                                  | 1,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,30                                                                                                                                                                                                                                                                                                   | 0,35                                                                                                                                                        | 0,76    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 154                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                           | 18,73                                                                                                                                                                                                                                                                                                                  | 3,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,97                                                                                                                                                                                                                                                                                                   | 0,17                                                                                                                                                        | 0,79    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 156                                                                                                                                                                                | 11                                                                                                                                                                                                                                                                                          | 16,87                                                                                                                                                                                                                                                                                                                  | 6,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,55                                                                                                                                                                                                                                                                                                   | 0,11                                                                                                                                                        | 0,77    |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 162                                                                                                                                                                                | 18                                                                                                                                                                                                                                                                                          | 10,93                                                                                                                                                                                                                                                                                                                  | 3,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,44                                                                                                                                                                                                                                                                                                   | 0,08                                                                                                                                                        | 0,59    |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 152                                                                                                                                                                                | 25                                                                                                                                                                                                                                                                                          | 9,19                                                                                                                                                                                                                                                                                                                   | 4,30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11,39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,35                                                                                                                                                                                                                                                                                                   | 0,09                                                                                                                                                        | 0,67    |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 162                                                                                                                                                                                | 36                                                                                                                                                                                                                                                                                          | 10,08                                                                                                                                                                                                                                                                                                                  | 5,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11,77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,77                                                                                                                                                                                                                                                                                                   | 0,12                                                                                                                                                        | 0,33    |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 148                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                          | 15,39                                                                                                                                                                                                                                                                                                                  | 6,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20,71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,62                                                                                                                                                                                                                                                                                                   | 0,15                                                                                                                                                        | 0,31    |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 162                                                                                                                                                                                | 65                                                                                                                                                                                                                                                                                          | 12,83                                                                                                                                                                                                                                                                                                                  | 6,34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,47                                                                                                                                                                                                                                                                                                   | 0,07                                                                                                                                                        | 0,28    |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 148                                                                                                                                                                                | 81                                                                                                                                                                                                                                                                                          | 13,67                                                                                                                                                                                                                                                                                                                  | 6,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17,71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,44                                                                                                                                                                                                                                                                                                   | 0,09                                                                                                                                                        | 0,31    |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140                                                                                                                                                                                | 99                                                                                                                                                                                                                                                                                          | 13,39                                                                                                                                                                                                                                                                                                                  | 7,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,39                                                                                                                                                                                                                                                                                                   | 0,13                                                                                                                                                        | 0,16    |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 156                                                                                                                                                                                | 119                                                                                                                                                                                                                                                                                         | 13,36                                                                                                                                                                                                                                                                                                                  | 7,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,62                                                                                                                                                                                                                                                                                                   | 0,16                                                                                                                                                        | 0,35    |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 142                                                                                                                                                                                | 139                                                                                                                                                                                                                                                                                         | 11,38                                                                                                                                                                                                                                                                                                                  | 6,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,47                                                                                                                                                                                                                                                                                                   | 0,13                                                                                                                                                        | 0,24    |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 148                                                                                                                                                                                | 162                                                                                                                                                                                                                                                                                         | 12,98                                                                                                                                                                                                                                                                                                                  | 7,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,61                                                                                                                                                                                                                                                                                                   | 0,06                                                                                                                                                        | 0,26    |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 144                                                                                                                                                                                | 185                                                                                                                                                                                                                                                                                         | 11,87                                                                                                                                                                                                                                                                                                                  | 6,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12,79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,55                                                                                                                                                                                                                                                                                                   | 0,04                                                                                                                                                        | 0,20    |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 154                                                                                                                                                                                | 212                                                                                                                                                                                                                                                                                         | 12,31                                                                                                                                                                                                                                                                                                                  | 6,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,54                                                                                                                                                                                                                                                                                                   | 0,01                                                                                                                                                        | 0,18    |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 142                                                                                                                                                                                | 241                                                                                                                                                                                                                                                                                         | 8,24                                                                                                                                                                                                                                                                                                                   | 4,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,38                                                                                                                                                                                                                                                                                                   | 0,10                                                                                                                                                        | 0,25    |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 154                                                                                                                                                                                | 272                                                                                                                                                                                                                                                                                         | 10,72                                                                                                                                                                                                                                                                                                                  | 6,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10,51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,26                                                                                                                                                                                                                                                                                                   | 0,04                                                                                                                                                        | 0,06    |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150                                                                                                                                                                                | 305                                                                                                                                                                                                                                                                                         | 10,58                                                                                                                                                                                                                                                                                                                  | 5,66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11,46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,44                                                                                                                                                                                                                                                                                                   | 0,03                                                                                                                                                        | 0,13    |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 148                                                                                                                                                                                | 338                                                                                                                                                                                                                                                                                         | 10,83                                                                                                                                                                                                                                                                                                                  | 4,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14,77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,42                                                                                                                                                                                                                                                                                                   | 0,05                                                                                                                                                        | 0,23    |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160                                                                                                                                                                                | 373                                                                                                                                                                                                                                                                                         | 11,64                                                                                                                                                                                                                                                                                                                  | 5,54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,33                                                                                                                                                                                                                                                                                                   | 0,12                                                                                                                                                        | 0,25    |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 156                                                                                                                                                                                | 410                                                                                                                                                                                                                                                                                         | 10,04                                                                                                                                                                                                                                                                                                                  | 4,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11,79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,55                                                                                                                                                                                                                                                                                                   | 0,10                                                                                                                                                        | 0,19    |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 158                                                                                                                                                                                | 448                                                                                                                                                                                                                                                                                         | 10,58                                                                                                                                                                                                                                                                                                                  | 5,91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,51                                                                                                                                                                                                                                                                                                   | 0,07                                                                                                                                                        | 0,21    |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 156                                                                                                                                                                                | 488                                                                                                                                                                                                                                                                                         | 6,42                                                                                                                                                                                                                                                                                                                   | 3,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,29                                                                                                                                                                                                                                                                                                   | 0,07                                                                                                                                                        | 0,16    |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 148                                                                                                                                                                                | 529                                                                                                                                                                                                                                                                                         | 5,81                                                                                                                                                                                                                                                                                                                   | 2,69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,30                                                                                                                                                                                                                                                                                                   | 0,12                                                                                                                                                        | 0,14    |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140                                                                                                                                                                                | 571                                                                                                                                                                                                                                                                                         | 5,42                                                                                                                                                                                                                                                                                                                   | 2,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,35                                                                                                                                                                                                                                                                                                   | 0,16                                                                                                                                                        | 0,22    |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 154                                                                                                                                                                                | 610                                                                                                                                                                                                                                                                                         | 6,25                                                                                                                                                                                                                                                                                                                   | 3,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,34                                                                                                                                                                                                                                                                                                   | 0,06                                                                                                                                                        | 0,06    |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 130                                                                                                                                                                                | 001                                                                                                                                                                                                                                                                                         | 5,92                                                                                                                                                                                                                                                                                                                   | 5,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,33                                                                                                                                                                                                                                                                                                   | 0,07                                                                                                                                                        |         |
| Nr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c(As)Zu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c(As)Ab                                                                                                                                                                            | c(As)Ab.g                                                                                                                                                                                                                                                                                   | c(As)SF                                                                                                                                                                                                                                                                                                                | r(O2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CR(Fe)Ox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | αM                                                                                                                                                                                                                                                                                                     | aP                                                                                                                                                          |         |
| #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ma/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                               | ma/L                                                                                                                                                                                                                                                                                        | ma/L                                                                                                                                                                                                                                                                                                                   | L/m2min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g/m2d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ua/ma                                                                                                                                                                                                                                                                                                  | ua/ma                                                                                                                                                       |         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 0                                                                                                                                                                                                                                                                                                   | 10 0                                                                                                                                                        |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                         | E A                                                                                                                                                                                                                                                                                                                    | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                      | 48                                                                                                                                                          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 260                                                                                                                                                                                | 109                                                                                                                                                                                                                                                                                         | 54                                                                                                                                                                                                                                                                                                                     | 0,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                      | 40                                                                                                                                                          |         |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 260<br>292                                                                                                                                                                         | 109                                                                                                                                                                                                                                                                                         | 54<br>118                                                                                                                                                                                                                                                                                                              | 0,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                     | 50                                                                                                                                                          |         |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 495 485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 260<br>292<br>265                                                                                                                                                                  | 109<br>144<br>170                                                                                                                                                                                                                                                                           | 118<br>172                                                                                                                                                                                                                                                                                                             | 0,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,90<br>4,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>7                                                                                                                                                                                                                                                                                                | 50<br>53                                                                                                                                                    |         |
| 2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 495<br>485<br>483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 260<br>292<br>265<br>281                                                                                                                                                           | 109<br>144<br>170<br>214                                                                                                                                                                                                                                                                    | 54<br>118<br>172<br>163                                                                                                                                                                                                                                                                                                | 0,21<br>0,16<br>0,15<br>0,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,70<br>2,90<br>4,33<br>3,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>7<br>9                                                                                                                                                                                                                                                                                           | 50<br>53<br>47                                                                                                                                              |         |
| 2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 495<br>485<br>483<br>514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 260<br>292<br>265<br>281<br>321                                                                                                                                                    | 109<br>144<br>170<br>214<br>272                                                                                                                                                                                                                                                             | 54<br>118<br>172<br>163<br>208                                                                                                                                                                                                                                                                                         | 0,21<br>0,16<br>0,15<br>0,09<br>0,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9<br>10<br>7<br>9<br>11                                                                                                                                                                                                                                                                                | 50<br>53<br>47<br>36                                                                                                                                        |         |
| 2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 495<br>485<br>483<br>514<br>494                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 260<br>292<br>265<br>281<br>321                                                                                                                                                    | 109<br>144<br>170<br>214<br>272<br>313                                                                                                                                                                                                                                                      | 54<br>118<br>172<br>163<br>208<br>237                                                                                                                                                                                                                                                                                  | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9<br>10<br>7<br>9<br>11                                                                                                                                                                                                                                                                                | 50<br>53<br>47<br>36                                                                                                                                        |         |
| 2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 495<br>485<br>483<br>514<br>494<br>511                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 260<br>292<br>265<br>281<br>321<br>358                                                                                                                                             | 109<br>144<br>170<br>214<br>272<br>313                                                                                                                                                                                                                                                      | 54           118           172           163           208           237                                                                                                                                                                                                                                               | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9<br>10<br>7<br>9<br>11<br>14                                                                                                                                                                                                                                                                          | 50<br>53<br>47<br>36                                                                                                                                        |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 495<br>485<br>483<br>514<br>494<br>511<br>456                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 260<br>292<br>265<br>281<br>321<br>358<br>358<br>366                                                                                                                               | 109<br>144<br>170<br>214<br>272<br>313<br>340                                                                                                                                                                                                                                               | 34<br>118<br>172<br>163<br>208<br>237<br>338                                                                                                                                                                                                                                                                           | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>7<br>9<br>11<br>14<br>4                                                                                                                                                                                                                                                                          | 50<br>53<br>47<br>36<br>56                                                                                                                                  |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 495<br>485<br>483<br>514<br>494<br>511<br>456<br>506                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383                                                                                                                               | 109<br>144<br>170<br>214<br>272<br>313<br>340<br>369                                                                                                                                                                                                                                        | 34           118           172           163           208           237           338           364                                                                                                                                                                                                                   | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>7<br>9<br>11<br>14<br>4<br>8                                                                                                                                                                                                                                                                     | 50<br>53<br>47<br>36<br>56<br>36                                                                                                                            |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 495<br>485<br>483<br>514<br>494<br>511<br>456<br>506<br>527                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391                                                                                                                        | 109           144           170           214           272           313           340           369           386                                                                                                                                                                         | 34           118           172           163           208           237           338           364           401                                                                                                                                                                                                     | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>7<br>9<br>11<br>14<br>4<br>8<br>8                                                                                                                                                                                                                                                                | 50<br>53<br>47<br>36<br>56<br>36<br>14                                                                                                                      |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 495<br>485<br>483<br>514<br>494<br>511<br>456<br>506<br>527<br>517                                                                                                                                                                                                                                                                                                                                                                                                                                            | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395                                                                                                                 | 103           144           170           214           272           313           340           369           386           406                                                                                                                                                           | 34           118           172           163           208           237           338           364           401           420                                                                                                                                                                                       | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3<br>10<br>7<br>9<br>11<br>14<br>4<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                            | 50<br>53<br>47<br>36<br>56<br>36<br>14                                                                                                                      |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 495<br>485<br>483<br>514<br>494<br>511<br>456<br>506<br>527<br>517<br>478                                                                                                                                                                                                                                                                                                                                                                                                                                     | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395                                                                                                                 | 109<br>144<br>170<br>214<br>272<br>313<br>340<br>369<br>386<br>406<br>381                                                                                                                                                                                                                   | 34           118           172           163           208           237           338           364           401           420           388                                                                                                                                                                         | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06<br>0,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>7<br>9<br>11<br>14<br>4<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                      | 50<br>53<br>47<br>36<br>56<br>36<br>14                                                                                                                      |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 495<br>485<br>483<br>514<br>494<br>511<br>456<br>506<br>527<br>517<br>478<br>474                                                                                                                                                                                                                                                                                                                                                                                                                              | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400                                                                                                          | 103<br>144<br>170<br>214<br>272<br>313<br>340<br>369<br>386<br>406<br>381<br>389                                                                                                                                                                                                            | 34           118           172           163           208           237           338           364           401           420           388           393                                                                                                                                                           | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>7<br>9<br>11<br>14<br>4<br>8<br>8<br>8<br>8<br>8<br>6                                                                                                                                                                                                                                            | 50<br>53<br>47<br>36<br>56<br>36<br>14<br>35                                                                                                                |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 495<br>495<br>485<br>514<br>494<br>511<br>456<br>506<br>527<br>517<br>478<br>474<br>482                                                                                                                                                                                                                                                                                                                                                                                                                       | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397                                                                                                   | 103           144           170           214           272           313           340           369           386           406           381           389           419                                                                                                                 | 34           118           172           163           208           237           338           364           401           420           388           393           375                                                                                                                                             | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>10<br>7<br>9<br>11<br>14<br>4<br>8<br>8<br>8<br>8<br>8<br>6<br>7                                                                                                                                                                                                                                  | 43<br>50<br>53<br>47<br>36<br>56<br>36<br>14<br>35                                                                                                          |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 495<br>485<br>483<br>514<br>494<br>511<br>456<br>506<br>527<br>517<br>478<br>474<br>474<br>482<br>442                                                                                                                                                                                                                                                                                                                                                                                                         | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397<br>385                                                                                            | 103           144           170           214           272           313           340           369           386           406           381           389           419           381                                                                                                   | 34           118           172           163           208           237           338           364           401           420           388           393           375           381                                                                                                                               | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>7<br>9<br>11<br>14<br>4<br>8<br>8<br>8<br>8<br>8<br>6<br>7<br>5                                                                                                                                                                                                                                  | +3<br>50<br>53<br>47<br>36<br>                                                                                                                              |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 495<br>495<br>485<br>514<br>494<br>511<br>456<br>506<br>527<br>517<br>478<br>474<br>474<br>482<br>442<br>491                                                                                                                                                                                                                                                                                                                                                                                                  | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397<br>385<br>414                                                                                     | 103           144           170           214           272           313           340           369           386           406           381           389           419           381           395                                                                                     | 34           118           172           163           208           237           338           364           401           420           388           393           375           381           365                                                                                                                 | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,47<br>1,71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3         10         7         9         11         14         4         8         8         6         7         5         6                                                                                                                                                                           | 50<br>53<br>47<br>36<br>56<br>36<br>14<br>35<br>7<br>36                                                                                                     |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 485           495           485           483           514           494           511           456           506           527           517           478           474           482           442           491           484                                                                                                                                                                                                                                                                           | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397<br>385<br>414<br>407                                                                              | 103           144           170           214           272           313           340           369           386           406           381           389           419           381           395           430                                                                       | 34           118           172           163           208           237           338           364           401           420           388           393           375           381           365           350                                                                                                   | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,47<br>1,71<br>1,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3         10         7         9         11         14         4         8         8         6         7         5         6         9         9         11                                                                                                                                            | 43         50         53         47         36         56         36         14         35         7         36                                             |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>17<br>18<br>10<br>17<br>18<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>17<br>18<br>19<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>16<br>17<br>16<br>16<br>17<br>16<br>16<br>17<br>17<br>18<br>19<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>16<br>17<br>16<br>16<br>17<br>16<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>17<br>16<br>17<br>17<br>16<br>17<br>17<br>18<br>18<br>19<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>17<br>16<br>17<br>17<br>16<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 485           495           485           483           514           494           511           456           506           527           517           478           474           482           442           491           484           451                                                                                                                                                                                                                                                             | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397<br>385<br>410<br>400<br>397<br>385<br>414                                                         | 103           144           170           214           272           313           340           369           386           406           381           389           419           381           395           430           443                                                         | 34           118           172           163           208           237           338           364           401           420           388           393           375           381           365           350           388                                                                                     | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,47<br>1,57<br>1,47<br>1,71<br>1,08<br>1,23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3         10         7         9         11         14         4         8         8         6         7         5         6         9         5         6         9         5         6         9         5         6         9         5         6         9         5         6         9         5 | 43         50         53         47         36         56         36         14         35         7         36                                             |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 405<br>495<br>485<br>514<br>494<br>511<br>456<br>506<br>527<br>517<br>478<br>474<br>474<br>482<br>442<br>491<br>484<br>484<br>451<br>497                                                                                                                                                                                                                                                                                                                                                                      | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397<br>385<br>410<br>400<br>397<br>385<br>414<br>407<br>404<br>380                                    | 103           144           170           214           272           313           340           369           386           406           381           389           419           381           395           430           443           421                                           | 34           118           172           163           208           237           338           364           401           420           388           393           375           381           365           350           388           411                                                                       | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,05<br>0,05<br>0,06<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,06<br>0,05<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,47<br>1,57<br>1,47<br>1,71<br>1,08<br>1,23<br>1,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3         10         7         9         11         14         4         8         8         6         7         5         6         9         5         6         9         5         6         9         5         7         5         6         9         5         11                              | 43         50         53         47         36         56         36         14         35         7         36                                             |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 405<br>495<br>485<br>514<br>494<br>511<br>456<br>506<br>527<br>517<br>478<br>474<br>474<br>482<br>442<br>491<br>482<br>442<br>491<br>484<br>451<br>497<br>461                                                                                                                                                                                                                                                                                                                                                 | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397<br>385<br>410<br>400<br>397<br>385<br>414<br>407<br>404<br>380<br>362                             | 103           144           170           214           272           313           340           369           386           406           381           389           419           381           395           430           443           421           439                             | 34           118           172           163           208           237           338           364           401           420           388           393           375           381           365           350           388           411           409           207                                           | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,47<br>1,57<br>1,47<br>1,71<br>1,08<br>1,23<br>1,38<br>1,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3         10         7         9         11         14         4         8         8         6         7         5         6         9         5         6         9         5         6         9         5         6         9         5         11         7 $\hat{c}$                              | 40         50         53         47         36         56         36         14         35         7         36                                             |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 405           495           485           483           514           494           511           456           506           527           517           478           474           482           442           491           484           451           497           461           467                                                                                                                                                                                                                   | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397<br>385<br>400<br>397<br>385<br>414<br>407<br>404<br>380<br>362<br>348                             | 103           144           170           214           272           313           340           369           386           406           381           389           419           381           395           430           443           421           439           406               | 34           118           172           163           208           237           338           364           401           420           388           393           375           381           365           350           388           411           409           357                                           | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,09<br>0,07<br>0,07<br>0,06<br>0,09<br>0,07<br>0,07<br>0,07<br>0,06<br>0,08<br>0,09<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,47<br>1,57<br>1,47<br>1,71<br>1,08<br>1,23<br>1,38<br>1,74<br>1,73<br>1,73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3         10         7         9         11         14         4         8         8         8         6         7         5         6         9         5         11         7         9         5         11         7         9         5         11         7         9         12                 | 40         50         53         47         36         56         36         14         35         7         36                                             |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 405           495           485           483           514           494           511           456           506           527           517           478           474           482           442           491           484           451           497           461           467           462                                                                                                                                                                                                     | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397<br>385<br>400<br>397<br>385<br>414<br>407<br>404<br>380<br>362<br>348<br>349<br>349               | 103           144           170           214           272           313           340           369           386           406           381           389           419           381           395           430           443           421           439           406           162 | 34           118           172           163           208           237           338           364           401           420           388           393           375           381           365           350           388           411           409           357           378                             | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,47<br>1,57<br>1,47<br>1,71<br>1,08<br>1,23<br>1,38<br>1,74<br>1,73<br>1,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3         10         7         9         11         14         4         8         8         8         6         7         5         6         9         5         11         7         9         5         11         7         9         10                                                          | 40         50         53         47         36         56         36         14         35         7         36                                             |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400           495           485           483           514           494           511           456           506           527           517           478           474           482           442           491           484           451           497           461           467           462           449                                                                                                                                                                                       | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397<br>385<br>400<br>397<br>385<br>414<br>407<br>404<br>380<br>362<br>348<br>349<br>349<br>417        | 103           144           170           214           272           313           340           369           386           406           381           395           430           443           421           439           406           408           428                             | 34           118           172           163           208           237           338           364           401           420           388           393           375           381           365           350           388           411           409           357           378           414               | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,47<br>1,57<br>1,47<br>1,71<br>1,08<br>1,23<br>1,38<br>1,74<br>1,73<br>1,47<br>1,55<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,68<br>1,47<br>1,57<br>1,68<br>1,47<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1,57<br>1 | 3         10         7         9         11         14         4         8         8         8         6         7         5         6         9         5         11         7         9         5         11         7         9         10         3                                                | 40         50         53         47         36         56         36         14         35         7         36                                             |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 400           495           485           483           514           494           511           456           506           527           517           478           474           482           442           491           484           451           497           461           467           462           449           449                                                                                                                                                                         | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397<br>385<br>414<br>407<br>404<br>380<br>362<br>348<br>349<br>417<br>396<br>(17)                     | 103           144           170           214           272           313           340           369           386           406           381           395           430           443           421           439           406           408           428           431               | 34           118           172           163           208           237           338           364           401           420           388           393           375           381           365           350           388           411           409           357           378           414           414 | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,47<br>1,57<br>1,47<br>1,71<br>1,08<br>1,23<br>1,38<br>1,74<br>1,73<br>1,47<br>1,55<br>0,95<br>0,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3         10         7         9         11         14         4         8         8         6         7         5         6         9         5         11         7         9         5         11         7         9         10         3         7         6                                      | 40         50         53         47         36         56         36         14         35         7         36                                             |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>22<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 400           495           485           483           514           494           511           456           506           527           517           478           474           482           442           491           484           451           497           461           467           462           449           449           449                                                                                                                                                           | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397<br>385<br>414<br>407<br>404<br>380<br>362<br>348<br>349<br>417<br>396<br>431                      | 103         144         170         214         272         313         340         369         386         406         381         395         430         443         421         439         406         431         462         402                                                     | 34           118           172           163           208           237           338           364           401           420           388           393           375           381           365           350           388           411           409           357           378           414           418 | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,07<br>0,06<br>0,07<br>0,06<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07<br>0,07      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,47<br>1,57<br>1,47<br>1,71<br>1,08<br>1,23<br>1,38<br>1,74<br>1,73<br>1,47<br>1,35<br>0,95<br>0,87<br>2,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3         10         7         9         11         14         4         8         8         6         7         5         6         9         5         11         7         9         5         11         7         9         10         3         7         3                                      | 40         50         53         47         36         56         36         14         35         7         36                                             |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 405           495           485           483           514           494           511           456           506           527           517           478           474           482           442           491           484           451           497           461           467           462           449           4452           445                                                                                                                                                          | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397<br>385<br>414<br>407<br>404<br>380<br>362<br>348<br>349<br>417<br>396<br>431<br>445               | 103         144         170         214         272         313         340         369         386         406         381         395         430         443         421         439         406         431         462         440         277                                         | 34         118         172         163         208         237         338         364         401         420         388         393         375         381         365         350         388         411         409         357         378         414         418         424                                 | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,47<br>1,57<br>1,47<br>1,71<br>1,08<br>1,23<br>1,38<br>1,74<br>1,73<br>1,47<br>1,73<br>1,47<br>0,95<br>0,87<br>0,68<br>0,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3         10         7         9         11         14         4         8         8         8         6         7         5         6         9         5         11         7         9         10         3         2         12                                                                    | 40         50         53         47         36         56         36         14         35         7         36         7         36         28             |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>2°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 405           495           485           483           514           494           511           456           506           527           517           478           474           482           442           491           484           451           497           461           467           462           449           452           456           501                                                                                                                                             | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397<br>385<br>414<br>407<br>404<br>380<br>362<br>348<br>349<br>417<br>396<br>431<br>445<br>418        | 103         144         170         214         272         313         340         369         386         406         381         395         430         443         421         439         406         408         428         431         462         440         377         467     | 34         118         172         163         208         237         338         364         401         420         388         393         375         381         365         350         388         411         409         357         378         414         418         424         452         447         | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06      | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,47<br>1,57<br>1,47<br>1,71<br>1,08<br>1,23<br>1,38<br>1,74<br>1,73<br>1,47<br>1,73<br>1,47<br>0,95<br>0,87<br>0,68<br>0,83<br>0,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3         10         7         9         11         14         4         8         8         8         6         7         5         6         9         5         11         7         9         10         3         2         12                                                                    | 40         50         53         47         36         56         36         14         35         7         36         7         36         28         146 |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 400           495           485           483           514           494           511           456           506           527           517           478           474           482           442           491           484           451           497           461           467           462           449           442           491           484           451           497           461           467           462           449           442           449           442           484 | 260<br>292<br>265<br>281<br>321<br>358<br>366<br>383<br>391<br>395<br>400<br>397<br>385<br>414<br>407<br>404<br>380<br>362<br>348<br>349<br>417<br>396<br>431<br>445<br>418<br>433 | 103         144         170         214         272         313         340         369         386         406         381         395         430         443         421         439         406         408         428         431         462         440         377         467     | 34         118         172         163         208         237         338         364         401         420         388         393         375         381         365         350         388         411         409         357         378         414         418         424         452         447         | 0,21<br>0,16<br>0,15<br>0,09<br>0,11<br>0,07<br>0,06<br>0,08<br>0,06<br>0,07<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,06<br>0,05<br>0,06<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,06<br>0,05<br>0,05<br>0,06<br>0,05<br>0,05<br>0,06<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0,05<br>0 | 3,70<br>2,90<br>4,33<br>3,07<br>2,31<br>1,41<br>1,46<br>2,53<br>1,85<br>2,17<br>1,68<br>1,49<br>1,47<br>1,57<br>1,47<br>1,57<br>1,47<br>1,71<br>1,08<br>1,23<br>1,38<br>1,74<br>1,73<br>1,47<br>1,73<br>1,47<br>0,95<br>0,87<br>0,68<br>0,83<br>0,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3         10         7         9         11         14         4         8         8         8         6         7         5         6         9         5         11         7         9         10         3         2         12         9                                                          | 40         50         53         47         36         56         36         14         35         7         36                                             |         |

| Versuchsart       | Rührversuche im Be              | cherglas                                         |
|-------------------|---------------------------------|--------------------------------------------------|
| Versuchsnummer    | RV14, RV15, RV16,               | RV17 (2000)                                      |
|                   | Iso-1 (2001)                    |                                                  |
| Abbildung im Text | 4.18                            |                                                  |
| Laufzeit          | 24 h                            |                                                  |
| Material          | Stahlwolle D-III                | RV14(1-4),                                       |
|                   | Stahlwolle CL                   | RV14(5-8), RV15(1-8), RV16(1-8)                  |
|                   |                                 | RV17(1-8)                                        |
| Einwaage          | RV14                            | 300 mg                                           |
|                   | RV15                            | 300 mg                                           |
|                   | RV16                            | 300 mg                                           |
|                   | RV17                            | 100/200/300/400 mg                               |
| Becherglasvolumen | 1 L                             |                                                  |
| Versuchsziel      | Ausführliche Dokum              | entation der Versuche in [Torres 2001]:          |
|                   | RV14: Vergleich der             | Stahlwolle                                       |
|                   | RV15: Variation der             | Rührgeschwindigkeit (100-400 min <sup>-1</sup> ) |
|                   | RV16: Variation der             | Arsenkonzentration (0/280/540/640 µg/L)          |
|                   | RV17: Variation der             | Eiseneinwaage                                    |
|                   | Isotherme mit FeCl <sub>2</sub> | zum Vergleich:                                   |
|                   | 3 Versuche mit 6,5 u            | nd 7 Ansätzen.                                   |
|                   | Dosierung von Stam              | mlösung in die Bechergläser.                     |
|                   | Gemeinsame Freund               | lich-Isotherme für RV-FeCl2-I/II/III:            |
|                   | n=0,55 KF=9                     | 77                                               |

|        | c(As) g | c(Fe)        | qP          | c(As) g | c(Fe)        | qP    | c(As) g | c(Fe)        | qP     |
|--------|---------|--------------|-------------|---------|--------------|-------|---------|--------------|--------|
|        | µg/L    | mg/L         | µg/mg       | μg/L    | mg/L         | µg/mg | μg/L    | mg/L         | µg/mg  |
| t [h]  |         | RV14-1       |             |         | RV14-2       |       |         | RV14-3       |        |
| 0      | 475     |              |             | 489     |              |       | 506     |              |        |
| 1,5    | 276     | 1,00         | 200         | 344     | 0,59         | 245   | 271     | 1,22         | 193    |
| 2,5    | 225     | 1,42         | 176         | 320     | 1,05         | 161   | 193     | 2,05         | 152    |
| 3,5    | 170     | 1,71         | 178         | 221     | 1,34         | 199   | 121     | 2,44         | 158    |
| 5,5    | 126     | 4,03         | 87          | 95      | 3,16         | 125   | 50      | 5,37         | 85     |
| 7,5    | 23      | 5,68         | 80          | 32      | 5,91         | 77    | 18      | 8,39         | 58     |
| 24,0   | 4       | 30,30        | 16          | 10      | 32,52        | 15    | 11      | 21,75        | 23     |
|        |         |              |             |         |              |       |         |              |        |
|        | c(As) g | C(Fe)        | qP          | C(AS) g | C(Fe)        | qP    | c(As) g | C(Fe)        | qP<br> |
| + [b]  | µg/∟    |              | µg/mg       | µg/L    |              | µg/mg | µg/∟    |              | µg/mg  |
|        | 530     | KV 14-4      | 1           | 514     | KV14-5       | [     | 521     | KV 14-0      | 1      |
| 1.5    | 311     | 0.75         | 292         | 166     | 1.80         | 193   | 255     | 1 22         | 218    |
| 2.5    | 282     | 1 27         | 195         | 98      | 2 94         | 100   | 165     | 2 18         | 163    |
| 3.5    | 219     | 1,27         | 221         | 29      | 4 81         | 101   | 62      | 3.84         | 120    |
| 5.5    | 87      | 2.85         | 156         | 6       | 10.50        | 48    | 7       | 8,96         | 57     |
| 7.5    | 40      | 4.87         | 101         | 8       | 14.57        | 35    | 8       | 12.66        | 40     |
| 24,0   | 7       | 29,49        | 18          | 2       | 39,89        | 13    | 2       | 42,28        | 12     |
| · ·    |         |              |             |         |              |       |         | <u> </u>     |        |
|        | c(As) g | c(Fe)        | qP          | c(As) g | c(Fe)        | qP    | c(As) g | c(Fe)        | qP     |
|        | µg/L    | mg/L         | µg/mg       | μg/L    | mg/L         | µg/mg | µg/L    | mg/L         | µg/mg  |
| t [h]  |         | RV14-7       |             |         | RV14-8       |       |         |              |        |
| 0      | 545     |              |             | 539     |              |       |         |              |        |
| 1,5    | 159     | 2,30         | 168         | 248     | 1,15         | 253   |         |              |        |
| 2,5    | 70      | 6,82         | 70          | 171     | 2,03         | 181   |         |              |        |
| 3,5    | 19      | 7,51         | 70          | 60      | 3,88         | 124   |         |              |        |
| 5,5    | 4       | 12,43        | 44          | 7       | 8,44         | 63    |         |              |        |
| 7,5    | 5       | 19,97        | 27          | 5       | 14,62        | 37    |         |              |        |
| 24,0   | I       | 53,95        | 10          | 4       | 49,10        | 11    |         | -            |        |
|        | c(As) g | c(Ee)        | aP          | c(As) a | c(Ee)        | ٥P    | c(As) g | c(Ee)        | aP     |
|        |         |              | yi<br>ua/ma |         |              | ua/ma |         |              | ua/ma  |
| t [h]  | P9/2    | RV15-1       | µg/mg       | μg/ L   | RV15-2       | Pg/mg | µg/⊏    | RV15-3       | pg/mg  |
| 0      | 564     |              |             | 530     |              |       | 526     |              |        |
| 3      | 160     | 1.73         | 233         | 115     | 2.15         | 193   | 140     | 2.17         | 178    |
| 4      | 113     | 2,39         | 189         | 84      | 2,85         | 157   | 94      | 2,87         | 150    |
| 6      | 38      | 4,28         | 123         | 17      | 4,56         | 113   | 32      | 4,08         | 121    |
| 8      | 12      | 6,14         | 90          | 6       | 8,9          | 59    | 12      | 5,75         | 89     |
| 24     | 2       | 21,43        | 26          | 2       | 22,33        | 24    | 1       | 20,84        | 25     |
| 30     | 3       | 22,67        | 25          | 4       | 25,15        | 21    | 2       | 23,39        | 22     |
|        |         |              |             |         |              |       |         |              |        |
|        | c(As) g | c(Fe)        | qP          | c(As) g | c(Fe)        | qP    | c(As) g | c(Fe)        | qP     |
|        | µg/L    | mg/L         | µg/mg       | µg/L    | mg/L         | µg/mg | µg/L    | mg/L         | µg/mg  |
| t [h]  | 500     | RV15-4       |             | 507     | RV15-5       |       | 500     | RV15-6       |        |
| 0      | 526     | 0.40         | 405         | 524     | 4.00         | 000   | 520     | 4.04         | 407    |
| 3      | 127     | 2,42         | 165         | 145     | 1,82         | 209   | 139     | 1,94         | 197    |
| 4      | 19      | 2,91         | 154         | 104     | ∠,3<br>4.00  | 103   | 83      | ∠,45<br>4.24 | 1/5    |
| 0<br>8 | 23<br>8 | 5,19<br>7.04 | 97          | 33      | 4,20<br>6.93 | 76    | 22<br>8 | 4,31         | 77     |
| 0      | 0       | 7,94         | 20          | 9       | 0,03         | 70    | 0       | 0,02         | 20     |
| 30     | 3       | 28.92        | 18          | 2       | 23,90        | 19    | 3       | 30.3         | 17     |
|        | 5       | 20,32        | 10          | 2       | 21,01        | 13    | 5       | 00,0         |        |
|        | c(As) q | c(Fe)        | aP          | c(As) q | c(Fe)        | qP    | c(As) q | c(Fe)        | qP     |
|        | µg/L    | mg/L         | μg/mg       | μg/L    | mg/L         | μg/mg | μg/L    | mg/L         | μg/mg  |
| t [h]  |         | RV15-7       |             |         | RV15-8       |       |         |              |        |
| 0      | 540     |              |             | 520     |              |       |         |              |        |
| 3      | 305     | 0,92         | 256         | 197     | 1,88         | 172   |         |              |        |
| 4      | 294     | 1,11         | 222         | 146     | 2,23         | 168   |         |              |        |
| 6      | 217     | 1,57         | 206         | 49      | 4,14         | 114   |         |              |        |
| 8      | 132     | 2,45         | 167         | 12      | 6,22         | 82    |         |              |        |
| 24     | 5       | 14,54        | 37          | 5       | 23,77        | 22    |         |              |        |
| ~ ~    |         |              | <u> </u>    | ÷       | ·            | · -   |         |              |        |
| 30     | 4       | 15,6         | 34          | 3       | 29,54        | 18    |         |              |        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c(As) g                                                                                                                                                                                                                                                                                                                                                                                                                                                | c(Fe)                                                                                                                                                                                                                             | qP                                                                                                                                                                                                                                                                                                                                                                | c(As) g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c(Fe)                                                                                                                                                                                                                                                      | qP                                                                                                                                                                                                                                                            | c(As) g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c(Fe)                                                                                                                                                                                                                                                                                         | qP                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                              | µg/mg                                                                                                                                                                                                                                                                                                                                                             | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L                                                                                                                                                                                                                                                       | µg/mg                                                                                                                                                                                                                                                         | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                                          | µg/mg                                                                                                                                              |
| t [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RV16-3                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RV16-4                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RV16-5                                                                                                                                                                                                                                                                                        |                                                                                                                                                    |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 285                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                   | 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                               | 532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,42                                                                                                                                                                                                                              | 132                                                                                                                                                                                                                                                                                                                                                               | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,35                                                                                                                                                                                                                                                       | 118                                                                                                                                                                                                                                                           | 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,97                                                                                                                                                                                                                                                                                          | 267                                                                                                                                                |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.96                                                                                                                                                                                                                              | 119                                                                                                                                                                                                                                                                                                                                                               | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.51                                                                                                                                                                                                                                                       | 135                                                                                                                                                                                                                                                           | 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.98                                                                                                                                                                                                                                                                                          | 161                                                                                                                                                |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.02                                                                                                                                                                                                                              | 86                                                                                                                                                                                                                                                                                                                                                                | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.22                                                                                                                                                                                                                                                       | 79                                                                                                                                                                                                                                                            | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 35                                                                                                                                                                                                                                                                                          | 181                                                                                                                                                |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.54                                                                                                                                                                                                                              | 51                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5,39                                                                                                                                                                                                                                                       | 51                                                                                                                                                                                                                                                            | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 10                                                                                                                                                                                                                                                                                          | 120                                                                                                                                                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 72                                                                                                                                                                                                                              | 32                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.98                                                                                                                                                                                                                                                       | 35                                                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.45                                                                                                                                                                                                                                                                                          | 96                                                                                                                                                 |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.75                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.41                                                                                                                                                                                                                                                      | 35                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.32                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                 |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20,75                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30,41                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20,32                                                                                                                                                                                                                                                                                         | 19                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o(Eo)                                                                                                                                                                                                                             | ۳D                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o(Eo)                                                                                                                                                                                                                                                      | ۳P                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o(Eo)                                                                                                                                                                                                                                                                                         | ۳B                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(AS) g                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   | yr<br>ug/mg                                                                                                                                                                                                                                                                                                                                                       | C(AS) g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                            | yr<br>ug/mg                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                               | yr<br>ug/mg                                                                                                                                        |
| 4 [6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | µg/∟                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   | μg/mg                                                                                                                                                                                                                                                                                                                                                             | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                            | μg/mg                                                                                                                                                                                                                                                         | µg/∟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                               | µg/mg                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>E</b> 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                           | RV16-6                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                 | 644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RV16-7                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                             | 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RV16-8                                                                                                                                                                                                                                                                                        | r                                                                                                                                                  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 544                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00                                                                                                                                                                                                                              | 074                                                                                                                                                                                                                                                                                                                                                               | 644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.50                                                                                                                                                                                                                                                       | 000                                                                                                                                                                                                                                                           | 648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                          | 000                                                                                                                                                |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 265                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,03                                                                                                                                                                                                                              | 271                                                                                                                                                                                                                                                                                                                                                               | 458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,58                                                                                                                                                                                                                                                       | 320                                                                                                                                                                                                                                                           | 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,69                                                                                                                                                                                                                                                                                          | 339                                                                                                                                                |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,09                                                                                                                                                                                                                              | 178                                                                                                                                                                                                                                                                                                                                                               | 331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,97                                                                                                                                                                                                                                                       | 322                                                                                                                                                                                                                                                           | 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,04                                                                                                                                                                                                                                                                                          | 281                                                                                                                                                |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,60                                                                                                                                                                                                                              | 133                                                                                                                                                                                                                                                                                                                                                               | 234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,85                                                                                                                                                                                                                                                       | 222                                                                                                                                                                                                                                                           | 244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,36                                                                                                                                                                                                                                                                                          | 297                                                                                                                                                |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5,51                                                                                                                                                                                                                              | 92                                                                                                                                                                                                                                                                                                                                                                | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,53                                                                                                                                                                                                                                                       | 199                                                                                                                                                                                                                                                           | 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,21                                                                                                                                                                                                                                                                                          | 219                                                                                                                                                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8,31                                                                                                                                                                                                                              | 65                                                                                                                                                                                                                                                                                                                                                                | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,59                                                                                                                                                                                                                                                       | 156                                                                                                                                                                                                                                                           | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,93                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29,94                                                                                                                                                                                                                             | 18                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24,16                                                                                                                                                                                                                                                      | 26                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11,77                                                                                                                                                                                                                                                                                         | 54                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c(As) g                                                                                                                                                                                                                                                                                                                                                                                                                                                | c(Fe)                                                                                                                                                                                                                             | qP                                                                                                                                                                                                                                                                                                                                                                | c(As) g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c(Fe)                                                                                                                                                                                                                                                      | qP                                                                                                                                                                                                                                                            | c(As) g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c(Fe)                                                                                                                                                                                                                                                                                         | qP                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                              | µg/mg                                                                                                                                                                                                                                                                                                                                                             | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L                                                                                                                                                                                                                                                       | µg/mg                                                                                                                                                                                                                                                         | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                                          | µg/mg                                                                                                                                              |
| t [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RV17-1                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RV17-2                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RV17-3                                                                                                                                                                                                                                                                                        |                                                                                                                                                    |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 645                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                   | 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                               | 622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 540                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,23                                                                                                                                                                                                                              | 455                                                                                                                                                                                                                                                                                                                                                               | 498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,29                                                                                                                                                                                                                                                       | 437                                                                                                                                                                                                                                                           | 437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,55                                                                                                                                                                                                                                                                                          | 337                                                                                                                                                |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 489                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,27                                                                                                                                                                                                                              | 577                                                                                                                                                                                                                                                                                                                                                               | 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,36                                                                                                                                                                                                                                                       | 403                                                                                                                                                                                                                                                           | 376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,82                                                                                                                                                                                                                                                                                          | 300                                                                                                                                                |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 472                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,37                                                                                                                                                                                                                              | 468                                                                                                                                                                                                                                                                                                                                                               | 441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,53                                                                                                                                                                                                                                                       | 346                                                                                                                                                                                                                                                           | 291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,28                                                                                                                                                                                                                                                                                          | 259                                                                                                                                                |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 397                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.57                                                                                                                                                                                                                              | 434                                                                                                                                                                                                                                                                                                                                                               | 361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.80                                                                                                                                                                                                                                                       | 330                                                                                                                                                                                                                                                           | 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.28                                                                                                                                                                                                                                                                                          | 192                                                                                                                                                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 346                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.86                                                                                                                                                                                                                              | 347                                                                                                                                                                                                                                                                                                                                                               | 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 12                                                                                                                                                                                                                                                       | 302                                                                                                                                                                                                                                                           | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.72                                                                                                                                                                                                                                                                                          | 145                                                                                                                                                |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 60                                                                                                                                                                                                                              | 132                                                                                                                                                                                                                                                                                                                                                               | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 53                                                                                                                                                                                                                                                       | 129                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 44                                                                                                                                                                                                                                                                                          | 73                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,00                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,00                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,11                                                                                                                                                                                                                                                                                          |                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(AS) C                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(Fe)                                                                                                                                                                                                                             | αP                                                                                                                                                                                                                                                                                                                                                                | c(As) a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c(Fe)                                                                                                                                                                                                                                                      | ۹D                                                                                                                                                                                                                                                            | c(As) a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c(Fe)                                                                                                                                                                                                                                                                                         | ۹D                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c(As) g                                                                                                                                                                                                                                                                                                                                                                                                                                                | c(Fe)                                                                                                                                                                                                                             | qP                                                                                                                                                                                                                                                                                                                                                                | c(As) g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c(Fe)                                                                                                                                                                                                                                                      | qP                                                                                                                                                                                                                                                            | c(As) g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c(Fe)                                                                                                                                                                                                                                                                                         | qP                                                                                                                                                 |
| t (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(As) g<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                        | c(Fe)<br>mg/L                                                                                                                                                                                                                     | qP<br>µg/mg                                                                                                                                                                                                                                                                                                                                                       | c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c(Fe)<br>mg/L<br>PV17-5                                                                                                                                                                                                                                    | qΡ<br>μg/mg                                                                                                                                                                                                                                                   | c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c(Fe)<br>mg/L                                                                                                                                                                                                                                                                                 | qP<br>µg/mg                                                                                                                                        |
| t [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                        | c(Fe)<br>mg/L<br>RV17-4                                                                                                                                                                                                           | qΡ<br>μg/mg                                                                                                                                                                                                                                                                                                                                                       | c(As) g<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c(Fe)<br>mg/L<br>RV17-5                                                                                                                                                                                                                                    | qP<br>µg/mg                                                                                                                                                                                                                                                   | c(As) g<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c(Fe)<br>mg/L<br>RV17-6                                                                                                                                                                                                                                                                       | qP<br>µg/mg                                                                                                                                        |
| t [h]<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c(As) g<br>μg/L<br>609                                                                                                                                                                                                                                                                                                                                                                                                                                 | c(Fe)<br>mg/L<br>RV17-4                                                                                                                                                                                                           | qΡ<br>μg/mg                                                                                                                                                                                                                                                                                                                                                       | c(As) g<br>µg/L<br>624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c(Fe)<br>mg/L<br>RV17-5                                                                                                                                                                                                                                    | qΡ<br>μg/mg                                                                                                                                                                                                                                                   | c(As) g<br>μg/L<br>615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c(Fe)<br>mg/L<br>RV17-6                                                                                                                                                                                                                                                                       | qΡ<br>μg/mg                                                                                                                                        |
| t [h]<br>0<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c(As) g<br>μg/L<br>609<br>435<br>250                                                                                                                                                                                                                                                                                                                                                                                                                   | c(Fe)<br>mg/L<br>RV17-4                                                                                                                                                                                                           | <b>qP</b><br>μg/mg<br>282<br>266                                                                                                                                                                                                                                                                                                                                  | c(As) g<br>µg/L<br>624<br>463<br>376                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c(Fe)<br>mg/L<br>RV17-5<br>0,48                                                                                                                                                                                                                            | <b>qP</b><br>μg/mg<br>335                                                                                                                                                                                                                                     | c(As) g<br>µg/L<br>615<br>388<br>285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c(Fe)<br>mg/L<br>RV17-6                                                                                                                                                                                                                                                                       | <b>qP</b><br>μg/mg<br>258<br>246                                                                                                                   |
| t [h]<br>0<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(AS) g<br>µg/L<br>609<br>435<br>359<br>278                                                                                                                                                                                                                                                                                                                                                                                                            | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94                                                                                                                                                                                           | <b>qP</b><br>μg/mg<br>282<br>266                                                                                                                                                                                                                                                                                                                                  | c(As) g<br>μg/L<br>624<br>463<br>376                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75                                                                                                                                                                                                                    | <b>qP</b><br>μg/mg<br>335<br>331                                                                                                                                                                                                                              | c(As) g<br>µg/L<br>615<br>388<br>285<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34                                                                                                                                                                                                                                                       | <b>qP</b><br>μg/mg<br>258<br>246                                                                                                                   |
| t [h]<br>0<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(AS) g<br>µg/L<br>609<br>435<br>359<br>278<br>462                                                                                                                                                                                                                                                                                                                                                                                                     | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46                                                                                                                                                                                   | <b>qP</b><br>μg/mg<br>282<br>266<br>227                                                                                                                                                                                                                                                                                                                           | c(As) g<br>µg/L<br>624<br>463<br>376<br>318<br>202                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05                                                                                                                                                                                                            | <b>qP</b><br>μg/mg<br>335<br>331<br>291                                                                                                                                                                                                                       | c(As) g<br>µg/L<br>615<br>388<br>285<br>200<br>102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91                                                                                                                                                                                                                                               | <b>qP</b><br>μg/mg<br>258<br>246<br>217                                                                                                            |
| t [h]<br>0<br>2<br>3<br>4<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c(As) g<br>µg/L<br>609<br>435<br>359<br>278<br>163<br>70                                                                                                                                                                                                                                                                                                                                                                                               | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24                                                                                                                                                                           | <b>qP</b><br>μg/mg<br>282<br>266<br>227<br>199                                                                                                                                                                                                                                                                                                                    | c(As) g<br>μg/L<br>624<br>463<br>376<br>318<br>203<br>410                                                                                                                                                                                                                                                                                                                                                                                                                                             | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73                                                                                                                                                                                                    | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244                                                                                                                                                                                                                | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55                                                                                                                                                                                                                               | <b>qP</b><br>μg/mg<br>258<br>246<br>217<br>178<br>407                                                                                              |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c(As) g<br>µg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5                                                                                                                                                                                                                                                                                                                                                                                          | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65                                                                                                                                                                   | <b>qP</b><br>μg/mg<br>282<br>266<br>227<br>199<br>145                                                                                                                                                                                                                                                                                                             | c(As) g<br>μg/L<br>624<br>463<br>376<br>318<br>203<br>110<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                        | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>41,02                                                                                                                                                                                   | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244<br>182                                                                                                                                                                                                         | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>4,770                                                                                                                                                                                                                      | <b>qP</b><br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>24                                                                                        |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c(As) g           µg/L           609           435           359           278           163           78           5                                                                                                                                                                                                                                                                                                                                  | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59                                                                                                                                                          | <b>qP</b><br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52                                                                                                                                                                                                                                                                                                       | c(As) g           μg/L           624           463           376           318           203           110           5                                                                                                                                                                                                                                                                                                                                                                                | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23                                                                                                                                                                                   | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55                                                                                                                                                                                                   | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c(Fe)           mg/L           RV17-6           0,88           1,34           1,91           2,89           4,55           17,76                                                                                                                                                              | <b>qP</b><br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34                                                                                        |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(AS) g<br>µg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>(1)                                                                                                                                                                                                                                                                                                                                                                                   | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59                                                                                                                                                          | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52                                                                                                                                                                                                                                                                                                              | c(As) g<br>μg/L<br>624<br>463<br>376<br>318<br>203<br>110<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                        | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23                                                                                                                                                                                   | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55                                                                                                                                                                                                   | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76                                                                                                                                                                                                                      | <b>qP</b><br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34                                                                                        |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c(As) g<br>µg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g                                                                                                                                                                                                                                                                                                                                                                               | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)                                                                                                                                                 | <b>qP</b><br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br><b>QP</b>                                                                                                                                                                                                                                                                                          | c(As) g<br>μg/L<br>624<br>463<br>376<br>318<br>203<br>110<br>5<br>5<br>c(As) g                                                                                                                                                                                                                                                                                                                                                                                                                        | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)                                                                                                                                                                          | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br>55<br><b>qP</b>                                                                                                                                                                                | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>3<br><b>c(As) g</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)                                                                                                                                                                                                             | <b>qP</b><br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b>                                                                           |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>5<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                  | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L                                                                                                                                         | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br>4<br>QP<br>μg/mg                                                                                                                                                                                                                                                                                          | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L                                                                                                                                                                                                                                                                                                                                               | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L                                                                                                                                                                  | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>qP</b><br>μg/mg                                                                                                                                                                             | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>3<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)           mg/L           RV17-6           0,88           1,34           1,91           2,89           4,55           17,76           c(Fe)           mg/L                                                                                                                               | <b>qP</b><br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b><br>μg/mg                                                                  |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>24<br>1<br>t [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>5<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                  | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7                                                                                                                               | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br>4<br><b>QP</b><br>μg/mg                                                                                                                                                                                                                                                                                   | c(As) g<br>μg/L<br>624<br>463<br>376<br>318<br>203<br>110<br>5<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                     | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8                                                                                                                                                        | <b>q</b> P<br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>q</b> P<br>μg/mg                                                                                                                                                                           | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>3<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L                                                                                                                                                                                                     | qP<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b><br>μg/mg                                                                         |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635                                                                                                                                                                                                                                                                                                                                                                | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7                                                                                                                               | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br>qP<br>μg/mg                                                                                                                                                                                                                                                                                               | c(As) g<br>μg/L<br>624<br>463<br>376<br>318<br>203<br>110<br>5<br>c(As) g<br>μg/L<br>626                                                                                                                                                                                                                                                                                                                                                                                                              | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8                                                                                                                                                        | qP<br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br>4<br>9<br>μg/mg                                                                                                                                                                                       | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>3<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L                                                                                                                                                                                                     | qP<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b><br>μg/mg                                                                         |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>t [h]<br>0<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361                                                                                                                                                                                                                                                                                                                                                         | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7                                                                                                                               | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br><b>qP</b><br>μg/mg                                                                                                                                                                                                                                                                                        | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402                                                                                                                                                                                                                                                                                                                   | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79                                                                                                                                                | <b>q</b> P<br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>q</b> P<br>μg/mg                                                                                                                                                                           | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>3<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L                                                                                                                                                                                                     | qP<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b><br>μg/mg                                                                         |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>24<br><b>t</b> [h]<br>0<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235                                                                                                                                                                                                                                                                                                                                                  | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19                                                                                                               | <b>q</b> P<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br><b>q</b> P<br>μg/mg<br>247<br>182                                                                                                                                                                                                                                                                 | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335                                                                                                                                                                                                                                                                                                     | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11                                                                                                                                        | <b>q</b> P<br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>q</b> P<br>μg/mg<br>284<br>284<br>262                                                                                                                                                      | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>3<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L                                                                                                                                                                                                     | qP<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b><br>μg/mg                                                                         |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235<br>118                                                                                                                                                                                                                                                                                                                                           | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07                                                                                                       | <b>q</b> P<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br><b>q</b> P<br>μg/mg<br>247<br>182<br>168                                                                                                                                                                                                                                                          | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335           243                                                                                                                                                                                                                                                                                       | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67                                                                                                                                | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>qP</b><br>μg/mg<br>284<br>262<br>229                                                                                                                                                        | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>3<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L                                                                                                                                                                                                     | qP<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b><br>μg/mg                                                                         |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235<br>118<br>43                                                                                                                                                                                                                                                                                                                                     | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07<br>4,64                                                                                               | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br><b>qP</b><br>μg/mg<br>247<br>182<br>168<br>127                                                                                                                                                                                                                                                            | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335           243           113                                                                                                                                                                                                                                                                         | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70                                                                                                                        | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>qP</b><br>μg/mg<br>284<br>262<br>229<br>190                                                                                                                                                 | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>3<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L                                                                                                                                                                                                     | qP<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b><br>μg/mg                                                                         |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235<br>118<br>43<br>16                                                                                                                                                                                                                                                                                                                               | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>C(Fe)<br>1,11<br>2,19<br>3,07<br>4,64<br>7,05                                                                              | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br><b>qP</b><br>μg/mg<br>247<br>182<br>168<br>127<br>88                                                                                                                                                                                                                                                      | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335           243           113           38                                                                                                                                                                                                                                                            | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42                                                                                                                | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>qP</b><br>μg/mg<br>284<br>262<br>229<br>190<br>133                                                                                                                                          | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>3<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L                                                                                                                                                                                                     | qP<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b><br>μg/mg                                                                         |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>4<br>6<br>8<br>24<br>4<br>6<br>8<br>24<br>4<br>6<br>8<br>24<br>7<br>8<br>8<br>24<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235<br>118<br>43<br>16<br>3<br>16<br>3                                                                                                                                                                                                                                                                                                               | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07<br>4,64<br>7,05<br>18,43                                                                              | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br><b>qP</b><br>μg/mg<br>247<br>182<br>168<br>127<br>88<br>34                                                                                                                                                                                                                                                | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335           243           113           38           4                                                                                                                                                                                                                                                | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42<br>19,42                                                                                                       | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>qP</b><br>μg/mg<br>284<br>262<br>229<br>190<br>133<br>32                                                                                                                                    | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L                                                                                                                                                                                                     | qP<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br>34<br><b>qP</b><br>μg/mg                                                                   |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c(As) g       μg/L       609       435       359       278       163       78       5       c(As) g       μg/L       635       361       235       118       43       16       3                                                                                                                                                                                                                                                                       | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07<br>4,64<br>7,05<br>18,43                                                                              | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br><b>qP</b><br>μg/mg<br>247<br>182<br>168<br>127<br>88<br>34                                                                                                                                                                                                                                                | c(As) g         μg/L         624         463         376         318         203         110         5         c(As) g         μg/L         626         402         335         243         113         38         4                                                                                                                                                                                                                                                                                  | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42<br>19,42                                                                                                       | <b>q</b> P<br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>q</b> P<br>μg/mg<br>284<br>262<br>229<br>190<br>133<br>32                                                                                                                                  | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L                                                                                                                                                                                                     | <b>q</b> P<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>q</b> P<br>μg/mg                                                                |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>4<br>6<br>8<br>24<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235<br>118<br>43<br>16<br>3<br>c(As) g<br>(As) g<br>μg/L                                                                                                                                                                                                                                                                                             | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07<br>4,64<br>7,05<br>18,43<br>c(Fe)                                                                     | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br>4<br><b>qP</b><br>μg/mg<br>247<br>182<br>168<br>127<br>88<br>34<br>34                                                                                                                                                                                                                                     | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335           243           113           38           4           c(As) g                                                                                                                                                                                                                              | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42<br>19,42<br>c(Fe)                                                                                              | <b>q</b> P<br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>q</b> P<br>μg/mg<br>284<br>262<br>229<br>190<br>133<br>32<br>284                                                                                                                           | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L                                                                                                                                                                                                     | <b>q</b> P<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>q</b> P<br>μg/mg                                                                |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235<br>118<br>43<br>16<br>3<br>(As) g<br>μg/L                                                                                                                                                                                                                                                                                                        | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07<br>4,64<br>7,05<br>18,43<br>c(Fe)<br>mg/L                                                             | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br><b>qP</b><br>μg/mg<br>247<br>182<br>168<br>127<br>88<br>34<br>34<br><b>qP</b><br>μg/mg                                                                                                                                                                                                                    | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335           243           113           38           4           c(As) g           μg/L                                                                                                                                                                                                               | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42<br>19,42<br>c(Fe)<br>mg/L                                                                                      | <b>q</b> P<br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>q</b> P<br>μg/mg<br>284<br>262<br>229<br>190<br>133<br>32<br>284<br>262<br>229                                                                                                             | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L                                                                                                                                                                                                     | <b>q</b> P<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>q</b> P<br>μg/mg                                                                |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>8<br>24<br>t<br>4<br>6<br>8<br>8<br>24<br>t<br>4<br>6<br>8<br>8<br>24<br>t<br>4<br>6<br>8<br>8<br>24<br>t<br>4<br>6<br>8<br>8<br>24<br>t<br>4<br>6<br>8<br>8<br>24<br>t<br>4<br>6<br>8<br>8<br>24<br>t<br>4<br>6<br>8<br>8<br>24<br>t<br>4<br>6<br>8<br>8<br>24<br>t<br>4<br>6<br>8<br>8<br>24<br>t<br>4<br>6<br>8<br>8<br>24<br>t<br>4<br>6<br>8<br>8<br>24<br>t<br>4<br>6<br>8<br>8<br>24<br>t<br>4<br>6<br>8<br>8<br>24<br>t<br>4<br>5<br>8<br>8<br>24<br>t<br>4<br>5<br>8<br>8<br>24<br>t<br>4<br>5<br>8<br>8<br>24<br>t<br>4<br>5<br>8<br>8<br>24<br>t<br>4<br>5<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235<br>118<br>43<br>16<br>3<br>16<br>3<br>(As) g<br>μg/L                                                                                                                                                                                                                                                                                             | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07<br>4,64<br>7,05<br>18,43<br>c(Fe)<br>mg/L<br>RV-FeCl2-I                                               | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br><b>qP</b><br>μg/mg<br>247<br>182<br>168<br>127<br>88<br>34<br>34<br><b>qP</b><br>μg/mg                                                                                                                                                                                                                    | c(As) g<br>μg/L<br>624<br>463<br>376<br>318<br>203<br>110<br>5<br>c(As) g<br>μg/L<br>626<br>402<br>335<br>243<br>113<br>38<br>4<br>4<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                               | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42<br>19,42<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42<br>19,42<br>C(Fe)<br>mg/L<br>RV-FeCI2-II                      | <b>q</b> P<br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>q</b> P<br>μg/mg<br>284<br>262<br>229<br>190<br>133<br>32<br>284<br>262<br>229<br>190                                                                                                      | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L<br>c(Fe)<br>c(Fe)<br>c(Fe)<br>mg/L<br>RV-FeCI2-III                                                                                                                                                  | qP<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b><br>μg/mg                                                                         |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>t<br>4<br>6<br>8<br>24<br>t<br>1<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235<br>118<br>43<br>16<br>3<br>16<br>3<br>(As) g<br>μg/L<br>(As) g<br>μg/L<br>43<br>43<br>43<br>43<br>16<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>5<br>5<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                                                                       | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07<br>4,64<br>7,05<br>18,43<br>c(Fe)<br>mg/L<br>RV-FeCl2-I                                               | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br><b>qP</b><br>μg/mg<br>247<br>182<br>168<br>127<br>88<br>34<br>247<br>182                                                                                                                                                                                                                                  | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335           243           113           38           4           c(As) g           μg/L           440                                                                                                                                                                                                 | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42<br>19,42<br>c(Fe)<br>mg/L<br>RV-FeCI2-II                                                                       | <b>q</b> P<br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>q</b> P<br>μg/mg<br>284<br>262<br>229<br>190<br>133<br>32<br>284<br>262<br>229<br>190<br>133<br>32                                                                                         | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L<br>463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L<br>c(Fe)<br>c(Fe)<br>mg/L<br>RV-FeCI2-III                                                                                                                                                           | qP<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b><br>μg/mg<br><b>qP</b><br>μg/mg                                                   |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>4<br>6<br>8<br>24<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235<br>118<br>43<br>16<br>3<br>16<br>3<br>(As) g<br>μg/L<br>43<br>16<br>43<br>16<br>43<br>16<br>3<br>118<br>43<br>16<br>3<br>118<br>43<br>16<br>3<br>118<br>43<br>16<br>3<br>118<br>43<br>16<br>3<br>118<br>43<br>16<br>3<br>118<br>43<br>16<br>3<br>118<br>143<br>15<br>16<br>16<br>178<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16 | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07<br>4,64<br>7,05<br>18,43<br>c(Fe)<br>mg/L<br>RV-FeCl2-I<br>2,3                                        | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br>qP<br>μg/mg<br>247<br>182<br>168<br>127<br>88<br>34<br>QP<br>μg/mg<br>47<br>182<br>168<br>127<br>88<br>34                                                                                                                                                                                                 | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335           243           113           38           4           c(As) g           μg/L           440           117                                                                                                                                                                                   | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42<br>19,42<br>c(Fe)<br>mg/L<br>RV-FeCl2-II<br>RV-FeCl2-II                                                        | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>qP</b><br>μg/mg<br>284<br>262<br>229<br>190<br>133<br>32<br>229<br>190<br>133<br>32<br>2<br><b>qP</b><br>μg/mg                                                                              | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L<br>c(Fe)<br>c(Fe)<br>mg/L<br>RV-FeC12-III                                                                                                                                                           | qP<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b><br>μg/mg<br><b>qP</b><br>μg/mg                                                   |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>4<br>6<br>8<br>24<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235<br>118<br>43<br>16<br>3<br>c(As) g<br>μg/L<br>635<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                              | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07<br>4,64<br>7,05<br>18,43<br>c(Fe)<br>mg/L<br>RV-FeCl2-I<br>2,3<br>6,8                                 | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br>qP<br>μg/mg<br>247<br>182<br>168<br>127<br>88<br>34<br>9<br>4<br>9<br>μg/mg<br>4<br>127<br>88<br>34<br>127<br>88<br>34<br>68<br>127<br>88<br>34<br>68<br>127<br>88<br>34<br>68<br>127<br>88<br>34<br>63                                                                                                   | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335           243           113           38           4           c(As) g           μg/L           243           113           38           4           c(As) g           μg/L           243           440           117           25                                                                  | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42<br>19,42<br>0,79<br>c(Fe)<br>mg/L<br>RV-FeCI2-II<br>RV-FeCI2-II                                                | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>qP</b><br>μg/mg<br>284<br>262<br>229<br>190<br>133<br>32<br>229<br>190<br>133<br>32<br>229<br>190<br>133<br>32<br>229                                                                       | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L<br>463<br>283<br>184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L<br>c(Fe)<br>mg/L<br>RV-FeCI2-III<br>1<br>2                                                                                                                                                          | qP<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b><br>μg/mg<br><b>qP</b><br>μg/mg<br>200<br>155                                     |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>1<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>1<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235<br>118<br>43<br>16<br>3<br>c(As) g<br>μg/L<br>635<br>25<br>278<br>118<br>43<br>16<br>3<br>22<br>12                                                                                                                                                                                                                                               | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07<br>4,64<br>7,05<br>18,43<br>c(Fe)<br>mg/L<br>RV-FeCl2-I<br>2,3<br>6,8<br>11,3                         | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br>qP<br>μg/mg<br>247<br>182<br>168<br>127<br>88<br>34<br>9<br>4<br>4<br>7<br>88<br>34<br>9<br>4<br>136<br>63<br>39                                                                                                                                                                                          | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335           243           113           38           4           c(As) g           μg/L           4           243           113           38           4           c(As) g           μg/L           440           117           25           12                                                       | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42<br>19,42<br>0,79<br>c(Fe)<br>mg/L<br>RV-FeCI2-II<br>2,3<br>6,8<br>11,3                                         | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>qP</b><br>μg/mg<br>284<br>262<br>229<br>190<br>133<br>32<br>284<br>262<br>229<br>190<br>133<br>32<br>32<br><b>qP</b><br>μg/mg                                                               | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L<br>463<br>283<br>184<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L<br>c(Fe)<br>mg/L<br>RV-FeCi2-III<br>1<br>2<br>3                                                                                                                                                     | qP<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b><br>μg/mg<br><b>qP</b><br>μg/mg<br>200<br>155<br>129                              |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>1<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>1<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235<br>118<br>43<br>16<br>3<br>c(As) g<br>μg/L<br>6<br>451<br>143<br>22<br>12<br>6                                                                                                                                                                                                                                                                   | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07<br>4,64<br>7,05<br>18,43<br>c(Fe)<br>mg/L<br>RV-FeCl2-I<br>2,3<br>6,8<br>11,3<br>15,8                 | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br>qP<br>μg/mg<br>247<br>182<br>168<br>127<br>88<br>34<br>247<br>182<br>168<br>127<br>88<br>34<br>9<br>μg/mg<br>136<br>63<br>39<br>28                                                                                                                                                                        | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335           243           113           38           4           c(As) g           μg/L           243           113           38           4           c(As) g           μg/L           25           12           7                                                                                   | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42<br>19,42<br>0,79<br>c(Fe)<br>mg/L<br>RV-FeCI2-II<br>2,3<br>6,8<br>11,3<br>15,8                                 | qP         μg/mg         335         331         291         244         182         55         qP         μg/mg         284         262         229         190         133         32         qP         μg/mg         143         62         38         27 | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L<br>463<br>283<br>184<br>114<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L<br>c(Fe)<br>mg/L<br>RV-FeCi2-III<br>1<br>2<br>3<br>3<br>4                                                                                                                                           | qP<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>qP</b><br>μg/mg<br><b>qP</b><br>μg/mg<br>200<br>155<br>129<br>107                       |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>1<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>1<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235<br>118<br>43<br>16<br>3<br>c(As) g<br>μg/L<br>6<br>451<br>143<br>22<br>12<br>6<br>6<br>6                                                                                                                                                                                                                                                         | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07<br>4,64<br>7,05<br>18,43<br>c(Fe)<br>mg/L<br>RV-FeCl2-I<br>2,3<br>6,8<br>11,3<br>15,8<br>20,3         | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br><b>qP</b><br>μg/mg<br>247<br>182<br>168<br>127<br>88<br>34<br><b>qP</b><br>μg/mg<br><b>1</b> 36<br>63<br>39<br>28<br>22                                                                                                                                                                                   | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335           243           113           38           4           c(As) g           μg/L           243           113           38           4           c(As) g           μg/L           7           5                                                                                                 | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42<br>19,42<br>0,79<br>1,42<br>19,42<br>c(Fe)<br>mg/L<br>RV-FeCI2-II<br>2,3<br>6,8<br>11,3<br>15,8<br>20,3        | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>qP</b><br>μg/mg<br>284<br>262<br>229<br>190<br>133<br>32<br>284<br>262<br>229<br>190<br>133<br>32<br><b>qP</b><br>μg/mg                                                                     | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L<br>463<br>283<br>184<br>114<br>78<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c(Fe)           mg/L           RV17-6           0,88           1,34           1,91           2,89           4,55           17,76           c(Fe)           mg/L           c(Fe)           mg/L           c(Fe)           ng/L           2           3           4           5                 | <b>q</b> P<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>q</b> P<br>μg/mg<br><b>q</b> P<br>μg/mg<br>200<br>155<br>129<br>107<br>92       |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>1<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | с(As) g<br>µg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br><b>c(As) g</b><br>µg/L<br>635<br>361<br>235<br>118<br>43<br>16<br>3<br><b>c(As) g</b><br>µg/L<br><b>c(As) g</b><br>µg/L<br>6<br>451<br>143<br>22<br>12<br>6<br>6<br>4<br>4                                                                                                                                                                                                            | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07<br>4,64<br>7,05<br>18,43<br>c(Fe)<br>mg/L<br>RV-FeCl2-I<br>2,3<br>6,8<br>11,3<br>15,8<br>20,3<br>22,5 | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br><b>qP</b><br>μg/mg<br>247<br>182<br>168<br>127<br>88<br>34<br><b>qP</b><br>μg/mg<br><b>1</b> 36<br>63<br>39<br>28<br>22<br>20                                                                                                                                                                             | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335           243           113           38           4           c(As) g           μg/L           243           113           38           4           c(As) g           μg/L           7           5                                                                                                 | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42<br>19,42<br>c(Fe)<br>mg/L<br>RV-FeCl2-II<br>c(Fe)<br>mg/L<br>RV-FeCl2-II<br>2,3<br>6,8<br>11,3<br>15,8<br>20,3 | <b>qP</b><br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>qP</b><br>μg/mg<br>284<br>262<br>229<br>190<br>133<br>32<br>284<br>262<br>229<br>190<br>133<br>32<br><b>qP</b><br>μg/mg                                                                     | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>c(As) g<br>μg/L<br>c(As) g<br>c(As) c(As) g<br>c(As) g<br>c(As) g<br>c(As) c(As) | c(Fe)<br>mg/L<br>RV17-6<br>0,88<br>1,34<br>1,91<br>2,89<br>4,55<br>17,76<br>c(Fe)<br>mg/L<br>c(Fe)<br>mg/L<br>c(Fe)<br>mg/L<br>RV-FeC12-III<br>1<br>2<br>3<br>4<br>5<br>5                                                                                                                     | <b>q</b> P<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>q</b> P<br>μg/mg<br><b>q</b> P<br>μg/mg<br>200<br>155<br>129<br>107<br>92<br>79 |
| t [h]<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>0<br>2<br>3<br>4<br>6<br>8<br>24<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c(As) g<br>μg/L<br>609<br>435<br>359<br>278<br>163<br>78<br>5<br>c(As) g<br>μg/L<br>635<br>361<br>235<br>118<br>43<br>16<br>3<br>361<br>235<br>118<br>43<br>16<br>3<br>c(As) g<br>μg/L<br>6<br>6<br>4<br>5<br>6<br>6<br>6<br>4                                                                                                                                                                                                                         | c(Fe)<br>mg/L<br>RV17-4<br>0,62<br>0,94<br>1,46<br>2,24<br>3,65<br>11,59<br>c(Fe)<br>mg/L<br>RV17-7<br>1,11<br>2,19<br>3,07<br>4,64<br>7,05<br>18,43<br>c(Fe)<br>mg/L<br>RV-FeCl2-I<br>2,3<br>6,8<br>11,3<br>15,8<br>20,3<br>22,5 | qP<br>μg/mg<br>282<br>266<br>227<br>199<br>145<br>52<br><b>qP</b><br>μg/mg<br>247<br>182<br>168<br>127<br>88<br>34<br><b>QP</b><br>μg/mg<br><b>QP</b><br>μg/mg<br>247<br>182<br>168<br>127<br>88<br>34<br><b>QP</b><br>μg/mg<br>282<br>20<br>28<br>28<br>22<br>20<br>20<br>28<br>22<br>20<br>20<br>28<br>22<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | c(As) g           μg/L           624           463           376           318           203           110           5           c(As) g           μg/L           626           402           335           243           113           38           4           c(As) g           μg/L           626           402           335           243           113           38           4           c(As) g           μg/L           440           117           25           12           7           5 | c(Fe)<br>mg/L<br>RV17-5<br>0,48<br>0,75<br>1,05<br>1,73<br>2,83<br>11,23<br>c(Fe)<br>mg/L<br>RV17-8<br>0,79<br>1,11<br>1,67<br>2,70<br>4,42<br>19,42<br>c(Fe)<br>mg/L<br>RV-FeCI2-II<br>c(Fe)<br>mg/L<br>RV-FeCI2-II<br>2,3<br>6,8<br>11,3<br>15,8<br>20,3 | <b>q</b> P<br>μg/mg<br>335<br>331<br>291<br>244<br>182<br>55<br><b>q</b> P<br>μg/mg<br>284<br>262<br>229<br>190<br>133<br>32<br>284<br>262<br>229<br>190<br>133<br>32<br><b>q</b> P<br>μg/mg                                                                  | c(As) g<br>μg/L<br>615<br>388<br>285<br>200<br>102<br>38<br>3<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L<br>c(As) g<br>μg/L<br>463<br>283<br>184<br>114<br>78<br>48<br>39<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c(Fe)           mg/L           RV17-6           0,88           1,34           1,91           2,89           4,55           17,76           c(Fe)           mg/L           c(Fe)           mg/L           RV-FeCI2-III           1           2           3           4           5           7 | <b>q</b> P<br>μg/mg<br>258<br>246<br>217<br>178<br>127<br>34<br><b>q</b> P<br>μg/mg<br>                                                            |

|         |       | RV 14 Bestimmung der Korrosionsraten |         |         |         |         |         |         |         |
|---------|-------|--------------------------------------|---------|---------|---------|---------|---------|---------|---------|
|         |       | 1                                    | 2       | 3       | 4       | 5       | 6       | 7       | 8       |
|         |       |                                      |         |         |         |         |         |         |         |
| m(t=0)  | g     | 0,300                                | 0,300   | 0,301   | 0,301   | 0,301   | 0,301   | 0,300   | 0,300   |
| m(Fe)Ox | g     | 0,030                                | 0,033   | 0,022   | 0,029   | 0,040   | 0,042   | 0,054   | 0,049   |
| m(t=24) | g     | 0,270                                | 0,268   | 0,279   | 0,271   | 0,261   | 0,259   | 0,246   | 0,251   |
| Α       | m2    | 0,00081                              | 0,00081 | 0,00081 | 0,00081 | 0,00157 | 0,00156 | 0,00156 | 0,00156 |
| CR      | g/m2d | 37,4                                 | 40,1    | 26,8    | 36,3    | 25,5    | 27,0    | 34,5    | 31,5    |
|         |       |                                      |         |         |         |         |         |         |         |
|         |       |                                      |         |         |         |         |         |         |         |

## **Dateiversion:**

D:\K3-050516\Diss\Diss-173.doc

17.05.2005 11:50:22